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Abstract

The ability to communicate through speech is important for social interac-
tion. We rely on the ability to communicate with each other even in noisy
conditions. Ideally, the speech is easy to understand but this is not always
the case, if the speech is degraded, e.g., due to background noise, distortion
or hearing impairment. One of the most important factors to consider in rela-
tion to such degradations is speech intelligibility, which is a measure of how
easy or difficult it is to understand the speech. In this thesis, the focus is on
the topic of speech intelligibility prediction.

The thesis consists of an introduction to the field of speech intelligibility
prediction and a collection of scientific papers. The introduction provides
a background to the challenges with speech communication in noisy condi-
tions, followed by an introduction to how speech is produced and perceived
by the listener. After this, the topic of speech intelligibility and the factors
governing speech intelligibility is covered. Finally, the concept of speech in-
telligibility prediction is introduced and a background to existing intrusive
and non-intrusive speech intelligibility prediction measures is provided.

The primary contribution of the thesis is the collection of papers, which
propose objective measures for non-intrusive speech intelligibility prediction.
The measures are based on the same approach in which an existing intrusive
speech intelligibility measure is extended such that it can predict speech in-
telligibility non-intrusively without access to a clean reference signal. The
principle is to estimate a reference signal from its degraded counterpart and
use this as input to an intrusive measure. The difference between them lies
in how the reference signal is estimated, where they can broadly be divided
into two approaches to the problem; Paper A, B and F propose a multichan-
nel solution to the problem, where the spatial content of the desired source is
used to extract the signal, while paper C-E propose a single-channel solution,
where the reference signal is estimated by finding a combination of signals
from a model of the speech production system, which best fits the data. The
measures are shown to be well correlated with both the intrusive scores and
data from subjective listening tests.
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Resumé

Evnen til at kommunikere gennem tale er vigtig for den sociale interaktion.
Vi er afhængige af evnen til at kunne kommunikere med hinanden i selv støj-
fyldte omgivelser. Ideelt er talen let at forstå, men dette er ikke altid tilfældet,
hvis talen er forringet f.eks. grundet meget baggrundsstøj, forvrængning
eller høretab. En af de vigtigste faktorer man skal tage højde for i forhold til
sådanne forringelser er taleforståeligheden. I denne afhandling er fokus på
emnet prædiktion af taleforståelighed.

Afhandlingen består af en introduktion til området indenfor prædiktion
af taleforståelighed og en samling af videnskabelige artikler. Introduktio-
nen giver en baggrund til udfordringerne med kommunication i støjfyldte
omgivelser efterfulgt af en introduktion til, hvordan tale bliver genereret og
modtaget. Efter dette bliver emnet omkring taleforståelighed, samt de fak-
torer, der påvirker taleforståeligheden dækket. Til slut introduceres emnet
omkring prædiktion af taleforståelighed, både med og uden adgang til et
rent referencesignal.

Det primære bidrag af afhandlingen er samlingen af artikler, hvor der
foreslås objektive mål til reference-fri prædiktion af taleforståelighed. Tale-
forståelighedsmålene er baseret på den samme tilgang, hvor et eksisterende
taleforståelighedsmål, der kræver adgang til et rent referencesignal, videreud-
vikles, således de kan prædiktere taleforståelighed uden adgang til refer-
encesignalet. Princippet er at estimere et referencesignal ud fra det støjfyldte
signal og bruge dette som input til et taleforståelighedsmål, som kræver et
referencesignal. Forskellen mellem metoderne består i, hvordan reference
signalet er estimeret. Metoderne kan generelt inddeles i to tilgange; Artikel
A, B og F foreslår en multi-kanalsløsning til problemet, hvor signalets spa-
tiale karakteristik bruges til at estimere referencesignalet, mens artikel C-E
foreslår en én-kanalsløsning, hvor referencesignalet estimeres ved at finde en
kombination af signaler fra en model af taleproduktionssystemet, der afspe-
jler dataet bedst. De foreslåede metoder er godt korreleret med både tale-
forståelighedsmålene med adgang til referencesignalet og data fra subjektive
lytteforsøg.
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Introduction

1 Speech Communication

Speech plays a central role in human interaction impacting how we under-
stand and communicate with the world around us [98]. Humans rely on the
ability to speak with each other in order to exchange valuable information
such as knowledge, ideas, opinions and feelings.

Ideally, the speech is easy to understand, i.e. intelligible, without any
degradation of the speech. However, if the speech is unintelligible, e.g.,
due to hearing impairment, distortion in telecommunication systems or back-
ground noise, it can given the importance of speech have detrimental effects
on the ability to communicate and interact with each other and, thus, lead
to social isolation. In order to overcome this challenge, research into the de-
velopment of speech enhancement algorithms have been of great interest in
many applications [50, 70], e.g., hearing aids [36], telecommunication sys-
tems [54, 96], and architectural acoustics [47]. Such algorithms can be helpful
in difficult situations with high background noise in order to increase intel-
ligibility. However, in less noisy conditions, the same algorithms may have a
negative impact on the speech quality or the naturalness of the sound [70, 99].

In order to push the limits for the performance and possibilities of the
speech enhancement algorithms it is increasingly important to understand
the underlying factors governing speech intelligibility and communication.
A lot is known about the physiology of the human speech production sys-
tem [83], i.e., the vocal tract, and the hearing system, i.e., the ear. On the
other hand, very little is known about how the brain processes speech [77].
For example, humans have a remarkable ability to perceive speech even in
adverse listening conditions with background noise, reverberation and com-
peting speakers [12]. This ability was coined by Edward Colin Cherry in
1953 with the question: "How do we recognize what one person is saying when
others are speaking at the same time?" [18], but was already considered by Her-
mann von Helmholtz in 1870 [101]. Helmholtz described how "...the ear is
able to distinguish all the separate constituent parts of the confused whole" even in
the presence of a mixture of sound that is "complicated beyond conception" in

3



the adverse listening environment of the ball-room with competing speakers,
music, clinking glasses, rustling garments etc. This ability to attend to one
particular speaker, while filtering away interfering speakers and background
noise has been termed the "cocktail party phenomenon" [11].

Speech communication in difficult listening environments such as the
cocktail party scenario can be studied in various ways with emphasis on,
e.g., listening effort [87], speech quality [70] or speech intelligibility [36]. This
thesis has focused on the field of speech intelligibility as this is the foundation
for even being able to communicate through speech. In order to understand
and model the factors governing speech intelligibility it is necessary first to
understand how speech is produced and perceived by the listener, which will
be covered in the following parts.

1.1 Speech Production

An advantageous anatomy of the speech production system, i.e. the vocal
tract and lungs, and large portions of the brain make it possible for humans
to produce sounds in ways no other animal can [83]. The formulation of
sentences are carried out in the brain, which produces a series of motor com-
mands controlling the movement of the muscles in the vocal tract and lungs
in order to produce the intended sound wave [66].

In order to get an understanding of the properties of the speech signal,
it is necessary to briefly consider the details of the mechanical system of the
speech production system. The ways of producing speech can generally be
separated into three different categories depending on the involvement of the
lungs and the different parts of the vocal tract: 1) voiced speech that includes
vowels, and unvoiced speech that includes 2) fricatives (e.g. [s] and [f]), and
3) plosives (e.g. [p] and [k]) [83].

In the first case of the vowel sound, the lungs build up air pressure, which
sets the vocal folds into a vibratory motion. The vocal folds then convert
the steady air flow into a series of periodical bursts at a rate of 60 to 300
Hz [20] determining the fundamental frequency of the speech, i.e., the pitch,
which can be considered as the excitation signal of the speech signal [83].
The pitch of the speech signal can be changed by changing the shape of the
vocal folds. The excitation signal is then transformed by resonances of the
vocal tract, containing the pharyngeal, oral and nasal cavities, which can
be described as a time-varying filter of the excitation signal as illustrated in
Figure 1. Different resonance characteristics are created depending on the
shape and size of these cavities determining the formants, which facilitates
the production of different vowel sounds.

In the second case of the fricative, air from the lungs passes through the
open vocal cords into the vocal tract, where constrictions in the tract produce
turbulence giving rise a noise-like sound [83]. In the third case of the plo-
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1. Speech Communication

Fig. 1: A schematic drawing of the production of the vowel adapted from [73]. The vocal tract
tract acts a time-varying filter on a periodical excitation signal.

sive sound, also known as the stop, the sound is produced by either a rapid
release of a constriction in the vocal tract or a sudden constriction of the air
flow giving rise to trancient clicks and pops [64]. Opposite to the vowel and
fricative, the stop sound does not require air pressure from the lungs.

A Source Filter Speech Model

The above described process for production of speech can be explained in
a simplified manner by the "source-filter theory of speech production" based
on the experiments by Johannes Müller in 1848 [83]. In this model an acoustic
excitation signal, representing the source signal from the lungs, is modulated
by a time-varying filter function, representing the vocal tract, which results in
a shaped spectrum with broadband energy peaks. The excitation signal for
the unvoiced speech signal can be modeled by white Gaussian noise, whereas
the voiced speech signal can be modeled by a periodic signal.

Given the source-filter speech model, the speech signal can then be mod-
eled as a stochastic auto-regressive (AR) process in which the excitation sig-
nal of the speech is given by white Gaussian noise and the AR parameters
determine the filter coefficients:

s(n) = −
P

∑
i=1

as(i)s(n− i) + u(n), (1)

5



which can also be expressed in vector notation as

u(n) = aT
s s(n) (2)

where P is the order of the AR process, s(n) = [s(n), s(n− 1), . . . , s(n− P)]T is
a vector collecting the P past speech samples, as = [1, as(1), as(2), . . . , as(P)]T

is a vector containing the speech AR parameters with as(0) = 1, and u(n)
modeling the excitation signal.

The AR model has been widely used for modeling the speech production
system [42]. However, it should be noted that it is a very simplistic model
that does not account for the nasal cavity. Furthermore, using white Gaussian
noise as excitation signal is only a suitable model for unvoiced speech and
less representative for voiced speech [24]. Nevertheless, it can be considered
appropriate for low-dimensional representations of the speech spectrum.

A Harmonic Speech Model

The voiced speech signal can more appropriately be modeled by a harmonic
speech model [19]. For example the all-voiced utterance "Why where you
away a year, Roy?" shown in Figure 2 can be appropriately modeled by a
harmonic speech model.
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Fig. 2: A spectrogram of the voiced sentence: "Why where you away a year, Roy?" from the
corpus in [21].

In the harmonic speech model, the speech signal is modeled as a sum
of complex sinusoids with frequencies that are multiples of the fundamental
frequency, i.e. the pitch, also known as harmonics. As such, the speech signal
can be modeled as:

s(n) =
L

∑
l=1

alejωln, (3)
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1. Speech Communication

where L is the number of harmonics, i.e., model order, the complex amplitude
of the lth harmonic of the speech signal is given by al = Alejφl and the phase
is given by φl .
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Fig. 3: A spectrogram of the reconstruction of the voiced sentence: "Why where you away a year,
Roy?" using the harmonic speech model.

The speech signal is highly non-stationary and, thus, the pitch of the
speech signal varies over time. However, over a sufficiently short duration
of time of approximately 10-30 ms the spectral characteristics are fairly sta-
tionary such that the non-stationary nature of the speech signal can be ac-
counted for by assuming the speech signal to be quasi-stationary over short
time windows [70]. During such a time window the parameters of the har-
monic speech model, i.e., the complex amplitude, the model order and the
pitch, are assumed to be constant and can, thus, be estimated in order to
model the voiced speech signal. A reconstruction of the utterance in Figure 2
using the harmonic speech model is depicted in Figure 3.

1.2 Speech Perception

An advantageous anatomy of the auditory system make it remarkable in its
ability to sense acoustic stimuli across a wide dynamic range (0-140 dB) and
a wide range of frequencies (16 Hz to 20 kHz). When the acoustic signal
reaches the ear of the listener, it first hits the pinna, i.e., the external part of
the ear [78]. The pinna causes multiple reflections of the sound signal, which
can give a cue about the direction of arrival of the signal. The acoustic sound
wave travels through the ear canal until the eardrum, where it is converted
into mechanical vibrations. The mechanical vibrations are transferred into
the inner ear through the ossicular chain consisting of the malleus, incus and
stapes. Inside the inner ear, the cochlea converts the mechanical vibrations
into neural activity [78]. The basilar membrane within the cochlea is mechan-
ically tuned to resonate at different frequencies along its length ranging from
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Speech Intelligibility
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Fig. 4: It is important to differentiate between speech intelligibility and quality, since they are not
necessarily related. As such, a high speech quality does not per default result in a high speech
intelligibility and vice versa.

high frequencies at the base to low frequencies at the apex [77]. As such,
the basilar membrane functions as spatially distributed bandpass filters [75].
In the basilar membrane the mechanical vibrations are converted into elec-
trical signals through the displacement of hair cells located on the organ of
Corti. The electrical signals are then sent to the primary cortex in the brain
through the auditory nerve and auditory pathway [78]. A deep review of the
functioning of the human brain is beyond the scope of this thesis but a more
detailed description of the anatomy ans physiology of the ear and brain can
be found in [77, 78].

2 Speech Intelligibility

A helpful way to study the perception of speech is to consider the funda-
mentals of speech intelligibility. Generally, intelligibility can be viewed as a
measure of how comprehensible speech is in a given acoustic environment.
Intelligibility is measured by how much of the speech is correctly identified
and not by how much of the speech that is correctly understood, since some
listening test material includes nonsense words, which can only be identified
correctly but not understood [1].

When considering the topic of speech intelligibility, it is also important to
differentiate between speech intelligibility and speech quality. Speech quality
is a measure of the naturalness, clarity and distortion of the speech signal.
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2. Speech Intelligibility

Both measures are of high relevance when trying to improve the perception
of speech with, e.g., speech enhancement algorithms. However, increasing
both speech intelligibility and speech quality can sometimes be two conflict-
ing goals as shown in Figure 4. An improvement in speech intelligibility does
not necessarily result in an improvement in speech quality or vice versa [70].
As such, it is important to have a clear focus on the objective, when employ-
ing or developing speech enhancement algorithms.

After having gained an understanding of how speech is produced and
perceived, it is of interest to consider how different factors influence speech
intelligibility. The objective of the following sections is not to provide a
comprehensive analysis of the factors influencing speech intelligibility, but
to identify the most important elements that might influence the intelligibil-
ity. The most important factors influencing the speech intelligibility are the
characteristics of the speech or the degradation of the speech (from the acous-
tic environment, telecommunication systems or hearing aids), which will be
covered in the following sections.

2.1 Speech Cues Influencing Speech Intelligibility

Whether the goal is to improve or predict the intelligibility of speech, it is im-
portant to obtain an understanding of which cues of the speech that make it
intelligible. A number of studies have investigated the relationship between
specific speech cues and speech intelligibility [12, 31], e.g. the fundamental
frequency [8, 26] and temporal envelope [30, 89]. However, despite the exten-
sive research for many decades on speech intelligibility it has not been pos-
sible to completely answer which speech cues make speech intelligible. The
remainder of this section will not provide an extensive review but shortly
summarize some of the most important speech characteristics contributing to
speech intelligibility.

Temporal Envelope

The temporal envelope of the speech is characterized by the slow variation
in the overall amplitude of the speech signal over time (see Figure 5). The
envelope may be an important carrier of the semantic information of the
speech signal [31, 39, 92] with the most important amplitude modulations
for speech intelligibility being in the range between 4 and 16 Hz [32]. Only
presenting the temporal envelope of the speech signal without the temporal
fine structure (the instantaneous variation in the sound pressure) still pre-
serves a high speech intelligibility in noise free conditions, as experiments
with vocoding [30, 89] and chimaeric speech [92] show.
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Fig. 5: A) The original speech signal. B) The temporal envelope of the speech signal, which
shows slow fluctuations over time. C) The temporal fine structure of the speech signal, which
shows no fluctuation over time.
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2. Speech Intelligibility

Pitch

Pitch is a strong cue for grouping speech signals aiding the ability to follow
a single speaker in noisy conditions [8, 14, 26]. Particularly, speech intelli-
gibility is significantly higher when the target and interferer are uttered by
different genders instead of being uttered by a talker of the same gender [11].
The harmonicity of the pitch, i.e. integer multiples of the frequency of the
pitch, is a helpful cue for grouping the signal across frequencies in order
to determine whether a sound segment belongs to the same speaker [51].
However, except for tonal languages the pitch is not a fundamental cue for
speech intelligibility in noise free conditions, since the temporal envelope is
sufficient for carrying the semantic meaning of the speech signal as already
mentioned [30, 89, 92].

Formant Frequencies

Formant frequencies are the spectral peaks of the short-term spectrum, which
can be seen in Figure 1 on page 5 in last panel in the bottom row. The
vowels consist primarily of the two lowest formants between 300 and 2500
Hz [29]. The formant contour over the course of a vowel has been shown
to be perceptually important and significantly correlated with intelligibility
[43, 44].

Pauses

Onsets and offsets during pauses indicate the beginning and ending of words
and sentences, which is helpful in segregating the speech and, thus, positively
influences the speech intelligibility.

Duration

The duration of the words together with the length of the pauses determine
the speaking rate, which is an important component to speech intelligibil-
ity [93]. Lowering the speaking rate positively influences the speech intelli-
gibility, where the duration especially is an important component for vowel
identification [61].

Energy

The overall energy, i.e. intensity, of the speech signal is an important com-
ponent that significantly affects speech intelligibility [40]. The speech energy
is concentrated in spectro-temporal regions such that it will be the dominant
contributor in many regions even when mixed with interfering noise [12, 22].
This effect is furthermore enhanced by the logarithmic intensity transforma-
tion performed by the auditory system in which a stronger signal will be
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dominant when added to a weaker one [12, 25]. The glimpsing model of
speech perception in noise has described how a few glimpses in time and
frequency of the target speech is sufficient to obtain a high intelligibility [22],
which is also utilized in binary masks where all spectro-temporal regions that
are not dominated by the target speech are removed [104, 105].

Spatial information

The spatial information about the location of the speaker is useful to segre-
gate the target from interference, especially in noisy conditions [11, 13]. The
auditory system benefits from the fact that humans have two ears with the
head acting as an acoustic "shadow" such that the signals arriving at the two
ears have different interaural time difference (ITD) and interaural level differ-
ence (ILD) [13]. The ITD and ILD are helpful cues for unmasking interfering
sounds and, thus, an important component for speech intelligibility.

2.2 Speech Degradation

The speech intelligibility can be negatively affected if the speech signal is de-
graded before it is received by the listener. Numerous factors can contribute
to the degradation of the speech signal. Some of the most common contribu-
tors to degradation of the speech signal can be attributed to either the effect
of the acoustic environment, including additive noise and reverberation, or
the effect of a communication channel, e.g. hearing aids.

For example, when two people are having a conversation close to one-
another, the speech signal can be degraded by the surrounding acoustic envi-
ronment such as interfering speakers, background noise and reverberation. If
one of the participants in the conversation is also hearing impaired and wear-
ing a hearing aid, this additional communication channel might distort the
speech signal due to signal processing. These degradation types, i.e., addi-
tive noise, reverberation and distortion, are shortly explained in the following
part.

Additive Noise

Noise is present wherever we go, for instance, in restaurants with interfering
speech from people talking in nearby tables, the office with noise from PC
fans and air ducts or the street with wind noise and cars passing by [70].
Generally, the different noise types are characterized by their temporal and
spectral properties. The temporal properties characterize whether the noise is
stationary, i.e., remains constant over time (e.g. noise from the PC fan), or the
noise is fluctuating, i.e., changes over time (e.g. multiple people speaking in
a restaurant). The spectral properties characterize the shape of the spectrum,
i.e., the distribution of the energy of the noise in the frequency domain.
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d) Spectrum of processed noisy speech

0.5 1 1.5 2 2.5
Time [s]

10000
8000 
6000 
4000 
2000 

0    Fr
eq

ue
nc

y 
[H

z]

-40 dB

-20 dB

0 dB

Fig. 6: Examples of the effect of the different degradation types on the speech signal. A) Spec-
trum of the original clean speech signal. B) Spectrum of the clean signal interfered with additive
babble noise. The interfering noise overlap with the clean signal in time and frequency but is
highly fluctuating making it possible to listen in the dips. C) The clean spectrum with high
reverberation. The spectrum is highly smeared by the reverberation. D) Spectrum of the noisy
signal in B) processed with Ideal Binary Masking (IBM) [104, 105]. The processing succeeds in
restoring the spectrum of the clean signal but do also introduce distortions such that parts of the
time-frequency regions of the clean signal is missing and some of the noise is still evident.
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Fig. 7: An example of a simulated cocktail party scenario, where the target speech signal (in-
dicated by the green ball) received at the listener (indicated by the blue ball) is interfered with
additive babble noise (indicated by the red balls). Figure adapted from Paper B [94].

Regarding the temporal properties, humans are able to take advantage of
glimpses of spectro-temporal regions with high SNR, i.e. listen in the dips, as
already mentioned in Section 2.1 such that speech intelligibility is generally
higher for strongly fluctuating noises compared to stationary noises [22, 76].
Regarding the spectral properties, the most challenging condition is when
the noise has a similar spectrum to speech, i.e., contain energy in the same
frequency regions as speech [40]. As such, Speech Shaped Noise (SSN), i.e.
stationary Gaussian noise filtered to match the long-term spectrum of speech,
is often used as interfering noise in experiments.

Noise from interfering speakers, i.e., babble noise, is especially challeng-
ing, since the babble noise is spectrally similar to the target speech, but is
also too stationary to allow enough spectro-temporal glimpses to listen in
the dips [22, 76]. This thesis primarily focuses on the condition with babble
noise, since it is the most challenging scenario.

Reverberation

Reverberation is the effect of the acoustic signal being reflected by floor, walls,
ceilings and other surfaces as illustrated in Figure 8. Reverberation can cause
temporal smearing of the energy of the signal into higher modulations of
the temporal envelope, which can negatively impact the speech intelligibility
[11, 37]. The severity of the reverberation is measured by the reverberation
time, T60, which is the time it takes for the sound signal to decay 60 dB [63].
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3. Subjective Evaluation of Speech Intelligibility

Direct sound

Reflections

Fig. 8: Reverberation is caused by the acoustic signal being reflected by walls or other surfaces.

Distortion

In a scenario where the speech signal is electronically processed, e.g. in a
hearing aid, mobile phone or other electronic device, the signal might be dis-
torted, which can have a negative impact on speech intelligibility [54, 70]. The
signal processing can for example include analog-to-digital conversion, com-
pression, speech coding and enhancement, wireless transmission and digital-
to-analog conversion [70]. Especially, the effect of speech enhancement al-
gorithms is of interest when trying to improve speech intelligibility. While
many speech enhancement algorithms might improve the speech quality, it
does not guarantee an improvement in speech intelligibility [70, p. 564–567].
Generally, it has been found that many speech enhancement algorithms due
to introduced distortion fail to improve speech intelligibility relative to the
unprocessed noisy speech [49, 50, 70, 71]. As such, the effect of speech en-
hancement on speech intelligibility is an important factor to consider when
developing such algorithms.

3 Subjective Evaluation of Speech Intelligibility

After having considered the factors influencing speech intelligibility, it is rele-
vant to look into how intelligibility can be evaluated and measured. Basically,
the intelligibility of a degraded, i.e., processed, distorted or noisy speech sig-
nal can be assessed by either a subjective or objective evaluation. The sub-
jective evaluation of speech intelligibility is performed by experiments with
human listeners, whereas the objective evaluation is performed by means of
an algorithm. Generally, results obtained using subjective listening tests are
more reliable, but are also more time-consuming, expensive and not applica-
ble to real-time processing. As opposed to subjective listening tests, objective
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Table 1: The fixed syntax from the GRID database [23] has a simple, fixed and semantically
unpredictable structure consisting of a combination of a command, color, preposition, letter
digit and adverb in that order. Table adapted from Paper D.

Command Color Preposition Letter Digit Adverb
bin blue at A-Z 0-9 again
lay green by (no W) now
place red in please
set white with soon

speech intelligibility prediction algorithms are faster, cheaper and applicable
for real-time processing, but less reliable.

Subjective speech intelligibility is evaluated by presenting a stimuli to a
test subject in a controlled setting and recording how much was correctly
identified. In order to ensure reproducibility and be able control the test set-
ting, the stimuli is often presented via headphones or a loudspeaker array.
The difficulty of the task can then be varied by, e.g., changing the Signal-to-
Noise Ratio (SNR) or the level of signal processing in a controlled manner.
The target stimuli can consist of e.g. short nonsense words [1], words [23],
phonemes [74] and sentences [16, 103]. Generally, sentence corpora can be
divided into either syntactically fixed, i.e., corpora containing sentences gener-
ated from a limited collection of words, or syntactically open, i.e., corpora con-
taining sentences with no limitation in vocabulary. An example of a syntac-
tically open corpus is the English sentences in the EUROM_1 database [16],
which are used for the objective evaluation in Paper A, C and D. Examples of
syntactically fixed sentence corpora are the GRID corpus [23] and the Dan-
tale II corpus [103], which are used for the subjective evaluation in Paper D
and E, respectively.

In the subjective listening tests in Paper D, the GRID corpus with fixed-
syntax sentences was used. The sentences have a simple, syntactically fixed
but semantically unpredictable structure, e.g. "set green by C 8 now", which
is shown in Table 1. The test subject has to identify the color, letter, and
digit. Similarly, the Dantale II corpus, which is the Danish version of the
matrix sentence test, has a syntactically fixed structure with name, verb, num-
ber, adjective, and object, e.g., "Michael bought ten pretty presents" [103]. The
advantage of both the GRID and Dantale II corpora are that it is impossible
to guess the correct response from the context. Furthermore, the test subjects
can indicate their response using a Graphical User Interface (GUI) limiting
the need for an experimenter to record the response.

From the response of the test subjects, the intelligibility can be measured
either as the number of correctly identified words in percentage at a specific
SNR or adaptively changed until a fixed percentage of words are correctly
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Fig. 9: Speech intelligibility as a function of SNR gives a typical psychometric function, where
the Speech Reception Threshold (SRT) is the SNR at which 50 % are correctly identified, marked
with the dashed red lines.

identified [10, 67, 68]. In the first case, the measured intelligibility scores vs.
SNR result in a psychometric function, i.e, a S-shaped curve approaching 0%
for low SNRs and 100% for high SNRs, as shown in Figure 9. In the latter
case, the SNR is typically adapted to the level allowing 50% of the words to
be correctly identified, also known as the Speech Reception Threshold (SRT)
as indicated in Figure 9. It should be noted that a higher SRT corresponds to
a lower performance, since it is necessary with a higher SNR before 50% of
the words are correctly identified.

4 Objective Evaluation of Speech Intelligibility

Objective evaluations, i.e., objective intelligibility measures, predict the intel-
ligibility scores of the corresponding subjective evaluation based on record-
ings of the degraded speech signal, i.e., noisy, processed or otherwise dis-
torted signal. The intelligibility score is usually given as a number, e.g. be-
tween 0 and 1 [97], which can be calibrated into the percentage of correctly
identified words using, e.g., a psychometric function that depends on various
factors such as the test material used, the test conditions, etc.

Generally, objective measures are developed to predict the effects of inter-
fering speakers, the acoustic environment (e.g. reverberation) or distortion
from signal processing in the transmission channel (e.g. hearing aids or mo-
bile phones) on speech intelligibility. They are based on various models of
the human speech perception ranging from very simplified models [9, 40, 97]
to more complex models of the auditory system [55, 56, 59]. However, the
limited knowledge about the functioning of human speech perception and
what makes speech intelligible also poses a limitation for how well the algo-
rithms can model this. As such, it is important to be careful when applying
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Table 2: Taxonomy and application conditions for existing intrusive and non-intrusive speech
intelligibility prediction metrics. The symbols indicate conditions in which the measure is well
documented and recommended (green check marks), the measure can be used with caution
either because it only works in some circumstances or has not been sufficiently investigated
(yellow check marks), should be avoided (red crosses) or data is not available for the condition
(gray question marks). The data is based on [3, 5, 7, 15, 17, 33, 35–37, 41, 53, 55–59, 62, 69, 72,
79–82, 85, 86, 90, 91, 97, 97, 100, 105].

 

 

 S
ta

ti
o

n
ar

y
 n

o
is

e 

M
o

d
u

la
te

d
 n

o
is

e 

R
ev

e
rb

er
a

ti
o

n
 

IT
F

S
 

P
h

a
s

e 
J

it
te

r 

S
p

e
c

tr
a

l 
su

b
tr

ac
ti

o
n

 

IN
T

R
U

S
IV

E
 

AI [6,40,62]       
SII [7]       

ESII [80,81]       
CSII [58]     ?  

HASPI [59]       
STI [96]       

STMI [33]    ?   
STOI [97]       

sEPSM [55]       
ESTOI [53]   ?    

WSTOI [69]  ? ?    
mr-sEPSM [56]       
sEPSMcorr [79]       

N
O

N
-I

N
T

R
U

S
IV

E
 

SRMR [37]       
ModA [17]       
LCIA [90]   ? ? ?  
NISA [91]   ? ? ? ? 

THMMB-STOI [57]   ? ? ? ? 
NI-STOI [5]   ?  ? ? 

CNN-based [3]   ?  ? ? 
Spatial filtering based STOI [Paper A]    ? ? ? 

PB-STOI [Paper B]    ? ? ? 
NIC-STOI [Paper C-E]   ?  ? ? 
HDSB-STOI [Paper F]    ? ? ? 
HWB-STOI [Paper F]    ? ? ? 

 
 The measure is well documented and recommended for this condition 
 The measure can be used with caution either because it only works in some      
     circumstances or has not been sufficiently investigated 
 The measure should be avoided to be used for this condition 
 ? Data is not available for this condition 

 

18



4. Objective Evaluation of Speech Intelligibility

(a) (b)

Fig. 10: (a) An intrusive measure requires access to both a clean reference signal and the de-
graded signal. (b) A non-intrusive measure does only require access to the degraded signal in
order to estimate speech intelligibility.

speech intelligibility prediction algorithms and advantages, disadvantages
and limitations of the underlying models should be considered in regards to
the experimental setup. On the other hand, if these algorithms and, thus,
the underlying models of human speech perception, correlate well with the
subjective intelligibility results, they can possibly provide insight into how
speech intelligibility is obtained [22, 55, 95]. Reliable objective measures are
very useful for the development and evaluation of new algorithms, e.g. in
hearing aids or telecommunication systems, in order to assure these are func-
tioning as expected and be able to faster test and point out any problems.

Objective measures can broadly be classified as either intrusive or non-
intrusive (see Figure 10). Intrusive measures predict speech intelligibility
based on some type of distance metric between a clean speech reference sig-
nal and the degraded signal, whereas non-intrusive measures predict the
speech intelligibility based solely on the degraded speech signal and, thus,
do not require a clean reference signal. Generally, intrusive measures are
more reliable, since they have access to information about the clean signal.
On the other hand, non-intrusive measures are more practical for real-time
applications, when the clean reference signal is not available. The remainder
of this section will describe some of the most important speech intelligibility
measures for the work in this thesis but will not provide an extensive review
of all existing methods. An overview of the metrics described in Section 4.1
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and 4.2 is provided in Table 2, which summarizes the conditions in which
existing speech intelligibility prediction metrics as well as the measures pro-
posed in this thesis are recommended to be used and to be avoided.

4.1 Intrusive Prediction of Speech Intelligibility

The research on objective speech intelligibility measures started in the 1920s
at Bell Laboratories, where the first model was developed by Harvey Fletcher
[2, 38]. This work led to the development of the Articulation Index (AI)
by French and Steinberg [40], which was thoroughly described by Kryter [62]
and later standardized by ANSI [6]. With the emergence of computers, the AI
was later extended and modified into the Speech Intelligibility Index (SII) [7].

The AI and SII are based on the assumption that the different frequency
bands contribute differently to speech intelligibility. The AI and SII use a
weighted average of the SNR of long-term speech excerpts in several fre-
quency bands [7, 40]. As such, the AI and SII can account for intelligibility
scores in quiet and in the presence of additive noise but requires that the
clean speech signal and the noise signal can be accessed separately. The need
for the noise signal in separation implies that the AI and SII are unable to pre-
dict speech intelligibility for conditions, where the speech and noise mixture
have been subjected to non-linearly processing. Furthermore, the long-term
analysis implies that the AI and SII are insensitive to short-term fluctuations
implying that the noise has to be stationary, e.g., these models are unable to
account for modulated noise and the ability to listen in the dips. These lim-
itations are important to consider, when applying the measures for practical
applications, where the noise is often fluctuating, e.g. interfering speech, and
speech processing might introduce non-linear distortions.

As an extension of the standard SII, the Extended SII (ESII) was devel-
oped in order to improve the measures performance in fluctuating noise
conditions [80, 81]. The ESII introduces a short-term analysis, where the
speech intelligibility is evaluated in short time frames and then averaged
across these [80]. The ESII is able to predict the speech intelligibility well in
conditions where the speech signal is additively corrupted with amplitude
modulated noise and interrupted noise [81]. However, the ESII still requires
that the clean speech signal and the noise signal are available separately and
can, thus, not account for conditions where the noisy speech has been non-
linearly processed [82]. This limitation of the SII was addressed with the
coherence SII (CSII), which was introduced in order to be able to account for
the impact of non-linear processing [58]. The CSII is based on the same prin-
ciples as the SII but is evaluated using the coherence between the clean and
degraded signal instead of the SNR [15, 58]. An updated version of the CSII,
the Hearing-Aid Speech Perception Index (HASPI), includes a more detailed
auditory model and bases predictions on a larger set of features making it
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able to account for individual hearing loss [59].
Another approach that was designed to predict the impact of some types

of non-linear processing is the Speech Transmission Index (STI) based on
the concept of the modulation transfer function [46–48, 96]. The Modulation
Transfer Function (MTF) measures the change in the modulation depth of a
probe signal over a communication channel [46]. The STI then uses the output
from the MTF to predict how well the modulations of the transmitted signal
are preserved. However, the STI is not able to predict the intelligibility for
pre-recorded signals, since the metric requires the signal to be transmitted
across a well-defined communication. As such, several subsequent models
were developed based on the STI, which instead use speech as a probe sig-
nal [41]. Furthermore, the STI cannot predict the speech intelligibility for
more adverse types of non-linear processing, such as spectral subtraction,
or for conditions with fluctuating interferers [41, 72]. The Spectro-Temporal
Modulation Index (STMI) is an extended version of the STI with a more com-
plex auditory model that evaluates modulations jointly across time and fre-
quency [33].

More recently, the Short-Time Objective Intelligibility (STOI) measure [97]
and the speech-based Envelope Power Spectrum Model (sEPSM) [55] have
been introduced, which can account for the condition in which the SII- and
STI-based approaches fail. The STOI measure assumes that speech intelli-
gibility is related to the correlation between the clean and degraded signal.
Despite its simplicity – or due to – it has become very popular as it has been
shown to have a high prediction performance. The intelligibility is predicted
as the average of the correlation in time-frequency (TF) regions between the
temporal envelopes of short excerpts of the clean and degraded signal. The
STOI measure accounts well for TF processed speech, such as Ideal Binary
Masking (IBM), and different noise conditions [79, 97, 105]. However, the
STOI measure is not suitable for predicting the intelligibility of highly rever-
berant speech [79, 97]. Furthermore, the measure is not able to account for
highly fluctuating interference due to a relatively long time window (384ms).
An extension of the STOI measure, the Extended STOI (ESTOI) measure [53],
has been introduced to improve the performance in fluctuating noise condi-
tions. Another extension is the Weighted STOI (WSTOI) measure [69], which
takes the information content of the signal into account by weighing each TF
according to this.

The other recent model, sEPSM, is based on the Envelope Power Spectrum
Model (EPSM) [28, 34]. The measure estimates the SNR in the envelope-
frequency domain based on the intrinsic envelope fluctuations of the de-
graded signal and the noise signal. The sEPSM can accurately account for
the effects of reverberation, additive noise and some types of non-linear pro-
cessing, such as spectral subtraction, but fails with fluctuating interferers
and other types of non-linear processing, such as IBM processing and phase
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jitter [79]. A short-time version of the sEPSM, the multi-resolution sEPSM
(mr-sEPSM), was introduced in order to better predict the intelligibility of
fluctuating interferers [56]. Another notable speech intelligibility measure,
the sEPSMcorr [79], combines the sEPSM and STOI measure in other to over-
come the limitations of each model and utilize the complementary strengths
of the two models. The sEPSMcorr is performed in the envelope-frequency
domain as the sEPSM but uses a cross-correlation back end similar to the one
used in STOI. The sEPSMcorr is shown to account well for the effects of sta-
tionary and fluctuating additive interferers as well as the effects of non-linear
processing, such as spectral subtraction, phase jitter and IBM processing but
fails to account for the effect of reverberation [79].

4.2 Non-Intrusive Prediction of Speech Intelligibility

The first attempts to estimate speech intelligibility non-intrusively were based
on using Automatic Speech Recognition (ASR) techniques [4]. The princi-
ple behind this approach is to transcribe the degraded test word and com-
pare the similarity between the transcription and a syntactically fixed list
of all possible responses [45, 88]. One approach was proposed by Holube
and Kollmeier in 1996 based on a Dynamic-Time-Warping (DTW) ASR rec-
ognizer [84] trained using an auditory model [27]. The recognition rate of
hearing impaired listeners was predicted for a test set of consonant-vowel-
consonant words corrupted by SSN [45]. Another approach employing ASR
is based on a Hidden Markov Model (HMM) to predict the intelligibility of a
closed matrix sentence test [88]. The ASR-based non-intrusive intelligibility
measures can provide a very high performance comparable to the prediction
levels offered by the intrusive measures. However, the ASR-based measures
are not completely non-intrusive approaches, since they are limited to pre-
dicting the intelligibility of a closed set of words. This short-coming is highly
relevant for real-world conditions as they are rarely limited to a fixed set of
words.

A later approach attempts to predict non-intrusive speech intelligibility
based on converting the results of existing non-intrusive quality prediction
algorithms, e.g. ITU-T P.563 [52] and ANIQUE+ [60], into intelligibility
scores [4, 36]. The P.563 measure was the first standardized non-intrusive
algorithm by ITU-T in 2004 [52]. The P.563 and ANIQUE+ algorithms ex-
tract a number of signal parameters, e.g. level of background noise, signal
interruptions and speech robotization, from which they evaluate the unnat-
uralness, i.e., level of distortion affecting the perceived quality. However, an
improvement in speech quality is, as already mentioned in Section 2, not
necessarily equal to an improvement in speech intelligibility, and, the P.563
and ANIQUE+ algorithms have in fact been shown to be a poor predictor for
speech intelligibility [36, 37].
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4. Objective Evaluation of Speech Intelligibility

The first proposed measures that can successfully predict speech intelligi-
bility and are truly non-intrusive are the Speech-to-Reverberation Modulation
energy Ratio (SRMR) [37] and the Modulation spectrum Area (ModA) [17].
They are both based on the principle that reverberation smears the envelopes
of the speech signal (see Figure 6c), which affects the modulation spectrum of
the speech signal [17, 36, 37]. The SRMR measure computes an intelligibility
score based on the ratio between the average modulation energy at low mod-
ulation frequencies consistent with clean speech to the average modulation
energy at high frequencies consistent with reverberated speech [37]. A num-
ber of refined versions of the SRMR measure have been introduced with the
aim of improving prediction accuracy in different conditions, such as hear-
ing impairment and cochlear implant users [35, 85, 86]. The ModA measure
computes an intelligibility score by calculating the area under the modulation
spectrum [17]. The SRMR and ModA can successfully account for speech in-
telligibility of reverberated and (stationary) noisy speech [17, 36, 37] but has
been shown to fail in conditions with speech enhancement and non-linear
processing [5, 36].

Another approach to estimate speech intelligibility non-intrusively is to
estimate relevant features of the clean signal and use this as the clean refer-
ence signal in an intrusive intelligibility metric, the STOI measure [5, 57, 91].
Andersen et al. proposes the Non-Intrusive STOI (NI-STOI) measure [5],
which estimates the clean signal envelopes by projecting the modulation
magnitude spectrum of the degraded signal into a subspace trained in ad-
vance containing only the modulation magnitude spectra consistent with
clean speech. The NI-STOI measure can account well for different noise
conditions and non-linear processing, such as IBM processing, but fails in
conditions where interfering speech is mistaken for the target speech [5]. Fur-
thermore, being based on the STOI measure it will probably fail in conditions
with reverberation and highly fluctuating interference.

Recently, machine learning has gained increasingly interest as a means
to estimate the clean speech signal and use this to predict speech intelligi-
bility [3, 57, 90, 91]. Generally, machine learning based speech intelligibil-
ity prediction measures estimate speech intelligibility from different features,
e.g. spectral flatness, envelope and pitch, extracted from the degraded speech
signal. One approach proposed by Sharma et al., the Low Cost Intelligibility
Assessment (LCIA) measure [90], uses a Gaussian Mixture Model (GMM) to
compute an intelligibility score from features such as the spectral flatness,
spectral centroid, spectral dynamics and excitation variance. The GMM is
trained in a supervised manner using subjective intelligibility scores as the
desired output. However, since subjective scores are time-consuming and
expensive to collect, the lack of subjective training data poses a limitation
for how well generalizable the approach is for other conditions than the one
it is trained for even though the LCIA measure shows a high correlation
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with subjective intelligibility scores [90]. A refined version of the LCIA mea-
sure, the Non-Intrusive Speech Assessment (NISA) measure [91], attempts to
overcome this limitation by using objective intelligibility scores from an es-
tablished intrusive objective intelligibility measure, e.g. STOI, to train a tree
based regression in a supervised manner. The methods shows high correla-
tion with objective intelligibility scores from STOI but has not been further
evaluated against subjective intelligibility scores [91]. A similar approach,
the Twin HMM Based STOI (THMMB-STOI) measure [57], attempts to esti-
mate the clean speech signal from the degraded speech signal using a speech
synthesizer based on a twin HMM and use this as input to an intrusive intel-
ligibility measure. The THMMB-STOI measure has been shown to provide a
prediction accuracy comparable to STOI. However, it is also difficult to gener-
alize, since a speech synthesizer requires a large amount of training data. An-
other machine learning-based based approach uses a Convolutional Neural
Network (CNN) to predict speech intelligibility [3]. Usually, neural networks
require large amounts of training data, which poses a limitation for this ap-
proach due to the lack of large databases of degraded speech signals with
measured intelligibility scores. However, the CNN-based intelligibility mea-
sure is based on the assumption that speech intelligibility can be predicted
from a rather small number of spectro-temporal patterns in the degraded sig-
nal, which can be estimated with a relatively small CNN structure [3]. The
measure shows a high correlation with the subjective intelligibility scores for
the tested conditions – even outperforming some of the intrusive intelligibil-
ity measures [3]. However, the measure is tested with a relatively limited
number of noise conditions and it is uncertain how well it can be generalized
to other conditions given the relatively small amount of training material.

5 Application to Hearing Aids

A reliable intelligibility measure can play a key role in the development and
online processing of hearing aids. During development of hearing aids it is
crucial to test the performance of new signal processing algorithms in order
to assure they are behaving as expected. Traditionally, subjective listening ex-
periments have been performed to evaluate the performance of the hearing
aids. However, as already mentioned in Section 3, despite listening experi-
ments being more reliable, they are also more expensive and time-consuming,
which can pose a limitation for how thoroughly the algorithms can be eval-
uated. As such, it can be highly relevant to replace part of the listening
experiments during development with an objective intelligibility measure.
Generally, the predicted outcomes of the listening experiments can either be
based on recorded speech signals from the environment in which the subjec-
tive experiment would have taken place, e.g. on a KEMAR, as in Paper A or
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6. Contributions
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Fig. 11: The speech intelligibility of the combined acoustic environment and hearing aid pro-
cessing is predicted in real-time in order to optimize the processing of the hearing aid, which
would requires a non-intrusive speech intelligibility prediction algorithm.

based on simulated signals, e.g. in McRoomSim [102] as in Paper B. In either
case, it is usually possible to have access to the clean speech signal during
the development of new signal processing algorithms such that an intrusive
measure is sufficient.

Contrarily, if an objective measure should be used to predict intelligibility
on a hearing aid during online processing in order to optimize the operation
of the system, it is necessary with a non-intrusive speech intelligibility mea-
sure. An application during online processing in hearing aids could be to
change settings of the algorithms with regards to speech intelligibility as an
alternative to environment classification (see Figure 11) [65]. While speech
enhancement algorithms can be useful for improving speech intelligibility in
adverse listening scenarios with high noise levels, the same algorithms can
affect the quality of the speech negatively in less noisy conditions [70]. There-
fore, it could be beneficial for hearing aid users if the hearing aid is designed
to limit speech enhancement processing to scenarios in which it provides an
actual increase in speech intelligibility and otherwise leave the signal unal-
tered in order to preserve the quality of the speech in quieter conditions. As
such, fast and robust real-time prediction of speech intelligibility could detect
whether the speech enhancement algorithms increase the speech intelligibil-
ity or not in order to weigh the trade-off between quality and intelligibility
and adjust the hearing aid accordingly.

6 Contributions

The main body of this thesis is constituted by a collection of six papers. The
primary contribution of the work underlying this thesis consists of the pro-
posal of objective measures to predict speech intelligibility non-intrusively.
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They are all based on the approach to extend an existing intrusive speech
intelligibility measure such that it can predict speech intelligibility non-
intrusively without requiring access to a clean reference signal. The proposed
measures are based on the intrusive STOI measure [97], because it has been
highly evaluated and proven to correlate well with subjective intelligibility
scores across a wide range of conditions and processing types. Furthermore,
its simplicity makes it useful for real-time applications, e.g. hearing aids. The
principle of all the proposed methods is to replace the clean speech reference
signal with an estimation of the relevant features representing the original
reference signal. The difference between the proposed methods lies in how
the reference signal of the clean signal is estimated using, respectively, the
spatial content (papers [A], [B] and [F]), the fundamental frequency content
(papers [B] and [F]) or the envelope content (papers [C]-[E]) to reconstruct
the clean signal.

[A] Semi-Non-Intrusive Objective Intelligibility Measure using Spatial Fil-
tering in Hearing Aids

In this paper we propose a method for predicting the speech intelligibility
with an intrusive intelligibility metric, STOI, without requiring access to a
clean reference signal. The reference signal is instead replaced with an es-
timate of the clean speech signal, which is obtained from a multi-channel
signal with spatial filtering using a generalized sidelobe cancellation struc-
ture, which is chosen due to it being an already widely applied beamformer
for hearing aid applications and its simplicity making it easily implementable
in today’s hearing aids. The results show that the principle holds for one in-
terfering speech source, where the non-intrusively obtained scores are highly
correlated with the intrusively estimated STOI scores. For multiple inter-
fering speech sources the proposed measure correlates well for higher STOI
scores but deviates for lower scores (below 0.5). However, STOI scores be-
low this level generally correspond to a very low speech intelligibility, which
is most likely not relevant in realistic situations. Thus, depending on the
purpose may the functioning range of the proposed measure be adequate.

[B] Pitch-Based Non-Intrusive Objective Intelligibility Prediction

A disadvantage of the previous proposed measure is the limited ability to dif-
ferentiate between multiple speech sources due to being purely based on the
spatial content with a limited amount of microphones available in a haring
aid setup. In order to overcome this limitation, this paper proposes to es-
timate the reference signal using a multi-channel spatio-temporal harmonic
model dubbed Pitch-Based STOI (PB-STOI). Combining spatial and tempo-
ral cues (the location and fundamental frequency of the desired speaker) can
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6. Contributions

improve the ability to differentiate the desired speech signal from competing
speakers, since also considering the voice of the individual speaker and not
only the spatial content helps to resolve ambiguities. The PB-STOI measure is
shown to capture the features of the original clean signal relatively well and
to be well-correlated with the intrusive STOI scores for both stationary noise,
a complex setup with multiple competing speakers and low reverberation.

[C] Non-Intrusive Intelligibility Prediction using a Codebook-Based Ap-
proach

This paper proposes a Non-Intrusive Codebook-Based STOI (NIC-STOI),
which allows using STOI to predict the intelligibility of the noisy signal
without requiring access to the clean reference signal by replacing it with
an estimate of the clean speech envelope spectrum. The spectral envelope
of the clean speech is estimated from its degraded version by identifying
combinations of pre-trained dictionaries, i.e. codebooks of clean speech and
noise spectra, parametrized by auto-regressive parameters, which best fit the
data. In contrast to the previously proposed measures, the NIC-STOI mea-
sure is a single-channel solution for estimating speech intelligibility, which
has the advantage that it doesn’t require access to multiple microphones but
can’t differentiate between competing speakers based on the spatial config-
uration. On the other hand, NIC-STOI has the possibility to have the pre-
defined codebook for the reference signal trained for the desired speaker
such that it can use this information to differentiate the reference signal from
competing speakers. In this paper, the NIC-STOI measure is evaluated ob-
jectively with the intrusive STOI as the ground truth and the results show a
high correlation between the proposed NIC-STOI measure and the intrusive
STOI measure.

[D] Non-Intrusive Codebook-Based Intelligibility Prediction

In this paper, the NIC-STOI measure proposed in Paper C is further investi-
gated on a larger test set. Firstly, it is investigated how using gender specific
codebooks affect the prediction accuracy compared to a generic codebook.
The results show that the performance does not degrade for the case with a
generic codebook compared to the gender specific codebook. Secondly, the
NIC-STOI measure is evaluated against subjective listening data in which it is
shown to have a high correlation with intelligibility score for additive babble
noise.
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[E] Validation of The Non-Intrusive Codebook-Based Short Time Objective
Intelligibility Metric for Processed Speech

In this paper, the application of NIC-STOI measure is further validated
against subjective listening scores for conditions with non-linearly processed
speech across a wide range of noise conditions. Even though NIC-STOI is not
expected to be able to account for non-linear processing, since it is based on
an additive noise model, the results show a high correlation with subjective
listening scores for Ideal Time-Frequency Segregation data. The NIC-STOI
measure outperforms the three existing state-of-the-art non-intrusive speech
intelligibility measures it is compared with and is almost on par with the
performance of the intrusive STOI measure.

[F] Harmonic Beamformers for Non-Intrusive Speeh Intelligibility Predic-
tion

This paper combines the principles in Paper A and B such that the refer-
ence signal is obtained using model-based harmonic spatial filtering, which
exploits the simplicity of the beamforming approach while preserving the
robustness of the spatio-temporal model, since taking both the spatial and
spectral content into account resolves possible ambiguities due to competing
speakers or reverberation. The model-based harmonic beamformer consists
of a spatial filters, which are optimized to the spatial and spectral charac-
teristics of the desired speech signal. However, using a harmonic model to
estimate the reference signal only captures the voiced segments of the speech.
This might be sufficient for capturing the relevant features of the reference
signal in noisy conditions, since it is that the voiced parts of the speech that
contains the most energetic spectro-temporal regions and intelligibility has
been shown to be highly related to the presence of such glimpses [22]. The
proposed measure is in the simulated results shown to be well correlated
with the intrusively computed scores in an adverse listening scenario with
multiple competing speakers and different noise and reverberation levels.

7 Conclusion

The main outcome of the work performed during this thesis is the proposal
of different approaches for non-intrusive prediction of speech intelligibility,
i.e. predicting how intelligible speech is without access to a clean reference
signal. The direction taken in this work is to predict the speech intelligibility
non-intrusively by first obtaining an estimate of the clean reference signal,
which is thereafter used as input to an intrusive speech intelligibility mea-
sure. The difference between the proposed non-intrusive speech intelligibility
prediction measures lies in how the reference signal is estimated.
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7. Conclusion

The proposed methods can generally be divided into two different ap-
proaches to the problem; The multi-channel case (Papers A, B and F), where
the proposed measures utilize the spatial and/or spectral content to extract
an estimate of the desired reference signal, and the single-channel case (Pa-
pers C-E), where the desired reference signal is estimated through a combina-
tion of pre-defined dictionaries of speech and noise spectra, parametrized by
auto-regressive parameters, which through a model of the speech production
system models the envelope of the signal’s spectrum.

The advantage of the multichannel approach is that using the spatial in-
formation can help to resolve ambiguities. Furthermore, the simplicity of
these approaches is important for some applications such as hearing aids.
On the other hand, the single-channel approach is a much more difficult
task than the multichannel problem, which also increases the complexity of
the proposed measure but is advantageous in cases, where it is not possible
to have access to multiple microphones. It should be noted that both ap-
proaches achieve a high correlation with their intrusive counterpart and as
such the choice of measure primarily depends on the purpose of the speech
intelligibility prediction task at hand.

In the work underlying this thesis it has been investigated to use the Short-
Time Objective Intelligibility (STOI) as the intrusive framework to which the
estimated reference signals are given as input. The rationale behind choosing
this measure is due to its simplicity while it still has been shown to have
a high performance for a large number of noise conditions and processing
types. However, it should be noted that it is the front-end of the proposed
measures that forms the basis of the present work and as such the estimated
reference signals could also be used for other intrusive speech intelligibility
prediction measures given that they are based on the type of features that the
different approaches extract.

In future work, it could be interesting to look into other intrusive metrics
as back-end in the non-intrusive intelligibility metric for conditions, where
STOI is expected to fail. For example, the performance of STOI is poor in
highly fluctuating noise conditions, i.e., modulated noise, due to the long
analysis window length. In this case, it could be relevant to replace STOI
with an intrusive metric, which is known to perform well in such a condi-
tion, e.g., ESTOI has been developed as an extension of STOI to work well
for modulated noise. Similarly, STOI is not expected to work well in highly
reverberant conditions in which in could be interesting to investigate the pos-
sibility for using intrusive metrics that are more suitable for such conditions
such as HASPI and mr-sEPSM.

Although the proposal of the non-intrusive metrics in the work under-
lying this thesis has narrowed the gap for the usability of such metrics for
predicting speech intelligibility in real-time during usage on, e.g., a hearing
aid, it is also important with a more extensive and exhaustive evaluation of
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these metrics in order to gain the necessary trust in the application of these.
Therefore, future work should include more comprehensive experiments in
different conditions and realistic scenarios as well as more extensive subjec-
tive listening tests.
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1. Introduction

Abstract

Reliable non-intrusive online assessment of speech intelligibility can play a key role
for the functioning of hearing aids, e.g. as guidance for adjusting the hearing aid
settings to the environment. While existing intrusive metrics can provide a precise
and reliable measure, the current non-intrusive metrics have not been able to achieve
acceptable intelligibility predictions. This paper presents a new semi-non-intrusive
intelligibility measure based on an existing intrusive measure, STOI, where an esti-
mate of the clean speech is extracted using spatial filtering in the hearing aid. The
results indicate that the STOI score obtained with the proposed method using an esti-
mate of the clean speech correlates well with the STOI score having the original clean
speech signal available.

1 Introduction

For users of hearing aids speech intelligibility depends highly on the spe-
cific listening environment. One of the main issues is significantly decreased
speech intelligibility in noisy multi-talker environments termed the "cocktail
party problem" [1, 2]. Therefore, a lot of research has gone into the de-
velopment of various speech enhancement algorithms (e.g., noise and echo
suppression) to overcome this challenge. However, noise suppression tech-
niques, such as adaptive directional filtering, can have a negative impact on
localization performance of hearing aid users [3]. The fact that hearing aid
users receive distorted localization cues can lead to decreased intelligibility
due to losing a binaural advantage of 3-12 dB [3, 4]. As such, it is important to
quantify, whether the gain from the noise suppression techniques are advan-
tageous if localization cues are lost in return by assessing the intelligibility of
the current environment. For the users of assistive listening devices it would
be a great benefit, if the devices were able to automatically detect when ad-
vanced speech enhancement actually provides an improvement and adjust
the hearing aid settings accordingly. Generally, the remaining hearing of the
hearing aid user should be relied on as much as possible such that speech
enhancement processing is limited to when it provides a benefit and the pro-
posed method could facilitate exactly this. Fast and robust online evaluation
of the listening environment could assure that speech enhancement process-
ing is only applied when necessary and selected without requiring an action
of the hearing aid user [5, 6]. As such, the proposed method can be seen
as an alternative to environment classification based on intelligibility rather
than classifying the different environments [7].

Thus, it would be preferable if objective intelligibility measures could be-
come a crucial part of the online processing of assistive listening devices. In-
trusive objective measures (e.g., the short-time objective intelligibility (STOI)
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metric [8], the normalized covariance metric (NCM) [9]) with access to both
the clean and noisy speech can generally provide a precise and reliable mea-
sure for the speech intelligibility [6]. However, online processing in a hear-
ing aid requires a non-intrusive objective measure, since access to the clean
speech is rarely available. Over the years a number of non-intrusive met-
rics have been developed (e.g., the modulation spectrum area (ModA) [10],
the speech-to-reverberation modulation energy ratio (SRMR) [11]). However,
according to a recent comprehensive review none of the tested the existing
non-intrusive measures have achieved acceptable results [6].

This paper is concerned with a method in between the intrusive and non-
intrusive technique that can be processed online in a hearing aid while taking
advantage of the reliability of existing intrusive metrics. The approach is to
extract an estimate of the clean speech with directional spatial filtering in the
hearing aid and use this in existing intrusive objective intelligibility metrics.
In other words, an estimate of the intelligibility is obtained by comparing
the output of a beamformer at the direction of the desired talker with the
output of an omnidirectional microphone using an existing objective measure
such as STOI. The online processed intelligibility prediction of the specific
environment can then be used to determine, whether the intelligibility is
below a certain threshold and apply speech enhancement processing when it
is beneficial.

2 Method

In this section the approach and method behind the proposed semi-non-
intrusive objective intelligibility measure is presented. A block diagram
incorporating the whole semi-non-intrusive objective intelligibility measure
with both the beamformer and the existing intrusive intelligibility measure
STOI is shown in Figure A.1. The principles behind the beamforming struc-
ture and notation are explained in Section 2.1. The STOI metric gives a pre-
diction, d(t), of the speech intelligibility on a 0-1 scale by comparing the
correlation of a clean and degraded version of the same speech signal [8].
As illustrated in the diagram the noisy signal from an omnidirectional mi-
crophone is both used as the degraded speech input to STOI as well as ref-
erence of the source to an adaptive noise cancellation (ANC) stage in the
beamformer. The remaining microphone signals are used in a fixed spatial
filtering stage in the beamformer to extract a reference of the interference.

2.1 Generalized sidelobe cancellation

An estimate of the clean speech is obtained using a widely applied beam-
former for hearing aid applications based on the generalized sidelobe can-
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cellation (GSC) structure [12–14]. The beamformer has four microphones by
exploiting the front and rear microphone of two BTE hearing aids assuming
a bilateral wireless link between them. The implemented GSC structure con-
sists of a fixed spatial preprocessor and an ANC unit similar to the approach
of [14] extended to four microphones as illustrated in Figure A.1 with M = 4.

It is assumed that each microphone signal xk, k = 1, . . . , M is the desired
source additively interfered with a number of interferers, N i.e.

xk(t) = hk ∗ s(t) +
N

∑
n=1

hinterf
k,n ∗ sinterf

n (t) (A.1)

where hk and hinterf
k,n are the acoustic impulse responses between the kth micro-

phone and the desired source, s(t), and interferers, sinterf
n (t), respectively and

∗ denotes convolution. Ambient noise can be created by adding up multiple
interferers with reverberation included in the acoustic impulse responses.

During periods of interference-only, s(t) = 0, each microphone signal
is the sum of the interferers convolved with the acoustic impulse response
between each interferer and the kth microphone, i.e.

xk(t) =
N

∑
n=1

hinterf
k,n ∗ sinterf

n (t) (A.2)

A reference of the interference is created by steering a zero towards the di-
rection of the desired speaker. The location of the desired speaker is assumed
to be in the front of the listener at zero degrees but can easily be relaxed to
other positions. The desired source is canceled using spatial filters, which
give an estimate of interference-only at the kth microphone for k = 2, . . . , M,
where h1 is the acoustic impulse response between the desired source at 0◦

and the first microphone:

yk−1(t) = xk(t) ∗ h1 − x1(t) ∗ hk (A.3)

= hk ∗ s(t) ∗ h1 +
N

∑
n=1

hinterf
k,n ∗ sinterf

n (t) ∗ h1

− (h1 ∗ s(t) ∗ hk +
N

∑
n=1

hinterf
1,n ∗ sinterf

n (t) ∗ hk)

=
N

∑
n=1

hinterf
k,n ∗ sinterf

n (t) ∗ h1 −
N

∑
n=1

hinterf
1,n ∗ sinterf

n (t) ∗ hk

where yk−1, k = 2, . . . , M is the interference reference at the kth microphone.
It can be seen that the filters block out s(t) in the derivation of yk−1. The
coefficients of the blocking filters have been determined based on the impulse
responses between the source at 0◦ and the kth microphone measured on a
KEMAR artificial head and torso as described in Section 3.

44
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The ANC unit attenuates the interference in the desired source reference
that is correlated with the interference reference using the filters wk(t) =
[wk,1(t), wk,2(t), . . . , wk,L(t)], where L is the length of the filter. The ANC unit
is updated with a least squares (LS) approach but can in online processing
easily be implemented as a least mean square (LMS) algorithm.

The incorporation of the fixed spatial filter in the preprocessor reduces
the amount of speech leakage into the interference reference but cannot com-
pletely prevent it [13, 15]. Therefore, the ANC is adapted during periods of
interference-only in order to avoid possible cancellation of the desired speech
source. For this purpose a robust speech detector is assumed available in this
paper.

3 Experimental methodology

The acoustic impulse responses have been measured using the front and rear
microphones on a GN ReSound Alera 312 BTE hearing aid on a KEMAR
artificial head and torso in an anechoic room with a maximum length se-
quence (MLS) with a code length of 11 and averaged over 30 repetitions. The
KEMAR artificial head and torso was rotated in the horizontal plane with a
resolution of 2 degrees using a Brüel & Kjær Turntable system type 9640.

The speech samples of both the desired source and the interferers were
taken from the EUROM_1 database as 5 second recordings of the English
sentence corpus [16]. The level of the interferers were varied according to the
level of the desired speech source as the source-to-interference ratio (SIR) [17].
The clean speech of the desired source was convolved with the acoustic im-
pulse responses from 0◦ to each each microphone and the interfering speech
sources were convolved with the impulse responses from 140◦, 270◦, 50◦ and
300◦ for one, two, three or four speakers, respectively. Compared to current
state-of-the-art studies four interferers can be considered a relatively complex
scenario with speech-on-speech masking being a difficult task [1, 2, 6].

4 Results

The performance of the proposed semi-non-intrusive objective intelligibility
measure is evaluated by comparing the STOI score of the noisy speech ob-
tained using the estimate of the clean speech as reference with the STOI score
obtained using the original clean speech as reference. Figure A.2-A.5 show
the STOI scores as function of SIR for one, two, three and four interferers,
respectively. For one interferer located at 140◦ (Figure A.2) it can be seen
that the STOI score obtained using the output from the implemented GSC
beamformer as reference (dashed line) correlates well with the STOI scores
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obtained with access to the original clean speech signal (solid line) for all
SIRs.
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One interferer at 140o

Ref.: Clean speech
Ref.: Est. of clean speech

Fig. A.2: STOI score as function of SIR with one interferer at 140◦ using the clean speech signal
(solid line) and the estimate of the clean speech extracted with the implemented 4 microphone
GSC beamformer (dashed line) as reference.
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Fig. A.3: STOI score as function of SIR with two interferers at 140◦ and 270◦ using the clean
speech signal (solid line) and the estimate of the clean speech extracted with the implemented 4
microphone GSC beamformer (dashed line) as reference.
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Fig. A.4: STOI score as function of SIR with three interferers at 50◦, 140◦ and 270◦ using the clean
speech signal (solid line) and the estimate of the clean speech extracted with the implemented 4
microphone GSC beamformer (dashed line) as reference.
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Fig. A.5: STOI score as function of SIR with four interferers at 50◦, 140◦, 270◦ and 300◦ using
the clean speech signal (solid line) and the estimate of the clean speech extracted with the GSC
beamformer (dashed line) as reference.
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In the case of two interferers located at 140◦ and 270◦ (Figure A.3) the
STOI score using the beamformed estimate of the clean speech as reference
correlates well with the intrusive STOI score having access to the clean speech
signal for STOI scores and SIRs higher than 0.4 and -5 dB, respectively. How-
ever, below this level the output from STOI using the estimate of the clean
speech as reference starts to deviate from the STOI score obtained using the
original clean speech as reference. In the cases of three interferers at 50◦, 140◦

and 270◦ (Figure A.4) and four interferers at 50◦, 140◦, 270◦ and 300◦ (Fig-
ure A.5) the STOI scores with the estimate of the clean speech and the original
clean speech as references, respectively, correlates well for STOI scores above
0.5 and SIRs above 5 dB but deviates below these levels. Noteworthy, the
performance of the proposed method does not decrease substantially going
from the case with three interferers to four interferers.

5 Discussion

A reliable objective intelligibility measure in the online processing of hear-
ing aids could be of great advantage to predict whether speech enhancement
would provide a benefit for the user and adjust the hearing aid settings ac-
cordingly. Online processing would require a non-intrusive metric and even
though a number of promising non-intrusive measures have been developed
over the recent years none of them have achieved sufficient results for the
purpose [6, 10, 11]. Previous studies have shown that STOI scores correlate
well with subjective intelligibility scores and thus gives a reliable estimate for
the speech intelligibility [6, 8]. As such, a non-intrusive measure performing
similarly to STOI could yield a promising method for online processing of
speech intelligibility in hearing aids. The intelligibility scores obtained with
the proposed semi-non-intrusive technique correlates well with the intrusive
STOI scores obtained with access to the clean speech for STOI scores above
0.5 but deviates for lower scores. This may or may not be a problem for
the intended purpose provided it reflects so little speech intelligibility that it
conforms to the threshold for applying speech enhancement anyway. A STOI
score below 0.6 may correspond to very low speech intelligibility depending
on the speech material and the psychometric function relating STOI scores to
subjective scores [6]. Furthermore, the proposed method could easily be im-
plemented in today’s hearing aids. The acoustic impulse responses used for
the spatial filter design in the blocking matrix could either be the standard
acoustic impulse responses measured on KEMAR or personalized acoustic
impulse responses measured during adjustment of the hearing aid.

In future work it could be interesting to test the proposed method with
added reverberation as this is known to affect the performance of the GSC
beamformer [13, 14]. In order to properly simulate reverberation 3 dimen-
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sional acoustic room impulses would be required. Additionally, the objec-
tive intelligibility scores obtained with the proposed semi-non-intrusive tech-
nique could be tested against subjective listening tests in future work. In a
similar manner to using the proposed method for prediction of the speech
intelligibility the same approach could be used to evaluate speech quality
with e.g. the perceptual evaluation of speech quality (PESQ [18]) by using
the estimate of the clean speech to evaluate the speech quality before and af-
ter speech processing in the hearing aid. Furthermore, the proposed method
could also be extended to include personalized hearing losses in the speech
intelligibility prediction similarly to the technique in e.g. the hearing-aid
speech perception index (HASPI) [19].

Recently, binaural speech intelligibility methods have with limited suc-
cess attempted to predict the speech intelligibility by including the effects of
spatial masking [20]. The proposed technique in this paper does not take
advantage of the multiple channels used in the beamformer to predict the
effects of spatial masking on the speech intelligibility. In future work this
could be an interesting extension of the proposed technique.

6 Conclusion

This paper has presented a new feasible technique for online processing of
speech intelligibility in hearing aids. The technique is based on an exist-
ing intrusive objective metric, where an estimate of the clean speech to be
used as reference is obtained using a GSC structure with spatial filters as
blocking matrix. The GSC structure is implemented using the front and rear
microphones on two wirelessly linked BTE hearing aids. The results indi-
cate that the obtained STOI scores using the estimate of the clean speech as
reference correlate well with the intrusive STOI having access to the original
clean speech for STOI scores above 0.5. Thus, the proposed method yields a
promising and feasible technique for online processing of speech intelligibil-
ity in hearing aids.
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1. Introduction

Abstract

Automatic adjustment of the hearing aid according to the intelligibility for the user in
the environment could be beneficial. While most intelligibility metrics require a clean
speech reference, i.e. intrusive methods, this is rarely available in real-life. This paper
proposes a non-intrusive intelligibility metric in which a reconstruction of the clean
speech is used in the established intrusive short-time objective intelligibility (STOI)
metric. The reconstruction of the clean speech is based on pitch-features of the desired
source using a spatio-temporal harmonic model. This model takes advantage of both
the spatial and spectral separation of the desired source and interferers to reconstruct
the clean signal. The simulations show a high correlation between the proposed pitch-
based STOI (PB-STOI) and the original intrusive STOI and hence is promising for
online processing of intelligibility.

1 Introduction

One of the main issues encountered by hearing aid (HA) users is severely
degraded speech intelligibility in noisy multi-talker environments such as
the "cocktail party problem" [1, 2]. Generally, the speech intelligibility for
users of assistive listening devices depends highly on the specific listening
environment. As such, additional speech enhancement processing may be
beneficial in some listening environments whereas the exact same algorithms
can have a negative impact on the quality and intelligibility in other listening
environments [3, 4]. In HA technology, automatic intelligibility assessment of
the listening environment would be beneficial for the user such that speech
enhancement is only applied when necessary [5, 6]. This could be facilitated
by an online intelligibility evaluation of the listening environment. Thus,
it could be beneficial if objective intelligibility metrics could be used in the
online processing of HAs.

There are various intrusive methods to predict the speech intelligibil-
ity with acceptable reliability such as the short-time objective intelligibility
(STOI) metric [7] and the normalized covariance metric (NCM) [8]. However,
these methods are intrusive, i.e., they all require access to the clean-speech
reference which is rarely available in real-life. A number of non-intrusive
methods have been introduced that do not require access to the clean speech
signal, e.g. the modulation spectrum area (ModA) [9] or the speech-to-
reverberation modulation energy ratio (SRMR) [10]. However, both of these
non-intrusive measures are limited to the assessment of reverberated speech
signals and are still inferior to the intrusive measures according to a recent
review [6].

This paper proposes a method that non-intrusively estimates the speech
intelligibility in the listening environment for HAs. Similar to the approaches
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in [11, 12] a prediction of the speech intelligibility is obtained by comparing
a reconstruction of the clean speech with the noisy speech using an estab-
lished and reliable intrusive framework, e.g. STOI [6, 13]. The clean speech is
obtained by estimating relevant signal features assuming the desired source
consists of a number of narrowband signals with harmonically related carrier
frequencies using a spatio-temporal model. Combining spatial (i.e. direction
of arrival) and temporal (i.e. pitch) cues improves the accuracy of the recon-
struction as it resolves ambiguities, e.g. due to reverberation or competing
speakers. The proposed method can then potentially be used as an alterna-
tive to environment classification by determining, whether the intelligibility
is below a certain threshold [14].

2 Method

In this section the approach behind the PB-STOI metric is presented. A block
diagram incorporating the framework is shown in Fig. B.1. In the first step,
the sound field is recorded with a microphone array. Then, the pitch of
the desired speech signal is estimated and the speech is reconstructed using
the pitch and direction of arrival of the desired speech signal. Finally, a non-
intrusive prediction, d(n), is given on a 0-1 scale by comparing the correlation
of the reconstructed clean speech with the noisy version using the intrusive
STOI framework.

2.1 Signal model

A multi-channel spatio-temporal harmonic model is applied based on the
model from [15] in order to reconstruct the clean speech signal as input to
the intrusive intelligibility metric. In the proposed method it is assumed that
K microphones are used to obtain the desired signal added to a mixture of
interfering sources and background noise for a frame length of N such for
the k’th microphone, the data vector xk = [xk(0) xk(1) . . . xk(N − 1)]T for
k = 0, . . . , K − 1. The desired source is assumed to be periodic, which is an
appropriate assumption for short segments of voiced speech [16]. As such,
the data vector xk can be modeled as

xk = βkZD(k)α + ek, (B.1)

with Z = [z(ω0) . . . z(Lω0)], z(lω0) = [1 . . . ejlω0(N−1)] for n = 0, . . . , N − 1,
D(k) = diag([e−jω0 fsτk . . . e−jLω0 fsτk ]) for l = 1, . . . , L with all other entries
equal to zero and ek is the sum of the recorded noise and interference. Fur-
thermore, ω0 is the fundamental frequency, fs is the sampling frequency and
τk is the delay of the desired target source between microphone 0 and the
k’th microphone giving the direction of arrival (DOA). Moreover, βk is the
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attenuation of the desired source at the k’th microphone, α = [α1 . . . αL]
T is

the complex amplitudes given by αl = Alejφl , L is the number of harmon-
ics, Al > 0 and φl are the real amplitude and phase of the l’th harmonic,
respectively.

2.2 Pitch-based intelligibility prediction

The pitch of the desired target source is found by exploiting the spatio-
temporal harmonic model structure of the multi-channel signal using the
joint pitch and DOA estimation method presented in [15]. In the following,
the basic principles and deviations from the original method are explained.

Assuming the noise is uncorrelated white Gaussian with variance σ2
k in

each channel, the log-likelihood function of the complex data vector xk can
be written as [15]

ln p(xk; ψ) =

− NK ln π − N
K−1

∑
k=0

ln σ2
k −

K−1

∑
k=0

‖ek‖2

σ2
k

(B.2)

with the vector ψ containing the signal parameters for xk. Even though this
assumption may seem unreasonable the white Gaussian noise distribution
maximizes the entropy of the noise and is a good choice for the noise proba-
bility density function [15]. Then, the pitch can be estimated by maximizing
the log-likelihood function by differentiating with respect to the amplitudes,
α̂, the attenuation factor, βk, and the noise variance, σ2

k , respectively. As men-
tioned in [15] these parameters are dependent on each other and are there-
fore estimated by initially setting the βk’s and σ2

k ’s to 1 and iterating over
the expressions in Equation (B.3), (B.4) and (B.5). The estimated complex
amplitudes are given by

α̂ =

[
K−1

∑
k=0

β2
k

σ2
k

DH(k)ZHZD(k)

]−1 K−1

∑
k=0

βk

σ2
k

DH(k)ZHxk (B.3)

The estimated attenuation of the desired source at the k’th microphone can
be obtained as

β̂k =
Re{αHDH(k)ZHxk}
αHDH(k)ZHZD(k)α

(B.4)

Moreover, the noise variance can be found as

σ̂2
k = N−1‖êk‖2, (B.5)

where êk = xk − βkZD(k)α. The maximum likelihood estimator of the pitch
can then be written as

ω̂0 = arg min
ω0∈Ω0

K−1

∑
k=0

ln ‖xk − β̂kZD(k)α̂‖2 (B.6)
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where Ω0 is a set of possible pitch candidates. Contrary to the original
method in [15], the DOA of the desired target source is assumed known
such that the problem reduces to spatial filtering rather than DOA estimation
and the estimation is only performed over a one-dimensional search. This as-
sumption limits computational complexity as well as makes the model more
robust against stronger interfering harmonic sources from other directions.
Finally, a reconstruction of the clean speech for the k’th microphone can be
obtained given the estimated pitch, ω0 and the delay, τ,

ŝk = ΠZD(k)xk (B.7)

with the projection matrix ΠA = A(AHA)−1AH . The reconstructed clean
speech signal to be used as input to the non-intrusive objective intelligibility
metric is then obtained by summing the estimated signal over all microphone
channels

ŝ =
1
K

K−1

∑
k=0

ŝk (B.8)

Alternatively, the variance estimates in (B.5) can be used to form a weighted
estimate.

2.3 Experimental methodology

The proposed metric PB-STOI is evaluated using two different microphone
array setups: A broadside uniform linear array (ULA) consisting of K = 10
microphones and a behind the ear (BTE) HA setup consisting of two bilateral
wireless linked HAs with K = 4 microphones. The ULA has a microphone
spacing of d = c/ fs and the delay of the desired source between microphone
0 and the k’th microphone is given by τk = kdc−1 sin θ, where the wave prop-
agation speed was c = 343 m/s. The DOA of the desired source was θ = 0◦

and the sampling frequency was fs = 8 kHz. For the BTE HA setup the spac-
ing between the microphone on each HA was 1 cm and the spacing between
the two HAs was 25 cm.

In the experimental evaluation the set of fundamental frequencies was
set to the range Ω0 = 100− 400 Hz, the model order was estimated using
the maximum a posteriori (MAP) criterion [18], the short-time segmentation
window block size was 30 ms and reconstructed by overlap-and-add using a
Hanning window with 50% overlap. The simulations were performed using
a complex multi-talker scenario with 8 interfering speakers (Fig. B.2), rever-
beration (RT60 = 0.3 s) and ambient white noise in a room with dimensions
of 10x6x4 m simulated for 2.5 s using the toolbox McRoomSim [17]. The sim-
ulations were carried out in three scenarios at SNRs ranging from -20 to 20
dB; a white noise only scenario, one with interferers and white noise and one
with interferers, white noise and reverberation. The desired speech was the
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Fig. B.2: The experimental setup simulated with the software toolbox McRoomSim [17]. The
blue, green and red balls illustrate the location of the listener, the desired target source and the
interferers, respectively.
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Fig. B.3: Spectrograms of (a) the clean voiced utterance "Why were you away a year, Roy", (b)
the reconstructed speech signal using the estimated pitch from the harmonic model, and (c) the
noisy signal at 0 dB SNR, and plot of (d) the estimated fundamental frequency from the noisy
signal.

61



Paper B.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
STOI

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
P
B
-S
T
O
I

White noise
Speech interferers with white noise
Speech interferers with reverberation and white noise

(a) Results from PB-STOI using a ULA setup.
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(b) Results from PB-STOI using a BTE HA setup.

Fig. B.4: Scatter plots of the non-intrusive PB-STOI metric versus the intrusive STOI metric.
The pitch of the PB-STOI metric is estimated using a multi-channel signal from (a) a ULA with
K = 10 microphones and (b) two bilateral BTE HAs setup. The circles, asterisks and diamonds
show the simulated results for white noise only, multiple interferers with white noise without
and with reverberation, respectively.
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utterance "Why were you away a year, Roy" from the voiced corpus in [19]
and the interferers were speech samples from the EUROM_1 database of the
English sentence corpus [20].

3 Results and discussion

The spectrograms of (a) the original clean speech, (b) the equivalent recon-
structed signal and (c) the degraded noisy signal at 0 dB as well as (d) the
estimated pitch from the noisy signal are depicted in Fig. B.3. Comparison
of Figs. B.3(a) and (b) indicates that the reconstructed speech signal has cap-
tured relatively well the features of the original clean signal.

The performance of the proposed intelligibility measure is evaluated by
comparing the correlation between the non-intrusive PB-STOI scores against
the original intrusive STOI scores in Fig. B.4 for (a) the ULA setup and (b) the
bilateral BTE HA setup. It can be observed that the PB-STOI scores correlate
well with the original intrusive scores with a strong linear trend between the
two metrics for both microphone array setups. Thus, it is promising that a
small microphone array such as the HA setup can give acceptable results.

The performance of the proposed PB-STOI metric is evaluated in Table B.1
using three performance criteria often used for assessing objective intelligibil-
ity metrics [6, 11]. Pearson’s correlation (ρ) quantifies the linear relationship,
while Spearman’s rank (ρspear) and Kendall’s tau (τ) characterize the ranking
capability. The values are close to one for all performance criteria indicating
high correlation between the intrusive and non-intrusive metric. Hence, the
proposed non-intrusive PB-STOI metric can offer a comparable performance
to the original intrusive intelligibility metric.

Compared with the study in [11] which uses a similar approach for non-
intrusive intelligibility prediction, the proposed PB-STOI metric only requires
a calibration of the conversion between PB-STOI and STOI scores depending
on the array configuration without any training to the data. However, the
experimental evaluation only contained voiced speech and should also be
tested on utterances containing unvoiced parts. This could be done by only
assessing the intelligibility in the voiced parts of the speech using a voiced
speech detector. It is expected to obtain similar results for sentences also
containing unvoiced parts, since the most energetic regions occur during the
voiced parts. According to the glimpsing model of speech in noise the most
energetic regions of the desired speech are most important for intelligibility
and thus a good predictor for intelligibility [21]. As such, it is a reason-
able assumption that using only the voiced regions of the speech can yield a
promising predictor for speech intelligibility.
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Table B.1: Performance of the proposed metric in terms of Pearson’s correlation (ρ), the Spear-
man rank (ρspear) and Kendall’s tau (τ) between PB-STOI and STOI as well as their linear regres-
sion lines for a ULA and bilateral BTE HA setup.

Setup ρ ρspear τ Regression line
ULA 0.9886 0.9887 0.9287 0.74x + 0.11
BTE HA 0.9812 0.9004 0.9922 0.67x + 0.16

4 Conclusion

This paper proposes a non-intrusive intelligibility metric for online process-
ing in HAs. A clean speech signal is reconstructed by its spatio-temporal
characteristics (i.e. direction of arrival and pitch) using only the noisy speech
signal and utilized inside an established and reliable intrusive intelligibility
metric, which requires a clean reference. The proposed non-intrusive metric
has a high correlation with the original intrusive counterpart and thus is a
promising method for online assessment of speech intelligibility in HAs.
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1. Introduction

Abstract

It could be beneficial for users of hearing aids if these were able to automatically
adjust the processing according to the speech intelligibility in the specific acoustic
environment. Most speech intelligibility metrics are intrusive, i.e., they require a
clean reference signal, which is rarely available in real-life applications. This paper
proposes a method, which allows using an intrusive short-time objective intelligibility
(STOI) metric without requiring access to a clean signal. The clean speech reference
signal is replaced by the clean speech envelope spectrum estimated from the noisy
signal. The spectral envelope has been shown to be an important cue for speech
intelligibility and is used as the reference signal inside STOI. The spectral envelopes
are estimated as a combination of predefined dictionaries, i.e., codebooks, that best
fits the noisy speech signal. The simulations show a high correlation between the
proposed non-intrusive codebook-based STOI (NIC-STOI) and the intrusive STOI
indicating that NIC-STOI is a suitable metric for automatic classification of speech
signals.

1 Introduction

Speech is a fundamental tool for human communication. Understanding
speech becomes a challenging task in adverse listening conditions such as
"the cocktail party scenario" especially for hearing impaired individuals [1,
2]. Speech enhancement algorithms aim to improve speech intelligibility for
hearing aid users [3–5]. However, speech enhancement algorithms may be
beneficial in some acoustic scenarios whereas the same algorithms can have a
negative impact on quality and intelligibility in other conditions [5, 6]. Thus,
it would be beneficial for HA users if speech enhancement algorithms are
automatically limited to scenarios in which they provide an improvement in
speech intelligibility [3, 4]. This could be facilitated by an objective speech
intelligibility metric processed online in the HA.

Several methods can with an acceptable accuracy predict the speech intel-
ligibility intrusively, i.e., they require access to a clean speech reference [4].
Some of the earliest intrusive metrics that predict the intelligibility well for a
limited type of degradations, like linear filtering and additive noise, include
the articulation index (AI) [7] and the speech transmission index (STI) [8].
Later, the short-time objective (STOI) metric [9] and the speech-based enve-
lope power spectrum model (sEPSM) [10] were introduced for more complex
distortion types and are reported to have an useful reliability [4]. However,
the need for a clean speech signal would be a limitation for real-time pre-
diction of speech intelligibility, since this is rarely available. More recently, a
number of non-intrusive metrics not requiring access to a clean speech ref-
erence signal have been introduced, e.g., the speech-to-reverberation modu-
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lation energy ratio (SRMR) [11], the modulation spectrum area (ModA) [12].
These methods are, however, either limited to assessment of reverberated
speech or still inferior to the intrusive metrics [4].

This paper proposes a non-intrusive intelligibility prediction method re-
ferred to as the non-intrusive codebook-based STOI (NIC-STOI). The method
estimates the intelligibility of noisy speech non-intrusively by comparing rel-
evant features of the clean speech with the features of the noisy speech inside
a well-established intrusive intelligibility framework, STOI, similar to [13, 14].
The relevant features of the clean speech are based on the spectral envelope
of the speech, which has been shown to be an important cue for speech intel-
ligibility [15]. The spectral envelopes of the clean speech and the noise signal
are estimated as the most suitable combination from a predefined speech and
noise spectra dictionary, a codebook, which best fits the noisy speech signal
using a codebook-based approach [16, 17]. These codebooks consist of filter
coefficients that capture the overall structure of the spectral envelope.

2 The NIC-STOI measure

NIC-STOI allows predicting the intelligibility from the noisy signal only us-
ing an intrusive metric (STOI) without requiring access to the clean speech
signal. The approach behind the method is to replace the clean reference
signal with an estimate of the clean speech features obtained from the noisy
signal. An estimate of the clean speech spectral envelope is used as the rel-
evant features of speech intelligibility in the method. Then, NIC-STOI gives
a non-intrusive intelligibility prediction by comparing the correlation of the
estimated clean speech spectrum with the noisy spectrum with the intrusive
STOI measure. The framework of the measure is illustrated by a block dia-
gram in Fig. C.1. The framework can be divided into three main steps: (1)
The parameters needed to obtain the clean speech reference are estimated, (2)
time-frequency-spectra of the clean and noisy speech signals are composed
from the estimated parameters, and, (3) an intelligibility score is predicted
with the intrusive STOI framework.

2.1 Signal model

The proposed method is based on an additive noise model assuming the
speech and noise are statistically uncorrelated from [16, 17], i.e.,

y(n) = s(n) + w(n), (C.1)

where y(n), s(n) and w(n) represent the sampled noisy speech, clean speech
and noise, respectively. The clean speech signal can be modeled as a stochas-
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tic autoregressive (AR) process

s(n) =
P

∑
i=1

asi (n)s(n− i) + u(n) = as(n)Ts(n− 1) + u(n), (C.2)

where s(n − 1) = [s(n − 1), . . . , s(n − P)]T with the P past speech samples,
as(n) = [as1(n), as2(n), . . . , asP(n)]

T is a vector containing the speech linear
prediction coefficients (LPC), and u(n) is zero mean white Gaussian noise
with excitation variance σ2

u(n). Similarly, the noise signal can be modeled as

w(n) =
Q

∑
i=1

awi (n)w(n− i) + v(n) = aw(n)Tw(n− 1) + v(n), (C.3)

where w(n− 1) = [w(n− 1), . . . , w(n− Q)]T with the Q past noise samples,
aw(n) = [aw1(n), aw2(n) . . . , awQ(n)]

T , and v(n) is zero mean white Gaussian
noise with excitation variance σ2

v (n).
The AR model is used to model the speech and noise signals as well as

training the codebook dictionaries.

2.2 Step 1: Estimate parameters

The spectra of the clean and noisy speech signals are estimated from
the LPC and the excitation variances concatenated in the vector θ =
[as aw σ2

u(n) σ2
v (n)]. These parameters are estimated using a priori infor-

mation from a trained codebook about the speech and noise spectral shapes
in the form of LPC based on the approach in [16–18], where more details on
the derivation of this method can be found. Given the observed vector of
noisy samples y = [ y(0) y(1) . . . y(N − 1) ] for the current frame of length
N, the MMSE (minimum mean square error) estimate of θ can be given as
θ̂ = E(θ|y) for the support space of the parameters to be estimated, Θ, and
using Bayes’ theorem can be reformulated as

θ̂ =
∫

Θ
θp(θ|y)dθ =

∫
Θ

θ
p(y|θ)p(θ)

p(y)
dθ. (C.4)

The vector, θij = [asi awj σ2,ML
u,ij (n) σ2,ML

v,ij (n)], is then defined for each ith entry

of the speech codebook and jth entry of the noise codebook, respectively.
The maximum likelihood (ML) estimates of the speech and noise excitation
variances, σ2,ML

u,ij and σ2,ML
v,ij , respectively, are then given by [16, 18]

C

[
σ2,ML

u,ij

σ2,ML
v,ij

]
= D, (C.5)
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where

C =

 ‖ 1
P2

y (ω)|Ai
s(ω)|4 ‖ ‖ 1

P2
y (ω)|Ai

s(ω)|2|Aj
w(ω)|2

‖

‖ 1
P2

y (ω)|Ai
s(ω)|2|Aj

w(ω)|2
‖ ‖ 1

P2
y (ω)|Aj

w(ω)|4
‖


D =

‖ 1
P2

y (ω)|Ai
s(ω)|2 ‖

‖ 1
P2

y (ω)|Aj
w(ω)|2

‖

 (C.6)

where Ai
s and Aj

w are the spectra of the ith and jth vector from the speech
codebook and noise codebook, respectively, and with ‖ f (ω)‖ =

∫
| f (ω)|dω.

The spectral envelope of the speech codebook, the noise codebook and the
noisy signal are given by 1

|Ai
s(ω)|2 , 1

|Aj
w(ω)|2

and Py(ω), respectively. In prac-

tice, the MMSE estimate of θ in Eq. C.4 is evaluated as a weighted linear
combination of θij by

θ̂ =
1

NsNw

Ns

∑
i=1

Nw

∑
j=1

θij
p(y|θij)p(σ2,ML

u,ij )p(σ2,ML
v,ij )

p(y)
, (C.7)

where Ns and Nw are the the number of entries in the speech and noise
codebooks, respectively. The weight of the MMSE estimate, p(y|θij), can be
computed as

p(y|θij) = e−dIS(Py(ω),P̂ij
y (ω)) (C.8)

P̂ij
y (ω) =

σ2,ML
u,ij

|Ai
s(ω)|2

+
σ2,ML

v,ij

|Aj
w(ω)|2

(C.9)

p(y) =
1

NsNw

Ns

∑
i=1

Nw

∑
j=1

p(y|θij)p(σ2
u,ij)p(σ2

v,ij), (C.10)

where the Itakura-Saito distortion between the noisy spectrum and the mod-
eled noisy spectrum is given by dIS(Py(ω), P̂ij

y (ω)) [17, 19]. The weighted
summation of the LPC should be performed in the line spectral frequency
domain in order to insure stable inverse filters [16, 17].

2.3 Step 2: TF composition

Time-frequency (TF) power spectrum of the estimated reference signal, Ŝ, are
composed from the estimated AR filter coefficients of the clean speech signal
âs for each time frame:

Ŝ(ω) =
σ̂2

u

|Âs(ω)|2
, (C.11)
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where Âs(ω) = ∑P
k=0 âsk e−jωk. In the same manner, the estimated noise AR

filter coefficients, âw, are used to compose a TF spectrum of the noise:

Ŵ(ω) =
σ̂2

v

|Âw(ω)|2
, (C.12)

where Âw(ω) = ∑Q
k=0 âwk e−jωk. The LPC, i.e. âs and âw, determine the shape

of the envelope of the corresponding signals Ŝ(ω) and Ŵ(ω), respectively.
The excitation variances, σ̂u and σ̂v, determine the overall signal magnitude.
Finally, the noisy spectrum is composed as the combined sum of the clean
and the noise power spectra:

Ŷ(ω) = Ŝ(ω) + Ŵ(ω). (C.13)

These time-frequency spectra replace the discrete Fourier transform of the
clean reference signal and the noisy signal in the original STOI measure [9].

2.4 Step 3: Intelligibility Prediction

In the final step, the intelligibility prediction is carried out in exactly the same
manner as for the STOI measure [9]. The power spectra of the noisy speech,
Ŷ, are further clipped by a normalisation procedure expressed in Eq. C.14
in order to de-emphasize the impact of region in which noise dominates the
spectrum:

Ŷ′ = max(min(λ · Ŷ, (1 + 10−β/20) · Ŝ), (1− 10−β/20) · Ŝ), (C.14)

where Ŝ is the power spectrum of the estimated reference signal, λ =√
∑ Ŝ2/ ∑ Ŷ2 is a scale factor for normalizing the noisy TF bins and β = −15

dB is the lower signal-to-distortion ratio. Given the local correlation coeffi-
cient, r f (t), between Ŷ and Ŝ at frequency f and time t, the NIC-STOI pre-
diction is given by averaging across all bands and frames:

NIC-STOI =
1

TF

F

∑
f=1

T

∑
t=1

r f (t). (C.15)

3 Simulation methodology

The proposed metric NIC-STOI is evaluated on speech samples from of 5
male and 5 female speakers from the EUROM_1 database of the English
sentence corpus [20]. The interfering additive noise signal is simulated in
the range of -30 to 30 dB SNR as multi-talker babble from the NOIZEUS
database [6]. The LPC and variances of both the speech and noise signal are
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Fig. C.3: (a) Scatter plot of the non-intrusive codebook-based STOI (NIC-STOI) metric versus the
intrusive STOI metric and (b) STOI and NIC-STOI as a function of SNR.

estimated from 25.6 ms frames with sampling frequency 10 kHz. The speech
and, thus, the STP parameters are assumed to be stationary over these very
short frames. The AR model order P and Q of both the speech and noise, re-
spectively, is set to 14 according to literature [16–18]. The speech codebook is
generated on a training sample of 15 minutes of speech from multiple speak-
ers in the EUROM_1 database in order to assure a generic speech model using
the generalized Lloyd algorithm (GLA) [16, 21]. The speech codebook train-
ing sample does not include speech samples from the speakers used in the
test set. The noise codebook is trained on 2 minutes of babble talk. The sizes
of the speech and noise codebooks are Ns = 64 and Nw = 8, respectively.
The performance of the metric is evaluated using three performance criteria
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common for assessment of objective intelligibility metrics [4, 14]; Pearson’s
correlation (ρ) which characterizes the linear relationship, Spearman’s rank
(ρspear) and Kendall’s tau (τ) which both quantify the ranking capability.

4 Results and Discussion

The spectra of an example speech signal in the test set is shown in Fig. C.2
for the original clean speech signal, the noisy speech signal at 0 dB SNR and
the noise signal in the top panel from left to right, respectively. In the bottom
panel the corresponding estimated power spectra of relevant signal features
are composed using trained codebooks of speech and noise spectral shapes
parametrized as LPC to model the a priori information in a Bayesian MMSE
scheme.

It can be observed that the method only captures the overall envelope
structure and not the fine structure of speech, since it is based on an AR
model [17, 19]. Only modeling the overall envelope structure is assumed
to be sufficient for depicting the essential features of clean speech, since the
envelope structure has long been identified as an important cue for speech in-
telligibility used within other intrusive intelligibility prediction frameworks,
i.e., STI and EPSM [8, 10, 15]. This viewpoint can also be supported by exten-
sive vocoder simulations, where it has been shown that envelope cues from
only four spectral bands are sufficient to yield a high intelligibility of speech
perception in quiet [15]. As such, it seems to be a reasonable assumption
that only depicting the overall envelope structure can be a good predictor for
speech intelligibility.

The performance of the NIC-STOI metric is evaluated in relation to the
corresponding original STOI scores. In Fig. C.3a there is a clear monotonic
correspondence between the NIC-STOI score (blue solid line) and the intru-
sive STOI measure (black dashed line), such that a higher NIC-STOI score
also corresponds to a higher STOI score. Furthermore, a strong linear trend
can be observed between the NIC-STOI and STOI measures. This observation
is also supported by the performance criteria given in Table C.1, where Pear-
son’s correlation and the Spearman Rank is close to one implying a high cor-
relation. This indicates that the proposed non-intrusive version of STOI can
offer a comparable performance to the original intrusive STOI. In Fig. C.3b
the STOI measure (black dashed line) and the NIC-STOI measure (blue solid
line) are depicted as function of SNR. There is a clear monotonic correspon-
dence between NIC-STOI and STOI, such that a higher STOI measure results
in a higher NIC-STOI score. Furthermore, the NIC-STOI scores also increase
with increasing SNRs. The offset between the two graphs can be accounted
for by the linear trend described in Table C.1, which gives the translation
between NIC-STOI and STOI scores.
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Table C.1: Performance of the proposed metric in terms of Pearson’s correlation (ρ), the Spear-
man rank (ρspear) and Kendall’s tau (τ) between NIC-STOI and STOI as well as the linear regres-
sion line.

Metric ρ ρspear τ Regression line
NIC-STOI 0.972 0.961 0.8521 0.730 · STOI + 0.285

In future work, it would be interesting to investigate how the method per-
forms with different noise types and environments as well as unseen noise
conditions. Additionally, the objective results could be tested against subjec-
tive listening experiments for further validation in future work .

5 Conclusion

This paper proposes a method for objective prediction of speech intelligibil-
ity. The proposed method, NIC-STOI, allows using an intrusive intelligibility
metric (STOI) without requiring access to the clean speech signal. Hence,
NIC-STOI is essentially a non-intrusive metric. In principle, the method pre-
dicts the speech intelligibility by replacing the clean reference signal with an
estimate of its spectrum. The features of the clean speech signal are estimated
using a codebook-based approach, where the spectral shape of the speech is
trained and parametrized using LPC. The proposed NIC-STOI metric shows
a high correlation with the intrusive original STOI score and, hence, seems
promising for predicting speech intelligibility non-intrusively using an intru-
sive intelligibility metric.
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1. Introduction

Abstract

In recent years, there has been an increasing interest in objective measures of speech
intelligibility in the speech processing community. Important progress has been made
in intrusive measures of intelligibility, where the Short-Time Objective Intelligibility
(STOI) method has become the de facto standard. Online adaptation of signal process-
ing in, for example, hearing aids, in accordance with the listening conditions, requires
a non-intrusive measure of intelligibility. Presently, however, no good non-intrusive
measures exist for noisy, nonstationary conditions. In this paper, we propose a novel,
non-intrusive method for intelligiblity prediction in noisy conditions. The proposed
method is based on STOI, which measures long-term correlations in the clean and
degraded speech. Here, we propose to estimate the clean speech using a codebook-
based approach that jointly models the speech and noisy spectra, parametrized by
auto-regressive parameters, using pre-trained codebooks of both speech and noise. In
experiments, the proposed method is demonstrated to be capable of accurately predict-
ing the intelligibility scores obtained with STOI from oracle information. Moreover,
the results are validated in listening tests that confirm that the proposed method can
estimate intelligibility from noisy speech over a range of signal-to-noise ratios.

1 Introduction

Human interaction depends on communication where speech has a central
role. Inability to understand speech, e.g., due to hearing impairment, noisy
background, or distortion in communication systems, can lead to ineffective
communication and social isolation, and the development of speech enhance-
ment methods [1, 2] is, therefore, a key concern in many applications. These
include challenging applications such as hearing aids [3], telecommunication
systems [4, 5], and architectural acoustics [6]. To assess the listening condi-
tions in which speech processing would be beneficial, but also to evaluate
the speech processing algorithms as such, a speech intelligibility measure is
required [3, 5, 7].

A natural way of assessing the intelligibility of a degraded, i.e., processed,
distorted or noisy speech signal is by performing subjective listening tests.
Subjective speech intelligibility scores gives the percentage of correctly iden-
tified information from a degraded speech signal. However, subjective speech
intelligibility experiments are time-consuming, expensive and cannot be used
for real-time applications. Hence, there is a great interest in developing ob-
jective measures for speech intelligibility prediction. As opposed to subjec-
tive listening tests, objective intelligibility prediction algorithms are faster,
cheaper and can be used for real-time processing.

The Articulation Index (AI) [8, 9] and the Speech Intelligibility Index
(SII) [10] are some of the earliest metrics for prediction of speech intelligi-
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bility scores. The AI and SII use the signal-to-noise ratio (SNR) of speech
excerpts in several frequency bands to estimate the intelligibility, hence they
require that both the clean speech signal and the noise are available and un-
correlated as well as the noise to be stationary. The Extended SII (ESII) [11]
and the Coherence SII (CSII) [12], are variants of SII which account for
fluctuating noise and nonlinear distortions from clipping, respectively. The
Speech Transmission Index (STI) [4] was introduced to predict the intelligi-
bility of an amplitude modulated signal at the output of a transmission chan-
nel based on changes in the modulation depth across frequency of a probe
signal. The STI, which requires a probe signal as reference, offers good pre-
diction of speech intelligibility in reverberant and noisy conditions [4], but
not for more adverse nonlinear distortions, such as those caused by spectral
subtraction [13]. The Short-Time Objective Intelligibility (STOI) metric [14]
predicts the intelligibility of a signal by its short-time correlation with its
clean counterpart which is required as input. STOI estimates are accurate for
time-frequency processed speech [15, 16]. The speech-based Envelope Power
Spectrum Model (sEPSM) [17] estimates the SNR in the envelope-frequency
domain and uses the noise signal alone as reference. The sEPSM accounts
for the effects of additive noise and reverberation and some types of nonlin-
ear processing such as spectral subtraction [17], but fails with other types of
nonlinear processing such as ideal binary masks and phase jitter [16]. More
recent work includes that of [18], which takes an information theoretical ap-
proach to the problem.

All the aforementioned methods are intrusive, i.e., they require either the
clean speech signal or the noise interference as reference to estimate the intel-
ligibility of the degraded signal. Access to the clean speech signal is imprac-
tical for many real-life applications or real-time processing systems. To over-
come this limitation, a number of non-intrusive objective intelligibility mea-
sures have been proposed. The Speech to Reverberation Modulation energy
Ratio (SRMR) [19] and the average Modulation-spectrum Area (ModA) [20]
both provide intelligibility predictions based on the modulation spectrum of
the degraded speech signal, i.e., in a non-intrusive manner. Other notable
work includes the reduced dynamic range (rDR) based intelligibility mea-
sure [21], wherein the intelligibility is predicted directly from the dynamic
range of the noisy speech, and the across-band envelope correlation (ABEC)
metric [22], which is based on temporal envelope waveforms. Another ap-
proach to predict speech intelligibility non-intrusively is to first obtain an
estimate of the clean speech signal which is thereafter used as reference to
an intrusive method. Machine learning [23, 24], principal component analy-
sis [7] or noise reduction [25, 26] methods have been proposed to reconstruct
the clean signal from its degraded version and use it as input to the intrusive
STOI metric for objective intelligibility prediction.

The present paper, which is an extension of our prior work [27], pro-
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poses a non-intrusive intelligibility metric, which uses the STOI measure
non-intrusively by estimating the features of the clean reference signal from
its degraded version. The proposed method, however, estimates the reference
signal by identifying the entries of pre-trained codebooks of speech and noise
spectra which best fit the data, i.e., the noisy speech signal. The resulting
new metric is dubbed Non-Intrusive Codebook-based STOI (NIC-STOI). The
method is inspired by the work [28, 29] which demonstrates that codebook-
based approaches offer effective speech enhancement, even under nonstation-
ary noise such as babble noise. Moreover, the approaches of [28, 29] are based
on low-dimensional parametrizations of both the noise and speech spectra,
more specifically, via auto-regressive (AR) models, something that engenders
both effective training leading to small codebooks and computationally fast
implementations. Furthermore, an AR process models the envelope of the
signal’s spectrum rather than its fine structure. Such models are suitable
in this context since it is shown that the spectral envelope of speech is an
important cue for intelligibility [30]. Compared to our previous work [26],
which can be interpreted as sampling the speech spectrum at high-SNR fre-
quencies based on the pitch, something that is consistent with the glimpsing
model of speech perecetion [31], the new method is based on the complete
speech spectrum. It should also be noted that we here address the problem of
single-channel non-intrusive intelligibility prediction, which is a much more
difficult task than the multichannel problem [25, 26], as the latter can use
spatial information.

The rest of the paper is organized as follows. First, the principles of in-
telligibility prediction in the STOI method are described in Section 2. Then,
the signal model that the proposed method is based on is detailed in Sec-
tion 3, and the proposed non-intrusive method is described in Section 4. The
experimental details and results, which include both experiments with objec-
tive measures and a listening test, are first described in Section 5 and then
discussed in Section 6. Finally, Section 7 concludes on the work.

2 Background

The STOI [14] metric predicts the speech intelligibility based on the correla-
tion between the temporal envelopes of the clean and the degraded speech
signal (see Fig. D.1). First, the clean and degraded speech signals are de-
composed in time-frequency representations using a discrete Fourier trans-
form. Then, these time-frequency representations are grouped in one-third
octave frequency bins and short-time segments (384 ms). The short-time seg-
ments are normalized in order to account for global level differences of the
input signals. Furthermore, the short-time segments are clipped to prevent
time-frequency units that are already completely degraded from excessively
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3. Signal model

influencing the intelligibility score. Finally, the correlation of the signals is
calculated over the short-time segments per frequency band. The STOI out-
put is the average of the correlation coefficients across frequency bands and
time-segments, i.e., a scalar value in the range 0-1 which relates monotoni-
cally to the average speech intelligibility scores.

3 Signal model

Assuming that a speech signal and a noise signal are generated by uncor-
related random processes, the corresponding noisy speech signal, y(n), at
time instance n is y(n) = s(n) + w(n). In the proposed method, both the
speech and the noise are modeled as stochastic processes, namely AR pro-
cesses [28, 29]. Using such a stochastic AR model, a segment of the speech
signal is expressed as

s(n) = −
P

∑
i=1

as(i)s(n− i) + u(n), (D.1)

which can also be expressed in vector notation as

u(n) = aT
s s(n) (D.2)

where P is the order of the AR process, s(n) = [s(n), s(n− 1), . . . , s(n− P)]T is
a vector collecting the P past speech samples, as = [1, as(1), as(2), . . . , as(P)]T

is a vector containing the speech auto-regressive parameters with as(0) = 1,
and u(n), which here models the excitation, is zero mean white Gaussian
noise with excitation variance σ2

u . Transforming the AR model into the fre-
quency domain, As(ω)S(ω) = U(ω) ⇔ S(ω) = U(ω)/As(ω), results in the
following power spectrum:

Ps(ω) = |S(ω)|2 =
σ2

u
|As(ω)|2 , (D.3)

where As(ω) = ∑P
k=0 as(k)e−jωk. Similarly to the speech signal, the noise

signal can be modeled as

w(n) = −
Q

∑
i=1

aw(i)w(n− i) + v(n), (D.4)

which can also be expressed as

v(n) = aT
ww(n), (D.5)

where Q is the order of the AR process, w(n) = [w(n), w(n −
1), . . . , w(N − Q)]T is a vector collecting the Q past noise samples, aw =
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[1, aw(1), aw(2) . . . , aw(Q)]T where aw(0) = 1, and v(n) is zero mean white
Gaussian noise with excitation variance σ2

v . The noisy power spectrum is
likewise given by

Pw(ω) = |W(ω)|2 =
σ2

v
|Aw(ω)|2 . (D.6)

where Aw(ω) = ∑Q
k=0 aw(k)e−jωk.

The models of the the speech and noise in (D.2) and (D.5), respectively,
can be motivated as follows. The AR model has a long history in speech
processing, where one of its uses is in modeling the speech production system
(see, e.g., [32]), where it corresponds to a cylinder model of the vocal tract
which is excited by a noise signal generated by the lungs. The model is,
though, well-known not to be perfect. For example, it does not account for
the nasal cavity and the Gaussian model is only a good model for unvoiced
speech and less so for voiced speech [33]. Nevertheless, it remains useful for
many purposes and here it is used as a low-dimensional representation of the
speech spectrum. Regarding the noise, the model is good for many natural
noise sources, but, in any case, it can be used for modeling arbitrary, smooth
spectra of Gaussian signals [34].

4 The NIC-STOI measure

The proposed method provides an objective measure for speech intelligibility
prediction given solely the degraded speech signal, i.e., non-intrusively.

The method is based on the speech and noise being additive and the AR
models of the speech (D.2) and noise (D.5) signals. The speech and noise
spectra are simultaneously estimated from the degraded speech signal using
a Bayesian approach which uses the AR parameters as prior information for
inference. The prior information is obtained from trained codebooks (dictio-
naries) of speech and noise AR parameters. The estimation is performed on
short-time frames in order to account for non-stationary noise.

Figure D.2 depicts a block diagram of the NIC-STOI algorithm. The
methodology comprises three main steps: 1) estimation of the parameters
for the speech and noise AR models, 2) computation of the time-frequency
representations for the clean, s, and noisy speech, y, signals from the esti-
mated parameters, 3) prediction of speech intelligibility of the noisy speech
signal with the STOI framework from the estimated spectra.

4.1 Step 1: Parameter Estimation

Let the column vector θ = [as; aw; σ2
u ; σ2

v ] comprise all parameters to be
estimated, i.e., the AR coefficients and the excitation variances of the models
of both speech and noise.
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Bayes’ theorem facilitates the computation of the posterior distribution
p(θ|y) of the model parameters θ conditioned on the observation of N noise
samples, i.e., y = [ y(0) y(1) . . . y(N − 1) ], from the likelihood p(y|θ), the
prior distribution of the model parameters p(θ), and the marginal distribu-
tion of the data p(y) [28, 29, 35]:

p(θ|y) = p(y|θ)p(θ)
p(y)

. (D.7)

Based on the signal model introduced previously, the data likelihood, p(y|θ),
is a multi-variate zero-mean Gaussian distribution with covariance matrix,
RY = Rs + Rw, where Rs = σ2

u(G
T
s Gs)−1 and Gs is a N × N lower triangular

Toeplitz matrix defined by the AR parameters as. More specifically, it is given
by

Gs =



1 0 . . . 0
as(1) 1

... as(1)

as(P)
...

. . .
...

0 as(P)
. . .

...
... 1

0 0 . . . as(1) 1


(D.8)

while the noise covariance matrix can be expressed as Rw = σ2
v (G

T
wGw)−1

with Gw being defined in a similar manner as Gs but from aw. Then, the
minimum mean square error (MMSE) estimate is given by [36]

θ̂MMSE = arg min
θ̂

E
[
(θ̂(y)− θ)2

]
= E(θ|y)

=
∫

Θ
θp(θ|y)dθ =

∫
Θ

θ
p(y|θ)p(θ)

p(y)
dθ, (D.9)

where Θ is the support space of the parameters to be estimated. Based on
the independence of speech and noise signals, and further assuming that the
AR process and excitation variances are independent, the prior distribution
of the model parameters can be simplified as

p(θ) = p(as, σ2
u)p(aw, σ2

v ) ≈ p(as)p(σ2
u)p(aw)p(σ2

v ).

Limiting the support of the AR parameter vectors as and aw to predefined
codebooks of size Ns and Nw, respectively, the corresponding excitation vari-
ances are estimated through a maximum likelihood (ML) approach

{σ2,ML
u,ij , σ2,ML

v,ij } = arg max
σ2

u ,σ2
v

log p(y|aCB
si

; aCB
wj

; σ2
u ; σ2

v ),

90



4. The NIC-STOI measure

where aCB
si

is the ith entry of the speech codebook and aCB
wj

is the jth entry of
the noise codebook. The Gaussian likelihood p(y|θ) can be expressed in the
frequency domain in terms of the Itakura-Saito distortion measure between
the observed, Py(ω), and modeled, P̂ij

y (ω), noisy data power spectrum, i.e.,

p(y|aCB
si

; aCB
wj

; σ2
u,ij; σ2

v,ij) ∝ e−dIS(Py(ω),P̂ij
y (ω)), (D.10)

where dIS(·, ·) is the Itakura-Saito divergence, which is given by [29, 37]

dIS(Py(ω), P̂ij
y (ω)) =

1
2π

∫ 2π

0

(
Py(ω)

P̂ij
y (ω)

− ln

(
Py(ω)

P̂ij
y (ω)

)
− 1
)

dω. (D.11)

Equation (D.11) makes use of the modeled noisy power spectrum, which is
here given by

P̂ij
y (ω) =

σ2
u

|Ai
s(ω)|2

+
σ2

v

|Aj
w(ω)|2

, (D.12)

where Ai
s(ω) = ∑P

k=0 ai,CB
s (k)e−jωk and Aj

w(ω) = ∑Q
k=0 aj,CB

w (k)e−jωk being
the spectra of the ith and jth vector from the speech codebook and noise
codebook, respectively.

Assuming that the modeling error between Py(ω) and P̂ij
y (ω) is small and

by using a second-order Taylor series approximation of ln(·), the Itakura-
Saito divergence can be approximated as [29]

dIS(Py(ω), P̂ij
y (ω)) ≈ 1

2
dLS

(
Py(ω), P̂ij

y (ω)
)

, (D.13)

where the log-spectral distortion between the observed and modeled noisy

spectrum, dLS

(
Py(ω), P̂ij

y (ω)
)

, which is given by

dLS

(
Py(ω), P̂ij

y (ω)
)
= (D.14)

1
2π

∫ 2π

0

∣∣∣∣∣ln
(

σ2
u

|Ai
s(ω)|2

+
σ2

v

|Aj
w(ω)|2

)
− ln

(
Py(ω)

)∣∣∣∣∣
2

dω

Finally, the ML estimates of the speech and noise excitation variances, σ2,ML
u,ij

and σ2,ML
v,ij can be obtained by

{σ2,ML
u,ij , σ2,ML

v,ij } = arg min
σ2

u ,σ2
v

dLS

(
Py(ω), P̂ij

y (ω)
)

, (D.15)
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which is solved by differentiating (D.14) with respect to σ2
u and σ2

v and setting
the result equal to zero [28, 35]. This results in the following estimate of the
excitation variance for the speech:

σ2,ML
u,ij =

1
Ψij

(
∑
ω

1

P2
y (ω)|Aj

w(ω)|4
∑
ω

1
Py(ω)|Ai

s(ω)|2

−∑
ω

1

P2
y (ω)|Ai

s(ω)|2|Aj
w(ω)|2

∑
ω

1

Py(ω)|Aj
w(ω)|2

)
.

Similarly, the estimate of for excitation variance of the noise is given by

σ2,ML
v,ij =

1
Ψij

(
∑
ω

1
P2

y (ω)|Ai
s(ω)|4 ∑

ω

1

Py(ω)|Aj
w(ω)|2

−∑
ω

1

P2
y (ω)|Ai

s(ω)|2|Aj
w(ω)|2

∑
ω

1
Py(ω)|Ai

s(ω)|2

)
.

The quantity Ψij is given by

Ψij = ∑
ω

1
P2

y (ω)|Ai
s(ω)|4 ∑

ω

1

P2
y (ω)|Aj

w(ω)|4

−

∑
ω

1

P2
y (ω)|Ai

s(ω)|2|Aj
w(ω)|2

2

. (D.16)

Finally, based on these estimates, the quantities in (D.9) are estimated from
their discrete counterparts, which are given by

θ̂ =
1

NsNw

Ns

∑
i=1

Nw

∑
j=1

θij
p(y|θij)

p(y)
(D.17)

and

p(y) =
1

NsNw

Ns

∑
i=1

Nw

∑
j=1

p(y|θij), (D.18)

where θij = [aCB
si

; aCB
wj

; σ2,ML
u,ij ; σ2,ML

v,ij ] is the resulting parameter vector for the

ith entry of the speech codebook and the jth entry of the noise codebook and
the final estimates are denoted as θ̂ = [âs; âw; σ̂2

u ; σ̂2
v ]. These estimates can

be thought of as being obtained from an average over all possible models
with each model being weighted by its posterior. We remark that codebook
combinations that result in infeasible, negative values for either the speech
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or noise excitation variances should be neglected. Since all ML estimates
of the excitation variances and the predefined codebook entries contribute
with equal probability, the prior is non-informative and is omitted in (D.9).
It should also be noted that the weighted summation of the AR parameters
can be performed in the line spectral frequency (LSF) domain whereby a
stable inverse filters is ensured, something that is not always the case when
operating directly on the AR parameters [28, 29].

4.2 Step 2: TF composition

The estimated parameters in θ̂, obtained using (D.17), are then used to com-
pute the time-frequency (TF) power spectra of the estimated speech and noise
spectra as

P̂s(ω) =
σ̂2

u

|Âs(ω)|2
, (D.19)

where Âs(ω) = ∑P
k=0 âs(k)e−jωk, and

P̂w(ω) =
σ̂2

v

|Âw(ω)|2
, (D.20)

where Âw(ω) = ∑Q
k=0 âw(k)e−jωk. The AR parameters, i.e., âs and âw, deter-

mine the shape of the envelope of the corresponding signals Ŝ(ω) and Ŵ(ω),
respectively. The excitation variances, σ̂2

u and σ̂2
v , determine the overall signal

power. Finally, the noisy spectrum is composed as the combined sum of the
clean and the noise power spectra:

P̂y(ω) = P̂s(ω) + P̂w(ω) =
σ̂2

u

|Âs(ω)|2
+

σ̂2
v

|Âw(ω)|2
. (D.21)

These time-frequency spectra replace the discrete Fourier transform of the
clean reference signal and the noisy signal in the original STOI measure,
respectively.

4.3 Step 3: Intelligibility Prediction

The STOI measure is used for intelligibility prediction with the estimated
spectra P̂s(ω) (D.19) and P̂y(ω) (D.21) as inputs. First, the frequency bins
of P̂s(ω) and P̂y(ω) are grouped into 15 one-third octave bands denoted by
Ps( f , t) and Py( f , t), respectively, with the lowest center frequency set to 150
Hz and the highest set to 4.3 kHz. The short-time region of the temporal en-
velopes of the clean speech is defined as ps( f , t) = [Ps( f , t− N + 1), Ps( f , t−
N + 2), . . . , Ps( f , t)]T , where N is the length of the short-time regions and is
set to 30, resulting in a short-time region of 384 ms as in the original STOI
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implementation [14]. In the same manner, the short-time region of the de-
graded speech is given by py( f , t). The short-time regions of the degraded
speech, py( f , t), are further clipped by a normalization procedure in order to
de-emphasize the impact of region in which noise dominates the spectrum:

p′y( f , t) = min

(
‖ps( f , t)‖2

‖py( f , t)‖2
py( f , t), (1 + 10−β/20)ps( f , t)

)

where ‖·‖2 denotes the l2 norm and β = −15 dB is the lower signal-to-
distortion ratio. The local correlation coefficient, r( f , t), between p′y( f , t) and
ps( f , t) at frequency f and time t, is defined as

r( f , t) =
(ps( f , t)− µps( f ,t))

T(p′y( f , t)− µp′y( f ,t))√
(ps( f , t)− µps( f ,t))

2
√
(p′y( f , t)− µp′y( f ,t))

2
,

where µ(·) denotes the sample average of the corresponding vector. Given the
local correlation coefficient, the NIC-STOI prediction is given by averaging
across all bands and frames as

dNS =
1

TF

F

∑
f=1

T

∑
t=1

r( f , t). (D.22)

5 Experimental Details and Results

5.1 Performance Measures

The non-intrusive intelligibility prediction is given by dNS, for the different
conditions to be evaluated. Whereas the ground truth, denoted by dS, for
these conditions are given by the intrusive STOI scores. Similarly to the ap-
proach in [24], the original true STOI score is expected to be well-correlated
with the subjective intelligibility. Thus, the purpose is to predict the intrusive
STOI score of a given condition using a non-intrusive method. The perfor-
mance of the objective intelligibility predictions are evaluated using three
performance metrics often used for assessing objective intelligibility predic-
tions [3, 14, 38]:

• The Pearson correlation coefficient (ρ) quantifies the linear relationship
between the predicted non-intrusive intelligibility scores and true STOI
scores or subjective intelligibility scores, where a higher ρ indicates
higher correlation.

• Kendall’s Tau (τ) characterizes the ranking capability by describ-
ing the monotonic relationship between the predicted intelligibility
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Table D.1: Sentence syntax of the GRID database [39] which is used in the subjective listening
test. Each sentence is constructed from (in order) a combination of a command, color, preposi-
tion, letter digit, and adverb.

Command Color Preposition Letter Digit Adverb
bin blue at A-Z 0-9 again
lay green by (no W) now
place red in please
set white with soon

scores and true STOI scores or subjective intelligibility scores, where
a higher τ represents better performance [40]. It is defined as τ =
2(nc − nd)/N(N − 1), where nc is the number of concordant pairs, i.e.
ordered in the same way, and nd is the number of discordant pairs, i.e.
ordered differently.

• The standard deviation of the prediction error (σ) is given as a measure
of the estimation accuracy of the predicted non-intrusive intelligibility
scores, where a lower σ implies better results.

5.2 Experimental Details

The results reported in this paper are based on both objective measurements
and subjective listening tests. For the results based on the objective measures,
the proposed metric, NIC-STOI, is evaluated on a test set of 100 speech ut-
terances (full sentences), 50 male and 50 female, randomly selected from the
EUROM_1 database of the English corpus [41]. The interfering additive noise
signal is babble noise from the AURORA database. The babble noise contains
many speakers in a reverberant acoustical environment. The sentences and
interfering additive noise signal are both resampled to 10 kHz. Segments
randomly selected from the additive noise signal are added to the EUROM_1
sentences at different SNR levels in the range of -30 to 30 dB SNR in steps of
10 dB SNR.

For further evaluation of the proposed metric, a subjective listening test
has also been carried out to provide a data set for comparing NIC-STOI
and SRMR. Stimuli were the fixed-syntax sentences from the GRID corpus
database [39] mixed with the babble signal from the AURORA database with
an SNR range -8 to 0 dB. The grid corpus consists of sentences spoken by 34
talkers (16 female and 18 male). The sentences are simple, syntactically iden-
tical phrases, e.g. “place blue in A 4 again”, and the listeners are asked to
identify the color, letter, and digit after listening to the stimuli using a user-
controlled MATLAB interface. The syntax and words of the GRID corpus are
shown in Table D.1. A total of nine subjects were used for the experiment
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which took around 30 minutes per subject. Intelligibility was defined as the
number of keywords correctly identified per stimulus resulting in a fraction
of either 0, 1/3, 2/3, or 1 being correct. A total of 220 stimuli were used,
approximately 2 s in duration each, with the same stimuli being used for
both NIC-STOI and SRMR: 5 SNR levels times 44 different sentences. We re-
mark that to reduce intra- and intersubject variability the condition-averaged
results are used for comparison and mapping of the objective results to sub-
jective performance [3, 42]. Measuring intelligibility on a short time-scale (i.e.,
from short stimuli less than 2 s in duration each) with non-stationary noise
types implies a high variance for both subjective and objective evaluations,
i.e., precise estimation of intelligibility requires multiple sentences and not
only a few words. However, it is difficult to execute subjective listening tests
using long sentences or phrases as stimulus for which reason the average of
many shorter sentences is here used instead.

The AR parameters and excitation variances of both the speech and noise
signal are estimated on frames with a length of 256 samples. The speech
and, thus, the estimated parameters are assumed to be stationary over these
very short 25.6 ms frames. The frames are windowed using a Hann window
with 50 % overlap between adjacent frames. The AR model orders P and
Q of the speech and noise, respectively, are set to 14 in accordance with the
literature [28, 29, 35]. The speech codebook is trained using the generalized
Lloyd algorithm (GLA) on 10 minutes of speech from multiple speakers in the
EUROM_1 database in order to ensure a sufficiently general speech model
[28, 43]. We stress that the speakers included in the test set are not used
for the training of the speech codebook. The noise codebook is trained on
2 minutes of babble talk. The sizes of the speech and noise codebooks are
Ns = 64 and Nw = 8, respectively.

5.3 Experimental Results

An example of the spectrum of a speech signal from the test set is shown
in Fig. D.3 . The spectra of the original clean speech signal, the degraded
noisy signal at 0 dB SNR and the noisy only are depicted in the top panel
from left to right, respectively. The corresponding estimated spectra of the
relevant signal features are shown in the bottom panel. The spectra are gen-
erated using trained codebooks of speech and noise spectral shapes. The
estimated clean spectrum (bottom left panel) and estimated noisy spectrum
(bottom middle panel) are used as input to the intrusive STOI framework.

The performance of the NIC-STOI metric is evaluated against the in-
trusively computed scores of the original STOI metric as ground truth. In
Fig. D.4, the estimated NIC-STOI scores have been plotted against the in-
trusive STOI scores. The plot shows good performance by means of a strong
monotonic relationship between NIC-STOI and STOI, such that a higher NIC-
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Fig. D.4: Scatter plot of the predicted STOI scores using the non-intrusive codebook-based STOI,
NIC-STOI, metric.

STOI score also corresponds to a higher STOI score. Furthermore, a strong
linear correlation can be observed between the two measures. This observa-
tion is also supported by the performance criteria, where NIC-STOI achieves
a Pearson’s correlation of ρ = 0.94, Kendall’s Tau of τ = 0.70 and a standard
deviation of the prediction error σ = 0.14 for STOI, implying a high correla-
tion. This indicates that the proposed non-intrusive version of STOI can offer
a comparable performance to the original intrusive STOI.

Fig. D.5 depicts the averaged predictions (± standard deviation) of the
NIC-STOI scores in the scatter plot in Fig. D.4 for male (blue line), female
(red line) and both genders (yellow line), where the performance measures
are given in Tab. D.2. As it can be observed, the measure performs equally
well whether the method is tested using either a gender specific clean speech
codebook or a generic clean speech codebook. This suggests that the method
generalizes well and does not capture gender specific effects due to the very
generic and smooth structure of the spectra of the auto-regressive processes.

In Fig. D.6 the STOI measure (purple line) and the NIC-STOI measure
(male: blue line; female: red line; both genders: yellow line) are depicted as
function of SNR. There is a clear monotonic correspondence between NIC-
STOI and STOI, such that a higher STOI measure results in a higher NIC-STOI
score. Furthermore, the NIC-STOI scores also increase with increasing SNR.
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Fig. D.5: Averaged NIC-STOI scores (± standard deviation) against the intrusively computed
STOI score.
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Fig. D.7: Intelligibility as a function of SNR for subjective listening experiments and as predicted
by the proposed NIC-STOI and SRMR. Shown are the means and their 95 % confidence intervals.

Subjective results, in terms of intelligibility as a function of SNR, are
shown in Fig. D.7 together with objective results obtained using the pro-
posed NIC-STOI and SRMR. The error bars in the Figure are 95 % confidence
intervals computed using a normal distribution for the SRMR and NIC-STOI
methods and the normal approximation for the binomial confidence interval
of the subjective results from the listening test. Note that to map the objec-
tive results to subjective intelligibility, a sigmoid function has been fitted to
the average data as described in Section 5.2. As can be seen, the proposed
method performs well and is capable of predicting the speech intelligibility
with similar variance over a range of SNRs. The results do not, however, en-
able the conclusion that NIC-STOI is superior to SRMR although NIC-STOI
has a better alignment with the subjective data, as both metrics have a good
performance, even at low SNRs, and the confidence intervals overlap. Con-
cerning the probability intervals, the intervals for both NIC-STOI and SRMR
are large, as is to be expected, due to the short sentences in the GRID cor-
pus and the limited number of stimuli for each SNR level. One thing to
note is that the variance for SRMR increases as the SNR decreases, whereas

100



6. Discussion

Table D.2: Performance of the proposed metric in terms of Pearson’s correlation (ρ), and
Kendall’s tau (τ) and the standard deviation of the prediction error (σ) between NIC-STOI and
STOI.

Condition ρ τ σ

Male 0.93 0.70 0.14
Female 0.94 0.71 0.13
Both genders 0.94 0.70 0.14

NIC-STOI exhibits a similar variance across SNRs.

6 Discussion

Since the framework of NIC-STOI is based on an AR model, it only captures
the overall envelope structure and not the fine structure of the speech sig-
nal as illustrated in Fig. D.3 [29, 37]. The envelope of the speech has been
shown to be a good predictor for speech intelligibility in previous intrusive
intelligibility frameworks, i.e. STI and EPSM [4, 17, 30]. Extensive vocoder
simulations also support these findings, where a high speech intelligibility
can be obtained in quiet solely from the envelope content in only four spec-
tral bands [30]. As such, only modeling the envelope structure of the clean
speech as the essential features in NIC-STOI is assumed to be an appropriate
predictor for speech intelligibility. Moreover, the promising results in [28],
which show improvements of STOI scores for single channel enhancement
over the noise signal, also support that the proposed model captures the es-
sential features of the speech, as the estimated AR parameters and excitation
variances are used in a speech production model in [28] to enhance the noisy
speech with a Kalman filter.

Both the reported objective and subjective results show that the proposed
method works well. The subjective results show that the proposed method
can predict the intelligibility of a listening experiment over a range of 10 dB.
Although the predicted values exhibit a high variance, as is to be expected
of this type of experiment, this variance is similar to the one obtained with
SRMR. The objective results indicate that NIC-STOI performs very well for a
broad range of SNRs, even down to -30 dB SNR where the noisy speech is
expected to be unintelligible. It should be noted that while NIC-STOI appears
to deviate from STOI for very low SNRs, this is less important as, according
to [3], a STOI score of 0.6 approximately corresponds to zero intelligibility.
Even though the absolute value of STOI depends highly on the specific speech
material and listening environment, the broad working range of NIC-STOI
should cover the range of intelligibility. Hence, any score below this threshold
can be simply assumed unintelligible. Here, it is also important to stress
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that the overall aim of NIC-STOI is to have a monotonic relation with the
intrusively computed STOI scores, and not necessarily to predict the absolute
STOI scores. However, the offset observed between the predicted NIC-STOI
scores and STOI scores in Fig. D.6 can easily be accounted for by the observed
linear trend between the two measures depicted in Fig. D.4, such that the
absolute STOI score can be predicted by means of the estimated NIC-STOI
score.

It should be noted that STOI was among the first intrusive intelligibility
metrics with very good performance, but since it was first introduced other
intrusive metrics have also been proposed that show good performance. The
front-end of NIC-STOI, that forms the basis of the present work, could also
quite possibly be used for other intrusive frameworks, provided that they
are also based on spectral features of the noisy and clean speech. Regarding
this, it is interesting to note that the estimation of the parameters in short-
time segments based on the current observation makes the front-end suitable
for non-stationary noise conditions. However, STOI does not work well for
highly non-stationary interferers due to the analysis window length. There-
fore, it could be interesting to investigate using the Extended STOI (ESTOI)
as a back-end to NIC-STOI instead, since this method has been developed to
work well for highly modulated noise sources [44].

Correlation-based metrics including STOI are generally not suitable for
predicting the intelligibility of reverberant speech and, thus, it is likely that
NIC-STOI will fail in such conditions [14, 45]. Furthermore, the short time
frames used in STOI might also have a negative impact on the application of
NIC-STOI to reverberant speech, as short time frames cannot capture all the
effects of reverberation, such as temporal smearing [14]. Currently, SRMR
and ModA are the most well-studied non-intrusive intelligibility metrics.
They have both been proposed for predicting the intelligibility of reverberant
speech, where they both show good performance [3, 19, 20]. Even though
these metrics are aimed for reverberant speech, they have also been tested for
noisy and processed speech [3], where they perform reasonably well. How-
ever, it would seem that SRMR and ModA are a more suitable choice for
reverberant speech, while our proposed method, NIC-STOI, which takes into
account the presence of noise, is a more suitable choice for additive degra-
dations, such as background noise and interferences. In this connection, it
should also be mentioned that the proposed method is computationally much
more demanding than SRMR and ModA, mainly due to the codebook search,
although approximate methods for implementation of this exist [46].

In closing, we remark that the proposed method is not expected to account
well for non-linear signal processing, since it is based on an additive noise
model as well as the codebooks being trained on clean speech signals and
noise signals. However, testing the method on the Ideal Time-Frequency Seg-
regation (IFTS) data set from [47], which was used for evaluating the original
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STOI measure [14], results in a Pearson correlation of 0.70, which is surpris-
ingly good. For comparison, NIC-STOI outperforms the non-intrusive intelli-
gibility metric, SRMR [3, 19], which achieves a Pearson correlation of 0.24 [7],
although it should be noted that SRMR, as already mentioned, was designed
for reverberant speech. However, the newly proposed Non-Intrusive STOI
(NI-STOI) measure [7] achieves a Pearson correlation of 0.71 for the data
set [47], which is on par with the results obtained for NIC-STOI. We remark
that NI-STOI is not completely non-intrusive, as it is based on the ideal voice
activity detector used in the intrusive STOI metric [7].

7 Conclusion

In this paper, a non-intrusive codebook-based short-time objective intelligi-
bility metric, called NIC-STOI, has been proposed. It is based on an intrusive
intelligibility metric, STOI, but, unlike STOI, it does not require access to
the clean speech signal. Instead, the proposed method estimates the spec-
trum of the reference signal by identifying the entries of pre-trained spectral
codebooks of speech and noise spectra, parametrized by auto-regressive pa-
rameters, which best fit the observed signal, i.e., the noisy speech signal. This
is done in a statistical framework wherein parameters are estimated by min-
imizing the Itakura-Saito divergence for combinations of speech and noise
models. This is equivalent to maximum likelihood estimation for Gaussian
distributed signals. The proposed NIC-STOI metric is shown, in experiments,
to be highly correlated with STOI (with a Pearson correlation of 0.94 and a
standard deviation of the prediction error of 0.14) and is also validated in a
listening experiment assessing speech intelligibility. Hence, it can be used for
the assessment of speech intelligibility when a clean reference signal is not
available. This could be used, for example, for online optimization of hearing
aids.
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1. Introduction

Abstract

In recent years, objective measures of speech intelligibility have gained increasing
interest. However, most speech intelligibility metrics require a clean reference sig-
nal, which is often not available in real-life applications. In a recent publication,
we proposed a method, the Non-Intrusive Codebook-based Short-Time Objective In-
telligibility (NIC-STOI) metric, which allows using an intrusive method without
requiring access to the clean signal. The statistics of the reference signal is estimated
as a combination of predefined codebooks that best fit the degraded signal by model-
ing the speech and noisy spectra. In this paper, we perform additional validation of
the NIC-STOI in more diverse noise condition as well as for speech processed non-
linearly with binary masks, where it is shown to outperform existing non-intrusive
metrics.

1 Introduction

In recent years, objective measures of speech intelligibility have gained in-
creasing interest as a tool for objectively optimizing the speech intelligibility
of speech enhancement algorithms in e.g. hearing aids [1]. The articulation
index (AI) [2] and the speech transmission index (STI) [3] are some of the ear-
liest metrics that predict the intelligibility for a limited type of degradations,
like linear filtering and additive noise. Recently, the speech-based envelope
power spectrum model (sEPSM) [4] and the short-time objective (STOI) met-
ric [5] were developed for more complex distortion types and are reported to
have high prediction accuracy [1].

However, these metrics are all intrusive, i.e., they require a clean reference
in order to predict the speech intelligibility of a degraded signal. In some sce-
narios, e.g., real-time processing, it is impractical to use intrusive metrics for
predicting speech intelligibility. To overcome this limitation, a number of
non-intrusive intelligibility prediction methods have been introduced. The
Speech to Reverberation Modulation energy Ratio (SRMR) [6] and the aver-
age Modulation-spectrum Area (ModA) [7] both provide a non-intrusive es-
timate of the speech intelligibility based on the modulation spectrum of the
degraded speech signal. Another way to predict speech intelligibility non-
intrusively is to first obtain an estimate of the clean signal from its degraded
version and then use this as reference to an intrusive metric. For instance,
machine learning [8, 9], noise reduction [10, 11], principal component analy-
sis [12] and neural network [13] methods have been proposed as approaches
to obtain a reference signal to use inside the STOI framework from the de-
graded speech signal. Another non-intrusive version of the STOI metric,
the non-intrusive codebook-based STOI (NIC-STOI), is proposed in [14, 15].
This is based on estimating the spectrum of the reference signal from its
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degraded version by identifying combinations of pre-trained codebook en-
tries of speech and noise spectra, parametrized by Auto-Regressive (AR) pa-
rameters, which best fit the degraded speech signal. The evaluation of the
NIC-STOI metric in [15] is shown to be highly correlated with STOI and sub-
jective listening scores for additive babble noise interference. However, since
methods for predicting speech intelligibility are often used to evaluate the
effects of non-linear processing, a method that is also suitable for such types
of processing is desirable [1]. Therefore, in this paper, the NIC-STOI metric
is further validated on speech in different noise conditions, which has been
non-linearly processed with Ideal Binary Masks (IBMs) [16].

2 The NIC-STOI metric

The NIC-STOI metric, proposed in [14, 15], is based on STOI but does not
require access to a clean reference signal. Figure C.1 depicts an overview of
the NIC-STOI algorithm. The algorithm consists of three main steps: 1) esti-
mation of the AR speech and noise model parameters 2) computation of the
clean and noisy time-frequency spectra 3) prediction of intelligibility within
STOI. In the following, a condensed description of the NIC-STOI metric is
presented. A more thorough description is available in [15].

2.1 Step 1: Estimate parameters

It is assumed that a speech and noise signal are random uncorrelated pro-
cesses such that the noisy speech signal is given by y(n) = s(n) + w(n) [17,
18]. The speech and noise are modeled as stochastic AR processes expressed
as u(n) = aT

s s(n) and v(n) = aT
ww(n), respectively, where s(n) = [s(n), s(n−

1), . . . , s(n − P)]T and w(n) = [w(n), w(n − 1), . . . , w(N − Q)]T are vectors
collecting the P and Q past samples, as = [1, as(1), as(2), . . . , as(P)]T and
aw = [1, aw(1), aw(2) . . . , aw(Q)]T are vectors containing the AR parameters
with as(0) = 1 and aw(0) = 1. Finally, u(n) and v(n) models the speech and
noise excitations as zero mean white Gaussian noise with excitation variance
σ2

u and σ2
v , respectively.

The parameters to be estimated, i.e., the speech and noise AR coefficients
and excitation variances are given by the vector θ = [as; aw; σ2

u(n); σ2
v (n)].

Using Bayes’ theorem, the minimum mean square error (MMSE) estimate
given N noisy samples, i.e., y = [ y(0) y(1) . . . y(N − 1) ] can be given
by [17–19]:

θ̂MMSE = E(θ|y) =
∫

Θ
θ

p(y|θ)p(θ)
p(y)

dθ, (E.1)

where Θ denotes the support space to be estimated.
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The excitation variances are estimated through a maximum likelihood
(ML) approach by limiting the AR parameters as and aw to predefined code-
books of size Ns and Nw:

{σ2,ML
u,ij , σ2,ML

v,ij } = arg max
σ2

u ,σ2
v

log p(y|aCB
si

; aCB
wj

; σ2
u ; σ2

v ),

where aCB
si

and aCB
wj

are the ith and jth entry of the speech and noise codebook,
respectively. The Gaussian likelihood p(y|θ) is given by:

p(y|aCB
si

; aCB
wj

; σ2
u,ij; σ2

v,ij) ∝ e−dIS(Py(ω),P̂ij
y (ω)), (E.2)

where dIS(·, ·) is the Itakura-Saito divergence between the observed, Py(ω),

and modeled, P̂ij
y (ω), noisy spectrum expressed as [18, 20]:

dIS(Py(ω), P̂ij
y (ω)) =

1
2π

∫
Ψ

(
Py(ω)

P̂ij
y (ω)

− ln

(
Py(ω)

P̂ij
y (ω)

)
− 1
)

dω, (E.3)

where P̂ij
y (ω) = σ2

u
|Ai

s(ω)|2 + σ2
v

|Aj
w(ω)|2

, and Ai
s and Aj

w are the ith and jth en-

try from the speech codebook and noise codebook, respectively. The sup-
port space, Ψ, excludes values below a threshold in order to disregard time-
frequency units with low energy or where the binary masks renders the pre-
sented signal inaudible. This threshold is here set to 40 dB below peak energy.

Finally, (E.1) is computed from its discrete counterpart:

θ̂ =
1

NsNw

Ns

∑
i=1

Nw

∑
j=1

θij
p(y|θij)

p(y)
(E.4)

and

p(y) =
1

NsNw

Ns

∑
i=1

Nw

∑
j=1

p(y|θij), (E.5)

where θij = [aCB
si

; aCB
wj

; σ2,ML
u,ij ; σ2,ML

v,ij ]. The priors in (E.1) are non-informative,
since the codebook entries and the ML excitation variance estimates con-
tribute with equal probability and are, thus, omitted.

2.2 Step 2: TF composition

Using the estimated parameters, θ̂, from (E.4) the Time-Frequency (TF) spec-
trum of the estimated speech and noise signal are given by:

P̂s(ω) =
σ̂2

u

|Âs(ω)|2
, (E.6)

114



3. Experimental Details

where Âs(ω) = ∑P
k=0 âs(k)e−jωk, and

P̂w(ω) =
σ̂2

v

|Âw(ω)|2
, (E.7)

where Âw(ω) = ∑Q
k=0 âw(k)e−jωk. The shape of the envelope of the estimated

signals are given by the AR parameters, i.e., âs and âw, while the overall
signal power is given by the excitation variances, i.e., σ̂2

u and σ̂2
v . Then, the

noisy spectrum is given by the sum of the speech and noise power spectra:

P̂y(ω) = P̂s(ω) + P̂w(ω) =
σ̂2

u

|Âs(ω)|2
+

σ̂2
v

|Âw(ω)|2
. (E.8)

2.3 Step 3: Intelligibility Prediction

The estimated speech and noise TF spectra, i.e., P̂s(ω) (E.6) and P̂y(ω) (E.8),
are then used as inputs in the original STOI metric as replacement for the
discrete Fourier transform of the clean and noisy signal, respectively.

The TF spectra P̂s(ω) and P̂y(ω) are grouped into 15 one-third octave
bands and short-time regions of 384 ms denoted by ps( f , t) and py( f , t) as in
the original STOI implementation [5]. In order to de-emphasize the impact of
noise dominated regions py( f , t) are clipped by a normalization procedure:

p′y( f , t) = min

(
‖ps( f , t)‖2

‖py( f , t)‖2
py( f , t), (1 + 10−β/20)ps( f , t)

)
where ‖·‖2 is the l2 norm and β = −15 dB is the lower signal-to-distortion ra-
tio. The local correlation coefficient between p′y( f , t) and ps( f , t) is computed
as

r( f , t) =
(ps( f , t)− µps( f ,t))

T(p′y( f , t)− µp′y( f ,t))√
(ps( f , t)− µps( f ,t))

2
√
(p′y( f , t)− µp′y( f ,t))

2
,

where µ(·) is the mean of the vector. Finally, the NIC-STOI intelligibility
prediction is given by averaging the correlation coefficient, i.e. r( f , t), across
all bands and frames as

dNS =
1

TF

F

∑
f=1

T

∑
t=1

r( f , t). (E.9)

3 Experimental Details

In order to further validate the performance of the NIC-STOI metric pre-
sented in [14, 15] we here evaluate it on the same data as in the original
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Table E.1: Performance of the intelligibility metrics in terms of Pearson’s correlation (ρ),
Kendall’s tau (τ) and the standard deviation of the prediction error (RMSE).

Condition ρ τ RMSE
STOI [5] 0.955 0.821 8.9 %
NIC-STOI [15] 0.940 0.791 11.4 %
NI-STOI1 [12] 0.711 0.529 25.2 %
SRMR-norm [21] 0.392 0.155 38.4 %
SRMR [6] 0.235 0.034 45.0 %

paper on STOI [5, 16]. Subjective intelligibility scores have been obtained
from 15 normal hearing subjects. Stimuli were the Dantale II sentence ma-
terial [22] mixed with four different noise types: bottling factory hall noise,
cafe noise, Speech Shaped Noise (SSN) and car noise at three different Signal
to Noise Ratios (SNRs). The noisy signals were processed with IBMs at eight
different Relative Criterion (RC) values, which determines the density of the
computed binary mask [16]. Materials from 5 subjects is used to train the
codebooks, whereas the results from the remaining 10 subjects are used for
testing. The data and experimental details are described in detail in [16].

The speech and noise AR parameters and variances are estimated from
25.6 ms frames windowed using a Hann window with 50% overlap. Over
these short time frames the estimated parameters are assumed to be station-
ary. The signals were resampled to 10 kHz as in the original STOI metric.
The speech and noise AR model order P and Q, respectively, are set to 14
according to literature [17–19]. The speech codebook is trained on 50 clean
speech sentences from the Dantale II data set not included in the training set
using the generalized Lloyd algorithm (GLA) [17, 23]. The noise codebook
is trained on 50 sentences of each noise type condition without IBM pro-
cessing concatenated into a single vector. The sizes of the speech and noise
codebooks are Ns = 64 and Nw = 8, respectively. The support space of the
Itakura-Saito divergence, Ψ, is computed by taking the Fourier transform of
the input signal and limiting the dynamic range to 40 dB from the highest
value such that TF units below this threshold are not included in the calcu-
lation. In order to reduce intra- and intersubject variability the results are
condition-averaged per noise and SNR combination and are then mapped
to subjective performance across all conditions [1]. The performance of the
metric is evaluated using Pearson’s correlation (ρ) which gives the linear re-
lationship, Kendall’s tau (τ) which gives the ranking capability and the root
mean square error (RMSE).
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4 Results and Discussion

The performance of NIC-STOI is depicted in Fig E.2 (blue) against measured
subjective scores (red) and the original intrusive STOI metric (black). It can be
observed that NIC-STOI is highly correlated with the subjective scores across
all noise conditions. Furthermore, NIC-STOI is also highly correlated with
STOI, which supports the earlier findings in [14, 15]. The highest deviation
can be observed for the SSN noise condition, which can perhaps be explained
by the noise codebook weighting this condition less when being trained on
all the noise conditions concatenated.

In Table E.1, NIC-STOI is evaluated against existing state of the art intel-
ligibility metrics. The best performance is obtained by the intrusive metric
STOI. However, even though NIC-STOI is non-intrusive, it comes close to
being on par with the performance of STOI. NIC-STOI is compared to three
other non-intrusive metrics: NI-STOI [12], SRMR [6] and SRMR-norm [21].
The results from NI-STOI are obtained from [12], since it was not possible
to obtain an implementation, while implementations of the latter two are
publicly available. The NI-STOI metric is aimed to predict the intelligibility
of non-linearly processed speech, while the SRMR metric and the improved
SRMR-norm are aimed to predict the intelligibility of reverberated speech,
but have successfully been applied for noisy and processed speech [1]. As
shown in Table E.1, NIC-STOI outperforms all three existing non-intrusive in-
telligibility metrics. It should, however, be noted that NI-STOI is only trained
using clean speech material [12] and SRMR and SRMR-norm is not trained
at all. The cafe noise condition is primarily composed by a single interfering
speaker such that additional information is needed in order to determine,
which speaker is the target. NIC-STOI is trained with both clean speech
and noise material, which makes it able to account for the cafe condition.
Excluding the cafe noise condition in NI-STOI, NIC-STOI still has the best
performance (ρ = 0.940, τ = 0.791, RMSE = 11.4%) even though the perfor-
mance of NI-STOI comes close to that of NIC-STOI (ρ = 0.907, τ = 0.777,
RMSE = 13.9%) [12].

5 Conclusion

In this paper, the Non-Intrusive Codebook-based Short-Time Objective Intelli-
gibility metric, NIC-STOI, has been investigated more thoroughly on a large
data set with subjective scores in diverse noise conditions. NIC-STOI non-
intrusively estimates the spectrum of a reference signal from its degraded
version and uses this as input to an intrusive intelligibility metric, STOI.
The reference signal is estimated as combinations of entries from pre-trained
speech and noise spectral codebooks, parametrized by auto-regressive pa-
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rameters, which best fit the degraded signal by minimizing the Itakura-Saito
divergence. In order to account for binary mask processing a small adjust-
ment of NIC-STOI is implemented in which only time-frequency units above
a certain threshold is included in the Itakura-Saito divergence. The NIC-STOI
metric is highly correlated with subjective intelligibility scores on the non-
linearly processed speech data set and outperforms existing non-intrusive
metrics.
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1. Introduction

Abstract

In recent years, research into objective speech intelligibility measures has gained in-
creased interest as a tool to optimize speech enhancement algorithms. While most
intelligibility measures are intrusive, i.e., they require a clean reference signal, this
is rarely available in real-time applications. This paper proposes two non-intrusive
intelligibility measures, which allow using the intrusive short-time objective intel-
ligibility (STOI) measure without requiring access to the clean signal. Instead, a
reference signal is obtained from the degraded signal using either a fixed or an adap-
tive harmonic spatial filter. This reference signal is then used as input to STOI. The
experimental results show a high correlation between both proposed non-intrusive
speech intelligibility measures and the original intrusively computed STOI scores.

1 Introduction

Speech intelligibility is an important property to consider, when develop-
ing signal processing for a wide range of applications, e.g., telecommuni-
cations [1, 2], and hearing aids [3]. As such, research into using objective
measures of speech intelligibility as a tool to optimize speech enhancement
algorithms has gained increased interest in recent years. There exists numer-
ous different measures to estimate speech intelligibility with acceptable accu-
racy. The articulation index (AI) [4] and the speech transmission index [1] are
some of the earliest measures to predict speech intelligibility of limited types
of degradations such as linear filtering and additive noise. The speech-based
envelope power spectrum model (sEPSM) [5] and the short-time objective in-
telligibility (STOI) [6] measure were recently introduced in order to increase
the prediction accuracy for more complex degradation types. All the afore-
mentioned measures are intrusive, i.e., in addition to the degraded signal
they require access to a clean reference signal, which is rarely available in
real-time applications.

This limitation has led to the proposal of non-intrusive speech intelligi-
bility prediction measures, which do not require access to a clean reference
signal. The speech to reverberation modulation energy ratio (SRMR) [7] pro-
vides an intelligibility prediction of reverberated speech based on the ratio
between the energy of the low and high modulation frequency content. Sim-
ilarly, the average modulation-spectrum area (ModA) [8] measure provides
an intelligibility prediction based on the area of modulation spectrum of the
degraded signal. Both these measures have been shown to perform well for
conditions such as reverberation and additive noise compared to the previous
non-intrusive measures [3, 7, 8].

Another approach to predict the speech intelligibility non-intrusively is
to exploit a well-established and reliable intrusive metric, e.g. STOI [6], and
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obtaining an estimate of the clean speech reference from degraded signal.
Recently, different approaches to estimate the reference signal have been pro-
posed using machine learning [9, 10], spectral codebooks [11, 12], principal
component analysis [13] and neural network [14] methods. These approaches
have been shown to outperform the existing non-intrusive speech intelligibil-
ity prediction measures and to have a comparable performance to the intru-
sive measures [9, 12–14]. However, since these methods are all single channel
and non-intrusive, they have no way of determining which speech signal is
the desired target if multiple speakers are present given that the model is not
trained for the specific speaker.

Using a multi-channel approach such as spatial filtering, i.e. beamform-
ing, offers the possibility to overcome this limitation with a non-intrusive
approach given the direction of the desired speech signal as proposed in [15].
The advantage of this method is that it has a very low complexity such that
it can run on applications with low computational power, e.g. a hearing aid.
On the other hand, the performance deteriorates with increasing number of
interferers and reverberation. Similarly, the pitch-based STOI (PB-STOI) [16]
measure also exploits the spatial content but instead of a filtering approach it
reconstructs the reference signal from estimates of the properties of the sig-
nal model of the clean signal. It is based on a spatio-temporal model, which
assumes the desired signal to be a sum of sinusoids whose frequencies are
integral multiples of the pitch. Combining the spatial and the temporal char-
acteristics (i.e., the direction of the desired signal its pitch) makes it more
robust to competing speakers and reverberation, since it is possible to fol-
low the pitch of the desired speech signal. PB-STOI has been shown to have
a high correlation with the intrusive STOI scores even under adverse con-
ditions with multiple interferers. However, the method also requires more
computational power than the beamforming-based approach.

The present paper proposes new solutions to non-intrusive speech in-
telligibility prediction using, respectively, a fixed and an adaptive harmonic
spatial filter based on a combination of the principles in [15, 16]. More specif-
ically, the reference signal to be used as input to the intrusive framework
STOI is obtained using model-based harmonic beamforming that resembles
a filterbank designed for the given spatial and spectral characteristics of the
desired signal. The rationale behind this approach is that the most energetic
spectro-temporal regions, i.e. glimpses, occur during the voiced, i.e. har-
monic, parts of speech. According to the glimpses model, intelligibility is
related to the presence of such glimpses in which the most energetic regions
are most important for speech intelligibility [17]. It is shown that the number
of such glimpses correlates well with measured intelligibility and, thus, is a
promising predictor for speech intelligibility [17].
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2 Methods

This section presents the principles behind the proposed non-intrusive speech
intelligibility predictions measures based on a fixed harmonic beamformer,
dubbed the harmonic delay-and-sum beamformer-based STOI (HDSB-STOI),
and an adaptive harmonic beamformer, dubbed the harmonic wiener
beamformer-based STOI (HWB-STOI). Both HDSB-STOI and HWB-STOI al-
lows predicting the speech intelligibility non-intrusively, i.e., without requir-
ing access to the clean reference signal, by obtaining a reference signal from
the degraded signal using a harmonic spatial filter and use this as input to
STOI. Figure F.1 depicts the general structure of both methods, which con-
sists of three main steps: 1) Obtain a multi-channel signal using a microphone
array, 2) Estimate a reference signal with the harmonic spatial filters and 3)
Predict the speech intelligibility within the STOI framework.

2.1 Fundamentals

In the following, the signal model and the associated assumptions of the pro-
posed methods are presented based on [18] in which a more thorough de-
scription of the theory behind the harmonic beamformers is available. In the
proposed methods it is assumed that a uniform linear array (ULA) consisting
of M microphones obtains the desired speech signal added to a mixture of
interfering background noise and reverberation such that the samples of the
mth microphone observations in a vector of frame length L is given by:

ym(t) = xm(t) + vm(t), (F.1)

where xm(t) and vm(t) are vectors containing samples of the desired signal
and the inference at the mth microphone, respectively.

The desired speech signal, xm(t), is modeled as a sum of sinusoids, i.e.,
a harmonic signal model, which is a good model for the voiced speech seg-
ments. Furthermore, using the harmonic model to obtain the desired signal
does not only reduce the interfering sources but also reverberation, since
spectral and temporal smearing of the signal source due to reverberation is
not included in the harmonic model. As such, the desired speech signal is
modeled as [18, 19]:

xm(t) = Dm,N(θ, ω0)a(t, ω0), (F.2)

where Dm,N(θ, ω0) is a L× 2N matrix with the nth column being a vector of
length L given by

dm,n(θ, ω0) = e−nω0 fsτm(θ)× (F.3)[
1 e−nω0 · · · e−nω0(L−1)

]T
,
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where the superscript T is the transpose operator, N is the model order,  =√
−1 is the imaginary unit, ω0 is the pitch or fundamental frequency, fs is the

sampling frequency and τm(θ) is the relative delay of the desired source on
the ULA. Furthermore, the complex amplitude a(t, ω0) is a vector of length
2N given by:

a(t, ω0) =[ a−Ne−Nω0t a−N+1e−(N−1)ω0t (F.4)

· · · aNeNω0t ]T ,

and the correlation matrix of a (of size 2N × 2N) is

Ra =diag
(

E
[
|a−N |2

]
, E
[
|a−N+1|2

]
, . . . , E

[
|aN |2

])
, (F.5)

and

Rv = E
[
v(t)vH(t)

]
, (F.6)

where E[·] is the mathematical expectation, and the superscript H is the
conjugate-transpose operator.

Concatenating all the microphone signal vectors gives the vector of length
ML:

y(t) = DN(θ, ω0)a(t, ω0) + v(t), (F.7)

where y(t) =
[

yT
1 (t) yT

2 (t) · · · yT
M(t)

]T ,

v(t) =
[

vT
1 (t) vT

2 (t) · · · vT
M(t)

]T and

DN(θ, ω0) =


D1,N(θ, ω0)
D2,N(θ, ω0)

...
DM,N(θ, ω0)

 . (F.8)

2.2 Harmonic delay-and-sum beamformer-based STOI
(HDSB-STOI)

The harmonic delay-and-sum beamformer (DSB) is a fixed beamformer,
which cannot adjust to the spatial characteristics of the interfering noise. It
is advantageous for applications such as hearing aids, since it only requires
low computational power and does not require estimates of the noise statis-
tics but, at least in theory, comes at a cost in performance [18]. The DSB can
be deduced by maximizing the white noise gain subject to the distortionless
constraint:

min
h

hHh subject to hHDN(θ0, ω0) = 1T
2N , (F.9)
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where 12N = [ 1 1 · · · 1 ]T is a vector of length 2N.
Then, the DSB is derived as the optimal solution given by:

hHDSB=DN(θ0, ω0)
[
DH

N(θ0, ω0)DN(θ0, ω0)
]−1

12N . (F.10)

2.3 Harmonic Wiener beamformer-based STOI (HWB-STOI)

The harmonic Wiener beamformer is an adaptive beamformer that can adapt
to the spatial characteristics of the interfering noise, which in theory should
give a better performance than fixed beamformers. However, it also needs
access to the noise statistics and requires more computational power than the
fixed beamformer.

The harmonic Wiener beamformer can be derived using the mean square
error (MSE), which is given by [18]:

J (h) = E
[
|e(t)|2

]
(F.11)

= 1T
2NRa12N (F.12)

+ hHDN(θ0, ω0)RaDH
N(θ0, ω0)h

− hHDN(θ0, ω0)Ra12N

− 1T
2NRaDH

N(θ0, ω0)h + hHRvh,

where the error signal between the estimated and desired signal, e(t) =[
hHDN(θ0, ω0)− 1T

2N

]
a(t, ω0) + vrn(t), is the sum of the signal distortion

and the residual noise.
Finally, the optimal solution for the harmonic Wiener beamformer can be

found by differentiating the MSE, J (h) [eq. (F.11)], with respect to h and
setting the result equal to zero:

hHWB=
[
DN(θ0, ω0)RaDH

N(θ0, ω0)+Rv

]−1
×

DN(θ0, ω0)Ra12N . (F.13)

2.4 Pitch-based STOI (PB-STOI)

The results of the proposed HDSB-STOI and HWB-STOI are compared with
the non-intrusive PB-STOI measure proposed in [16], where a more detailed
description is available. Similar to the proposed methods in this paper, PB-
STOI is based on a harmonic model that takes the spatial input into account:

ym = βmZD(m)α + vm, (F.14)

where βm is the attenuation of the desired source at the m’th mi-
crophone, Z = [z(ω0) . . . z(Lω0)], z(lω0) = [1 . . . ejlω0(N−1)], D(m) =
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diag([e−jω0 fsτk . . . e−jLω0 fsτm ]) for l = 1, . . . , L with all other entries equal to
zero and vm is the sum of the recorded noise and interference.

Based on the signal model, the attenuation factor, the complex amplitude,
the variance and the pitch is estimated in an iterative manner. These parame-
ters are then used to directly to reconstruct a reference signal from the signal
model. Finally, the reconstructed reference signal is applied as input to STOI
instead of the clean signal.

3 Experimental results

The proposed measures are evaluated using a broadside ULA setup con-
sisting of M = 10 omnidirectional microphones with a microphone spac-
ing of d = c/ fs, where the speech of sound in air is c = 343 m/s and the
sampling frequency is fs = 8 kHz. The direction of arrival (DOA) of the
desired source was θ = 0◦ resulting in a τm = 0. The pitch is efficiently
estimated using the multi-channel maximum likelihood pitch estimator pro-
posed in [20] as the sum over the squared magnitude of the FFT of ym(t),
denoted Ym(ω0), evaluated at a set of candidate harmonics, Ω0, which is
given by ω̂0 = arg maxω0∈Ω0 ∑L

l=1 ∑M
m=1 |Ym(ω0l)|2 when assuming that the

DOA is coming from the front, the noise variance is known and the same
for all channels. The pitch is evaluated in the range Ω0 = 80− 400 Hz and
the model order, L = 10. In the experimental evaluation, a set of 50 En-
glish sentences (both male and female) from the EUROM_1 database [21] is
used for both the desired source and interfering speakers. The sentences con-
tain both voiced and unvoiced segments. The signals are 5.0 s long and are
processed in segments of 20 ms with 50 % overlap. The toolbox McRoom-
Sim [22] is used to create the simulations of a complex multi-talker scenario
with 8 interfering speakers in a room with dimensions of 10x6x4 m similar to
the evaluation setup in [16]. The simulations are carried out at three different
levels of reverberation ranging from low to high (RT60 = 0.3 s, RT60 = 0.6 s
and RT60 = 1.5 s) at signal-to-noise ratios (SNRs) ranging from -15 to 5 dB.
A white Gaussian noise is added to each microphone channel at a SNR of 20
dB.

The performances of the proposed non-intrusive intelligibility measures
are evaluated against the original intrusively computed STOI scores as the
ground truth. The results are shown in Figures F.2(a), F.2(b) and F.2(c) for the
low, medium and high reverberation scenarios, respectively. The results of
the PB-STOI (red squares), HWB-STOI (yellow diamonds) and HDSB-STOI
(purple triangles) are plotted together with the intrusively computed STOI
scores indicated by the blue circles. At low reverberation all of the three
non-intrusive measures show a good performance even though the harmonic
beamforming-based non-intrusive speech intelligibility measures both out-
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Fig. F.2: Performance shown in terms of estimated STOI score as function of the SNR in dB for
a) Low reverberation with RT60 = 0.3 s, b) Medium reverberation with RT60 = 0.6 s and c) High
reverberation with RT60 = 1.5 s. The results of STOI, PB-STOI, HWB-STOI and HDSB-STOI is
given by the blue circles, red squares, yellow diamonds and purple triangles, respectively.
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perform the PB-STOI measure. As reverberation increases, the performance
of PB-STOI deteriorates and especially at low SNRs it predicts an increase in
speech intelligibility rather than a decrease in intelligibility as predicted by
the intrusive STOI measure. It is obvious that both of the proposed HDSB-
STOI and HWB-STOI measures yield more suppression of interfering speak-
ers and reverberation compared with the PB-STOI measure even though there
is a slight decrease in performance at low SNRs with increasing reverbera-
tion levels for both measures. While the PB-STOI measure is also based on
a harmonic model and should, thus, also perform well in reverberation, the
difference in performance is likely due to PB-STOI being more sensitive to er-
rors in the pitch estimate, since it is based on a reconstruction of the reference
signal rather than a filtering approach.

Notably, the measures based on the fixed and adaptive approach perform
almost equally well. The performance of the adaptive Wiener beamformer
is only slightly better at low SNRs at high reverberation levels. Even though
the adaptive beamformer in theory should have a better performance this is
not necessarily the case in practical performance, since it relies on estimates
of the noise statistics. This is also supported by the findings in [18], where
the adaptive beamformers provide a slightly lower SNR gain compared to
the harmonic DSB. As such, due to being computational efficient and simple,
i.e. not requiring noise statistics, the HDSB-STOI measure might be the best
choice depending on the applications, e.g. hearing aids, given the comparable
performance to the HWB-STOI measure.

4 Conclusions

This paper proposes two approaches, the harmonic delay-and-sum
beamformer-based STOI (HDSB-STOI) and the harmonic wiener
beamformer-based STOI (HWB-STOI), for non-intrusive prediction of
speech intelligibility. The HDSB-STOI measure and the HWB-STOI measure
estimate a reference signal from the degraded signal using a fixed and an
adaptive harmonic spatial filter, respectively. The estimated reference signal
is then used as input to the established and thoroughly evaluated intrusive
measure STOI, which requires a clean reference signal. Both of the proposed
non-intrusive measures have a high correlation with the original intrusively
computed STOI scores.
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