

Aalborg Universitet

Towards Data-Efficient Mobility Analytics in Spatial Networks

Skovgaard Jepsen, Tobias

DOI (link to publication from Publisher):
10.54337/aau456351766

Publication date:
2021

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Skovgaard Jepsen, T. (2021). Towards Data-Efficient Mobility Analytics in Spatial Networks. Aalborg
Universitetsforlag. https://doi.org/10.54337/aau456351766

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 23, 2024

https://doi.org/10.54337/aau456351766
https://vbn.aau.dk/en/publications/100848f1-85e4-468e-abc8-35d819060e3d
https://doi.org/10.54337/aau456351766

To
b

ia
s Sk

o
vg

a
a

r
d

 Jepsen
To

w
a

r
d

s D
ata

-Effic
ien

t M
o

b
ility A

n
a

lytic
s in

 Spatia
l N

etw
o

r
k

s

Towards Data-Efficient
Mobility Analytics

in Spatial Networks

by
Tobias Skovgaard Jepsen

Dissertation submitted 2021

Towards Data-Efficient
Mobility Analytics

in Spatial Networks

Ph.D. Dissertation
Tobias Skovgaard Jepsen

Dissertation submitted August 2021

Dissertation submitted:	 August 2021

PhD supervisor: 	 Prof. Christian S. Jensen
			 Aalborg University

PhD Co-Supervisor: Assoc. Prof. Thomas Dyhre Nielsen
			 Aalborg University

PhD committee: 	 Associate Professor Álvaro Torralba (chairman)
			 Aalborg University

			 Professor Cyrus Shahabi
			 University of Southern California

			 Associate Professor Eleni I. Vlahogianni
			 National Technical University of Athens

PhD Series:	 Technical Faculty of IT and Design, Aalborg University

Department:	 Department of Computer Science

ISSN (online): 2446-1628
ISBN (online): 978-87-7210-977-0

Published by:
Aalborg University Press
Kroghstræde 3
DK – 9220 Aalborg Ø
Phone: +45 99407140
aauf@forlag.aau.dk
forlag.aau.dk

© Copyright: Tobias Skovgaard Jepsen

Printed in Denmark by Rosendahls, 2021

Abstract

Vast amounts of vehicle trajectory data is being collected which has solutions
to traditional transportation tasks at a finer granularity than ever before, but
also enabled solutions to entirely new tasks. However, although vehicle tra-
jectory data presents great opportunity, utilizing such data presents signifi-
cant challenges.

First, trajectory data is sparse in contextual information. One way to
address this issue is to map-match trajectories s.t. they are enriched with
map data that provides road segment attribute information and structural
information about the road network. Unfortunately, map data contains lit-
tle attribute information and the structure of the road network is difficult
to leverage. Second, vehicle trajectory data is skewed s.t. it concentrates on
some road segments at some times of day. This leads to the curious situation
where data abundance and data sparsity co-occur in the same road network.
Techniques that utilize vehicle trajectory data should therefore be sufficiently
flexible to handle both situations. Finally, large sets of vehicle trajectories
present challenges in terms of storage and transmission costs. It is therefore
beneficial to be capable of processing data in compressed or easy-to-compress
formats.

Efficient data utilization is the key to solve transportation tasks using large
sets of vehicle trajectory data. In particular, data efficient techniques should
utilize the available data as much as possible, and perform well under both
conditions of data sparsity and data abundance. Finally, they should also
be capable of operating on compressed or easy-to-compress trajectory data
formats, and, as a result, the thesis focuses on the use of map-matched ve-
hicle trajectory data, i.e., trajectories represented as road segments in a road
network, which can be compressed efficiently. This thesis focuses on data ef-
ficient techniques for solving transportation tasks using large sets of vehicle
trajectory data.

First, the thesis investigates the application of network representation
learning techniques to road networks. These techniques extract information
from the structure of the road network, without relying on any attribute
information, and can therefore improve the utilization of map data for con-

iii

textual information when using map-matched vehicle trajectories. However,
existing network representation learning techniques make assumptions that
are inappropriate for road networks. This thesis therefore presents a repre-
sentation learning technique designed for road networks that outperforms
existing techniques on two transportation tasks.

Second, the thesis investigates how two categories of approaches to the
important task travel time and speed estimation can be combined to lever-
age the strengths of both. The first approach relies on function-fitting and
performs well under conditions of data sparsity. The other approach re-
lies on aggregation of historical data and performs well under conditions
of data abundance. However, since data abundance and data sparsity co-
occur in road networks, no technique is universally applicable to all ar-
eas of the road network. This thesis therefore proposes a travel time and
speed estimation framework that uses Bayesian probability theory to de-
termine when to apply each approach. Rather than a hard decision rule,
the framework smoothly transitions from a function-fitting approach to an
aggregation-based approach as the available data increases.

Third, the thesis proposes techniques for analyzing driver behavior based
on vehicle trajectories that have been converted into an easy-to-compress
format. Specifically, the techniques can discover intermediate destinations
within a vehicle trajectory and recover the preferences a driver exhibits in a
trajectory w.r.t., e.g., travel time and fuel consumption. The techniques are
not only able to operate on easily-compressed vehicle trajectory data, but
also has low processing costs with trivial parallelizability s.t. even very large
trajectory sets can be processed efficiently.

Resumé

Store mængder turdata fra køretøjer indsamles. Det har tilladt at dels at
kunne løse traditionelle transportopgaver med en finere granularitet end
hidtil, men også at helt nye transportopgaver nu kan løses. Men selvom de
store mængder turdata giver en masse muligheder, så er der også væsentlige
udfordringer forbundet i at udnytte dem.

For det første, så indeholder turdata meget lidt kontekstuel information.
Èn måde at håndtere dette problem på er ved at berige turdataen med kort-
data der indeholder attributinformation om vejsegmenter samt information
om vejnetværkets struktur. Desværre er der meget lidt attributinformation i
kortdata og det er svært at udnytte informationen om vejnettets struktur. For
det andet, så er turdata ulige fordelt over vejnettet således at det koncentrer
sig omkring nogle vejsegmenter på nogle tidspunkter. Det leder til en spøjs
situation, hvor der kan være både overflod og mangel på data i det samme
vejnet. Teknikker til at udnytte turdata bliver derfor nød til at kunne håndtere
begge betingelser. Endelig, så er omkostningerne forbundet med opbevaring
og transports af store mængder turdata betragtelige. Det er derfor en fordel
at kunne processere turdata i komprimerede eller komprimeringsvenlige for-
mater.

Effektiv udnyttelse af turdata er nøglen til at løse transportopgaver ved
hjælp af store mængder turdata. Specifikt, så skal dataeffektive metoder
kunne udnytte den tilgængelige data i videst mulige omfang, samt kunne
fungere både med mangel på data og med overflod af data. Desuden så
skal dataeffektive metoder kunne benytte turdata i komprimerede eller kom-
primeringsvenlige formater. Denne afhandling fokuserer på dataeffektive
teknikker til at løse transportopgaver ved brug af store mængder turdata.

Først undersøges det hvorvidt eksisterende netværksrepræsentationslæring-
steknikker kan anvendes på vejnet. Disse teknikker kan lave vektorrepræsen-
tationer der indeholder information om et vejnets struktur uden brug af at-
tributinformation. Vektorrepræsentationerne kan supplementere eksisterende
attributinformation og således afhælpe problemet med den lave mængde at-
tributinformation der findes i vejnet. Desværre viser det sig at disse repræsen-
tationslæringsteknikker lave antagelser der ikke er rimelige for vejnet og

v

derfor bidrager denne afhandling med en netværksrepræsentationslæring-
steknik der er designet specifikt til vejnet.

Afhandlingen bidrager også med en teknik til estimering og forudsigelse
af kørselstider og -hastigheder der kombinerer to eksisterende tilgange til
opgaven. Den første tilgang finder en funktion vha. regression og klarer sig
godt i situationer med lav datatilgængelighed. Den anden tilgang aggregerer
historiske data og klarer sig godt i situationer med høj datatilgængelighed.
Hverken den funktionsbaserede tilgang eller den aggregeringsbaserede til-
gange tager højde for at der i det samme vejnet vil være både områder med
lav og høj datatilgængelighed og at den ideele tilgang vil variere derefter.
Derfor præsenterer denne afhandling en hybrid tilgang i form af et ram-
meværk for forudsigelse af kørselstider og -hastigheder der vha. Bayesiansk
sandsynlighedsteori afgør hvornår hvilken tilgang skal anvendes. Det be-
tyder at tilgangen gradvist vil gå fra en funktionsbaseret tilgang til en ag-
gregeringsbaseret tilgang i takt med at mere data bliver tilgængelig.

Endelig, så bidrager afhandlingen med teknikker til at analysere kørsel-
sadfærd baseret på turdata der er lagret i et komprimeringsvenligt format.
Teknikkerne kan finde viapunkter i ture, samt førerens kørselspræferencer
ift. eksempelvis kørselstid og brændstofforbrug. Udover at kunne anvendes
på komprimeret turdata, så kræver teknikkerne lav processeringstid og er
trivielt paralleliserbare. De kan således skalere til selv meget store mængder
turdata.

Contents

Abstract iii

Resumé v

Acknowledgments xiii

Thesis Details xv

I Thesis Summary 1
1 Introduction . 3

1.1 Challenges . 3
1.2 Contributions . 4
1.3 Organization . 5

2 Road Network Representation Learning 5
2.1 On the Validity of the Homophily Assumption 7
2.2 Graph Convolutional Networks for Road Networks . . . 10
2.3 Conclusion . 15

3 Travel Time and Travel Speed Estimation 16
3.1 UniTE . 18
3.2 Conclusion . 20

4 Vehicle Trajectory Analysis . 21
4.1 Personalized Costs . 22
4.2 Via-Point Identification 22
4.3 Driving Preference Mining 24
4.4 Conclusion . 25

5 Conclusion . 25
References . 26

vii

Contents

II Papers 29

A On Network Embedding for Machine Learning on Road Networks:
A Case Study on the Danish Road Network 31
1 Introduction . 33
2 Related Work . 36
3 Network Embedding . 37

3.1 A General Introduction 37
3.2 node2vec . 39
3.3 Other Approaches . 40

4 Experimental Study . 41
4.1 Data Set . 42
4.2 Experiment Design . 43
4.3 Road Segment Classification 44
4.4 Linear Separability . 45
4.5 Homophily or Structural Equivalence 48
4.6 Architectural Parameters 50
4.7 Homophily and Classification Performance 51

5 Discussion, Conclusion, and Future Work 52
References . 54

B Graph Convolutional Networks for Road Networks 57
1 Introduction . 59
2 Preliminaries . 60
3 Relational Fusion Networks . 62

3.1 Overview . 62
3.2 Relational Fusion . 63

4 Experimental Evaluation . 64
4.1 Data Set . 64
4.2 Experimental Setup . 65
4.3 Results . 65

5 Conclusion . 66
6 Acknowledgments . 67
References . 67

C Relational Fusion Networks: Graph Convolutional Networks for
Road Networks 69
1 Introduction . 71
2 Preliminaries . 73

2.1 Modeling Road Networks 73
2.2 Graph Convolutional Networks 74

3 Proposed Method . 74
3.1 Node-Relational and Edge-Relational Views 75

viii

Contents

3.2 Method Overview . 75
3.3 Relational Fusion . 77
3.4 Fusion Functions . 78
3.5 Aggregation Functions . 79
3.6 Forward Propagation . 80

4 Experimental Evaluation . 81
4.1 Data Set . 82
4.2 Algorithms . 82
4.3 Experimental Setup . 83
4.4 Results . 84
4.5 Case Study: Danalien . 87

5 Related Work . 88
6 Conclusion . 90

6.1 Future Work . 90
References . 92

Appendices 95
A Feature Derivation . 95

A.1 Node Attributes . 95
A.2 Edge Attributes . 95
A.3 Between-Edge Attributes 95

B Hyperparameter Selection . 96
B.1 Relational Fusion Network (RFN) Variants 96
B.2 GraphSAGE . 96
B.3 GAT . 96
B.4 Selected Hyperparameters 97

C Case Study: Dall . 97

D UniTE—The Best of Both Worlds: Unifying Function-Fitting and
Aggregation-Based Approaches to Travel Time and Travel Speed Es-
timation 101
1 Introduction . 103
2 Preliminaries . 105

2.1 Data Modeling . 105
2.2 Existing Approaches . 106

3 A Unified Approach . 107
3.1 Framework . 107
3.2 The a Unifying approach to Travel time and speed Esti-

mation (UniTE) Objective 108
3.3 Relation to Existing Approaches 109

4 Gaussian UniTE . 111
4.1 Prior . 111
4.2 Posterior . 112

ix

Contents

4.3 Posterior Predictive . 112
4.4 A Prior Function Layer 113

5 Empirical Study . 114
5.1 Dataset . 114
5.2 Objective Function . 115
5.3 Algorithms . 115
5.4 Evaluation Metrics . 117
5.5 Training and Hyperparameter Selection 118
5.6 Performance Evaluation 119
5.7 The Generalizability-Accuracy Trade-Off 120
5.8 Regularizing Properties 121
5.9 Data Efficiency . 123
5.10 Record Selection Strategies 125

6 Related Work . 126
7 Conclusions and Future Work . 127
References . 129

Appendices 134
A Definition of AGG . 134

A.1 Speed Limit Derivation 134
A.2 Record Selection . 135

B Definition of GRU . 136
B.1 Representation of Time 137

C Reported Travel Time Estimation Errors in Other Studies 137

E Scalable Unsupervised Multi-Criteria Trajectory Segmentation and
Driving Preference Mining 141
1 Introduction . 143

1.1 Our Contribution . 145
2 Preliminaries . 146

2.1 Data Set . 146
2.2 Routing Cost Types . 147
2.3 Personalized Routing . 148
2.4 Trajectory Segmentation 149

3 Multi-Criteria Trajectory Segmentation 150
3.1 The Personalized Path Criterion 150
3.2 Experiments . 151
3.3 Discussion . 156

4 Robust Driving Preference Mining 159
4.1 Experiments . 160
4.2 Discussion . 163

5 Conclusion . 163
References . 164

x

Contents

Appendices 167
A Trajectory Stitching . 167
B Routing Cost Type Details . 168

B.1 Travel Time . 168
B.2 Congestion . 169
B.3 Crowdedness . 169

xi

Contents

xii

Acknowledgments

A PhD-project is no easy endeavor and one that I have found cannot be done
alone.

I have had the great fortune of having two supervisors, Christian S. Jensen
and Thomas Dyhre Nielsen, who I admire and who have taught me how to
think both more broadly and more deeply about my research. I have no doubt
not always been easy to supervise, but know that I have always appreciated
your time and effort.

For my external stay, I visited the Institute for Formal Methods in Com-
puter Science at the University of Stuttgart. I would like to extend my grat-
itude towards the faculty of the institute for making my visit an enjoyable
experience. I would like to pay special thanks to Stefan Funke, Florian Barth,
and Claudius Proissl who I worked with closely during my visit.

To my current and past colleagues at Cassiopeia, but the DAISY group in
particular, I would like to thank you all for creating a welcoming and open
work environment. I have also had the pleasure of getting to know many of
you outside of work. I would also like to thank the administrative personnel
who have always been kind and patient when I required their assistance.

I doubt that I could have completed my studies and thesis without the
support of friends and family. I thank you all for providing me with a space
of safety and comfort whenever I needed it. My dear friend, Martin, has been
particularly supportive and especially so during times of personal crisis. So,
thank you, Martin, for your unwavering loyalty, for your endless understand-
ing, and for your insatiable curiosity which continues to inspire me.

Tobias Skovgaard Jepsen
August 4, 2021

xiii

Acknowledgments

xiv

Thesis Details

Thesis Title: Towards Data-Efficient Mobility Analytics
in Spatial Networks

PhD Student: Tobias Skovgaard Jepsen
PhD Supervisor: Prof. Christian S. Jensen

Aalborg University
PhD Co-Supervisor: Assoc. Prof. Thomas Dyhre Nielsen

Aalborg University

This thesis is in the format of a collection of papers and consists of the
following papers:

A Tobias Skovgaard Jepsen, Christian S. Jensen, Thomas Dyhre Nielsen,
and Kristian Torp, ‘On Network Embedding for Machine Learning on
Road Networks: A Case Study on the Danish Road Network.’ In Pro-
ceedings of the 2018 IEEE International Conference on Big Data, 2018, pp.
3422–3431. Received the Best Paper Award at the 3rd IEEE International
Workshop on Big Spatial Data.

B Tobias Skovgaard Jepsen, Christian S. Jensen, and Thomas Dyhre Nielsen.
‘Graph Convolutional Networks for Road Networks.’ In Proceedings of
the 27th ACM SIGSPATIAL International Conference on Advances in Geo-
graphic Information Systems, 2019, pp. 460–463.

C Tobias Skovgaard Jepsen, Christian S. Jensen, and Thomas Dyhre Nielsen,
‘Relational Fusion Networks: Graph Convolutional Networks for Road
Networks.’ IEEE Transactions on Intelligent Transportation Systems, 2020.
In early online access.

D Tobias Skovgaard Jepsen, Christian S. Jensen, and Thomas Dyhre Nielsen,
‘UniTE—The Best of Both Worlds: Unifying Function-Fitting and Aggregation-
Based Approaches to Travel Time and Travel Speed Estimation.’ Sub-
mitted to ACM Transactions on Spatial Algorithms and Systems.

E Florian Barth, Stefan Funke, Tobias Skovgaard Jepsen, and Claudius
Proissl, ‘Scalable unsupervised multi-criteria trajectory segmentation

Thesis Details

and driving preference mining.’ In Proceedings of the 9th ACM SIGSPA-
TIAL International Workshop on Analytics for Big Geospatial Data, 2020,
Article No. 6, pp. 1–10.

xvi

Part I

Thesis Summary

1

1. Introduction

1 Introduction

The use of mobile devices is widespread and many such devices have built-in
tracking capabilities through, e.g., Global Positioning System (GPS). This has
enabled the collection of large amounts of trajectory data from vehicles [1–3]
where each trajectory record the movements of a vehicle over a period of
time.

Advances in processing power has enabled the processing of large tra-
jectory data sets using, e.g., deep learning methods [4, 5]. This has lead
to finer-granularity solutions to traditional Intelligent Transportation System
(ITS) tasks, but also solutions to new ITS tasks. For instance, travel time esti-
mation for routes has traditionally been computed as a sum of independent
travel time estimates for each road segment in the route [6]. This ignores
that there are often dependencies between the travel times of adjacent road
segments due to, e.g., turns or traffic lights, and therefore a paradigm that fo-
cuses on the travel time estimation of routes directly has emerged [6]. Other
uses of vehicle trajectory data include forecasting traffic conditions [7] and
analyzing driver behavior [8].

1.1 Challenges

Although large vehicle trajectory sets present opportunity, they also present
challenge.

First, vehicle trajectories are available in large quantities, but they are
sparse in contextual information such as speed limits. As a result, vehi-
cle trajectories are map-matched to road networks s.t. they are represented
as sequences of road segments rather than sequences of coordinates. Map-
matching improves the quality of the trajectories by enriching them with map
data which includes road network structure and road segment attribute in-
formation. Unfortunately, such attribute information is sparse and the road
network structure is difficult to leverage [9].

Second, vehicle trajectory data is skewed s.t. trajectory data tends to be
concentrated on certain road segments at certain times of day [1–3]. For
instance, vehicle trajectory data may concentrate on arterial roads during
rush hours. This leads to a situation where conditions of data abundance
and data sparsity co-occur within a road network. ITSs that wish to fully
leverage such data must therefore be capable of handling both conditions.

Third, large vehicle trajectory sets incur large storage and transmission
costs [10, 11]. These costs can be reduced by using compression techniques [10,
11]. Techniques for map-matched trajectories are particularly efficient, since
map-matched trajectories require less storage in the first place and they can
utilize the road network to achieve a better compression ratio [12]. This thesis

3

therefore focuses on leveraging map-matched vehicle trajectories for solving
ITS tasks.

1.2 Contributions

Efficient data utilization is central to the performance of ITSs that seek to take
advantage of large trajectory sets. There are four important aspects to data
efficiency. A data efficient technique should

1. utilize the available data to the largest possible extent.

2. perform well when little data is available.

3. be capable of leveraging large amounts of data when it is available.

4. operate on compressed or easy-to-compress data formats to reduce stor-
age and transmission costs.

This thesis addresses three primary research problems related to data ef-
ficiency in ITSs.

Road Network Representation Learning

Vehicle trajectories lack contextual data, but through map-matching addi-
tional information can be integrated from map data. However, map data is
scarce in attribute information and the latent information in the road network
structure is difficult to access [9]. It is therefore important to fully utilize the
available information.

Representation learning techniques for general networks can encode the
difficult-to-access road network structure as road segment vector represen-
tations [9, 13, 14]. However, these techniques are not designed for road net-
works and thus their applicability is uncertain [9, 13, 14]. This thesis therefore
investigates the applicability of such techniques for road network represen-
tation learning using a case study on the Danish road network [9].

Based on the findings of the case study, this thesis proposes a represen-
tation learning technique designed specifically for road networks. The tech-
nique relaxes the assumptions of network representation learning techniques
concerning the relationships among adjacent road segments. An empirical
evaluation of the technique on the tasks of vehicle travel speed estimation
and speed limit classification showed improvements in the range of 21%–40%
over comparable state-of-the-art techniques. [13, 14]

Travel Time and Travel Speed Estimation

Large vehicle trajectory sets are an appealing data source for point or distri-
bution estimation of travel time (or travel speed) for routes or road segments

4

2. Road Network Representation Learning

to enable, e.g., routing applications. Existing approaches to travel time and
travel speed estimation has diverged into two branches. The first branch aims
to achieve high accuracy under conditions of data abundance and the other
branch aims to achieve good generalization performance under conditions of
data sparsity. However, both branches ignore that data abundance and data
sparsity co-occur as a resulting the data skew inherent in vehicle trajectory
data. [15]

This thesis proposes a Bayesian framework that integrates approaches
from both branches into a hybrid approach. Using Bayesian probability
theory, the framework can use whichever approach is most suitable given
the available data, This allows the framework to achieve both high accuracy
when data is abundant and good generalization performance when data is
sparse. [15]

Vehicle Trajectory Analysis

The route of a map-matched vehicle trajectories can be compressed effi-
ciently, but temporal information such as arrival times at each road segment
cannot. This thesis explores how vehicle trajectory analysis may be per-
formed on map-matched trajectories, where only the route of the trajectory
is known. Specifically, techniques are proposed that can discover interesting
points within a trajectory, e.g., intermediate destinations, and can quantify
the driving preferences exhibited within a trajectory. The techniques are eval-
uated using a set of 1.3 million map-matched trajectories. Interestingly, the
techniques can recover temporal information, such as stops, by analyzing just
the route of a trajectory. [8]

1.3 Organization

The remainder of this summary is organized as follows. Section 2 summa-
rizes Papers A [9], B [13], and C [14] on the topic of road network represen-
tation learning. Section 3 summarizes Paper D [15] which presents the travel
time and speed estimation framework. Section 4 summarizes Paper E [8]
which presents the vehicle trajectory analysis techniques for map-matched
vehicle trajectories. Finally, Section 5 summarizes the contributions of the
thesis and concludes the thesis summary. No new claims are made in the
summary.

2 Road Network Representation Learning

Road networks are an important type of transportation network, relevant to
many ITS applications. Such applications often rely on the use of machine

5

learning algorithms that require descriptions of, e.g., road segments in the
form of feature vectors, and the performance of these algorithms depends
strongly on the quality of the feature vector representations. [9]

In practice, road network data contains little information beyond the road
network structure. As an example, the Danish road network from Open-
StreetMap (OSM) contains just two road segment attributes: the road cate-
gory and the speed limit. In addition, only 13% of the road segments have
a known speed limit. Constructing feature vectors of sufficient quality from
such a small amount attribute data is challenging. The information embed-
ded in the structure of the road network is potentially very valuable, but also
hard to access. Utilizing the structural information of a road network typi-
cally requires explicit modeling of spatial correlations among adjacent road
segments. [9]

Road networks are not the only type of network where the network struc-
ture is potentially valuable, but hard to access. Network representation learn-
ing techniques aim to learn a mapping from nodes or edges, representing,
e.g., intersections and road segments, to a d-dimensional vector space. This
way, it becomes possible to map road segments to feature vectors that en-
code the structural information of a road network. However, the research
in network representation methods has focused primarily on social, biologi-
cal, and information networks. Such networks differ substantially from road
networks in terms of structure, semantics, size, etc. This makes their applica-
bility to road networks uncertain. [9]

This thesis explores two kinds of approaches to network representation
learning: network embedding methods and graph convolutional networks.
Network embedding methods are a class of self-supervised methods that
aim to preserve network structure in the embedding space [9]. Thus, road
segments that are near in the road network should be near in the embedding
space. Network embedding methods are typically used as a data preprocess-
ing step for subsequent machine learning algorithms. Graph Convolutional
Networks (GCNs) are supervised methods that are typically integrated into
neural networks as representation learning components [13, 14]. In GCNs,
road segments inherit the feature vectors of their adjacent road segments.

Both network embedding methods and GCNs rely on the assumption that
the networks to which they are applied exhibits homophily, e.g., in road net-
works, a tendency for similar road segments to be connected [9, 13, 14]. This
assumption can be problematic in road networks: residential areas in two
different cities may be similar, while being far apart in the road network [9].
In addition, homophily implies smooth transitions in network characteristics,
but in road networks transitions are often abrupt [13, 14]. For instance, the
travel speed of a vehicle typically changes drastically over a short distance
when exiting a motorway [13, 14].

6

2. Road Network Representation Learning

(a)
2.0 1.5 1.0 0.5 0.0 0.5 1.0

5

4

3

2

1

0

1

(b)

Fig. 1: Illustration of (a) road segments in the road network and (b) their two-dimensional vector
representations generated by node2vec. Colors indicate the region a road segment belongs to. [9]
© 2018 IEEE.

2.1 On the Validity of the Homophily Assumption

This section summarizes the contents of Paper A [9]. Reused content from the paper
may appear for the sake of clarity of explanation.

A case study is conducted to assess the validity of the homophily assump-
tion and, by implication,the applicability of state-of-the-art network represen-
tation learning methods to road networks because rely on this assumption.
Specifically, the network embedding method node2vec is applied to the clas-
sification of road categories and speed limits in the Danish road network.

Data

The Danish road network is extracted from OSM and is converted to a di-
rected multigraph G = (V, E). Here, each node v ∈ V represents an inter-
section or the end of a road and each edge e ∈ E represents a road segment.
The resulting graph consists of 583 816 nodes and 1 291 168 edges. All road
segments belong to one of nine road categories, and 163 043 road segments
(ca. 13%) have an associated speed limit.

Node2Vec

The embedding method node2vec (and other network embedding methods)
aims to learn a mapping φ s.t. similar road segments have similar vector rep-
resentations in the embedding space. In practice, this is achieved by choosing
φ s.t. it optimizes the objective

∑
e∈E

log
(

Pr(N(e) | φ(e))
)

,

7

where N is a road segment neighborhood function. As illustrated in Figure 1,
the result is that road segments that share neighbors are mapped to simi-
lar vectors. If the underlying network exhibits homophily, this assumption
makes sense: if road segments tend to be connected to similar road segments,
then two road segments that share neighbors tend to also be similar.

Homophily in Road Networks

The primary finding of the case study is that road networks exhibit ho-
mophily, but the nature of this homophily is differs from the one assumed by
network representation learning methods.

In the network embedding literature, linear classifiers are commonly used
because their classification performance is a good measure of the quality of
the feature vectors produced by a network embedding method. If the per-
formance of the linear classifier is high, this indicates a high degree of linear
separability in the embedding space. Linear separability in the embedding
space is highly desirable since it simplifies classification tasks.

In the network embedding literature, linear classifiers generally perform
quite well. For instance, according to one paper, the macro F1 score of
node2vec on node classification on the popular Cora and Citeseer networks
is 0.5233–0.5972 and 0.7256–0.8162, respectively [16]. Using the same linear
classification algorithm in the case study resulted in scores below 0.2 and 0.3
on road category and speed limit classification, respectively.

The cause of the poor performance of the linear classifier in the case study
becomes clear when the distribution of the features vector representations of
road segments produced by node2vec is visualized. As shown in Figure 2,
the embedding space is far from linearly separable: road segments belonging
to the same category are spread across several clusters. As illustrated by the
figure, each such cluster corresponds to a group of adjacent road segments.
Thus, each cluster of road segments belonging to the same road category
is internally homophilic but may be far from other similar clusters in the
embedding space. In digital networks, like the ones commonly considered in
the network embedding literature, this is less likely to happen since there is
no physical limit to the amount of connections associated with a node in the
network.

The nature of the distributed homophily in road networks leads to poor
performance when using the resulting node2vec embedding in conjunction
with the linear classifier used in the case study. However, network embed-
ding methods may still be useful for machine learning on road networks:
in the case study, a non-linear random forest classifier achieves promising
macro F1 scores of 0.57 and 0.79 for speed limit and road classification, re-
spectively. These scores are in line with typical performance numbers seen in
the network embedding literature when linear classifiers are used.

8

2. Road Network Representation Learning

(a) Embedded road segments.

(b) Spatial representations of the framed cluster in Figure 2a.

Fig. 2: Two-dimensional t-distributed Stochastic Neighbor Embedding (t-SNE) projections of the
road segment embeddings in Aalborg Municipality. [9] © 2018 IEEE.

9

Discussion and Conclusion

The case study finds that the homophily found in road networks is different
from the homophily found in the networks network embedding methods are
designed for. Road segments appear in internally homophilic clusters where
similar clusters may be far apart in terms of network distance. As a con-
sequence of the neighborhood-preserving network embedding objective, the
clusters are also far apart in the embedding space, resulting in an embedding
space with a low degree of linear separability. Compared to applications of
network embedding techniques in the literature, these results indicates a sub-
stantial degradation of embedding quality when applied to road networks,
necessitating the use of powerful non-linear classifiers, such as the random
forest classifier used in the case study. Future network embedding meth-
ods should therefore emphasize the capture of capture information about
the structural similarities among road segments rather than relying on their
connectivity.

Generalizability of the Case Study: The case study uses just one network
embedding for just two classification tasks in just one road network. Yet, the
findings are expected to generalize beyond this case study.

First, the adjacency-preserving objective used by node2vec, where adja-
cent road segments are near in the embedding space, is used universally in
network embedding methods to exploit homophily. The findings are there-
fore expected to generalize to other network embedding methods. Second,
the distribution of road segments into several internally homophilic areas that
may be far apart is a natural consequence of countries being divided into ar-
eas of different qualities, e.g., cities, and therefore the findings are expected
to generalize to other road networks.

Third, the two tasks of speed limit and road category classification are
closely linked to the division of road networks into different areas. For in-
stance, speed limits are typically low in residential areas. However, many
other important quantities of interest exhibit the same behavior, such as traf-
fic congestion levels and travel speed which also differ among, e.g., urban
and rural areas. The findings are therefore expected to be relevant for many
other prediction tasks on road networks.

2.2 Graph Convolutional Networks for Road Networks

This section summarizes the contents of Paper B [13], and its extended version,
Paper C [14]. Reused content from the papers may appear for the sake of clarity of
explanation.

A Graph Convolutional Network (GCN) is a neural network that takes
as input a graph representation of a network. As in the case of the network

10

2. Road Network Representation Learning

embedding methods discussed in Section 2.1, GCNs aim to encode the struc-
ture of a network into feature vector representations of, e.g., road segments.
Unfortunately, GCNs have been designed in the context of the same types
of digital networks that network embedding methods have and they rely on
the same notion of homophily being present in the network. Although road
networks are homophilic, it takes a different form than in these kind of net-
works.

As discussed in Section 2.1, road segments tend to be connected to other
similar road segments, but similar road segments belong to clusters that may
be far apart in the network. As an example, two internally homophilic res-
idential areas may be similar, but they are located in different cities. In ad-
dition, the homophily is volatile in the sense that changes can occur rapidly.
For instance, a motorway road segment and an urban road segment may be
separated by just one road segment, e.g., a motorway exit. State-of-the-art
GCNs have not been designed with these properties in mind. To address
the need for representation learning methods for road networks, Relational
Fusion Networks (RFNs) are proposed.

Primal and Dual Graph Representations of Road Networks

Traditionally, a road network is modeled as a directed graph G = (V, E),
where V is a set of nodes representing intersections or the end of road, and
E is a set of edges representing road segments. This graph representation,
called the primal graph representation, models the relationships between in-
tersections and can be used to computed representations of intersections.
Supplying the primal graph representation to a GCN yields feature vector
representations for making predictions over intersections. Typically, how-
ever, one is interested in making predictions over road segments based on
their relationships to adjacent road segments. To this end, a dual graph rep-
resentation of the road network may be given to the GCN instead.

A dual graph representation of a road network models the relationships
between road segments, rather than intersection, s.t. road segments are rep-
resented as nodes and there exists an edge between two road segments if
they are connected through an intersection. This is illustrated in Figure 3
using a three-way intersection. The primal and dual graph representations
are related. Let GP = (V, E) denote the primal graph representation of a
road network. Then, the dual graph representation of the road network is
GD = (E, B), where B is the set of between-edges. Formally, there exists a
between-edge between two edges (u, v) and (w, y) in E if v = w. An added
advantage of the dual graph representation when used in conjunction with a
GCN, is that it naturally yields representations of road segments.

11

(a) A three-way intersection.

A B

C

D

(b) Primal Graph.

AB

BA

BC CB

DB BD

(c) Dual Graph.

Fig. 3: (a) A three-way intersection, and its (b) primal and (c) dual graph representations. [13, 14]
© 2020 IEEE.

Graph Convolutional Networks

GCNs are similar to network embedding methods in that they try to take
advantage of homophily in the underlying network to produce useful repre-
sentations of nodes or edges. However, where network embedding methods
are concerned with the objective that is to be optimized [9], GCNs are con-
cerned with the structure of the function being optimized [13, 14]. Network
embedding methods may even utilize a GCN as the embedding function [17].

GCNs are neural networks with architectures designed to utilize the struc-
ture of the given graph representation of a network to take advantage of ho-
mophily in the network. Formally, GCNs consists of graph convolutional
layers s.t. the representation of a node v at the kth layer is

H(V,k)
v = σ

(
Aggregate

k({Xn | n ∈ N(v)})Wk), (1)

where σ is an activation function, N is a function that returns they neighbors
of node v, Xn is an input feature vector representation of node n, and Wk

is a weight matrix of learnable model parameters. The function Aggregate
k

computes an aggregated representation of the neighborhood using, e.g., the
mean representation of v’s neighbors.

GCNs takes advantage of homophily through aggregation of neighbor
representations. However, a property of the aggregation functions used in

12

2. Road Network Representation Learning

the GCNs literature is that they will assign similar vector representations to
nodes that have large overlaps in their neighborhood. This property is also
reflected in the output of each graph convolutional layer in a GCN and allows
the GCN to exploit homophily in the underlying network.

Direct Inheritance and Volatile Homophily

GCNs computes road segment representations based on aggregation of the
feature vector representations of adjacent road segments. Thus, two road
segments achieve similar representations if they are adjacent to similar road
segments, even if they are far apart in the network and share no neighbors.
However, when producing representation for a road segment, state-of-the-
art GCNs rely on direct inheritance of the feature vector representations of
adjacent road segments. This means that two road segments with an overlap
among their adjacent road segments are given similar feature representations,
even if those road segments are quite different.

Direct inheritance works well in networks that exhibit smooth homophily,
where changes in network characteristics happen slowly. In contrast, ho-
mophily in road networks is often volatile. For instance, when exiting a
motorway into an urban area, the travel speed drop substantially across a
short distance.

An Illustrative Example: Figure 4a illustrates an urban area in a road net-
work, where the yellow road segments give access to different residential
areas consisting of teal road segments. The red segments are major road
segments that connect different this area to the rest of the city. These colors
represent network characteristics such as travel speed. As shown in the fig-
ure, the homophily is volatile: road segments with different characteristics
are adjacent.

To illustrate the problem of direct inheritance in the face of volatile ho-
mophily, each road segment is given a feature vector representation corre-
sponding to its three-values decimal RGB color code in Figure 4a. Then, a
new color is computed by feeding these feature representations through a
GCN, where a new color is computed by taking a simple mean of the colors
of the adjacent neighbors. Despite its simplicity, this aggregation mechanism
has achieved very good performance on standard datasets used in the GCN
literature [17].

As shown in Figure 4b, the aggregation mechanism can recover the orig-
inal color well when deep within residential areas, where there is a high
degree of homophily, but it performs poorly on road segments that connect
areas with different network characteristics. The effect of the aggregation is a
smoothing effect that is suitable for a network exhibiting smooth homophily,
i.e., a network where network characteristics slowly change.

13

(a) Ground Truth. (b) GCN Prediction.

Fig. 4: An illustrative example of a road network (a) with ground truth colors representing
network characteristics, and (b) the colors predicted by a GCN when given the full colored road
network as input.Figures (a) and (b) originate from a poster presentation of Paper B [13].

Relational Fusion Networks

Relational Fusion Networks (RFNs) are proposed to address the short-comings
of state-of-the-art GCNs in the context of road networks. In brief, an RFN
is a type of GCN, where a relational fusion operator that produces repre-
sentations of relations is inserted into the regular neighborhood aggregation
mechanism. This enables an RFN to aggregate over representations of rela-
tions (represented by edges), rather than neighbors, where the representation
of the relation is dependent on the attributes associated with both the source
and target of the relation, but also on the attributes associated with the rela-
tion itself. Using the relation fusion operator, an RFN is not required to use
direct inheritance, but can do so if it is useful.

Relational Fusion: Inserting the relational fusion operator into forward prop-
agation of a regular GCN (cf. Equation 1) yields

H(V,k)
v = σ

(
Aggregate

k({Fuse
k(Xv, X(v,n), Xn) | n ∈ N(v)}

)
Wk
)

, (2)

where function Fuse is the relational fusion operator, and Xv, Xn, and X(v,n)
are feature representations of node v, v’s neighbor node n, and the edge (v, n)
connecting them, respectively. Many different relational fusion operators
may be used, but the thesis proposes two such operators: AdditiveFuse [13,
14] and InteractionalFuse [14]. For brevity, this summary reviews only
AdditiveFuse. Information regarding InteractionalFuse may be found in
Paper C [14].

The definition of AdditiveFuse is

AdditiveFuse
k(Xv, X(v,n), Xn) = σ(XvW1 + X(v,n)W2 + XnW3) (3)

where matrices W1, W2, and W3 are weight matrices.

14

2. Road Network Representation Learning

It is apparent from Equation 3 that inserting AdditiveFuse in Equation 2
yields a generalized version of the GCN forward propagation in Equation 1.
Specifically, the regular GCN forward propagation is occurs when W1 and
W2 are zero matrices, and W3 is the identity matrix. It follows that AdditiveFuse

may use direct inheritance during regular GCN aggregation if it is useful, but
may disregard it if it is not.

Other RFN Features: Besides the relational fusion operator addressing the
problem of direct inheritance in the face of volatile homophily, RFNs have ad-
ditional features that makes them particularly suitable for machine learning
on road networks.

First, RFNs can incorporate three sources of attribute information—node,
edge, and between-edge attributes—by operating on both the primal and
dual graph representations in parallel. Examples of node, edge, and between-
edge attributes are, respectively, the presence of a traffic light at an intersec-
tion, the speed limit of a road segment, and the turn angle between two
adjacent road segments. In comparison, regular GCNs support only node
attributes, although they can be extended to support edge attributes with
relative ease.

Second, RFNs feature an attention mechanism at each layer that allows
them to regulate the contribution of each relation to the aggregate in Equa-
tion 2. This is particularly important in road networks, where the number
of relations an intersection or road segment participates in is typically quite
low, so that even a single aberrant or uninformative relation can have a large
effect on the aggregate.

An empirical study finds that, in combination, the features of the RFN
result in performance increases of 21−−40% over state-of-the-art GCN ar-
chitectures on two road network machine learning tasks.

2.3 Conclusion

The thesis investigates the applicability of network representation learning
methods for road networks.

Paper A [9] investigates applicability of network embedding methods us-
ing a case study. The network embedding method node2vec was applied to
the Danish road network, and the resulting feature vector representations of
road segments were used to classify road categories and speed limits.

Network embedding methods such as node2vec rely on a strong notion
of homophily, where adjacent road segments are expected to be similar. The
case study therefore focuses on investigation of the validity of the homophily
assumption in road networks. It finds that, while homophily is present in
road networks, it is of a different nature than the homophily assumed in
network embedding methods. In particular, similar road segments in, e.g.,

15

residential areas, may be far apart in the road network as natural consequence
of road networks being physical networks. [9]

Papers B [13] and C [14] investigates another class of network represen-
tation methods known as GCNs. Like network embedding methods, GCNs
also rely on the homophily assumption, but are more suitable for the kind
of homophily found in road networks. Specifically, GCNs rely on an ag-
gregation mechanism that summarizes the characteristics of adjacent road
segments. Thus, GCNs can assign similar feature vector representations to
distant road segments given that the characteristics of their adjacent road
segments are similar.

The homophily assumed in GCNs is less strict than the one assumed in
network embedding methods, but it fails to account for the volatile nature of
homophily in road networks [9, 13, 14]. For instance, motorway approaches
often connect road segments with large differences in travel speed, e.g., an
urban segment and a motorway segment [13, 14]. GCNs assume far more
gradual changes in network characteristics and thus do not have appropriate
mechanisms for the volatile homophily found in road networks [13, 14].

The use of direct inheritance during GCN aggregation is identified as
the primary culprit. Specifically, GCNs assumes that a road segment shares
characteristics with all of its adjacent road segments. However, often this is
not the case. For instance, a motorway approach that connects an urban area
and a motorway is quite dissimilar from both of its neighbors. To address this
issue, RFNs are proposed, which feature a revised aggregation mechanism
that allows an RFN to use direct inheritance when it is suitable and ignore it
when it is not. [13, 14]

An empirical study finds that RFNs achieve superior performance com-
pared to state-of-the-art GCNs on two machine learning tasks on road net-
works. [13, 14]

3 Travel Time and Travel Speed Estimation

This section summarizes the contents of Paper D [15]. Reused content from the paper
may appear for the sake of clarity of explanation.

Massive amounts of information about travel times and travel speeds
along routes and road segments in a network road network can be col-
lected from vehicles equipped with location-tracking equipment. These large
amounts of data has enabled fine-granularity estimation tasks where, e.g.,
travel times along routes are modeled as time-dependent stochastic variables
where the travel times of road segments along the route are dependent on
each other. However, despite the massive amounts of data, the data tends to
concentrate in certain areas and at certain times of day, with little to no data
in other areas or at different times. Thus, data abundance and data sparsity

16

3. Travel Time and Travel Speed Estimation

Fig. 5: A road segment (left) and its ground-truth and estimated travel-speed distributions dur-
ing a time-of-day interval (right) [15].

coexist in a road network, which makes fine-granularity estimation across an
entire road network challenging. Two types of approaches to travel time and
travel speed estimation exists that target settings with abundant or sparse
data.

The first type, aggregation-based approaches, assume that data is gener-
ally abundant and that accurate estimates of the travel time (or speed) dis-
tribution of a route at a given time can be achieved by aggregating historical
traversal times from vehicle trajectories. In the event that no historical travel
times are available, the travel speed distribution is found by splitting a route
into subroutes s.t. a sufficient number of historical travel times is available
for each. If that is not possible, simple-but-inaccurate heuristics based on the
speed limit are used, resulting in poor generalizability.

The second type, function-fitting approaches, operate on the assumption
that data is generally sparse, i.e., that some or many routes have few or no
historical travel times for some or many times of day. They use function-
fitting techniques, including deep learning, to map feature representations of
routes to travel time distributions, which allows them to achieve high gener-
alizability. In theory, it is possible to fit a fine-grained function, suggesting
that function-fitting approaches can achieve estimation accuracies similar to
those of aggregation-based approaches in data-abundant situations. How-
ever, the data collection and feature engineering efforts required makes it
infeasible to do so. In practice, function-fitting approaches trade accuracy in
data-abundant situations for generalizability in data-sparse situations.

In summary, aggregation-based and function-fitting approaches repre-
sent an accuracy-generalizability trade-off: aggregation-based approaches
favor accuracy, and function-fitting approaches favor generalizability. This
trade-off is illustrated in Figure 5. Given the full data with n = 189, the

17

aggregation-based approach achieves the best fit, whereas the function-fitting
approach overestimates the variance. However, when less data is used by the
aggregation approach, its performance declines rapidly, and at n = 0, it relies
on a heuristic that is highly inaccurate.

Both aggregation-based and function-fitting approaches ignore the typical
situation, where some vehicle trajectories are highly abundant in some areas
at some times while other areas have little or no data associated with them
at any time. For instance, in cities, data is typically abundant on arterial
roads during rush hours. Often, the available data in an area is directly
proportional to the population density. Given this situation, there is a need
for flexible approaches that can leverage the accuracy of aggregation-based
approaches in data-abundant situations and the generalizability of function-
fitting approaches in data-sparse situations. To this end, Paper D proposes a
Unifying approach to Travel time and speed Estimation (UniTE).

3.1 UniTE

UniTE is a framework for travel time and travel speed estimation that aims
to unify aggregation-based and function-fitting approaches. In brief, the
framework uses Bayesian probability theory to gradually transition from a
function-fitting approach to an aggregation-based approach as the available
data increases. The framework can integrate existing function-fitting and
aggregation-based approaches and is thus complementary to both types of
approaches The transition between approaches is gradual and mediated by
Bayesian probability theory.

Conceptual Model

Figure 6 shows the conceptual model of UniTE. The travel time or speed
distribution of a route pi at time τi is assumed to follow a distribution with
uncertain hyperparameters θi. These uncertain parameters follow a prior dis-
tribution Pr(θi | f (pi, τi; ψ)) parameterized by the output of a prior function
f with function parameters ψ. The prior function f represents the function-
fitting component of UniTE that allows a UniTE to inherit the generalizability
of the function-fitting approach used as the component. Thus, a UniTE model
can estimate travel time or travel speed distributions even if no historical data
is available.

An aggregation-based approach is used to select or construct m histori-
cal records T̃i = {ti,1, . . . , ti,m} that are inserted as evidence in the model, as
illustrated in Figure 6. These records represent past traversals of the route
at similar, e.g., times of day, in the past, and record the travel time or travel
speed of a past traversal. Inserting these historical records as evidence al-
lows the computation of the posterior distribution Pr(θi | T̃i, f (pi, τi; ψ)) over

18

3. Travel Time and Travel Speed Estimation

t̂i

θi t̃i,j

j = 1 : m

f (pi, τi; ψ)ψ
pi

τi

i = 1 : n

Fig. 6: The UniTE framework illustrated using plate notation. [15]

the uncertain hyperparameters θi that involves an aggregation over histori-
cal records T̃i. Thus, the computation of the posterior is representative of an
aggregation-based approach in UniTE.

Once a posterior distribution over θi has been found, the posterior predic-
tive Pr(t̂i | T̃i, θi) = Pr(t̂i | T̃i, pi, τi; ψ) of the travel time or speed t̂i can be
computed and output as the travel distribution of the input route pi at time
τi.

Training a UniTE Model

UniTE models are trained for predictive performance by finding the param-
eters ψ that maximize the conditional likelihood

Pr(ti | T̃i, θi) (4)

across n training trajectories, where ti is the ground truth travel time or travel
speed observed in the ith trajectory when traversing route pi at time τi.

During training of a UniTE model, it is recommended to simulate the
situation during training where the model relies on the generalizability of
its function-fitting component if little or no data is available. This can be
achieved by ensuring that ti /∈ T̃i in Equation 4, that in turn ensures that the
function-fitting component always contributes information about the ground-
truth travel time ti that is missing from the set of historical records T̃i.

19

Properties of UniTE

The use of Bayesian probability theory to unify the function-fitting and aggregation-
based components in a UniTE model leads to two interesting properties.

First, there always exists a UniTE model that can achieve the same esti-
mation performance as either its function-fitting or aggregation-based com-
ponent with arbitrary precision, which is particularly interesting when inte-
grating two existing approaches. The higher the confidence in the prior dis-
tribution of θi, the more the estimation performance of the UniTE model ap-
proaches the estimation performance of its function-fitting component. Con-
versely, the lower the confidence in the prior distribution of θi, the more the
estimation performance of the UniTE model approaches the estimation per-
formance of its aggregation-based component.

Second, optimizing the conditional likelihood in Equation 4 has a regu-
larizing effect on the function-fitting component s.t. it t performs particularly
well in data-sparse situations. This follows from the definition of the poste-
rior predictive used in Equation 4, i.e.,

Pr(t̂i | T̃i, θi) =
∫

θi

Pr(t̂i | θi)Pr(θi | T̃i)dθi,

which depends on the posterior distribution

Pr(θi | T̃i) ∝ Pr(θi)
m

∏
j=1

Pr(t̃i,j | θi). (5)

The number of factors in the product in Equation 5 increases as the num-
ber of historical records increases s.t. the prior Pr(θi) has only little influence
on the final product when m is large. Thus, the importance of the prior
distribution Pr(θi) on the posterior distribution, and consequently the poste-
rior predictive, is inversely proportional to the number of historical records.
Hence, the influence of the function-fitting component on the UniTE objec-
tive in Equation 4 is largest when there are no historical records at all, and
it gradually becomes less important as more historical records become avail-
able. As a result, the function-fitting component is trained to perform well in
data-sparse situations when maximizing the conditional likelihood in Equa-
tion 4.

3.2 Conclusion

The thesis proposes UniTE, a Bayesian travel time and travel speed estimation
framework that integrates existing approaches to travel time and speed esti-
mation into a cohesive framework. Specifically, UniTE models can leverage
the generalizability of function-fitting approaches in data-sparse situations

20

4. Vehicle Trajectory Analysis

and the accuracy of aggregation-based approaches in data-abundant situa-
tions.

An empirical study using a simple instance of UniTE, where the travel
time is assumed to follow a Gaussian distribution with uncertain mean and
variance, finds that UniTE can achieve 40–64% and 3–23% better performance
in terms of travel speed distribution modeling and travel time point estima-
tion, respectively, compared to using a function-fitting or aggregation-based
approach alone.

4 Vehicle Trajectory Analysis

This section summarizes the contents of Paper E [8]. Reused content from the paper
may appear for the sake of clarity of explanation.

Given a trajectory from S to T, drivers are often assumed to choose routes
that are optimal in the sense of being, e.g., the fastest or shortest route from
S to T. However, in practice, drivers often deviate from such optimal routes
due to intermediate destinations such as stopping for gas or shopping on the
way home. As an example, consider the trajectory in Figure 7, which goes
from S to T with two stops, labeled B. These stops indicate that the driver
took a break. Drivers often deviate from optimal routes due to changing
intentions or destinations while driving, or due to individual preferences
w.r.t. to combinations of costs.

Fig. 7: An example of a trajectory going from S to T with two intermediate stops that are labeled
B. [8]

Paper E [8] proposes vehicle trajectory analysis techniques to explain driv-

21

ing behavior in a trajectory. Specifically, the paper proposes a technique for
identifying via-points along a trajectory is proposed and a technique for driv-
ing preference mining.

4.1 Personalized Costs

Drivers that choose different routes do so because they have different per-
ceived costs or value w.r.t. to some criteria. To model this behavior, personal-
ized traversal costs are introduced in the following.

In the case where a route consists of a single road segment, the following
definition of personalized cost is used.

Definition 4.1. The personalized cost of a road segment e is p(e | α) = ce · α
where ce = (ce,1, . . . , ce,d) is a d-dimensional cost vector containing d different costs
associated with traversal of segment e, and α = (α1, α2, . . . , αd) is a d-dimensional
preference vector, representing the driving preferences of a particular driver, where
αi ≥ 0 and ∑ αi = 1.

Using the definition of a personalized cost of a road segment, the person-
alized cost of a route is defined as follows.

Definition 4.2. The personalized cost of a route π = (e1, e2, . . . , ek) in a road net-
work is p(π | α) = ∑k

i=1 p(ei | α).

4.2 Via-Point Identification

The proposed method for identifying via-points along a trajectory first seg-
ments a trajectory into subtrajectories and uses these subtrajectories to iden-
tify via-points. For instance, let T = (v0, . . . , vi, . . . , vn) be a trajectory that
has been segmented into two subtrajectories (v0, . . . , vi) and (vi, . . . , vn). In
this example, node vi represents a via-point in the original trajectory.

Efficient algorithms for segmenting trajectories based on some criterion
already exists. The primary contribution of the proposed method is the crite-
rion itself. In brief, the via-point identification algorithm assumes that drivers
follow paths that are optimal w.r.t. to their preferences and that any devia-
tions from the optimal path indicates a via-point.

Trajectory Segmentation

For trajectory segmentation, an existing greedy trajectory segmentation algo-
rithm is used. For clarity of the explanation, a simple incremental version of
this algorithm is included in Algorithm 1.

Algorithm 1 takes as input a trajectory T = (v0, . . . vn) and a test function
Test. The Test function determines whether an input trajectory fulfills some

22

4. Vehicle Trajectory Analysis

Algorithm 1 Trajectory Segmentation Algorithm by Buchin et al. [18]

1: function TrajectorySegmentation(T, Test)
2: T ← ∅
3: s← 0
4: repeat
5: for i← s + 1 to n do
6: Ti ← (vs, . . . , vi)
7: if not Test(Ti) then
8: T ← T ∪ {Ti−1}
9: s← i− 1

10: break
11: until i = n
12: T ← T ∪ {Tn}
13: return T

criterion, e.g., whether it follows the shortest path. In lines 4–11, the input
trajectory is scanned in the repeat-until loop and divided into subtrajectories
in the for loop in lines 5–10. On the first iteration of the for loop, the sub-
trajectory (v0, v1) is tested and is incrementally extended in each iteration of
the for loop. If the subtrajectory fails the test in line 7, the last subtrajectory
Ti−1 that passed the test is added to the test of subtrajectories T in line 8.
Then, the algorithm exits the for loop in line 10, and repeats the procedure
starting with subtrajectory (vs−1, vs). Eventually, the last subtrajectory is ex-
tended to the full remaining length of the input trajectory T without failing
the test in line 7. At this point, the until condition in line 11 is fulfilled, and
the repeat-until loop exits. The final trajectory Tn is then added to the set of
subtrajectories T in line 12, before T is returned in line 13.

The Personalized Path Criterion

The subtrajectories produced by Algorithm 1 depends heavily on the criterion
in the Test function. The primary contribution of the proposed via-point
identification method is the personalized path criterion.

Definition 4.3. A personalized path πα = (e1, . . . , en) from s to t for a driver with
preference vector α is the path from s to t that has the smallest the personalized cost
p(π | α).

When using the personalized path criterion in Algorithm 1, the Test re-
turns true if an input trajectory T from s to t follows any personalized path
from s to t. In other words, a subtrajectory passes the test if some prefer-
ence vector α, s.t. the subtrajectory is identical to πα. In practice, determining
whether such a preference vector exists can be done by solving the following
linear program for which efficient algorithms already exists.

23

Minimize 1

subject to ∀π ∈ Π : p(T | α)− p(π | α) ≤ 0
d

∑
i=1

αi = 1

∀i ∈ {1, . . . , d} : αi ≥ 0

(6)

Here, Π is the set of all paths from the source vertex s to the target vertex t of
trajectory T. Using the personalized path criterion, Test(T) returns true if a
solution to the linear program exists, and it returns false if no solution exits.

Using the personalized path criterion in Algorithm 1 yields a trajectory
segmentation based on deviations from the path that is optimal w.r.t. to the
personalized cost of going from s to t. These points of deviation are marked
as via-points.

4.3 Driving Preference Mining

The linear program in Equation 6 implicitly recovers a driving preference
vector, but it only has a solution if a driving preference vector α exists s.t.
T is a personalized path given α. In practice, this makes the linear program
rather fragile in terms of driving preference mining since such a preference
vector often does not exist

Minimize δ

subject to ∀π ∈ Π : p(T | α)− p(π | a) ≤ δ

d

∑
i=1

αi = 1

∀i ∈ {1, . . . , d} : αi ≥ 0

δ ≥ 0

(7)

To increase the robustness of the linear program in Equation 6 a few mi-
nor modifications are introduced, as shown in Equation 7. First, the solution
to Equation 6 is always a preference vector that for the entire trajectory rather
than for a subtrajectory. Second, δ is introduced into the first constraint s.t.
trajectory T is not required to follow any personalized path. Third, δ is min-
imized s.t. the solution to the linear program is the driving preference vector
α that minimizes the discrepancy between trajectory T and the personalized
path w.r.t. α. These modifications ensure that a preference vector α always ex-
ists as a solution to Equation 7 and that this solution is the preference vector
that best explains the driving behavior in the trajectory.

24

5. Conclusion

4.4 Conclusion

This thesis proposes methods for trajectory analysis that can identify via-
points along a trajectory and mine of driving preferences from a trajectory.
Unlike previous work, the techniques utilize just the structure of the trajec-
tory without relying on any additional information such as timestamps.

Despite not utilizing any temporal information, an empirical evaluation
shows that the via-point identification technique can recover such informa-
tion to some extent. The driving preference mining technique can recover
driving preference vectors that, when used for personalized routing, can pro-
duce routes with 74% overlap with the route of the original trajectory and
with a cost similarity of 87%. Finally, both techniques can be implemented
efficiently to scale to datasets of millions of trajectories.

5 Conclusion

Vehicle trajectory data presents both opportunity and challenge. The massive
volumes of vehicle trajectory data has enabled finer-granularity solutions to
traditional Intelligent Transportation System (ITS) tasks as well as solutions
to entirely new tasks. However, vehicle trajectories are sparse in contextual
information. This problem can be alleviated to some degree by enriching the
trajectories with map data, but the map data itself is also sparse. In addition,
vehicle trajectory data is skewed s.t. conditions of data abundance and data
sparsity co-occur in the same road network. Finally, storage and transmission
costs of large vehicle trajectory sets are prohibitive.

To address the challenges associated with the use large vehicle trajectory
sets, there is a need for data efficiency in the ITSs that aim to utilize such
data. In particular, such systems should utilize the available data as much
as possible, and perform well under both conditions of data sparsity and
data abundance. Finally, they should also be capable of operating on com-
pressed or easy-to-compress trajectory data formats, and, as a result, the the-
sis focuses on the use of map-matched vehicle trajectory data, i.e., trajectories
represented as road segments in a road network, which can be compressed
efficiently. With data efficiency in mind, this thesis has pursued three primary
paths of inquiry.

First, the map data used to enrich vehicle trajectories contains little at-
tribute information and the road network structure contained in the map
data is difficult to leverage. The problem of how to exploit network struc-
ture is not unique to road networks, and network representation learning
methods for general networks exists. To investigate the applicability of such
methods in the context of road networks, a case study is conducted. The
case study finds that while applicable to road networks, the methods makes

25

References

assumptions that are inappropriate for road networks. The findings of the
case study lead to the development of the Relational Fusion Network (RFN),
a graph representation learning method for road networks that can be used
as a building block in a graph neural network. RFNs relaxes the assumptions
of existing graph representation learning methods for general networks, but
cannot explicitly leverage the spatiality of a road network or model the tem-
poral variations in the traffic conditions within a road network. Addressing
these short-comings of RFNs is an important direction for future work.

Second, data-abundance and data-sparsity co-occur in large vehicle trajec-
tory sets: some road segments exhibit data abundance, whereas other road
segments exhibit data sparsity. Within travel time and speed estimation—an
important task for ITSs—this has given rise to two categories of approaches.
Aggregation-based approaches assume data-abundance and can achieve high
accuracy under such circumstances. Function-fitting approaches assume data-
sparsity and can achieve good generalization performance for areas or times
where there is little-to-no data available. This thesis proposes UniTE which
aims to unify these approaches into a cohesive framework s.t. a function-
fitting approach is applied in data-sparse conditions and an aggregation-
based approach is applied in data-abundant conditions. UniTE achieves a
high degree of data utilization since it used both at training time and at es-
timation time. An important direction for future work is the development
of novel models that capitalizes on the synergy between function-fitting and
aggregation within the UniTE framework.

Third, it is beneficial to process vehicle trajectory data that is in an easy-
to-compress format to reduce storage and transmission costs. The thesis
presents techniques for analysis driving behavior based on just the structure
of map-matched vehicle trajectories represented as sequences of edges in a
graph representation of a road network. This format is easier to compress
since it contains no temporal information. The techniques allows mining of
both driver intentions in the form of via-points and driving preferences in the
form of a preference vector that quantifies the relative preference w.r.t. to dif-
ferent traversal costs, e.g., fuel consumption or travel time. Interestingly, an
empirical study finds that temporal information stripped from the trajecto-
ries can be recovered to some extent. Exploring synergies between via-point
identification and driver preference mining remain an important direction of
future work.

References

[1] B. Yang, M. Kaul, and C. S. Jensen, “Using incomplete information
for complete weight annotation of road networks,” IEEE Transactions on
Knowledge and Data Engineering, vol. 26, no. 5, pp. 1267–1279, 2013.

26

References

[2] J. Liu, G. P. Ong, and X. Chen, “Graphsage-based traffic speed forecast-
ing for segment network with sparse data,” IEEE Transactions on Intelli-
gent Transportation Systems, 2020, in online early access.

[3] L. Wei, Y. Wang, and P. Chen, “A particle filter-based approach for vehi-
cle trajectory reconstruction using sparse probe data,” IEEE Transactions
on Intelligent Transportation Systems, vol. 22, no. 5, pp. 2878–2890, 2021.

[4] H. Yuan, G. Li, Z. Bao, and L. Feng, “Effective travel time estimation:
When historical trajectories over road networks matter,” in Proc. of SIG-
MOD, 2020, p. 2135–2149.

[5] X. Lin, Y. Wang, X. Xiao, Z. Li, and S. S. Bhowmick, “Path travel time
estimation using attribute-related hybrid trajectories network,” in Proc.
of CIKM, 2019, p. 1973–1982.

[6] B. Yang, J. Dai, C. Guo, C. S. Jensen, and J. Hu, “PACE: a PAth-CEntric
paradigm for stochastic path finding,” The VLDB Journal, vol. 27, no. 2,
pp. 153–178, 2018.

[7] H. Lu, D. Huang, Y. Song, D. Jiang, T. Zhou, and J. Qin, “ST-TrafficNet:
A spatial-temporal deep learning network for traffic forecasting,” MDPI:
Electronics, vol. 9, 2020, paper no. 1474.

[8] F. Barth, S. Funke, T. S. Jepsen, and C. Proissl, “Scalable unsupervised
multi-criteria trajectory segmentation and driving preference mining,”
in Proc. of BIGSPATIAL, 2020.

[9] T. S. Jepsen, C. S. Jensen, T. D. Nielsen, and K. Torp, “On Network
Embedding for Machine Learning on Road Networks: A Case Study on
the Danish Road Network,” in Proc. of Big Data, 2018, pp. 3422–3431.

[10] C. Chen, Y. Ding, X. Xie, S. Zhang, Z. Wang, and L. Feng, “TrajCompres-
sor: An Online Map-matching-based Trajectory Compression Frame-
work Leveraging Vehicle Heading Direction and Change,” IEEE Trans-
actions on Intelligent Transportation Systems, vol. 21, no. 5, pp. 2012–2028,
2020.

[11] J. Muckell, P. W. Olsen, J.-H. Hwang, C. T. Lawson, and S. Ravi, “Com-
pression of trajectory data: a comprehensive evaluation and new ap-
proach,” GeoInformatica, vol. 18, no. 3, pp. 435–460, 2014.

[12] T. Li, R. Huang, L. Chen, C. S. Jensen, and T. B. Pedersen, “Compression
of uncertain trajectories in road networks,” Proc. VLDB Endow., vol. 13,
no. 7, p. 1050–1063, 2020.

27

References

[13] T. S. Jepsen, C. S. Jensen, and T. D. Nielsen, “Graph Convolutional Net-
works for Road Networks,” in Proc. SIGSPATIAL’19. ACM, 2019, p.
460–463.

[14] ——, “Relational Fusion Networks: Graph Convolutional Networks for
Road Networks,” IEEE Transactions on Intelligent Transportation Systems,
pp. 1–12, 2020, in online early access.

[15] ——, “UniTE—The Best of Both Worlds: Unifying Function-Fitting and
Aggregation-Based Approaches to Travel Time and Travel Speed Esti-
mation,” 2021, submitted to ACM TSAS.

[16] H. Gao and H. Huang, “Deep attributed network embedding,” in Proc.
of IJCAI, 2018.

[17] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive Representation
Learning on Large Graphs,” in Proc. of NIPS, 2017, pp. 1024–1034.

[18] M. Buchin, A. Driemel, M. Van Kreveld, and V. Sacristán, “Segmenting
trajectories: A framework and algorithms using spatiotemporal criteria,”
Journal of Spatial Information Science, vol. 2011, no. 3, pp. 33–63, 2011.

28

Part II

Papers

29

Paper A

On Network Embedding for
Machine Learning on Road Networks:

A Case Study on the Danish Road Network

Tobias Skovgaard Jepsen Christian S. Jensen
Aalborg University Aalborg University

Thomas Dyhre Nielsen Kristian Torp
Aalborg University Aalborg University

This paper is published in the
Proceedings of the 2018 IEEE Internal Conference on Big Data,

pp. 3422–3431, 2018.

Received the Best Paper Award at the
3rd IEEE International Workshop on Big Spatial Data.

Paper A.

Abstract

Road networks are a type of spatial network, where edges may be associated with
qualitative information such as road type and speed limit. Unfortunately, such in-
formation is often incomplete; for instance, OpenStreetMap only has speed limits
for 13% of all Danish road segments. This is problematic for analysis tasks that
rely on such information for machine learning. To enable machine learning in such
circumstances, one may consider the application of network embedding methods to
extract structural information from the network. However, these methods have so far
mostly been used in the context of social networks, which differ significantly from
road networks in terms of, e.g., node degree and level of homophily (which are key to
the performance of many network embedding methods).

We analyze the use of network embedding methods, specifically node2vec, for
learning road segment embeddings in road networks. Due to the often limited avail-
ability of information on other relevant road characteristics, the analysis focuses on
leveraging the spatial network structure. Our results suggest that network embed-
ding methods can indeed be used for deriving relevant network features (that may,
e.g, be used for predicting speed limits), but that the qualities of the embeddings differ
from embeddings for social networks.

© 2018 IEEE. Reprinted, with permission, from
Tobias Skovgaard Jepsen, Christian S. Jensen, Thomas Dyhre Nielsen,
and Kristian Torp, ‘On Network Embedding for Machine Learning on
Road Networks: A Case Study on the Danish Road Network.’ In Pro-
ceedings of the 2018 IEEE International Conference on Big Data, 2018, pp.
3422–343. DOI: 10.1109/BigData.2018.8622416.

The layout has been revised.

32

1. Introduction

1 Introduction

Road networks represent an important class of spatial networks and are
an essential component of modern societal infrastructure. Road networks
are associated with many important analysis tasks such as traffic flow and
travel pattern analyses. In particular, many important road network tasks
are supported by machine learning algorithms, including travel-time estima-
tion [1, 2], traffic forecasting [3], and k nearest points-of-interest queries [4, 5],
that require set of informative features to describe, e.g., the different road
segments.

Solving road network analysis tasks is difficult since there is often little
information available beyond the network structure itself. For instance, the
Danish road network from OSM [6] contains only the network structure and
up to two attributes characterizing each road segments: road category and
speed limit. In addition, only 13% of the road segments have a speed limit la-
bel, even when augmented with data from Danish municipalities. This infor-
mation sparsity makes it difficult to derive the features necessary for solving
many road network analysis tasks. The road network structure is a poten-
tially rich source of information, but it is not straight-forward to capture and
utilize this often highly complex structure. For road network analyses, this
typically involves explicit modeling of spatial correlations between adjacent
road segments based on domain knowledge [1, 7, 8].

A road network is commonly modeled as a directed graph G = (V, E),
where each node v ∈ V represents an intersection or the end of a road and
each edge (u, v) ∈ E represents a directed road segment that allows travel
from u to v. Such graph representations makes network embedding methods—a
class of feature learning methods for graphs—directly applicable for extract-
ing structural information from road networks.

In network embedding, the goal is to learn a mapping (an embedding) that
embeds nodes in networks into a d-dimensional vector space s.t. the node
neighborhoods are preserved in the embedding space [9]. In other words,
nodes are mapped to feature vectors that encode the structural information of
the graph s.t. nearby nodes in the network are mapped to vectors that are near
each other in the embedding space. For instance, Figure 1b shows that road
segments north and south of the bridge in Figure 1a tend to cluster with other
road segments from the same region. The road segments representing the
bridge are somewhere in-between. Network embedding methods can extract
the structural information in networks to supplement or replace attribute
information if such information is low-quality, sparse, or unavailable.

The research in network embedding has thus far focused primarily on
social, biological, and information networks [10–17]. Such networks differ
significantly from road networks in terms of, e.g., structure, semantics, size,

33

Paper A.

(a)
2.0 1.5 1.0 0.5 0.0 0.5 1.0

5

4

3

2

1

0

1

(b)

Fig. 1: Illustration of (a) road segments in the Danish road network and (b) their feature vector
representation generated by DeepWalk [10]. Colors indicate the region a road segment belongs
to.

node degree, network diameter, and the amount of attribute information
available. In addition, road networks may be disconnected due to inaccu-
racies in their spatial representation or the presence of islands, whereas, e.g.,
social networks are strongly connected. The effect of this disconnectedness
on the embeddings is not obvious.

The differences between the types of networks studied in the network em-
bedding literature, e.g., social networks, and road networks puts into ques-
tion the suitability of using network embedding methods for road networks.
We therefore formulate the following research question:

Are existing network embedding methods suitable for performing analy-
sis tasks on road networks?

To address this question, we conduct a case study: we evaluate an existing
network embedding method empirically on road category classification and
speed limit classification in the Danish road network. Only the road network
structure is available beyond the road category and speed limit attributes
which we wish to predict. node2vec [11] is therefore our network embedding
method of choice since it relies solely on network structure while optimizing
for the core property of neighborhood preservation in the embedding space;
a property shared by most network embedding methods. Thus, node2vec is
applicable when little or no attribute information is available in the network
as is the case in our data set. We use the node2vec algorithm to learn embed-
dings of road segments in the Danish road network and subsequently feed
these to a classifier to predict either road categories or speed limits.

Our key contribution is an empirical evaluation of network embedding
methods for solving road network analysis tasks using our case study. In the
network embedding literature, linear classifiers are commonly used to eval-
uate network embedding methods and can achieve high performance scores.

34

1. Introduction

This suggests that network embedding methods tend to create embeddings
that are linearly separable relative to the classification problem at hand, a
highly-desirable property that makes it easier to apply machine learning al-
gorithms. We see no reason to assume that these observations extend to the
road segment classification tasks we consider. We therefore also investigate
whether linear separability in the embedding space is present.

The success of most existing network embedding methods is due to the
presence of strong homophily in many real networks [12], i.e., the tendency
of connected nodes to be similar. Although node2vec relies primarily on ho-
mophily, it offers parameters that can emphasize structural equivalence in
the embedding space to some extent. Structural equivalence differs substan-
tially from homophily: two bridges may be considered structurally equiv-
alent (or similar) despite not being connected and possibly far apart in the
network. Based on the classification performance in our experiments, we in-
terpret these parameters to gain insight into which type of similarity may
be more appropriate for road network analysis tasks. We also evaluate the
importance of other node2vec parameters.

Finally, the individual road categories and speed limits in our data set
exhibits different degrees of homophily. We expect this to be problematic for
subsequent classification on embeddings produced by a network embedding
method. Consequently, we investigate the relationship between homophily
and classification performance on individual classes.

Our evaluation shows that given the right choice of classifier and param-
eters, node2vec can achieve high macro F1 scores of 0.57 for road category
classification and 0.79 for speed limit classification; improvements by a fac-
tor of 8.3 and 11.5, respectively, over choosing the most frequent class in the
training set. In addition, our experiments suggest that additional hyperpa-
rameter tuning for both node2vec and the classifier can result in even better
classification performance. We also find that the class distribution in the
embedding space reflects the class distribution in the road network, which,
for the tasks we consider, results in a lack of linear separation in the em-
bedding space. By interpreting the classification performance for different
values of node2vec parameters, we find that structural equivalence may be
a more important type of similarity for road networks than homophily. We
also observed that a skew in the homophily of the classes results in a skew in
classification performance on each class: highly homophilic classes achieve
higher performances than less homophilic classes.

In summary, our contributions are as follows:

1. We empirically evaluate node2vec on two road network analysis tasks
and demonstrate that it can achieve F1 scores that are up to 11.5 times
higher than choosing the most frequent class in the training set.

2. We show how the geometric distribution of classes in the network is

35

Paper A.

reflected in the embedding space, causing a loss of linear separability
for the tasks in our case study.

3. We demonstrate the impact of different node2vec parameters on classifi-
cation performance, and show that emphasizing structural equivalence
in the embedding space results in higher classification performance.

4. We show that the reliance on neighborhood preservation results in a
skew in classification performance towards favoring strongly homophilic
classes.

The rest of the paper is structured as follows. In Section 2, we discuss
related methods that embed road network intersections and road segments
and have been developed in parallel with network embedding methods. In
Section 3 we give the necessary background information on network embed-
ding methods. In Section 4 we evaluate the node2vec embedding. Finally, we
represent our conclusions and discuss how we expect our findings to gener-
alize to other network embedding methods and road network analysis tasks
in Section 5.

2 Related Work

Embedding of road network intersections and segments is largely unexplored.
To the best of our knowledge, no previous work exists that investigates
the application, adaptation, or extension of (general) network embedding
methods to embed road network intersections and segments. However, a
few road network embedding methods—designed specifically for embedding
road network intersections and segments—have been developed in parallel
with (general) network embedding methods. We proceed to review these
methods.

Shahabi, et al. [4] use embeddings of intersections to improve the accu-
racy of k-nearest neighbor queries that find the k nearest points of interest for
moving vehicles. Specifically, they embed intersections s.t. the shortest-path
distance between two intersections is better approximated by the Linf distance
between the embedded intersections than by the Euclidean distance between
their geographical points. Liu et al. [5] further extend this approach to sup-
port private k-nearest neighbor queries, where the exact location of a vehicle
is hidden. As in our setting, only the road network structure is available, but
we investigate whether network embedding methods may be applicable for a
wider variety of road network tasks whereas [5] aim to produce vectors that
preserve a distance relationship between intersections for a specific task.

Road2Vec [3] learns embeddings of road segments that capture traffic in-
teractions. A traffic interaction between two road segments happens when

36

3. Network Embedding

the road segments co-occur within some distance of each other in a vehicle
GPS trajectory. Using such co-occurrences, road2Vec assigns similar vector
representations in the embedding space to road segments that interact fre-
quently. Road2Vec requires a set of vehicle trajectories that covers all road
segments in the road network to be able to learn meaningful similarities be-
tween road segments. This cannot be expected in general [7] and in our
setting GPS trajectories are not available.

Another road segment embedding method, by Fruensgaard and Jepsen [2],
relies on attribute information from nodes and edges in random walks to gen-
erate an embedding. Rather than capturing traffic interactions, this method
captures a notion of structural equivalence between road segments based on
the attributes of their surrounding road segments. They demonstrate that
their method achieves superior performance on trip travel time prediction
tasks compared to approaches based on traditional feature engineering with
similar development effort [2]. This method and Road2Vec are quite simi-
lar to the network embedding method, node2vec, that we use in our case
study. Like node2vec, these methods rely on samples of neighborhoods from
the road network, either in the form of GPS trajectories or walks, and use
techniques from natural language processing to produce the embeddings.
However, contrary to our setting, this method assumes the presence of rich
attribute information.

3 Network Embedding

We proceed to give the relevant background in network embedding. We first
give a general introduction to network embedding, and describe node2vec in
detail. We then briefly review other selected methods.

3.1 A General Introduction

Let G = (V, E) be the graph representation of a network. A network em-
bedding is a function φ : V ∪ E −→ Rd that maps network elements to d-
dimensional vectors. Network embedding methods often aim to learn a node
embedding, but an edge may be embedded by aggregating the embeddings
of the edge’s incident nodes [11]. For instance, an embedding of an edge
(v1, v2) can be found by concatenating the embeddings of its source and tar-
get nodes: φ(v1, v2) = [φ(v1)φ(v2)].

Deriving edge embeddings from node embeddings is useful for link pre-
diction in social networks, where the task is to predict the existence of a
missing edge [11]. If all edges are known, an edge embedding can instead be
produced by learning a node embedding for the dual graph representation

37

Paper A.

of the network. In both cases, network embedding methods can be used to
embed road segments.

Network embedding methods aim to map similar network elements to
similar vector representations in the embedding space by optimizing an ob-
jective function that specifies the notion of similarity. In particular, network
embedding methods find the node embedding φ that maximizes the follow-
ing objective [10–13]:

∑
v∈V

log
(

Pr(N(v) | φ(v))
)

, (A.1)

where N(v) is the neighborhood of node v and Pr(N(v) | φ(v)) is the prob-
ability of observing the neighborhood N(v) of v given its feature represen-
tation φ(v). The probability Pr(N(v) | φ(v)) is computed using the softmax
function [11] or some approximation thereof. Other similar objectives have
also been considered [14–16, 18].

The notion of neighborhood is not restricted to immediate neighbors,
and many methods sample neighborhoods using random walks [10–12, 18].
In such cases, the notion of node neighborhood is defined in terms of a
set of walks across the node s.t. given a walk (v1, . . . , vn), the neighbor-
hood of a node vi is the c preceding and succeeding nodes in the walk
{vi−c, . . . , vi−1, vi+1, . . . , vi+c}, where c is the context size. Neighborhood
sampling using random walks can scale to very high-degree networks; exam-
ples include social networks where nodes have thousands or even millions of
neighbors1.

Maximizing Equation A.1 results in an embedding that is optimized to
preserve node neighborhoods (according to N(v)) in the embedding space [11,
12]. Intuitively, Equation A.1 suggests that the similarity between two nodes
u and v in the embedding space is proportional to the size the overlap of their
neighborhoods. For such an embedding to be useful, the underlying network
must exhibit homophily: the tendency of network elements to be connected to
similar network elements [12]. From the perspective of a supervised learning
task, homophily means that neighboring nodes are likely to have the same
label. An embedding that preserves node neighborhoods places neighboring
nodes close in the embedding space and therefore produces useful feature
vectors for subsequent machine learning under the homophily assumption.

We anticipate that producing a good embedding for road networks while
relying on neighborhood preservation is difficult for three reasons. First, a
road network is a spatial construct and inaccuracies in the spatial representa-
tion of a road network may result in false or missing edges in the graph rep-
resentation. Next, countries such as Denmark have islands that may result in
disconnected subgraphs. The effect of such subgraphs on the training of the

1The YouTube account on Twitter has 70.6 million followers at the time of writing.

38

3. Network Embedding

network embedding is not immediately obvious, but it may add noise to the
training procedure, resulting in a reduced degree of neighborhood preserva-
tion. Finally, island nodes and main land nodes are not similar according to
Equation A.1 since they are neither neighbors nor share neighbors.

3.2 node2vec

We use the embedding method node2vec in our case study. We first dis-
cuss node2vec’s training objective and then proceed to look at the flexible
sampling strategy employed by node2vec.

First, node2vec optimizes Equation A.1 directly and uses random walks
to represent node neighborhoods. For each node v in a graph, node2vec
samples r walks of maximum length l starting from v s.t. the next node visited
in the walk is chosen at random among the neighbors of the last node in
the walk. Therefore, the neighborhood of a node v is distributed over the
walks. To illustrate this, we rewrite Equation A.1 to reflect this distributed
neighborhood in Equation A.2. Note that Equation A.2 assumes that the
neighborhoods of a node v w.r.t. each walk are conditionally independent
given φ(vi).

∑
W∈W

∑
vi∈W

log
(

Pr
(

NW(vi) | φ(vi)
))

(A.2)

Here, W is a set of r · |V| walks W = {v1, . . . , vk} s.t. k ≤ l and NW(vi) =
{vi−c, . . . , vi−1, vi+1, . . . , vi+c} is the neighbors of node vi with respect to walk
W. The context size c adjusts the number of preceding and succeeding nodes
in the walk to consider the neighbors of vi. In general, c should be selected
s.t. 2c << l to avoid frequently padding NW(vi) with ”null” nodes.

Next, node2vec samples w walks with a maximum length of l using a
second-order biased random walk, where w and l are hyperparameters of
node2vec. Given that the random walk has just traversed an edge (vi−1, vi)
in an unweighted graph and now resides at node vi, the probability of visiting
a node vi+1 is [11]:

Pr(vi+1 | vi, vi−1) =
1
Z
·


1
p if d(vi−1, vi+1) = 0

1 if d(vi−1, vi+1) = 1
1
q if d(vi−1, vi+1) = 2

0 if (vi, vi+1) /∈ E

, (A.3)

Here, Z is a normalization constant and d(u, v) returns the distance between
two nodes u and v. p and q are hyperparameters that change the behavior
of the walk to behave as a Breadth-First Search (BFS), Depth-First Search
(DFS), or something in-between. A BFS emphasizes homophily and a DFS

39

Paper A.

emphasizes structural equivalence as the type of similarity to capture in the
embeddings [11].

The return parameter p adjusts the probability of revisiting the previous
node vi−1 in the walk and restricts the number of different nodes visited
in the search. Low values of q is equivalent to restricting the search depth
in a DFS and equivalent to restricting the number of neighbors to explore
in a BFS. The in-out parameter q adjusts the probability of visiting different
neighbor of vi−1. In effect, q adjust the behavior of the walk to become more
BFS-like at high values and more DFS-like at low values.

Although node2vec can capture structural equivalence to some extent,
even using an actual DFS to sample neighborhoods results in neighborhoods
that can include nodes up to a maximum distance of c. Thus, the struc-
tural equivalence emphasized by the walks is local to the area of the network
from which it is sampled. This makes the walks unable to capture struc-
tural equivalences between, e.g., bridges that are far apart in the network,
and thus node2vec still primarily relies on homophily in networks with large
diameters such as country-sized road networks.

The embedding function φ is generated using a single-layer neural net-
work. A node vi is embedded in the d hidden units of the (hidden) embed-
ding layer. The resulting d-dimensional embedding is then used to predict
vi’s neighbors (w.r.t. a walk) at the output layer by using the softmax func-
tion (or some approximation thereof) to compute the probability Pr(NW(vi) |
φ(vi)) in Equation A.2.

3.3 Other Approaches

The discussion of network embedding methods has thus far been relatively
focused. For completeness, we briefly review other approaches to network
embedding; however, we note that all of the following methods to some ex-
tent preserves node neighborhoods as in Equation A.1. Fundamentally, net-
work embedding methods differ primarily in either the choice of neighbor-
hood function or in how (and if) they incorporate node or edge attributes in
the embedding.

Alternative Neighborhood Function

So far, a node neighborhood has been expressed as all nodes within c hops
of a node or some subset thereof. As discussed previously, this leads to a
neighborhood preserving embedding. The struc2vec embedding method [12]
changes the neighborhood sampling procedure by sampling walks from a
multi-layered graph. A node v in a layer k, is connected by an edge to all
nodes at exactly distance k; hence each layer represents the neighborhood of
v at different ”zoom” levels. The walk can choose to stay at the current layer

40

4. Experimental Study

or to proceed to a higher layer depending on a heuristic designed to preserve
structural similarity. This enables struc2vec to effectively skip nodes in the
walk. The worst-case time and space complexities of struc2vec are O(|V|3)
and O(|V|2), respectively. These complexities can be improved significantly
through various optimization methods, but continues to be super-linear [12],
which hinders its applicability to large road networks.

Incorporation of Attributes

Network embedding methods that incorporate attributes use them as input
to the embedding method [13, 16] and possibly include a sub-objective in
the objective function that encourages nodes or edges with similar attributes
to obtain similar vector representations in the embedding space [14, 15, 18].
This allows such approaches to compute a notion of similarity even between
disconnected or distant nodes. However, these methods still aim to preserve
node neighborhoods in the embedding space to some extent.

4 Experimental Study

To investigate the suitability of network embedding methods for road net-
work analysis, we evaluate the node2vec method on two road segment clas-
sification tasks and report the results.

The existing embedding literature commonly uses linear classifiers to em-
phasize the quality of the embedding over the complexity of the classifier,
and typically such classifiers achieve high classification performance. This
suggest that network embedding methods tend to make the classification
problems in the literature linearly separable in the embedding space. Given
that such methods are typically applied to, e.g., social networks, that exhibit
characteristics different from road networks, it is not clear whether linear
separability in the embedding space extends to road networks. We therefore
investigate whether this property is present for the classification tasks that
we consider.

Network analysis tasks typically depend on homophily or structural equiv-
alence as the notion of similarity [11]. To investigate which type of similarity
is appropriate for road network analysis tasks, we exploit the interpretability
of the node2vec random walk parameters p and q, as discussed in Section 3.2,
by investigating the impact of these parameters on classification performance.
We also investigate the impact of the node2vec architecture parameters, the
dimensionality d and context size c, to gain insight into how changes in the
node2vec architecture influences classification performance.

The success of most existing network embedding methods is due to the
presence of strong homophily in many real networks [12]. In our data set,

41

Paper A.

the individual classes exhibit different degrees of homophily, which suggest
that this is problematic for network embeddings methods. We therefore in-
vestigate the relationship between homophily and classification performance
on individual classes.

4.1 Data Set

We have extracted the spatial representation of the Danish road network from
OSM [6]. We represent the road network as a directed multigraph, where
each node represents an intersection or the end of a road and each edge
(u, v) represents a road segment that enables travel from node u to node v.
This yields a graph consisting of 583, 816 nodes and 1, 291, 168 edges.

The data from OSM contains two road segment attributes, road category
and speed limit. We further augment the data set with additional speed limit
information from the Danish municipalities of Aalborg and Copenhagen.
This results in 1, 291, 168 road segments (i.e., all edges) labeled with one of 9
road categories and 163, 043 road segments (~13% of all edges) labeled with
one of 10 speed limits. We also note that the speed limits are not distributed
evenly geographically: speed limits in major cities are over-represented in the
data.

As discussed in Section 3, network embedding methods are suited for
networks that are homophilic w.r.t. the attributes of interest. We therefore
measure the homophily for both the road category and speed limit attributes.

We measure the homophily of an attribute value a in a directed network
G = (V, E) as the empirical probability that an edge e1 = (u, v) is adjacent to an
edge e2 = (v, w) that has attribute value A(e2) = a given that e1 has attribute value
A(e1) = a, i.e.,

Hc
G = Pr(A(v, w) = a | A(u, v) = a)

= ∑
(u,v)∈E

∑
(v,w)∈E

1[A(u, v) = A(v, w)]

Z
,

where A(v1, v2) is the attribute value of an edge (v1, v2) and Z is a normal-
ization constant.

We compute the homophily of network G with regards to an attribute
A = {a1, . . . , am} as follows.

HA
G = ∑

a∈A

Ha
G
|A|

We summarize the data set statistics in Table 1. As can be seen, there is a
homophily of HL

G = 72.3% for road categories and HL
G = 75.8% for speed

limits. A notable outlier is the road category ”Motorway Approach/Exit”
which has a homophily of 36.8%.

42

4. Experimental Study

Table 1: Data Set Statistics for Road Categories and Speed Limits

Class Homophily Frequency

Road Categories
Residential 90.4% 570, 820 (44.2%)
Service 72.7% 278, 985 (21.6%)
Unclassified 78.0% 257, 726 (20.0%)
Tertiary 70.2% 103.830 (8.04%)
Secondary 70.6% 52, 021 (4.03%)
Primary 71.7% 22, 255 (1.72%)
Motorway 78.2% 2, 236 (0.173%)
Motorway Approach/Exit 36.8% 1, 749 (0.135%)
Trunk 81.7% 1, 546 (0.120%)

Mean/Total 72.3% 1, 291, 168 (100%)

Speed Limits
50 82.2% 85, 377 (52.4%)
80 73.1% 37, 750 (23.2%)
40 79.7% 11, 830 (7.26%)
60 64.9% 10, 112 (6.20%)
30 78.4% 9, 093 (5.58%)
70 63.2% 4, 481 (2.75%)
20 80.7% 1, 383 (0.848%)
110 70.5% 1, 103 (0.677%)
90 72.9% 1, 087 (0.664%)
130 71.5% 827 (0.507%)

Mean/Total 75.8% 163, 043 (100%)

4.2 Experiment Design

We use the node2vec [11] embedding to classify road categories and speed
limits as follows.

1. We first sample r = 10 walks, starting from each intersection in the road
network, with a maximum length of l = 80 using the biased random
walk in Equation A.3 parameterized by the return parameter p and the
in-out parameter q.

2. We then learn the embedding using these walks as input.

3. Finally, we train a classifier for each of the road segments classification
tasks using these embeddings.

To investigate the linear separability in the embedding space, we consider
both a linear and a non-linear classifier:

• a one-vs-rest logistic regression model as in the original node2vec pa-
per [11], and

• a random forest classifier [19], a powerful ensemble model, with 10
decision trees.

After learning the embedding, we generate a feature vector for each road
segment by concatenating the embeddings of its source and target nodes as

43

Paper A.

discussed in Section 3. For both road category and speed limit classification,
we randomly choose 50% of the labels without replacement for training and
use the remaining 50% for testing. To deal with the large class imbalance in
our data set (see Table 1), we randomly over-sample all classes with replace-
ment s.t. the frequency of all classes in the training set match the frequency
of the majority class. We then train road category and speed limit classi-
fiers using these feature vectors to represent each labeled road segment in
the over-sampled training set. Finally, we evaluate the classifier on the two
road segment classification tasks using the macro F1 score, which is com-
monly used in the network embedding literature [10, 11, 13, 18]. The macro
F1 scores punishes poor performance equally across all classes, rather than
rewarding good performance on the very frequent classes in our imbalanced
data set.

To find the best node2vec parameter configuration for each of the clas-
sifiers, we learn node2vec embeddings with different configurations of re-
turn parameter p, the in-out parameter q, the context size c, and the di-
mensionality d. We explore configurations based on the following possi-
ble parameter values: p ∈ {0.25, 0.5, 1, 2, 4}, q ∈ {0.25, 0.5, 1, 2, 4}, c ∈
{1, 5, 10, 15, 20, 25, 30}, and d ∈ {64, 128, 256}. We use the baseline values
of return parameter p = 1, in-out parameter q = 1, and context size c = 10.
We then explore different values for p, q, and c at different values of d while
keeping the other two parameters at their baseline values. Although use of
these parameter configurations does not result in an exhaustive search of the
parameter space, they do allow us to evaluate the impact of each param-
eter on classification performance. Finally, the c and d parameters do not
influence the walk sampling procedure, and we therefore reuse walks for
parameter configurations that have the same p and q values.

To establish baseline performances for evaluation, we use two simple clas-
sifiers that classify road segments using only the statistics of the training set:

• Most Frequent: Always predicts the most frequent class in the training
set.

• Empirical Sampling: Draws a class at random from the empirical distri-
bution of classes in the training set.

4.3 Road Segment Classification

We show the performance of the best performing node2vec parameter con-
figuration for road category and speed limit classification using logistic re-
gression and random forests (with baselines for comparison) in Figure 2. As
can be seen, the choice of classifier has a large impact on classification per-
formance. The macro F1 score using a random forest is 0.57 for road category
classification and 0.79 speed limit classification. This is roughly three times

44

4. Experimental Study

Random Forest
p = 1.0 q = 1.0
c = 30 d = 64

Logistic Regression
p = 1.0 q = 1.0
c = 25 d = 64

Empirical
Sampling

Most
Frequent

0.0

0.2

0.4

0.6

0.8

1.0
M

ac
ro

 F
1 S

co
re

Test Score
Training Score

(a) Road Category Classification.

Random Forest
p = 1.0 q = 1.0
c = 30 d = 64

Logistic Regression
p = 1.0 q = 1.0
c = 30 d = 256

Empirical
Sampling

Most
Frequent

0.0

0.2

0.4

0.6

0.8

1.0

M
ac

ro
 F

1 S
co

re

Test Score
Training Score

(b) Speed Limit Classification.

Fig. 2: Macro F1 scores on the training and test sets for the best performing embedding for each
classifier with baselines for comparison on (a) road category classification and (b) speed limit
classification.

higher than the score achieved using logistic regression, and 8.3 and 11.5
times higher than the two baselines, respectively. We expect that these results
can be improved by choosing appropriate p and q parameter values, as we
shall discuss in Section 4.5. In addition, the random forest achieves a near-
perfect score on the training set for both tasks, which suggests that it is over-
fitting and could conceivably achieve even higher performance by tuning its
hyperparameters. On the other hand, the logistic regression model achieves,
roughly equal performance on the training and test sets for both classification
tasks, and is only marginally better than the Empirical Sampling baseline on
road category classification, as shown in Figure 2a.

4.4 Linear Separability

It is not surprising that the random forest model outperforms the logistic re-
gression model given that the random forest uses advanced ensemble learn-
ing techniques, such as boosting. However, the low score on both training
and test sets shown in Figure 2 suggests that the logistic regression model
is both unable to fit the training data and generalize to the test data. This
suggests that the logistic regression model is unable to find good linear de-
cision boundaries and thus that the classes are not linearly separable in the
embedding space.

We investigate the linear separability in the embedding space in detail
by embedding the road network of Aalborg Municipality, Denmark, using
node2vec with baseline parameters and visualizing the position of the road
segments in the embedding space by reducing the dimensionality of their fea-
ture vectors. We use Barnes-Hut t-SNE [20] to project the feature vectors into
two dimensions and plot them in Figure 3. Each point in the plot represents
a directed road segment, and is colored according to its road category. For
illustrative purposes, we cover only four of the road categories in the plot.

45

Paper A.

As can be seen in Figure 3a, road categories are not well-separated in the
two-dimensional t-SNE projection. The residential road segments are scat-
tered almost uniformly over the embedding space, and the remaining cate-
gories are scattered in several smaller clusters. Each such cluster corresponds
to a homophilic neighborhood (or area) in the road network. For instance, the
cluster of secondary road segments highlighted in Figure 3a corresponds to
the 57 road segments highlighted in red in Figure 3b. These scattered clusters
suggest that it is difficult to find good linear decision boundaries for the lo-
gistic regression model, which is further supported by its poor performance
on both the training and test sets as shown in Figure 2.

The lack of separation in the embedding space reflects the lack of sepa-
ration in the road networks due to the neighborhood preserving properties
of the embedding method: for example, several clusters of secondary seg-
ments can be found in different areas of the road network. Although we have
focused the discussion on road categories, speed limits show a similar data
distribution.

Given that logistic regression is unable to find linear decision boundaries
in the embedding space that are competitive with the random forest classifier,
we focus on the random forest classifiers for our experimental results in the
remainder of the paper.

46

4. Experimental Study

(a) Embedded road segments.

(b) Spatial representations of the framed cluster in Figure 3a.

Fig. 3: Two-dimensional t-SNE projections of the road segment embeddings in Aalborg Munici-
pality.

47

Paper A.

4.5 Homophily or Structural Equivalence

Next, we examine how the return parameter p and the in-out parameter q
influences classification performance.

Recall from Section 3.2 that low values of p increases the probability of
revisiting the previous node in the walk and that the parameter q makes the
walk behave like a DFS for low values of q and like a BFS for high values of
q. Intuitively, p controls the breadth or depth of the search in terms of how
many different nodes are visited, while q controls to which extent the random
walk behaves more like a BFS or a DFS. In addition, recall that a BFS-like
walk emphasizes homophily in the embedding space and a DFS-like walk
emphasizes structural equivalence (but restricted by the neighborhood de-
fined by the walk). Thus, this structural equivalence is local, in the sense that
structural equivalence between, e.g., bridges in different parts of the coun-
try cannot be captured in networks with large network diameter. However,
node2vec may still provide insight into the appropriate type of similarity for
the road segment classification tasks.

We plot the classification performance for the random forest classifier for
different values of p and q on the two road segment classification tasks in
Figure 4. As shown in the figure, classification performance is highest at
high values of p and low values of q, regardless of the dimensionality. The
high performance at high values of p suggests that exploring more nodes
in the walk sampling procedure is beneficial. The high performance at low
values of q suggests that a DFS-like neighborhood exploration is superior to
a BFS-like neighborhood exploration. We do not reach a saturation point for
the q values which suggest that the more DFS-like the walk, the better. Thus,
our results suggest that structural equivalence should be emphasized over
homophily in the embedding space.

We make the additional observation that p and q adversely affect each
other in Equation A.3: a high p value reduces the probability of visiting a
node at distance two from the previously visited node and a high q value re-
duces the probability of returning to a previously visited node. We therefore
propose that the ratio between these parameters is more important than their
absolute values.

For the parameter configurations we explore in our experiments, a ratio
of, e.g., p

q = 4 can occur for values p = 1 and q = 0.25 or values p = 4 and
q = 1. We therefore plot the data points for both the case where p > q and
the case where q > p by taking the mean of their associated macro F1 scores;
see Figure 5. We also investigated whether p > q should be preferred over
q > p for each ratio, but we found no trend for the values that we examined
to suggest that one combination of p and q values should be preferred over
the other given that they have the same p

q ratio.

As shown by the figure, a larger p
q ratio results in a higher classifica-

48

4. Experimental Study

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Parameter Value (p or q)

0.375

0.400

0.425

0.450

0.475

0.500

0.525

M
ac

ro
 F

1 S
co

re
 (p

)

0.375

0.400

0.425

0.450

0.475

0.500

0.525

M
ac

ro
 F

1 S
co

re
 (q

)

d = 64 d = 128 d = 256 p q

(a) Road Category Classification.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Parameter Value (p or q)

0.525

0.550

0.575

0.600

0.625

0.650

0.675

0.700

0.725

M
ac

ro
 F

1 S
co

re
 (p

)

0.525

0.550

0.575

0.600

0.625

0.650

0.675

0.700

0.725

M
ac

ro
 F

1 S
co

re
 (q

)

d = 64 d = 128 d = 256 p q

(b) Speed Limit Classification.

Fig. 4: The effects of p (dashed) and q (dotted) on (a) road category classification and (b) speed
limit classification using a random forest classifier.

49

Paper A.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
p
q

0.55

0.60

0.65

0.70

0.75
M

ac
ro

 F
1 S

co
re

d = 64
d = 128
d = 256

Fig. 5: The relationship between p
q and classification performance on the speed limit classifica-

tion task using a random forest classifier.

tion performance on the speed limit classification task. We observe the same
pattern on road category classification. This suggests that emphasizing struc-
tural equivalence in the embedding space is more important than emphasiz-
ing homophily for the tasks we consider which is consistent with our previ-
ous observations on the values of p and q.

4.6 Architectural Parameters

We also investigate the impact of context size c and dimensionality d on clas-
sification performance. These parameters adjust the amount of neighborhood
information available and the number of weights available for node2vec.

The context size c and the return parameter p serve somewhat similar
roles since they both control the number of different nodes included in the
neighborhood: large values of c include more nodes from the walks in the
node neighborhood whereas small values of p makes it less likely that we
revisit nodes and thus increases the number of different nodes that occur in
the neighborhood of a node. We therefore expect that larger context sizes
results in higher performance.

We plot the performance of the random forest classifier on speed limit
classification at different context sizes in Figure 6. As the figure shows, the
performance is initially low with a context size of c = 1, but quickly increases
as c increases until performance starts to flatten at c = 15. We observe the

50

4. Experimental Study

0 5 10 15 20 25 30
Context Size c

0.3

0.4

0.5

0.6

0.7

0.8
M

ac
ro

 F
1 S

co
re

d = 64
d = 128
d = 256

Fig. 6: Classification performance at different context sizes on the speed limit classification task
using a random forest classifier.

same trend on road category classification.
Although our results indicate that larger context sizes yield superior or

equivalent performance, we expect that very large context sizes can intro-
duce noise. This could happen if the context size is sufficiently large that
otherwise different intersections (and road segments) in different parts of the
network have large overlaps between their neighborhoods. From the perspec-
tive of the optimization problem in Equation A.1, this renders them nearly
indistinguishable.

Dimensionality does not influence our conclusions regarding the impact
of the other node2vec parameters on classification performance. For the ran-
dom forest classifier, the lowest dimensionality d = 64 performs up to 20%
better than d = 128 and d = 256 depending on the choice of p and q, as
shown in Figure 4. d = 64 is also the highest performing dimensionality of d
at different context sizes, except at a context size of c = 5, as shown in Fig-
ure 6. We suspect this is because the random forest is more prone to overfit
the training set for larger values of d.

4.7 Homophily and Classification Performance

As shown in Table 1, there is a skew in the class homophilies for road cate-
gories. In particular, the category ”Motorway Approach/Exit” exhibits sub-
stantially lower homophily than the other road categories. We observe that
speed limits exhibit both higher homophily on average and higher classifica-

51

Paper A.

Table 2: Homophily and F1 scores for each road category using the best random forest classifier.

Class Homophily F1 Score

Residential 90.4% 0.83
Trunk 81.7% 0.67
Motorway 78.2% 0.62
Unclassified 78.0% 0.62
Service 72.7% 0.56
Primary 71.7% 0.57
Secondary 70.6% 0.54
Tertiary 70.2% 0.52
Motorway Approach/Exit 36.8% 0.25

tion performance in our experiments. As discussed in Section 3, the network
embeddings assume homophily in the network and this assumption is the
primary driver for their success. We therefore expect that the random forest
classifier achieves higher performance on road categories such as ”Residen-
tial” that exhibits strong homophily than road categories such as ”Motorway
Approach/Exit” that exhibits weaker homophily.

As shown in Table 2, there is a near-perfect correspondence between the
road categories as ordered by their homophily and macro F1 scores. ”Res-
idential” and ”Motorway Approach/Exit” has the highest and lowest F1
scores of 0.83 and 0.25, respectively. The only discrepancy is between the
”Service” and ”Primary” categories, where ”Primary” has slightly higher F1
score (0.57) than ”Service” (0.56), despite having a slightly lower homophily.
This discrepancy may be due to randomness in the training process or dispar-
ity between the notion of neighborhoods employed in the homophily mea-
sure: we measure homophily based only on the immediate neighbors of a
road segment, but the embedding is trained using random walks to represent
the node neighborhoods that do not correspond to immediate neighbors. We
observe the same pattern for speed limits.

In conclusion, the results in Table 2 suggests that the classification perfor-
mance depends strongly on the homophily in the network and that classifier
performance is skewed in favor of classes that exhibit strong homophily.

5 Discussion, Conclusion, and Future Work

We have investigated the suitability of network embedding methods for ma-
chine learning on information-sparse road networks by evaluating an exist-
ing network embedding method, node2vec, for road category and speed limit
classification in the Danish road network.

52

5. Discussion, Conclusion, and Future Work

We have shown that it is possible to achieve macro F1 scores of 0.57 and
0.79 on road category classification and speed limit classification, respectively.
Depending on the task, these scores are between 8.3 and 11.5 times higher
than guessing the most frequent class in the training set. Furthermore, our
results suggests that this performance can be increased further by appropri-
ate parameter tuning of both node2vec and the used classifier. This suggests
that network embedding methods may be useful at extracting structural in-
formation from not only social networks, but also road networks.

Some degree of linear separability is implied by the prolific use of linear
classifiers in the network embedding literature. We therefore investigated
linear separability in the embedding space for our tasks. For both classifica-
tion tasks, we found that we were unable to fit the training set or generalize
to the test using a linear classifier. By visualizing the embedding space, we
found that the members of each class are distributed across several scattered
clusters in the embedding space, which reflects the geometric distribution of
classes in the network, and suggests that it is difficult to find good linear
decision boundaries in the embedding space.

We explored the classification performance for different node2vec param-
eter configurations. We found that the impact of the return parameter p
and in-out parameter q on classification performance suggests that structural
equivalence, as opposed to homophily, is the more appropriate type of simi-
larity. We also evaluated the other parameters, and found that the dimension-
ality of the embeddings becomes increasingly more important at high values
of p and low values of q, with a preference for low dimensionality for the
non-linear classifier and a preference for high dimensionality for the linear
classifier. In addition, it is preferable to include more nodes in the node2vec
neighborhood function by using large context sizes, although we expect that
large context sizes introduce noise in the embeddings.

Finally, we investigated the relationship between the class homophily and
classification performance. We found that classification performance is bet-
ter on classes with high homophily than classes with low homophily, and
which we propose is a result of node2vec’s neighborhood preservation in the
embedding space and the corresponding homophily assumption.

We expect that our findings generalize to other network embedding meth-
ods. Specifically, node2vec is a neighborhood preserving network embedding
method, and, as demonstrated in our experiments, it tends to achieve higher
performance on tasks and classes with higher homophily. As discussed in
Section 3, network embedding methods preserve node neighborhoods in the
embedding space as either the main objective or as a sub-objective in combi-
nation with attribute information. We therefore expect that we can achieve
similar or better results using different network embedding methods.

The tasks that we have examined exhibit strong homophily. In addition,
the classes in our data set are scattered in clusters in different areas of the

53

References

road network. We therefore expect that our findings generalize to tasks that
are similar w.r.t. homophily and data distribution in the network. For in-
stance, driving speeds correlate between adjacent segments [1], and driving
speeds in, e.g., two distant cities are often similar.

We propose that further attention should given to embedding methods
for road networks with sparse information. To the best of our knowledge, no
network embedding method exists that can leverage the spatial information
of road networks. In our data set, road segments may be as short as a few
meters for road segments in roundabouts and as a long as several kilometers
for motorways. This means that, e.g., the context size has different mean-
ing for different intersections. Future work in network embedding should
therefore explore the utilization of the spatial information.

We also found that it is hard to predict the road category of motorway
approaches and exits due to their low homophily. This particular road cat-
egory has low homophily because road segments of this category connect
different categories of road segments, e.g., motorways to highways, or vice
versa. Thus, motorway approaches and exits play a particular role in the road
network, and structural equivalence as a notion of similarity may be much
better suited for this road category. On the other hand, residential road seg-
ments are strongly homophilic and appear much better suited for homophily
as a notion of similarity. This suggests that there is a need for road net-
work embedding methods that can capture both structural equivalence and
homophily, and balance these notions of similarity for each class.

Acknowledgments

This research was supported in part by the DiCyPS project and by grants
from the Obel Family Foundation and the Villum Foundation. We thank
the OpenStreetMap (OSM) contributors, without whom this work would not
have been possible. Map data copyrighted OpenStreetMap contributors and
available from https://www.openstreetmap.org.

References

[1] J. Zheng and L. M. Ni, “Time-dependent trajectory regression on road
networks via multi-task learning,” in Proc. of AAAI, 2013, pp. 1048–1055.

[2] M. Fruensgaard and T. S. Jepsen, “Improving cost estimation models
with estimation updates and road2vec: a feature learning framework
for road networks,” Master’s thesis, Aalborg University, 2017.

54

https://www.openstreetmap.org

References

[3] K. Liu, S. Gao, P. Qiu, X. Liu, B. Yan, and F. Lu, “Road2Vec: Measuring
Traffic Interactions in Urban Road System from Massive Travel Routes,”
IJGI, vol. 6, no. 11, 2017, article No. 321.

[4] C. Shahabi, M. R. Kolahdouzan, and M. Sharifzadeh, “A road network
embedding technique for k-nearest neighbor search in moving object
databases,” GeoInformatica, vol. 7, no. 3, pp. 255–273, 2003.

[5] F. Liu, Y. H. Ho, and K. A. Hua, “Privacy protected query processing
with Road Network Embedding,” in Proc. of AINA, 2011, pp. 481–487.

[6] OpenStreetMap contributors, “Planet dump retrieved from
https://planet.osm.org,” 2014.

[7] B. Yang, M. Kaul, and C. S. Jensen, “Using Incomplete Information for
Complete Weight Annotation of Road Networks,” TKDE, vol. 26, no. 5,
pp. 1267–1279, 2014.

[8] E. I. Vlahogianni, M. G. Karlaftis, and J. C. Golias, “Short-term traffic
forecasting: Where we are and where we’re going,” Transportation Re-
search Part C: Emerging Technologies, vol. 43, pp. 3–19, 2014.

[9] W. L. Hamilton, R. Ying, and J. Leskovec, “Representation learning on
graphs: Methods and applications,” Bulletin of TCDE, vol. 40, no. 3, pp.
52–74, 2017.

[10] B. Perozzi, R. Al-Rfou, and S. Skiena, “DeepWalk: Online Learning of
Social Representations,” in Proc. of SIGKDD, 2014, pp. 701–710.

[11] A. Grover and J. Leskovec, “node2vec: Scalable Feature Learning for
Networks,” in Proc. of SIGKDD, 2016, pp. 855–864.

[12] L. F. R. Ribeiro, P. H. P. Saverese, and D. R. Figueiredo, “struc2vec:
Learning Node Representations from Structural Identity,” in Proc. of
SIGKDD, 2017, pp. 385–394.

[13] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive Representation
Learning on Large Graphs,” in Proc. of NIPS, 2017, pp. 1024–1034.

[14] X. Huang, J. Li, and X. Hu, “Label Informed Attributed Network Em-
bedding,” in Proc. of WSDM, 2017, pp. 731–739.

[15] C. Tu, H. Liu, Z. Liu, and M. Sun, “CANE: Context-Aware Network
Embedding for Relation Modeling,” in Proc. of ACL, vol. 1, 2017, pp.
1722–1731.

[16] L. Liao, X. He, H. Zhang, and T.-S. Chua, “Attributed Social Network
Embedding,” TKDE, 2018, in Press.

55

Paper A.

[17] M. Qu, J. Tang, J. Shang, X. Ren, M. Zhang, and J. Han, “An Attention-
based Collaboration Framework for Multi-View Network Representa-
tion Learning,” in Proc. of CIKM, 2017, pp. 1767–1776.

[18] S. Pan, J. Wu, X. Zhu, C. Zhang, and Y. Wang, “Tri-Party Deep Network
Representation,” in Proc. of IJCAI, 2016, pp. 1895–1901.

[19] L. Breiman, “Bagging predictors,” Machine Learning, vol. 24, no. 2, pp.
123–140, 1996.

[20] L. van der Maaten, “Accelerating t-sne using tree-based algorithms,”
vol. 15, pp. 3221–3245, 2014.

56

Paper B

Graph Convolutional Networks for Road Networks

Tobias Skovgaard Jepsen Christian S. Jensen
Aalborg University Aalborg University

Thomas Dyhre Nielsen
Aalborg University

This paper is published in the
Proceedings of the 27th ACM SIGSPATIAL International Conference on

Advances in Geographic Information Systems,
pp. 460–463, 2019.

Paper B.

Abstract

The application of machine learning techniques in the setting of road networks holds
the potential to facilitate many important transportation applications. Graph Con-
volutional Networks (GCNs) are neural networks that are capable of leveraging the
structure of a network. However, many implicit assumptions of GCNs do not apply
to road networks.

We introduce the Relational Fusion Network (RFN), a novel type of GCN
designed specifically for road networks. In particular, we propose methods that sub-
stantially outperform state-of-the-art GCNs on two machine learning tasks in road
networks. Furthermore, we show that state-of-the-art GCNs fail to effectively lever-
age road network structure on these tasks.

© 2020 Tobias Skovgaard Jepsen, Christian S. Jensen, and Thomas Dyhre
Nielsen.

58

1. Introduction

Fig. 1: Volatile homophily in a three-way intersection.

1 Introduction

Machine learning on road networks can facilitate important transportation
applications such as traffic forecasting [1], speed limit annotation [2], and
travel-time estimation. However, machine learning on road networks is dif-
ficult due to the low number of attributes, often with missing values, that
typically are available [2]. This lack of attribute information can be allevi-
ated by exploiting the network structure into the learning process [2]. To
this end, we propose the Relational Fusion Network (RFN), a type of Graph
Convolutional Network (GCN) designed specifically for road networks.

GCNs are neural networks that operate directly on graph representations
of networks. GCNs can in theory leverage road network structure by aggre-
gating over a road segment’s neighborhood when computing the segment’s
representation, e.g., computing the mean representations of its adjacent road
segments. However, state-of-the-art GCNs are designed for node classifica-
tion tasks in social, citation, and biological networks. Although GCNs have
been highly successful at such tasks, machine learning tasks in road networks
differ substantially.

First, many implicit assumptions in GCN proposals do not hold in the
context of road networks. First, road networks are edge-relational and contain
not only node and edge attributes, but also between-edge attributes that char-
acterize the relationships between road segments (edges). For instance, the
angle between two road segments is informative for travel time estimation
since it influences the time it takes to move from one segment to the other.

Second, GCNs implicitly assume that the underlying network is homophilic
meaning that adjacent road segments tend to be similar, and that changes in
network characteristics, e.g., driving speeds, occur gradually. Although road
networks exhibit homophily, the homophily is volatile in the sense that ho-
mophilic regions have sharp boundaries characterized by abrupt changes in,

59

Paper B.

e.g., driving speeds. In the most extreme case, a region may consist of a
single road segment, in which case there is no homophily. As an example, the
three-way intersection to the right in Figure 1 exhibits volatile homophily.
The two vertical road segments to the right and the road segments connected
to the intersection to the form two regions that each is internally homophilic:
the road segments within each region have similar driving speeds. The two
regions are adjacent, but, a driver moving from one region to the other expe-
riences an abrupt change in driving speed.

Contributions. We introduce the Relational Fusion Network (RFN), a type
of GCN designed specifically to address the shortcomings of state-of-the-art
GCNs in the road network setting.1 A novel relational fusion operator is at
the core of a RFN. This graph convolutional operator aggregates over repre-
sentations of relations instead of over representations of neighbors. To learn
a representation of a relation (u, v), an RFN uses a fusion function that rep-
resents a relation (u, v) by fusing the representations, e.g., attributes, of road
segments u and v and the attributes of their relation (u, v) that describe the
nature of the relationship between u and v. This fusion mechanism allows an
RFN to capture volatile homophily and makes it robust to aberrant neighbors
in small neighborhoods.

RFNs are capable of leveraging node attributes, edge attributes, and between-
edge attributes jointly during the learning process by considering both a node
view and an edge view: two perspectives that capture the relationships between
intersections and road segments, respectively. In comparison, state-of-the-art
GCNs consider at most one of these perspectives and can leverage only one
source of attributes. We evaluate the proposed RFN architecture on two road
segment prediction tasks and find that the RFNs outperform state-of-the-art
GCNs significantly on both tasks. Interestingly, our results suggest that an
RFN can leverage neighborhood information in cases where state-of-the-art
GCNs cannot.

The remainder of the paper is structured as follows. In Section 2, we give
the necessary background on graph modeling of road networks and GCNs.
In Section 3, we describe RFNs in detail. In Section 4, we report on empirical
studies. Finally, we conclude in Section 5.

2 Preliminaries

Road Network Modeling We model a road network as an attributed, di-
rected graph G = (V, E, AV , AE, AB), where V is the set of nodes and E is
the set of edges. Each node v ∈ V represents an intersection (or the end of

1Due to page limitation, we give only an introduction of our method in this paper. See [3] for
a detailed description.

60

2. Preliminaries

A B

C

D

AB

BA

BC CB

DB BD

Fig. 2: The (left) primal and (right) dual graph representations of the three-way intersection to
the right in Figure 1.

a road), and each edge (u, v) ∈ E represents a road segment that enables
traversal from u to v. Next, AV and AE maps intersections and road seg-
ments, respectively, to their attributes. In addition, AB maps a pair of road
segments (u, v), (v, w) ∈ E to their between-segment attributes such as the
angle between (u, v) and (v, w) based on their spatial representation. An ex-
ample of a graph representation of the three-way intersection to the right in
Figure 1 is shown to the left in Figure 2. Attribute information not shown.

Two intersections u and v in V are adjacent if (u, v) ∈ E or (v, u) ∈ E.
Similarly, two road segments (u1, v1) and (u2, v2) in E are adjacent if v1 = u2
or v2 = u1. The function N : V ∪ E −→ 2V ∪ 2E returns the neighborhood,
i.e., the set of all adjacent intersections or road segments, of a road network
element g ∈ V ∪ E. The dual graph representation of G given by GD =
(E, B), where B =

{(
(u, v), (v, w)

)
| (u, v), (v, w) ∈ E

}
is the set of between-

edges. Thus, E and B are the node and edge sets, respectively, in the dual
graph. An example of a dual graph can be seen to the right in Figure 2. For
disambiguation, we refer to G as the primal graph representation.

Graph Convolutional Networks A GCN is a neural network that operates
on graphs and consists of one or more graph convolutional layers. A graph
convolutional network takes as input a graph G = (V, E) and a numeric
node feature matrix XV ∈ R|V|×din , where each row corresponds to a din-
dimensional vector representation of a node. Given these inputs, a GCN
computes an output at a layer k s.t.

H(V,k)
v = σ(Aggregate

k({H(V,k)
n | n ∈ N(v)})W), (B.1)

where σ is an activation function, and Aggregate : 2V → Rdin is an aggregate
function, e.g., a mean. As in XV , each row in H(V,k) is a vector representation
of a node. In some cases, XV is linearly transformed using matrix multipli-
cation with a weight matrix W before aggregation [4], while in other cases,
weight multiplication is done after aggregation [5, 6], as in Equation B.1.

61

Paper B.

Node-
Relational
Fusion

Edge-
Relational
Fusion

H(V,k−1) H(E,k−1) H(B,k−1)

Relational Fusion

(Primal Graph)

Relational Fusion

(Dual Graph)
Feed

Forward

H(V,k) H(E,k) H(B,k)

Fig. 3: Relational Fusion Layer.

3 Relational Fusion Networks

Relational Fusion Networks (RFNs) aim to address the shortcomings of state-
of-the-art GCNs in the context of machine learning on road networks. We
now proceed to give a brief introduction of our method. A more detailed
description may be found in the full paper [3].

3.1 Overview

The basic premise of the RFN is to learn representations based on two dis-
tinct, but interdependent, views: the node-relational and edge-relational views.
An RFN consists of K relational fusion layers, where K ≥ 1. We illustrate a
single relational fusion layer in Figure 3.

Each layer k takes as input the learned node, edge, and between-edge
representations from layer k− 1, denoted by H(V,k−1), H(E,k−1), and H(B,k−1),
respectively. The first layer takes as input the feature matrices XV ∈ R|V|×dV

,
XE ∈ R|E|×dE

, and XB ∈ R|B|×dB
that numerically encode the node, edge, and

between-edge attributes, respectively. Then node-relational fusion and edge-
relational fusion are performed to learn new node and edge representations
H(V,k) and H(E,k) from the node- and edge-relational views, respectively.

Using node-relational fusion, we seek to learn representations of nodes,
i.e., intersections, based on their node attributes and the relationships be-
tween nodes indicated by the edges E in the primal graph GP = (V, E)
and described by their edge attributes. Similarly, we seek to learn repre-
sentations of edges, i.e., road segments, using edge-relational fusion, based
on their edge attributes and the relationships between edges indicated by
the between-edges B in the dual graph GD = (E, B). The relationship be-
tween two adjacent roads (u, v) and (v, w) is described by the attributes of
the between-edge connecting them in the dual graph, including the angle be-
tween them, but also the attributes of the node v that connects them. These
node and edge views are interdependent and can be exploited by RFNs to

62

3. Relational Fusion Networks

leverage node, edge, and between-edge attributes simultaneously.
As illustrated in Figure 3, an RFN captures the interdependence between

the node and edge views by using the node and edge representations from
the previous layer k − 1 as input to the node-relational and edge-relational
fusion in layer k In addition, each layer applies a regular feed-forward neural
network to the between-edge presentations H(B,k−1) to learn new between-
edge representations H(B,k).

3.2 Relational Fusion

We present the pseudocode for relational fusion at the kth layer in Algo-
rithm 2. The operator takes as input a graph G′ = (V′, E′), that is either the
primal or dual graph representation of a road network, along with appro-
priate feature matrices H(V′ ,k−1) and H(E′ ,k−1) that describe nodes and edges
in G′. Then, a new representation is computed for each element v′ ∈ V′ by
first computing relational representations. Given an element v′, each rela-
tion (v′, n′) ∈ N(v′) that v′ participates in, is converted to a relational rep-
resentation. To be explicit, G′ = GP = (V, E), H(V′ ,k−1) = H(V,k−1), and
H(E′ ,k−1) = H(E,k−1) in the case of node-relational fusion. In the case of
edge-relational fusion, G′ = GD = (E, B), H(V′ ,k−1) = H(E,k−1), and H(E′ ,k−1)

combines node and between-edge features, e.g., s.t. the representation of a

between-edge ((u, v), (v, w)) ∈ B is H(E′ ,k−1)
((u,v),(v,w))

= H(B,k−1)
((u,v),(v,w))

⊕ H(V,k−1)
v ,

where ⊕ denotes vector concatenation.

Algorithm 2 The Relational Fusion Operator

1: function RelationalFusion
k(G′ = (V′, E′), H(V ′ ,k−1), H(E′ ,k−1))

2: let H(V ′ ,k) be an arbitrary |V′| × dFk
real feature matrix.

3: for all v′ ∈ V′ do
4: Fv′ ←

{
Fuse

k(H(V ′ ,k−1)
v′ , H(E′ ,k−1)

(v′ ,n′) , H(V ′ ,k−1)
n′) | n′ ∈ N(v′)

}
5: H(V ′ ,k)

v′ ← Aggregate
k(Fv′)

6: H(V ′ ,k)
v′ ← Normalize

k(H(V ′ ,k)
v′)

7: return H(V ′ ,k)

In Algorithm 2, the relational representations at layer k are computed by a
fusion function Fuse

k. For each relation, Fuse
k takes as input representations

of the source v′ and target n′ of the relation, H(V′ ,k−1)
v′ and H(V′ ,k−1)

n′ , respec-

tively, along with a representation H(E′ ,k−1)
(v′ ,n′) describing their relation, and then

it fuses them. The resulting relational representations are subsequently fed to
an Aggregate

k function, that aggregates them into a single representation of

63

Paper B.

v′. Finally, the representation of v′ may optionally be normalized by invoking
the Normalize

k function., e.g., using L2 normalization [6]. This latter step is
particularly important if the relational aggregate has different scales across
elements with different neighborhood sizes.

The relational fusion operator is compatible with many existing aggrega-
tors from the GCN literature, e.g., a mean aggregator [6]. We use a single-
layer perceptron as the fusion function, i.e.,

Fuse
k(H(V′ ,k−1)

v′ , H(V′ ,k−1)
n′ , H(E′ ,k−1)

(v′ ,n′)) =

σ
(
(H(V′ ,k−1)

v′ ⊕H(V′ ,k−1)
n′ ⊕H(E′ ,k−1)

(v′ ,n′))WR + b
)
,

where σ is an activation function, ⊕ denotes row-wise vector concatenation,
WR is a weight matrix, and b is a bias term. We explore aggregator and
fusion function designs in the full paper [3].

4 Experimental Evaluation

To investigate the generality of our method, we evaluate it on two tasks us-
ing the road network of the Danish municipality of Aalborg: driving speed
estimation and speed limit classification. These tasks represent a regression
task and a classification task, respectively.

Many details of the experiments have been omitted due to the page lim-
itation. We refer to the full paper [3] for further information. Our RFN
implementation is available online2.

4.1 Data Set

We extract the spatial representation of the Danish municipality of Aalborg
from OSM [7], and convert it to its primal and dual graph representations as
described in Section 2. We combine the OSM data with a zone map from the
Danish Business Authority3, and we derive 3 node features, 16 edge features,
and 2 between-edge features from this dataset.

For the driving speed estimation task, we use a dataset of 8 675 599 ob-
served driving speeds, each matched to a road segment, that stem from a set
of vehicle trajectories [8]. For the speed limit classification task, we use 19 510
speed limits collected from the OSM data and additional speed limits are col-
lected from the municipality of Aalborg. This dataset is highly imbalanced.
Finally, we split speed limits and driving speeds into training, validation, and
test sets.

2https://github.com/TobiasSkovgaardJepsen/relational-fusion-networks
3https://danishbusinessauthority.dk/plansystemdk

64

https://github.com/TobiasSkovgaardJepsen/relational-fusion-networks
https://danishbusinessauthority.dk/plansystemdk

4. Experimental Evaluation

4.2 Experimental Setup

We compare four algorithms in our experiments:

• MLP: A regular multi-layer perceptron that performs predictions inde-
pendent of adjacent road segments by using only the edge features as
input.

• GraphSAGE: The Max-Pooling variant of GraphSAGE, which achieved
the best results in the authors’ experiments [6].

• GAT: The graph attention network by Veličković et al. [4].

• RFN: An RFN using a mean aggregator [6].

The GraphSAGE and GAT models are run on the dual graph representations
of the road network s.t. they learn edge representations directly. All mod-
els are two-layer models and use the ELU [9] activation function, with the
exception that the ReLU [10] activation function is used in the GraphSAGE
pooling operation. We select layer sizes, learning rates, and GAT-specific hy-
perparameters by evaluating different hyperparameter configurations on the
validation sets in a grid search and selecting the best-performing configura-
tion.

All algorithms are implemented using the MXNet4 deep learning library.

Model Training and Evaluation We initialize the weights of all models us-
ing Xavier initialization [11] and train the models using the ADAM opti-
mizer [12] in batches of 256 segments. In preliminary experiments, we ob-
served that all models converged within 20 and 30 epochs for driving speed
estimation and speed limit classification, respectively. We therefore use these
values for training. For speed limit classification, we use random oversam-
pling on the training set to handle the class imbalance in the dataset and use
early stopping to regularize the model.

To train the models, we minimize a per-segment mean squared loss and
the binary cross entropy loss for driving speed estimation and speed limit
classification, respectively. To evaluate the models, we use a per-segment
mean absolute error for driving speed estimation and the F1 macro score for
speed limit classification.

4.3 Results

We report the mean performance and standard deviations of each algorithm
across ten runs in Table 1. Note that when reading Table 1, low values and
high values are desirable for driving speed estimation and speed limit classi-
fication, respectively.

4https://mxnet.incubator.apache.org/

65

https://mxnet.incubator.apache.org/

Paper B.

Table 1: Algorithm performance on Driving Speed Estimation (DSE) and Speed Limit Classifi-
cation (SLC).

Algorithm DSE SLC

MLP 10.160± 0.119 0.443± 0.027
GraphSAGE 8.960± 0.115 0.432± 0.014
GAT 9.548± 0.151 0.442± 0.018
RFN 7.685± 0.189 0.500± 0.011

As can be seen, our proposed RFN outperforms all baselines on both
driving speed estimation and speed limit classification. RFN outperforms the
state-of-the-art graph convolutional approaches, i.e., GraphSAGE and GAT,
by 17% and 24%, respectively, on the driving speed estimation task. On the
speed limit classification task, the best RFN outperforms GraphSAGE and
GAT by 16% and 13%, respectively. The more sophisticated aggregation and
fusion functions that we present in the full version of the paper substantially
improve these results s.t. the best RFN variant outperforms GraphSAGE and
GAT by 32–40% and 21–24%, respectively [3].

Interestingly, the MLP outperforms the GraphSAGE and GAT (but not
the RFN) models on speed limit classification without using the network
structure. This suggests that RFNs can leverage road network structure in
cases where GraphSAGE and GAT cannot.

5 Conclusion

We report on a study of GCNs from the perspective of machine learning on
road networks. We argue that many built-in assumptions of existing propos-
als do not apply in the road network setting, in particular the assumption
of smooth homophily in the network. In addition, state-of-the-art GCNs can
leverage only one source of attribute information, whereas we identify three
sources of attribute information in road networks: node, edge, and between-
edge attributes. To address these short-comings, we propose the Relational
Fusion Network (RFN), a novel type of GCN for road networks.

We compare the RFN against state-of-the-art GCN algorithms on two ma-
chine learning tasks in road networks. We find that the proposed RFN out-
performs the GCN baselines significantly on these tasks. Although not pre-
sented here, we also investigate alternative aggregation and fusion functions
that yield even higher predictive performance [3].

In future work, it is of interest to investigate to which extent RFNs are
capable of transferring knowledge from, e.g., one Danish municipality to the
rest of Denmark, given that the inductive nature of our algorithm allows
RFNs trained on one road network to be used for prediction on another. If

66

6. Acknowledgments

the results are positive, it would suggest that RFNs can learn traffic dynamics
that generalize to unseen regions of the network. This may make it easier to
train RFNs with less data, but also give more confidence in predictions in
regions that are labeled sparsely with speed limits. In addition, RFNs do
not incorporate temporal aspects, although many road networks tasks are
time-dependent. For instance, this applies to driving speed estimation, for
which reason we explicitly excluded driving speeds during peak-hours from
our experiments. Extending RFNs to learn temporal road network dynamics,
e.g., through time-dependent fusion functions that accept temporal inputs, is
an important future direction.

6 Acknowledgments

The research presented in this paper is supported in part by the DiCyPS
project and by grants from the Obel Family Foundation and the Villum
Fonden.

References

[1] B. Yu, H. Yin, and Z. Zhu, “Spatio-Temporal Graph Convolutional Net-
works: A Deep Learning Framework for Traffic Forecasting,” in Proc. of
IJCAI, 2017, pp. 3634–3640.

[2] T. S. Jepsen, C. S. Jensen, T. D. Nielsen, and K. Torp, “On Network
Embedding for Machine Learning on Road Networks: A Case Study on
the Danish Road Network,” in Proc. of Big Data, 2018, pp. 3422–3431.

[3] T. S. Jepsen, C. S. Jensen, and T. D. Nielsen, “Graph Convolutional Net-
works for Road Networks,” arXiv e-prints, 2019.

[4] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio,
“Graph Attention Networks,” in Proc. of ICLR, 2018, p. 12 pp.

[5] T. N. Kipf and M. Welling, “Semi-Supervised Classification with Graph
Convolutional Networks,” in Proc. of ICLR, 2017, p. 14 pp.

[6] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive Representation
Learning on Large Graphs,” in Proc. of NIPS, 2017, pp. 1024–1034.

[7] OpenStreetMap contributors, “Planet dump retrieved from
https://planet.osm.org,” 2014.

[8] O. Andersen, B. B. Krogh, and K. Torp, “An Open-source Based ITS
Platform,” in Proc. of MDM, vol. 2, 2013, pp. 27–32.

67

Paper B.

[9] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and Accurate
Deep Network Learning by Exponential Linear Units (ELUs) ,” in Proc.
of ICLR, 2016, p. 14 pp.

[10] X. Glorot, A. Bordes, and Y. Bengio, “Deep Sparse Rectifier Neural Net-
works,” in Proc. of AISTATS, 2011, pp. 315–323.

[11] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” in Proc. of AISTATS, 2010, pp. 249–256.

[12] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
in Proc. of ICLR, 2015, p. 15 pp.

68

Paper C

Relational Fusion Networks:
Graph Convolutional Networks for Road Networks

Tobias Skovgaard Jepsen Christian S. Jensen
Aalborg University Aalborg University

Thomas Dyhre Nielsen
Aalborg University

This paper is awaiting publication in
IEEE Transactions on Intelligent Transportation Systems,

2020. Available in early online access.

Paper C.

Abstract

The application of machine learning techniques in the setting of road networks holds
the potential to facilitate many important intelligent transportation applications.
Graph Convolutional Networks (GCNs) are neural networks that are capable of lever-
aging the structure of a network. However, many implicit assumptions of GCNs do
not apply to road networks.

We introduce the Relational Fusion Network (RFN), a novel type of GCN
designed specifically for road networks. In particular, we propose methods that out-
perform state-of-the-art GCNs by 21%-40% on two machine learning tasks in road
networks. Furthermore, we show that state-of-the-art GCNs may fail to effectively
leverage road network structure and may not generalize well to other road networks.

© 2020 IEEE. Reprinted, with permission, from
Tobias Skovgaard Jepsen, Christian S. Jensen, and Thomas Dyhre Nielsen,
‘Relational Fusion Networks: Graph Convolutional Networks for Road
Networks.’ IEEE Transactions on Intelligent Transportation Systems, 2020.
DOI: 10.1109/TITS.2020.3011799.

The layout has been revised.

70

1. Introduction

1 Introduction

Machine learning on road networks can facilitate important intelligent trans-
portation applications such as traffic flow prediction [1, 2], traffic speed fore-
casting [3, 4], speed limit annotation [5], and travel time estimation [6, 7].
However, machine learning on road networks is difficult due to the low num-
ber of attributes, often with missing values, that typically are available [5].
This lack of attribute information can be alleviated by exploiting the network
structure into the learning process [5]. To this end, we propose the Rela-
tional Fusion Network (RFN), a type of Graph Convolutional Network (GCN)
designed for machine learning on road networks.

GCNs are a type of neural network that operates on graph representa-
tions of networks. GCNs can in theory leverage the road network structure
by aggregating over a road segment’s neighborhood when computing the
segment’s representation, e.g., computing the mean representations of its ad-
jacent road segments.

State-of-the-art GCNs are designed to target node classification tasks in
social, citation, and biological networks [8–13]. Such networks differ sub-
stantially from road networks in terms of the attribute information available
and other network characteristics. As a result, many implicit assumptions in
GCN proposals do not hold.

First, road networks are edge-relational and contain not only node and edge
attributes, but also between-edge attributes that characterize the relationship
between road segments, i.e., the edges in a road network. For instance, the
angle between two road segments is informative for travel time estimation
since it influences the time it takes to move from one segment to the other.

Second, compared to social, citation, and biological networks, road net-
works are low-density: road segments have few adjacent road segments. For
instance, the Danish road network has a mean node degree of 2.2 [5] com-
pared to the mean node degrees 9.15 and 492 of a citation and a social net-
works, respectively [11]. The small neighborhoods in road networks make
neighborhood aggregation in GCNs sensitive to aberrant neighbors, which
may contribute noise.

Third, GCNs implicitly assume that the underlying network exhibits ho-
mophily meaning that adjacent road segments tend to be similar, and that
changes in network characteristics, e.g., driving speeds, occur gradually. Al-
though road networks exhibit homophily, the homophily is volatile in the
sense that regions can be highly homophilic, but have sharp boundaries char-
acterized by abrupt changes in, e.g., driving speeds. This might for instance
be caused by a change in speed limit such as when exiting a motorway. In the
most extreme case, a region may consist of a single road segment, in which
case there is no homophily.

71

Paper C.

Fig. 1: Two three-way intersections in Denmark. We illustrate the observed driving speeds for
one driving direction per segment and color them accordingly: the darker, the faster the speed.
Black dots mark intersections and triangles indicate driving directions.

As an example, the three-way intersection to the right in Figure 1 exhibits
of volatile homophily. The two vertical road segments to the right in the
figure and the road segments to the left in the figure form two internally
homophilic regions: within each region, the road segments exhibit similar
driving speeds. The two regions are adjacent in the network, but a driver
moving from one region to the other experiences an abrupt change in driving
speed.

We suggest that new GCN architectures are needed for high-performance
machine learning on road networks based on our observations regarding cur-
rent state-of-the-art GCNs. Addressing the challenge of volatile homophily
is of particular importance. We therefore propose the Relational Fusion Net-
work (RFN), a novel GCN architecture designed to be generally applicable to
machine learning tasks on road networks.

Unlike GCNs, RFNs take into account the inherent properties of road
networks, i.e., that they are edge-relational, low-density, and exhibit volatile
homophily. Specifically, RFNs (i) explicitly incorporate the relationships be-
tween edges during aggregation, (ii) use an attention mechanism to exclude
noise-contributing neighbors during aggregation, and (iii) use a relational fu-
sion operator that allows an RFN to only conditionally rely on the homophily
assumption when performing neighborhood aggregation.

We experimentally evaluate different RFN variants on two example ma-
chine learning tasks on road networks: driving speed estimation and speed
limit classification. Our experiments show that the best RFN variants outper-
form state-of-the-art GCNs by 32–40% and 21–24% on driving speed estima-
tion and speed limit classification, respectively.

In our experiments, we demonstrate that state-of-the-art GCNs fail to
leverage road network structure on the speed limit classification task where

72

2. Preliminaries

A B

C

D

(a) Primal Graph.

AB

BA

BC CB

DB BD

(b) Dual Graph.

Fig. 2: The (a) primal and (b) dual graph representations of the three-way intersection to the
right in Figure 1.

RFNs do not. Finally, we show that the knowledge learned by an RFN can
generalize well to an entirely unseen part of the road network. This feature
is particular important in cases where there is a large spatial imbalance, e.g.,
when using crowd-sourced data or vehicle trajectory data. In such data, data
points tend to be concentrated in areas with high population density such as
in major cities.

The remainder of the paper is structured as follows. In Section 5, we
review related work. In Section 2, we give the necessary background on
graph modeling of road networks and GCNs. In Section 3, we describe RFNs
in detail. In Section 4, we describe our experiments and present our results.
Finally, we conclude in Section 6.

2 Preliminaries

We now cover the necessary background in modeling road networks as graphs
and GCNs.

2.1 Modeling Road Networks

We model a road network as an attributed directed graph G = (V, E, AV , AE, AB)
where V is the set of nodes and E is the set of edges. Each node v ∈ V rep-
resents an intersection, and each edge (u, v) ∈ E represents a road segment
that enables traversal from u to v. Next, AV and AE maps intersections and
road segments, respectively, to their attributes. In addition, AB maps a pair
of road segments (u, v), (v, w) ∈ E to their between-segment attributes such
as the angle between (u, v) and (v, w) based on their spatial representation.
An example of a graph representation of the three-way intersection to the
right in figure Figure 1 is shown in Figure 2a.

Two intersections u and v in V are adjacent if there exists a road segment
(u, v) ∈ E or (v, u) ∈ E. Similarly, two road segments (u1, v1) and (u2, v2) in
E are adjacent if v1 = u2 or v2 = u1. The function N : V ∪ E −→ 2V ∪ 2E returns

73

Paper C.

the neighborhood, i.e., the set of all adjacent intersections or road segments,
of a road network element g ∈ V ∪ E. The dual graph representation of G is
then GD = (E, B) where B =

{(
(u, v), (v, w)

)
| (u, v), (v, w) ∈ E

}
is the set

of between-edges. Thus, E and B serve as the node and edge sets of the dual
graph, respectively. For disambiguation, we refer to G as the primal graph
representation.

2.2 Graph Convolutional Networks

A GCN is a neural network that operates on graphs and consists of one or
more graph convolutional layers. A graph convolutional network takes as
input a graph G = (V, E) and a numeric node feature matrix XV ∈ R|V|×din ,
where each row corresponds to a din-dimensional vector representation of a
node. Given these inputs, a GCN computes an output at a layer k s.t.

H(V,k)
v = σ(Aggregate

k(v)Wk), (C.1)

where σ is an activation function, Aggregate : 2V → Rdin is a neighborhood
aggregation function, and Wk ∈ Rdin×do is a learned weight matrix. Simi-
larly to XV , each row in H(V,k) is a vector representation of a node. Note
that in some cases XV is linearly transformed using matrix multiplication
with a weight matrix Wk before aggregation [12] while in other cases, weight
multiplication is done after aggregation [10, 11], as in Equation C.1.

The Aggregate function in Equation C.1 derives a new representation of
a node v by aggregating over the representations of its neighbors. While the
aggregate function is what distinguishes GCN architectures from each other,
many can be expressed as a weighted sum [10–12]:

Aggregate
k(v) = ∑

n∈N(v)
a(v,n)H

(V,k−1)
n , (C.2)

where H(V,0) = XV , and a(v,n) is the aggregation weight for neighbor n of
node v. For instance, a(v,n) = |N(v)|−1 in the mean aggregator of Graph-
SAGE [11].

3 Proposed Method

The Relational Fusion Network (RFN) aims to address the shortcomings of
state-of-the-art GCNs in the context of machine learning on road networks.
The basic premise is to learn representations based on two distinct, but inter-
dependent views: the node-relational and edge-relational views.

74

3. Proposed Method

3.1 Node-Relational and Edge-Relational Views

In the node-relational view, we seek to learn representations of nodes, i.e.,
intersections, based on their node attributes and the relationships between
nodes indicated by the edges E in the primal graph representation of a road
network GP = (V, E) and described by their edge attributes. Similarly,
we seek to learn representations of edges, i.e., road segments, in the edge-
relational view, based on their edge attributes and the relationships between
edges indicated by the between-edges B in the dual graph representation of
a road network GD = (E, B). The relationship between two adjacent roads
(u, v) and (v, w) is described by the attributes of the between-edge connect-
ing them in the dual graph, including the angle between them, but also the
attributes of the node v that connects them.

The node-relational and edge-relational views are complementary. The
representation of a node in the node-relational view is dependent on the rep-
resentation of the edges to its neighbors. Similarly, the representation of an
edge in the edge-relational view is dependent on the representation of the
nodes that it shares with its neighboring edges. Finally, the representation
of an edge is also dependent on the representation of the between-edge con-
necting them in the dual graph. RFNs can exploit these two complementary
views to leverage node, edge, and between-edge attributes simultaneously.

3.2 Method Overview

Figure 3a gives an overview of our method. As shown, an RFN consists of
K relational fusion layers, where K ≥ 1. It takes as input feature matrices
XV ∈ R|V|×dV , XE ∈ R|E|×dE , and XB ∈ R|B|×dB that numerically encode
the node, edge, and between-edge attributes, respectively. These inputs are
propagated through each layer. Each of these relational fusion layers, per-
forms node-relational fusion and edge-relational fusion to learn representations
from the node-relational and edge-relational views, respectively.

Node-relational fusion is carried out by performing relational fusion on
the primal graph. Relational fusion is a novel graph convolutional opera-
tor that we describe in detail in Section 3.3. In brief, relational fusion com-
putes relational representations for, e.g., each relation (v, n) of a node v in
the primal graph. These relational representations are a fusion of the node
representations of v and n, but also the edge representation of (v, n). Fi-
nally, the relational representations are aggregated into a new representation
of v. Relational fusion differs from regular graph convolution by replacing
the aggregate over neighbor representations with an aggregate over relational
representations.

Edge-relational fusion is performed similarly to node-relational fusion but
is applied on the dual graph representation. Recall, that in the edge-relational

75

Paper C.

XV XE XB

Layer 1
Node-Relational

Fusion

Edge-Relational

Fusion

Layer 2
Node-Relational

Fusion

Edge-Relational

Fusion

Layer K
Node-Relational

Fusion

Edge-Relational

Fusion

H(V,K) H(E,K) H(B,K)

(a) Relational Fusion Network

Node-
Relational
Fusion

Edge-
Relational
Fusion

H(V,k−1) H(E,k−1) H(B,k−1)

Relational Fusion

(Primal Graph)

Relational Fusion

(Dual Graph)
Feed

Forward

H(V,k) H(E,k) H(B,k)

(b) Relational Fusion Layer

Fig. 3: Overview of our method showing (a) a K-layered relational fusion network and (b) a
relational fusion layer.

view, the relation between two edges (u, v) and (v, w) is in part described
by their between-edge attributes, but also by the node attributes of v that
describes the characteristics of the intersection between them. Thus, as illus-
trated in Figure 3b, relational fusion on the dual graph requires both node
and between-edge information to compute relational aggregates.

The interdependence between the node-relational and edge-relational views
is captured by using the node and edge representations from the previous
layer k− 1 as input to node-relational and edge-relational fusion in the next
layer k as illustrated by Figure 3. Therefore each layer also applies regular
feed-forward propagation on the between-edge representations to learn more
abstract between-edge representations as input to the next layer. Unlike node-
relational and edge-relational fusion, this feed-forward propagation does not
consider neighborhood information.

76

3. Proposed Method

Figure 3b gives a more detailed view of a relational fusion layer. Each
layer k takes as input the learned node, edge, and between-edge representa-
tions from layer k − 1, denoted by H(V,k−1), H(E,k−1), and H(B,k−1), respec-
tively. Then node-relational and edge-relational fusion are performed to out-
put new node, edge, and between-edge representations H(V,k), H(E,k), and
H(B,k).

3.3 Relational Fusion

We present the pseudocode for the relational fusion operator at the kth layer
in Algorithm 3. For clarity of notation, we write the notation from the per-
spective of a primal graph, but it can be applied to any graph, including a
dual graph. The operator takes as input a graph G = (V, E), that is either
the primal or dual graph representation of a road network, along with ap-
propriate feature matrices H(V,k−1) and H(E,k−1) to describe nodes and edges
in G. Then, a new representation is computed for each node v ∈ V by first
computing relational representations at line 4. Given a node v, each relation
(v, n) ∈ N(v) that v participates in, is converted to a relational representation.

Algorithm 3 The Node-Relational Fusion Operator

1: function RelationalFusion
k(G = (V, E), H(V,k−1) , H(E,k−1))

2: let H(V,k) be an arbitrary |V| × d(F,k) real feature matrix.
3: for all v ∈ V do
4: Fv ←

{
Fuse

k(H(V,k−1)
v , H(E,k−1)

(v,n) , H(V,k−1)
n) | n ∈ N(v)

}
5: H(V,k)

v ← Aggregate
k(Fv)

6: H(V,k)
v ← Normalize

k(H(V,k)
v)

7: return H(V,k)

In Algorithm 3, the relational representations at layer k are computed
by a fusion function Fuse

k that outputs d(F,k)-dimensional relational repre-
sentations. For each relation (v, n), Fuse

k takes as input representations of
the source v and target n of the relation, H(V,k−1)

v and H(V,k−1)
n , respectively,

along with a representation H(E,k−1)
(v,n) describing their relation, and fuses them

into a relational representation of dimensionality d(F,k). The relational rep-
resentations are subsequently fed to a Aggregate

k function, that aggregates
them into a single do-dimensional representation of v′ of dimensionality. Fi-
nally, the representation of v may optionally be normalized by invoking the
Normalize

k function, e.g., using L2 normalization [11]. The normalization
step is particularly important if the relational aggregate has different scales
across elements with different neighborhood sizes, e.g., if the aggregate is a
sum.

Next, we discuss different choices for the fuse functions Fuse
k and the

77

Paper C.

relational aggregators Aggregate
k.

3.4 Fusion Functions

The fusion function is responsible for extracting useful information from
each relation, thereby allowing an RFN to create sharp boundaries at the
edges of homophilic regions. The fusion function thus plays an important
role w.r.t. capturing volatile homophily. We propose two fusion functions:
AdditiveFuse and InteractionalFuse.

AdditiveFuse takes as input source, target, and relation representations
H(V,k−1)

v , H(V,k−1)
n , and H(E,k−1)

(v,n) , and transforms these sources:

AdditiveFuse
k(H(V,k−1)

v , H(V,k−1)
n , H(E,k−1)

(v,n)) =

σ
(
H(R,k−1)

(v,n) WR + b
)
, (C.3)

where the relational feature matrix H(R,k−1)
(v,n) ∈ RdR is the vector concatena-

tion of H(V,k−1)
v , H(V,k−1)

n , and H(E,k−1)
(v,n) . Next, σ is an activation function,

WR ∈ RdR×do is a weight matrix, b ∈ R1×do is a bias term, and do is the
output dimensionality of the fusion function (and its parent relational fusion
operator). Equation C.3 is additive in the sense that it is equivalent to trans-
forming the source, target, and relational representations with independent
weight matrices and summing them before applying activation function σ.

AdditiveFuse summarizes the relationship between v and n, but does not
explicitly model interactions between representations. Hence, we propose an
interactional fusion function:

InteractionalFuse
k(H(V,k−1)

v , H(V,k−1)
n , H(E,k−1)

(v,n)) =

σ
(
(H(R,k−1)WI �H(R,k−1))WR)+ b, (C.4)

where WI ∈ RdR×dR is a trainable interaction weight matrix, � denotes
element-wise multiplication, and b ∈ R1×do is a bias term. Notice that In-
teractionalFuse has a quadratic form. When computing the term H(I,k) =
(H(R,k−1)WI)�H(R,k−1), the ith (1 ≤ i ≤ dR) value of vector H(I,k) is

H(I,k)
i =

dR

∑
j=1

WI
i,jH

(R,k−1)
i H(R,k−1)

j . (C.5)

In other words, H(I,k)
i is the weighted sum of all interactions between the ith

feature and all other features of the relational representation H(R,k−1). Model-
ing these interaction terms explicitly enables InteractionalFuse to capture
and weigh interactions at a much finer granularity than AdditiveFuse.

78

3. Proposed Method

InteractionalFuse offers improved modeling capacity over AdditiveFuse

to better address the challenge of volatile homophily, but at the cost of an
increase in number of parameters that is quadratic in the number of input
features.

3.5 Aggregation Functions

Different Aggregate functions have been proposed in the literature, and
many are directly compatible with the relational fusion layer. For instance,
mean, and max/mean pooling aggregators [11].

Recently, aggregators based on attention mechanisms from the domain
of natural language processing have appeared [12]. Such graph attention
mechanisms allow a GCN to filter out irrelevant or aberrant neighbors by
weighing the contribution of each neighbor to the neighborhood aggregate.
This filtering property is highly desirable for road networks where even a
single aberrant neighbor can contribute significant noise to an aggregate due
to the low density of road networks. In addition, it may help the network
distinguish adjacent regions from each other and thereby improve predictive
performance in the face of volatile homophily.

Current graph attention mechanisms rely on a common transformation
of each neighbor thus rendering them incompatible with RFNs, which rely
on the context-dependent neighbor transformations performed by the Fuse

function at each relational fusion layer. We therefore propose an attentional
aggregator that is compatible with our proposed RFNs.

Attentional Aggregator The attentional aggregator we propose computes a
weighted mean over the relational representations. Formally, the attentional
aggregator computes the Aggregate in Algorithm 3 as

Aggregate(Fv) = ∑
fn∈Fv

A(v, n)fn, (C.6)

where Fv = {fn | n ∈ N(v)} is the set of fused relational representations
of node v’s relations to each of its neighbors n ∈ N(v) computed at line 4
in Algorithm 3. Furthermore, A is an attention function, and A(v, n) is the
attention weight that determines the contribution of each neighbor n to the
neighborhood aggregate of node v.

An attention weight A(v, n) in Equation C.6 depends on the relationship
between a node v and its neighbor n in the input graph G to Algorithm 3.
This relationship is described by the relational feature matrix H(R,k−1)

(v,n) ∈ RdR

79

Paper C.

and the attention weight is computed as

A(v, n) =
exp

(
C(H(R,k−1)

(v,n))
)

∑m∈N(v) exp
(
C(H(R,k−1)

(v,m)
)
) , (C.7)

where C : RdR −→ R is an attention coefficient function

C(H(R,k−1)
(v,n)) = σ(H(R,k−1)

(v,n) WC), (C.8)

where WC ∈ RdR is a weight matrix and σ is an activation function. This
corresponds to computing the softmax over the attention coefficients of all
neighbors n of v. All attention weights sum to one, i.e., ∑n∈N(v) A(v, n) = 1,
thus making Equation C.6 a weighted mean. In other words, each neighbor’s
contribution to the mean is regulated by an attention weight, thus allowing an
RFN to reduce the influence of (or completely ignore) aberrant neighbors that
would otherwise contribute significant noise to the neighborhood aggregate.

3.6 Forward Propagation

Algorithm 4 Forward Propagation Algorithm

1: function ForwardPropagation(XV , XE, XB)
2: let H(V,0) = XV , H(E,0) = XE, and H(B,0) = XB

3: for k = 1 to K do
4: H(V,k) ← RelationalFusion

k(GP, H(V,k−1), H(E,k−1))
5: H(B′ ,k−1) ← Join(H(V,k−1), H(B,k−1))
6: H(E,k) ← RelationalFusion

k(GD, H(E,k−1), H(B′ ,k−1))
7: H(B,k) ← FeedForward

k(H(B,k−1))

8: return H(V,K), H(E,K), H(B,K)

9: function Join(HV , HE)
10: for all b ∈ B do
11: let b =

(
(u, v), (v, w)

)
12: HB′

b ← HB
b ⊕HV

v

13: return HB′

With the relational fusion operator and its components defined in Sections
4.3 to 4.5, we proceed to explain how forward propagation is performed
through the relational fusion layers (introduced in Section 4.2) of an RFN.
The forward propagation algorithm is shown in Algorithm 2. Starting from
the input encoding of node, edge, and between-edge attributes, each layer k
transforms the node, edge, and between-edge representations emitted from
the previous layer. The node representations are transformed using node-
relational fusion. This is done by invoking the RelationalFusion function

80

4. Experimental Evaluation

at line 4 with the primal graph, and the node and edge representations from
the previous layer as input.

Edge-relational fusion is performed at lines 5-6 to transform the edge
representations from the previous layer. In line 5, the node and between-edge
representations from the previous layer are joined using the Join function
(defined at lines 11-16) to capture the information from both sources that
describe the relationships between two edges. On line 6, RelationalFusion

is invoked again, now with the dual graph (indicating relationships between
edges), and the edge representations from the previous layer. The last input
is the joined node and between-edge representations also from the previous
layer. The between-edge representations are transformed using a single feed-
forward operator at line 7.

The number of layers in an RFN determines which nodes, edges, and
between-edges influence the output representations. Each layer aggregates
information from the relations to first-order node and edge neighbors during
edge- and node-relational fusion, respectively. Thus, a K-layer RFN aggre-
gates information up to a distance K from nodes in the primal graph and
edges in the dual graph, respectively.

Once the input representations have been propagated through all the lay-
ers, the final node, edge, and between-edge representations are output on
line 9. These three outputs allows the relational fusion network to be jointly
optimized for node, edge, and between-edge predictions, e.g., when the net-
work is operating in a multi-task learning setting. However, if only one or
two outputs are desired, the superfluous operations in the last layer can
be skipped to save computational resources. For instance, propagation of
node and between-edges can be skipped by replacing line 4 and line 7 with
H(V,k) = H(V,k−1) and H(B,k) = H(B,k−1), respectively, when k = K.

4 Experimental Evaluation

We evaluate our method on two machine learning tasks: driving speed es-
timation and speed limit classification. These tasks represent a regression
task and a classification task, respectively. We evaluate our method on both
within-network prediction and cross-network prediction.

In the within-network setting, models are trained and evaluated on the
road network of the same municipality. In the cross-network setting, models
are trained on the road network of one municipality, but tested on another,
unseen road network. For all tasks and settings, we compare the results of
our method against a number of baselines, including state-of-the-art GCNs.
Finally, we conduct a case study to investigate the behavior of RFNs under
conditions of volatile homophily.

81

Paper C.

Table 1: Road network sizes.

AAL BRS CPH

No. of Nodes (|V|) 16 294 5 889 10 738
No. of Edges (|E|) 35 947 13 073 26 117
No. of Between-Edges (|B|) 94 718 34 428 72 147

4.1 Data Set

We extract the spatial representation of the Danish municipalities of Aalborg
(AAL), Brønderslev (BRS), and Copenhagen (CPH) from OSM [14] and con-
vert them to their primal and dual graph representations as described in
Section 2. The sizes of these networks can be seen in Table 1. We combine
the OSM data with a zone map from the Danish Business Authority1. From
these two data sources, we derive 3 node features, 16 edge features, and 5
between-edge features. See Appendix A for further details on the feature
derivation process.

For the driving speed estimation task, we use a dataset of observed driv-
ing speeds, each matched to a road segment, derived from a set of vehicle
trajectories collected between January 1 2012 and December 31 2014 [15].
Each such observed driving speed corresponds to a traversal in this set of
trajectories [15]. Further details on the vehicle trajectory data can be found
elsewhere [15].

For speed limit classification, we use 19 510 speed limits collected from
the OSM data and additional speed limits collected from the municipality
of Aalborg. This dataset is highly imbalanced, e.g., some speed limits are
several thousands of times more frequent than others.

We split speed limits and driving speeds into training, validation, and test
sets. For the driving speeds, the split is temporal s.t. the oldest observations
are in the training set, the newest are in the test set, and the driving speeds in
the validation set cover a period in-between. Table 2 shows the total number
of driving speeds and speed limits with the proportion between training,
validation, and testing sets.

4.2 Algorithms

We use the following GCN baselines for comparison in the experiments: (1)
the Max-Pooling variant of GraphSAGE [11] and the (2) Graph Attention
Network [12]. In addition, we include two non-GCN baselines: (3) a regular
Multi-Layer Perceptron (MLP), and (4) a Grouping Estimator. The Grouping
Estimator is a simple baseline that groups all road segments depending on

1https://danishbusinessauthority.dk/plansystemdk

82

https://danishbusinessauthority.dk/plansystemdk

4. Experimental Evaluation

Table 2: Dataset sizes and splits.

Size Train / Val / Test

Driving Speeds (AAL) 8 675 599 0.46 / 0.21 / 0.32
Driving Speeds (BRS) 847 963 0.00 / 0.00 / 1.00

Speed Limits (AAL) 19 510 0.50 / 0.23 / 0.27
Speed Limits (CPH) 17 824 0.00 / 0.00 / 1.00

their road category and on whether they are within a city zone or not. At
prediction time, the algorithm outputs the mean (for regression) or mode (for
classification) of the group a particular road segment belongs to.

In our experiments, we include four variants of the RFN that combines
different relational aggregators and fusion functions. We examine attentional
(A) aggregation and non-attentional (N) aggregation together with additive
(A) and interactional fusion (I). The non-attentional computes an unweighted
mean over the relational representations, i.e., all neighbors have the same
attention weight. Each variant is denoted by combination their aggregator
and fusion function acronyms, e.g., RFN-A+I.

4.3 Experimental Setup

The GraphSAGE and GAT models are run on the dual graph representations
of the road network s.t. they learn edge representations directly. All models
are two-layer models and use the ELU [16] activation function on the first
layer. ReLU [17] and softmax are used on the last layer for driving speed
estimation and speed limit classification, respectively. The ReLU [17] activa-
tion function is used in the GraphSAGE pooling operation for both tasks. We
select layer sizes, learning rates, and the number of GAT attention heads by
evaluating different hyperparameter configurations on the validation sets in
a grid search and selecting the best-performing configuration. Each configu-
ration is repeated ten times, and the configuration with the highest mean per-
formance is selected for final evaluation on the test set. Appendix B provide
additional details on the hyperparameter selection process and documents
the hyperparameters are used for each model in our experiments.

All neural network algorithms are implemented using the MXNet2 deep
learning library. We make our implementation of the relational fusion net-
works publicly available3.

2https://mxnet.incubator.apache.org/
3https://github.com/TobiasSkovgaardJepsen/relational-fusion-networks

83

https://mxnet.incubator.apache.org/

Paper C.

Model Training and Evaluation We initialize the weights of all neural net-
work models using Xavier initialization [18] and train the models using the
ADAM optimizer [19] in (mini-)batches of 256 segments. For training effi-
ciency, the batches are pre-computed in a stratified manner s.t. the distribu-
tions of road categories and speed limits—for speed limit classification and
driving speed estimation, respectively—approximate the distributions of the
full training set. The mini-batches are shuffled after each epoch.

We train all models for 20 and 30 epochs for driving speed estimation and
speed limit classification, respectively, on Aalborg. For the cross-network
setting, we use Brønderslev and Copenhagen for driving speed estimation
and speed limit classification, respectively. For speed limit classification, the
training set is randomly oversampled to address the class imbalance and
regularize the models with early stopping.

For speed limit classification, we train the models using the binary cross
entropy loss and evaluate the models using the F1 macro score. For driving
speed estimation, we train the models using a per-segment mean squared loss

∑y∈Y
(ŷ−y)2

|Y| , where Y is the set of observed driving speeds associated with
the segment, and ŷ is the model’s estimate of the driving speed of segment.
The per-batch loss is the mean per-segment loss.

Driving speed estimation models are evaluated using a per-segment Mean
Absolute Error (MAE): |ŷ − Ȳ|, where Ȳ = ∑y∈Y

y
|Y| is the mean recorded

speed for the segment. The final error of a model is the mean over all the
per-segment errors. However, the value of Ȳ is highly sensitive to outliers.
We therefore exclude segments with fewer than ten observations when cal-
culating the final error.

Using the per-segment losses and errors to train and evaluate models, re-
spectively, on the driving speed estimation task avoids a bias towards models
that perform well on popular road segments in the data set.

4.4 Results

We train ten models for each algorithm and task on Aalborg Municipality
experiments for each model. We use these models for both within-network
and cross-network inference and report the mean performance with standard
deviations in Table 3. When reading Table 3, note that low values and high
values are desirable for driving speed estimation and speed limit classifica-
tion, respectively.

The GAT algorithm can become unstable during training [12] and we
observed this phenomenon on one out of the ten runs on the driving speed
estimation task. The algorithm did not converge on this run and is therefore
excluded from the results shown in Table 3. In addition, none of the models
give reasonable results on cross-network speed limit classification where top-

84

4. Experimental Evaluation

Table 3: Algorithm performance on Driving Speed Estimation (DSE) and Speed Limit Classifi-
cation (SLC) on AAL and BRS.

DSE SLC

Algorithm AAL BRS AAL

GP 11.026 12.715 0.356
MLP 10.160± 0.119 12.659± 0.265 0.443± 0.027
GAT 9.548± 0.151 12.119± 0.342 0.442± 0.018
GraphSAGE 8.960± 0.115 11.292± 0.293 0.432± 0.014

RFN-N+A 7.685± 0.189 9.382± 0.447 0.500± 0.011
RFN-A+A 7.440± 0.133 9.078± 0.080 0.518± 0.022
RFN-N+I 6.911± 0.080 8.823± 0.196 0.507± 0.012
RFN-A+I 6.797± 0.124 8.587± 0.238 0.535± 0.014

performance across all models is reduced to almost a third. Hence, we also
exclude these results from Table 3.

Within-Network Inference

As shown in Table 3, the RFN variants outperform all baselines on both
within-network driving speed estimation and within-network speed limit
classification. The best RFN variant outperforms the state-of-the-art graph
convolutional approaches, i.e., GraphSAGE and GAT, by 32% and 40%, re-
spectively, on the driving speed estimation task. On the speed limit classifi-
cation task, the best RFN variant outperforms GraphSAGE and GAT by 24%
and 21%, respectively.

Table 3 shows that the RFN variants achieve similar performance, but the
attentional variants are superior to their non-attentional counterparts that
use the same fusion function. In addition, the interactional fusion function
appears to be strictly better than the additive fusion function. Interestingly,
GraphSAGE and GAT fail to outperform MLP on the speed limit classifica-
tion task. The MLP classifies road segments independent of any adjacent
road segments. Unlike the RFN variants, it appears that GraphSAGE and
GAT are unable to effectively leverage the information from adjacent road
segments. This supports our discussion in Section 1 of the problems with
direct inheritance during neighborhood aggregation in the context of road
networks.

85

Paper C.

Transportation Transition Residential

(a) Input Representations (b) RFN-
A+I

(c) GraphSAGE
(d)
GAT

Fig. 5: Ground truth driving
speeds of the Danalien region in
Aalborg, Denmark. Triangles in-
dicate direction, black dots mark
nodes, and color indicates speed:
the darker, the faster.

Fig. 6: t-SNE visualizations of the edge representations
in the Danalien case (a) before and (b, c, d) after the first
graph convolution in different models.

Cross-Network Inference

Table 3 shows that the ranking of the models remain the same on driving
speed estimation in the cross-network setting: all RFN variants outperform
the baselines and the RFN-A+I remains the best-performing variant. All
models suffer a performance loss, but the performance loss of the RFN vari-
ants is smaller than that of the neural network baselines. The best-performing
baseline, GraphSAGE, has an error increase of 2.332 km/h. In comparison,
the best-performing RFN variant, RFN-A+I, has a 23% smaller performance
loss with an error increase of 1.790 km/h.

The small performance loss of the RFN variants compared to the neural
network baselines on cross-network driving speed estimation suggests that
(1) RFNs may learn transferable knowledge that generalizes well to other
road networks and (2) that they are robust to substantial changes to the road
network structure. However, we did not observe these tendencies on cross-
network speed limit classification where all models achieved poor perfor-
mance. This suggests that knowledge transferability is highly task-dependent
and that some tasks may require sophisticated transfer learning methods.

86

4. Experimental Evaluation

4.5 Case Study: Danalien

Table 3 shows that RFNs generally perform better than the GraphSAGE and
GAT baselines. However, it is unclear whether RFNs are capable of sepa-
rating areas that are dissimilar, but internally homophilic, as intended. We
have therefore examined the RFN’s separation capabilities in areas exhibiting
volatile homophily. For comparison, we have also examined the separation
capabilities of the GraphSAGE and GAT algorithms. For the sake of brevity,
we present only our case study on the Danalien intersection that was intro-
duced in Figure 1. In this study, we consider a larger part of the residential
area, shown in Figure 5. The Danalien case represents a quite typical sce-
nario: a residential area that is connected to the rest of the city through a
larger road. We have also examined a more extreme, but less typical case—
cf. Appendix C.

We select the RFN, GraphSAGE, and GAT models with the best valida-
tion performance. For these models, we compare the representations of the
road segments in the Danalien case before and after applying the first graph
convolutional layer by projecting these representations into two dimensions
using t-SNE [20] and normalizing the dimensions to be between 0 and 1.
These representations are visualized in Figure 6.

The segments AB, BA, BC, and CB in Figure 5 form a residential area,
and segments DE, ED, DF, and FD form a transportation area. In addition,
segments BD and DB are transition segments that must be traversed to tran-
sition between the two areas. The residential, transportation, and transition
segments are colored differently in the visualizations shown in Figure 6.

Interestingly, the graph convolution in the different models have different
effects on the relative position of the segments in the representation space.
In the input representation, illustrated in Figure 6a, the road segments are
grouped with road segments of the same category. As shown in Figure 6b,
the first graph convolution of the RFN-A+I model, makes these groups tighter
and separates the residential and transportation segments further. Although
not included in Figure 6, the other RFN variants have a similar effect on the
position of the road segments in the representation space.

As shown in Figure 6c, the GraphSAGE model tightens the groups from
Figure 6a like the RFN-A+I model, but places the transition segments roughly
equi-distant from the residential and transportation clusters. The transi-
tion segments are more similar in terms of driving speed to the residen-
tial segments, than the transportation segments Therefore, this behavior of
the GraphSAGE algorithm is expected since the GraphSAGE model inher-
its neighbor representations directly and indiscriminately (i.e., all neighbors
contribute equally to the aggregate without an attention mechanism). Since
the transition segments have the same number of transportation and resi-
dential segments as neighbor segments, the representations of the transition

87

Paper C.

segments is between the two other categories in the representation space.
The GAT algorithm functions in a very similar manner to the GraphSAGE

algorithm, except that it can select which neighbor segments to inherit neigh-
bor representations from using its attention mechanism. The logic of this
attention mechanism is shared across neighbors that has similar features (or
belong to the same category in the Danalien example). When computing a
new representation for the transition segments, the GAT model will there-
fore give preference to the transportation segments, give preference to the
residential segments, or give no preference at all. As illustrated in Figure 6d,
the GAT model gives preference to the transportation segments both when
computing representations for the transition segments and when comput-
ing representations for the transportation segments. Thus, the GAT model
groups the transition segments with the transportation segments, despite the
transition segments being more similar to the residential segments in terms
of driving speed.

As indicated by the tightness of the transition and transportation cluster
in Figure 6d, the preference for the transportation segments is substantial
when computing transition segment representations. We suspect that this
behavior is attributed to two causes. First, the relative rarity of transition
segments causes poor predictive performance on such segments to have little
impact on the total loss. Second, road segments typically have at least one
neighbor segment with a similar feature representation (e.g., belongs to the
same category) and therefore such segments generally contribute little new
information to distinguish a road segment of, e.g., the transition category
from another road segment of the transition category.

In conclusion, we observe that the RFN model is able to create separate
the different segment categories in the Danalien case better than the GAT and
GraphSAGE models are, which suggests that the RFN architecture is more
robust to volatile homophily.

5 Related Work

GCNs can broadly be categorized as either spatial or spectral.
Spectral GCNs [8–10, 13] are based on graph signal processing theory,

which makes them theoretically well-founded although only for undirected
graphs. This makes them ill-suited for road networks that often contain one-
way streets and where, e.g., the driving speed on a road segment may heavily
depend upon the direction of travel. In addition, spectral GCNs are trans-
ductive and rely on the specific graph structure on which it was trained and
therefore does not support insertion and removal of edges to the network.
This is problematic in road networks, where construction work frequently
changes the network structure when, e.g., a motorway is built or a residential

88

5. Related Work

area is expanded.
Unlike spectral GCNs, our proposed method explicitly considers road

segment driving directions and is robust to substantial changes in the road
network structure. As we demonstrate in our experiments, our proposed
method may make predictions on a different road network than it was trained
on with only a minor decrease in predictive accuracy.

Our proposed method belongs to the class of spatial GCNs [11, 12], which
are inductive methods. Like our proposed method, spatial GCNs support
directed graphs and changes in the network structure. However, neither
state-of-the-art spatial [11, 12] nor spectral GCNs [8–10, 13] support only
node attributes. In addition, both classes of GCNs implicitly assume grad-
ual changes in, e.g., driving speeds, when making predictions over the net-
work and are thus ill-equipped to address the volatile homophily present
in road networks. In contrast, our method can incorporate edge attributes
and between-edge attributes, in addition to node attributes, and has built-in
mechanisms to address volatile homophily in the input road network.

Research in GCNs architectures for road networks has thus far focused
on extending GCNs architectures to solve specific problems with temporal
dependencies [3, 21, 22]. In contrast, our work explores the spatial and struc-
tural aspects of GCN architectures and we present a novel GCN architec-
ture that is designed to be generally applicable for machine learning on road
networks. In addition, previous work has focused on spectral GCN archi-
tectures, whereas our method is a spatial GCN architecture. As discussed
above, spatial GCNs (such as our proposed method) have several advantages
over spectral GCNs, and we expect that our method can be used as a drop-in
replacement for the spectral graph convolutions used in previous work.

Previous work has studied homophily in road networks [5]. Like us, they
find that homophily is expressed differently in road networks—which we
refer to as volatile homophily—but study this phenomenon in the context of
transductive network embedding methods, whereas we focus on inductive
GCNs. Unlike us, they do not propose a method to address the challenges of
volatile homophily in road networks.

A preliminary four-page conference version of this paper presents the
RFN-N+A variant [23]. The present version proposes an additional fusion
function, InteractionalFuse, and an attentional aggregation function for
RFNs. These extensions yield substantial improvements in our experiments.
In addition, this version includes an evaluation of the RFN variants’ robust-
ness to changes in road network structure in cross-network inference, and it
includes a detailed case study on the behavior of RFNs graph convolutions
under conditions of volatile homophily.

89

Paper C.

6 Conclusion

We propose a method for machine learning on road networks. We argue that
many built-in assumptions of existing proposals do not apply in this setting,
in particular the assumption of smooth homophily. In addition, state-of-the-
art GCNs can leverage only one source of attribute information, whereas we
identify three sources of attribute information in road networks: intersec-
tion, segment, and between-segment attributes. We therefore propose the
Relational Fusion Network (RFN), a novel type of GCN for road networks.

We compare different RFN variants against a range of baselines, includ-
ing two state-of-the-art GCN algorithms on both within-network and cross-
network driving speed estimation and speed limit classification. We show
that RFNs are able to outperform the GCN baselines by 32–40% and 21–24%
on within-network driving speed estimation and speed limit classification,
respectively. Our experiments suggest that the assumptions of GCNs do not
apply to road networks: on within-network speed limit classification, the
GCN baselines fail to outperform a multi-layer perceptron that does not in-
corporate information from adjacent edges. In addition, we show that RFNs
generalize better on cross-network driving speed estimation and suffered a
23% smaller performance loss compared to the best performing neural net-
work baseline. We also show that RFNs are more robust to volatile homophily
than state-of-the-art GCNs in a case study.

We use relatively small road networks, and we therefore find it prudent
to comment on the scalability of RFNs. Both RFNs and GCNs have a worst
time complexity of O(|E|dK), where d = max({|N(e) | e ∈ E}) is the max
node degree of the dual graph and K is the number of layers.

Several methods have been proposed to improve GCN forward propaga-
tion efficiency. First, by performing forward propagation only on the sub-
network necessary to compute an output for the road segments E′ ⊆ E for
which an output is required [11]. Second, the global gradient can be ap-
proximated without recursive neighborhood expansion [24–26]. To the best
of our knowledge, RFNs are compatible with these methods, and they can
reduce the complexity to O(|E′|dK) and O(|E′|dK) during training and infer-
ence, respectively.In practice, |E′| is often substantially smaller than |E|. For
instance, |E′| = 5 266 and |E| = 35 947 during testing for speed limit classi-
fication in Aalborg. Hence, we expect that RFNs can scale to country-sized
road networks.

6.1 Future Work

Our experiments show that graph convolutional networks designed for road
networks can yield substantial improvements in predictive performance. RFNs
focus on the properties of volatile homophily, but do not explicitly utilize the

90

6. Conclusion

spatial representation of road networks beyond road segment connectivity.
We expect that a more complete utilization of the spatial representations of
road networks may yield further improvements over GCNs for general net-
works.

The RFN variants we propose in this work cannot explicitly exploit tem-
poral aspects of the data, but many tasks, e.g., driving speed estimation, are
time-dependent. Extending RFNs to learn temporal road network dynamics
is therefore an important future direction.

Current spatio-temporal GCN approaches focus on solving specific tasks
by applying a temporal layer atop the spatial GCN layer [3, 21, 22]. As men-
tioned in Section 5, we expect that the RFN can be used as a drop-in replace-
ment for the GCN in such methods, but the RFN architecture enables novel
approaches for capturing temporal dynamics. For instance, the relationships
between two adjacent road segments may change during the day. RFNs may
be able capture such changes, e.g., through time-dependent fusion functions
that accept temporal inputs, thus making the behavior of the graph convolu-
tion itself time-dependent.

All models achieved reasonable results on within-network speed limit
classification, but failed to generalize to an unseen road network on cross-
network speed limit classification. However, all models also struggled to
achieve the within-network results: the validation score could change dras-
tically from epoch to epoch, causing us to employ early stopping as a regu-
larization method in our experiments. We therefore expect performance to
be generally poor in areas that have not been observed during training. The
speed limit data is crowd-sourced and thus labels tend to be concentrated in
densely-populated areas leaving other areas scarcely labeled.

The driving speeds follow a similar pattern as the speed limits, where
popular areas tend to have many driving speed observations, but we do not
observe as severe a decline in predictive performance for cross-network driv-
ing speed estimation. We hypothesize this is because a larger part of the
road network is seen during training on this task, and because the decision
boundaries in classification tasks make classification models more sensitive
to changes in the input. Investigating when knowledge learned from one part
of a road network can be transferred to another part represents an interesting
direction for future work.

Finally, we have only investigated the use of RFNs for machine learning
on road networks. However, RFNs may be useful in other important appli-
cation areas, e.g., multi-modal data fusion [27, 28] or machine learning on
biological, citation, and social networks [11, 12]. Investigating the applica-
bility of RFNs and their components to other types of networks and tasks
present an interesting future direction.

91

References

References

[1] Y. Lv, Y. Duan, W. Kang, Z. Li, and F. Wang, “Traffic Flow Prediction
With Big Data: A Deep Learning Approach,” IEEE Transactions on ITS,
vol. 16, no. 2, pp. 865–873, 2015.

[2] Z. Zheng, Y. Yang, J. Liu, H. Dai, and Y. Zhang, “Deep and Embedded
Learning Approach for Traffic Flow Prediction in Urban Informatics,”
IEEE Transactions on ITS, vol. 20, no. 10, pp. 3927–3939, 2019.

[3] B. Yu, H. Yin, and Z. Zhu, “Spatio-Temporal Graph Convolutional Net-
works: A Deep Learning Framework for Traffic Forecasting,” in Proc. of
IJCAI, 2017, pp. 3634–3640.

[4] D. Zang, J. Ling, Z. Wei, K. Tang, and J. Cheng, “Long-Term Traffic
Speed Prediction Based on Multiscale Spatio-Temporal Feature Learning
Network,” IEEE Transactions on ITS, vol. 20, no. 10, pp. 3700–3709, 2019.

[5] T. S. Jepsen, C. S. Jensen, T. D. Nielsen, and K. Torp, “On Network
Embedding for Machine Learning on Road Networks: A Case Study on
the Danish Road Network,” in Proc. of Big Data, 2018, pp. 3422–3431.

[6] Y. Li, K. Fu, Z. Wang, C. Shahabi, J. Ye, and Y. Liu, “Multi-task Repre-
sentation Learning for Travel Time Estimation,” in Proc. of KDD. ACM,
2018, pp. 1695–1704.

[7] P. He, G. Jiang, S. Lam, and D. Tang, “Travel-Time Prediction of Bus Jour-
ney With Multiple Bus Trips,” IEEE Transactions on ITS, vol. 20, no. 11,
pp. 4192–4205, 2019.

[8] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral Networks and
Locally Connected Networks on Graphs,” 2014, p. 14 pp.

[9] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional Neural
Networks on Graphs with Fast Localized Spectral Filtering,” in Proc. of
NIPS, 2016, pp. 3844–3852.

[10] T. N. Kipf and M. Welling, “Semi-Supervised Classification with Graph
Convolutional Networks,” in Proc. of ICLR, 2017, p. 14 pp.

[11] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive Representation
Learning on Large Graphs,” in Proc. of NIPS, 2017, pp. 1024–1034.

[12] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio,
“Graph Attention Networks,” in Proc. of ICLR, 2018, p. 12 pp.

92

References

[13] R. Levie, F. Monti, X. Bresson, and M. M. Bronstein, “CayleyNets: Graph
Convolutional Neural Networks With Complex Rational Spectral Fil-
ters,” IEEE Transactions on Signal Processing, vol. 67, no. 1, pp. 97–109,
2019.

[14] OpenStreetMap contributors, “Planet dump retrieved from
https://planet.osm.org,” 2014.

[15] O. Andersen, B. B. Krogh, and K. Torp, “An Open-source Based ITS
Platform,” in Proc. of MDM, vol. 2, 2013, pp. 27–32.

[16] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and Accurate
Deep Network Learning by Exponential Linear Units (ELUs) ,” in Proc.
of ICLR, 2016, p. 14 pp.

[17] X. Glorot, A. Bordes, and Y. Bengio, “Deep Sparse Rectifier Neural Net-
works,” in Proc. of AISTATS, 2011, pp. 315–323.

[18] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” in Proc. of AISTATS, 2010, pp. 249–256.

[19] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
in Proc. of ICLR, 2015, p. 15 pp.

[20] L. van der Maaten, “Accelerating t-sne using tree-based algorithms,”
vol. 15, pp. 3221–3245, 2014.

[21] J. Hu, C. Guo, B. Yang, and C. S. Jensen, “Stochastic Weight Completion
for Road Networks using Graph Convolutional Networks,” in Proc. of
ICDE, 2019, pp. 1274–1285.

[22] L. Zhao, Y. Song, C. Zhang, Y. Liu, P. Wang, T. Lin, M. Deng, and H. Li,
“T-GCN: A Temporal Graph Convolutional Network for Traffic Predic-
tion,” IEEE Transactions on ITS, 2019.

[23] T. S. Jepsen, C. S. Jensen, and T. D. Nielsen, “Graph Convolutional Net-
works for Road Networks,” in Proc. of SIGSPATIAL, 2019, pp. 460–463.

[24] J. Chen, T. Ma, and C. Xiao, “FastGCN: Fast Learning with Graph Con-
volutional Networks via Importance Sampling,” in Proc. of ICLR, 2018,
p. 15 pp.

[25] W. Huang, T. Zhang, Y. Rong, and J. Huang, “Adaptive sampling to-
wards fast graph representation learning,” in Proc. of NIPS, 2018, pp.
4558–4567.

[26] D. Zou, Z. Hu, Y. Wang, S. Jiang, Y. Sun, and Q. Gu, “Layer-Dependent
Importance Sampling for Training Deep and Large Graph Convolutional
Networks,” in Proc. of NIPS, 2019, pp. 11 247–11 256.

93

Paper C.

[27] Z. Li, B. Guo, Y. Sun, Z. Wang, L. Wang, and Z. Yu, “An attention-based
user profiling model by leveraging multi-modal social media contents,”
in Cyberspace Data and Intelligence, and Cyber-Living, Syndrome, and Health,
2019, pp. 272–284.

[28] B. Guo, Y. Ouyang, C. Zhang, J. Zhang, Z. Yu, D. Wu, and Y. Wang,
“CrowdStory: Fine-Grained Event Storyline Generation by Fusion of
Multi-Modal Crowdsourced Data,” IMWUT, vol. 1, no. 3, pp. 1–19, 2017.

94

A. Feature Derivation

Appendices

A Feature Derivation

We describe here which node, edge, and between-edge features are used in
our experiments and how they are derived from node, edge, and between-
edge attributes.

A.1 Node Attributes

We derive node attributes using the zone map from the Danish Business
Authority mentioned in Section 4.1. The map categorizes regions in Denmark
as city zones, rural zones, and summer cottage zones. We use a node attribute
for each of the three zone categories to indicate whether or not an intersection
belongs to the zone category or not. Each of these node attributes is encoded
as a binary value, either 0 or 1, yielding three features per node.

A.2 Edge Attributes

The OSM data includes categories for all road segments. There are nine
different road segment categories in the OSM extract that we use for our ex-
periments. In addition, the length of each road segment can be derived from
its spatial representation. We use both road segment category and length as
edge attributes.

Road segment categories are one-hot encoded into nine-dimensional vec-
tors. Road segment lengths are encoded as continuous values that are scaled
to the [0; 1] range to ensure that all features are on the same scale. Scaling
road segment lengths into the same range as the other features makes train-
ing with the gradient-based optimization algorithm used in our experiments
more stable. The encoding of road segment categories and lengths yields a
total of ten edge features.

Finally, the node features of the source and target nodes of the edge are
concatenated with these edge features, yielding 16 edge features in total. The
concatenation of source and target node features offers the neural network
baselines (MLP, GraphSAGE, GAT) access to both node and edge features,
rather than just edge features.

A.3 Between-Edge Attributes

The between-edge attributes we consider are the turn direction and the turn
angle.

95

Paper C.

The turn direction can take on four values: straight-ahead, left, right,
and U-turn. We one-hot encode the turn-direction attribute into a four-
dimensional vector. The turn angle takes on values between 0 and 180 de-
grees. We encode the turn angle attribute as a continuous value. As with
road segment lengths, turn angles are scaled into the [0; 1] range. This yields
five between-edge features in total.

B Hyperparameter Selection

As mentioned in Section 4.3, hyperparameter values for the neural network
baselines are selected using a grid search over a set of hyperparameter con-
figurations. For each algorithm, we select the hyperparameter configura-
tion that achieves the best mean performance across ten runs. We explore
learning rates λ ∈ {0.1, 0.01, 0.001} in the grid search based on prelimi-
nary experiments. For GraphSAGE, GAT, and all RFN variants, we explored
d ∈ {32, 64, 128} output dimensionalities of the first layer. The MLP uses con-
siderably fewer parameters than the other algorithms, and we therefore also
explore larger hidden layer sizes d ∈ {128, 256, 512} for a fair comparison.

B.1 RFN Variants

For driving speed estimation, we use L2 normalization on the first layer. For
speed limit classification, we found that training became more stable when
using L2 normalization on both layers.

B.2 GraphSAGE

GraphSAGE uses a pooling network to perform neighborhood aggregation.
For each layer in GraphSAGE, we set the output dimension of the pooling
network to be double the output dimension of the layer in accordance with
the authors’ experiments [11].

By definition, GraphSAGE applies L2 normalization on the output of each
layer. However, we omit L2 normalization on the last (second) layer of Graph-
SAGE models for driving speed estimation; otherwise, the output cannot
exceed a value of one, resulting in poor performance.

B.3 GAT

The GAT algorithm uses multiple attention heads that each output d features
at the first hidden layer. These features are subsequently concatenated, thus
yielding an output dimensionality of h · d, where h is the number of attention
heads. Based on past work [12], we explore different values of h ∈ {1, 2, 4, 8}

96

C. Case Study: Dall

during the grid search and use the same number of attention heads for both
layers. The concatenation makes the GAT network very time-consuming to
train when both h and d are large. We therefore budget these parameters s.t.
h · d ≤ 256, corresponding to, e.g., a GAT network with 64 output units from
4 attention heads.

B.4 Selected Hyperparameters

The hyperparameters selected used for evaluation on the test set is shown in
Table 4 for the Driving Speed Estimation (DSE) and Speed Limit Classifica-
tion (SLC) tasks.

Table 4: Best model hyperparameters found in the grid search.

Task

Algorithm DSE SLC

MLP d = 128 λ = 0.01 d = 128 λ = 0.1
GAT d = 32 λ = 0.01 h = 8 d = 32 λ = 0.001 h = 8
GraphSAGE d = 64 λ = 0.01 d = 64 λ = 0.001

RFN-N+A d = 32 λ = 0.01 d = 64 λ = 0.1
RFN-A+A d = 32 λ = 0.01 d = 32 λ = 0.1
RFN-N+I d = 32 λ = 0.01 d = 32 λ = 0.01
RFN-A+I d = 32 λ = 0.01 d = 64 λ = 0.01

C Case Study: Dall

The Danalien case discussed in Section 4.5 is a common case of volatile ho-
mophily, where there is still homophily s.t. each road segment has a simi-
lar neighbor segment. However, as discussed in Section 1, extreme cases of
volatile homophily exists where there is no homophily. Such a case is illus-
trated in Figure 7 that concerns a resting area next to a motorway near the
village of Dall. In the figure, segment CB is part of the resting area. Segments
AB and CD is a motorway approach and exit, respectively. Finally, segment
BC is a transition segment that allows access to and from the resting area. As
indicated in Figure 7, segment CB has a substantially different driving speed
than the other segments.

We again select the RFN, GraphSAGE, and GAT models and visualize the
representations of the road segments of the Dall case before and after the
first graph convolution in Figure 8 following the same procedure as in the
Danalien case (cf. Section 4.5).

97

Paper C.

Fig. 7: Ground truth driving speeds of a resting area and its adjacent motorway segments near
the village of Dall, Denmark. Triangles indicate direction, black dots mark nodes, and color
indicates speed: the darker, the faster.

98

C. Case Study: Dall

Motorway
Approach/Exit

Transition Rest Area

(a) Input Representations (b) RFNA-A+I

(c) GraphSAGE (d) GAT

Fig. 8: t-SNE visualizations of edge representations (a) before and (b, c, d) after the first graph
convolution in different models.

99

Paper C.

100

Paper D

UniTE—The Best of Both Worlds: Unifying
Function-Fitting and Aggregation-Based Approaches

to Travel Time and Travel Speed Estimation

Tobias Skovgaard Jepsen Christian S. Jensen
Aalborg University Aalborg University

Thomas Dyhre Nielsen
Aalborg University

This paper is submitted to
ACM Transactions on Spatial Algorithms and Systems.

Paper D.

Abstract

Travel time or speed estimation are part of many intelligent transportation applica-
tions. Existing estimation approaches rely on either function fitting or aggregation
and represent different trade-offs between generalizability and accuracy.

Function-fitting approaches learn functions that map feature vectors of, e.g.,
routes, to travel time or speed estimates, which enables generalization to unseen
routes. However, mapping functions are imperfect and offer poor accuracy in prac-
tice. Aggregation-based approaches instead form estimates by aggregating historical
data, e.g., traversal data for routes. This enables very high accuracy given sufficient
data. However, they rely on simplistic heuristics when insufficient data is available,
yielding poor generalizability.

We present UniTE that combines function-fitting and aggregation-based approaches
into a unified framework that aims to achieve the generalizability of function-fitting
approaches and the accuracy of aggregation-based approaches. An empirical study
finds that an instance of UniTE can improve the accuracies of travel speed distri-
bution and travel time estimation by 40–64% and 3–23%, respectively, compared to
using function fitting or aggregation alone.

© 2021 Tobias Skovgaard Jepsen, Christian S. Jensen and Thomas Dyhre
Nielsen.

102

1. Introduction

1 Introduction

Estimation of travel time or speed is central to many intelligent transporta-
tion applications [1] such as trajectory analysis [2], annotating road segments
with travel times [3, 4], and traffic forecasting [5]. This often concerns routes
in a road network, with road segments being special cases. For clarity of
presentation, we thus assume that estimation is done for routes in the re-
mainder of the paper, but our work is also relevant to other kinds of data,
e.g., location-based travel speed forecasting using loop detectors [6]. Existing
approaches to travel time and speed estimation can be categorised as either
function-fitting [3–35] or aggregation-based [36–39] approaches.

Aggregation-based approaches use historical travel time or speed data to
compute corresponding at estimates of the travel speed or time for routes,
often for different time-of-day intervals. Estimates are typically given as his-
tograms [36], e.g., as parameters that denote heights of bins in equi-width
histograms. Function-fitting approaches fit a function f with parameters ψ
that maps feature vector representations of routes, to travel time and speed
estimates. The parameters ψ are found by using input-output pairs from his-
torical data and minimizing the discrepancy between the mapping’s output
and the expected output. Function-fitting and aggregation-based approaches
represent different trade-offs between estimation generalizability and accu-
racy.

Fig. 1: A road segment (left) and its ground-truth and estimated travel-speed distributions dur-
ing a time-of-day interval (right).

Aggregation-based approaches rely only on the sufficient availability of
relevant and representative data when estimating the travel speed or time
of, e.g., a route. Unlike function-fitting approaches, aggregation-based ap-
proaches use data directly at estimation time without an intermediary map-

103

Paper D.

ping function. If sufficient data is available, they can therefore achieve highly
accurate point or distribution estimates with substantial less effort of imple-
mentation than function-fitting approaches. However, in country-sized road
networks, such data is typically not available for all routes at all times of
day [3, 40, 41], in which case aggregation-based approaches default to simple
but inaccurate heuristics, resulting in poor generalizability.

The mapping function in function-fitting approaches can generalize to
unseen routes, since only a feature vector representation of the route needs
to be available. In principle, it is possible to fit a fine-granularity function
to approach the accuracy of aggregation-based methods. However, this is
not feasible in practice due to the substantial efforts required to do so which
involves choosing a good structure for the mapping function [4, 6, 22, 31, 35],
a good feature vector representation of the inputs [5, 31, 34, 35, 42], a strategy
for handling imbalances of, e.g., road segment popularity, in the data [34, 35],
and designing an appropriate loss function [4, 6, 31, 35]. As a result, the
mapping function is imperfect: it may perform well in general, but poorly
for particular routes.

The generalizability-accuracy trade-off between function-fitting and aggregation-
based approaches is illustrated in Figure 1 using experimental results from
our empirical study described in Section 5. The aggregation-based approach
achieves the best fit when observing n = 189 samples, but when n = 10
underestimates the mean and variance since the data sample is not represen-
tative. When n = 0, the aggregation-based approach defaults to its heuristic
which in this case overestimates the mean considerable and underestimates
the variance even more. The function-fitting approach makes no use of data
at estimation time and is unaffected by the representativeness of any avail-
able data. Instead, it extrapolates the travel speed distribution from other
road segments with similar feature representations. In this case, it achieves a
good estimation of the mean, but overestimates the variance.

Both function-fitting and aggregation-based approaches ignore the reality
that, in practice, some areas of a road network are associated with plenty of
data at all times, e.g., city centers, of day while other areas are associated
with little-to-no data regardless of the time of day, e.g., some rural areas.
Typically, the amount of available data from an area is proportional to popu-
lation density. Handling this situation is necessary for fine-granularity travel
time and speed estimation and requires flexibility that existing approaches
lack: in areas with plenty of data an aggregation-based approach is ideal, but
in areas with very little data a function-fitting approach may be necessary to
achieve reasonable accuracy. To this end, we propose a Unifying approach to
Travel time and speed Estimation (UniTE).

UniTE is a travel time and speed estimation framework that integrates
(and complements) function-fitting and aggregation-based approaches. Us-
ing Bayesian probability theory, UniTE allows for gradual transition between

104

2. Preliminaries

function-fitting and aggregation based on the available data. In addition, we
present an instance of the UniTE framework, Gaussian UniTE (G-UniTE), that
models travel time or speed as a Gaussian variable with unknown mean and
variance. The use of conjugate priors in G-UniTE allows for efficient com-
putation of the posterior, easy implementation, and makes G-UniTE appli-
cable to neural network learning using standard deep learning frameworks.
Finally, we investigate the capabilities of the UniTE framework in an empir-
ical study using G-UniTE. The study shows that UniTE can achieve 40–64%
and 3–23% better performance in terms of travel speed distribution modeling
and travel time point estimation, respectively, compared to using a function-
fitting or aggregation-based approach alone. Furthermore, UniTE can achieve
better generalizability than function-fitting approaches while maintaining
similar or better accuracy to aggregation-based approaches regardless of data
availability.

The remainder of the paper is structured as follows. Section 2 provides the
necessary background on function-fitting and aggregation-based approaches,
as well as graph modeling of road networks. Section 3 presents the UniTE
framework and describe how UniTE can unify existing function-fitting and
aggregation-based approaches. Section 4 presents the Gaussian instance of
the UniTE framework, G-UniTE. Section 5 reports on the empirical study.
Section 6 reviews related work, and Section 7 concludes and offers directions
for future research.

2 Preliminaries

We now provide the necessary background on data modeling and existing
approaches to travel time and speed estimation.

2.1 Data Modeling

For clarity, we present UniTE as well as existing function-fitting and aggregation-
based approaches for routes, i.e., where travel times and travel speeds are
estimated for routes in in a road network with road segments as a special
case. UniTE is applicable to other kinds of data as well, to be discussed in
Section 6.

Road Network Modeling

A road network is modeled as a directed graph G = (V, E) where a vertex
v ∈ V represents an intersection or the end of a road, and an edge e ∈ E
represents a road segment. A route is a connected path p = (e1, . . . , en)

105

Paper D.

where ei ∈ E for 1 ≤ i ≤ n. In addition, a route can be mapped to a d-
dimensional feature vector describing its characteristics using the mapping
function φ. For brevity, we use the notation p to refer to the feature vector
representation φ(p) of a route p. If p consists of one edge, i.e., p = e, we use
the notation e instead.

Trajectory Modeling

Vehicle trajectories are sequences of time-stamped GPS locations, but can be
map-matched to a road network modeled as a directed graph (as described
in Section 2.1). Each map-matched trajectory is a sequence TR = (tr1, . . . , trn)
where tri = (ei, τi, ti) is a triple consisting of a road segment ei ∈ E, an arrival
time τi corresponding to the timestamp of the first recorded GPS location on
road segment ei, and ti the travel time or travel speed recorded during the
traversal of segment ei. In some cases, the traversal of a road segment in a
trip is inferred by the map-matching algorithm due to a lack of GPS data. In
such cases, ti = ∅ and τi = ∅.

2.2 Existing Approaches

We now describe function-fitting and aggregation-based approaches to travel
time or speed estimation for routes.

Function-Fitting Approaches

Function-fitting approaches [3–6, 8–31, 33, 34] assume that the relationship
between the unknown future travel time or travel speed t̂i when traversing
route pi at time τi can be modeled by a function f s.t. Pr(t̂i | pi, τi; ψ) =
f (pi, τi; ψ) where ψ is the function parameters of f , pi is the feature vector
representation pi of route pi, and τi is the vector representation of time τi.

As an example of a function f , if the probability density Pr(t̂i | pi, τi; ψ)
is a uni-variate Gaussian, then a possible choice of f is f (pi, τi; ψ) = N (t̂i |
ψµ(pi ⊕ τi), ψσ2(pi ⊕ τi)) where ⊕ denotes vector concatenation and the pa-
rameters ψ = {ψµ, ψσ2} consists of two real vectors. In this case, the pa-
rameters ψµ and ψσ2 that are used to compute the mean and variance of the
Gaussian, respectively.

To fit a function f to a set of n training trajectories, function-fitting ap-
proaches learn model parameters θ that maximize the conditional likelihood
∏n

i=1 Pr(t̂i | pi, τi; ψ) = f (pi, τi; ψ). By sharing model parameters ψ across
training trajectories during optimization, function-fitting approaches can gen-
eralize to unseen routes. However, in practice, generalization is imperfect for
non-trivial travel time and speed estimation tasks.

106

3. A Unified Approach

Aggregation-Based Approaches

Aggregation-based approaches [36–39] aim to learn model parameters θi for
each route at time τi using a set of training trajectories. In other words,
given a set of n training trajectories, these approaches solve n optimization
problems.

Unlike function-fitting approaches, aggregation-based approaches do not
optimize the posterior predictive directly. Instead, the model parameters θi
are chosen s.t. they are the maximum a posteriori probability (MAP) estimate
of Pr(θi | τi, T̃i), where T̃i is a set of historical travel speed or time records that
are typically collected from historical trajectories traversing route pi during
some interval based on time τi, e.g., the same time-of-week interval as τi.

By using distinct model parameters for each route set of training trajecto-
ries, aggregation-based approaches can learn a more accurate representation
of the travel time or travel speed distribution of t̂i provided sufficient his-
torical records are available. However, in practice, it is unlikely that there is
sufficient data for all routes at all times of day [3, 40, 41] in country-sized
road networks. In such cases, aggregation-based approaches rely on simplis-
tic heuristics to provide reasonable estimates for unseen routes, and they are
prone to overfitting when only a few historical records are available.

3 A Unified Approach

We now present the proposed UniTE framework.

3.1 Framework

The primary goal of UniTE is to unify a function-fitting component with an
aggregation-based component s.t. we can seamlessly and smoothly switch
between the two to leverage their respective strengths. The two components
should be integrated s.t. UniTE relies on the function-fitting component when
no historical data is available or if the data is not representative, e.g., due to
low availability. Conversely, we want UniTE to rely on the aggregation-based
component when historical data abounds. To achieve this, UniTE adopts a
Bayesian foundation that provides a solid theoretical basis for unifying func-
tion fitting and aggregation.

A conceptual model of UniTE is illustrated in Figure 2. In brief, we as-
sume that the travel time or speed distribution of a route pi at time τi follows
a distribution with uncertain hyperparameters θi. The prior distribution of
θi is computed as Pr(θi | f (pi, τi; ψ)) using a prior function f with function
parameters ψ that are shared across all routes. The prior function f repre-
sents the function-fitting component of UniTE, and allows UniTE to estimate

107

Paper D.

t̂i

θi t̃i,j

j = 1 : m

f (pi, τi; ψ)ψ
pi

τi

i = 1 : n

Fig. 2: The UniTE framework illustrated using plate notation.

prior distributions for routes even if no historical data is available at esti-
mation time. This estimate is based on the travel time or travel speed dis-
tributions of similar routes at similar times. However, if historical records
T̃i = {t̃i,1, . . . , t̃i,m} are available, a posterior travel time or speed distribution
Pr(ti | T̃i; ψ) for route pi at time τi is computed. The computation of the
posterior represents the aggregation-based component in UniTE.

3.2 The UniTE Objective

We now present the objective function used to train models within the UniTE
framework.

Objective Function

Figure 2 depicts a generative model, i.e., a model that specifies how to gener-
ate the new records from the distribution Pr(t̂i | θi) [43]. Generative models
are usually trained by selecting parameters θi that maximize the joint like-
lihood [43]. However, training a generative model by maximizing the con-
ditional likelihood is guaranteed to yield better estimations when the true
travel time or travel speed distribution is different from the distribution fam-
ily assumed by the model [44]. This is generally the case in practice, where,
e.g., travel time distributions are highly complex [36]. In this work, we are
interested in predictive performance and therefore maximize the conditional
likelihood

Pr(ti | T̃i, θi) = Pr(ti | T̃i, pi, τi; ψ) (D.1)

108

3. A Unified Approach

across n training trajectories where ti is the ground truth travel time or travel
speed observed in the ith trajectory when traversing route pi at time τi. The
posterior predictive Pr(t̂i | T̃i, θi) equals the prior predictive Pr(t̂i | θi) if no
historical records are available as evidence, i.e., if T̃i = ∅.

Regularizing Properties

The UniTE framework inherently addresses the issues of data imbalance is-
sues of function-fitting approaches where they tend to fit best to frequently
occurring types of, e.g., road segments. Because the UniTE framework is
Bayesian, the UniTE objective in Equation D.1 is implicitly regularized s.t.
the performance of the function-fitting component represented by prior func-
tion f is inversely proportional to the number of historical records available.
In other words, the function-fitting component is trained to perform well in
data-sparse situations.

The posterior predictive in Equation D.1, i.e.,

Pr(t̂i | T̃i, θi) =
∫

θi

Pr(t̂i | θi)Pr(θi | T̃i)dθi,

depends on the posterior distribution

Pr(θi | T̃i) ∝ Pr(θi)
m

∏
j=1

Pr(t̃i,j | θi). (D.2)

As Equation D.2 shows, the number of factors in the product increases as
m increases s.t. for large m, the factor Pr(θi) has only a minor influence on
the value of the final product. In other words, the importance of the prior
distribution Pr(θi) on the posterior distribution, and thus the posterior pre-
dictive, is inversely proportional to the number of historical records. As a
consequence, the influence of the function-fitting component on the UniTE
objective in Equation D.1 is largest when there are no historical records at
all, and it gradually becomes less important if more historical records are
available. Thus, by maximizing the conditional likelihood in Equation D.1,
the function-fitting component is trained to perform well in data-sparse sit-
uations. This ensures that no explicit regularization of the function-fitting
component, e.g., oversampling [34], is required to handle data imbalance is-
sues.

3.3 Relation to Existing Approaches

UniTE can be viewed as a hybrid of function-fitting and aggregation-based
approaches.

109

Paper D.

Hybrid Characteristics

The UniTE framework and it corresponding objective in Equation D.1 are
hybrid in the sense that, like the function-fitting approaches, it fits a function
f that maps input feature vector representations to a prior travel time or
travel speed estimate by minimizing the discrepancy between the output of
the mapping and the expected output. However, like the aggregation-based
approaches, UniTE can also use historical records directly in the estimation
process, i.e., without a typically imperfect intermediary mapping function, to
adjust the prior estimate of its function-fitting component by computing the
posterior. This adjustment allows UniTE, like aggregation-based approaches,
to approximate a travel time or travel speed distribution at arbitrary precision
given sufficient data and an appropriate choice of the distribution family for
Pr(t̂i | T̃i, pi; θ).

A very appealing property of UniTE is that from a modeling capability
perspective, UniTE models are capable of being at least as powerful as either
their function-fitting or aggregation-based components. Specifically, a UniTE
model can match the performance of its function-fitting component at arbi-
trary precision by expressing very high confidence in the prior. Similarly, a
UniTE model can match the performance of its aggregation-based component
at arbitrary precision by expressing very low confidence in the prior.

Integration with Existing Approaches

An important feature of the UniTE framework is that it is complimentary
and integrable with existing approaches to travel time and speed estima-
tion. Within the framework, existing function-fitting approaches provide the
structure of the prior function f used to estimate the prior hyperparameters.
We expect that most function-fitting approaches can be integrated with the
UniTE framework with only minor modifications to the output layer and the
objective function, depending on the choice of distribution for t̂. Next, exist-
ing aggregation-based approaches are primarily concerned with the selection
of historical records for aggregation. Aggregation-based approaches thus
provide record selection strategies to construct the set of historical records T̃i
in Equation D.1.

Remarks on Training

Unlike aggregation-based approaches, UniTE maximizes the conditional like-
lihood, and it is desirable that a function-fitting component (represented by
prior function f) compensates for an aggregation-based component when in-
sufficient historical data is available. In the extreme case, no data may be
available. To simulate this situation during training, we recommend exclud-

110

4. Gaussian UniTE

ing the ground truth travel time or travel speed from the set of historical
records, i.e., we recommend that ti /∈ T̃i in Equation D.1.

By excluding the ground truth travel time or travel speed from the set of
historical records during the training, the function-fitting component must
always contribute information missing from the set of historical records T̃i
during training. Specifically, it must contribute information about the ground
truth travel time or speed ti to optimize the objective in Equation D.1.

4 Gaussian UniTE

UniTE is a framework for which many instantiations are possible. To study
the prospects of UniTE analytically and empirically, we present one such
instantiation, Gaussian UniTE (G-UniTE), that is both easy to implement and
integrate with existing approaches.

As the name suggests, G-UniTE assumes that t̂i | θi follows a Gaus-
sian distribution with parameters θi = (µi, λi). The Gaussian assumption
combined with the use of conjugate priors over the uncertain mean µi and
precision λi allows the generally difficult-to-compute posterior predictive in
Equation D.1 to be computed efficiently and in closed-form [45]. In addition,
the closed-form computation of the posterior predictive is also differentiable.
This enables the use of gradient-based optimization techniques that are com-
monly used in function-fitting approaches based on neural networks.

Note that UniTE is far more general than G-UniTE which is just one pos-
sible instantiation of the UniTE framework. Differentiability of the posterior
predictive is a convenient property of G-UniTE but the UniTE framework is
not restricted to gradient-based optimization.

4.1 Prior

Let Pr(t̂i | µi, λi) denote the likelihood of a Gaussian distribution with mean
µi and precision λi (or, equivalently, variance σ2

i = λ−
1
2). We adapt the work

of Murphy [45] to our setting, and estimate µi and λi using the normal-
gamma prior

Pr(µi, λi | pi; ψ) = NG(µi, λi | µi,0, κi,0, αi,0, βi,0) =

N (µi | µi,0,
1

κi,0λi
)Ga(λi | αi,0, βi,0). (D.3)

Here, NG(µi, λi | µi,0, κi,0, αi,0, βi,0) is the probability density function for a
normal-gamma distribution with mean µi,0, precision κi,0 > 0, shape param-
eter αi,0 > 0, and rate parameter βi,0 > 0. Similarly, N (µi | µi,0, 1

κi,0λi
) and

Ga(λi | αi,0, βi,0) are probability density functions of a normal and a gamma

111

Paper D.

distribution, respectively, over the mean µi and the precision λi. The hyper-
parameters of the prior, the prior hyperparameters, are output by the function
f s.t. f (pi; ψ) =

[
µi,0 κi,0 αi,0 βi,0

]
.

4.2 Posterior

After observing a sample of m historical records T̃i = {t̃i,1, . . . , t̃i,m}, beliefs
about µ and λ may change. Formally, the posterior distribution over µi and
λi is given as [45]

Pr(µi, λi | pi, T̃i; θ)NG(µi, λi | µi,m, κi,m, αi,m, βi,m) =

N (µi | µi,m,
1

κi,mλi,m
)Ga(λi | αi,m, βi,m), (D.4)

with posterior hyperparameters

µi,m =
κi,0µi,0 + mMT̃i

κi,0 + m

κi,m =κi,0 + m

αi,m =αi,0 +
m
2

βi,m =βi,0 +
1
2

mS2
T̃i
+

1
2

κi,0m(MT̃i
− µi,0)

2

κi,0 + m
,

(D.5)

where f (pi; θ) =
[
µi,0 κi,0 αi,0 βi,0

]
, MT̃i

=
∑n

j=1 T̃i,j
m is the sample mean,

and S2
T̃i

=
∑m

j=1 (t̃i,j−MT̃i
)2

m is the biased sample variance. Note that if there is
no data, i.e., m = 0, then the posterior hyperparameters are equal to the prior
hyperparameters.

The regularizing properties of the UniTE framework discussed in Sec-
tion 3.2 are reflected in the formulas for the posterior hyperparameters in
Equation D.5. For instance, the posterior mean µi,m is a weighted mean of
the prior mean µi,0 and the mean of the historical records MT̃i

where µi,0
has weight κi,0 and MT̃i

has weight m. Thus, the influence of the prior mean
µi,0 on the posterior mean mi,m diminishes as m increases. The remaining
posterior hyperparameters follow the same pattern.

4.3 Posterior Predictive

It follows from the posterior in Equation D.4, that the posterior predictive
Pr(t̂i | piT̃i; θ)—which we seek to optimize in the objective function in Equa-
tion D.1—follows a student’s t-distribution tνi (t̂i | µ̂i, σ̂i) with νi = 2αi,m de-

112

4. Gaussian UniTE

grees of freedom, location µ̂i = µi,m, and scale σ̂i =

√
βi,m(κi,m+1)

αi,mκi,m
[45], and

with probability density function

h(ti | νi, µ̂i, σ̂i) =
Γ(νi+1

2)

Γ(νi
2)
√

νißσ̂i

(
1 +

1
νi

(ti − µ̂i
σ̂i

)2
)− νi+1

2

. (D.6)

4.4 A Prior Function Layer

To illustrate how to use G-UniTE with neural networks, we present a prior
function layer in Algorithm 5 that outputs the prior hyperparameters in G-
UniTE. The prior function layer is intended to be used as the final layer of a
neural network s.t. the neural network models the prior function f (pi, τi; ψ)
in Figure 2, where ψ are neural network weights.

Algorithm 5 Forward Propagation through the Prior Function Layer

1: function PriorFunctionLayer(xi)
2: xi ← h(pi, τi; ψh)
3: h1 ← W · pi
4: Let: h1 =

[
h1,1 h1,2 h1,3 h1,4

]
5: µi,0 ← h1,1
6: κi,0 ← ELUa(h1,2) + a + ε

7: αi,0 ← |h1,3|+ ε

8: βi,0 ← |h1,4|+ ε

9: return
[
µi,0 κi,0 αi,0 βi,0

]
The prior function layer in Algorithm 5 takes as input a feature vector xi.

In the context of neural networks, xi may be the result of a function h s.t.
h(pi, τi) = xi where h represents forward propagation of vectors pi and τi
through multiple layers. In lines 3–4, xi is projected to a four-dimensional vec-
tor h1, one for each of the prior hyperparameters, using a learnable weight
matrix W. Recall from Section 4.1 that the prior hyperparameters are con-
strained s.t. κi,0 > 0, α0 > 0, and β0 > 0. These constraints are enforced
in lines 6–8. The values h1,3 and h1,4 are interpreted as the prior hyperpa-
rameters αi,0 and βi,0 and are constrained by taking their absolute values and
adding a small non-zero positive constant ε to ensure that they are greater
than zero. We chose this way of enforcing non-negativity due to its simplicity.

We initially constrained the value h1,2, interpreted as the prior hyper-
parameter κi,0, in the same way as h1,3 and h1,4. However, as discussed in
Section 4.2, κi,0 represents the confidence in the prior, i.e., the output of the
function-fitting component. Experiments showed that, since the function-
fitting component performs poorly in the initial stages of training, the value

113

Paper D.

of κi,0 will be very low. To alleviate this problem, we use the expression in
line 6 of Algorithm 5 instead, which makes use of the Exponential Linear
Unit (ELU) [46] function

ELUa(x) =

{
x x > 0
a(ex − 1) x ≤ 0,

(D.7)

where a > 0.
Because Equation D.7 has a minimum value of −a, we can enforce non-

negativity of κi,0 by adding a and ε, as shown in line 6 of Algorithm 5.
This expression makes the value of κi,0 less sensitive to changes that de-
crease its value, thus discouraging decreases of κi,0 during early stages of
training that needs to be corrected in later stages. Hyperparameter a regu-
lates this effect, s.t. the effect is inversely proportional to a. In addition, the
value of h1,2 is initially very close to zero in a neural network setting. Using
κi,0 = |h1,2|+ ε would therefore result in a κi,0 value close to zero indicating,
an unreasonably low confidence in the model. The constraint measure used
in line 6 in Algorithm 5 instead ensures that the initial value of κi,0 is close
to a. Preliminary experiments showed performance improvements when en-
forcing non-negativity of κ0,i in this way, as opposed, taking the absolute
value and adding a small constant, but they showed improvements when
non-negativity of αi,0 and βi,0 were enforced in the same way.

5 Empirical Study

We evaluate UniTE on the task of trajectory travel time estimation. In par-
ticular, we are interested in evaluating UniTE’s capability for improving esti-
mation of the travel speed distributions of road segments traversed during a
trip over function-fitting and aggregation-based approaches, but also UniTE’s
capability for improving point estimates of travel times. In addition, we in-
vestigate the behavior of UniTE under varying degrees of data availability
and different choices of parameters.

5.1 Dataset

For our experiments, we use a dataset of 336 253 trajectories from Aalborg
Municipality in Denmark that occurs between January 1st 2012 and Decem-
ber 31st 2014 [47]. The trajectories have been map-matched to the road net-
work of Aalborg Municipality extracted from OSM [48] with 16 294 intersec-
tions and 35 947 road segments. See Section 2.1 and Section 2.1 for details
on road network trajectory modeling, respectively. See [47] for details on the
trajectory data and map-matching process.

114

5. Empirical Study

We use the 148 746 trajectories from the period January 1st 2012 to June
31st 2013 for training and set aside the 72 693 trajectories from July 1st 2013 to
December 31st 2013 for validation. We use the remaining 114 028 trajectories
from January 1st 2014 to December 31st 2014 for testing. To characterize each
road segment in a trajectory, we use a set of 16 features derived from OSM
data and data from the Danish business authority [35]. These road segment
feature representations are sparse, containing information about just four at-
tributes: road segment length, road segment category (e.g., motorway), and
the kind of zone (city, rural, or summer cottage) the source and target inter-
sections of the road segment are in. The sparsity in the feature representation
makes function-fitting difficult [34, 35]. In addition, 19 510 (54%) of the road
segments are annotated with a speed limit derived from OSM and municipal
data [35]. For further details, see [35].

5.2 Objective Function

We optimize for travel speed distribution modeling performance using the
per-trajectory mean Negative Log-Likelihood (NLL). The NLL of a trajectory
TR is

NLL(TR) = ∑
(ei ,τi ,ti)∈TR,ti 6=∅

sNLL(ei, τi, ti) (D.8)

where sNLL(ei, τi, ti) = − ln Pr(ti | θ) and θ are model parameters. In the
case of UniTE, Pr(ti | θ) is the Gaussian posterior predictive (see Equa-
tion D.6). The NLL directly measures the likelihood of a trajectory occurring
by considering how well an algorithm models the travel speed distributions
of its constituent road segments. A good model achieves a high likelihood
across all trajectories, resulting in a low NLL score.

5.3 Algorithms

In our empirical study, we combine a function-fitting baseline and an aggregation-
based baseline in a unified approach using the UniTE framework and com-
pare their separate performance with their unified performance.

The output of all algorithms is the density function Pr(t̂i = ti | θ) used in
Equation D.8 where θ are model parameters specific to each algorithm. All
algorithms are implemented in Python 31 and trained using the MXNet deep
learning framework2. We have made the implementation of all algorithms
publicly available3.

1https://www.python.org/
2https://mxnet.incubator.apache.org
3To be released upon acceptance.

115

https://mxnet.incubator.apache.org

Paper D.

AGG

Existing aggregation-based approaches [36–39] do not differ in how they
function w.r.t. to our empirical study. We therefore use the AGG baseline
to represent these approaches collectively in the study.

Firstly, when estimating the travel speed distribution of a road segment
e at time τ, these approaches aggregate historical records from trajectories
where the road segment is traversed at a similar time within some interval
of size δ. Secondly, rather than modeling uncertainty about the hyperpa-
rameters of the distribution model like UniTE, they set a threshold k for the
minimal number of historical records considered sufficient. If the number
of historical records is insufficient, an estimate is derived from the speed
limit [36–39].

We represent existing aggregation-based approaches using a single base-
line algorithm AGG with the two features of existing aggregation-based ap-
proaches. For a fair comparison with G-UniTE, AGG also models travel speed
distributions as Gaussian distributions rather than histograms [36–38] or a
mean value [39]. See Section A for a detailed description of the AGG base-
line.

Record Selection AGG’s performance is strongly dependent on the record
selection strategy used. In general, aggregation-based approaches must bal-
ance record relevance with record availability The selection strategy used by
AGG considers two kinds of relevance: contextual relevance and temporal
relevance.

The contextual relevance hyperparameter c is an integer that adjusts the
contextual relevance where the context is the c preceding and succeeding
road segments in the trajectory from which a historical records originates.
Only historical travel speed records from the training trajectories with the
same context are selected for aggregation. Thus, increasing c increases con-
textual relevance.

The temporal relevance parameter δ is given in some unit of time and ad-
justs how inclusive the record selection strategy is w.r.t. historical records
from different times of week. For instance, when estimating for time τ,
contextually-relevant historical records occurring in the time interval [τi −
δ
2 ; τi +

δ
2] are selected.

The record selection algorithm is described fully in Section A.2.

GRU

State-of-the-art function-fitting methods for travel time estimation of routes [19,
21–23, 26–28, 30, 31, 36, 38]are not compatible with our map-matched vehicle
trajectory data. In addition, they have been designed for point estimates of

116

5. Empirical Study

travel time, rather than distribution estimates. For these reasons, we instead
use a simple recurrent neural network, GRU, as the function-fitting approach
in our study The GRU model features a GRU cell [49] with a skip connection
and is thus a recurrent neural network like many state-of-the-art methods.
GRU uses the prior function layer described in Algorithm 5 as the final layer.
A full specification of GRU can be found in Section B.

Unlike AGG, recurrent models can model correlations in segment travel
speeds within a trajectory. For instance, if a vehicle drives onto a motorway
segment ‘A’ from a motorway approach ‘B’ with a lower speed limit than
the motorway, some time is spent on acceleration to cruising speed. On the
other hand, if the vehicle drove onto motorway segment ‘A’ from an adjacent
motorway segment ‘C’ less time, if any, is spent on acceleration assuming
similar traffic conditions.

UniTE

We unify the AGG and GRU baselines using the UniTE framework follow-
ing the instructions in Section 3.3. In brief, we use the function-fitting ap-
proach, GRU, to estimate the prior and the record selection strategy of the
aggregation-based approach, AGG, to compute the posterior. Although UniTE
is not guaranteed to outperform AGG or GRU on average, we expect it to do
so if it is not overfit, since, as discussed in Section 3.3, UniTE can always
produce a model that is no worse than its aggregation-based or function-
fitting component. See Section C for a comparison of reported errors in the
literature.

As mentioned in Section 3.2, we train the generative UniTE model using
a discriminative objective. To evaluate the this decision, we consider both a
discriminative and a generative variant of UniTE.

UniTE-DIS is UniTE as described in Section 3 where the posterior predic-
tive is optimized directly during training. This is considered an end-to-end
approach from a machine learning perspective. UniTE-GEN instead operates
in two step. First, UniTE-GEN outputs only the prior predictive at training
time and then computes the posterior predictive only at test time.

A benefit of UniTE-GEN is that it can be applied to already training
function-fitting approaches. In our empirical study, we always reuse a GRU
model for UniTE-GEN in a one-to-one fashion. That is, whenever we train
and evaluate a GRU model, we also evaluate the corresponding UniTE-GEN
model.

5.4 Evaluation Metrics

We use NLL (see Equation D.8) to evaluate travel speed distribution estima-
tion of each algorithm in our study. In addition, we evaluate each algorithm’s

117

Paper D.

travel time point estimation performance using Mean Absolute Error (MAE),
a commonly used measure for this purpose. Finally, to make our results
more easily comparable to those of other papers using different methods and
datasets, we also measure the Mean Absolute Percentage Error (MAPE) of
the algorithms used in our empirical study, another commonly used measure
in the traffic travel time and speed estimation literature.

We compute a travel time point estimate for a trajectory following route
p = (e1, . . . , en) as ∑n

i=1
li

E[di]
= ∑

q
i=1

li
µ̂i

where li is the length of road segment
ei and µ̂i = µi,m is the expected travel speed computed using Equation D.5.
Recall that m = 0 for GRU.

The MAE is the mean absolute error of the estimated and actual travel
time point estimate. For a trajectory TR, the absolute error is AE = |ŷTR −
yTR| where ŷTR and yTR is the travel time point estimate and ground truth,
respectively, of trajectory T.

The MAPE is the mean absolute percentage error of the estimated and
actual travel time point estimate. For a trajectory TR, the absolute percentage
error is APE = |ŷTR−yTR|

yTR
.

5.5 Training and Hyperparameter Selection

The GRU and UniTE-DIS models are trained by to minimizing the NLL in
Equation D.8 across all trajectories in the training using the ADAM opti-
mizer [50]. Each GRU model in our study is reused in a UniTE-GEN model
as the function-fitting component.

Based on preliminary experiments, we train each GRU and UniTE-DIS
model for 10 epochs with a batch size of 128 trajectories. The training trajecto-
ries are divided uniformly at random into 1163 batches and are reused across
all epochs. The batches are shuffled before each epoch s.t. the are in random
order. For both UniTE-DIS and GRU, we selected the learning rate λ by train-
ing a GRU model using for each learning rate λ ∈ {0.1, 0.01, 0.001, 0.0001}.
We use the learning rate λ = 0.001 with the best validation NLL.

For AGG, we selected aggregation threshold parameter k, contextual rel-
evance parameter c, and the temporal relevance parameters δ using a grid
search over values k ∈ {1, 2, 4, 8}, c ∈ {0, 1, 2, 4} and δ ∈ {15, 30, 60, 120}. We
selected the hyperparameter configuration k = 1, c = 0, and δ = 120 with the
best validation NLL.

The parameter a used in the prior function layer (see Algorithm 5) serves
a similar role as the aggregation threshold k used in AGG. We therefore set
a = 1 based on the best value k = 1 for AGG. We choose hyperparameters c
and δ using a grid search over the same values as for AGG. For UniTE-DIS
the best hyperparameters are c = 1 and δ = 120, and c = 4 and δ = 15 for
UniTE-GEN.

118

5. Empirical Study

Table 1: Algorithm performance on the test trajectories.

Algorithm NLL MAE (s) MAPE (%)

UniTE-DIS 26.83 ± 0.52 75.13 ± 0.70 17.48 ± 0.15
UniTE-GEN 42.99± 7.84 83.35± 1.66 20.86± 0.42
GRU 44.47± 1.00 97.38± 2.77 24.82± 0.81
AGG 75.51± 0.00 77.09± 0.00 18.53± 0.00

5.6 Performance Evaluation

We repeat our experiments ten times for each algorithm and report their
mean performance with standard deviations in Table 1. However, one of
the GRU models did not finish properly. The numbers for GRU and UniTE-
GEN in Table 1 are therefore based on nine runs. Since the AGG baseline
is deterministic, no standard deviations are associated with its performance
figures.

Distribution Modeling As shown in Table 1, UniTE-DIS is the best-performing
algorithm on average for both travel speed distribution modeling and travel
time point estimation. On average, UniTE-DIS outperforms the GRU and
AGG baselines by 39.68% and 64.48%, respectively, on distribution modeling
performance in terms of NLL. UniTE-GEN also outperforms the baselines
on distribution modeling, although not as substantially as UniTE-DIS, with
improvements of 43.07% and 3.33% over AGG and GRU, respectively. In ad-
dition, the results vary substantially between runs with a standard deviation
of 7.48. Given these variations in NLL in combination with the low number
of runs of UniTE-GEN, it is unclear whether UniTE-GEN outperforms GRU
in general.

A detailed analysis of the results suggests that UniTE-GEN implicitly sac-
rifices estimation accuracy of the distribution mean for estimation accuracy of
the distribution variance, a pattern not found in UniTE-DIS or the GRU base-
line. Specifically, when comparing any two runs of UniTE-DIS and the GRU
baseline, the run with the best estimation of the distribution typically also has
the distribution variance estimate. In addition, the GRU model that provides
the prior hyperparameters has been pre-trained on the data and therefore
also to estimate travel speed distribution. However, as a consequence of the
rules for computing the posterior hyperparameters in Equation D.5, the de-
grees of freedom of the estimated t-distribution of the posterior predictive in-
creases with the number of historical records used. This results in a reduced
spread of the distribution, particularly for road segments with relatively few
historical records that do not capture the travel speed distribution.

119

Paper D.

Travel Time Point Estimation Interestingly, the ranking of the algorithms
w.r.t. travel time point estimation is different from the ranking w.r.t. distribu-
tion modeling, as shown in Table 1. The differences between the algorithms
are also smaller, with the GRU baseline being a notable exception. UniTE-DIS
remains best with average performance increases of 2.54%, 9.86, and 22.85%
over AGG, UniTE-GEN, and GRU, respectively, in terms of MAE. Unlike for
the task of distribution modeling, UniTE-GEN provides a substantial perfor-
mance improvement of 14.40% over the GRU baseline for travel time point
estimation, with a smaller standard deviation, i.e., 1.66 vs. 2.77 for MAE.

Summary UniTE-DIS performs 39.68–64.48% and 2.54–22.85% better on dis-
tribution modeling and travel time point estimation, respectively, than the
function-fitting and aggregation-based baselines. In addition, UniTE-DIS out-
performed UniTE-GEN by 9.86–37.60% across all measures and does not suf-
fer from the mean-variance estimation accuracy trade-off we observed in the
UniTE-GEN model, leading to large variances in distribution modeling per-
formance. These findings show that, while perhaps unconventional, training
UniTE models to optimize a discriminative objective rather than a conven-
tional generative objective, is worthwhile.

5.7 The Generalizability-Accuracy Trade-Off

One of our primary goals for UniTE is that UniTE models are flexible s.t. they
can exploit the generalizability of the function-fitting component in data-
sparse situations and can exploit the accuracy of aggregation-based meth-
ods in data-abundant situations. To investigate this capability, we collect the
sNLL of different road segments during evaluation of the test trajectories.
Then, we group them by the number of historical records available accord-
ing to the ground-truth arrival times at the segments and compute the mean
sNLL for each of these groups using the least restrictive record selection strat-
egy (AGG’s). The number of historical records used by each algorithm may
differ from this number, depending on the restrictiveness of the record selec-
tion strategy and the accuracy of the expected arrival time at the road seg-
ments, but they are very strongly correlated. The relationship between mean
sNLL and the number of historical records available is shown in Figure 3.

Analysis Figure 3 shows that AGG has substantially worse performance
than the other algorithms when few historical records are available, but that
it overtakes GRU when 8 historical records available. Until about 35 historical
records are available, UniTE-DIS has the best performance, but from this
point on, AGG has similar performance.

120

5. Empirical Study

0 100 200 300 400
No. of Historical Records Available

−0.5

0.0

0.5

1.0

1.5

2.0

M
ea

n
Te

st
sN

LL

UniTE-DIS
UniTE-GEN
GRU
AGG

Fig. 3: The relationship between mean sNLL for road segment with different number of historical
records available during evaluation on the test trajectories.

UniTE-DIS and AGG maintain quite similar performance when 80 to 250
historical records are available. In this interval, the historical records have
high quality, and there are sufficiently many. The AGG baseline therefore
overtakes UniTE-DIS and UniTE-GEN in terms of performance because it
relies solely on the data and does not make use of a prior. In addition, the
record selection strategies of UniTE-DIS and UniTE-GEN are more restrictive,
causing them to use, respectively, 34% and 91% less data on average than does
AGG. The adverse effect of using a prior in this interval is particularly strong
for UniTE-GEN. We expect this is (a) because it has the by far most restrictive
record selection strategy and (b) because it expresses much higher certainty
in the prior than UniTE-DIS does. When more than 250 historical records are
available, UniTE-DIS and UniTE-GEN achieve similar performance to AGG
since the influence of the prior becomes less significant.

Summary Both UniTE variants exhibit better generalizability than AGG
when few historical records are available and achieve similar accuracy when
many historical records are available, where UniTE-DIS achieves superior
generalizability and accuracy compared to UniTE-GEN. Between these two
extremes, AGG is superior to the UniTE variants due to the availability of
sufficient high-quality data. These data conditions are particularly favorable
for AGG since it does not make use of a prior that may be inaccurate.

5.8 Regularizing Properties

An important property of the UniTE framework is the implicit regularization
w.r.t. data imbalances that results from the definition of the posterior. In

121

Paper D.

0 2000 4000 6000 8000
Road Segment Frequency n

−0.2

−0.1

0.0

0.1

0.2

0.3

Z
er

o–
ce

nt
er

ed
Tr

ai
ni

ng
sN

LL UniTE-DIS (Prior Predictive)
GRU

Fig. 4: Moving average (sample window size 250) of the zero-centered training sNLL of the prior
predictive of UniTE-DIS and GRU at different road segment frequencies.

particular, the posterior (cf. Equation D.5) implicitly regularizes the prior
function since the influence of the prior function is inversely proportional
to the number of historical records. When training UniTE-DIS, we expect
that this implicit regularization encourages the GRU architecture used as the
prior function to output prior travel speed distributions that are accurate
when only few historical records are available. However, we do not expect
this effect in GRU (or, equivalently, in UniTE-GEN) since historical records
are not used at training time.

To study the regularization properties, we compare the segment-wise
mean NLL, sNLL, of UniTE-DIS and GRU on the training set. Let e be a
road segment that occurs n times in the set of training trajectories. Then, the
sNLL of e is 1

n ∑n
i=1− ln pi, where pi = Pr(ti | e, τi, T̃i = ∅; θ) is the value of

the density function of the prior predictive at the ith occurrence. Here, τi is
the time of the occurrence, and ti is the ground truth travel speed.

Figure 4 plots the sNLL of all road segments as a function of their fre-
quency. For ease of comparison, we have centered the values around 0 and
use a moving average with a sample window size of 250. Thus, values above
0 indicate below average performance and values below 0 indicates above
than average performance within the sample window.

As expected, the prior predictive of UniTE-DIS favors low-frequency road
segments more than GRU and GRU favors high-frequency road segments
more than UniTE-DIS. Although not visible in Figure 4, the point of diver-
sion occurs at a road segment frequency of n = 38 corresponding to the
56th percentile. This discrepancy continue to increase as the road segment

122

5. Empirical Study

frequency increases. These findings suggest that the implicit regularization
of the UniTE framework contributes to the superior performance, shown in
Table 1, of UniTE-DIS.

5.9 Data Efficiency

We investigate how the performance of the algorithms changes depending
on the training data available by giving them part of the training data, while
keeping the number of iterations (i.e., backpropagations) constant. For the
sake of brevity, we show only the results in terms of test NLL in Figure 5, but
the patterns when using MAE and MAPE are similar.

AGG and GRU As shown in Figure 5, the performance of AGG is highly
dependent on the size of the training set, whereas GRU is comparatively
good at generalizing when using few training trajectories. As discussed in
Section 1, function-fitting approaches such as GRU are good at generaliza-
tion, and aggregation-based approaches such as AGG are not. The results are
therefore as expected. However, it is notable that the performance of GRU is
near-constant (within six standard deviations) and does not improve as more
data becomes available. We expect the primary cause to be the lack of high
quality features available: using four attributes represented as 16 features
means that the feature space can be observed almost completely through few
trajectories.

UniTE-GEN Figure 5 shows that UniTE-GEN tends to nearly-match or out-
perform it’s pre-trained GRU component. The results also suggest that UniTE-
GEN tends to scale better with training data availability. However, the value
of the UniTE framework when used in a generative manner is highly depen-
dent on the pre-trained GRU model it uses. As shown in the figure, this
dependence results in a large performance variance that is consistent with
the results in Table 1. However, when measuring travel time point estima-
tion using MAE or MAPE (not shown), UniTE-GEN is strictly superior to
its pre-trained function-fitting GRU component for all data set sizes and the
performance difference increases proportionally to data set size.

UniTE-DIS UniTE-DIS outperforms the other algorithms for all data set
sizes. Unlike GRU, UniTE-DIS scales with data availability, although not
as aggressively as AGG. The results show that UniTE-DIS has high data
efficiency and can substantially outperform a purely function-fitting and a
purely aggregation-based approach even at very small data set sizes. For
instance, when using ca. 10% of the training trajectories, UniTE-DIS outper-
forms AGG and GRU by 728% and 20%, respectively.

123

Paper D.

20% 40% 60% 80% 100%
Proportion of Training Trajectories Used

50

100

150

200

250

Te
st

N
LL

UniTE-DIS
UniTE-GEN

GRU
AGG

20% 40% 60% 80% 100%
Proportion of Training Trajectories Used

30

35

40

45

Te
st

N
LL

Fig. 5: Algorithm travel speed distribution modeling performance for different data subsets.

124

5. Empirical Study

Figure 5 suggests that the performance of UniTE-DIS deteriorates beyond
80% of the training trajectories. Given that the differences are small, we
expect that this is due to the stochastic nature of the training process, but it
may also be due to differences in the distributions of the training and test sets.
If the latter is the case, regularization techniques may be used during training
to enhance generalizability. However, since the performance differences are
within six standard deviations, we cannot conclude which is the case.

Summary UniTE-DIS exhibits superior data efficiency compared to GRU
and AGG and achieves superior performance for all data set sizes consid-
ered in our study and achieves superior performance at all data set sizes
considered in our study. And Unlike the AGG baseline, UniTE-DIS exhibits
good generalizability for small data set sizes. And unlike the GRU baseline,
the performance of UniTE-DIS improves proportionally to size of the data
set. UniTE-GEN exhibits the same behavior as UniTE-DIS when measuring
travel time point estimation performance, albeit with strictly worse perfor-
mance at all data set sizes. However, when measuring distribution modeling
performance, the potential performance increase of using UniTE-GEN on a
pre-trained GRU model is highly dependent on the particular GRU model.

5.10 Record Selection Strategies

The value of the UniTE framework depends on the record selection strat-
egy. In particular, there is a trade-off between data availability and data
quality. If the historical records are irrelevant, the posterior predictive may
perform worse than the prior predictive. However, if no historical records are
available, UniTE offers no benefits (but also no drawbacks). In addition, we
hypothesize that optimal record selection strategies for purely aggregation-
based approaches differs from optimal selection strategies for UniTE. We
therefore investigate how different values of the temporal relevance hyper-
parameter δ and the contextual relevance hyperparameter c influence AGG,
as well as UniTE-DIS and UniTe-GEN. Recall that large c values indicates
high relevance and high δ indicates low relevance.

Analysis Figure 6 shows the validation NLL found during hyperparameter
selection to select the best combination of c and δ values for AGG, UniTE-DIS,
and UniTE-GEN. As shown in the figure, the optimal values differ across the
algorithms. In addition, they follow quite different patterns.

AGG benefits from high data availability even at the expense of data rel-
evance. This is not surprising given the inaccurate heuristic used to estimate
the travel speed distributions when too few records are available. UniTE-
GEN follows the opposite pattern and prefers high data relevance. This is

125

Paper D.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

δ = 15 δ = 30 δ = 60 δ = 120

0 1 2 3 4
c

28

30

32

34

36

V
al

id
at

io
n

N
LL

(a) UniTE-DIS

0 1 2 3 4
c

40

50

60

70

80

V
al

id
at

io
n

N
LL

(b) UniTE-GEN

0 1 2 3 4
c

100

200

300

V
al

id
at

io
n

N
LL

(c) AGG

Fig. 6: The distribution modeling performance on the validation set of (a) UniTE-DIS, (b) UniTE-
GEN, and (c) AGG for different values of parameters c and δ that regulate contextual and tem-
poral relevance of the retrieved historical records.

likely caused by the variance-reducing effects of UniTE-GEN discussed in
Section 5.6, leading to too narrow travel speed distributions. If few records
are available, this effect is not as pronounced. Finally, UniTE-DIS is some-
where in-between, preferring a moderate contextual relevance with c = 1.
Temporal relevance is less important, with δ = 60 and δ = 120 yielding
nearly equal performance, particularly when c = 1.

Summary We find that optimal the record selection strategies differ across
the UniTE and AGG. In particular, our results suggest that optimal strategies
for UniTE are more selective than those for aggregation-based approaches.
We attribute this to the difference in the quality of the ‘default’ mechanism
used to find travel speed distributions when few or no historical records are
available.

6 Related Work

As discussed in Section 1, approaches for travel time and speed estimation
can be categorised broadly as either function-fitting [3–33, 35] or aggregation-
based [36–39] approaches.

Function-fitting approaches differ primarily in how they structure the
function they are fitting, and aggregation-based approaches primarily dif-
fer in how they select or construct records for aggregation. The details of
these approaches are orthogonal to the novelty of the UniTE framework. The
UniTE framework can be used in conjunction with existing function-fitting
as well as aggregation-based approaches, where existing function-fitting ap-
proaches can be used as the function-fitting component in UniTE and existing
aggregation-based methods can be used for record selection and construction

126

7. Conclusions and Future Work

in UniTE. To the best of our knowledge, UniTE is the first approach that com-
bines function-fitting and aggregation-based approaches in a single cohesive
framework. We expect that only minor modifications to the output and ob-
jective of a function-fitting approach is necessary, and that no changes to the
record selection strategies of aggregation-based approaches are necessary.

Approaches to travel time and speed estimation can further be categorised
as segment-based [3, 4, 15, 17, 20, 24, 29, 32, 33, 35, 37], route-based [19, 21–
23, 26–28, 30, 31, 36, 38], origin-destination based [7, 18, 25, 39], or station-
based [5, 6, 8–14, 16], meaning that they target estimation for segments,
routes, origin-destination pairs, and traffic measuring stations, respectively.
Traffic measuring stations typically represent loop detectors in traffic fore-
casting applications.

In this paper, we have adopted a segment-based and a route-based per-
spective, but the UniTE framework only requires that the type of data in-
stance, be it a segment, route, origin-destination pair, or a measuring station,
is represented as a feature vector. The framework is thus equally compat-
ible with origin-destination-based and station-based approaches, given that
appropriate methods of feature vector construction and record selection are
available.

Early Version of UniTE An early version of the UniTE framework has been
presented in the Master’s thesis of [51] . The present version is generalizes the
earlier version s.t. the earlier version is a concrete realization of UniTE similar
to G-UniTE. Like G-UniTE, the early version assumes that travel speed dis-
tributions are Gaussian, but only model uncertainty about the distribution
means, not the variances, and provides only point estimates of travel time
or travel speed. In addition, the early version considers only a post-training
computation of the posterior similar to the UniTE-GEN algorithm used in our
empirical study. As a result, the early version does not inherently regularize
the function-fitting component to account for data imbalances. In addition,
the present version of UniTE is not restricted to discrete time like the ear-
lier version, but also supports continuous time. Finally, this work performs
presents a more extensive evaluation with an in-depth analysis of the data
scalability, data efficiency, and the trade-off between data quantity and data
quality when selecting historical records.

7 Conclusions and Future Work

We have presented UniTE, a novel framework that provides a Unifying Ap-
proach to Travel time and speed Estimation. UniTE unifies function-fitting
and aggregation-based approaches to travel time and speed estimation to
leverage the generalizability of function-fitting approaches with the accuracy

127

Paper D.

of aggregation-based approaches. By virtue of being a Bayesian framework,
UniTE is able to switch smoothly between its constituent function-fitting and
aggregation-based components depending on data availability.

In our empirical study, we found that UniTE can improve the accuracies
of travel speed distribution and travel time estimation by 40–64% and 3–23%,
respectively, compared to using function fitting or aggregation alone. These
improvements result from the superior generalizability relative to both the
function-fitting approach and the aggregation-based approach in our study,
while maintaining superior or similar accuracy relative to the aggregation-
based approach across all data availability scenarios in our dataset. We used
the comparatively simple GRU baseline as a substitute for the incompatible
state-of-the-art route-based function-fitting approaches to travel time estima-
tion in our study. As discussed in Section 3.3, there always exists an UniTE
model that can achieve the same performance as either its function-fitting
or aggregation-based component within arbitrary precision. In addition, re-
ported errors for state-of-the-art approaches on different datasets are roughly
half of GRUs error, making them quite comparable in terms of estimation
performance. We therefore still expect such approaches to benefit from inte-
gration with an aggregation-based approach using UniTE although the esti-
mation performance gains are likely smaller the more accurate the function-
fitting approach is independently. See Section C for a more comprehensive
discussion.

UniTE has a number of other benefits in addition to estimation perfor-
mance improvements. First, the framework implicitly regularizes its function-
fitting component to handle issues of data imbalance and reduce model bias
due to its Bayesian nature. Second, UniTE models are less reliant on the
structural quality of both the mapping function, i.e., the neural network ar-
chitecture in our empirical study, and input feature vector representations
since they also use aggregation during estimation. This property of UniTE
can reduce the typically substantial resources required for feature engineer-
ing and neural network architecture design when using neural networks for
function-fitting.

Future directions for UniTE include exploring more complex models of
travel time and speed distributions. This may necessitate more sophisticated
techniques than the conjugate Bayesian analysis [45] used in G-UniTE, e.g.,
variational inference techniques [52]. In addition, investigating further syner-
gistic effects of function-fitting and aggregation within the UniTE framework
is of interest. For instance, in our empirical study, the internal state of the
recurrent Gated Recurrent Unit (GRU) cell used in the UniTE models is un-
affected by the computation of the posterior. This makes it more difficult
for GRU cells to leverage correlations in travel speed between adjacent road
segments in a route for better estimation accuracy.

128

References

References

[1] Z. Liu, L. Chen, and Y. Tong, “Realtime Traffic Speed Estimation with
Sparse Crowdsourced Data,” in Proc. of ICDE, 2018, pp. 329–340.

[2] F. Barth, S. Funke, T. S. Jepsen, and C. Proissl, “Scalable Unsupervised
Multi-Criteria Trajectory Segmentation and Driving Preference Mining,”
in Proc. of BigSpatial, 2020, pp. 1–10.

[3] B. Yang, M. Kaul, and C. S. Jensen, “Using incomplete information
for complete weight annotation of road networks,” IEEE Transactions on
Knowledge and Data Engineering, vol. 26, no. 5, pp. 1267–1279, 2013.

[4] J. Zheng and L. M. Ni, “Time-dependent trajectory regression on road
networks via multi-task learning,” in Proc. of AAAI, 2013, pp. 1048–1055.

[5] B. Yu, H. Yin, and Z. Zhu, “Spatio-temporal graph convolutional net-
works: A deep learning framework for traffic forecasting,” in Proc. of
IJCAI, 2017, pp. 3634–3640.

[6] Z. Cui, K. Henrickson, R. Ke, and Y. Wang, “Traffic graph convolutional
recurrent neural network: A deep learning framework for network-scale
traffic learning and forecasting,” IEEE Transactions on Intelligent Trans-
portation Systems, vol. 21, no. 11, pp. 4883–4894, 2020.

[7] H. Yuan, G. Li, Z. Bao, and L. Feng, “Effective travel time estimation:
When historical trajectories over road networks matter,” in Proc. of SIG-
MOD, 2020, p. 2135–2149.

[8] C. Wei and J. Sheng, “Spatial-temporal graph attention networks for
traffic flow forecasting,” in IOP Conference Series: Earth and Environmental
Science, vol. 587, 2020, paper no. 012065.

[9] H. Lu, D. Huang, Y. Song, D. Jiang, T. Zhou, and J. Qin, “ST-TrafficNet:
A spatial-temporal deep learning network for traffic forecasting,” MDPI:
Electronics, vol. 9, 2020, paper no. 1474.

[10] L. Ge, S. Li, Y. Wang, F. Chang, and K. Wu, “Global spatial-temporal
graph convolutional network for urban traffic speed prediction,” MDPI:
Applied Sciences, vol. 10, no. 4, 2020, paper no. 1509.

[11] Y. Zhang, T. Cheng, Y. Ren, and K. Xie, “A novel residual graph con-
volution deep learning model for short-term network-based traffic fore-
casting,” International Journal of Geographical Information Science, vol. 34,
no. 5, pp. 969–995, 2020.

129

References

[12] K. Zhang, F. He, Z. Zhang, X. Lin, and M. Li, “Graph attention temporal
convolutional network for traffic speed forecasting on road networks,”
Transportmetrica B: Transport Dynamics, vol. 9, no. 1, pp. 153–171, 2020.

[13] S. Zhang, L. Zhou, X. Chen, L. Zhang, L. Li, and M. Li, “Network-wide
traffic speed forecasting: 3d convolutional neural network with ensem-
ble empirical mode decomposition,” Computer-Aided Civil and Infrastruc-
ture Engineering, vol. 35, no. 10, pp. 1132–1147, 2020.

[14] S. Yin, J. Wang, Z. Cui, and Y. Wang, “Attention-enabled network-level
traffic speed prediction,” in Proc. of ISC2, 2020, pp. 1–8.

[15] Y. Lee, H. Jeon, and K. Sohn, “Predicting short-term traffic speed using
a deep neural network to accommodate citywide spatio-temporal cor-
relations,” IEEE Transactions on Intelligent Transportation Systems, vol. 22,
no. 3, pp. 1435–1448, 2021.

[16] S. Guo, Y. Lin, N. Feng, C. Song, and H. Wan, “Attention based spatial-
temporal graph convolutional networks for traffic flow forecasting,” in
Proc. of AAAI, vol. 33, 2019, pp. 922–929.

[17] N. Zygouras, N. Panagiotou, Y. Li, D. Gunopulos, and L. Guibas,
“HTTE: A Hybrid Technique For Travel Time Estimation In Sparse Data
Environments,” in Proc. of SIGSPATIAL, 2019, p. 99–108.

[18] S. Abbar, R. Stanojevic, and M. Mokbel, “STAD: Spatio-Temporal Ad-
justment of Traffic-Oblivious Travel-Time Estimation,” in Proc. of MDM,
2020, pp. 79–88.

[19] L. Fu, J. Li, Z. Lv, Y. Li, and Q. Lin, “Estimation of short-term online taxi
travel time based on neural network,” in Proc. of WASA, 2020, pp. 20–29.

[20] R. Barnes, S. Buthpitiya, J. Cook, A. Fabrikant, A. Tomkins, and F. Xu,
“BusTr: Predicting Bus Travel Times from Real-Time Traffic,” in Proc. of
SIGKDD, 2020, p. 3243–3251.

[21] W. Lan, Y. Xu, and B. Zhao, “Travel time estimation without road net-
works: an urban morphological layout representation approach,” in
Proc. of IJCAI, 2019, pp. 1772–1778.

[22] F. Wu and L. Wu, “DeepETA: A Spatial-Temporal Sequential Neural
Network Model for Estimating Time of Arrival in Package Delivery Sys-
tem,” in Proc. of AAAI, vol. 33, 2019, pp. 774–781.

[23] Y. Shen, J. Hua, C. Jin, and D. Huang, “TCL: Tensor-CNN-LSTM for
Travel Time Prediction with Sparse Trajectory Data,” in Proc. of DASFAA,
2019, pp. 329–333.

130

References

[24] J. Hu, C. Guo, B. Yang, and C. S. Jensen, “Stochastic weight completion
for road networks using graph convolutional networks,” in Proc. of ICDE,
2019, pp. 1274–1285.

[25] J. Hu, B. Yang, C. Guo, C. S. Jensen, and H. Xiong, “Stochastic origin-
destination matrix forecasting using dual-stage graph convolutional, re-
current neural networks,” in Proc. of ICDE, 2020, pp. 1417–1428.

[26] T.-y. Fu and W.-C. Lee, “DeepIST: Deep Image-Based Spatio-Temporal
Network for Travel Time Estimation,” in Proc. of CIKM, 2019, p. 69–78.

[27] X. Lin, Y. Wang, X. Xiao, Z. Li, and S. S. Bhowmick, “Path travel time
estimation using attribute-related hybrid trajectories network,” in Proc.
of CIKM, 2019, p. 1973–1982.

[28] K. Fu, F. Meng, J. Ye, and Z. Wang, “CompactETA: A Fast Inference Sys-
tem for Travel Time Prediction,” in Proc. of SIGKDD, 2020, p. 3337–3345.

[29] R. Stanojevic, S. Abbar, and M. Mokbel, “W-Edge: Weighing the Edges
of the Road Network,” in Proc. of SIGSPATIAL, 2018, p. 424–427.

[30] Z. Wang, K. Fu, and J. Ye, “Learning to estimate the travel time,” in Proc.
of SIGKDD, 2018, p. 858–866.

[31] D. Wang, J. Zhang, W. Cao, J. Li, and Y. Zheng, “When will you arrive?
estimating travel time based on deep neural networks,” in Proc. of AAAI,
vol. 32, 2018, pp. 2500–2507.

[32] H. Hu, G. Li, Z. Bao, Y. Cui, and J. Feng, “Crowdsourcing-based real-
time urban traffic speed estimation: From trends to speeds,” in Proc. of
ICDE, 2016, pp. 883–894.

[33] Y. Wang, Y. Zheng, and Y. Xue, “Travel Time Estimation of a Path Using
Sparse Trajectories,” in Proc. of SIGKDD, 2014, p. 25–34.

[34] T. S. Jepsen, C. S. Jensen, T. D. Nielsen, and K. Torp, “On Network
Embedding for Machine Learning on Road Networks: A Case Study on
the Danish Road Network,” in Proc. of Big Data, 2018, pp. 3422–3431.

[35] T. S. Jepsen, C. S. Jensen, and T. D. Nielsen, “Relational Fusion Net-
works: Graph Convolutional Networks for Road Networks,” IEEE Trans-
actions on Intelligent Transportation Systems, p. in online early access, 2020.

[36] B. Yang, J. Dai, C. Guo, C. S. Jensen, and J. Hu, “PACE: a PAth-CEntric
paradigm for stochastic path finding,” The VLDB Journal, vol. 27, no. 2,
pp. 153–178, 2018.

131

References

[37] J. Hu, B. Yang, C. S. Jensen, and Y. Ma, “Enabling time-dependent un-
certain eco-weights for road networks,” GeoInformatica, vol. 21, no. 1, pp.
57–88, 2017.

[38] J. Dai, B. Yang, C. Guo, C. S. Jensen, and J. Hu, “Path cost distribution
estimation using trajectory data,” Proc. of VLDB, vol. 10, no. 3, pp. 85–96,
2016.

[39] J. Yuan, Y. Zheng, X. Xie, and G. Sun, “T-drive: Enhancing driving di-
rections with taxi drivers’ intelligence,” IEEE Transactions on Knowledge
and Data Engineering, vol. 25, no. 1, pp. 220–232, 2011.

[40] J. Liu, G. P. Ong, and X. Chen, “Graphsage-based traffic speed forecast-
ing for segment network with sparse data,” IEEE Transactions on Intelli-
gent Transportation Systems, 2020, in online early access.

[41] L. Wei, Y. Wang, and P. Chen, “A particle filter-based approach for vehi-
cle trajectory reconstruction using sparse probe data,” IEEE Transactions
on Intelligent Transportation Systems, vol. 22, no. 5, pp. 2878–2890, 2021.

[42] M.-X. Wang, W.-C. Lee, T.-Y. Fu, and G. Yu, “On Representation Learn-
ing for Road Networks,” ACM Transactions on Intelligent Systems and Tech-
nology, vol. 12, no. 1, 2020.

[43] K. P. Murphy, Machine learning: a probabilistic perspective. MIT press,
2012.

[44] J. Salojärvi, K. Puolamäki, and S. Kaski, “On discriminative joint density
modeling,” in Proc. of ECML, 2005, pp. 341–352.

[45] K. P. Murphy, “Conjugate Bayesian analysis of the Gaussian distribu-
tion,” 2007.

[46] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and Accurate
Deep Network Learning by Exponential Linear Units (ELUs) ,” in Proc.
of ICLR, 2016, p. 14 pp.

[47] O. Andersen, B. B. Krogh, and K. Torp, “An Open-source Based ITS
Platform,” in Proc. of MDM, vol. 2, 2013, pp. 27–32.

[48] OpenStreetMap contributors, “Planet dump retrieved from
https://planet.osm.org,” 2014.

[49] K. Cho, B. van Merrienboer, D. Bahdanau, and Y. Bengio, “On the prop-
erties of neural machine translation: Encoder-decoder approaches,” in
Proc. of SSST, 2014.

132

References

[50] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
in Proc. of ICLR, 2015, p. 15 pp.

[51] M. Fruensgaard and T. S. Jepsen, “Improving cost estimation models
with estimation updates and road2vec: a feature learning framework
for road networks,” Master’s thesis, Aalborg University, 2017.

[52] D. M. Blei, A. Kucukelbir, and J. D. McAuliffe, “Variational inference: A
review for statisticians,” Journal of the American Statistical Association, vol.
112, no. 518, pp. 859–877, 2017.

133

References

Appendices

A Definition of AGG

The distribution derivation process when no historical records are available
is not clear from the literature, but Hu et al. [37] suggests that they use the
speed limit as a deterministic (rather than probabilistic) travel speed estimate.
A direct application of this approach to our setting results in a Gaussian with
the speed limit as the mean and (near-)zero variance. However, such a low
variance is unrealistic and severely decreases the travel speed distribution
modeling performance of AGG. To achieve a fair comparison, we therefore
do the following.

Given a road segment ei, AGG outputs the mean µi and the standard
deviation σi:

µi =

{
MT̃i

if |T̃i| ≥ k
0.79 · SL(ei) otherwise

σi =

{
ST̃i

if |T̃i| ≥ k and |T̃i| > 1

0.07 · µi otherwise

(D.9)

Here, MT̃i
and ST̃i

are the arithmetic mean and the standard deviation of
historical records T̃i, respectively. The function SL returns the speed limit for
its argument road segment ei.

The factors 0.79 and 0.07 used in Equation D.9 to derive a mean and
standard deviation when the number of historical records is insufficient are
chosen based on our knowledge of the domain and the dataset, and takes
into account that vehicles tend to travel at speeds below the speed limit on
urban roads [3], which occur occur in the data set used in our study. As an
example, if the speed limit is 50 km/h then drivers drive at around 40 km/h
on average, and 99.7% of drivers are expected to drive below the speed limit
(as a consequence of the empirical rule). From our experience, this scenario is
quite realistic, and using of 79% (rather than 100%) of the speed limit as the
distribution mean yielded substantial performance improvements in terms of
travel time point estimation in preliminary experiments.

A.1 Speed Limit Derivation

The function invocation SL(ei) in Equation D.9 returns the speed limit of
road segment ei if it exists in our dataset. However, as noted in Section 5.1,
the dataset used in our study does not contain a speed limit for all road
segments. When no speed limit is given, SL(ei) instead returns a speed limit

134

A. Definition of AGG

derived from road segment ei’s attributes using a OSM heuristic4.
Since our data is from Denmark, we use the OSM speed limit heuristic for

Denmark. It is as follows.

1. If the road category of a road segment is motorway then assign a speed
limit of 130.

2. If the road category is trunk then assign a speed limit 80.

3. If the road category is neither motorway or trunk, but the road segment
is within a city, then assign a speed limit of 50.

4. Otherwise, assign a speed limit of 80.

A road segment is considered to be in a city if either the source intersection
or the target intersection of the road segments is in a city.

A.2 Record Selection

The AGG baseline relies on a record selection strategy to find historical
records T̃i to compute the sample mean and sample standard deviation used
in Equation D.9. The algorithm used for record selection is presented in Al-
gorithm 6.

The algorithm takes as input a set of training trajectories T R, the route
p for which the travel time is in the process of being estimated, the road
segment ei ∈ p for which historical records T̃i are currently being collected,
and the arrival time τi at road segment ei. In addition, the algorithm takes
as input two parameters: an integer contextual relevance parameter, c, and
a temporal relevance parameter, δ, in some unit of time. Higher values of c
returns fewer, but more relevant historical records. Higher values of δ returns
more, but less relevant historical records.

Algorithm 6 constructs the set of historical records T̃i as follows. The al-
gorithm scans the set of trajectories in the loop in Lines 5–10 for historical
records. For each trajectory, the algorithm scans each traversal in the trajec-
tory for historical records in the loop in Lines 7–10. A historical record refers
strictly to the recorded travel time or travel speed of the traversal.

To be selected, a historical record must satisfy the three conditions in
Line 9. First, it must be contextually relevant s.t. the contexts of road segments
ei and e′j are identical, i.e., Ci = Cj. Here, context refers to the preceding
and succeeding road segments of a road segment in a trajectory or a route.
Second, the historical record must be temporally relevant, i.e., occur at a similar
time of week as τi, defined by the interval Ii (Line 4). Finally, the historical

4https://wiki.openstreetmap.org/wiki/OSM_tags_for_routing/Maxspeed#Default_
speed_limits

135

https://wiki.openstreetmap.org/wiki/OSM_tags_for_routing/Maxspeed#Default_speed_limits
https://wiki.openstreetmap.org/wiki/OSM_tags_for_routing/Maxspeed#Default_speed_limits

References

Algorithm 6 Record Selection Algorithm

1: function RecordSelection(T R, p = (e1, . . . , eq); ei, τi, c, δ)
2: T̃i ← ∅
3: Ci ← (ei−c, . . . , ei−1, ei, ei+1, . . . , ei+c)
4: Ii ← [τi − δ

2 ; τi +
δ
2]

5: for each trajectory TR ∈ T R do
6: Let: TR =

(
(e′1, τ1, t1), . . . , (e′n, τn, tn)

)
7: for j = 1 to n do
8: Cj ← (e′j−c, . . . , e′j−1, e′j, e′j+1, . . . , e′j+c)

9: if Ci = Cj ∧ τj ∈ Ii ∧ tj 6= ∅ then
10: T̃i ← T̃i ∪ {tj}
11: return T̃i

record is added to T̃i if tj 6= ∅, i.e., if the historical record is derived from
GPS data and is not created by the map-matching algorithm.

B Definition of GRU

We express GRU in the UniTE framework as the prior function f .
Let p = (e1, . . . , en) be the input route starting at time τ1. For each road

segment ei in p, GRU computes the following.

xi = ei ⊕ τi

zi = GRU(xt, zi−1)

hi = zi ⊕ xi

f (ei, τi; ψ) = PriorFunctionLayer(hi),

(D.10)

where z0 is a d-dimensional vector of zeros. For i > 1, we compute τi by
incrementing τi−1 by the expected time to traverse road segment ei−1, i.e., we
increment τi−1 by li−1

µi−1,m
where li−1 is the length of road segment ei and µi−1,m

is the expected travel speed when traversing road segment ei (calculated us-
ing Equation D.5). The prior function layer is described in Algorithm 5. Dur-
ing training, we use the time τi recorded during the input training trajectory
if τi 6= ∅.

As shown in Equation D.10, GRU takes as input the 32-dimensional vec-
tor xi, a concatenation of the 16-dimensional vector representations of road
segment ei and τi. We explain how τi is constructed in Section B.1. Vector xi
is passed to a GRU cell that outputs a 32-dimensional vector zi. The GRU cell
is recurrent and therefore takes as input vector zi−1, the output of the GRU
cell at the previous road segment of the route.

136

C. Reported Travel Time Estimation Errors in Other Studies

Preliminary experiments indicated that the use of a skip connection is ben-
eficial to the GRU baseline, i.e., a connection from an earlier layer to later
layer with at least one layer in-between. The skip connection is captured in
the computation of hi in Equation D.10 where the output of the GRU cell
zi is concatenated with the input vector xi. Finally, GRU applies the prior
function layer described in Algorithm 5 to vector hi to output the prior hy-
perparameters. Note that T̃i = ∅ when computing the posterior predictive
Pr(t̂i = ti | T̃i, θi) of the GRU baseline, e.g., when computing NLL (cf. Equa-
tion D.8) during training or evaluation.

B.1 Representation of Time

The representation of time τi used by the GRU algorithm in Equation D.10
is a 16-dimensional feature vector representation of the time of week, where
8 dimensions are used to represent the time of day and 8 dimensions are
used to represent the day of the week. Formally, we learn a time-of-week
vector τ = τtod ⊕ τdow for time τ, where τtod ∈ R8 represents the time of
day, τdow ∈ R8 represents the day of the week, and ⊕ denotes vector con-
catenation. Preliminary experiments indicated that our results are robust to
changes to the dimensionality of this vector representation.

To represent time of day in our experiments, we divide the time of day
into 96 15-minute intervals I = {I1, . . . , I96} s.t. I1 = [0:00; 0:15), I2 = [0:15; 0:30),
and so forth. Then, we one-hot encode the time of day τtod into a 96-dimensional
vector τ′tod =

[
1[τtod ∈ I1] . . . 1[τtod ∈ I96]

]
, where 1 is the indicator func-

tion. Finally, we multiply the one-hot encoding τ′tod by a trainable matrix
Wtod ∈ R96×8 to achieve the time of day representation τtod = τ′todWtod with
dimensionality 8.

We represent the day of week in a manner similar to the time of day, but
with 7 dimensions in the one-hot encoding τ′dow—one for each day of the
week—and multiply τ′dow by a trainable weight matrix Wdow ∈ R7×8 to get
an 8-dimensional vector representation τdow of the day of the week.

C Reported Travel Time Estimation Errors in Other
Studies

Utilizing state-of-the-art route-based function-fitting approaches in our em-
pirical study is not possible due to differences in the expected inputs and
outputs. Specifically, the input trajectories are available as time-stamped se-
quences of edges, rather than raw GPS location data, and we are interested
in distribution estimates, rather than just point estimates, in our study. These
differences make state-of-the-art function-fitting approaches unapplicable for
the setting used in our empirical study.

137

References

A straight-forward comparison between the state-of-the-art function-fitting
approaches and GRU is not possible, but we have gathered reported error
rates of different state-of-the-art route-based function-fitting approaches for
travel time estimation on different data sets, shown in Table 2. Note, that,
unlike GRU, the models in the table are trained using a loss function that op-
timizes for travel time point estimation directly. Whenever multiple datasets
are used in an empirical study, the lowest MAPE across the datasets is in-
cluded in the table.

Table 2: Reported MAPE of state-of-the-art route-based function-fitting approaches on travel
time point estimation.

Algorithm MAPE

DeepSTTE [11] 10.6%
DeepI2T [21] 15.2%
DeepETA [22] 20.6%
TCL [23] 12.4%
DeepIST [26] 7.8%
AtHy-TNet [27] 10.2%
CompactETA [28] 11.1%
WDR [30] 11.7%
DeepTTE [31] 10.9%

As shown in the Table 2, the reported MAPE in other work is generally be-
tween 10% and 15%, which is roughly half the error of GRU. These numbers
support our expectation that GRU underperforms compared to state-of-the-
art approaches and we expect that the performance increase of UniTE-DIS
over GRU will be smaller if UniTE is applied to a function-fitting approach
with the same estimation accuracy as state-of-the-art approaches. Further-
more, we expect that performance increases are subject to diminishing re-
turns: the better the function-fitting component, the harder it is to improve
upon.

As a rough conservative estimate, we expect that performance increases
are between 25–50% of the performance increases achieved by using UniTE-
DIS over GRU. In other words, we expect performance increases of 10–20% in
terms of NLL, 5–11% in terms of MAE, and 7–15% in terms of MAPE. Note,
however, that these estimates assume a scenario where GRU is replaced as the
function-fitting component in UniTE-DIS by a function-fitting approach with
similar performance as the state-of-the-art approaches in Table 2, but with
the same input and output formats as GRU. Performance increases may also
surpass the performance increases shown in our empirical study, if using,
e.g., a different record selection strategy, a different instance of UniTE that
does not assume Gaussian distributions, or UniTE to update the route travel

138

C. Reported Travel Time Estimation Errors in Other Studies

time estimate directly rather than for individual road segments, assuming
such data is available.

139

References

140

Paper E

Scalable Unsupervised Multi-Criteria Trajectory
Segmentation and Driving Preference Mining

Florian Barth Stefan Funke
Universität Stuttgart Universität Stuttgart

Tobias Skovgaard Jepsen Claudius Proissl
Aalborg University Universität Stuttgart

This paper is published in the
Proceedings of the 2018 IEEE Internal Conference on Big Data, pp. 3422–3431,

2018.

Paper E.

Abstract

We present analysis techniques for large trajectory data sets that aim to provide a
semantic understanding of trajectories reaching beyond them being point sequences
in time and space. The presented techniques use a driving preference model w.r.t.
road segment traversal costs, e.g., travel time and distance, to analyze and explain
trajectories.

In particular, we present trajectory mining techniques that can (a) find interest-
ing points within a trajectory indicating, e.g., a via-point, and (b) recover the driving
preferences of a driver based on their chosen trajectory. We evaluate our techniques on
the tasks of via-point identification and personalized routing using a data set of more
than 1 million vehicle trajectories collected throughout Denmark during a 3-year pe-
riod. Our techniques can be implemented efficiently and are highly parallelizable,
allowing them to scale to millions or billions of trajectories.

© 2020 ACM. Reprinted, with permission, from
Florian Barth, Stefan Funke, Tobias Skovgaard Jepsen, and Claudius
Proissl, ‘Scalable Unsupervised Multi-Criteria Trajectory Segmentation
and Driving Preference Mining.’ In Proceedings of the 9th ACM SIGSPA-
TIAL International Workshop on Analytics for Big Geospatial Data, 2020,
Article No. 6, pp. 1–10. DOI: 10.1145/3423336.3429348.

The layout has been revised.

142

1. Introduction

1 Introduction

The ubiquity of mobile devices with position tracking capabilities via GPS
or localization using WiFi and mobile networks continuously generate vast
streams of location data. Such data may be used in a variety of ways. Mobile
networks providers and many companies, such as Google or Apple, use the
location data of their customers to improve their services, e.g., by monitor-
ing of traffic flow or detection of special events. Location data sharing plat-
forms such as Strava, GPSies, and OpenStreetMap (OSM) allow their users to
share their location data with their community. In all of these cases, location
measurements are considered collectively as sequences, each reflecting the
movement of a person or a vehicle. Such sequences can be map-matched to
paths in an underlying transportation network—in our case a road network—
using appropriate methods [1]. We refer to such map-matched sequences as
trajectories throughout the paper.

A common assumption is that most of the time, users travel on ‘opti-
mal’ routes towards a (possibly intermediate) destination, where optimality
is understood as the shortest path w.r.t. suitable scalar traversal costs of each
road segment in the underlying road network. For instance, route planners
and navigation systems often use travel times as traversal costs. However,
in practice, drivers seldom travel on such ‘optimal’ routes due to complex
traversal costs, e.g., time-dependent and uncertain travel times [2], a (possi-
bly unknown) combination of several traversal costs [3], or due to changing
intentions/destinations during a trip. We therefore investigate analysis tech-
niques that do not rely on a fixed criterion but are capable of identifying a
suitable combination of given criteria.

The high-level goal of this paper is to develop trajectory mining tech-
niques to enable a better understanding of the semantics of trajectory data.
Concretely, we focus on the tasks of trajectory segmentation and driving pref-
erence mining.

Trajectory Segmentation

A trajectory is often not just the manifestation of someone going from location
S to location T following an optimal route w.r.t. some criteria, but rather
determined by a sequence of activities/intentions. For instance, Figure 1
shows a trajectory from S to T with two intermediate stops labeled B. The
driver starts at location S but rather than taking the fastest routes, decides
to drive southwest and makes a stop. Then, the driver backtracks and takes
the fastest route from S to T but decides to make a stop on the way. In
this paper, we present a trajectory segmentation approach that can identify
intermediate stops or other points of interest in a trajectory and divide it into
subtrajectories accordingly.

143

Paper E.

Fig. 1: An example of a trajectory going from S to T with two intermediate stops that are labeled
B.

In contrast to previous work on trajectory segmentation [4–8], our ap-
proach solely relies on traversal costs and the structure of the road network.
No additional information such as time stamps are required. Thus, compres-
sion techniques for efficient trajectory storage [9, 10] are applicable. How-
ever, despite not utilizing temporal information, our experiments show that
our trajectory segmentation approach can recover such information through
a structural analysis of the trajectory. In addition, our trajectory segmen-
tation approach uses a driving preference model to divide trajectories into
subtrajectories. To the best of our knowledge, this is the first trajectory seg-
mentation approach to do so.

Driving Preference Mining

Given a trajectory, it is an interesting question which criteria the driver likely
tried to optimize. We refer to this combination as a driving preference. We
show how a known algorithm for driving preference mining [11] can be made
sufficiently robust to recover preferences from vehicle trajectories. We com-
pare the modified algorithm with two benchmark functions and address the
question, how well the recovered preferences describe the trajectories.

Related Work

In this paper, we consider two main applications: trajectory segmentation
and driving preference mining.

144

1. Introduction

Previous work on trajectory segmentation can broadly be categorized as
supervised [4, 5] and unsupervised [6–8]. Supervised approaches require
predetermined criteria. In contrast, unsupervised approaches find the com-
bination of available criteria that best explain the driving behavior in the
input trajectory. Our proposed trajectory segmentation approach is unsu-
pervised. Thus, the required prior assumptions on drivers’ behavior are re-
duced to a minimum. In addition, our approach requires no spatio-temporal
information about the trajectories, unlike existing trajectory segmentation ap-
proaches [4–8].

Driving preference mining—also referred to as driving preference learn-
ing —has been studied previously as well.

A popular approach of modeling driving preferences is to consider them
as random variables. For instance, preference mining methods based on
Gaussian Mixture Models are presented in [12] and in [13]. Balteanu et
al. [14] present a probabilistic method that compares the input trajectory with
pareto-optimal trajectory sets. Campigotta et al. [15] show how mining driv-
ing preferences can be accomplished using Bayesian learning strategies.

Our approach is non-probabilistic and considers the driving preference as
the solution of an optimization problem. Delling et al. [3] present a similar
technique, where the driving preference is chosen such that the overlap of the
given and the computed trajectory is maximal. The main difference to our
approach is that Delling et al. focus on geographical similarities of trajectories
while we define similarity in terms of their traversal costs.

The work of Funke et al. [11] is the most closely related work both w.r.t.
to trajectory segmentation and driving preference mining. They present a
method which decides whether there exists a conic combination of the traver-
sal costs such that a given trajectory is optimal for this weighting—or pref-
erence—of the traversal costs, and outputs the preference. Their method can
recover the driving preferences of synthetic trajectories where such a conic
combination is guaranteed to exist. However, this is not guaranteed for real
world trajectories due to changes in driver preferences within the trajectory
or inaccuracy in the traversal costs. We extend their method to obtain robust
preferences in case a trajectory is not optimal for any preference. In addition,
we use their method in our trajectory segmentation approach to determine
the start and end of a subtrajectory.

1.1 Our Contribution

We develop techniques to ‘explain’ route choices made by drivers based on
several natural criteria and evaluate them on a large data set of real-world
trajectories. In particular, we propose a simple method for unsupervised
trajectory segmentation that is able to approximate locations where drivers
change their intentions/destinations along their trajectories. In contrast to

145

Paper E.

previous work, our approach does not require spatio-temporal information
about the trajectories, which considerably reduces the storage requirements.

Additionally, we present a simple, yet effective modification of a driving
preference mining technique that allows to estimate drivers’ preference that is
more robust with respect to noise or sporadic ‘suboptimal’ routing decisions.

Both our approaches are built on the algorithm presented in [11] which
deduce driving preferences from trajectories. As a result, driving prefer-
ences are integral to both our trajectory segmentation and driving preference
mining techniques, demonstrating the close relationship between these two
applications. To the best of our knowledge, we are the first to show this
relationship.

2 Preliminaries

2.1 Data Set

Road Network Data

We use a directed graph representation of the Danish road network [16] G =
(V, E) that has been derived from data provided by the Danish Business
Authority and the OSM project. In this graph representation, V is a set of
nodes, each of which represents an intersection or the end of a road, and
E is a set of edges, each of which represents a directed road segment. The
graph representation of the Danish road network contains the most important
roads and has a total of 583 816 intersections and 1 291 171 road segments. In
addition, each road segment has attributes describing their length and type
(e.g., motorway) and each intersection has attributes that indicate whether
they are in a city area, a rural area, or a summer cottage area. The data is
further augmented with a total of 163 044 speed limits combined from OSM
data and speed limits provided by Aalborg Municipality and Copenhagen
Municipality [17].

Trajectory Data

We use a set of 1 306 392 vehicle trajectories from Denmark collected between
January 1st 2012 and December 31st 2014 [18]. The trajectories have been
map-matched to the graph representation of the Danish road network s.t.
each trajectory is a sequence of traversed road segments T = (e1, . . . , en)
where ei ∈ E for 1 ≤ i ≤ n. In addition, each segment is associated with
a time stamp and a recorded driving speed whenever the GPS data is suffi-
ciently accurate. In this data set, a trajectory ends after its GPS position has
not changed more than 20 meters within three minutes. See [18] for more
details.

146

2. Preliminaries

Trajectory Stitching A vehicle trajectory in the trajectory data set ends
when the vehicle has not moved more than 20 meters within three minutes.
However, in practice, a driver may choose a trajectory with several interme-
diate stops, for instance when visiting multiple supermarkets to go grocery
shopping. We are interested in examining such trajectories. We therefore
stitch temporally consecutive trajectories from the same vehicle together if
there is less than 30 minutes difference between the end of the current trajec-
tory to the start of the next. Each stitch thus indicates the end of a 3 to 33
minutes break in movement. We call these stitches break points that mark a
temporal gap in the trajectory.

In many cases temporally consecutive trajectories are not connected due
to imprecision or lack of GPS data. In such cases, we compute the short-
est route from the destination of the current trajectory to the start of the
next. If the shortest route is shorter than 200 meters or consists of at most
one road segment, we stitch the trajectories. We continue attempting to join
the stitched to the next trajectory until the next trajectory does not meet the
stitching criteria. See Section A for further details.

From the original 1 306 392 trajectories we obtain 260 190 combined trajec-
tories. Of these trajectories, 190 199 trajectories are stitched and contain break
points.

2.2 Routing Cost Types

From the data sets described in Section 2.1, we derive a number of criteria
that are a measure of the expected cost of taking a route. In our experiments,
we use the following four cost types: travel time, congestion, crowdedness,
and number of intersections. We normalize the average value of each cost
type to one.

Travel Time Each road segment is associated with a fixed value that repre-
sents the time it takes to traverse the road segment. To derive travel time, we
combine historical traversal data from the trajectory data set with travel time
estimates from a pre-trained machine learning model [16]. See Section B.1
for further details.

Congestion We derive the congestion level on a particular road segment
based on how close to the speed limit people tend to drive. The closer to the
speed limit, the less congestion. Many road segments do not have a speed
limit in our speed limit data set. In such cases, we use a simple OSM routing
heuristic, see Section B.2.

147

Paper E.

Crowdedness This criterion measures how ‘crowded’ the surroundings along
a vehicle trajectory are. We derive a crowdedness value for each road seg-
ments from the number of nearby road segments and points of interest OSM
nodes. Further details can be found in Section B.3.

Number of Intersections The number of intersections visited in a trajectory,
excluding the source intersection.

2.3 Personalized Routing

The notion of shortest path requires some distance or cost measure to com-
pare paths (i.e., routes) in a road network. To this end, we use the notion
of personalized routing from [19] which takes into account both multiple
traversal cost types and driving preferences.

Personalized Cost

The personalized cost of a road segment e combines a d-dimensional cost
vector c(e) = (c1(e), . . . , cd(e)) and a d-dimensional preference vector α =
(α1, α2, . . . , αd) where αi ≥ 0 and ∑ αi = 1. Each cost ci(e) for 1 ≤ i ≤ d
is a measure of the cost to traverse road segment e and each preference αi
represent the drivers preference w.r.t. to minimizing cost ci(e). For instance,
c1(e) and c2(e) may be the travel time and the number of intersections of the
road segment e. Assuming equal scale of the costs, a preference vector of
(0.7, 0.3) indicates that a driver values travel time more than the number of
intersections.

The personalized cost of a route π = (e1, e2, . . . , ek) in a road network is
p(π | α) = ∑k

i=1 p(ei | α) where p(ei | α) is the personalized cost of road
segment ei and α represent the driving preferences of a particular driver.
Given driving preferences α, the personalized cost of a road segment e is
p(e | α) = ∑d

i=1 αic(e). We call a path π from s to t personalized path if
∀π′ ∈ Π : p(π | α) ≤ p(π′ | α), where Π is the set of all paths from s to t.

Deducing Routing Preferences

Given a trajectory T in the personalized route setting a natural question to
ask is if it is a personalized path for some preference α. The trajectory T =
v0v1 . . . vk−1 is a personalized path if a solution exists to the following LP

148

2. Preliminaries

with variables α = (α1, α2, . . . , αd) representing driving preferences [11].

Minimize 1

subject to ∀π ∈ Π : p(T | α)− p(π | α) ≤ 0
d

∑
i=1

αi = 1

∀i ∈ {1, . . . , d} : αi ≥ 0

(E.1)

The LP contains a constraint for each possible route π ∈ Π from v0 to vk−1.
These constraints require the personalized costs of T for the solution, the
preference vector α, to be lower than those of every other path π. Note that
no objective function is used and T is therefore a personalized path if any
preference vector α exists that satisfies all the constraints.

The Dijkstra Oracle The solution to the LP in Equation E.1 is a preference
vector α for which no path from v0 to vk−1 has lower personalized cost than
the trajectory T. Writing down the complete LP for all possible paths from v0
to vk−1 is infeasible. Fortunately, it suffices to add the constraints one by one
via a so-called separation oracle [11].

In brief, the LP is first solved using only the last two constraints in Equa-
tion E.1. This results in some initial preference vector α. Then, α is verified to
satisfy all the constraints in Equation E.1 by simply running a Dijkstra from
v0 to vk−1 with preference vector α. If so, a solution to the linear program in
Equation E.1 has been found and no further processing is required. If not, a
violating constraint is discovered and added to the LP.

While this method finds a preference method α for T, if any exists, real
world trajectories are often not personalized paths.

2.4 Trajectory Segmentation

In this section, we discuss the definition of the trajectory segmentation prob-
lem and a general algorithmic framework for it.

Trajectory Segmentation Problem

The segmentation of a trajectory T = v0v1 . . . vk−1 is a sequence of B trajectory
segments S1 = v0v1 . . . vb1 , S2 = vb1 vb1+1 . . . vb2 , S3 = vb2 vb2+1 . . . vb3 , up to
SB = vbB−1 vbB−1+1 . . . vbB . We refer to the common node of two consecutive
trajectory segments, e.g., S1 and S2, as a segmentation point. For instance, vb1 is
a segmentation point because it is at the end of S1 and the start of S2. Buchin,
et al. [4] define the segmentation problem as finding a (minimal) number of
segments for a trajectory such that each segment fulfills a criterion. They
provide a general algorithmic framework for arbitrary segmentation criteria.

149

Paper E.

Trajectory Segmentation Framework

In the framework of Buchin et al. [4], one has to provide a test procedure
which verifies if a given segment meets the desired criterion. This test pro-
cedure is then used to repeatedly, greedily find the longest prefix that meets
the criterion. The authors prove that this approach leads to an optimal, i.e.,
minimal, segmentation for monotone criteria in O(T(k) log k) time if the test
procedure takes T(m) time for a segment of length m. They define mono-
tonicity for a criterion as follows. If any segment S ⊆ T satisfies the criterion,
then any segment S′ ⊆ S also satisfies the criterion. Even though Buchin et
al. [4] focus on self-similarity criteria for the segments, this definition adapts
well to the optimality criterion we introduce in Section 3.1.

3 Multi-Criteria Trajectory Segmentation

A driver may have several via-points on a trip. Sometimes, these via-points
are linked to a point-of-interest such as gas station, but that is not necessarily
the case. The trajectory segmentation approach we present in this section is
designed to find all interesting via-points along a trajectory.

In brief, our approach assumes that drivers choose personalized paths
between their via-points. Any deviation from their personalized path along
a trajectory that goes from s to t indicates some interesting point p in the
trajectory. The point of deviation p is marked as the end of the first trajec-
tory segment and the beginning of the next. This process is repeated on the
remaining subtrajectory going from p to t and so forth.

3.1 The Personalized Path Criterion

For trajectory segmentation in the framework of [4], described in Section 2.4,
we propose a type of criteria that uses only the underlying graph and does
not need any predetermined parameters. The optimal path criterion requires
each trajectory segment S of a trajectory T to be an optimal path according
to the traversal costs in the underlying graph. This criterion is monotone
as defined in Section 2.4 because it requires S to be a “shortest path” and
subpaths of shortest paths are also shortest paths. As a test procedure for a
segment, we use a Dijkstra query.

The optimal path criterion can be generalized to the personalized path cri-
terion. The personalized path criterion requires each trajectory segment to be
a personalized path with respect to some driver preference α. This criterion
is satisfied if there exists a solution to the LP in Equation E.1. Note, that the
α for each trajectory segment can differ.

150

3. Multi-Criteria Trajectory Segmentation

Fixing Edge Cases It is possible that there exists a minimal trajectory seg-
ment S ⊆ T (consisting of a single road segment) which is not a person-
alized/optimal path. One road segment (u, v) might be more expensive in
every traversal cost type than another path from u to v. This indicates that
the used traversal cost types can not explain driver behavior for taking such
an road segment. For the personalized path criterion, this can be remedied
by including a cost type for which each road segment is a personalized path
between its source and target intersections. In general, a unit cost type (every
road segment e has ci(e) = 1) has this property. This guarantees segmentabil-
ity for arbitrary trajectories and makes the personalized path more robust. In
our experiments, the number of intersections cost type fulfills this role.

This does, however, not fix the special case of self-loop edges, which in
our data set typically represent road segments that allow traversals in parking
lots. Such road segments can never be optimal because the optimal path from
the source intersection to itself remains at the intersection. Self-loop edges
can either be dealt with by deleting them from the trajectories, if they do
not cover significant areas in the road networks, or by representing such road
segments as two edges that each represent partial traversal of the self-looping
road segment.

3.2 Experiments

We now investigate the capabilities of the trajectory segmentation method
to identify via-points in trajectories on the basis of the trajectory data set
described in Section 2.1. In particular, we use the stitched trajectory set to
evaluate our trajectory segmentation approach, Personalized Path Trajectory
Segmentation (PPTS), to the Optimal Path Trajectory Segmentation (OPTS)
baseline which uses only a single cost type to check for the optimal path
criterion. We consider the four variants OPTS-TT, OPTS-Con, OPTS-Int, and
OPTS-Cro, that use the travel time, congestion level, number of intersections,
and crowdedness, respectively, as the single cost type.

We compare PPTS’s ability to segment trajectories to that of the baselines.
Our comparison is both in terms of the number of trajectories that can be seg-
mented and the ability of the trajectory segmentation algorithms to recover
the break points in the stitched trajectory set. As mentioned in Section 2.1,
these break points indicate a break of 3 to 33 minutes and are therefore likely
to indicate a via-point within the trajectory. We discard the self-loop edges
within each trajectory to increase segmentability, as described in Section 3.1.
Typically, these self-loop edges represent road segments that allow driving
around parking lots.

All algorithms used in our experiments are implemented in the Rust pro-

151

Paper E.

gramming language1. We make the implementation of our method, the used
graph and some example trajectories publicly available2. We use contraction
hierarchies (CH) [20] to speed up the Dijkstra queries by orders of magnitude.

Evaluation Functions

We use several evaluation functions to evaluate our trajectory segmentation
method and for comparison with the baselines.

Segmentability Score The segmentability score, or simply S-score, mea-
sures the proportion of trajectories that are segmentable by a trajectory seg-
mentation algorithm. Ideally, the S-score is 100% indicating that all trajecto-
ries in the data set could be segmented by the used trajectory segmentation
algorithm.

Break Recovery Rate The Break Recovery Rate (BRR) is a measure of how
good a trajectory segmentation algorithm is at placing segmentation points
s.t. they coincide with known break points in the stitched trajectories. Let
BP denote the set of known break points in a trajectory T and let SP denote
the set of segmentation points output by a trajectory segmentation algorithm
that has been given trajectory T as input. Then, the BRR of trajectory T is

BRR(T) =
|RBP|
|BP|

where RBP = BP∩ SP is the set of recovered break points.

Segmentation Rate A trajectory segmentation algorithm can achieve a high
BRR by simply segmenting a trajectory into trajectory segments consisting
of one road segment each. Although such a segmentation is guaranteed to
recover all break points, it is also very likely to contain a lot of noise in the
form of many false positives or false break points. To measure such noise, we
use the Segmentation Rate (SR) which measures the number of segmentation
points per break point:

SR(T) =
|SP|
|BP|

Ideally, the SR should be 1 for a trajectory segmentation that recovers all
break points, i.e., has a BRR of 100%.

1https://www.rust-lang.org/
2https://github.com/Lesstat/ppts

152

https://www.rust-lang.org/
https://github.com/Lesstat/ppts

3. Multi-Criteria Trajectory Segmentation

Table 1: Mean algorithm performance on all stitched trajectories (ALL) and the 60, 249 com-
monly segmentable trajectories (CS) that can be segmented by all algorithms.

ALL CS
Algorithm BRR S-score BRR SR SQ-score

PPTS 57.98% 100.0% 56.29% 2.39 0.235
OPTS-TT 34.62% 58.16% 58.35% 2.83 0.206
OPTS-Con 29.32% 49.61% 57.49% 3.99 0.144
OPTS-Int 59.19% 100.0% 57.61% 4.37 0.132
OPTS-Cro 35.86% 61.11% 58.10% 5.62 0.103

Segmentation Quality Score The segmentation quality score, or simply SQ-
score, is a summary score to measure the overall quality of a trajectory seg-
mentation. It combines the BRR and SR as follows:

SQ(T) =
BRR(T)
SR(T)

Note, that the unit of the SQ-score is recovered break points per segmentation
point and should ideally be 1.

Results

The results of our experiments are shown in Table 1.

Segmentability As shown in Table 1, PPTS and OPTS-Int are both capable
of segmenting all trajectories and achieve an S-score of 100%. This result is
not too surprising, since both algorithms use a unit cost type—the number
of intersections—which guarantees that any trajectory can be segmented by
these approaches, as discussed in Section 3.1. The remaining algorithms can-
not segment a large portion of the trajectories (more than half in the case
of OPTS-Con) and therefore achieve comparatively low S-scores. Thus, the
inclusion of additional cost types can increase segmentability.

Segmentation Quality As shown in Table 1, PPTS and OPTS-Int achieve
similar BRRs that are substantially higher than the remaining OPTS variants.
However, for a fair comparison that ignores the ability of the algorithms to
segment trajectories, we have computed BRRs, SRs, and SQ-scores on the sub-
set of trajectories that are commonly segmentable, i.e., the trajectories that can
be segmented by all algorithms. On this subset, the BRRs of all algorithms
are comparable. This suggests that the superior BRR when considering all
trajectories for PPTS and OPTS-Int can largely be attributed to their greater
capability for segmenting trajectories.

153

Paper E.

Although the BRRs are quite similar on the commonly segmentable tra-
jectories, the SRs are quite different, as shown in Table 1 In particular, the
OPTS-Con, OPTS-Int, and OPTS-Cro algorithms have, respectively, 67%, 83%,
and 135% more segmentation points per break point than PPTS. The SR of
OPTS-TT algorithm is just 18% higher than that of PPTS.

The higher SRs of the single-cost-type baselines compared to PPTS sug-
gest that the inclusion of driving preferences and multiple criteria reduces
the amount of false positives. The PPTS achieves the lowest BRR on the com-
monly segmentable trajectories, but, as shown in Table 1, PPTS achieves the
best overall trajectory segmentation quality with an SQ-score of 0.235, since
it introduces the fewest false break points and thus have the lowest SR. Con-
versely, OPTS-TT achieves the highest BRR score on the same data subset, but
introduces more false break points than PPTS. As a result, OPTS-TT achieves
only the second-highest segmentation quality with an SQ-score of 0.206. Still,
our results support the wide-spread use of the travel time cost type in many
routing services, but also show that taking additional cost types and driving
preferences into account can lead to better trajectory segmentation.

For the sake of brevity, we present only the comparison between PPTS
and the best-performing baseline, OPTS-TT, in the remainder of this section.

Segmentation Point Accuracy We have thus far only considered exact break
point recovery, but a segmentation may still be useful if it indicates that a
break point is near. Figure 2 shows the percentage of break points which
is within a certain (hop) distance to the next segmentation point for OPTS-
TT and PPTS. PPTS places segmentation points considerably more accurate
than OPTS-TT. PPTS places more than 60% of the break points within one
road segment of the nearest segmentation point and over 80% are within two
road segments of the next segmentation point. OPTS-TT achieves less than
half of PPTS’s performance. However, the performance disparity illustrated
in Figure 2 is largely due to better segmentability of trajectories when using
PPTS. If the analysis is restricted to break points with distance d < ∞ to the
nearest segmentation point, i.e., trajectories that are segmentable by OPTS-
TT, their distributions are comparable.

Qualitative Segmentation Assessment A good trajectory segmentation marks
break points (or other interesting points) along a trajectory with a segmen-
tation point. However, a good trajectory segmentation should also avoid too
many false positives.

The PPTS and OPTS-TT, respectively, have an SR of 2.39 and 2.83 segmen-
tation points per break point, respectively. However, although these numbers
suggest that there are more false break points when using OPTS-TT, our data
only contains positive examples of interesting behavior within the trajectory,

154

3. Multi-Criteria Trajectory Segmentation

(a) OPTS-TT

(b) PPTS

Fig. 2: Distribution of distance between a break point and the next segmentation point for (a)
OPTS-TT and (b) PPTS. Break points in trajectories without any segmentation point are assigned
distance ∞.

i.e., the break points in the stitched trajectories. As result, we cannot quan-
titatively determine whether the segmentation points that do not match a
break point are indeed false positives or mark interesting, but unknown, be-
havior during the trajectory. We therefore qualitatively assess the validity of
the segmentation of a few trajectories.

Figure 3 shows a break point (marked with ‘B’ in yellow) in a segmented
trajectory. The segmentation by OPTS-TT shown in Figure 3a places two seg-
mentation points (marked with ‘S’ in black) around the break point. These
segmentation points fail to recover the break point but are both within a
distance of two road segments of the break point. Thus, the OPTS-TT seg-
mentation appear to detect the presence of the break point, but fails to place
the segmentation points exactly. The PPTS segmentation shown in Figure 3b,

155

Paper E.

is a better segmentation and recovers the break point exactly (indicated by
the black marker labeled ‘B’).

Figure 4 shows another part of the trajectory shown in Figure 3. Here,
OPTS-TT places a segmentation point without comparable segmentation points
in the PPTS segmentation. This additional segmentation point has no appar-
ent meaning, and, upon detailed inspection, appears to occur due to inaccu-
racies in the estimated travel time in the area. This suggests that PPTS may
be more robust than OPTS-TT to noise in the traversal cost data.

For the purposes of quantitative evaluation, our method attempts to re-
cover breaks of 3 to 33 minutes from trajectories. However, our trajectory seg-
mentation approach can discover interesting behavior beyond these known
breaks. For instance, Figure 5 shows a segmentation point marking a detour
to a gas station. This segmentation point is placed by both OPTS-TT and
PPTS.

Processing Time

While using personalized routing does improve break recovery, it comes with
an increase in processing time of trajectory segmentation. The increase in
processing time for the personalized path variant is mostly driven by the
CH-Dijkstra queries being slower.

The trajectory segmentation process is trivially parallelizable, since each
trajectory can be processed independently, making segmentation of even bil-
lions of trajectories feasible. In our experiments, we parallelized the trajectory
segmentation process across 64 cores, each with a clock speed of 2.3 GHz. The
time to process the 190, 199 stitched trajectories for single-criteria and multi-
criteria trajectory segmentation is, respectively, 1 and 5 hours in total, and 19
and 95 milliseconds per trajectory on average. The total processing time took
about half an hour in wall-clock time.

3.3 Discussion

Overall, PPTS achieves the highest trajectory segmentation quality in our
experiments, followed by OPTS-TT. The results suggest that PPTS has two
primary advantages over the baselines in our experiments. The use of multi-
ple cost types and driving preferences makes PPTS capable of (1) segmenting
more trajectories and (2) explaining driving behavior better, resulting in fewer
false break points being placed. Our qualitative assessment of the OPTS-TT
and PPTS segmentations support the conclusion that the segmentation points
placed by PPTS are less likely to be false positives. In addition, PPTS discov-
ered a detour to a gas station that is not indicated by a break point in our
trajectory data set.

156

3. Multi-Criteria Trajectory Segmentation

(a) OPTS-TT

(b) PPTS

Fig. 3: A break point in a trajectory and the segmentation points for (a) OPTS-TT and (b) PPTS.
Yellow markers labeled ‘B’ indicate a break point and black markers labeled ‘S’ a segmentation
point. A black marker labeled B indicates a break point that is recovered by a segmentation
point.

157

Paper E.

Fig. 4: A segmentation point with no obvious event occurring.

Fig. 5: A segmentation point recovers a detour to a gas station that is not marked as a break in
our data set.

158

4. Robust Driving Preference Mining

Even in the case where a break point is not recovered, PPTS is likely to
place a segmentation point near the break point. PPTS places a segmentation
point within a distance of 3 road segments for 95% of break points, but OPTS-
TT for less than 40% of the break points. Although, this difference is largely
explained by PPTS being capable of segmenting more trajectories, it suggests
that PPTS’s segmentation points are likely to indicate some interesting part
of a trajectory. Although the increase in performance of PPTS over OPTS-TT
comes at a factor 5 increase in processing time, it is still capable of segmenting
a trajectory in a fraction of a second on average.

Stitching Parameters Changing the parameters for the stitching process has
only very little effect on our results and do not affect our conclusions. The
results are virtually invariant to changes to the temporal stitching threshold.
However, they are sensitive to changes to the stitch length threshold, although
the effect is minor. The longer the stitches are allowed to be, the worse break
recovery performance for both OPTS-TT and PPTS. This is likely because
more noise is introduced when longer stitches are allowed.

4 Robust Driving Preference Mining

The trajectory segmentation approach presented in Section 3 implicitly re-
covers driving preferences α for each trajectory segment when determining
the personalized path segments by searching for a solution to Equation E.1.
Although it is possible to collect the preference vectors for each trajectory
segment, one is typically more interested in a single preference vector to de-
scribe a driver’s general behavior for use in, e.g., personalized route plan-
ning [12, 14, 19]. Fortunately, this is possible with only a minor modification
of the linear program in Equation E.1:

Minimize δ

subject to ∀π ∈ Π : p(T | α)− p(π | a) ≤ δ

d

∑
i=1

αi = 1

∀i ∈ {1, . . . , d} : αi ≥ 0

δ ≥ 0

(E.2)

As with Equation E.1, this linear program may also be solved in polynomial
time using the LP path oracle described in Section 2.3.

The following modifications have been made to Equation E.2. First, the
solution to the linear program is a preference vector α for the whole trajectory
T rather than a trajectory segment. Second, by introducing δ to the first

159

Paper E.

constraint, T is not required to be a personalized path w.r.t. to the α. Third,
Equation E.1 minimizes δ s.t. T is as close to being shortest-path optimal
as possible w.r.t. to the preference vector α that is the solution to the linear
program.

The effect of the modifications made in Equation E.2 is that the linear
program always has a feasible solution and therefore our approach always
outputs some preference vector α. If δ = 0, then the recovered α fully ex-
plains the driver behavior in the trajectory and is identical to the solution of
Equation E.1. Otherwise, if δ > 0, then the recovered α does not fully explain
the driver behavior but explains it as much as possible given the available
traversal costs.

4.1 Experiments

We now evaluate our driving preference mining approach on a personalized
routing task using the data set described in Section 2.1. Specifically, we eval-
uate our approach for each trajectory T = v0v1 . . . vk−1 in a trajectory set as
follows. First, we solve Equation E.2 for T. Then, we use the resulting prefer-
ence vector α to compute a personalized route (or personalized path) π from
v0 to vk−1. Ideally, the preference vector α combined with the source v0 and
target vk−1 is sufficient to reconstruct or recover the route driven in trajectory
T. We therefore refer to π as the recovered route of trajectory T.

W.r.t. the task of personalized routing, we are interested in measuring two
qualities about our approach. First, how well do the recovered preference
vectors model driving behavior. Second, how well do the preference vectors
match the preferences of the drivers.

Evaluation Functions

To measure our approach’s ability to model driving behavior, we use the
Relative Recovered Route Overlap (RRRO):

RRRO(T, π) =
|T ∩ π|
|T|

Let α be a preference vector recovered from trajectory T. Here, π is the
recovered route of trajectory T. If the preference vector α used to construct
π fully captures the driving preferences exhibited in T, then the route π
recovered using α should be identical to T, resulting in a relative recovered
route overlap of 1.

To measure whether the preference vectors found using our approach
match (actual) driver preferences, we use the Relative Cost Recovery Score
(RCRS). The RCRS reflects the view that two routes are equivalent if their

160

4. Robust Driving Preference Mining

Table 2: Mean RRRO and RCRS of RDP, TTP, and BRP of different algorithms for personalised
routing on the unstitched trajectory set.

RDP TTP BRP

RRRO 0.74 0.70 0.66
RCRS 0.87 0.85 0.81

personalized costs are identical:

RCRS(T, π) =
p(π | α)

p(T | α)

Note, that p(T | α) ≥ p(π | α) since π is the shortest path w.r.t. the personal-
ized costs of the road segments for the given preference vector α. Thus, the
RCRS is always between 0 and 1. An RCRS value of, e.g., 0.8, indicates that
the preference vector α accounts for 80% of the personalized cost of trajectory
T. If the preference vector α fully captures the driver’s preferences, then the
RCRS is 1.

Baselines

We refer to our approach as Recovered Driving Preference (RDP) and com-
pare its performance with two baselines. The first baseline, Travel Time Pref-
erence (TTP), always returns a preference vector that has weight one for travel
time. The second baseline, Best Random Preference (BRP), generates five
random preference vectors for a trajectory, evaluates them and returns the
preference with the best result. The BRP baseline is run independently for
the two evaluation functions used in our experiments.

Results

We run our experiment on both the unstitched and stitched trajectory sets.
The results on both trajectory sets are similar. For brevity, we report only the
results on the unstitched trajectory set.

We summarize the results on the unstitched trajectories in Table 2. As
shown in the table, RDP achieves both the highest mean RRRO and mean
RCRS that are, respectively, 5.7% and 2.4% better than the best performing
baseline TTP. We expect that these figures will be even higher if more than
four traversal cost types are used.

The RDP shows superior performance compared to both baseline algo-
rithms, but the performance of both RDP and the baselines deteriorate as
trajectory length increases as shown in Figure 6. This is not particularly sur-
prising since longer trajectories are more likely to contain more via-points,

161

Paper E.

(a) RCRS

(b) RRRO

Fig. 6: The (a) RCRS and (b) RRRO scores of RDP, the TTP and the BRP with unstitched trajec-
tories.

and none of the approaches in this experiment take such information into
account. In addition, TTP approaches the performance of RDP as trajectory
length increases. This suggests that people are likely to prioritize travel time
more on long trips which matches both our expectations and anecdotal ex-
periences.

Robustness

We call our algorithm robust because, in contrast to the original algorithm
given in [11], it does not require the trajectory to be a personalized path.
Therefore, we are able to recover a driving preference for each of the 1, 306, 392
trajectories. On the contrary, the baseline algorithm is only able to process
590, 251 trajectories, which is less than half. Hence, our modification is in-

162

5. Conclusion

deed a considerable robustness improvement.

Processing Time

We computed the results with a single core with a clock speed of 2.3 GHz.
The average processing time is 1.04 milliseconds per trajectory and 0.02 mil-
liseconds per road segment, but is proportional to the number of road seg-
ments in the trajectory.

4.2 Discussion

Our experiments show that the RDP preference vectors explain driver behav-
ior better than the TTP and BRP baselines. Although the average results of
TTP are very similar to those of RDP, they are never better. This is a strong
indication that our approach indeed finds the best preferences to describe the
drivers’ behavior. In addition, the fast processing time (and trivial paralleliz-
ability) of RDP makes it scalable to even very large trajectory data sets.

Notably, the performance gap between RDP and TTP nearly disappears
for long trajectories. This matches our expectation that travel time is the most
important criterion for such trajectories.

5 Conclusion

In this paper, we have presented two techniques for large scale trajectory seg-
mentation and driver preference mining. We have shown experimentally that
our proposed trajectory segmentation approach is a useful tool for under-
standing the semantics of a trajectory, e.g., the driver’s intentions or changing
destinations. In addition, our experiments showed that our proposed driver
preference mining technique can indeed discover driver preferences for real
trajectories and is sufficiently robust to process such data. Our techniques can
be implemented efficiently in practice and are trivially parallelizable. Thus,
they scale to very large trajectory sets consisting of millions or even billions
of trajectories.

Interestingly, our approaches for trajectory segmentation and driving pref-
erence mining rely on the same model of driving preferences, showing that
these two tasks are closely linked. To the best of our knowledge, we are the
first to show this link.

Future Directions There are many interesting directions for both our trajec-
tory segmentation and driver preference mining approaches.

Our trajectory segmentation approach relies on linear combinations of
costs. However, relationships between costs may be more complex and present

163

References

an interesting opportunity for future work. In addition, driver preferences
can be highly context-dependent and depend on, e.g., the time of day [12].
Extending our approach to utilize such contextual information is an impor-
tant future direction.

In our driver preference mining approach, the linear program may have
multiple solutions corresponding to a large set of preferences or a preference
space. This makes it difficult to compare recovered preferences among trajec-
tories or trajectory segments of the same trajectory. In particular, solving the
linear program for two trajectories generated by two drivers with the same
preferences may yield two different solutions, even if they also follow the
same route. An important future direction is therefore to extend our driving
preference mining technique to output identical (or at least similar) prefer-
ences in such situations. This will enable analysis of driver behavior through,
e.g., driver preference clustering.

Finally, our driving preference mining approach assumes that the intent
of the driver is to go straight from the start of the trajectory to the end of
the trajectory. Thus, it ignores that such trajectories may have via-points.
However, as demonstrated by our experiments, our trajectory segmentation
approach can discover such via-points in trajectories. In future work, it would
be interesting to explore synergies between our trajectory segmentation and
our driving preference mining approach.

Acknowledgments

This work was supported in part by the DiCyPS project, by grants from
the Obel Family Foundation and VILLUM FONDEN, and in part by the
Deutsche Forschungsgemeinschaft (DFG) within the priority program 1894:
Volunteered Geographic Information.

References

[1] Y. Zheng, “Trajectory data mining: An overview,” ACM Trans. Intell. Syst.
Technol., vol. 6, no. 3, pp. 29:1–29:41, May 2015.

[2] S. A. Pedersen, B. Yang, and C. S. Jensen, “Fast stochastic routing under
time-varying uncertainty,” The VLDB Journal, vol. 29, no. 4, pp. 819–839,
2020.

[3] D. Delling, A. V. Goldberg, M. Goldszmidt, J. Krumm, K. Talwar, and
R. F. Werneck, “Navigation made personal: Inferring driving prefer-
ences from gps traces,” in Proc. of SIGSPATIAL’15. New York, NY, USA:
Association for Computing Machinery, 2015.

164

References

[4] M. Buchin, A. Driemel, M. Van Kreveld, and V. Sacristán, “Segmenting
trajectories: A framework and algorithms using spatiotemporal criteria,”
Journal of Spatial Information Science, vol. 2011, no. 3, pp. 33–63, 2011.

[5] S. P. Alewijnse, K. Buchin, M. Buchin, A. Kölzsch, H. Kruckenberg, and
M. A. Westenberg, “A framework for trajectory segmentation by stable
criteria,” in Proceedings of the 22nd ACM SIGSPATIAL International Con-
ference on Advances in Geographic Information Systems, 2014, pp. 351–360.

[6] A. Soares Júnior, B. N. Moreno, V. C. Times, S. Matwin, and L. d. A. F.
Cabral, “GRASP-UTS: an algorithm for unsupervised trajectory segmen-
tation,” International Journal of Geographical Information Science, vol. 29,
no. 1, pp. 46–68, 2015.

[7] A. S. Junior, V. C. Times, C. Renso, S. Matwin, and L. A. Cabral, “A
semi-supervised approach for the semantic segmentation of trajecto-
ries,” in 2018 19th IEEE International Conference on Mobile Data Manage-
ment (MDM). IEEE, 2018, pp. 145–154.

[8] M. Etemad, A. S. Júnior, A. Hoseyni, J. Rose, and S. Matwin, “A trajec-
tory segmentation algorithm based on interpolation-based change de-
tection strategies.” in EDBT/ICDT Workshops, 2019.

[9] B. Krogh, C. S. Jensen, and K. Torp, “Efficient in-memory indexing
of network-constrained trajectories,” in Proceedings of the 24th ACM
SIGSPATIAL International Conference on Advances in Geographic Informa-
tion Systems, 2016, pp. 1–10.

[10] R. Song, W. Sun, B. Zheng, and Y. Zheng, “PRESS: A Novel Frame-
work of Trajectory Compression in Road Networks,” in Proceedings of the
VLDB Endowment, vol. 7, may 2014, pp. 661–672.

[11] S. Funke, S. Laue, and S. Storandt, “Deducing individual driving pref-
erences for user-aware navigation,” in Proc. of SIGSPATIAL’16, 2016.

[12] B. Yang, C. Guo, Y. Ma, and C. S. Jensen, “Toward personalized, context-
aware routing,” The VLDB Journal, vol. 24, no. 2, pp. 297–318, Apr. 2015.
[Online]. Available: http://dx.doi.org/10.1007/s00778-015-0378-1

[13] J. Dai, B. Yang, C. Guo, and Z. Ding, “Personalized route recommenda-
tion using big trajectory data,” in 2015 IEEE 31st international conference
on data engineering. IEEE, 2015, pp. 543–554.

[14] A. Balteanu, G. Jossé, and M. Schubert, “Mining driving preferences in
multi-cost networks,” in SSTD, ser. Lecture Notes in Computer Science,
vol. 8098. Springer, 2013, pp. 74–91.

165

http://dx.doi.org/10.1007/s00778-015-0378-1

References

[15] P. Campigotto, C. Rudloff, M. Leodolter, and D. Bauer, “Personalized
and situation-aware multimodal route recommendations: The favour al-
gorithm,” Trans. Intell. Transport. Sys., vol. 18, no. 1, pp. 92–102, Jan. 2017.

[16] T. S. Jepsen, C. S. Jensen, and T. D. Nielsen, “Relational Fusion Net-
works: Graph Convolutional Networks for Road Networks,” IEEE Trans-
actions on Intelligent Transportation Systems, pp. 1–12, 2020, in online early
access.

[17] T. S. Jepsen, C. S. Jensen, T. D. Nielsen, and K. Torp, “On network em-
bedding for machine learning on road networks: A case study on the
danish road network,” in Proc. of Big Data 2018, 2018, pp. 3422–3431.

[18] O. Andersen, B. B. Krogh, and K. Torp, “An Open-source Based ITS
Platform,” in Proc. of MDM, vol. 2, 2013, pp. 27–32.

[19] S. Funke and S. Storandt, “Personalized route planning in road net-
works,” in Proc. of SIGSPATIAL’15, 2015, pp. 1–10.

[20] S. Funke, S. Laue, and S. Storandt, “Personal Routes with High-
Dimensional Costs and Dynamic Approximation Guarantees,” in 16th
Int. Symp. on Experimental Algorithms (SEA 2017), ser. Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), vol. 75, Dagstuhl, Germany,
2017, pp. 18:1–18:13.

[21] M. Fruensgaard and T. S. Jepsen, “Improving cost estimation models
with estimation updates and road2vec: a feature learning framework
for road networks,” Master’s thesis, Aalborg University, 2017.

166

A. Trajectory Stitching

Appendices

A Trajectory Stitching

Our trajectory dataset D = {T1, . . . , Tn} consists of sets of trajectory se-
quences of the form Ti = (T1, . . . , Tm). Each trajectory sequence Ti contain
trips specific to driver di and are in temporal order s.t. trajectory Tj ∈ Ti
started before trajectory Tj+1 ∈ Ti. We define a stitched trajectory data set
based on the data set D as Dstitched =

⋃n
i=1 StitchTrajectories(Ti).

Algorithm 7 Trajectory Stitching

1: function StitchTrajectories(T = (T1, . . . , Tn))
2: Tstitched ← ∅
3: Tcurrent ← T1
4: ecurrent ← GetEndTime(Tcurrent)
5: for i = 2 to n do
6: si ← GetStartTime(Ti)
7: if si − ecurrent ≤ 30 minutes and
8: Ti and Tcurrent are pseudo-connected then
9: Tcurrent ← Stitch(Tcurrent, Ti)

10: else
11: Tstitched ← Tstitched ∪ {Tcurrent}
12: Tcurrent ← Ti

13: ecurrent ← GetEndTime(Tcurrent)

14: Tstitched ← Tstitched ∪ {Tcurrent}
15: return Tstitched

The StitchTrajectories function, defined in Algorithm 7, takes as input
the trajectories of a driver in temporal order. We use Tcurrent to keep track of
the current trajectory considered for stitching. Initially, Tcurrent is set to T1.
We use ecurrent to keep track of the end time of the current trajectory Tcurrent,
i.e., its last recorded GPS point. In a loop, we scan the input trajectories
T sequentially for stitching candidates, starting from trajectory T2. We first
store the time of the first GPS point associated with trajectory Ti in si.

We then check whether Ti is both temporally and spatially near enough
to stitch with Tcurrent. The two trajectories Tcurrent and Ti are temporally near
enough to stitch if there is at most a 30 minute difference between ecurrent and
si. Two trajectories T1 = (e1, . . . , ei) and T2 = (ei+1, . . . , ei+j), where ei = (u, v)
and ei+1 = (w, x), are pseudo-connected if the shortest route between v and
w consists of at most one road segment or is less than 200 meters in length.
If both stitching conditions are met, Ti is stitched to Tcurrent by invoking the
Stitch function.

167

References

For pseudo-connected trajectories T1 and T2, Stitch is defined as Stitch(T1, T2) =
(e1, . . . , ei, e′1, . . . , e′k, . . . , ei+j) where (e′1, . . . , e′k) is the shortest route connect-
ing v and w which we refer to as a stitch. Then, the stitched trajectory is
assigned to Tcurrent.

If the stitching conditions are not met, we cannot stitch more trajectories
to Tcurrent. We then add the current trajectory to Tstitched and let Ti be the
new current trajectory. Note that after the first iteration Tcurrent may be a
stitched trajectory. For a stitched trajectory T′ = Stitch(T1, T2), we define
GetEndTime(T′) = GetEndTime(T2). After scanning through all of the in-
put trajectories, we add the last trajectory to Tstitched and finally return the
stitched trajectories.

B Routing Cost Type Details

In this section, we describe how the travel time, congestion, and crowdedness
routing costs are derived in further details.

B.1 Travel Time

The vehicle trajectories in our trajectory set have the tendency to be concen-
trated on a few popular segments, as such, many road segments have few or
no traversals in the trajectory set. We therefore require a means of estimat-
ing travel times for such road segments. To this end, we use a pre-trained
machine learning model to provide travel time estimates. However, for road
segments with an abundance of traversal data the model’s estimates may be
inaccurate. Inspired by previous work [21], we therefore combine travel time
estimates with travel times of historical traversals s.t. when the driving speed
estimate of a road segment becomes increasingly less influential the more
historical traversals the road segment is associated with.

We compute the travel time te for a road segment e as te =
kt̂e+nt̄e

k+n where
t̂e is the estimate of the mean travel time, t̄e is the mean travel time of the
historical traversals, n is the number of historical traversals of segment e in
the trajectory dataset, and k represents the confidence in t̂e. We use k = 10 in
our experiments.

We use a pre-trained Relational Fusion Network (RFN) [16] to provide
travel time estimates t̂e for each road segment e ∈ E. Specifically, we use the
best performing RFN from [16] which has been trained on the Danish Mu-
nicipality of Aalborg using trajectories within the municipality that occurred
between January 1st 2012 and June 30th 2013. Despite having been trained
only on a subset of the network, the model generalizes well to unseen areas
of the road network [16]. However, in a few cases the network would give

168

B. Routing Cost Type Details

very low values. We therefore modify the output s.t. the estimated driving
speed on any road segment cannot be below 5 kmh.

B.2 Congestion

We assign a congestion level to road segment e depending on the speed limit
se on the segment in km/h, the length of le of the segment in km, and the
travel time te in hours. Let τe = le/se denote the travel time on road segment
e if a vehicle is driving at exactly the speed limit. Formally, we assign road
segment e the congestion level ce = max{1− te

τe
, 0} s.t. a value of 0 indicates

that it is possible to drive at (or above) the speed limit and a value of 1
indicates that the road segment is not traversable.

The value of τe relies on the speed limit of road segment e. We use a speed
limit data set that combines OSM speed limits with speed limits provided
by Aalborg Municipality and Copenhagen Municipality [17]. This data set
contains 163 044 speed limits, thus leaving many road segments without a
known speed limit. In such cases, we use an OSM routing heuristic3 which
in Denmark assigns a speed limit of 130 km/h to motorways, a speed limit of
50 km/h in cities, and a speed limit of 80 km/h on other types of segments.
For our data, we count a road segment as in a city if either the source or
destination intersection is in a city according to its attributes.

B.3 Crowdedness

This routing cost type describes how ‘crowded’ the landscape around a road
segment is. It is derived from the number of OSM nodes in the vicinity of
the road segment. We use all OSM nodes in Denmark from a 2019 data set
regardless wether they represent a road, a building or some other point of
interest. To calculate it, we first overlay our graph with a grid and count
the OSM nodes within each cell. For each road segment, we locate the OSM
nodes that are part of its geometry in the grid. The cost per road segment is
then the sum of the cell counts of its (geometry) nodes. We use a grid of 2000
by 2000 resulting in a cell size of roughly 209m x 177m.

3See https://wiki.openstreetmap.org/wiki/OSM_tags_for_routing/Maxspeed.

169

https://wiki.openstreetmap.org/wiki/OSM_tags_for_routing/Maxspeed

To
b

ia
s Sk

o
vg

a
a

r
d

 Jepsen
To

w
a

r
d

s D
ata

-Effic
ien

t M
o

b
ility A

n
a

lytic
s in

 Spatia
l N

etw
o

r
k

s

ISSN (online): 2446-1628
ISBN (online): 978-87-7210-977-0

	Omslag_TSJ.pdf
	PHD_TSJ_TRYK.pdf
	Kolofon_TSJ.pdf
	PhDThesis_by_TobiasSkovgaardJepsen.pdf
	Front page
	Abstract
	Resumé
	Contents
	Acknowledgments
	Thesis Details
	I Thesis Summary
	1 Introduction
	1.1 Challenges
	1.2 Contributions
	1.3 Organization

	2 Road Network Representation Learning
	2.1 On the Validity of the Homophily Assumption
	2.2 Graph Convolutional Networks for Road Networks
	2.3 Conclusion

	3 Travel Time and Travel Speed Estimation
	3.1 UniTE
	3.2 Conclusion

	4 Vehicle Trajectory Analysis
	4.1 Personalized Costs
	4.2 Via-Point Identification
	4.3 Driving Preference Mining
	4.4 Conclusion

	5 Conclusion
	References

	II Papers
	A On Network Embedding for Machine Learning on Road Networks: A Case Study on the Danish Road Network
	1 Introduction
	2 Related Work
	3 Network Embedding
	3.1 A General Introduction
	3.2 node2vec
	3.3 Other Approaches

	4 Experimental Study
	4.1 Data Set
	4.2 Experiment Design
	4.3 Road Segment Classification
	4.4 Linear Separability
	4.5 Homophily or Structural Equivalence
	4.6 Architectural Parameters
	4.7 Homophily and Classification Performance

	5 Discussion, Conclusion, and Future Work
	References

	B Graph Convolutional Networks for Road Networks
	1 Introduction
	2 Preliminaries
	3 Relational Fusion Networks
	3.1 Overview
	3.2 Relational Fusion

	4 Experimental Evaluation
	4.1 Data Set
	4.2 Experimental Setup
	4.3 Results

	5 Conclusion
	6 Acknowledgments
	References

	C Relational Fusion Networks: Graph Convolutional Networks for Road Networks
	1 Introduction
	2 Preliminaries
	2.1 Modeling Road Networks
	2.2 Graph Convolutional Networks
	3 Proposed Method
	3.1 Node-Relational and Edge-Relational Views
	3.2 Method Overview
	3.3 Relational Fusion
	3.4 Fusion Functions
	3.5 Aggregation Functions
	3.6 Forward Propagation

	4 Experimental Evaluation
	4.1 Data Set
	4.2 Algorithms
	4.3 Experimental Setup
	4.4 Results
	4.5 Case Study: Danalien

	5 Related Work
	6 Conclusion
	6.1 Future Work
	References
	 Appendices
	A Feature Derivation
	A.1 Node Attributes
	A.2 Edge Attributes
	A.3 Between-Edge Attributes

	B Hyperparameter Selection
	B.1 rfn Variants
	B.2 GraphSAGE
	B.3 GAT
	B.4 Selected Hyperparameters
	C Case Study: Dall
	D UniTE—The Best of Both Worlds: Unifying Function-Fitting and Aggregation-Based Approaches to Travel Time and Travel Speed Estimation
	1 Introduction
	2 Preliminaries
	2.1 Data Modeling
	2.2 Existing Approaches
	3 A Unified Approach
	3.1 Framework
	3.2 The aha Objective
	3.3 Relation to Existing Approaches

	4 Gaussian UniTE
	4.1 Prior
	4.2 Posterior
	4.3 Posterior Predictive
	4.4 A Prior Function Layer

	5 Empirical Study
	5.1 Dataset
	5.2 Objective Function
	5.3 Algorithms
	5.4 Evaluation Metrics
	5.5 Training and Hyperparameter Selection
	5.6 Performance Evaluation
	5.7 The Generalizability-Accuracy Trade-Off
	5.8 Regularizing Properties
	5.9 Data Efficiency
	5.10 Record Selection Strategies

	6 Related Work
	7 Conclusions and Future Work
	References
	 Appendices
	A Definition of AGG
	A.1 Speed Limit Derivation
	A.2 Record Selection

	B Definition of GRU
	B.1 Representation of Time
	C Reported Travel Time Estimation Errors in Other Studies
	E Scalable Unsupervised Multi-Criteria Trajectory Segmentation and Driving Preference Mining
	1 Introduction
	1.1 Our Contribution

	2 Preliminaries
	2.1 Data Set
	2.2 Routing Cost Types
	2.3 Personalized Routing
	2.4 Trajectory Segmentation
	3 Multi-Criteria Trajectory Segmentation
	3.1 The Personalized Path Criterion
	3.2 Experiments
	3.3 Discussion

	4 Robust Driving Preference Mining
	4.1 Experiments
	4.2 Discussion

	5 Conclusion

	References
	 Appendices
	A Trajectory Stitching
	B Routing Cost Type Details
	B.1 Travel Time
	B.2 Congestion
	B.3 Crowdedness

	Blank Page

	Omslag_TSJ
	Blank Page
	Blank Page

