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Abstract

Wireless communication technologies are the key enabler of remote control, and conse-
quently, the existence of unmanned aerial vehicles (UAVs). Vice-versa, UAVs could be
used to provide ubiquitous wireless communications services for ground nodes (GNs), by
taking the role of UAV base stations (UAVBSs). UAVBSs are highly mobile and mod-
ular communications equipment that can be dynamically deployed to provide wireless
connectivity on demand. They are thus greatly useful in disaster relief, i.e. war-torn
region, wildfires, floods, landslides etc. Their application also extends to mundane
scenarios where permanent infrastructure is not feasible. However, UAVBSs excel in
their use of mission specific scenarios where more dynamic allocation of communication
resources is needed.

The goal of this thesis is to challenge the concept of UAVBS against different types
of missions. Using methodologies that span from theoretical modeling and analysis, sim-
plified simulations up to experimental testbeds, the motivation is to test the superiority
of UAV systems and play to the benefit of their implementation. Nonetheless, the thesis
is critical of non-optimal uses of UAVs and tries to pin them against critical drawbacks
such as the energy and weight constraints. Therefore, we initiated with testing gen-
eral position schemes for 5G traffic types. Following this, we tested the application of
UAVBSs for reliable and timely communications through an experimental test-bed. We
also studied the importance of UAVBSs in distributing federated learning (FL) compu-
tational tasks and more general radio resource allocation techniques to help the learning
performance. By using reinforcement learning (RL) techniques we provided optimized
path planning for the purpose of fair and energy aware distribution of radio resources,
particularly in benefit to FL implementations. Above all, we evaluated the possibility
of using sustainable energy generation from renewable sources such as wind and solar to
compensate for the energy spent by UAVBS swarms. The results show that the UAVBS
hovering position, or trajectory is a key resource in balancing many non-linear opti-
mization criteria and can be exploited to provide exceptional performance in missions
that value timeliness and fairness. Commercial UAVBSs applications are however much
more nuanced and require thorough investigation of the provincial weather patterns to
justify capital investments.
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Resumé

Trådløse kommunikationsteknologier er den vigtigste grundsten til fjernstyring og føl-
gelig eksistensen af ubemandede luftfartøjer (UAV’er). Omvendt kan UAV’er i rollen
som UAV-basestationer (UAVBS’er) bruges til at levere trådløs kommunikationdækning
til jordknudepunkter (GN’er). UAVBS’er er meget mobile og modulære kommunika-
tionsløsninger, der dynamisk kan indsættes til at levere trådløs forbindelse efter behov.
De er således meget nyttige i katastrofehjælp, dvs. krigshærgede områder, skovbrande,
oversvømmelser, jordskred osv. Deres anvendelse strækker sig også til afsides loka-
tioner, hvor permanent infrastruktur ikke er tilgængelig. UAVBS’er udmærker sig især
i missionsspecifikke scenarier, hvor der er behov for mere dynamisk tildeling af kommu-
nikationsressourcer.

Målet med denne afhandling er at udfordre begrebet UAVBS mod forskellige typer
af missioner. Ved at bruge metoder, der spænder fra teoretisk modellering og anal-
yse, forenklede simuleringer op til eksperimentelle testbeds, er motivationen at teste
UAV-systemers overlegenhed og undersøge holdbare løsningsmodeller. Ikke desto min-
dre forholder afhandlingen sig kritisk til ikke-optimal brug af UAV’er og forsøger at
inddrage kritiske ulemper såsom energi- og vægtbegrænsninger. Derfor indledte vi ar-
bejdet med at teste forskellige positioneringsalgoritmer til 5G trafiktyper. Herefter
testede vi anvendelsen af UAVBS’er til pålidelig og rettidig kommunikation gennem en
eksperimentel test-bed. Vi undersøgte også betydningen af UAVBS’er i fordelingen af
federated learning (FL) beregningsopgaver og mere generelle radioressourceallokering-
steknikker for at forbedre indlæring. Ved at bruge reinforcement learning (RL) lev-
erede vi optimeret ruteplanlægning med henblik på fair og energibevidst fordeling af
radioressourcer, især målrettet til FL-implementeringer. Endelig studerede vi mulighe-
den for at bruge bæredygtig energiproduktion fra vedvarende kilder som vind og sol til
at levere for den energi, der bruges af UAVBS-sværme. Resultaterne viser, at UAVBS-
svæveplacering eller flyvebane er en nøgleressource til at balancere mange ikke-lineære
optimeringskriterier og kan udnyttes til at levere enestående ydeevne i missioner, der
værdsætter fair og tidslig dækning. Kommercielle UAVBS-applikationer er dog meget
mere nuancerede og kræver en grundig undersøgelse af de lokale vejrmønstre for at
retfærdiggøre kapitalinvesteringer.
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1 Introduction

1.1 Background
Unmanned Aerial Vehicles (UAVs), also known as drones, are useful flying devices that
since their conception have had an intricate cross section with wireless communications
technologies. In the early developments, wireless communication links were considered
essential for providing control over and receiving the feedback from the airborne UAV.
Since UAVs were initially designed as military equipment, they were considered useful in
military communications [1]. The innovation behind UAVs made way for early visions
for providing mass connectivity with UAVs [2], which also brought up the question of
optimizing UAV placement for serving ground nodes (GNs) [3]. However, there is an
increasing trend of using the devices in more diverse missions where exclusive control
is not mandated, such as delivery, automated surveillance, and acting as small base
stations.

The use case of UAVs as base stations (UAVBSs) is a subcategory of non-terrestrial
networking, that offers flexibility on several domains: planning, deployment, traffic
scaling, and user cluster targeting [4, 5]. However, there are different ways in which
airbourne objects can keep themselves in the air, through aerodynamics like fixed wing
airplanes and rotational wing copters, or through being lighter than air like blimps
and airships. Each type has different degree of mobility, where rotational wing copters
are the most versatile and capable of fast relocation as well as hovering at the same
position. On the other hand, UAVs with limited mobility are named depending on
their hovering altitude as low or high altitude platforms (LAPs or HAPs). The sub
category of rotational wing drones, multi-copter drones, are the most ubiquitous type
of UAV technology, which makes it very easy to prototype and implement. As such,
through the rest of this thesis, nearly all references to the names of UAVs or drones
is directed towards, but not always limited to multi-copter drones. Unfortunately, the
main drawback for multi-copter drones is their limited airtime due to counteracting their
weight with a limited energy supply, from which stems another interesting research topic
of trajectory planning.

Infrastructure-less Networks

In classical cellular infrastructures, the problem of optimizing the wireless communi-
cations services to a given area is divided in two phases: BS positioning as a pre-
deployment planning phase with the goal to satisfy customer demand and a post deploy-
ment resource optimization of operational wireless resources. However, the densification
and adaptability required by the fifth and sixth generations of cellular infrastructure 5G
and 6G [6, 7], requires blurring the lines between resources allocated at deployment and
operation. This puts UAVs in a very strong position where they are merging the posi-
tioning and the resource allocation problems in one, as they can leverage their mobility
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to satisfy both problems at once. As such, optimal UAV positioning is the pivotal
research problem for deploying communication systems where the communications re-
sources are tailored to the needs of the ground nodes (GNs). This is illustrated in Fig.
1, where the UAV could fly higher and closer to the red user to establish a line of sight
(LOS) link, while maintaining the existing LOS link with the blue one.

Moreover, a 52% and 42% capital and operating expenditures (CAPEX and OPEX)
respectively are due to infrastructural costs, such as rents and leases, in developed
countries [5]. Avoiding a portion of these site management costs can be achieved through
using a UAVBS. On the other hand, it is important to note that airborne networks do not
offer a big reduction in OPEX due to the power-hungry nature of UAVs. To elaborate,
UAVs need to spend large amounts of energy to counteract the downard force of gravity,
and therefore maintain their aerial position. To add, mass use of UAVs invokes safety,
privacy, and noise concerns. These drawbacks are unfortunately dimming the future
of UAVs as a replacement for fixed position BSs. Therefore, UAVBSs should rather
be considered in extraordinary scenarios where central infrastructure cannot be relied
upon such as disaster relief from floods, earthquakes, wildfires, and socially induced
grid failures. To add, UAVBSs are extremely useful for environments that are tough
for implementing classical infrastructures, particularly when reliability is of the essence.
Finally, UAVBSs are superior to traditional BSs with regards the wireless propagation
due to their higher vantage point, which benefits outdoor GNs. However, complex
antenna implementations may be infeasible for UAVBSs due to their restrictive energy
and weight constraints.

For this reason, the Energy-autonomous portable access points for infrastructure-less
networks (PAINLESS) project was founded with the goal to provide a thorough investi-
gation of the integration of wireless communication services with the common UAVBS
energy constraints. To address the energy constraints, the PAINLESS project intended
an analysis of sustainable ways of energy generation with adequate energy storage tech-
nologies. Such interdisciplinary themes entailed engaging in collaborations between the
project partners. Within the project, this thesis focused onto the verification of the use-
fulness of UAVs in providing wireless communications services (for various applications)
with low or no support of the cellular infrastructure.

Ground-UAV Wireless Connectivity

UAVBSs have an intricate advantage in providing communication services to outdoor
users that comes from the predominance of LOS links to GNs. Nonetheless, establishing
a LOS link is not guaranteed, also illustrated in Fig. 1, and is dependent on the prob-
ability of a LOS occurring PLOS. This probability depends on the elevation angle with
regards to the UAV and the physical properties of the built environment [8]. Following



1. Introduction 5

θ
2

UAVBS

UAVBS LOS link

UAVBS NLOS link

BS

(common) NLOS 
BS link

θ
1

Fig. 1: A generalized illustration of a UAVBS implementation with regards to a classical BS.

the simplified s-curve approximation of the probability the expression is [9]:

PLOS = 1
1 + a exp(−b(θ − a)) , (1)

where θ is the elevation angle between the user and the UAV, and a, b are constants
that are dependent on the propagation properties of the environment. Since there
are only two propagation groups, users with LOS and those with non-LOS (NLOS), the
probability of having an NLOS link is PNLOS = 1−PLOS. Despite the free space path loss
(FSPL) coefficient, there is also a significant impact that the built environment induces
for the propagation, ηLOS and ηNLOS, onto LOS and NLOS links respectively. These
η values, commonly referred to as excessive path-loss, are the averages of a normally
distributed random variable of the large scale pathloss and fit into the FSPL equations
as [9]:

`LOS = −10 log10 (Dt) + 20 log10 (d) + 20 log10 (f4π
c

) + ηLOS, (2)

`NLOS = −10 log10 (Dt) + 20 log10 (d) + 20 log10 (f4π
c

) + ηNLOS, (3)

where, both ` are expressed in [dB], `LOS is the expected pathloss for a GN with LOS
link, `NLOS is the expected pathloss for a GN with NLOS link, Dt is the directivity of
the UAV mounted antenna, d is the physical distance between the UAV and the GN,
and the f4π

c term is the FSPL constant of the transmitted wavelength. An interesting
perk of UAVBSs is that they can establish an optimal θ, considering that θ is the
elevation angle of a user sitting on the edge of the area of coverage. This allows for
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solving the maximum coverage, and the optimal altitude problem only through solving
the geometry of the system and not the absolute dimensions of the system [9, 10]. In
other words, if we need to provide coverage to an area with a fixed size, there is an
optimal altitude for the UAV that maximizes the spectral efficiency, and it depends
directly on the propagational properties of the environment.

Federated Learning

UAVs have had a fundamental usefulness in problems of distributed computation. Due
to the flexibility of having computational services that are portable and easily deploy-
able in remote areas. As such, UAV cloudlet implementations have received a lot of
attention from the edge computation community [11, 12]. However, in the field of dis-
tributed computation there is a new and emerging concept in the integration of machine
learning (ML) implementations across multiple devices. Naturally, the implementation
of distributed computation for ML tasks birthed the term of distributed learning (DL).
This term, DL, generally referred to networks of learners and server where all learners
are identical to each other, and the server has absolute control over the data and task
parallelization. However, the DL term got extended to potential systems where each
learner is an individual entity with unique data, which birthed the concept of feder-
ated Learning (FL) [13]. Thus, the server becomes more of an orchestrator and each
learner can have an intricate impact on the ML performance [14], as the learner is the
device that performs the computation. As such, the FL implementation is very useful
in wireless transmission scenarios where the UAVBS takes the role of an orchestrator.
In detail, FL systems have a distinct advantage when orchestrated by UAVs, such as,
segmenting cohorts through only positioning, better wireless channels towards outdoor
users, more fairly distributed wireless resources, improving fairness through trajectory
and positioning, and providing services in difficult-to-reach areas. Moreover, since FL
requires a lot less processing power from the orchestrator, UAVs are an ideal candidate
for this role as it avoids the energy and weight constraints of flying heavy computational
equipment. For this reason, the research topic of FL integration with UAVs has been
trending in recent literature [15].

The basic principle behind federated learning is through cyclically passing the ML
model, defined by weights ω, between the orchestrator/server and the learners. At the
beginning of a cycle, the orchestrator transmits the general weights to each learner
k ∈ K = {1, 2, ..,K}. The learners proceed with the learning of the task, and returns
the ML model to the orchestrator. After all learners have sent their individually trained
ML models to the orchestrator, the orchestrator performs a weight aggregation step to
compute a new iteration of the general weights ωg that will be sent to each learner in
the new cycle. This FL system most often works on the federated averaging principle
for solving a singular learning objective min

ω
f(ω). The global optimization function f(·)

is thus calculated across all learners that have a local optimization function Fk(ω) that
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Fig. 2: A simplified illustration of a FL implementation.

is processed each round as [13]:

f(ωg) =
K∑
k

pkFk(ω) = E[Fk(ω)], (4)

where pk ≥ 0 and
∑
k pk = 1 are the averaging weights assigned per each learner. Most

often, learners are equally weighted to avoid unexpected convergence failures [16].
While this method has been successfully used in many different applications, it fails

to provide convergence in a very heterogeneous setting. To elaborate, heterogeneity
refers to the uniqueness of each learner, mainly regarding its processing power or data
stored. Moreover, when transmitting over wireless channels the difference in communi-
cation speed can become drastic and introduce a different kind of heterogeneity. There-
fore, it is more useful to use a federated proximal averaging that reduces the impact of
the heterogeneity by purposely slowing down the learning process at each learner [14]:

Fk(ω;ωg) = Lk(ω) + µ

2 ‖ω − ωg‖, (5)

where µ is the new hyperparameter that impacts the intensity of the proximal term, and
Lk(ω) is the training loss function. The introduction of the proximal term µ

2 ‖ω − ωg‖
diminishes the impact from each learner through calculating the euclidean distance be-
tween the instantaneous local model and the global model that was transmitted to
the learner at that round. Depending on the value of the hyperparameter µ, the im-
plementation can be the classical federated averaging (µ = 0) to implementations of
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proximal federated learning (µ > 0). The strength of µ needs to be properly tuned to
the heterogeneity, and FL implementations that have well-balanced hyper parameters
converge faster in scenarios where the learners have non-IID data and unequal process-
ing times [14]. Due to this, potential combinations of FL with UAVs that aim to address
FL heterogeneity would need to account for the inclusion of proximal FL.

Even in the case of FL, the UAVBSs fulfill their role of learning distribution through
the exploitation of wireless resources. As such, UAVBSs have the power to control
the learning process in FL networks by properly allocating the wireless resources [17].
However, opposed to a static BS, a UAVBS that has the role of an FL orchestrator has
another benefit in which it can also change its physical location.

1.2 Motivation and Objectives
As previously indicated, UAV positioning has a great impact over the channel properties.
This has a compounding effect in the problems of radio resource optimization, which
has been widely recognised and sustained by the literature [4]. Given this importance of
UAV positioning, this thesis considers the problem of position optimization as central
in providing a proper investigation for the feasibility of UAVBS systems. Therefore,
this thesis is focused towards answering three core research questions (RQs) on three
separate themes concerning UAV wireless communications. All three RQs touch on
different topics for UAVs that are by themselves very wide and complex fields that
do have a strong research foundation. The main incentive behind the phrasing of the
questions is to focus on the applicability of the intricate strengths of UAVs, or question
the commercial feasibility of UAVBSs.

RQ1 – The question on communication services:

The research community behind UAVBSs has been mostly focused in use-cases where
user targeted scenarios or area targeted ones [5]. However, there has been a narrow
research gap to investigate the impact of UAVs in scenarios where user targeted com-
munications are offered while a stable coverage needs to be maintained over the whole
area. Moreover, dynamic movements in such cases have been a neglected research area
to which we intend to uncover, particularly in the cases where UAVBSs have directional
transmitters [9, 18]. It goes without saying that it is important to design systems that
are in sync with the three proposed traffic classes of the 3rd Generation Partnership
Project (3GPP). According to this, future cellular implementations should include the
three traffic classes: enhanced mobile broadband (eMBB), massive machine-type com-
munications (mMTC), and ultra reliable low latency communications (URLLC), that
have different reliability, timing and bandwidth requirements [19]. When providing
communications services, the UAVs can be specialized in one or several of the traffic
classes and aid the main infrastructure or simply focus on guaranteeing the transition
towards mission critical communications. One motivating aspect of this is exploiting
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the position of the UAV to assign priority classes between any of the traffic categories,
eMBB, mMTC and URLLC. Nonetheless, offering latency constrained communications
services is of utmost importance when communicating with or through UAVs [20]. The
forthcoming URLLC traffic class has very high timing and reliability constraints that are
very difficult to establish on multi link systems [21]. Therefore, numerous applications
are not limited to the URLLC constraints, such as cyber-physical control applications
do not require per-packet reliability [22]. In such use cases, the services define process
failures as an outcome of longer delays that most likely due to burst packet errors (loss of
several sequential packets) [23]. Finally, since most personal electronic devices contain
both cellular and WiFi interfaces, the coexistence of both interfaces can be exploited to
reduce the impact of bursty channels onto a cyber-physical implementation [24]. Such
implementations are not only limited to uses at UAVs but extend to 5G mMTC use
cases. Motivated by the above the first research question of the thesis was formulated
as:

• How does UAV mobility impact the wireless communications across many users
with various service requirements in a predefined cellular area, and is this practi-
cally feasible? In what ways can cyber-physical communications for ground users
be improved?

RQ2 – The question on distributed computation:

The boom in distributed computation has been due to two main incentives, maintain-
ing privacy and decreasing the reliance on data-centers [13]. The concept of distributed
learning that later evolved to FL includes several hindrances due to different types of
diversity among learners [25]. In FL, the distribution of the data used for training most
often is not independent and identically distributed (IID) also referred to non-IID (data
diversity), and different learners may have different computational capabilities (compu-
tational diversity) [14]. These challenges harm the performance of FL that is reflected
through the convergence time and accuracy of the models. In short, FL implementa-
tions provide additional challenge for having quick and accurate ML solutions, when
compared with a classical ML implementation that learn the same task. However, FL
does not guarantee privacy by itself and needs to be combined with other privacy pre-
serving methods. Moreover, it is commonplace for new proposals of FL implementations
to assume that they can inspect the distribution of data within a learner itself to justify
network adaptations ahead of time [26]. This violates privacy and thus motivates us to
discover heuristic metrics through which, we can better allocate network resources for
FL performance. Moreover, UAVs have a uniquely good position in the world of dis-
tributed computation since they are inadequate to carry heavy and energy demanding
computational hardware themselves. Thus this provides plenty of motivation to look
into the roles of UAVs as task distributors for ML implementations. Motivated by the
above, the second research question is formulated as:
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• Are UAVs suitable FL orchestrators in the world of privacy oriented ML? Does
UAV path planning improve the performance of FL implementations?

RQ3 – The question on energy balancing:

Finally, even though neither UAVBS nor a UAV FL orchestrator require the UAV to
carry heavy hardware, the problem of properly managing the UAV resources to achieve
increased air-times still stands. This motivates us to look better into ways that improve
the UAV’s capability in carrying out its task for longer periods of time, while better
fulfilling the mission’s objective [27]. This research field has received a lot of attention
from the scientific literature, justifiably by the complexity of the task. Nonetheless,
there are a plethora of viable research directions due to the heavily derivative nature
of the subject, where minor changes to the aeronautical model will have significant
impact onto the mission objective. Unfortunately, no amount of flight optimization
can nullify the energy demand of UAVs which is much greater than that of classical
infrastructure. This is one of the main barriers of mainstream usage of UAVBSs and
needs to be accounted for, especially considering the global energy impact of large scale
implementations of this UAVBS system [28]. This can only be justified if sustainable
sources of energy are used to charge the energy hungry UAVs, which become problems
of economics and finance. Motivated by the above, the second research question is
formulated as:

• How to design UAV trajectory implementations under realistic energy and flight-
time constraints? Are the energy requirements of UAV communications systems
scalable to bigger swarms when supported by sustainable energy?

1.3 Methodology
In order to achieve the research objective and address the RQs in the best manner, pos-
sible research papers were published or submitted at a journal or a conference/workshop
proceedings. These papers are founded on various research campaigns that can be based
on an analytic, a simulated, or an experimental approach. And in order to reach a higher
level of quality, many of the research works were supported by genuine and strong cross
collaborations between partners of the PAINLESS research project that have a strong
basis in one of the methodologies required to provide answers to the question. Each
research question required a slightly different methodological approach as follows:

• RQ1: The research behind the question of communication services for and from
UAVs was mainly developed through internal Aalborg University collaborations
and a very essential collaboration with Lakeside-Labs GmbH. Moreover, the in-
ternal approach to UAVs was mainly analytical, consisting of the use of stochastic
analysis such as a point process in combination with classic computational opti-
mization methods to find optimal allocations. To test some of the hypothesis an
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A B C D E F G H

RQ1: on communication services 3 3 3 3 1 2 2 2

RQ2: on distributed computation 3 3 1

RQ3: on energy balancing 1 1 1 3 3

Fig. 3: An overview of the contribution of each paper to each research question, on a scale of 1-3 (least
to most related) where non-related works are left blank.

extremely valuable experimental dataset was collected through a UAV testbed.
And finally, since discrete-time Markov chains (DTMC) were useful in modelling
the system, dynamic programming approaches were used to provide optimal trans-
mission policy in transmission paradigms.

• RQ2: The research behind the question of FL was mainly supported with empirical
implementations of the proposed systems. Moreover, FL implementations were
done in Python using the TensorFlow package. To find solutions for the complex
optimization criteria imposed by resource allocation targets in FL, two approaches
were considered. Model-less RL methods were found eligible to provide solutions,
along with a model adapted successive convex programming (SCP) approach.

• RQ3: To address the question of energy, a productive collaboration within the
members of the PAINLESS research project was conducted. The core method-
ology was to mathematically model the energy expenditure process of a draining
lithium battery through the Peukert effect. A market survey is also essential to
understand the pricing of each item as energy supported systems carry high signif-
icance through the economical impact of their implementation. Given the complex
optimization criteria, RL methods are needed to address this RQ as well. Where
eligible, heuristic and custom algorithms that combine several classical algorithms
were integrated to produce tractable solutions.

2 Summary of contributions
Since the thesis is organized as a collection of papers, this section is focused on listing
and providing a discussion for each of them. This discussion encompasses analyzing
the papers’ affiliation to each research question (summarized in Fig. 3), but also their
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contributions in their respective research fields. Before continuing, there is a need to
note that due to the plethora of research on the topic, the terms UAV and drone are
used interchangeably, and drone small cell (DSC) is a type of implementation of an
UAVBS and are thus interchangeable terms.

Paper A: Dynamic Standalone Drone-Mounted Small Cells

Given the assumption that the use of UAVBSs will most likely encompass standalone
deployments where it receives no aid from nearby infrastructure, in this paper we inves-
tigated the case where UAVs operate on their own (without the aid of cellular infras-
tructure) for the entire coverage area (CA), but do position opportunisticly in favor of
ground user locations. Moreover, this paper is focused on the impact of three different
dynamic horizontal opportunistic positioning (D-HOP) techniques over stochastic user
positions and having directional antenna equipped on the UAV. Moreover, the paper
uses more classical computational geometry approach to calculate fairness based posi-
tioning like the smallest bounding circle problem. As such the paper is strongly and
directly connected to Q1, and it hints towards future works in Q3 by also investigating
the distance travelled for each D-HOP.

Since the interaction between horizontal positioning and directive antennas has seen
little attention from the rest of the research community, this paper is the first to question
the compatibility of UAVs and directive antennas, especially the beamwidth require-
ments set by the CA and UAV altitude. We come to realize that antenna directivity is
at odds with UAVBSs as it influences the optimal UAV position, and with that impacts
the usefulness of UAVBSs. As the UAV altitude is directly influenced by the propa-
gation properties of the environment, different D-HOP implementations reach different
rate improvements. The most influential on D-HOP usability is the user density that
presented an impact of per-user average rate improvements of up to 20-35% in low-user
density scenarios, or 3% - 5% in dense scenarios. These results are impressive consid-
ering that the D-HOP implementations operate in the most difficult user distribution,
which is uniform as in a Poisson point process (PPP). Finally, as the first work of the
thesis, this paper was used to pave the way towards understanding and implementing
more advanced UAV systems. As such, it is the basis for most papers included in this
thesis.

Paper B: Standalone Deployment of a Dynamic Drone Cell for Wireless
Connectivity of Two Services

This paper continues the investigation of standalone UAVBSs, but it extends the cover-
age constraints towards the ones required by the 5G traffic classes. Moreover, we aim to
exploit the D-HOP behavior to distinguish two different types of users in a specific CA.
In detail, we consider the user requirements of a broadband (BB) devices as a higher
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priority user within the CA, within which there are an unknown number of machine-
type-communications (MTC) devices that have a random access. The core differences
between both user types is that BB users can announce themselves ahead of time and
have prolonged data stream sessions, while the MTC users have short messages that
come at random that the UAV must be prepared to receive at any time. This research
work is obviously and strongly directed to providing answers to RQ1 and does not
interact with the other RQs.

The service offered to these users can be optimized by orthogonally slicing the wire-
less resources and D-HOP, which in turn becomes a tradeoff between guaranteeing the
services of each traffic class. Moreover, we treat the D-HOP as a computational ge-
ometry function that directly redistributes the BB users within the area to satisfy the
fairness bound by locating itself at the center of the smallest bounding circle of active
BB users. As such we search for the optimal DSC deployment parameters of radio re-
source allocation between both active services and the altitude of the UAV that jointly
maximize the average rate of BB. Understandably, as in the previous work, the propaga-
tion properties of the area directly impact the benefits of the implementation. However,
while the application is generally useful for every type of topology and strongly outper-
forms static UAVBSs, the performance of this type of system is outstanding in urban
settings. This performance for deployments in an urban setting can provide average rate
improvements of 50-90%. This approach is the first of its kind and is thus a direct con-
tribution towards optimal placement of UAVs in a standalone setting where continuous
coverage of two services is required.

Paper C: An Experimental Analysis on Drone-Mounted Access Points for
Improved Latency-Reliability

Since the previous work was concerned with the BB and MTC traffic classes, there was
an obvious incentive to investigate the role of UAVs in service of timing-constrained
scenarios such as URLLC. Even though the URLLC requirements are based on the
reliability of a single link, UAVs are required to incorporate wireless links on both
the fronthaul and the backhaul, which is sometimes called the middlehaul since each
transmission would have to undergo the cellular wired backhaul. Since URLLC is very
hard to achieve across two wireless links we were motivated to use established mass
market communications technologies where the UAV will act as an access point and
provide low-latency connections to users on the ground. This role of the UAV has been
many times proposed mainly due to the ability of UAVs to establish LOS links to both
the Base Station backhaul and the UE fronthaul. However, related research has not
performed thorough tests of the efficacy of this system especially when the intricate
combination of LTE and Wi-Fi has been introduced in the system. In this work we
experimentally evaluated the capability of providing low-latency coverage to individual
GNs by hovering right above them. The experiment, done in collaboration with our
colleagues of the PAINLESS project at Lakeside-Labs GmbH, encompassed creating a
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custom UAV testbed and several measurement campaigns. Same as the previous work,
this paper was dedicated solely towards RQ1.

The initial campaign was done to understand the backhaul implications of the flying
altitude. As previously shown by other research, there are several unpredictable factors
that influence such a deployment such as the propagational pattern of the BS antenna
and the interference from other nearby BSs. Thus the initial sweep of measurements
have shown that the best flying altitude for the topology of Klagenfurt, Austria was
30m as it was right above the rooftops of nearby buildings and in line of sight with the
BSs. To measure the round trip, end to end latency of the entire system an in-house
measurement tool by Lakeside-Labs was used that transmits a packet each 100ms. While
the average latency for the UAVBS system was identical to having a direct LTE link,
this system provided an additional 6.4% of coverage along with considerably smaller
latencies for 0.95 reliability (50ms versus the 120ms by a direct LTE connection). As
such, this was the first work to investigate the issue of UAVs as relays and discover their
eligibility towards more reliable connections before the proliferation of URLLC.

Paper D: Performance trade-offs in cyber-physical control applications with
multi-connectivity

This paper takes a different perspective and is directly involved with communica-
tions services from the ground and has a broader scope than just UAV communi-
cations. Nonetheless, this paper proposes using multi-connectivity to the benefit of
cyber-physical control systems and reduce the impact of outages such as in transmit-
ting control information to UAVBS systems. Multi-connectivity such as in the case of
an implementation of packet cloning through Wi-Fi and LTE interfaces, can also be
called interface diversity. Interface diversity offers a solace for communication problems
that arise consecutive packet errors due to temporal correlation in a communications
channel, or otherwise known error bursts. The use of separate interfaces allows for al-
leviating the lack of correlation between both channels to resolve the problems of the
blocked channel. This paper looks to find an optimal transmission policy for when each
transmission requires some form of cost such as in the form of energy or financial ex-
penditure. As such this paper is a firm contribution towards RQ1 and does not cover
the other RQs.

To model channels that have temporal correlation, the paper uses the Gilbert-Elliott
model that distinguishes a good or bad states that have different transitional proper-
ties. The transitional properties for the LTE and the WiFi interfaces were derived from
previously conducted measurement campaigns. This model was translatable to a par-
tially observable Markov decision process (POMDP) where each transmission action
contributes towards the belief for the unobservable states where no transmission has
occurred. To find the optimal policy, we use classical value iteration to calculate Q-
values of the underlying MDP. To later find the optimal policy in the POMDP space,
we use the QMDP approach, that weights the actions given some belief after an obser-
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vation of the channel. Along with the optimal policy we test a reduced version of the
POMDP implementation, called F-POMDP, that has only two belief states instead of
the infinite ones in the full PMDP implementation. This reduced implementation is
done in favor of reducing computation that may be beneficial in systems that need to
recalculate the optimal policy due to a change in the transitional probabilities of the
GE channel. As such this paper contributes towards better resource utilization of multi-
connectivity/interface-diversity systems particularly when under energy constraints.

Paper E: On Addressing Heterogeneity in Federated Learning for
Autonomous Vehicles Connected to a Drone Orchestrator

This paper proposes an application scenario for FL implementations where the UAV
takes the role of an orchestrator. Moreover, we assume an implementation where the
UAVBS also acts as a drone traffic monitor that produces a significant amount of video
data. The problem is one of computer vision, more specifically object recognition. To
classify the objects in the video data, the monitor needs to send a portion of it to
the vehicles that act as supervisors in the FL implementation. Since the unlabelled
video data from the UAV itself is useless, each consider each learner as having the data
itself. As such, we are generally interested in keeping the supervisory contributions
private and we do not invade the privacy of any piece of the data. In such a scenario
the FL implementation becomes challenged by the heterogeneous non-IID data and
computational equipment that can vary at each learner. Such FL networks introduce
much bigger uncertainty with regards to the heterogeneity on all fronts as well as the
introduction of very dynamic cohorts of learners that introduce additional impact in
the learning process. Therefore, our goal is to test wireless resource allocation methods
that use the number of epochs computed at each learner as a proxy metric for impact
over the general FL model. As such this paper is strongly related to answering RQ2
and has negligible impact on the other two RQs.

To accelerate the learning process of the FL in the case of unbalanced non-IID data
that is distributed among learners with various computational capabilities, we needed
to account for asynchronous learning processes at each learner. Such heterogeneity
implies partial work from each node that mandates the use of FedProx as a local op-
timizer. As such FedProx grants some freedom in reducing the effects of heterogeneity
through adjusting the parameter µ that controls the intensity of the FedProx intensity
in heterogeneity reduction. Given the difficult interaction between the heterogeneity
and Fedprox, in this paper we propose three different ways of aiding the learning pro-
cess: maximizing the total learning time across the whole network (MAX), minimizing
the maximum learning contributions between the slowest and fastest learner through
average anchored staleness(AAS), and finally a dynamic approach based on estimating
the past contributions of each learner and allocating more resources towards the more
significant contributors (ACT). To test the implementations, we create a custom dis-
tribution of the MNIST and FMNIST datasets among different learners where a single
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category of the initial 10 is hidden only at a single learner. This category called a critical
object (CO) can be essential in the object detection process and should thus be learnt
with the same speed as rest of the classes. From the initial testing we found out that
both the reactive approach ACT and FedProx were essential towards speedy system
performance. Moreover, the AAS implementation provided excellent CO learning, at
the price of slightly slower convergence for the general model, since it treats all learners
as equals and has smaller computational requirements. In this way, the paper situated
itself as the first one to treat FL heterogeneity with very limited knowledge over the
data. Moreover, it is also the first to propose the AAS and ACT metrics for alleviating
heterogeneity issues especially when combined with FedProx implementations.

Paper F: Federated Learning with a Drone Orchestrator: Path Planning for
Minimized Staleness

In this paper we take the computationally light metric AAS that was tested in the
previous paper and strengthened its application to physically dynamic UAV systems.
Here, the UAVBS still acts as an orchestrator of an FL implementation where the
learners are spatially scattered on the ground and the UAV can fly horizontally within
the limits of a CA to balance their needs. In this way, the actual FL schedule of within
the duration of a single FL round (downlink-processing-uplink) is controlled through
the path of the UAV. As the UAV traverses the path, it controls the distance to each
learner, and hence the data rate. As in the previous paper, we use the number of
epochs to calculate the average anchored staleness (AAS) and minimize it through path
planning. AAS is agnostic to the underlying FL implementation, unlike the ACT one
that requires understanding the FL task, and as such it provides a generalized metric of
FL performance. Nonetheless, optimizing the trajectory for the entire cycle is a difficult
task and requires the implementation of some sort of approximations done through
convex theory or deep reinforcement learning. This work was done in collaboration
with fellow partners in the PAINLESS project from The American College of Greece
(ALBA). In this way, this paper is strongly dedicated towards answering RQ2 and briefly
touches upon the RQ1.

The convex theory approach uses several approximation methods, such as a Taylor
series, and an aggregate metric for the data rate such as fairness. The resulting approx-
imated solution space was then solved through SCP. On the other hand, we designed
an elaborate double deep Q-learning approach where we designed the horizontal space
in a hexagonal with seven actions. Both proposed solutions were tested in three very
specific scenarios with few nodes that are intended to challenge the trajectory optimiza-
tion implementations. For all three scenarios, both of the proposed solutions perform
better than a static station, such as a BS or a hovering drone (at an optimal altitude)
with improvements in the range of 57% - 87.7%. Nonetheless, the RL implementation
is superior over using SCP approach given the AAS optimization criteria. However,
the SCP solutions require less computational power, especially when compared with the



2. Summary of contributions 17

RL training phase, and still manage to provide eligible solutions. As such, this work
provides two perspectives towards serving scattered node FL networks, and address-
ing them through orchestrator mobility. This is an entirely novel look on FL and as
such has contributed towards the transition to superior UAV orchestrated FL networks.
Moreover, the RL implementation has a very distinct approach in designing the MDP
for the trajectory optimization problem.

Paper G: Fairness Based Energy-Efficient 3D Path Planning of a Portable
Access Point: A Deep Reinforcement Learning Approach

The goal of this paper is to advance the RL based trajectory optimization such as
presented in the previous work. Moreover, this work omits the FL or distributed com-
puting use case and focuses on individual ground nodes that request wireless services
from the UAVBS. In such a use case, we value fairness and therefore introduced a novel
optimization objective criterion named fair energy efficiency (FEE) that weighs in the
energy aspect of the trajectory as well as the fair distribution of data rates between
all ground nodes for the duration of the trajectory. Since our goal in this paper is to
most accurately replicate the energy conditions that a UAV battery and aerodynamics
would impose onto designing a trajectory, we use state-of-the-art aerodynamic models
to calculate the energy impact of flying and the non-linear Peukert effect to estimate
the impact of voltage and current onto battery capacity. This creates a more difficult
non-convex problem with non-tractable constraints where the use of model-free RL im-
plementations are the strongest. This work was enabled by our fellow partners in the
PAINLESS project from The American College of Greece (ALBA). As such this paper
primarily provides answers to RQ3 and it has small contributions to RQ1.

As it is imposed by RL implementations, firstly the space was defined as an MDP
with continuous state an action space. Moreover, opposed to the previous paper that
does only 2D trajectory optimization, this work also introduces the altitude and does 3D
trajectory optimization. Considering this and all the factors that increase the difficulty
of the problem, we use the contemporary implementation of actor-critic deep reinforce-
ment learning called twin delayed deep deterministic policy gradient (TD3). The testing
is done in two specific ways, a fixed user location scenario and a more generalized im-
plementation of randomized user locations. The initial takeaway is that not considering
the Peukert effect in the trajectory optimization, overestimates the air-time of the UAV
which may lead to worse performance in real-world scenarios. Given a static UAV base-
line, the FEE improvements expect gains of 33%, 198%, 216% for suburban, urban,
and dense urban environments, respectively. As such, this work provides a robust and
generalized contribution to the trajectory optimization problem for data transmission
between spatially scattered ground nodes and a UAV under realistic energy constraints.
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Paper H: Sustainable Wireless Services with UAV Swarms Tailored to Re-
newable Energy Sources

This final paper in the thesis touches upon providing wireless coverage beyond areas that
require a single UAV, and may need a deployment of UAV swarms. Such requirements
can be imposed by some off-grid scenarios where the electrical and communications
infrastructure has failed or may have never existed. Due to this, the foundation of this
paper is to supply power, in a sustainable manner, to a main battery located at the
center of this CA that offers battery swapping service to each UAV at the end of their
air-time. The sustainable energy sources considered in this paper were both solar and
wind intensity, collected by photovoltaic panels and wind turbines, respectively. Since
the feasibility of such system is defined directly in the financial cost of the collective items
of the infrastructure, we use the capital expences (CAPEX) incurred by deploying such
a system. This requires the involvement of several intricate models that interact through
the energy spent by UAVs while flying. For the system to provide wireless services, we
need to consider the way in which UAV positions are organized that maximizes the
packing efficiency of each individual coverage area. Moreover, our work also considered
the impact of wind intensity onto the energy spent by UAVs, that also provide interesting
interaction given that the wind is used to to generate electricity. Considering this,
the rate requirements of the UAVs on the ground influences how many UAVs need to
participate in the swarm and therefore influence how much energy is being used by the
communications service. This provides us with an energy profile for the communications
service that needs to be satisfied by the mentioned energy sources. Therefore, the main
goal of the paper is to maximize the coverage offered by the swarm while minimizing
the CAPEX of the entire system. This is a multi-variate optimization problem that is
based on a lot of empirically derived data for each system involved in the analysis. The
work in this paper was substantial and was therefore done in collaboration with fellow
partners in the PAINLESS project from three institutions, Lyra Electronics Ltd., The
University of Manchester, and The American College of Greece (ALBA). As such, this
paper is focused on directly answering RQ3 and has negligible impact in answering some
aspects of RQ1.

To solve the multi-variate problem, we propose a customized algorithm that combines
several classical algorithms that address the complexity of the problem and the size of the
solution space. To reduce the solution space of the problem, we use greedy sampling of
the solution space that only investigates the best performing coverage areas. Moreover,
to reduce the processing complexity we use several techniques such as binary search to
better evaluate the bounds that are based on empirical data. For testing we used real
world wind and solar data at four different locations in the world that have varying wind
or solar intensity. The initial results show an interesting interaction based on the wind
intensity. Since both the energy generation and the energy expenditure of the entire
system is both non-linear and not a monotonous function of wind intensity there are
benefits and drawback to deploying UAV swarms in windy locations. While the cost
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of placing such a system in very windy location greatly exceeds that of having reliable
solar intensity, there are certain values of systems that seem viable. On the other hand,
having reliable solar power in areas with some wind intensity guarantees better system
operability and allows for less reliance on battery storage. As such, this work provides
a very novel perspective on the deployment of UAVBS swarms in off-grid areas, as well
as a quite effective way of finding the optimal parameters of the system.

3 Conclusion

3.1 Revisiting the Objective
Following the research work and the publishing of numerous scientific papers, it is im-
portant to revisit the initial research objective and questions. Initially, it is important to
re-evaluate the core aim of the thesis and provide several insights that were acquired in
hindsight to the overall topic of UAVs and their application. Judging by the progress of
literature within the last three years, it is has been correct to assume the UAV’s position
as the pivotal resource in a plethora of resource optimization problems concerning UAVs.
Although there are existing generalized models for the applications of UAVs, there are
many valid research directions that are derivations of the UAV positioning problem
applicable to many different fields. While the work on UAV applications strictly for
wireless communications service applications has been one of many derivative research
topics, the implementations of FL in a UAV setting were one of the first of their kind in
the topic of UAVs and FL. As such, the FL works have received significantly more at-
tention since their publishing. Finally, the energy aspect of UAV implementation, while
necessary, is mostly neglected in relevant literature. As such, early works in this thesis
mostly neglected this aspect and a thorough investigation on trajectory optimization for
energy balancing and solving the economics of the energy problem have been addressed.
In hindsight, applying more energy-aware solutions early in the thesis would have been
beneficial to include and improve the quality of early research. Nonetheless, this would
have been a very complex and difficult pursuit that may have slowed or diminished the
impact of the published research. Thus, we give a sequential summary of the contribu-
tion in each research question, as well as the incremental improvements to the overall
research topic.

RQ1 – The question on communication services

As previously shown, RQ1 carries the most significance within the thesis since all other
services are dependent on the wireless connectivity with and through the UAV, and was
the first one to be investigated. The results achieved from Paper A were very useful
to provide a better starting point for future research on all RQs. More specifically,
this paper directly answered questions for addressing UAVBS mobility in a predefined
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cellular area. The key takeaway from Paper A is that antenna directivity, mobility and
user positions impact the feasibility of UAVBSs. Since antenna directivity controls the
optimal altitude at which the UAVBS should fly at, it directly decreases the usefulness
of UAVBS mobility. Moreover, it is concluded that at a certain antenna directivity
mobility stops being a factor and UAVBSs can be replaced with low earth orbit (LEO)
satellites, or HAPs. This raised a more important question on UAVs with regards to
their purpose and usefulness, and the importance for finding an adequate motivation
for UAVBS systems. As such, the following Paper B has shown a useful implementation
of the UAVBS system for simultaneous service of high-priority eMBB traffic and non-
priority mMTC users. Such an implementation is capable of introducing the concept of
slicing by using both the wireless resources, and the UAV’s position as a resources to be
optimized when considering scattered eMBB nodes. This paper provides direct answers
for the sub question to exploiting UAV mobility for serving users with various service
requirements.

The sequential research dedicated to RQ1 provided more insight in mission critical
communications for ground users. Paper C tested a key use-case for UAVBS implemen-
tations, and concluded that highly reliable communications are possible with existing
technologies (a UAV with WiFi as fronthaul and LTE as backhaul). Moreover, such
an implementation provided drastic improvements in communications delay over using
a direct link to the LTE base station. The likely use case for such implementation
is rescuing robotics equipment that has lost reliable connectivity with the established
infrastructure by providing catered wireless access. Nonetheless, in order to guarantee
reliability for mission critical operations or cyber-physical control systems a well known
approach is to introduce additional diversity in wireless access. Paper D investigated
using both WiFi and LTE connections simultaneously to improve the resistance to burst
packet errors. Such implementations can help a GN improve reliability at a very low
cost to energy.

RQ2 – The question on distributed computation

Once the implications of UAV positioning onto the wireless services were cleared through
careful literature review and the aforementioned research, FL specific roles of UAVBSs
were considered. Paper E considered a full implementation of proximal FL on a UAV as
an orchestrator with the main goal to answer if UAVs are suitable orchestrators for FL.
Thorough investigation on FL convergence with realistic privacy considerations showed
that fairness is a strong factor on FL implementations. The reactive approach, that
evaluates the contributions of learners without peeking into the dataset, was proven
more effective than fairness in improving FL convergence. However, learner evaluation
was computationally costly and average anchored staleness was more applicable for UAV
orchestrators since it reduced the dependence on computational hardware. As such,
Paper F proved the usefulness of designing the UAV trajectory for fair distribution of
FL and provided a definite answer to RQ2. In summary, using trajectory optimization
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for the purpose of addressing AAS in FL implementation proved as a simple and clear
solution to improving FL convergence where the FL network is orchestrated by the
UAV.

RQ3 – The question on energy balancing

Using the conclusions from previous research required to answer RQ1 and RQ2, the
thesis was dedicated towards using UAVs for providing more fair communication ser-
vices using UAVs while addressing the previously established energy concerns. Paper G
directly contributed to solving the trajectory problem for maximizing fair distribution
of wireless transferred bits while minimizing the energy spent for that flight. One early
takeaway from this paper is that the energy profile does not change monotonically with
the velocity of the UAV. In detail, hovering multi-copter UAVs consume a lot of power.
However, flying horizontally at mild speeds consumes less power until the drag coefficient
becomes a factor to the aerodynamics of the UAV. Due to this, all solutions provided
by the reinforcement learning TD3 implementation keep the UAV flying horizontally
instead of only hovering above nodes. Paper H is the last paper of the thesis, and as
such combines the takeaways from most previous work to construct a more detailed
and scaled up implementation of UAV swarms. In this paper, similarly as in Paper G,
the velocity of flight impacted the energy consumption by the swarm, however here, we
can also account for the impact of wind and altitude onto the implementation. Thus
hovering in the presence of wind mimics flying at a constant horizontal velocity. Using
wind and solar power generation stored in a ground battery, Paper H extracted the
CAPEX feasibility of the system in different environments with varying wind and solar.
The results show that the deployment feasibility for windy environments is harder to
justify in smaller deployments, while mild wind conditions with reliable solar irradia-
tion are feasible for many different swarm sizes. Finally, Paper H showed an interesting
interaction between the impact of wind onto the energy generation and energy draw.
Since the wind intensity impacts both the energy generation and expenditure profiles,
in a unique and intricate manner. This complex interaction of the energy generation
and expenditure system inspires ample future investigations in the compatibility of the
systems in windy areas with various wind profiles.

3.2 Forthcoming Research Opportunities
While the thesis managed to answer the laid out RQs in detail and extract additional
conclusions outside the scope of the research objective, it also inspired multiple future
research directions. Although RQ1 receives plenty of attention from the literature there
is insufficient experimental and practical support to the system of UAVBSs. A possible
future topic is expanding the testbed from Paper C to test more energy aware positioning
and automated deployments. Moreover, follow-up answers on the interaction between
papers C and D are essential to understand the role of backhaul in a UAVBS versus
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a direct link from the GN to the infrastructure. This would allow to understand the
correlation between the ground and air link by the GN and UAV respectively. On the
other hand, as FL is a young topic it has many research directions that are yet to
receive the proper attention. As such Papers E and F inspire more streamlined testbeds
with practical FL implementations such as the one that served as motivation in both
papers. Since ML tasks require a lot of data to be collected, such future works may
consume a lot of effort to provide productive and unbiased results. More FL specific
research would also need to be addressed such as solving the issue of assymetric channels
where i.e. downlink capacity may be significantly larger than uplink capacity. Paper
E gave way to investigate an interesting trade-off in FL between overfitting, number
of ML parameters, and task complexity. Finally, the investigation of energy in RG3,
while it has the biggest historical support (in the form of early aeronautical research) it
still needs to be adequately tested for the specific purpose of UAVBSs. This gives way
for a lot of engineering opportunities to discover the optimal design of a UAVBS. To
summarize, nearly all relevant future directions with regards to UAVBSs need to act in
the form of verification for the massive theoretical ground work being performed by the
UAVBSs and discover other engineering problems that may arise.
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Abstract
This paper investigates the feasibility of Dynamic Horizontal Opportunistic Positioning
(D-HOP) use in Drone Small Cells (DSCs), with a central analysis on the impact of
antenna equipment efficiency onto the optimal DSC altitude that has been chosen in
favor of maximizing coverage. We extend the common urban propagation model of an
isotropic antenna to account for a directional antenna, making it dependent on the
antenna’s ability to fit the ideal propagation pattern. This leads us to define a closed-
form expression for calculating the Rate improvement of D-HOP implementations that
maintain constant coverage through antenna tilting. Assuming full knowledge of the
uniformly distributed active users’ locations, three D-HOP techniques were tested: in the
center of the Smallest Bounding Circle (SBC); the point of Maximum Aggregated Rate
(MAR); and the Center-Most Point (CMP) out of the two aforementioned. Through
analytic study and simulation we infer that DSC D-HOP implementations are feasible
when using electrically small and tiltable antennas. Nonetheless, it is possible to achieve
average per user average rate increases of up to 20-35% in low user density scenarios,
or 3-5% in user-dense scenarios, even when using efficient antennas in a DSC that has
been designed for standalone coverage.

1 Introduction
Drone, a.k.a., UAV (Unmanned Aerial Vehicle) usage has excelled in the last decade
due to commercial demand for consumer uses such as: photography, entertainment and
payload delivery, or public service uses such as search and rescue. In the world of wire-
less communications, because of their mobility and modularity, the flying devices are
considered useful as drone mounted access points that provide or improve localized com-
munication quality. In accord, the need for airborne base stations has been accentuated
in the last five years, as it can be noticed from the overabundance in scientific and stan-
dardization activity [1, 2]. The concept has been identified as useful in diverse use cases:
disaster recovery missions, failures of the main infrastructure, coverage assistance [3] for
traffic surges, or sinks for Internet of Things (IoT) devices [4].

1.1 Goals and Motivation
Drones are eligible implementations of Small Cells (DSCs) that offer good coverage
in urban areas. Compared to traditional cellular networks, DSCs avoid strong signal
shadowing because they are positioned high relative to the user equipment. This benefit
is inherent to all Low or High Altitude Platforms (LAPs and HAPs), where DSCs
can be considered as a subcategory of LAPs. In accord, there has been a plethora of
publications explaining and exploiting the channel improvements due to the relatively
high altitude [5–7, 9].
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Fig. A.1: Reference cell placement (green), and DSC with D-HOP implementation active (red).

The motivation behind using DSCs is that they offer an alternative that avoids
infrastructure costs. In fact, 52% of the Mobile Network Operator’s (MNO) CAPEX is
spent on site acquisition and construction; in addition to which, site rental dominates
the MNO’s OPEX, and is increasingly more expensive, with up to 42% in developed
countries [1]. Unfortunately, real world deployment feasibility is challenged by the
weight and energy limitations to UAV air-time. Dedicated models, designed solely for
this purpose should manage to minimize the impact of these drawbacks and rationalize
the financial input of investing.

For this purpose, we design a DSC system model that uses a directional antenna in
combination with Dynamic Horizontal Opportunistic Positioning (D-HOP) techniques.
We consider both elements of the model essential to the concept of DSCs, and not
accounting for either will result in misplaced resources and/or unused opportunity. We
illustrate a toy example of our approach on Fig. A.1. With green we show a reference
deployment of a DSC with no D-HOP applied. Here, the height H and radius Dmax are
defined during the planning phase in favour of standalone coverage maximization, and
are dependent on the region topography and the antenna efficiency to fit the beamwidth
of 2 · α. With red we show how the DSC would apply D-HOP in attempts of avoiding
shadowing for two active customers, all the while, it tilts the antenna to maintain a
constant coverage of the initially designated area. Our model is based solely on the
likelihood of encountering a strong shadowing effect for a specific type of terrestrial
topology instead of having full knowledge of the regional infrastructure; since we expect
deployments like this need to be easy to deploy, and apply to natural disaster scenarios
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as well [8].

1.2 Relation to State of the Art
This is the first work to investigate the combination and compatibility of: using a
directional transmitter, the impact of the antenna’s efficiency in fitting the beamwidth
requirements, and most importantly, its impact on D-HOP improvements for active
users. Within this work, we test the performance of three D-HOP techniques, and
discuss on choosing the most adequate one for Standalone DSCs. As such, the antenna
efficiency has a central role to D-HOP usefulness. The works of [10–12], although
considering directional antennas, do not account for the impact of the efficiency of the
transmitter, are mainly concerned with 3D placement of the drone and omit analysis
on the benefits of different D-HOPs. On the other hand, the works in [3] and [7] are
mainly concerned with the location of the drone, assume that they do operate in a non-
standalone manner, and omit the impact of directional transmitters altogether. With
this, we hope to introduce the reader to the potential benefits and implementation
complexities that concern deployment of D-HOP enabled standalone DSCs.

The paper is organized as follows. Sec. 2 describes the considered RAN scenario,
explains the directional antenna model, and produces a closed-form expression of the D-
HOP model. Sec. 3 explains the tested D-HOP techniques. Sec. 4 presents numerical
results from the performed simulations, and discusses the outcomes. Finally, Sec. 5
concludes with the impact of this work.

2 System Model
We begin by assuming that the backhaul link is over-provisioned, and does not have any
additional requirements that need to be accounted for. To evaluate the effectiveness of
the positioning algorithms in a scenario where the DSCs act as solitary wireless service
nodes, we need to assume that the equipment successfully maintains coverage at all
times over the whole designated cell with radius Dmax by mechanically or electronically
tilting the antenna.

2.1 Propagation Model
Looking at Fig. A.1 we notice that buildings may obstruct a user’s direct link towards
the DSC. We therefore consider the user as belonging to one of two propagation groups,
users with Line of Sight (LoS) and No LoS (NLoS) [5].

To express the likelihood of a user device belonging to either of the propagation
groups we require a model for the LoS probability. In this service, the ITU has created
a model [13] that can be approximated to an s-curve defined by two topology constants
a and b as a function of the elevation angle at user side θuser that is expressed in degrees
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0 ≤ θuser ≤ 90. The model defined in Eq. (A.1), provides good approximations of the
ITU model for calculating P (LoS), that is especially accurate for urban scenarios [6].

P (LoS) = 1
1 + a exp(−b(θuser − a)) (A.1)

As shown on Fig. A.1 we define the total path loss as a combination of Free Space
Path Loss (FSPL) and the expected shadowing coefficient for each of the propagation
groups ηLoS and ηNLoS. These values represent the means of the normally distributed
excessive path loss, that is induced due to the large features of the topology in LoS
and NLoS, respectively. Assuming a directional antenna with directivity measure Dt is
mounted on the drone, we can define the path loss per propagation group as:

LLoS = −10 log (Dt) + 20 log (d) + 20 log (f4π
c

) + ηLoS (A.2)

LNLoS = −10 log (Dt) + 20 log (d) + 20 log (f4π
c

) + ηNLoS (A.3)

Knowing P (LoS) and P (NLoS) = 1−P (LoS), we can continue to find the expected
path loss Λ as:

10 log(Λ) = LLoS · P (LoS) + LNLoS · P (NLoS) (A.4)
= P (LoS)(ηLoS − ηNLoS) + LNLoS (A.5)

2.2 Antenna Gain
Going back to Fig. A.1 we observe that the usage of a directional antenna at drone-side
requires that we fix the proportions of our main lobe to fit the size of the apex angle 2·α,
which fixes the value of θedge as well. This is done with two main arguments. Firstly, a
transmitter limited to its own cell will not contribute to the interference in other cells,
therefore diminishing its negative impact. Secondly, using a directional antenna is a
practical way of boosting the signal strength within the designated area, while ignoring
the users outside the defined borders. In this way, a combination of multiple DSCs can
be used, while avoiding strong inter-cell interference, as shown in [9].

We first analyze the directivityDt element in eqs. (A.2) and (A.3) as an ideal antenna
DI that perfectly covers the designated circular area. We define a value 0 ≤ Er ≤ 1
that is dependent on the type, manufacturing and quality of the antenna, to measure
the efficiency of our implemented antenna in reference to the ideal one Dt = DEr

I for
our purpose. This measures the strength of the Main Lobe with relation to the spread
outside the assigned coverage area due to sidelobes, inadequate main lobe size or other
imperfections. The most adequate antenna type for our application includes, but is not
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limited to, phased array antennas, as they are able to quickly adjust the direction of
the main lobe. From here we first calculate DI as [16]:

DI = 4π
Ω (A.6)

DI is defined by a beamwidth defined by the solid angle of a perfect cone as Ω =
2π(1−cos (α)). The angle α is half of the apex angle in either of the two two-dimensional
propagation planes, as shown in Fig. A.1. By further applying simple trigonometry to
our UAV scenario, we reach Eq. (A.7) as the final metric, which is dependent on the
elevation angle on the edge of the cell θedge.

DI = 2
1− sin (θedge π

180 ) (A.7)

Including this in the final equation for expectation of path loss and expressing all in
terms of Dmax > 0, θuser and θedge expressed in degrees we get:

10 log(Λ) =
ηLoS − ηNLoS

1 + a exp(−b[θuser − a]) + 20 log( Dmax

cos (θuser π
180 ) )

− Er10 log ( 2
1− sin (θedge π

180 ) ) + 20 log (f4π
c

) + ηNLoS (A.8)

2.3 Cell Size and θedge

We define the cell size by assuming a maximally allowed expected path loss at the point
of worst case coverage when the user is located at the cell edge θuser = θedge = θ. We
analyze the communication in an information theoretic manner and define the expected
rate as in Eq. (A.9) in terms of bits/symbol. Since we are maximizing the cell coverage
we are interested in meeting the average rate requirement:

Ravg = log2(1 + Ptx
N0Λ) (A.9)

In the following we assume for simplcity that Ravg = 1, which gives that the drone
needs to be positioned at the point where Λ = Ptx

N0
, and we maximize the radius of the

cell Dmax in favor of coverage. In this way, the elevation angle at the edge of the cell
is chosen to constrain the radiation radius to the planned radius of the cell but also
makes sure to avoid discriminating the users located at the edge of the cell. Going back
to Eq. (A.8) to find the maximal radius as a function of the elevation angle dDmax

dθ , we
conclude that it is only dependent on the scenario topography relative to our operating
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frequency and the efficiency of our antenna, as shown in the derivation in Eq. (A.10).

0 =
π tan (θ π

180 )
9 log(10) + a bA exp(−b(θ − a))

a exp(−b(θ − a) + 1)2

− Er
π cos (θ π

180 )
18 log(10)(1− sin (θ π

180 )) (A.10)

Fig. A.2: The optimal cell edge elevation angle θedge as a function of Er for Urban Scenario parameters
given in Sec. 4.

Analysing eq. (A.10) from the perspective of an urban scenario we investigate the
impact of Er onto the optimal θ. On Fig. A.2 we follow the evolution of θedge in the
cases of different antenna radiation efficiency. The two extremes set for Er are 0 for an
ideal isotropic antenna and 1 for an ideal conical antenna. Having Er = 0 coefficient
cancels the Dt member in Eq. (A.10) and the final θedge is identical to the one of using
an isotropic antenna. Having Er = 1 breaks the point of optimality in Eq. (A.10).
In other words, when possessing an ideal transmitter we should be able to establish
point to point transmissions with infinitely big gain, meaning that Er should be strictly
smaller than 1 [16]. This dependence of θedge on Er defines the principal contribution
of our model, and it shows the important details that MNOs need to pay attention to
when designing the geometry of the system.

2.4 User Data Rate
In a circular coverage area with radius Dmax there are N active users, each ith user’s
location within the area is defined with two coordinates (xi, yi), where i ∈ 1, 2...N , and
the drone occupies a position with coordinates (xd, yd). We define each user’s horizontal
distance to the drone with di =

√
(xi − xd)2 + (yi − yd)2 and define a scalar κi that

represents the distance in relation to the cell radius di = κi ·Dmax, where 2 ≥ κi ≥ 0.
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Fig. A.3: Analysis on maximum possible D-HOP gain as a function of Er.

We reformulate our expected path loss in eq. (A.8) in terms of κi, as:

10 log(Λ) = ηLoS − ηNLoS
1 + a exp(−b[θuser − a])

+ 20 log(
√
κ2
i + tan(θedge

π

180)2) + 20 log(Dmax) + C (A.11)

Where θuser is dependent on κi and is θuser = arctan( h
κiDmax

) = arctan( tan(θedge π
180 )

κi
)

; and parameters that are independent of κi or Dmax are C = 20 log ( f4π
c ) + ηNLoS −

Er10 log (DI). Additionally, eq. (A.11) is continuous over the whole range of possible
user positions as well as κi ≥ 0. For convenience, we group all members of the equation
that depend on κi to define the horizontal repositioning gain Gpos as:

Gpos(κi) = ηLoS − ηNLoS
1 + a exp(−b[θuser − a]) (A.12)

+ 10 log(κ2
i + tan(θedge

π

180)2) (A.13)

And receive a final, closed form equation for the expected pathloss of user at distance
κi in a cell with radius Dmax as:

10 log(Λ(κi, Dmax)) = G(κi) + 20 log(Dmax)

+ 20 log (f4π
c

) + ηNLoS − Er10 log ( 2
1− sin (θedge π

180 ) ) (A.14)
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This results in the per-user expected rate being:

Ri = log2(1 + Λ(κi = 1, Dmax)
Λ(κi, Dmax) ) (A.15)

= log2(1 + 10
Gpos(κi=1)−Gpos(κi)

10 ) (A.16)

From the involved parameters, it is obvious that the benefits from D-HOP imple-
mentation depend on the cell’s geometrical proportions and not on its absolute size.
Additionally, on Fig. A.3 we show how the span of possible D-HOP gains evolve as a
consequence of the behaviour shown in Fig. A.2 that is dependent on the antenna’s
efficiency. Since all aforementioned parameters are predefined when planning the com-
munications model, in the next section we focus on lowering the values for κi through
the means of D-HOP.

3 D-HOP of Drone Small Cells
We open this section by stressing that Drone D-HOP mobility does not affect the cover-
age area; as it can adjust its antenna angle (physically/electronically) to fully cover the
area with radius Dmax, and inactive users in the area can announce their location and
activation time with a rate Racc � Ravg. Distortions of the circular coverage field to an
oval one due to the angle of the transmitter are considered to be negligible. From here,
our goal is to improve the channel condition for the active users in the area without
neglecting new requests. We do this by performing constant dynamic movements in the
horizontal plane with height H = Dmax tan(θedge).

In an arrangement of user locations our goal is to optimize the drone position (xd, yd)
and we identify two significant points, one performance maximization oriented, and the
other as fairness oriented. We illustrate this in Fig. A.4.

3.1 Smallest Bounding Circle (SBC)
One approach that carries great geometric significance, is to set the DSC location in the
center of the minimum bounding circle of all active users, which is the smallest circle
that contains all points inside [7]. With this, the goal is to maximize the fairness of the
dynamic system by minimizing df = max[di] ∀ i. The minimum bounding circle is a well
known computational geometry problem falling under the umbrella of facility location,
or the 1-center problem.

3.2 Maximum Aggregated Rate (MAR)
The second position of geometric significance is where drone placement would achieve
minimal total distance to all active users Min: dm =

∑
i di, or, the centroid of all points.
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Fig. A.4: An illustration of a single D-HOP scenario, over MAR intensity map.

Although the SBC df is a universal fairness maximization approach, the centroid dm is
not, and we substitute it for a more adequate performance parameter. In its stead we
use the aggregate rate improvement, as:

max
xd,yd

N∑
i=0

Ri (A.17)

3.3 Center-Most Point (CMP)
Finally, limitations regarding the mobility of the UAV need to be taken into account as
it cannot instantaneously relocate on every position with every shift in user behaviour.
This requires inspecting a more travel distance conservative repositioning technique. In
favor of this, we create a repositioning algorithm that puts the drone either at maximum
gain, or maximum fairness, depending on which of both points is the Centermost Point.
This is done knowing that if averaged over an infinite amount of users and timeslots,
the optimal position of the drone is in the very center.

4 Simulation and Results
We consider a snapshot based, simplistic and replicable testing scenario where the po-
sitioning of the UE occurs in timeslots, and each timeslot has no correlation to the pre-
vious one. No assumptions are done with user mobility in mind, and each user can be
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Fig. A.5: The CDF of the probability for a user to receive rates higher than Ravg tested for four
different user densities.

uniformly located within the cell’s limits. We test the system under the Urban scenario
conditions, with parameters: a = 9.61, b = 0.16, ηLoS = 1, ηNLoS = 20, f = 2 GHz [5].

On Fig. A.3 we show that Er has a strong impact on the feasibility of D-HOP
implementations. Moreover, dynamic DSCs make more sense in use cases that require
antennas with lower Er. This is due to the dependency of the cell’s edge optimal
elevation angle θedge to the Er coefficient. Luckily, this goes in favor of dynamic DSCs
since lighter, cheaper, and electrically small antennas are expected at drone side. We,
therefore arbitrarily set Er = 0.6 as an example of an adequately chosen antenna guided
by the comments of [16].

We first accentuate the importance of the expected geometric location of the users
and that D-HOP finds purpose in unbalanced user formations, especially in the existence
of clusters [3]. However, we do not account for user clustering, and we assume that if
averaged over an infinite amount of timeslots, the optimal location for positioning the
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drone is in the very center of the cell such as in a well planned cell placement. As a
consequence, in the case when the drone takes no action and stays in the center of the
cell, we still detect average rate improvements, with regards to the preset average rate
Ravg, since the users are not always located at the cell’s edge. This gain, shown on
Figs. A.6 and A.3, is entirely due to the user location distribution, and is imperative
for evaluating the usefulness of any repositioning technique.

From the simulation results at Fig. A.6 it is obvious that the more evenly distributed
active users are present, the less we exploit the D-HOP advantages. Special cases consist
of only two or less active users, where any of the proposed solutions would behave the
same. Therefore, Dynamic DSC deployments are well suited for areas with low user
density occurrences, and in the best cases can increase the expected per user rates by
17% with regards to static, or 34% for users at the cell edge. Which is a good result
considering that we avoid changing the drone’s altitude, in service of avoiding coverage
holes.

In Fig. A.5, we show how each D-HOP approach modifies the distribution of the
distances between the users and the drone and therefore achieve higher rates for most
users. Here we imitate four instances of Poisson Point Process (PPP) where every
timeslot has N users that are Poisson distributed N ∼ Poisson(λ). It is immediately
noticeable that the MAR approach has the best performance on average, at the expense
of putting roughly 5% of its users at distances κi > 1. Nonetheless, it may be feasible for
systems with no hard coverage constraints since when compared to the static it improves
the rates by 5.6% for the average user and offers 21.5% increase over the preset average
rate. The CMP technique diminishes the impact of users at distances bigger than the
Radius of the cell, however, it still does not evade all κi > 1 situations. The SBC
approach obviously avoids having such cases at all, while it also improves the expected
rate for the lowest fifth percentile of our users by 3% for λ = 5, and up to 10% for
λ = 1. This makes the bounding circle ideal for DSCs that offer high reliability for all
users within the cell.
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To account for the limitations of the equipment, we investigate the distributions for
displacement requirements per D-HOP. In Fig. A.7 we show that the distances travelled
for the SBC and the CMP have an obvious advantage over the MAR approach. The
advantage of using the CMP technique with regards to mobility requirements makes
it an adequate solution for less rigorous reliability requirements, as it offers a balance
between fairness and rate maximization mobility requirements for the drone.

Deriving from Figs. A.3 and A.5, and eq. (A.14) we conclude that the span of
possible performance gains are predetermined by the system topology and Er, while
the user distribution and D-HOP technique impact the gains achieved within that span.
Since the expected D-HOP gains do not scale with the cell size Dmax, its implementation
is expected to have a higher impact in smaller cells. Additionally, drone travel distance
requirements will demand much lesser drone speeds for smaller Dmax.

Both points reinforce the fact that DSC repositioning benefits from the added com-
plexity in the cases of small or pico cells. For the existence of reliable communications
we can conclude that the predefined parameters regarding the radius/altitude of the
UAV position or the angle of coverage, are very strict, and fulfill the stringent link
budget constraints to establish the desired reliability [14, 15]. Therefore, following this
model, we ascertain the D-HOP DSC’s inherent eligibility in reliability applications by
calling for user-fairness techniques as most effective D-HOP implementations for Drone
Small Cells.

5 Conclusions
This work investigates the concept of DSCs and accounts for exploiting all its advan-
tages. We note the importance of knowing the efficiency of the available antenna equip-
ment as it directly influences the optimal geometry of the model. We then quantify its
impact over the dynamic repositioning gains, and conclude that the gains achieved from
repositioning are mainly beneficial when using small antennas. For the tested urban
scenario, we achieve per user average rate improvements of up to 20-35% in low-user
density scenarios, or 3% - 5% in dense scenarios. Which for our model is extremely
well considering we assume balanced and uniform user positions with standalone and
constant coverage over the whole area.
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Abstract
We treat a setting in which two priority wireless service classes are offered in a given
area by a drone small cell (DSC). Specifically, we consider broadband (BB) user with
high priority and reliability requirements that coexists with random access machine-type-
communications (MTC) devices. The drone serves both connectivity types with a combi-
nation of orthogonal slicing of the wireless resources and dynamic horizontal opportunis-
tic positioning (D-HOP). We treat the D-HOP as a computational geometry function
over stochastic BB user locations which requires careful adjustment in the deployment
parameters to ensure MTC service at all times. Using an information theoretic ap-
proach, we optimize DSC deployment properties and radio resource allocation for the
purpose of maximizing the average rate of BB users. While respecting the strict dual
service requirements we analyze how system performance is affected by stochastic user
positioning and density, topology, and reliability constraints combinations. The numer-
ical results show that this approach outperforms static DSCs that fit the same coverage
constraints, with outstanding performance in the urban setting.

1 Introduction
Due to their adeptness, drones or unmanned aerial vehicles (UAVs), have a growing
importance in the world of communications as potential aid and substitution to classic
cellular infrastructure [1, 2]. Aside extraordinary and unconventional applications, low
or high altitude platforms (LAPs or HAPs) and drones as small cells (DSCs) are proven
to provide good coverage through avoiding strong signal shadowing due to their high
altitude to ground based user equipment [3–7]. Hence, DSC proliferation in the next
generation of wireless service has the leverage to lower capital and operating expendi-
tures (CAPEX & OPEX) in developed countries by up to 52% and 42% respectively,
through only diminishing site management costs and complexity [1]. The coming gen-
eration of 3GPP and IEEE 802.11 communications calls for the coexistence of diverse
and heterogeneous services within the same area that are served through the same in-
terface in a concept known as radio access network (RAN) slicing. 5G defines three
canonical service types with drastically different requirements, massive machine-type-
communications (mMTC), enhanced mobile broadband (eMBB), and ultra reliable low
latency communications (URLLC) [9] [10], and for the upcoming IEEE 802.11be pro-
tocol, ultra high speed service links and reliable and low-latency communications [11].
In this setting, drones can modify their spatial position in favor of improving channel
conditions for priority users when serving two separate service categories. As illustrated
in Fig. B.1 a dynamic standalone drone small cell (DSDSC) [3] exploits a dynamic
horizontal opportunistic positioning (D-HOP) technique in strict priority for BB users,
while successfully maintaining a lower tier reliability service MTC over the whole cel-
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Fig. B.1: Illustration of the drone provided MTC and BB links.

lular area. In this setting, the drone’s horizontal location can be treated as stochastic
because the DSC relocates in favor of the BB users with stochastic positions and can
assume extreme positions as the one illustrated.

1.1 Relation to State of The Art
The problem of adequate DSC positioning is recognized as cardinal in understanding
deployment feasibility where the relative proportions of the DSC hold a key role in the
performance of the system [1–8]. Additionally, exploiting the dynamic nature of DSCs to
favor user locations is bound to improve system performance as per the works of [3, 12].
The work in [13] extends the optimal drone positioning problem to serving multiple
Quality of Service (QoS) categories. Regarding the provisioned traffic categories of
5G, the work of [14] investigates the possibility of establishing the challenging traffic
type of URLLC, to and from drones in different propagation environments. However,
a common proposal towards slicing multiple services with DSCs is by employing tiered
networks where drones are part of a complex architecture [15]. In accord, the work
of [16] considers the UAV as modular equipment for more granular assistance to the
needs of users with heterogeneous coverage demands. In a similar fashion, the works
of [17, 18] are concerned with keeping the slicing functionality of the cellular network
with mixed special purpose UAVs. Finally, the emerging work of [19] is concerned with
maximizing the data rate for eMBB users while optimizing UAVs’ total transmit power
for drone provided slices.

This work is concerned with providing reliable wireless coverage for areas that de-
mand slicing of two traffic groups, that is enhanced by performing preferential move-
ments to the prioritized group. This is a novel setting that has received a lack of
attention especially for a drone that is alone in serving both broadband and random
access traffic. Once deployed, the DSDSC provided interface is sliced between both
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MTC devices and BB users. Since appropriate deployment parameters assure optimal
operation, our goal is maximizing the average rate for priority BB users, by jointly opti-
mizing the slicing allocation per priority class and the DSC interdependent deployment
properties of: DSC height, cell size, and antenna beamwidth.

Mainly motivated by the information theoretic study of the case of slicing eMBB
and mMTC in [9], this work conducts Monte Carlo simulations to express the complex
probability mixture into the potential gains of such an implementation. The proposed
model is the first one that to our knowledge considers stochastic horizontal DSDSC
positions and is described in detail in Section 2. Followed by a detailed elaboration in
maintaining dual coverage in the case of stochastic mobility and problem description
in Section 3. The simulation analysis and the adequate discussions are contained in
Section 4. The final conclusions are drawn in Section 5.

2 System Model
To evaluate how DSC deployment impacts user service quality we assume an over-
provisioned and stable back-haul. The cell is defined by a fixed circular area with radius
Dmax, that containsK BB priority devices, where each i ∈ {1, 2, ..,K} is distributed by a
Poisson Point Process (PPP) with intensity Λ = Aλ users/km2. This makesK a Poisson
distributed random variable (RV) with density Λ that has a squared relationship with
Dmax as A = πD2

max; and results in uniform BB user location distribution [20]. As shown
with red in Fig B.2, the drone position is defined by heightH with horizontal coordinates
(xd, yd), that can be off-center due to the operation of the D-HOP technique. The flying
height of the drone H is predefined during deployment and remains unchanged during
D-HOP service since height modifications are incompatible with directional antenna
use [1–3].

Since our goal is to improve the BB service by best adjusting the wireless resources
and drone deployment, we approach D-HOP from the perspective of solving a compu-
tational geometry problem over the random BB user locations. In this setting, the DSC
has full knowledge of each priority device’s ground location and activating D-HOP gives
the DSC the ability to locate itself in the very center of the smallest bounding circle
(SBC) that contains all the active BB users. The SBC is the most fairness oriented D-
HOP approach [3] as it manages to achieve the shortest maximum horizontal distance
from the drone to any node DSBC. This renders BB user clusters to have no impact over
the drone location. Since the number of BB users and their locations are stochastic,
DSBC is a RV as well.

In the rest of the paper, we express all horizontal distances between the drone
and any point with horizontal coordinates (x, y) as normalized by the cell radius κ =√

(x−xd)2+(y−yd)2

Dmax
, where 0 ≤ κ ≤ 2. In the same way instead of DSBC we take its

normalized version κSBC = DSBC
Dmax

when calculating BB service reliability.
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Fig. B.2: Vertical mapping of the propagation environment for reference drone position (green), and
a snippet of DSDSC implementation with antenna tilting (red) [3].

2.1 Propagation Model
With green in Fig. B.2 we illustrate the central position of the DSDSC that serves
as a good reference through defining the reference elevation angle at the cell edge θ.
Shown with red in Fig. B.2 we illustrate how a DSDSC may improve the propagation
environment by avoiding large scale shadowing imposed by buildings that obstruct users’
line of sight. To account for the positive impact of drone movements, we consider channel
propagation impacted by large scale fading in which a user can belong to one of two
propagation groups, users with line of sight (LoS) and no LoS (NLoS). In this way,
the propagation losses come as a consequence of the free space path loss (FSPL) and
excessive path loss [4, 5]. To investigate the channel degradation for some user we need
to know that user’s elevation angle θ ≤ θuser ≤ π

2 and formulate the path loss as:

10 log(L) = −Gt(θ) + 20 log(θDmax)

− 20 log(sin(θuser)) + 20 log(f4π
c

) +Aτ (θuser), (B.1)

where: log is a shortened version of the common logarithm log10, Gt(θ) is the gain of
the drone’s antenna, the terms 20 log(θDmax) − 20 log(sin(θuser)) give the total direct
air-to-ground distance between the drone and the user, the f4π

c term is the FSPL term
dependent on the operating frequency f , and finally, Aτ is a RV giving the excessive
path loss value of large scale fading.
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Large Scale Fading

defined by Aτ is different for users belonging to either LoS and NLoS propagation group
and we represent as:

Aτ (θuser) = τAτ=1(θuser) + (1− τ)Aτ=0(θuser), (B.2)

where τ = {0, 1} is an indicator that can have value 1 with probability P(LoS) = P(τ =
1) or 0 with probability P(NLoS) = 1 − P(τ = 1) = P(τ = 0). The P(LoS) value
is dependent on the elevation angle of the user θuser given in radians, and topography
dependent constants a and b [5]:

P(LoS) = 1
1 + a exp(−b(θuser 180

π − a))
. (B.3)

The Aτ members are also probabilistic values that are Gaussian-Distributed with mean
µτ and variance dependent on the elevation angle of the user, and topology constants
dτ and cτ for each propagation group τ as in [5]:

Aτ (θuser) ∼ N(µτ , στ (θuser)), (B.4)

where the variance is given as:

στ (θuser) = dτ exp(−cτθuser
180
π

). (B.5)

The antenna Gain

Gt(θ) for the directional antenna mounted on the drone is taken as uniform gain over
the whole aperture. The gain depends on the reference angle θ, but is scaled by its
effectiveness 0 < Er < 1 in matching an ideal antenna covering the same region, as
given in [3]:

Gt(θ) = Er10 log ( 2
1− sin (θ) ). (B.6)

The drone tilts the antenna to cover the whole cellular area while moving, for which,
the distortions of the circular shape to an oval one do not influence the analysis.

Path Loss Equivalent

Le(θ, κ) is a reformulation of Eq. (B.1) that represents the path loss experienced per
meter of the cell’s radius. In order to adapt this further to the case with stochastic
users, we isolate the user positioning gain term and label it as GU(θuser) = Aτ (θuser)−
20 log(sin (θuser)), where θuser = arctan( tan(θ)

κ ). This leads to the final reformulation to
get the path loss equivalence term:

Le(θ, κ) = 10 log(L)− 10 log(C) = −Gt(θ) + 20 log(tan(θ)) +GU(θ, κ), (B.7)
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where: C = f242π2Dmax
2

c2 .
The path loss Equivalent metric is essential in establishing the coverage constraints

and performance comparisons to classic DSC implementations that calculate the min-
imum path loss equivalent (MPLE). In detail, solving the MPLE problem gives the
optimal θ for some fixed and specific normalized distance of κ; done as minθ Le. This
approach ties all three deployment parameters H, Dmax, and antenna beamwidth to be
directly represented by the reference elevation angle θ and the radius of the cell Dmax,
where the latter has no impact on the MPLE [3–5]. In contrast to this, Dmax does have
an impact in choosing the optimal deployment parameters for the case of combined
D-HOP and slicing which is addressed at the end of this Section.

2.2 Service Model
We analyze the service requirements by considering that the rate provided to each user
is given in bits per symbol. The number of users and scalability for each service can
be addressed by bandwidth and power allocation methods that increase the number
of symbols used for transmission on the channel, and are not relevant to the analysis.
Therefore, the single interface is shared by a BB user and MTC user [9] in an orthogonal
multiple access (OMA) manner. Let ωB where 0 ≤ ωB ≤ 1 be the fraction of orthogonal
time sharing for the BB user. Then the fraction left for the MTC user is ωm = 1 −
ωB . Due to orthogonality, there is no interference between the services, such that the
achievable rate Rx for service BB and MTC where x ∈ {B,m} respectively, is:

Rx = ωx log2(1 + Pt
NC10Le,x/10 ), (B.8)

where Pt is the transmit power, N is the noise power, and both C and Le,x represent
signal attenuation as given in Eq. (B.7).

Service Reliability

for service x can be calculated from probability of the rate of our system to be smaller
than a required rate Rreq

x . To find the 1− εx reliability [9, 14], we first look at P (Rx >
Rreq
x ). Using intermediary value for targeted user positioning gain Gx as:

Gx = −10 log((2
R
req
x
ωx − 1)NC

Pt
) +Gt(θ)− 20 log(tan(θ)), (B.9)

we seek if it satisfies GU(θ, κ) < Gx for the distribution of Aτ (θuser) with system per-
formance of Rx > Rreq

x . We then calculate the Cumulative Density Function as:

P(GU(θ, κ) < Gx) = (B.10)
= P(τ = 0)P(Aτ=0 < u) + P(τ = 1)P(Aτ=1 < u), (B.11)
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where u = Gx + 20 log(sin (arctan( tan(θ)
κ ))). The sum then unwraps into:

P(τ = 0)
∫ u

−∞

1√
2πσ2

0

e
− (x−µ0)2

2σ2
0 dx

+P(τ = 1)
∫ u

−∞

1√
2πσ2

1

e
− (x−µ1)2

2σ2
1 dx =

1− P(τ = 1)
2

(
1 + erf( u− µ0

d0 exp(−c0 arctan( tan(θ)
κ

180
π

))
√

2
)
)

+P(τ = 1)
2

(
1 + erf( u− µ1

d1 exp(−c1 arctan( tan(θ)
κ

180
π

))
√

2
)
)
,

(B.12)

where erf is the error function and the probability P(τ = 1) = P(LoS) is taken as defined
in Eq. (B.3). An explicit expression for P(GU(θ, κ) < Gx) = 1 − εx in terms of Gx
is not possible and requires numerical solutions especially when calculating probability
mixtures with κ as a RV.

Reference SNR of Static LAP

is needed to define a baseline testing scenario by mitigating the dependence on Dmax.
For this, we go back to the reference scenario where the drone is static in the center
of the cell and solve MPLE for the cell edge κ = 1, which is trivial and identical to
the classic LAP [4] case. The result is a pathloss equivalent named Le-LAP defined
by placement at an optimal LAP cell edge elevation angle θLAP. Since BB service is
demanding P (RB ≥ Rreq

B ) = 1− εB , we must be able to satisfy the path loss equivalent
Le-LAP when we transmit with Pmax given by signal-to-noise ratio:

Pmax

N
= (2

R
req
B
ωB − 1)10Le-LAP/10C. (B.13)

This stands as the most basic application of a DSC [4], and it is expected that D-HOP
enabled systems should outperform it when using the same power system driven by the
identical SNR requirements of Pmax

N . Finally, this action allows us to isolate the issue of
the size of the cell with radius Dmax as follows in Section 3.

3 Problem analysis and Coverage Constraints
To avoid misleading the reader that the drone offers perfect service for the priority users
when no service is needed at all, we only consider the cases where K > 0. An example
of the κSBC distribution in seven different cell sizes for λ = 2 is shown on Fig B.3, from
which we can conclude that increasing the cell radius affects the SBC algorithm to have
less certainty in providing low κ distances.
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Fig. B.3: Cumulative Probability Distribution Function of κSBC for λ = 2 users/km2 in seven different
cell sizes given in meters [m].

3.1 BB Coverage
In an active D-HOP implementation, the worst case distance for two or more BB users
is given by κSBC which is crucial in defining BB coverage. The rate at the edge of the
SBC is given by RSBC(θ, κSBC), to which we define the BB coverage constraint as:

P(ωB log2(1 + Pmax

NC10Le,B(θ,κSBC)/10 ) ≥ Rreq
B ) ≥ 1− εB , (B.14)

where the power to noise ratio can be calculated from (B.13) and gives the constraint
simplified as:

P(Le,B ≤ Le-LAP) ≥ 1− εB . (B.15)

The complexity of calculating this constraint comes from the mixture distribution
GU(θ, κSBC) in Le,B(θ, κSBC) that is given when passing κSBC trough Eq. (B.10); an
operation that must be done numerically.

3.2 MTC Coverage
The second tier MTC service should be offered to the whole cell, at all times, no matter
where the drone is positioned. This is done since MTC access times are random and it
is unrealistic to expect that we know the devices’ positions with regards to the drone’s
position. We therefore account for the worst case MTC horizontal distance of κ = 2
when the drone is positioned at the edge of the cell. For a defined reference angle θ, to
guarantee the MTC service we first need to calculate the rate as in Eq. (B.8). Since we
set a power limit as in the reference LAP case we reach:

P((1− ωB) log2(1 + Pmax

NC10Le,m(θ,κ=2)/10 ) ≥ Rreq
m ) ≥ 1− εm. (B.16)
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Substituting the maximum power requirement for the reference LAP case from Eq.
(B.13) we get the CDF for MTC coverage:

(2
R
req
m

1−ωB − 1)10Le(θ,κ=2)/10C ≤ (2
R
req
B
ωB − 1)10Le-LAP/10C, (B.17)

which we can input in the final coverage constraint of:

P(Le-LAP − 10 log((2
R
req
m

1−ωB − 1)

(2
R
req
B
ωB − 1)

) ≥ Le(θ, κ = 2)) ≥ 1− εm. (B.18)

It should be noted that in this way, we are massively overprovisioning the MTC
link when compared to the classic LAP case. This applies as we support MTC in the
absolute worst case scenario of κ which is necessary for guaranteeing random access.

3.3 Maximal RAN slicing ratio
If in the case of Eq. (B.17) we calculate the MPLE value of Le(θ, κ = 2) we get some
minimal value that can help us place a constraint for achieving maximum ωB. In other
words, if we choose maximum possible value for ωB, there is only one θ at which the
drone can operate and maintain MTC service for the whole cell. Therefore, using non-
maximal ωB should result in bigger range of possible θ values, at which MTC service
is maintained. Finding the optimal θ, can be done numerically through finding MPLE,
and reach to a value of minimal path loss for κ = 2 named, Le-RSR(θRSR, κ = 2). And
in order for MTC coverage to be satisfied, the following equation must hold:

10
Le-LAP−Le-RSR

10 ≥ (2
R
req
m

1−ωB − 1)

(2
R
req
B
ωB − 1)

. (B.19)

This ratio is an upper bound constraint for the value ωB, with which we can test if the
scenario is within the theoretical limits of our system.

3.4 Problem Description
In a specific snapshot of the cell, the active BB user i ∈ 1, 2, 3 . . .K, has a normalized
horizontal distance κDi to the D-HOP activated drone, and a normalized horizontal
distance of κSi to the scenario with a static LAP at the center of the cell. When served
by the D-HOP enabled drone, this BB user will experience a rate of:

RD
i (θ, ωB) = ωB log2(1 + (2

R
req
B
ωB − 1)10Le-LAP/10−Le(θ,κDi )/10), (B.20)
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Table B.1: The excessive path loss parameters for: Suburban (1), Urban (2), and High Urban (3)
environments [5].

a b µ1 µ0 d1 d0 c1 c0
1 4.88 0.43 0.1 21.0 11.25 32.17 0.06 0.03
2 9.61 0.16 1.0 20.0 10.39 29.6 0.05 0.03
3 12.08 0.11 1.6 23.0 8.96 35.97 0.04 0.04

while in the reference LAP system located in the very center of the cell, the same BB
user i will experience a rate of:

RS
i (ωB) = ωB log2(1 + (2

R
req
B
ωB − 1)10Le-LAP/10−Le(θLAP,κSi )/10). (B.21)

Since our goal is to maximize the average rate for all active BB users in the cell we
introduce the problem as:

maximize
{θ,ωB}

E[RD
i (θ, ωB)]

E[RS
i (ωB)]

(B.22)

s.t. 0 < θ <
π

2 (B.23)

0 < ωB (B.24)
(B.15), (B.18), (B.19) (B.25)

The objective function (B.22) is normalized by (B.21) because an analysis in the
non-normalized case would not give productive results as the transmission power given
by (B.13) scales with the reference deployment. Furthermore, the real altitude H will
directly depend on the deployment radius and not only θ. This would then impact
Dmax, and in order to cover bigger areas, a multi drone provided coverage may be nec-
essary such as in [7, 8]. Therefore, we are only interested in finding an optimal reference
elevation angle θ and ωB combination while we try to maximize the average rate im-
provements to the active BB users. Since the involved functions are monotonic within
the given constraints, to efficiently find the maximum we applied a binary-search algo-
rithm to the Monte Carlo simulated estimates of κSBC used to realize the GU mixture.

4 Simulation and Results
We take a snapshot approach where at each snip the drone is at the SBC center of the
BB users while maintaining the full MTC coverage as per the defined constraints. Each
snip has no correlation to a previous one and no mobility of the users or trajectories
are concerned. The service requirements for both priority groups are tested as per the
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Fig. B.4: ARI gain results for Er = 0.6.

eMBB and mMTC slicing requirements taken from [9]. The mMTC devices require a
rate of Rreq

m = 0.3 with low reliability of εm = 1 − 0.9, and the rate for serving an
eMBB user as Rreq

B = 1. In addition to medium εB = 1 − 0.999 (as in [9]), we test
under high εB = 1− 0.9999 and ultra εB = 1− 0.99999 eMBB reliability requirements.
We investigate this by testing the previously shown seven different cell sizes of Dmax =
[10m, 50m, 100m, 200m, 500m, 1000m, 2000m] in an area with fixed user density of λ =
2 users/km2. Additionally, we test three different deployment environments for a 2 GHz
carrier, that affects Aτ as shown in Table B.1. The topological constants required for
calculating Eq. (B.10) are taken from the Suburban, Urban and High Urban parameters
of [5] from where High Urban is renamed from Dense Urban in [5] to avoid confusions
regarding user density.

In Fig. B.4 we notice that the deployment feasibility, measured by the average
rate increase (ARI), depends strongly on the local topology, where, Suburban and High
Urban environments show that there is a strong decrease in D-HOP ARI in user-dense
environments with an exception to this rule for the Urban deployments. In the case of
High eMBB reliability for Urban deployments, the implementation achieves astonishing
performance for all types of user densities, amounting to average rate improvements
of 50-90%. This performance is credited to the nature of the fading distribution, and
the reliability combination for both eMBB and mMTC users occur very close to a
point where the P(LoS) equation (B.3) shows a strong impact in the distribution of Eq.
(B.10). Moreover, the DSDSC allows itself to serve mostly LoS links due to its mobility,
while the static LAP has to meet the high reliability requirement of mostly, NLoS
traffic. The average gains are subject to the much stricter reliability requirements of
Eq. (B.15), which results in optimal θ and ωB combination limited by the distribution
of the smallest SBC radius. Since κSBC is directly dependent on the Dmax we see
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Fig. B.5: Optimal Slicing Ratio ωB evolution for Er = 0.6

that ARI drops off steadily with the increase in cell size. Due to the fact that we
measure performance as relative gain over a LAP equivalent setup and maintain cell
proportions with θ, the absolute dimensions of the cell do not have a direct impact on
the measured rate but only impacts the user density distribution. Finally, by testing the
four different Er = [0.1, 0.3, 0.6, 0.9] we only confirmed that better antenna compatibility
results in overall higher optimal θ, which in turn diminishes the advantages of D-HOP
implementations and results in lower ARI [3]. When necessary to avoid clutter, we only
show the performance for Er = 0.6.

In our optimization problem the value ωB fulfills two very important roles as it
controls the rate and impacts the availability of θ for the optimization algorithm. The
slicing ratios given in Fig. B.5 show strong correlation between low slicing ratio for
eMBB users and high ARI performance. This is due to the relaxation of the mMTC
coverage constraint for dynamic system coverage given in Eq. (B.18). By relaxing this
value, the SBC distribution allows for achieving lower operating optimal θ as shown in
Fig. B.6 which places it closer to the eMBB user and results in higher ARI.

We go back to analyze the most interesting case, the urban DSDSC implementation
for high eMBB reliability as it shows strong performance advantages. The reason for
this high outlier in the performance of this system can be deduced from Fig. B.7. Here
we can notice that the optimal θ for the system does not dramatically vary with neither
user density nor antenna efficiency. Comparing the optimal slicing ratios, we notice that
because of the point of where we are in the distribution, the system benefits very little
from lowering the slicing ratio when compared to the other deployment cases. Hence,
the optimal ωB in this case is preferred to be lower for higher Er values, which is inverted
from the other deployments. This means that the operating θ where the topology allows
for the maximum slicing ratio constraint is very close to the optimal θ for the static
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Fig. B.6: Reference elevation angle θ evolution for Er = 0.6

system. In these cases, the slicing ratio is used to compensate for the differences in
the use of more efficient antennas, and use the same optimal θ. Such systems find
themselves in a just right or Goldilocks deployments scenario for the support of both
schemes. Which in our case occurs in the urban scenario for slicing support of highly
reliable eMBB traffic and low mMTC reliability support.

5 Conclusion
This particular implementation of DSDSCs in slicing of MTC and BB traffic was tested
in strict priority for BB users with coverage requirements for both services. Through
Monte Carlo analysis we deduced that the use of this system outperforms its static
counterpart in many different deployment scenarios, with expected superiority in im-
plementations with low antenna efficiency and sparse BB user activation distributions.
However, the implementation showed strong performance in the slicing DSDSC deploy-
ment in Urban environments for high reliability requirements for the BB traffic users.
Opposed to the other deployment scenarios, this shows significant superiority with re-
gards to static LAP small cells with average rate improvements of 50-90% for the case
of antenna with an efficiency coefficient of Er = 0.6 . This analysis strongly highlights
the importance of beforehand knowing the propagation properties of the environment
as central in discovering the feasibility of DSDSC slicing deployments. We finally con-
clude that as per the given results, standalone deployment of a service slicing DSC can
strongly benefit from dynamic and preferential horizontal movements. Finally, this re-
search is limited in that it does not account for the times for which a drone would need
to reach the new position, a topic reserved for a future iteration of the work.
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Abstract
The anticipated densification of contemporary communications infrastructure expects
the use of drone small cells (DSCs). Thus, we experimentally evaluate the capability of
providing local and personalized coverage with a drone mounted Wi-Fi access point that
uses the nearby LTE infrastructure as a backhaul in areas with mixed line of sight (LoS)
and Non-LoS (NLoS) links to the local cellular infrastructure. To assess the potential
of DSCs for reliable and low latency communication of outdoor users, we measure the
channel quality and the total round trip latency of the system. For a drone following
the ground user, the DSC-provided network extends the coverage for an extra 6.4% when
compared to the classical LTE-direct link. Moreover, the DSC setup provides latencies
that are consistently smaller than 50ms for 95% of the experiment. Within the coverage
of the LTE-direct connection, we observed a latency ceiling of 120ms for 95% reliability
of the LTE-direct connection. The highest latency observed for the DSC system was
1200ms, while the LTE-direct link never exceeded 500ms. As such, DSC setups are
not only essential in NLoS situations, but consistently improve the latency of users in
outdoor scenarios.

1 Introduction
Unmanned Aerial Vehicles (UAVs) – or drones – are considered a prime candidate for
custom solutions to wireless communication coverage in both conventional and uncon-
ventional circumstances. Mainly as a benefit to their mobility and their altitude, they
are expected to offer good wireless channel conditions towards ground users in outdoor
scenarios [1, 2]. Commonly referred to as Drone Small Cells (DSCs) or as Drone provided
Access Points, the flying devices that carry wireless equipment are mostly considered
as a custom solution for improving regional communication quality [3]. However, it is
common among DSC literature to lay strong assumptions for the availability of backhaul
and/or the propagation setting of the fronthaul [1]. While this is important for modeling
future drone-specific network requirements, we turn the attention towards assessing the
current state of commercially available technologies that are capable of drone provided
communication services.

In this work we aim to aid the cellular network by analyzing and measuring the
impact on latency for a mobile user (UE), located on the ground and in the presence of
a DSC that provides a Wi-Fi hotspot, instead of a pure LTE relay. The reason behind
designing our DSC like this is that LTE positioning requires careful spectral planning
which is not an approachable method for casual users of the DSC technology. Hence, we
split the backhaul as LTE provided and the fronthaul offered through a Wi-Fi interface.
This is performed by placing the DSC at an altitude that allows the utilization of a
nearby Base Station (BS). The goal of this setup is to answer three key questions:
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does a drone provided hotspot improve the latency of the application, what are the
shortcomings of such a system, and is this technology sufficient for use in reliable and
low latency communications? Answering these questions is critical for prospective use
of DSCs in cases of ground remote control applications that need to be tolerant to faults
of the local cellular coverage.

The paper is organized as follows: Section 2 discusses significant related experimental
work with drones. Section 3 describes a route for the horizontal spatial coordinates that
is bound to be covered by a mixture of strong LoS and NLoS links for the UE along the
route. On this route we forgo two types of approaches, pretesting the LTE propagation
conditions for a travelling node on the ground, or following the same route on a specific
altitude. In Section 4 we showcase the measurements of the impact on signal and delay
when using the DSC network (UE-UAV-BS) and a singular (UE-BS) LTE link. Finally,
in Section 6 we draw several conclusions, state the significance of the provided data,
and discuss open issues.

2 Related Work
There has been a significant interest in deriving experimental results for cellular con-
nected drones. Mainly, the effect of interference carries a significance due to the likeli-
hood of drones to establish a LoS with neighbouring cells, which would not be visible to
ground UE. This causes extra interference, which adds extra complexity to the problem
of BS handover, topics that are thoroughly covered in: [4–7]. Moreover, the work of [8]
gives an elaborate overview of the common issues plaguing cellular connected drones. In
terms of the performance of cellular connected drones, the work of [9] provides detailed
experimental analysis of the throughput of drones connected to an LTE-A network.
Justifiably, due to rollout phase of 5G infrastructure the work of [10] experimentally
evaluates the throughput performance of 5G connected drones.

As for UE-DSC connectivity, there is a strong experimental support of the LoS NLoS
model of [11], such as the work of [12]. The work of [13] analyzes the drone-BS con-
nectivity of LTE for its potential use as backhaul in DSCs. However, the experimental
works of [14] and [15] are most in line with our goals of testing UE connectivity through
a DSC. Moreover, the work of [14] is a trivial example of UAV-to-UAV communications
as a relay system. While the work of [15] is most in line with our goals for establishing
a UE-DSC-BS relay, its contribution is though limited to a throughput investigation in
a small scenario. In addition, all prior UE-UAV-BS connectivity work has majority of
the attention focused on measuring signal strength and throughput. Given the vastly
different nature of cellular and Wi-Fi connectivity, and the added system complexity,
we are interested in the latency and therefore delay quality for UE served by BSs versus
DSCs as clarified in the following sections.
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Fig. C.1: An image taken from the DSC equipment mounted on a twinFOLD SCIENCE drone.

3 Experimental Setup
The experiments are performed in a relatively controlled setting in the 5G Playground
Carinthia testbed in the outskirts of Klagenfurt, Austria. All flights and ground UE
patrols were taken along the same identical horizontal path with a constant speed of
1 m/s. The LTE connectivity in the area is provided by a single BS mounted on top of a
building, and was predetermined for the experimental analysis. The LTE BS supports a
data rate of 150Mbit/s for each 20MHz channel supporting a modulation of 256QAM
per carrier. While the BS supports up to two carriers, only one carrier is used during
the experimentation.

The drone, Fig. C.1, is a twinFOLD SCIENCE by the Austrian vendor TWINS.
The communications equipment mounted on the drone, consists of an LTE modem and
a Wi-Fi 802.11ac access point connected to a Raspberry Pi 4 companion board that
bridges the two interfaces and captures all traffic that passes through. This allows for
a better investigation and separation of the fronthaul, backhaul and most importantly
scheduling and processing delays. The Wi-Fi access point (Unifi UAP-AC-M) has a
2x2 WiFi dual band configuration with a maximum link data rate of 867 Mbit/s. The
max. transmit power is 20 dBm. The access point is connected to the main board via a
1Gbit/s Ethernet interface. The Huawei E3372 LTE modem supports LTE Cat4 with
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H=100m

H=70m

H=50m

H=30m

H=1m

Fig. C.2: Testing LTE signal performance for four altitudes (30m, 50m, 70m, 100m) and the ground
UE-BS link is likely to be NLoS.

a max. downlink rate of 150Mbit/s and an uplink rate of 50Mbit/s. It is connected via
USB to the companion board. The smartphone is a Samsung S20 5G which supports
dual-band Wi-Fi 802.11ac with VHT80 MU-MIMO and LTE Cat20 with 4x4 MIMO.

The measurements are performed with the Cellular Drone Measurement Tool
(CDMT) [16] that can record multiple parameters for the cellular connection such as:
reference signal received power (RSRP), reference signal received quality (RSRQ), re-
ceived signal strength indication (RSSI), serving physical cell identity (PCI), and channel
quality indicator (CQI) and throughput as averages of one second. To perform latency
measurements, the CDMT app sends 10 UDP datagrams per second, containing a se-
quence number and two timestamp fields (20 byte payload), to a server located in the
testbed network. The app logs the timestamp when the packet is sent and when it
receives the reply from the server. The timestamp fields are used to store the time
when a packet is received at the server and when it is sent back to the client in order
to determine the processing time at the server.

3.1 Scenario Investigation
The performance of the DSC is significantly influenced by the UAV-to-BS connectivity.
It has been shown that the current cellular BS antenna design is optimized to service
ground users and drones experience degraded performance at certain altitudes, since
they are only covered by side lobes [9, 10]. To better understand the propagation
pattern of the base station, we perform several pre-measurements in order to improve
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Fig. C.3: RSSI measurement results for the LTE signal performance sweep from the perspective of
the BS. Colormap ranges from red for the worst RSSI measured(-107 dB) to green for the best RSSI
(-75 dB) measured. (Map data: Google ©2021)

the deployment of the DSC (i.e., determine a suitable altitude for the drone). The
pre-measurements start with measuring the performance on the ground, while a user
carrying a smartphone walks along the route. Afterwards, we mount the smartphone
on a UAV and repeat the same route at a different altitudes. Moreover, even when
the drone can move horizontally its performance depends on how big of an area it
wants to cover [17]. Hence as per a previous analysis for suburban environments, we
derive 30m as a decent altitude for a drone with an isotropic fronthaul (in our case
Wi-Fi) transmitter, and 50m or 70m with a directional antenna [18]. Furthermore, we
also want to sample the possibility of having drone-to-BS connection with a drone at
an altitude of 100m for UAVs that have an efficient directional antenna. As such we
perform a sweep to test the LTE channel performance at different altitudes, as shown
in Fig C.2.

In Fig. C.3 we can observe that the altitudes of 30m and 70m give the best channel
conditions. Since we conduct our experiments with omnidirectional Wi-Fi antennas, we
select an altitude of 30m for the measurements of our DSC. Moreover, lower altitudes
suffer less from inter-cell interference and frequent handover challenges [5]. Looking at
the RSSI measurements from the opposite side, as shown in Fig. C.4, we can notice
that the LTE connectivity of the ground UE severely deteriorates in the NLoS region.
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Fig. C.4: RSSI measurement results for the LTE signal performance sweep from the perspective of
the DSC. Colormap ranges from red for the worst RSSI measured(-107 dB) to green for the best RSSI
(-75 dB) measured. (Map data: Google ©2021)

Table C.1: Mean and variance of RSSI for all measured altitudes

Label 1m 30m 50m 70m 100m
mean µ -89.79 -84.46 -85.98 -84.06 -86.83
variance σ 94.86 31.68 34.73 26.39 30.90

Thus, we expect that DSC-based connectivity should eliminate this issue and improve
network performance for users hidden from the direct LoS of the BS.

A final remark of the pre-measurements can be derived from Fig. C.5 where we
show the moving evolution of variance and mean RSSI values. As it can be noticed,
all flying drone implementations record lower RSSI fluctuations during the route. The
signal strength at the moving ground UE was constantly changing, providing additional
motivation for stabilizing the performance of the ground UE through a DSC system. The
variance and the mean of the RSSI parameter for each pass of the sweep are contained
in Table C.1.
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Fig. C.5: 2-point Moving Average and Moving Variance for RSSI values of all 5 experiments.

4 Experimental Results
Since we have established the DSC altitude of 30m, we proceed with the latency mea-
surements for the system at that particular altitude. As shown on the right in Fig. C.6,
one part of the measurement is for the LTE-direct UE-BS link, measured along the
route. On the left, in Fig. C.6, we illustrate the second part of the measurements where
the Wi-Fi equipped drone provides DSC service to the mobile user, while flying directly
above him or her along the same route. To verify the consistency of the measuring
setup, the DSC measurements were repeated three times while the LTE-direct measure-
ments were repeated two times. From that we observed consistent behavior across the
measurement experiments. For better visibility, we illustrate the duration-time plot in
Fig. C.7 only for one sample of each type.

Since all experiments started from the same initial spot and travel with the same
speed, in Fig. C.7 we plot the latency evolution of the system with regards to the
duration of the experiment. The most notable remark is that LTE-direct measurements
lack 10 s of data near the end of the experiment. This was due to the strong NLoS, shown
with bright red in Fig. C.6, due to which the ground-UE consistently lost connectivity
to the BS near the end of the experiment. This reduces the number of samples for
the LTE-direct measurements by 6.4% as for such portion of the time the LTE-direct
link is in total outage. However, the DSC setup experiences latency spikes that are
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Fig. C.6: Latency measurement scenarios: the drone and UE move at 1m/s together (left), the user
moves at 1m/s alone (right)
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Fig. C.7: The measured latency of the DSC and LTE-direct implementations.

consistently above one second. These spikes occur in areas where the UAV has good
LTE channel condition, with strong LoS. From the segmented latency data for the DSC
measurement in Fig. C.8, we observe that the latency spikes are due to consistent and
lengthy outages of the Wi-Fi interface. These spikes are unrelated to the position of
the drone and occur at random times due to the distributed multiple access scheme
implemented in Wi-Fi. Therefore, due to the inconsistency of Wi-Fi, the mean latency
for both systems (within the area of BS coverage for ground users) is nearly identical,
measuring to 54ms and 53.7ms of latency for the LTE-direct and the DSC connectivity,
respectively. In addition, the Wi-Fi link adds insignificant amount of extra latency
for the DSC case when it does not encounter crowding problems due to its distributed
nature. Thus, in Fig. C.9 we compare the latency between the UAV-BS LTE link to the
UE-BS direct. The major superiority of the DSC system comes as a consequence of the
good channel conditions of the flying drone, even when both setups have generally LoS
signal. Moreover, the mean LTE delay from the DSC is 33.2ms while the mean LTE
delay from the UE is 54ms.
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Even with this advantage of the UAV, the mean latency for the DSC system is nearly
identical. Therefore, in Fig. C.10 we plot the empirical cumulative distribution function
(ECDF) starting at the average latency, as taken from all runs. While the average
latency is similar for the LTE-direct link and the DSC link, the variations are much
higher for the former. In particular, it is much more likely to observe highly varying
latencies between 40ms and 120ms when having a direct LTE connection. In other
words, the LTE-direct link suffers from high jitter. This is not true for the DSC system
that offers low jitter and a latency below 50ms with 0.95 probability. Unfortunately, due
to the behavior of CSMA it is likely to observe a latency in the excess of 200ms, for 2%
of the time of operation of the DSC system. We note that this investigation is limited to
generally good CSMA congestion conditions, and larger delays can be introduced when
sharing the Wi-Fi carrier with other devices. Therefore, through the choice of location
we also impact the wireless channel congestion for both the LTE and Wi-Fi spectrum.
As such, the analysis presented in this work can be further enhanced by combining the
provided measurements with congestion models, which is out of the scope of this paper.

Finally, we observe the latencies in Fig. C.11 that are the result of scheduling and
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Fig. C.10: Latency-Reliability plot of above average latency for each connection.

processing of our computational system mounted on the drone.

5 Conclusions
In this paper, we conducted and elaborated an experimental analysis of the possibility
of addressing latency concerns for ground based UE with DSCs. Initially, we provided a
full sweep of measurements at different altitudes to inspect the impact of LoS and NLoS
links. In the sweep we concluded that a DSC should operate at an altitude of 30m to
provide a Wi-Fi hotspot for the UE below. In additional experiments, we compared
the performance of an LTE-direct link – between the UE and the BS – to a DSC
provided hotspot. The experimental analysis shows that the altitude of the DSC allows
for reliably lower latency than an LTE-direct link from the ground. Moreover, the DSC
system extended the coverage for an extra 6.4% of the route. Even though this number
is arbitrary and directly impacted by the choice of the flight and walking trajectories, it
showcases that the DSC covers absolute edge cases of full link dropping. The drawbacks
of the DSC system come due to the nature of Wi-Fi, as we occasionally observed latency
spikes in the excess of 1 s that are due to full outages. This removes the possibility of
using the Wi-Fi fronthaul for ultra reliable remote control implementations that require
low latency. Finally, this work allows us to segment the collective fronthaul, processing
and backhaul latency of a complex DSC system in mixed LoS and NLoS scenarios,
limited to outdoor users. In a future work we would like to observe the performance of
a similar experimental setup with a 5G backhaul. Such an analysis would be imperative
since next-generation communication equipment promises low latency even in NLoS
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Fig. C.11: Latency, in milliseconds, induced due to total time spent processing in DSC.

environments. In those cases, upgrading the DSC fronthaul to the next-generation of
802.11be might finally achieve URLLC for outdoor ground users. Moreover, to evaluate
the feasibility of such a system, we would also strive to reduce the complexity and weight
of the mounted equipment in favor of increased drone air time. Such work can finally
target the goal of URLLC for outdoor remote control applications in obstacle-dense
environments, an evolution towards modular, fault-tolerable and reliable connectivity.
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Abstract
Modern communication devices are often equipped with multiple wireless communica-
tion interfaces with diverse characteristics. This enables exploiting a form of multi-
connectivity known as interface diversity to provide path diversity with multiple commu-
nication interfaces. Interface diversity helps to combat the problems suffered by single-
interface systems due to error bursts in the link, which are a consequence of temporal
correlation in the wireless channel. The length of an error burst is an essential per-
formance indicator for cyber-physical control applications with periodic traffic, as these
define the period in which the control link is unavailable. However, the available inter-
faces must be correctly orchestrated to achieve an adequate trade-off between latency,
reliability, and energy consumption. This work investigates how the packet error statis-
tics from different interfaces impacts the overall latency-reliability characteristics and
explores mechanisms to derive adequate interface diversity policies. For this, we model
the optimization problem as a partially observable Markov Decision Process (POMDP),
where the state of each interface is determined by a Gilbert-Elliott model whose parame-
ters are estimated based on experimental measurement traces from LTE and Wi-Fi. Our
results show that the POMDP approach provides an all-round adaptable solution, whose
performance is only 0.1% below the absolute upper bound, dictated by the optimal policy
under the impractical assumption of full observability.

1 Introduction
In the rise of the Industry 4.0, the fourth industrial revolution, there is an amassing
interest for reliable wireless remote control operations. Moreover, the application of
connected robotics, such as in cyber-physical control, is one of the main driver for tech-
nological innovation towards the sixth generation of mobile networks [1]. In accord, one
of the main use cases for the fifth generation of mobile networks (5G) is Ultra-Reliable
and Low-Latency Communication (URLLC) [2]. Reliability and latency requirements
for this use case are in the order of 1 − 10−5 and of a few milliseconds, respectively.
The combination of these two conflicting requirements makes URLLC challenging. For
instance, hybrid automatic repeat request (HARQ) retransmission mechanisms provide
high reliability, but cannot guarantee the stringent latency requirements of URLLC. To
solve this, recent 3GPP releases have supported dual- and multi-connectivity, in which
data packet duplicates are transmitted simultaneously via two or more paths between
a user and a number of eNBs. Hereby, reliability can be improved without sacrific-
ing latency by utilizing several links pertaining to the same wireless technology – 4G
or 5G – but at the cost of wasted time-frequency resources [3, 4]. However, mod-
ern wireless communication devices, such as smart phones, usually possess numerous
wireless interfaces that can be used to establish an equal number of communication



82 Paper D.

- Timely packet

- Untimely or lost packet

- Empty transmission window

- LTE base station

- Wi-Fi Access Point

- Packet Source

- Packet Destination

Burst Length

7 2 135

3

1
2

4
5

6
7

Fig. D.1: An illustration of the scenario investigating interface diversity where the sender duplicates
each packet. The sender would sometimes skip transmission windows in favor of conserving energy.
Here, only packet 4 was lost, packets 2,3,5,6 were saved, and packets 1, 7 arrived with a redundant
copy.

paths. Recent work has proposed Interface diversity [5], which expands the concept of
dual and multi-connectivity to the case where a different technology per interface can
be used. Thereby, lower cost connectivity options can help to increase communication
reliability. Since constant packet duplication leads to a large waste of resources, the
transmission policies in multi-connectivity and interface diversity systems must be care-
fully designed to meet the performance requirements while avoiding resource wastage
and over-provisioning. Furthermore, as we will observe on the results section, acquiring
sufficient knowledge on the channel statistics is essential to attain adequate trade-offs
between resource efficiency and reliability in interface diversity systems.

From its definition, the URLLC use case treats each packet individually and, hence,
does not capture the performance requirements of numerous applications. For instance,
the operation of cyber-physical control applications, that transmit updates of an on-
going process, is usually not affected by individual packets that violate the latency
requirements (i.e., untimely packets). Instead, these applications define a survival time:
the time that the system is able to operate without a required message [6]. Hence, the
reliability of communication in such cyber-physical systems is defined by the statistics of
consecutive untimely packets, that is, the length of error bursts. Hence, in cyber-physical
systems, having multiple interfaces with diverse characteristics is greatly valuable, as it
allows to select the appropriate interface based on the requirements of the task at hand.
For example, while an LTE-based system with multi-connectivity capabilities and selec-
tive packet duplication could satisfy the requirements of the application, it seems likely
that a combination of unlicensed (e.g. Wi-Fi) and licensed (e.g. LTE) technologies
could lead to similar performance guarantees while achieving a lower usage of scarce
licensed spectrum and reduce overall costs.

In this paper, we therefore study the performance of interface diversity in terms of
burst error distribution in a source-destination system, where we consider two funda-
mentally different technologies: 1) LTE, which is based on orthogonal frequency division
multiple access (OFDMA), operates in licensed spectrum, and where the base station
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(BS) schedules the uplink resources for communication; and 2) Wi-Fi, which is based
on carrier sense multiple access (CSMA) and operates in unlicensed spectrum. The goal
of the proposed interface diversity system, as illustrated in Fig. D.1, is addressing the
survival time in cyber-physical control applications [6]. In particular, we investigate
the trade-offs between system-lifetime (the time until the system reaches the end of the
survival time and operation must be interrupted) and energy consumption. Given the
nature of periodic traffic, the survival time can be expressed as the maximum tolerable
number of consecutively lost or untimely information packets.

To consider the effect of channel correlation in consecutive errors, we use the Gilbert-
Elliott [7] model that is well suited for representing time-correlated transmissions [8].
Using this approach, we formulate the problem as a partially-observable Markov deci-
sion process (POMDP) that takes into account the limited observability of the inactive
interfaces. Hence, based on the observations and the belief states, we can calculate
the optimal transmission policy even for devices with extremely limited computational
power. We observed that the performance trade-offs achieved with the POMDP ap-
proach are greatly similar when compared the ones achieved with an idealized fully
observable MDP. The key contributions of this work are:

• The formulation of an interface diversity problem for energy-constrained devices as
a POMDP. Hence, our approach considers the limited observability of the inactive
interfaces: those that do not transmit, and thus do not receive feedback. While
our results are presented for a device using an LTE and a Wi-Fi interface, our
model is sufficiently general and, hence, can be applied to cases with more than
two interfaces and to different technologies.

• The analysis of interface diversity policies for cyber-physical control applications,
where a certain number of untimely packets are tolerated and with error burst
due to the temporal correlation in the wireless channel are considered by means
of a Gilbert-Elliott model.

• It illustrates that a computationally simple solution, the Q-MDP value method,
can be used for solving the POMDP. Using this method we obtain results that
closely follow the performance of the fully observable MDP. Specifically, the ex-
pected loss in the reward is only around 0.1%.

The rest of the paper is organized as follows. We initially present an elaborate
explanation of multi-connectivity and interface diversity’s role in timeliness in Section 2.
Next, we present the system model in Section 3, followed by the analysis of the scenario
and our proposed method to solve the POMDP in Section 4. Then, we present the
numerical results in Section 5. Finally, we conclude the paper with a summary of the
work in Section 6.
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2 Literature Review
Multi-connectivity has been studied from different perspectives. For instance, [3] studied
a scenario with one user equipment (UE) connected to multiple BSs and with multiple
simultaneous connections to the same BS. The benefits of this approach are assessed
in terms of transmit power reduction, achieved by increasing the signal-to-noise ratio
(SNR). Following a similar multi-connectivity approach, a matching problem is formu-
lated by [9], where the number of UEs in the network and the limited wireless resources
are considered. The objective is to provide the desired reliability to numerous users by
assigning only the necessary amount of resources to each of them. [10] investigated a
similar problem in a heterogeneous network scenario with a small cell and a macro cell.
Their results show that multi-connectivity is particularly useful for cell-edge UEs con-
nected to the small cell, and provides even greater benefits when URLLC and enhanced
mobile broadband (eMBB) traffic coexist. [11] considered multi-connectivity for URLLC
as a combination of device-to-device and cellular links, where correlated shadowing is
considered. They achieved remarkable increases in the availability ranges for both inter-
faces. In our previous work [5] we studied the benefits of interface diversity in terms of
reliability for a given error probability. Finally, [12] assessed the performance scheduling
schemes such as packet duplication and load balancing in order to achieve latency and
reliability improvements. The authors exploited a combination of a local Wi-Fi and a
private LTE network, that was tested under traffic patterns that are expected to appear
in an industrial communications setting.

In the studies mentioned above, only stationary error probabilities are considered.
Moreover, [13] provided a thorough investigation of switching off a singular interface
that has an unreliable channel, based on channel feedback. The goal of the authors is
thus aligned with ours since they aim for an energy-efficient transmission policy given
bursty channels, for reliable connectivity of synchronous services. However, the use of
different interfaces provides unique benefits for URLLC, especially in the case of bursty
wireless errors. For instance, different interfaces are likely to present different burst error
distributions, and the correlation of errors between different interfaces is expected to be
much lower compared to the correlation between multiple links using the same wireless
interface. Despite these evident benefits, and the thorough investigation of burst errors
in past research [14], little research has been conducted on interface diversity with error
bursts. Specifically, our previous work presents one of the few analyses of this kind [15].
However, it was limited to the benefits of interface diversity in the length of error and
success bursts without considering the impact on resource efficiency.

Cyber-physical control applications can belong to one of two major categories de-
pending on the traffic direction requirements: in downlink or uplink only (open-loop
control) or the combined uplink and downlink (closed-loop control) requirements [6].
Moreover, a closed-loop control application needs to process incoming events, and thus
give appropriate instruction commands to those events [16]. In such scenarios, timeli-
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ness is critical to avoid violating the system imposed latency requirements, which leads
to executing outdated actions. Therefore, being untimely is the equivalent of a failure
in communication service availability.

Open-loop control applications with periodic commands appear frequently in indus-
trial applications and are considered representative of cyber-physical control systems. In
these applications, failing a specific number of consecutive updates directly corresponds
to exceeding the survival time and, hence, to an error in the system. For example, it has
been observed that the number of consecutive errors impacts the stability of the system
and leads to a considerable decrease in safety of autonomous guided vehicles [17]. As in
the present model and in our previous work [15], a Gilbert-Elliott model was considered
in [17] to introduce correlation in the wireless channel. Finally, the novelty of this work
comes from investigating the problem of interface diversity for timely packet arrivals for
cyber-physical control applications in a burst error channel, where the reliability of the
system comes as a trade-off of energy.

3 System model
We consider a point-to-point communication between a user and a BS in an industrial
scenario. The user samples a given set of physical phenomena and generates data peri-
odically, where Ts is the sampling period. The sampled data is immediately transmitted
to the BS, where it is used for control purposes, so that it must be received within a
pre-defined latency constraint θ ≤ Ts. Hence, it is now convenient to introduce the
definition of the latency-reliability function, which stands for the probability of being
able to transmit a data packet from a source to a destination with a given latency
deadline [5].

Let L be the RV that defines the packet latency. Then, for a given interface i and
latency deadline θ, the latency-reliability function is defined as

Fi (θ) = Pr (L ≤ θ | i) . (D.1)

As such, the latency-reliability function is a CDF of the interface’s latency, where lost
packets have the equivalent of infinite latency. Thus, the error probability becomes
a specific value (of deadline) Θ in the latency-reliability function, and we define the
probability of error for interface i as

P (i)
e = 1− Fi (θ) . (D.2)

It should be noted that the traditional definition of the probability of error is obtained
for the case θ →∞ and that the distribution of L can be updated continuously to reflect
the changes in the wireless channel.

We consider the case where the interface diversity system uses packet cloning, where
a full packet is transmitted via each of the N interfaces. Next, by assuming that
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errors across the multiple available interfaces occur independently, the end-to-end error
probability can be calculated as in [5, 18]:

PE2E
e =

N∏
i=1

(1− Fi (θ)) =
N∏
i=1

P (i)
e . (D.3)

Note that the correlation of the large-scale fading across the interfaces is captured by
the model described above through the distribution of the RV L. The assumption of
errors occurring independently across interfaces holds since correlation in the fast fading
may only occur if the antenna elements within an array have insufficient spacing and/or
if the concurrent transmissions occur in frequencies that are separated by less than
one coherence bandwidth [19]. In out case, the use of two different technologies and
frequency bands for WiFi (unlicensed ISM bands) and LTE (licensed spectrum) ensure
that the transmissions are sufficiently separated in frequency to avoid correlation.

The BS sends individual feedback per interface to the user after each transmission
attempt. If the data is not received within θ, it is declared as missing and the user
receives a NACK. The system tolerates a maximum number of missed transmissions.
Specifically, if the number of missed transmissions is N , the system declares a failure
and operation must be interrupted. Otherwise, the system is able to continue normal
operation whenever the number of missed transmissions is n ≤ N (smaller than the
survival time).

In the following, we define our interface diversity problem as a POMDP denoted as
the tuple (S,A, T,R,Ω,O). Here, S is the set of states, A is the set of actions, T is
the transition probability to the next state of the environment given a state-action pair,
R ⊂ R is the set of immediate rewards, Ω is the set of possible observations, and O is
the observation probability when transitioning.

3.1 The environment
The user, i.e. the agent, interacts with the environment at discrete time steps t ∈ N by
sampling and transmitting data to the BS. It is equipped with two distinct communica-
tion interfaces, i ∈ {1, 2}, where the generated data can be transmitted. Throughout this
paper, we assume that these interfaces are completely independent from each other and
that each interface is accurately modeled by a two-state Gilbert-Elliott (GE) model [7].
The GE model was selected due to its simplicity and to the ability to capture temporal
correlation.

In our GE model, the details of the implemented protocol and the wireless conditions
– interference, noise, and fading – are simplified and related to two possible states in a
discrete-time Markov chain (DTMC). These are the good state G and the bad state B.
Hence, we model the state space for the GE model for interface i as Si = {G,B}. At
any given point in time, an interface is in the G state if the protocol and the wireless
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Fig. D.2: (a) Two-state GE model for interface i and (b) four-state GE model for user with two
interfaces.

channel conditions are such that allow for a transmission to be received within the
latency constraint θ. Otherwise, the interface is in the B state.

This simple GE model has two parameters, namely pi and ri that determine the tran-
sition probabilities and, hence, the steady-state error probability and burst lengths [7].
Hence, these are system- and environment-specific, and can only be learned after de-
ployment by collecting statistics of the packet transmissions. An additional benefit of
using the GE model is that through continuous tuning of the statistical parameters, it
allows to capture cross-interface correlation due to large-scale fading or traffic surges.

We denote the state of interface i at time step t − 1 as si and as s′i at time step
t. Parameter pi represents a transition from state G to B and ri from B to G (i.e., a
recovery from the bad state). Hence, the transition probabilities are defined as

Pr (s′i = G | si = G) = 1− pi, (D.4)
Pr (s′i = G | si = B) = ri, (D.5)
Pr (s′i = B | si = G) = pi, (D.6)
Pr (s′i = B | si = B) = 1− ri, (D.7)

Fig. D.2a illustrates the GE model with one interface, whose transition probability
in a matrix form is:

Pi =
[
1− pi pi
ri 1− ri

]
. (D.8)

Building on this, the state of a system with two interfaces is defined by the four-
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state GE model illustrated in Fig. D.2b, where transition labels are omitted for brevity.
To elaborate, transition probabilities are calculated under the assumption of the two
interfaces being independent, for example, the transition from state G,G to state B,B
has probability p1p2.

Besides the status of each interface, knowing the number of consecutive missed
data n is essential for the operation of the system. Therefore, to build a respective
Markov decision process (MDP), we define the state space as S = {(s1, s2, n)}, where
n ∈ {0, 1, 2, . . . , N}. Note that the true state of the interface is observable only after
concluding the transmission at time step t − 1, and before the following transmission
attempt at time t. Thus, the state of the environment at time t denoted as S ∈ S is
defined by the outcome of the transmission in the last attempt at t − 1. Hence, all
states S ∈ S : n = 0 indicate that a transmission at time t− 1 was received successfully.
Furthermore, all states S ∈ S : n = N are absorbing states and, consequently, this is a
finite MDP with episodic tasks.

Ultimately, the goal of the system is to navigate the MDP in a way that decreases
the amount of errors, and altogether reduces the likelihood of having N consecutive
errors. Thus, the system should be incentivised to maximize its expected lifetime, while
optimizing the costs associated with each transmission. This is done through proper
allocation of rewards for each action in the MDP. However, the main challenge for
solving the issue comes as a product of the limited observability of the defined MDP
system when an interface is switched off. The details for this are encompassed in the
following subsection.

3.2 Actions, rewards, and uncertainty
At each time step t (i.e., data transmission instant) the user takes an action A ∈ A =
{(a1, a2)}, where ai ∈ {0, 1}; ai = 1 indicates transmission and ai = 0 indicates no
transmission for interface i. Hereafter we denote that interface i is on when ai = 1 and
off otherwise. Note that in our case A (S) = A for all S ∈ S; that is, the set of actions
is the same in every possible state. This totals to three different actions – leaving out
the option to turn off all interfaces altogether A = (0, 0) – and have either interface off,
or both interfaces turned on.

Having taken action A when in state S there is a probability T (S,A, S′) to end up
in state S′, therefore it must apply that

∑
S′ T (S,A, S′) = 1. Note that S′ represents

the true state of both interfaces at time t, that is revealed only after taking action A.
A missed transmission can thus occur when both interfaces are transmitting A = (1, 1)
but are in the bad state S′ = (B,B, n), or a single interface is transmitting that is
in its corresponding bad state – A = (0, 1) when S′ = (G,B, n), or A = (1, 0) when
S′ = (B,G, n).

Therefore, following a transmission action A, the user receives a reward R that also
depends on the feedback by the BS given before time t + 1. Having arrived at state
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S′ by taking action A when in state S, yields a reward R(S,A, S′) that is a function
r(n), where r(n = 0) = 1 is a successful transmission and r(n > 0) = −1 is a missed
transmission. In the overall reward allocation, we also account for the cost of using
interface i, specifically,

R(S,A, S′) = r(n)− c(A) = r(n)− a1c1 − a2c2, (D.9)

where c(A) is the cost of taking action A.
In an MDP, a policy π is a function that maps each state S ∈ S to an action

A ∈ A(s). Therefore, given a policy π(S), the agent will choose action A, once it
finds itself in state S. Our objective is to find an optimal policy π∗ that selects the best
action given some state S. Let K denote the total number of time steps until the system
transitions to an absorbing state. The best action at time t is the one that maximizes
the discounted return

Gt =
K−t−1∑
k=0

γkRt+k+1, (D.10)

where 0 < γ < 1 is the discount factor, and the system lifetime is K < ∞ as there is
always a non-zero probability of transitioning to the absorbing states in a finite number
of steps. Thus, the value of the MDP process, when starting from initial state Sinit
under a policy π, is:

Vπ(s) = Eπ [G|S = Sinit] . (D.11)

Next, we define the set of observations as Ω = {(o1, o2, n)}, where oi ∈ Si ∪ {0}
is the set of observations for an interface i, and the number of consecutive missed
deadlines n is always observable. The transition from S to S′ following action A provides
a deterministic observation O = (o1, o2, n) ∈ Ω in the following manner: (Since all
observations are deterministic with each action, the set O is irrelevant to the analysis.)
I) Having an interface on, namely ai = 1, allows for fully observing the state of that
interface oi = si. II) On the other hand, having an interface off, namely ai = 0, provides
no observation of the state of that interface, i.e. oi = 0, unless additional mechanisms
are available to correctly estimate the state, for example, based on the exchange of
control messages. Building on this, we define the following function.

oi =
{
si if ai = 1 or α = 1,
0 otherwise,

(D.12)

where α = 1 indicates that the BS has additional mechanisms to perform the observa-
tion. Fig. D.3 illustrates the action space along with the associated transitions to states
S′ and observations from an arbitrary non-absorbing state S.
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Fig. D.3: One-step transitions from an arbitrary non-absorbing state (i.e., n < N) for the partially
observable Markov decision process (POMDP) with two interfaces.

4 Analysis
As a first step, we derive the steady-state probabilities of the good and bad states from
the transition matrix Pi as [7]:

πi,G = ri
pi + ri

(D.13)

πi,B = pi
ri + pi

(D.14)

where πi,G + πi,B = 1.
Assuming that the system has both interfaces turned on during initialization, the

initial state of the MDP Sinit is chosen randomly among the set of states {(G,G, 0),
(G,B, 0), (B,G, 0), (B,B, 1)} based on the steady state probabilities πi,G and πi,B.
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Fig. D.4: An illustration of a single step of the value iteration process for state S that tests the
Q-function for all state-action pairs, where future states follow the optimal policy π∗

4.1 Policy Utility Through the Value and Q functions
Let Vπ(S) be the expected utility received by following policy π from state S, as in:

Vπ(S) =
{
Qπ(S,A) if S /∈ {(s1, s2, N)},
0 otherwise,

(D.15)

where Qπ(S,A) is the expected utility of taking action A from state S , and then
following policy π [20]. Starting from state Sinit our goal is to find the optimal policy π∗
that results in the maximum value that can be obtained through any policy Vπ∗(Sinit).
As illustrated in Fig. D.4, when not following the optimal policy π∗, but sampling the
value of the Q-functions for each action A in the space of values Vπ∗(S′), we get:

Qπ∗(S,A) =
∑
S′

T (S,A, S′)[R(S,A, S′) + γVπ∗(S′)], (D.16)

where, γ is the discount factor that controls the importance of short term rewards (γ
values close to 0), or long term rewards (γ values close to 1), where the anticipated
rewards are represented through the value of the state as:

Vπ∗(S) =
{

max
A∈A

Qπ∗(S,A) if S /∈ {(s1, s2, N)},

0 otherwise,
(D.17)

Unless the user is in an N state that is absorbing, the values Vπ∗(S) are recurring and
can be approximated through the iterative process of [20]:

V kπ∗(S)←− max
A∈A

∑
S′

T (S,A, S′)[R(S,A, S′) + γV k−1
π∗ (S′)], (D.18)

that continues until it converges to some predefined precision ε of the past and current
value:

max
S∈S
|Vπ(S)k − Vπ(S)k−1| ≤ ε. (D.19)
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Thus the method of value iteration guarantees finding the optimal value for an MDP
that is a function of the optimal policy. Given a κ number of iterations to converge to
a solution, the complexity of this algorithm is O(κSAS′), which given our small MDP,
is insignificant. Unfortunately, this method does not directly produce an optimal policy
for a POMDP, however, this can be addressed by the QMDP value method.

4.2 Belief Averaged QMDP Value Method
Due to the limited information on the channel properties for each interface our Markov
process is a POMDP where we cannot fully observe the true state space for time t.
Therefore, the agent maintains a belief b on the state of the system S ∈ S based on the
observation O ∈ Ω. By observing that there is no uncertainty on the value of n and
that the state of the interfaces Si is independent, we can define the belief as:

b(S,O) = Pr (S = (s1, s2, n) | O = (o1, o2, n)) = b1(s1, o1)b2(s2, o2), (D.20)

where bi is the belief for interface i to be in state si, given its observation oi. The bi
values are updated recursively with each following observation as in:

bi(si, oi)←− Pr (si | oi) =


1 if si = oi and oi 6= 0
fsi(bi) if oi = 0,
0 otherwise,

(D.21)

where fsi(bi) is a function for calculating the probability of being in state si as a function
of the previously held beliefs in:

fG(bi) =(1− pi)bi(G, 0) + ribi(B, 0), (D.22)
fB(bi) =pibi(G, 0) + (1− ri)bi(B, 0). (D.23)

Therefore, knowing the belief b(S,O)∀S ∈ S we can proceed with finding an optimal
policy for the underlying POMDP through the following two steps.

Step 1: Ignore the observation model and compute the Q-values Qπ∗(S,A) given
directly from the state-action pairs. These are denoted as QMDP (S,A) and are obtained
through calculating the Bellman operator in the value iteration method.

Step 2: Calculate the belief averaged Q-values for each action and belief b(S,O) as:

QA(b) =
∑
S∈S

b(S,O)QMDP (S,A) . (D.24)

The optimal policy now becomes a function of the belief, instead of the current state,
and is

π∗(b) = max
A∈A

QA(b). (D.25)

Note that this is a method that does not incentivize updating the belief state, but opti-
mizes with the assumption that we will have full observability following the transmission
at time t [21].
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4.3 Parameter Tuning
For the MDP to optimize the operation of the underlying communications system we
require a proper assignment of the rewards and costs for the MDP. Therefore, the
reward and punishment for a successful or a missed transmission were fixed to 1 and −1,
respectively. Conversely, the value of ci, the cost of using interface i, greatly depends
on the specific characteristics of the system and on the individual notion of resource
efficiency. Moreover, the cost of using an interface is directly related to the consumption
of resources that would otherwise be available to other services. Throughout the rest
of the paper, we consider that the cost of using an interface is given by the energy
consumption. However, other parameters can be used to define the cost of each interface
when adapting our methods to a specific system.

Given a transmission power ELTE and EWi-Fi for the LTE and the Wi-Fi interface,
respectively, we calculate the cost for interface i as

ci = η
Ei∑
iEi

, (D.26)

where η is a cost scaling factor that serves to reduce/increase the importance of the
energy transmission costs with regards to the initial rewards. The scaling factor η was
sampled across several values in the range 0 ≤ η ≤ 1, which resulted in five different
optimal policies, one for each different η ∈ {0, 0.03, 0.07, 0.2, 1}.

4.4 Latency measurements for modeling Wi-Fi and LTE
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Fig. D.5: Empirical latency CDFs of considered interfaces.

Traces of latency measurements for different communication technologies were ob-
tained by sending small (128 bytes) UDP packets every 100 ms between a pair of GPS
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time-synchronized devices through the considered interface (LTE, or Wi-Fi) during the
course of a few work days at Aalborg University campus. A statistical perspective of
this data is given by the latency CDFs in Fig. D.5, which clearly outlines some key
differences between the performance of the LTE and Wi-Fi interfaces. While Wi-Fi can
achieve down to 5 ms one-way uplink latency for 90% of packets, it needs approx. 80
ms to guarantee delivery of 99% of packets. For LTE, on the other hand, there is hardly
any difference between the latency of 90% and 99% delivery rates, approx. 36 ms and
40 ms, respectively. Since the measurements for both LTE and Wi-Fi were recorded
in good high-SNR radio conditions, we expect that the differences between LTE and
Wi-Fi can, to a large extent, be attributed to the inherent differences in the protocol
operation and the fact that LTE operates in licensed spectrum whereas Wi-Fi has to
contend for spectrum access in the unlicensed spectrum.

4.5 Performance evaluation
To conduct the performance evaluation of the policies obtained with the POMDP, we
define the following benchmarks.

• Fully observable system: Assumes an inherent ability of the BS to inform the user
about the interface that is turned off, for example, by using pilots that precede
the transmissions. In this case α = 1, making the POMDP collapse to an MDP.
We denote the policy with full observability as π∗α=1.

• Forgetful POMDP (F-POMDP): Maintains a single state of partial belief and, af-
terwards, assumes the steady state probability πi,G, πi,B for the inactive interface.
This forgetful approach collapses to a small MDP where belief does not need to
be continuously computed.

• Hidden MDP (H-MDP): Is the fully reduced MDP of the forgetful approach,
where the belief averages in F-POMDP are joint in a single state. Here, the
transition probabilities for the inactive interface directly become the steady state
probabilities πi,G, πi,B.

The obtained policies are evaluated based on the following performance indicators.
First, the distribution of the number of consecutive errors n. Second, the utilization of
the LTE interface, defined as the ratio of time slots when the LTE interface is turned on
uLTE(π) = Pr (a1 = 1 | π). Third, the expected system-lifetime, defined as the number
of time steps from initialization until the system transitions into an absorbing state.
For the latter, let K(π) be the expected system lifetime with policy π. Finally, we
define the expected total reward of the system with policy π, from initialization until
absorption, as R(π).

Building on this, we assess the policies derived with partial observability w.r.t. the
policy with full observability based on:
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• System lifetime delta: Denotes the relative increase of the expected system lifetime
w.r.t. the MDP with α = 1 (i.e., full observability), denoted as:

∆K =
(
K(π)−K(π∗α=1)

)
K(π∗α=1)

. (D.27)

Hence, positive values of ∆K indicate an increase in the system lifetime w.r.t. the
optimal policy with full observability.

• Policy deviation: Measures the relative change in the expected system lifetime K
and expected transmission cost as

∆π = |∆K|+ |uLTE(π)− uLTE(π∗α=1)| · cLTE. (D.28)

Note that this measures the difference in behavior between w.r.t. to optimal policy
but does not necessarily reflect a proportional decrease in performance. Instead,
this is an measure of the normalized collective error, as in common estimators that
try to project the optimal LTE-usage and system lifetime.

• Relative reward loss: Defines the relative loss in the expected total reward R(π)
with policy π w.r.t. π∗α=1 as

L(π) =
∣∣R(π∗α=1)−R(π)

∣∣
R(π∗α=1)

(D.29)

The results with the fully observable MDP were obtained analytically. In order
to evaluate the performance of the POMDP and forgetful methods, analytical results
were obtained for extreme values of parameter η. For all other cases, we performed
Monte-Carlo simulations of 20000 episodes. The duration of each episode depends on
the system lifetime which could last up to several million time steps.

5 Results
In this section we investigate the performance of the modelled system. The investigation
in this section is guided by the use of interface diversity in the case a combination of
Wi-FI and LTE. The performance of the aforementioned system where i = 1 is LTE
and i = 2 is Wi-Fi was evaluated by a Monte-Carlo Matlab simulation (when necessary)
where the calculation of the statistical properties for the GE model are derived from
experimental latency measurements.

We tested the system for all 5 different values η = 0, 0.03, 0.07, 0.2, 1 where the fully
observable MDP system had different transmission policies. Given the measurements
and the characteristics of our measurement setup, we tuned the simulation parameters
to the values in Table D.1.
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Table D.1: Parameters for evaluation

Label Definition Value

θ Latency Constraint 38.25 ms
pLTE LTE’s p-transition probability 0.0178
pWi-Fi Wi-Fi’s p-transition probability 0.0515
rLTE LTE’s r-transition probability 0.2577
rWi-Fi Wi-Fi’s r-transition probability 0.9468
EWi-Fi Power consumption of Wi-Fi interface 15.85 mW
ELTE Power consumption of LTE interface 200 mW
N Maximum number of consecutive missed transmissions 4
ε Value iteration convergence criteria 10−11

kmax Value iteration maximum number of iterations 105

γ Discount factor 0.99999

5.1 Extreme Policies
As a starting point, we describe and evaluate the policies obtained in the cases where the
value of parameter η ∈ (−∞,∞) is set to a extremely low or high value (i.e., at either
of the extremes of its range). When adjusting the scaling factor to its lowest possible
value η → −∞, the cost of using each interface is omitted and the MDP optimizes in
favor of not losing any transmissions. Thus, we observe an extreme behavior that is
not affected by the belief, or the POMDP behavior. Specifically, the optimal policy
maintains both interfaces turned on no matter the current state π∗(S) = A(1, 1)∀S ∈
S. Since the utilization of both interfaces is 100%, this gives the upper bound on
burst error performance for the whole system. Even in this case, there is a non-zero
probability to end up in the absorbing state which happens with an expectation of
5.0738 ·106 transitions. This is the defined lifetime of the system, and before turning-off
due to failure the system maintains successful transmissions for 99.67% of the time,
0.32% of transmissions have a single error, 0.0127% have two consecutive errors, and
4.9971 · 10−4% of all burst errors have three consecutive errors.

On the other hand, setting η → ∞ creates a lower bound of the system perfor-
mance that aims to minimize the cost of operation at the expense of decreasing the
system lifetime. This is the result of scaling the cost of performing a transmission to be
higher than the reward of maintaining successful transmissions. Since the action space
is restricted to use at least one interface for transmission at all times, in such a cost
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Fig. D.6: Portion of time spent in state with n consecutive untimely packets for all simulated and
analytically extracted data.

restraint system, it is reasonable to only allow for the utilization of the Wi-Fi interface
π∗(S) = A(0, 1)∀S ∈ S, due to the high cost of using LTE. Since we have 100% uti-
lization of Wi-Fi and 0% utilization of LTE the system lifetime of the system decreases
drastically to 1.3633 · 105. During operation, the system maintains successful transmis-
sions for 94.84% of the time, 4.89% of transmissions have a single error, 0.26% have two
consecutive errors, and 0.0138% of all burst errors have three consecutive errors. All the
implementations with other values of η result in policies that exploit mixtures of actions
and could not be analytically extracted – for the POMDP and H-MDP implementations
– and are thus extracted through Monte-Carlo simulations, as detailed in the previous
section.

5.2 Optimal Policies with Scaled Costs
The portion of time spent in states with n consecutive untimely packets, obtained from
the simulations, are shown in Fig. D.6 as a function of η, from which we can extract
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several conclusions. Initially, we notice a sharp decay for the portion of time spent in
good states when comparing the values with η = 0.07 and η = 0.2. In accord, we notice
a sharp increase increase in all bad states, that is most significant for single errors. This
manifests in the optimal policy, as a reluctance of mitigating single burst errors (n = 1).
Notwithstanding this increase in single errors, all approaches still mitigate higher orders
of error bursts (n > 1) when η = 0.2. This is not true for η = 1, where all approaches
focus solely on mitigating the last error that may lead to exceeding the survival time
N .

It is important to notice that due to the fact that H-MDP treats the GE model
as hidden when a portion of it is unobservable, turning off an interface results in fully
losing the state for that interface. This leads to a behavior where the H-MDP would
intentionally turn off the interface that observes a bad state, even when there is no
negative incentive to keeping that interface on, in favor of the more likely transition to
the steady state of the good state for that interface. Due to this, the optimal policy for
H-MDP is never π∗(S) = A(1, 1)∀S ∈ S, even when η = 0. Interestingly, H-MDP uses
the same policy for all three η = 0, 0.03, 0.07, but is best fit for η = 0.07. This makes
H-MDP the only suboptimal approach – out of all four – for η = 0.

Due to the low cost of using the Wi-Fi interface, and generally superior r probability,
all policies keep the Wi-Fi interface at 100% utilization. On the other hand, LTE
utilization is the only that varies for each approach, and is shown in Fig D.7. However,
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we are interested in investigating the lifetime of the system given burst error tolerance
of N . The system lifetime for the different scaling factors η is given in Fig. D.8 as
a difference from the optimal system lifetime. Therefore, the goal of each approach
with limited observability is to follow the performance of the optimal, fully observable,
approach as closely as possible. Thus, when a policy improves the system-lifetime, it is
a sign of energy-inefficiency that comes in the form of extra LTE-interface utilization.
Accordingly, the goal of all three approaches that have to work with limited information
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is to achieve ∆K ≈ 0. Looking at Fig. D.8, we can also notice that aside from the
case for η = 0.07, the POMDP approach gives the least deviations with regards to the
other two approaches. Moreover, the good performance of the H-MDP approach in
the case for η = 0.07 is a simple coincidence since this approach applies exactly the
same policy for 0 ≤ η ≤ 0.07, where both the POMDP and the F-POMDP tend to
vary and adapt. Additionally, we notice that the F-POMDP approach is highly focused
towards increasing the system lifetime which, as shown in Fig. D.7, comes at the cost
of using the LTE more often than with of the optimal approach. Since this behavior is
quite consistent, we can safely say that the F-POMDP is a system-lifetime conservative
approach. The POMDP approach is however more adaptable, and consistently bests
the F-POMDP in replicating the system lifetime of the fully observable MDP.

 = 0  = 0.03  = 0.07  = 0.2  = 1

Scalar factor 

0

0.005

0.01

0.015

P
o

lic
y
 d

e
v
ia

ti
o

n

POMDP

H-MDP

F-POMDP

Fig. D.9: The deviation from the optimal MDP policy of full observably.



100 Paper D.

Finally, in Fig. D.9 we show the aggregate deviation, in terms of system lifetime
and energy, as calculated as in (D.28). Here we can see that the POMDP approach
provides the most-adaptable behavior, that best resembles the policy when having full
observability. Treating the system as a hidden MDP does yield some adaptability,
however, the approach can lead to large deviations from the optimal behavior, as it can
be seen for η = 0, 0.03. In these cases, since the stochastic process was treated as hidden
to the MDP, the H-MDP optimal solution would intentionally turn off the LTE interface
when it is in the bad state. With this, H-MDP fully loses the information of the LTE
interface, in favor of the better stationary state probabilities. Due to this, we consider
the H-MDP approach as unsuitable. On the other hand, the F-POMDP was always
conservative with regards to the system-lifetime. Thus, F-POMDP approach is ideal
for implementation in devices with extreme power limitations, as it does not require re-
computation of the belief states continuously. Finally, the POMDP approach provides
the best solutions that most closely follow the optimal policy. Hence, it presents the
best solution given that an accurate model of the environment is available and should
be adopted if the energy consumption of the computational circuit, that is dedicated
for updating the belief states, is not an issue. In the following, we present a sensitivity
analysis of the considered methods under an imperfect model of the environment.

5.3 Sensitivity Analysis
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Fig. D.10: The deviation from the optimal MDP policy of full observably when having an error in
estimating the p and r values, for the case of η = 0.07.

We conclude the section by evaluating the impact of the estimation error regarding
the p and r values for η = 0.07. We do this by adding a percentage of error to the
p value, while the r is calculated to maintain the same steady state probabilities πi,B



5. Results 101

and πi,G for each interface i as derived from the values in Table D.1. In this way, the
true probabilities of the Markov system are hidden from the decision processes. As
Fig. D.10 shows, in the case of a negative percentage change for the system, F-POMDP
approach greatly deviates from the optimal policy for η = 0.07. Additionally, the
POMDP approach deviates considerably when an error of 2% is introduced. Moreover,
the H-MDP is the most robust as it is more reluctant to change policies in the presence
of different parameters, which shows best in the case of positive errors. We can conclude
that while belief mechanics help adapt to the optimal policy in the case where the model
of the environment is perfectly known, however, such implementations can lead to bad
results in particular scenarios where the true probabilities of the system are hidden from
the agent. On the other hand, the H-MDP system does not show a big disadvantage in
those cases since it already treats the Markov process as hidden.

To conclude, we show the relative reward loss L(π) for the same cases of estimation
error, as relative to the optimal MDP policy, in Fig. D.11. Here we observe that, even
though the F-POMDP method deviates considerably from the optimal MDP policy in
the negative estimations of -1% -2% (see Fig. D.10), its rewards are close to those with
the optimal policy. The reward loss with the H-MDP are relatively stable and do not
exceed 0.6%. Finally, we see that the POMDP implementation generally achieves a small
reward loss, which is around 0.1% for no error and around 0.4% for -2%. Nevertheless,
a high loss is achieved with 2% error. In this case, the adaptability of the POMDP has
a negative effect since it scales the policy in accord with the erroneous p and r values.
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6 Conclusion
Motivated by the recent requirements for cyber-physical systems, we analyzed the prob-
lem of addressing error bursts by using two different wireless interfaces. We model the
problem as a Gilbert-Elliott model with good and bad states for each interface. Given
limited energy resources on our device, we derived and evaluated transmission policies
to achieve an adequate trade-off between system lifetime and energy consumption with
limited channel information. For this reason, we modelled the system as a POMDP
that memorizes and calculates its belief for the observable states. Using Value Iteration
to extract the Q-values from the MDP, we update the policy for the POMDP through
the QMDP technique. Our results show that the POMDP approach indeed produces
near-optimal policies when the environment is accurately characterized. As such, this
is a computationally inexpensive solution that closely follows the performance of the
optimal policy, even in cases with various and mixed state-action pairs. We also pro-
pose a forgetful F-POMDP approach with only two finite belief states. This approach
performs worse than the classic POMDP, with affinity to increase system-lifetime, but is
well suited for approaches that are under extreme energy limitations. Finally, in future
works we would like to practically validate the usefulness of the system onto several ap-
plication scenarios, and address dynamic systems in non-stationary or non-characterized
environments.
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Abstract
In this paper we envision a federated learning (FL) scenario in service of amending the
performance of autonomous road vehicles, through a drone traffic monitor (DTM), that
also acts as an orchestrator. Expecting non-IID data distribution, we focus on the issue
of accelerating the learning of a particular class of critical object (CO), that may harm
the nominal operation of an autonomous vehicle. This can be done through proper al-
location of the wireless resources for addressing learner and data heterogeneity. Thus,
we propose a reactive method for the allocation of wireless resources, that happens dy-
namically each FL round, and is based on each learner’s contribution to the general
model. In addition to this, we explore the use of static methods that remain constant
across all rounds. Since we expect partial work from each learner, we use the FedProx
FL algorithm, in the task of computer vision. For testing, we construct a non-IID data
distribution of the MNIST and FMNIST datasets among four types of learners, in sce-
narios that represent the quickly changing environment. The results show that proactive
measures are effective and versatile at improving system accuracy, and quickly learning
the CO class when underrepresented in the network. Furthermore, the experiments show
a tradeoff between FedProx intensity and resource allocation efforts. Nonetheless, a well
adjusted FedProx local optimizer allows for an even better overall accuracy, particularly
when using deeper neural network (NN) implementations.

1 Introduction
The adoption of ubiquitous Level-5 fully independent system autonomy in road vehicles
(as per the SAE ranking system [1]) is barred from progress due to the omnipresence of
chaotic traffic in legacy traffic situations. Moreover, a 38% share of prospective users are
sceptical of the performance of the autonomous driving systems [2]. As such, lowering
the number of negative outcome outliers in autonomous vehicle operation, particularly
ones that lead to fatal incidents, can be addressed with an overabundance of statistically
relevant data [3]. Thus, given the privacy requirements and the abundance of the data
that is produced by road vehicles and/or unmanned aerial vehicles (UAVs) in the role
of traffic monitors, the machine learning (ML) problem can be addressed by treating
the participatory vehicles as learners in a federated learning (FL) network.

In more detail, FL is an ML technique that distributes the learning across many
learners. In this way, many separate models are aggregated in order to acquire one
general model at server side [4]. In FL, each learner does not have to send heaps of
data to a common server for processing, but maintains the data privately. As such, the
concept of FL is an extension of distributed ML with four important distinctions: (1)
the training data distributions across devices can be non-IID; (2) not all devices have
similar computational hardware; (3) FL scales for networks of just few devices to vast
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networks of millions; (4) FL can be engineered in a way in which privacy is conserved.
Given the vast complexity of implementing FL in autonomous vehicular traffic, partic-
ularly related to the quickly changing environment, in this paper we focus on solving
the issues of non-IID data learnt across several devices with unequal processing power.
We proceed with a review on relevant FL literature below.

1.1 State of the Art
FL is an emergent field that has gained immense popularity in the last five years. From
the relevant literature we highlight several works. [5] covers the state of the art re-
garding computational models, [6] contains a clear understanding of the FL potential
and its most prominent applications. [7] and [8] provide comprehensive coverage on the
communications challenges for the novel edge computation, [9] analyzes scenarios of FL
where learners use wireless connectivity. Challenges and future directions of FL sys-
tems in the context of the future 6G systems is given in [10], while [11] elaborates upon
the applications of FL on connected automated vehicles and collaborative robotics. [12]
covers resource allocation and incentive mechanisms in FL implementations. Most of
the works on FL concerning UAVs treat the devices as learners [13–15]. This requires
mounting heavy computational equipment on-board, and therefore it is an energy inef-
ficient way of exploiting drones. In contrast, in our prior work [16] we have investigated
techniques for reducing staleness when a UAV acts as an orchestrator by optimizing its
flying trajectory.

There is also an interest in wireless resource allocation optimization for FL networks,
as covered in the topics that follow. The work of [17] proposes a detailed communica-
tions framework for resource allocation given complex wireless conditions and an FL
implementation on IID data. This work has a strong contribution to the topic of con-
vergence analysis of wireless implementations of FL with very detailed channel model.
The work of [18] does a detailed convex analysis for distributed stochastic gradient de-
cent (SGD) and optimizes the power allocation for minimizing FL convergence times.
The work of [19] formulates FL over wireless network as an optimization problem and
conducts numerical analysis given the subdivided optimization criteria. However, the
aforementioned works perform their analysis on SGD which has been shown to suffer in
the presence of non-IID data and unequal work times [20]. The novel local subproblem
that includes a proximal optimizer in [20] achieves 22% improvements in the presence
of unequal work at each node.

The learning of both single task and multi task objectives in the presence of unequal
learner contributions is a difficult challenge and has received a lot of attention, e.g. in
the works of [21–23]. This also leads to the question of analyzing contributions among
many learners with vastly different hardware that is considered in works covering FL
incentive mechanisms, by [12, 24–27]. The incentive based FL implementations rely on
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Fig. E.1: Illustration of the DTM covered monitoring area, with five scattered learners.

estimating each learner’s contribution and rewarding them for doing the work. Hence
calculating appropriate rewards becomes a difficult challenge that also comes at the
price of computation and communications as shown by [28]. Such mechanisms are use-
ful when orchestrating an FL where learners would collect strongly non-IID data and
learn with vastly different processing capabilities.

1.2 Drone Traffic Monitors as FL Orchestrators
Unmanned aerial vehicles (UAVs) or drones could provide an essential aid to the vehic-
ular communication networks by carrying wireless base stations (BSs). In combination
with the 5G standardisation and the emerging 6G connectivity, drone-aided vehicular
networks (DAVNs) [29] are capable of providing ultra reliable and low latency commu-
nications (URLLC) [30, 31] when issuing prioritized and timely alarms. In accord, most
benefits of DAVNs come as consequence of the UAV’s capability to establish line of
sight (LOS) with very high probability [32]. The good LOS perspective also benefits vi-
sual surveillance, hence enabling UAVs to offer just-in-time warnings for critical objects
(COs) that can endanger the nominal work of autonomous vehicles. Though DAVNs
expect many roles from the drone, we draw inspiration from UAVs in the role of drone
traffic monitors (DTMs) that continuously improve and learn to perform timely and
reliable detections of COs. To avoid requiring a plethora of drone-perspective camera
footage of the traffic, we propose DTMs that take the role of a federated learning (FL)
orchestrator, and autonomous vehicles participate as learners.

This FL architecture with a drone orchestrator, illustrated in Fig. E.1, exploits
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the processing and sensing enabled vehicles contained in the monitoring area (MA) to
participate both as learners and supervisors. The vehicle-learners receive the drone
provided footage, and do the heavy computational work of ML training for the task of
computer vision. This is possible since the vehicle-learners have robust sensing capabil-
ities, and when they have the CO in view, can contribute to the learning process due
to their secondary perspective [33] on the object, and their deeper knowledge of traffic
classes. However, even when assuming perfect supervision by the learners, FL is not
an easy feat since some knowledge can be obfuscated among omnipresent information
and/or contained at computationally inferior straggler learners. In accord, we use a
combination of state of the art FL implementation with a novel resource aware solution
for balancing work times and learner contributions, which are described in the overview
that follows.

1.3 Main Contributions
In this paper, we provide a novel perspective on continuous DTM improvements through
an FL implementation onto vehicle-learners. Moreover, we aim to provide a robust and
adaptable resource allocation method for improved FL performance in the presence of
chaotic, quickly changing, and most importantly imbalanced and non-IID data. Since
both computational and data bias cannot be analytically extracted before sampling the
ML model received from each learner, we assume heuristic measures such as maximizing
the epochs computed, or equalizing the epochs computed across the learners. Moreover,
the core contribution of this work is a dynamic resource allocation method based on
each learner’s past contributions. To provide full compatibility with heterogeneous
learners and non-IID data, we employ these methods in combination with the FedProx
algorithm. Finally, we developed an experimental analysis in which the performance is
evaluated through its capability to learn an underrepresented class of the dataset, while
also balancing overall system accuracy.

The paper organisation goes as follows. Section 2 introduces the learning setup and
the communications resource allocation setup. Section 3 defines the optimization prob-
lem and lists several static and reactive heuristic measures for improving the learning
performance, and introduces the learner contribution calculations. This is followed by
Section 4 where the experimental setup and the results from the setup are presented.
The final, Section 5 summarizes the outcomes and discusses future directions.

2 System Model
The setup is depicted in Fig. E.2, where we show the orchestrator block that sends
and receives the models through wireless connections, while simultaneously broadcasts
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Table E.1: Relevant symbols of variables, constants and functions.

Symbol Definition
hMAX() Utility function that maximizes the number of computed epochs.
hAAS() Utility function that minimizes the average anchored staleness.
hACT() Utility function that maximizes based on the estimated contributions

from each learner.
F () Local machine learning optimization function
f() Global (network-wide) optimization function
E() Model evaluation function
ωg\{k},i Custom model aggregator that excludes the k learner’s model
i An integer indicating the FL cycle/round
k Learner index number
K Total number of leanrners in the MA
Ti Vector representation of the epochs computed across all learners for

round i
Gi Vector representation of the contributions computed, for all learners,

for round i
Si Vector representation of bandwidth allocated for each learner for round

i
Gk,i Estimated contribution for learner k, at round i
ωg,i The global ML model weights for round i
ωk,i The ML model weights produced at learner k for round i
τk,i Epochs computed at learner k for round i
B The size of the batch computed at each epoch
µ Proximal term intensity in the FedProx FL implementation
fk Processing capability of learner k in terms of epochs per millisecond
W Total bandwidth allocated for the system
D Total data transmitted in both directions to a single learner within a

single round
Ravg Channel data rate in symbols per hertz
Sk,i Bandwidth allocation coefficient for learner k and round i
α Computation phase duration coefficient (in milliseconds)
β Communication phase duration coefficient (in milliseconds)
Smin The lower bound of the bandwidth allocation coefficient
Smax The extreme bound of the bandwidth allocation coefficient
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Fig. E.2: System model illustration.

the unsupervised video surveillance footage at a constant data rate for all vehicles in-
side the MA. We assume that each vehicle acts as an ideal supervisor for the objects
which are represented both in the broadcasted video and their sensor feed. Given some
deadline of completion T , the learner needs to return its locally learnt model to the
drone-orchestrator. After receiving the model, the orchestrator aggregates the K mod-
els, after which it can also evaluate the contribution of each learner separately. Each
learner k has a contribution, that the contribution estimator estimates to be Gk,i, for
some FL cycle/round i. Finally, the orchestrator contains a resource allocator module
that based on the aforementioned information can readjust the wireless resources for
the next round, in a way that it improves the FL process.

2.1 Federated Learning
The FL process starts when the orchestrator sends its weights to all K learners, where
each learner k ∈ K = {1, 2, ..,K} is present in the MA. The goal of FL methods [4] is to
coordinate the optimization of a single global learning objective minω f(ω), where the
function f() is calculated across the whole network at each round i as:

f(ω) =
K∑
k

pkFk(ω) = E[Fk(ω)], (E.1)

where ω are the instantaneous value of the local model weights, Fk(ω) is the local
optimization function at each node, pk ≥ 0 and

∑
k pk = 1 is the averaging weight

when aggregating. In a single FL round i ∈ Z+, a server, i.e. the DTM-orchestrator,
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has a global model with weights ωg,i. On round i each k-th learner receives the model
and computes τk,i epochs of solving the local optimization function Fk(), with data
batches of size B. Each batch represents a sample of items that have been sensed and
collected from that learner’s surroundings. The distributed training process produces a
new set of weights ωk,i at each k that totals to K different ML models. Hence, cycle
i concludes when all ωk,i are aggregated to a signle set of weights ωg,i+1, that serve as
the collective model for the next iteration. The two most prominent approaches to solve
the FL problem are Fedavg [4] and Fedprox [20] and differentiate mainly in the local
optimization problem Fk() at each device.

Using stochastic gradient descent (SGD) as a local solver Fk(), federated averaging
(FedAvg) locks the amount of local epochs for each device to a fixed value. As such,
each learner is fixed on computing the same Fk() with the same learning rate of SGD for
the same amount of epochs. For the successful operation of this system, it is essential to
tune the optimization hyperparameters properly including the amount of epochs. The
tradeoff in FedAvg becomes one of computation and communication since computing
more local epochs reduces communication overhead at the expense of diversifying the
local objectives as each system converges to a local optima given their portion of the
non-IID data.

Due to the expected heterogeneity in the network of learners in the proposed FL
implementation, we use the FedProx algorithm. The benefit of FedProx is that it can
converge and provide good general models even under partial work and very dissimilar
amounts of τk,i. This is done by introducing a proximal term ‖ω − ωg,i‖ that alleviates
the negative impact of the heterogeneity as:

Fk(ω;ωg,i) = Lk(ω) + µ

2 ‖ω − ωg,i‖, (E.2)

where ω is the instantaneous value of the local model weights at the local optimizer,
Lk(ω) is a local cost function for the estimation losses, µ is a hyperparameter controlling
the impact of the proximal term. The role of the proximal term here is that it prevents
the local optimiser from straying far from the global model at round i. Moreover, we
can control the local optimization problem to vary from a FedAvg (µ = 0) to FedProx
(µ > 0). We note that even when using Fedprox, too much local work causes the local
optimizers to diverge from the global objective [20]. Finally, using (E.2) for minimiz-
ing the local sub-problem minω Fk(ω;ωg,i) the FL converges to a solution even in the
presence of heterogeneity and non-IID data distribution [20]. Therefore, we use the
FedProx algorithm to allow for full flexibility in data and processing heterogeneity, in
combination with the resource allocation module that follows.
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Fig. E.3: Illustration of the drone position and geometry, in the communications setting.

2.2 Allocation of Wireless Resources
Though the work of [17] covers a detailed cellular model for FL connectivity, drone
provided connectivity is generally uniform and can be designed to be predominantly
line of sight [34]. As we illustrate in Fig. E.3 the drone height h and the projected
coverage on the ground with radius r impact the elevation angle at the edge of the MA,
θedge. The steepness of the elevation can be derived from the evironmental parameters
while also accounting for the directivity of the antenna mounted on the drone, as in [35],
and the service reliability that needs to be achieved [36].

Since our goal of a DMT implementation is to improve the worst case performance of
autonomous traffic, we also model the communications system through θedge as a worst
case design parameter. θedge is decided upon deployment as it plays an important role
of controlling the likelihood of establishing line of sight with the ground vehicles at the
edge of the cell as in:

PDLoS = 1
1 + a exp(−b(θedge − a)) , (E.3)

where a and b are constants defined by the propagation topology of the environment, as
given by [37]. Through θedge in (E.3) a system designer controls not only the probability
of detecting a CO but also the average quality of the communications channel at the
edge of the MA as:

Λ = LLoS · PDLoS + LNLoS · (1− PDLoS), (E.4)

where LLoS and LNLoS are the pathloss coefficients when LOS is established or lost,
respectively. As such, we arrive to the average rate for the user located at the edge of
the cell by:

Ravg = log2(1 + Ptx
NΛ), (E.5)
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where Ptx is the transmission power, and N is the noise power. As FL model transmis-
sions usually take several seconds depending on the size of the model, we omit small
scale fading as an impactful factor in the analysis and assume that the drone provided
links are symmetrical in both directions and offer each learner k a rate of WK ·Ravg, where
W is the total bandwidth dedicated for the FL model passing. W may be represented as
discrete resource blocks or a band of spectrum that is left over after portioning part of it
for the purpose of video broadcasting. Like this, Ravg acts as a lower bound guarantee
for the amount of time spent learning at each ground device.

As the size of the processing batch is fixed to B, each device k is tasked with an
equal number of floating point operations (FLO) for each epoch, and computes τk,i
epochs. However, for each learner k we introduce a coefficient fk that represents the
learners’ computational power with regards to the model size, and is a unit of amount
of epochs computed per unit time. Having full information on fk is generally trivial
since it depends on the processing capabilities of the learner, which should be publicly
available in the device specifications.

Given an equal bandwidth allocation to all devices, the total number of epochs is a
linear function of fk. This results in the following equation for τk,i:

τk,i
fk

= T − KD

WRavg
, (E.6)

where, D is the total amount of data that needs to be sent in both directions within
the deadline of T . We convert the problem to a step-wise nomenclature that gives
the relationship between each learner, independent of the length of T but as a relative
inter-learner metric:

τk,i − τl,i = Tfk −
KDfk
WRavg

− Tfl + KDfl
WRavg

,

τk,i − τl,i = T (fk − fl)− (fk − fl)
KD

WRavg
,

τk,i − τl,i
fk − fl

= T − KD

WRavg
,

(E.7)

where ∀k, l ∈ K, l 6= k. We then perform the substitution:

α = τk,i − τl,i
fk − fl

, ∀k, l ∈ K, l 6= k,

T = α+ KD

WRavg
,

(E.8)

where α is the nominal time reserved for learning, and it is directly influenced by the
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amount of FLOPs required to compute one epoch. This simplifies to:
τk,i
fk

= α+ KD

WRavg
− KD

Sk,iWRavg
,

τk,i
fk

= α+ KD

WRavg
(Sk,i − 1

Sk,i
),

(E.9)

where Sk,i ≥ 0 and
∑K
k Sk,i = K is the bandwidth allocation for learner k in round i,

represented as the portion of the average spectrum W
K occupied (i.e. Sk,i = K is the full

spectrum, and Sk,i = 1 is the average spectrum). We continue with the substitution:
KD

WRavg
= β, (E.10)

where β is the portion of time spent transmitting within one round. As per β, it is
obvious that it is much more important to investigate the ratio of data load on the
channel instead of solely focusing on the achieved rate Ravg. Moreover, the time spent
learning at each device becomes more significant the more we load the resources, in both
number of learners and the size of the model. This results in the final representation of
epochs computed for learner k as a function of the bandwidth allocated to them:

τk,i = fkα+ fkβ(Sk,i − 1
Sk,i

), (E.11)

Given a no-drop policy (each learner must complete at least one epoch τ ≥ 1), the lower
bound on Sk,i becomes:

Smin = − βfk
1− αfk − βfk

, (E.12)

and the extreme upper bound of Sk,i is therefore:

Smax = K +
K−1∑
l

βfl
1− αfl − βfl

, ∀l ∈ K, l 6= k. (E.13)

The behaviour of the resource function for a single τk,i when adjusting β and Sk,i
within the bounds of (E.12) and (E.13), is:

Smin ≤ Sk,i ≤ Smax, (E.14)

The entire communications setup is reducible to the analysis of combinations of α and
β, as both parameters directly determine the impact that resource allocation has on the
system. Moreover, the parameter β modifies the impact of resource allocation for each
learner, where systems with high β values stand to benefit the most, while low β values
indicate near instantaneous model transfers which cannot be influenced by modifying
the bandwidth. On the other hand, α is a system design hyperparameter that indicates
the amount of epochs computed within a single round, by an average learner, and it is
fully customizable before or even during operation.
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3 Analysis
Our goal is to improve the learning of a particular class among the network of FL
devices, that may represent a CO, without harming the overall accuracy of the system.
Thus, each round i we exploit our control over the wireless resources and optimize the
bandwidth allocated to each device Sk,i. The vector representation of the bandwidth
allocation for each round becomes Si = (S1,i, S2,i...SK,i). In the same way, the number
of epochs computed in round i and the contribution estimations are reformulated into
vectors: Ti = (τ1,i, τ2,i...τK,i) and Gi = (G1,i, G2,i...GK,i) respectively, where Gk,i is
an estimate of the contribution of learner k based of its learning performance in the
past. Due to the rapidly changing environment around each learner, we cannot assume
having information about the size or distribution of the data stored at each learner.
Therefore, we can assume a function of utility from both aforementioned parameters
hX(τi,Gi), where X is a placeholder for the name of the approach. Given this function,
the optimization problem of maximizing the utility X can be defined as:

max
Si

hX(Ti,Gi),

K∑
k

Sk,i = K,

τk,i ∈ Z+,

(E.11), (E.12), (E.13), (E.14).

(E.15)

Extracting the direct impact of Gk,i and τi onto the future accuracy of the model,
and under non-IID data distribution, is non-trivial and hence requires that we form
several heuristic functions for hX() to be tested on an experimental setup. Therefore
we compare three different solutions for (E.15) by swapping the utility function hX()
with the ones named as X ∈ {MAX, AAS, ACT}. The first two versions of the opti-
mization problem (MAX and AAS) apply a static method that computes utility only
as a function of the epochs that will be computed for that round for each learner. The
third approach (ACT) is a novel reactive method, that extracts the utility of a learning
round as a product of the estimated contribution by each learner and the epochs that
will be computed by that learner. The details for each method follow below.

3.1 Static Resource Allocation Measures
The naive way of improving the convergence in a heterogeneous setting is maximizing
the total amount of work done by all learners as in:

hMAX(Ti, 0) =
K∑
k

τk,i. (E.16)
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This optimization criteria maximizes the epochs computed across the whole network
given the limited radio resources. Since (E.16) implies asyncronous amount of work
performed among the learners, it may not be considered as a potential maximization
metric when using classical FedAvg implementations. However, since we use FedProx
as a local optimizer, this is a sufficient naive solution that represents an exploitative
behavior from the orchestrator.

Furthermore, given the work on asynchronous FL and the issues of diverse com-
putational hardware in the network [38, 39] we identify maximum staleness [16] as an
important criterion towards the precision of the model. We define this as the maximal
difference between the fastest and slowest learner:

s = max(|τk,i − τl,i|) ∀k, l ∈ K, l 6= k. (E.17)

Nonetheless, minimizing staleness does not extract the full potential of our setup. There-
fore, as in [16] we convene s and the average of the anticipated epochs to a more balanced
heuristic metric, named Average Anchored Staleness (AAS) as an optimization metric:

hAAS(Ti, 0) = 1
K

K∑
k

τk,i − s. (E.18)

AAS gives a good general overview that is data-agnostic, without the need to assume the
impact of data at some particular learner and solely on spatial and computational per-
formance. Like this, AAS provides a resource allocation objective function that serves
an equally balanced amount of learning and staleness.

3.2 Contribution Estimation for Reactive Resource Allocation
In the case of DTMs, the considered vehicle supervisors/learners can find themselves
in the presence of vastly different objects, and the data they sense changes constantly
while they operate. Given the aforementioned, the contribution of each learner is hard to
estimate especially in the presence of noisy samples. Hence, we assume that separating
the important CO information ahead of time is impossible and only consider reactive
approaches such as incentive mechanisms. To use incentive mechanisms we must assume
that the validation dataset that is present at the orchestrator has equal representation
of all classes. Hence, based on such validation data we can pass the weights ω through
an evaluation function E(ω) which can be based on accuracy or loss evaluations of the
model (we choose accuracy). To calculate the contribution for each round i we define:

Gk,i =
E(ωg,i)− E(ωg\{k},i)∑K
k |E(ωg,i)− E(ωg\{k},i)|

, (E.19)
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where ωg\{k},i is a model aggregator that constructs a new model that is an aggregate
of all recieved models except the one of k. Hence the difference in accuracy between
the fully aggregated model and the ωg\{k},i [27] gives the added value (the uniqueness)
of the learning done by learner k. Like this, the contribution estimator is capable
of discovering the overall contribution from each learner for that round, without the
capability of sampling for contributions on each detection class separately, or discern
which object is underrepresented or is the CO. This is a central feature of our method,
since we aim to improve CO learning without tailoring the solution to discern which
class is the CO.

We note that the ωg\{k},i function needs to be called for each learner in order to
produce K different contribution estimations. In addition to having to compute an
additional parameter, there is one extra set of weights that needs to be aggregated
for the calculation of ωg\{k},i for all other learners, thus making the complexity of the
estimator scale as a square of the number of nodes in the system K. Even though the
computational complexity of this technique can escalate in big FL implementations, in
the architecture that we propose there should be several active learners inside the MA.
Thus, even aside the limited computational power on the drone, the estimator module
should not experience lengthy computational times.

Following the first round, each device k provides its model to the DTM-orchestrator.
After which, the aggregator provides the first aggregate model weights ωg,i. The resource
allocator module in the orchestrator receives the contributions for each of the partici-
pating learners and hence can decide to adjust the resources based on Gk,i. Since Gk,i is
an estimation of the contributions for the past round, the goal is to maximize the total
contribution of the upcoming round by introducing the following optimization function:

hACT(Ti,Gi) =
K∑
k

τk,ig(Gk,i), (E.20)

where g() is a utility function that scales the contributions to match the impact of the
number of computed epochs. Introducing a utility function is necessary to properly
scale each learner’s impact since −1 ≤ Gk,i ≤ 1 and τk,i ∈ Z+. Since in an average
scenario E[τk,i] = αE[fk], and E[fk] = 1 we scale our utility function as per the average
epochs computed for that round as g(Gk,i) = αGk,i . The bounds of the function become
1
α ≤ g(Gk,i) ≤ α, and the nominal non-contributive learners produce g(0) = 1. Thus the
heuristic exponential optimization function for the reactive solution can be calculated
as the contribution corrected maximum epochs computed as in:

hACT(Ti,Gi) =
K∑
k

τk,iα
Gk,i . (E.21)

In the case of constantly equal contributions from all learners, the heuristic maximization
criteria is reduced to the epoch maximization problem defined in (E.16). With hACT
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Table E.2: The non-IID distribution of data among learners, and their computational coefficients fk.

Learner Classes Stored (out of 0-9) fk

1 3, 4, 5, 6 0.15
2 0, 1, 2, 3, 4 0.7
3 4, 6, 7, 8, 9 1.0
4 0, 1, 2, 6, 7, 8, 9 1.3
5 0, 1, 2, 7, 8, 9 1.3
6 0, 1, 2, 7, 8, 9 1.0
7 3, 4, 6 0.7

defined as in (E.21) we maintain the problem within the bounds of mixed integer linear
programming since the utility is applied only to Gk,i that remains constant for the whole
round i.

4 Results

4.1 Experimental Setup
For a set of learners that are scattered along the MA, our goal is to as closely as possible
generate an experimental setup that simulates a realistic learner given the system model
in Section 2. Since each learner has a very short amount of time to do the learning for
the DTM, we approach the data as fleeting (stored very briefly) and concealed (cannot
be known beforehand). Due to the complexity and the issues of reliably simulating the
FL performance for full scale traffic footage, we test the performance of the proposed
methods through simple and easily accessible computer vision datasets. Each testing
scenario was built using either the MNIST dataset [40] of handwritten digits, or the
FMNIST [41] dataset consisting of 10 different grayscale icons of fashion accessories.

As we expect that each vehicle contains strongly non-IID data we create a custom
data distribution among K = 7 learners as shown in Table E.2. In addition, the process-
ing power for computing a certain amount of epochs per millisecond fk for each learner,
is distributed as: two standard vehicles (fk = 1), two premium vehicles (fk = 1.3), and
two budget vehicles (fk = 0.7); with the addition of one straggler that contains an older
technology (fk = 0.15). At each epoch the learner samples a single batch of B = 16
randomly selected values from the stored data (as per Table E.2). Like this, the training
data changes constantly, to mimic the changing environment of the vehicular scenario.
This makes this FL testing scenario unique in that the number of epochs computed also
reflects the amount of data sampled from the environment.

In the described setting, the class-number 5 (6th class counting from zero) assumes
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the role of a CO. In addition to the CO, class-number 3 is another non-CO class that is
not too common and appears at only 3 learners. This is an over-exaggerated situation of
having the CO data hidden at one node that is also a straggler. We expect this to be a
realistic reflection of data in drone orchestrated FLs as nodes carry only a small amount
of supervisory data for each class due to the fact that they stumble upon important
objects randomly.

For detection, we implement a small convolutional neural network (CNN), common
for the global and local models implemented in python tensorflow [42]. In more detail,
the CNN has only one 3x3 layer of 64 channels using the rectifier linear unit (ReLU),
that goes to a 2x2 polling layer. A dense, fully connected neural network (NN) layer of
64 ReLU activated neurons receives the polled outputs of the convolutional layer, which
is then fully connected to a NN layer of 10 soft-max activated neurons, one for each of
the 10 categories of the NIST dataset. The local optimizer at each learner is given by
the FedProx calculation in Eq. (E.2), where the cost function Lk() is a categorical cross-
entropy loss function, and the learning rate performed well when fixed to γ = 0.1. The
communication phase coefficient was considered in milliseconds and chosen as β = 100
considering our CNN model with a size of 2.5Mb that needs to be transmitted to all 7
learners, over a single W = 80MHz 802.11ax channel. Finally, in the reference frame of
milliseconds, the cycle duration coefficient was set to α = 100 in favor of allowing for
higher flexibility when scaling the bandwidth allocation.

4.2 MNIST Testing
We proceed with the testing of all three approaches for five different values of the prox-
imal importance hyperparameter µ ∈ {0, 0.01, 0.1, 0.5}, as guided by the recommended
values in [20]. µ values larger than 0.5 failed to produce productive results and only
harmed the convergence outlook. The testing lasts for 200 rounds on the aforemen-
tioned CNN model. Aside the three shown FL implementations, we also implement a
classical ML with only one learner that contains all the data. We do this to extract the
performance ceiling of the NN approach, which is 98% for the validation accuracy and
0.0602 validation loss paired with training accuracy of 98.85% and training loss 0.0423.

In Fig. E.4 we can notice a limited impact of changing the µ parameter of FedProx,
most likely due to the small amount of learners and not as significant straggler impact.
This is expected given that [20] claim strong superiority over FedAvg in the cases of very
large portions of stragglers. Interestingly, µ does not have a strong positive impact on the
learning performance even in the case of MAX, and therefore, a system designer would
most likely introduce a weak proximal term of µ = 0.01. Additionally, using the ACT
approach provides superior convergence, and in combination with µ = 0.01 achieves
the best overall accuracy. In addition to this, the ACT and µ = 0.01 combination also
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Fig. E.4: General and CO-specific accuracy and loss results obtained when testing all three methods
in combination with FedProx using the MNIST dataset.

keeps up with the performance of AAS with regards to the CO class after the first
several rounds of convergence.

To better investigate the behavior of the ACT approach we illustrate the evolution
of the estimated contributions for learner k = 1 in Fig. E.5, where G1,i is based on the
performance of the learner estimated from the previous learning round as in Eq. (E.19).
The overall conclusion here is that we achieve CO learning without tailoring the solution
to discern which class is the CO. This is possible as the calculation of Gk,i is focused
around the uniqueness of the dataset at each learner. Here we can notice that increasing
the strength of the proximal parameter through setting higher µ values equalizes the
contributions between all three methods, particularly in the first 40 rounds. Moreover,
when µ = 0.5 the contributions are stabilized and vary very little once the initial phase
of 40 rounds.

Most notably, the accuracy of AAS suffers significantly when µ = 0.5 which results in
a performance that is equally matched to the MAX approach when detecting the CO. It
is thus evident that a strong FedProx implementation harms total system accuracy, and
above all, diminishes the impact of the using resource allocation. Finally, we conclude
that the task of learning MNIST is too simplistic for our assumed scenario of traffic
monitoring, and thus we continue with testing the FMNIST dataset in the following
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Fig. E.5: Contribution evolution for learner k = 1 in the case of using the MNIST dataset.

subsection.

4.3 FMNIST Testing
Since modeling common tasks of computer vision on MNIST is a very easy task we
repeat the test on the FMNIST dataset. This dataset consists of 10 classes of fashion
accessories in equal distribution as the MNIST dataset (a training set of 60 000 examples
and a test set of 10 000 examples) and as in the case of MNIST consists of 28x28 grayscale
images. The dataset classes are: (0) T-shirt/top, (1) Trouser, (2) Pullover, (3) Dress, (4)
Coat, (5) Sandal, (6) Shirt, (7) Sneaker, (8) Bag, and (9) Ankle boot; where each item
is taken from a fashion article posted on Zalando. Compared to the number MNIST,
in FMNIST the intensity of each voxel plays a much bigger role and is scattered across
larger parts of the image. We consider the FMNIST dataset as a computer vision task
that sufficiently replicates the problem of detecting 10 different types of vehicles, in a
much more simplistic context that is furthermore easily replicable.

In Fig. E.6, we show the learning performance in the same setting and
µ ∈ {0, 0.01, 0.1, 0.5}, across 200 rounds of training. It is most obvious that the overall
accuracy has dropped quite a lot from the 98% in the MNIST case to 88% in the best
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Fig. E.6: General and CO-specific accuracy and loss results obtained when testing all three methods
in combination with FedProx using the FMNIST dataset.

case scenario of ACT with µ = 0.01 for the FMNIST. Most notably the largest difference
is that the increased difficulty of the learning problem introduces a lot more noise in
the learning process, particularly for the CO class. Due to this, when using no FedProx
(µ = 0) AAS does a good job at accelerating the learning process in the first 20 rounds
until it is overtaken by ACT. Even though the combination of ACT with µ = 0.01 shows
the best overall accuracy on the validation data, the accuracy of detecting the CO class
with ACT never truly reaches the performance of AAS.

Finally, we conclude that even though µ = 0.1 and µ = 0.5 were eligible in the
MNIST run, the overall increased complexity of FMNIST harms the accuracy outlook
in both, but with the most severe impact on AAS. This experimental run therefore in-
spired us to investigate the issue of underfitting, and we proceed with testing FMNIST
performance with a deeper model.

4.4 Deeper FMNIST Testing
In this testing scenario we expand the small convolutional neural network by adding
another 3x3 layer of 64 channels using ReLU activators as a first layer. In Fig. E.7
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Fig. E.7: General and CO-specific accuracy and loss results obtained when testing, with an extra
CNN layer, all three methods in combination with FedProx using the FMNIST dataset.

we show the outcomes of the testing, where the overall accuracy of the system has
been improved to 90%. However, the larger model acted as an equalizer across all
three approaches and in the case of µ = 0 generally gave equal performance both in
convergence time and overall accuracy. It is important to also look at the validation loss
following the round i = 150 as it starts to diverge for both ACT and MAX approaches.
This did not directly map into the accuracy of the detection, but nonetheless is a first
sign of possible overfitting and eventual divergence.

With the deep model, this effect is diminished for the case of ACT with µ = 0.01,
and manages to reach the best convergence time along with overall accuracy from all
tested implementations. This accuracy is also paired with improved detection of the
CO that exactly matches the AAS approach. As such the ACT with µ = 0.01 is both
the best overall learning solution, but also the best CO detector.

It is also interesting to notice that the MAX approach does well with overall accuracy,
particularly when compared to the inferior performance in the previous testing sets.
Nonetheless, MAX is still inferior to both other approaches when it comes to detecting
the CO class. Finally, we focus on the results on µ = 0.5. When the proximal term
has such a strong impact on the learning, all three approaches show inferior overall
performance by 4-5 percentage points with regards to the best performing µ = 0.01.
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Fig. E.8: Contribution evolution for learner k = 1 in the case of using the FMNIST dataset with an
extra CNN layer.

However, it is interesting to see that the impact is by far most severe on the AAS
approach, even reducing the CO detection performance. Additionally, MAX gives the
best result when it comes to learning the CO behavior for µ = 0.5. Opposed to the
behavior back in the MNIST testing, here AAS suffers from the increased complexity
of the task, and in combination with a very strong proximal term reduces the overall
learning of detection. This makes it is easy to conclude that a strong proximal term
reduces the effect of resource allocation efforts.

We seek to discover the culprit for the inferiority of AAS in CO discovery when
µ = 0.5 by plotting the contributions of learner k = 1 in Fig. E.8. Looking at the con-
tribution evolution in case µ = 0.5 we extrapolate that AAS aims to keep the learner
relevant while the reduced amount of learning across the whole network harms the po-
tential contribution of all other nodes. This leads us to the final conclusion of this
experiment which is that the ACT based approach is extremely versatile in providing
good CO detection and accuracy even in the cases of µ = 0, a properly assigned µ, and
overly restricted FedProx implementation.
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4.5 Testing Fleeting FMNIST
The final test with the experimental setup is constructed such that we introduce stress
in the learning process by introducing temporary losses in the supervision process. This
is done by introducing a likelihood that a learner k loses access to a detection class. This
would be representative of a learner losing LOS of the object was able to supervise, and
is therefore modelled as a two state markov model (such as the Gilbert Elliot [43]) that
has a good and a bad state. Hence each supervisor has p = 0.9 chance to maintain
supervision for that class (stay in the good state), and 1 − p = 0.1 probability to lose
supervision capability (and move to the bad state). If the vehicle loses supervision
capabilities for that class, it has r = 0.5 probability to maintain that state (remain in
the bad state) or 1− r = 0.5 probability to regain supervision of that class. The values
for the state transitions in the Gilbert-Elliot model were chosen with the experimental
setup in mind so that not too much data is lost with regards to the previous testing
setups. These testing parameters were provisioned arbitrarily, because higher values
would make the learning process very lengthy imposing unrealistic testing times for our
experiment, but still provide a lot of stress to the learning system.

Hence, to compensate for the smaller dataset, we let the simulations run for 250
rounds, and focus only on µ ∈ {0.01, 0.1}. The fleeting data is provided from the
same seed and the Gilbert Elliot model starts from the good state for every possible
detection combination. In Fig. E.9 we show the performance of all approaches on the
aforementioned setup. Comparing this to the previous testing setup, we notice that the
overall accuracy dropped by 1 percentage point for µ = 0.01 and 2 percentage points
when µ = 0.1 due to the increased stress in the learning process. It is also apparent
that both ACT and MAX show signs of overfitting – the diverging lines in the validation
loss – which is improved when using µ = 0.1, at the cost of reducing the overall system
accuracy by an additional 1 percentage point.

Focusing on µ = 0.01, all methods achieve nearly the same overall accuracy, since
the learning of the computer vision task is bottlenecked by the presence of the data.
However, AAS is superior in CO detection and it shows slightly inferior convergence time
for overall accuracy (i.e. around the 50 round mark). In addition to this, AAS is the most
data sensitive approach and experiences the largest overall accuracy dips in situations
where many detection classes are in the bad state (such as around the 55th round and
the 127th round). Finally, to better observe the noisy training data, we plot a 10-point
moving average in Fig. E.10. Here we notice the in the common training scenario AAS
and ACT perform rather equally when learning hidden information. However, in the
presence of fleeting data, the ACT performance becomes very noisy and becomse slightly
inferior than AAS with regards to CO learning performance. Nonetheless, as already
mentioned, this CO learning performance of the AAS approach comes at a slight cost
of general detection performance, in both fleeting and normal setting.
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Fig. E.9: General and CO-specific accuracy and loss results obtained when testing, with an extra
CNN layer, all three methods in combination with FedProx using the FMNIST in the case of fleeting
data.

4.6 Key Takeaways
We condense several takeaways that were derived from all four experimental runs. The
initial and most important conclusion is that the concepts of resource allocation and
FedProx are at odds in the case of FL implementations. In more detail, the goal of
FedProx is to reduce the impact of each learner individually while resource allocation
methods strive to improve the overall performance by exploiting or compensating the
heterogeneity of the system. Hence the impact of resource allocation methods is di-
minished when strengthening the role of the proximal term. Nonetheless, in the many
tests a safe balance between both µ and resource allocation ensure good learning behav-
ior. As such, we recommend that all future works consider perturbed gradient descent
implementations, such as FedProx, when dealing with non-IID data in heterogeneous
FL.

Additionally, in the initial testing of our setup we noticed that testing on MNIST is
not sufficient to provide reasonable results for the implementations, due to how trivial
the task of recognising digits is. Moreover, FL implementations, such as the proposed
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Fig. E.10: 10-point moving average of CO training loss for µ = 0.01 of the fleeting data versus normal
data sampling in the deeper FMNIST testcase.

drone implementation, are based in the distributed learning of complex tasks and require
deeper NN models. In such cases, it was evident that increasing the total amount of
computed epochs benefits the convergence time of the system with potentially harmful
effects in CO detection accuracy. Moreover, deeper model implementations did not
behave well under strong proximal terms.

As a consequence to this, learning hidden data can be addressed by equalizing the
contributions by using AAS or by introducing strong proximal terms. However, the
strong proximal terms have potential to slow down the convergence time for all nodes.
Hence, the safest implementation to achieving the best combination of convergence time,
overall accuracy and CO learning rate is using the ACT approach with a weak proximal
term.

Finally, in a case where the data is fleeting, using a µ > 0 was crucial to reach
stable learning performance. In this setting, the low availability of data acted as a
lower bound for all learning implementations, but most importantly harms the conver-
gence time performance of AAS. This is understandable since AAS was the approach
that cumulatively computed the least amount of epochs at each round. On the other
hand, the ACT approach maintained superior performance to both static approaches
by maintaining good CO detection performance and great convergence times.

Finally, we extrapolate that defining a proper µ is cardinal. However, the hyper-
parameter needs to be defined ahead of the deployment of the system. As such, since
we would not have access to the training data, the feasibility of implementing AAS is
uncertain especially for situations where the presence of data changes quickly. This
gives another strong motivation for using reactive measures based on contributions and
incentive calculations, such as ACT.
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5 Conclusion
In this paper we investigated the learning process in a novel Federated Learning (FL)
architecture, where a DTM acts as an orchestrator and traffic participants act as su-
pervisors on its model. Such an implementation expects impairments on the learning
process due to unbalanced and non-IID data scattered across heterogeneous learners
that have variable computational equipment. We therefore test the ability of two static
methods (AAS and MAX), and one incentive based reactive (ACT) resource allocation
method to improve the speed of learning CO classes and maintaining good overall model
accuracy. The validity of the methods was tested with an experimental FL implemen-
tation that uses the novel FedProx algorithm to learn from the MNIST and FMNIST
datasets. The testing was conduced across combinations of different FedProx strength,
CNN model depth, and fleeting data. From the testing we conclude that both reactive
(ACT) resource allocation and FedProx are essential to securing model accuracy. In
more detail, due to the inability to anticipate the distribution of the data across the
learners, the use of ACT ensures proper operation of the FL implementation. In accord,
the combination of properly set FedProx with an ACT implementation provided faster
convergence times, better accuracy, but most importantly it matched the AAS method
in learning to recognize the CO. Such behavior was consistent across most runs given
the varying task complexity, model size, and data presence. The goal of future works
would be to look into more advanced proactive approaches, especially for the presence
of imperfect data supervision.

Conflict of Interest Statement
The authors declare that the research was conducted in the absence of any commercial
or financial relationships that could be construed as a potential conflict of interest.

Author Contributions
ID: investigation, writing; JJN and PP: writing, review, editing, resources, funding
acquisition, supervision, and project administration.

Funding
The work was supported by the European Union’s research and innovation programme
under the Marie Sklodowska-Curie grant agreement No. 812991 ”PAINLESS” within
the Horizon 2020 Program.



References 131

References
[1] SAE, “Taxonomy and definitions for terms related to driving automation systems

for on-road motor vehicles,” SAE International,(J3016), 2016.

[2] T. A. S. Nielsen and S. Haustein, “On sceptics and enthusiasts: What are the
expectations towards self-driving cars?” Transport policy, vol. 66, pp. 49–55, Aug.
2018.

[3] I. Yaqoob, L. U. Khan, S. A. Kazmi, M. Imran, N. Guizani, and C. S. Hong,
“Autonomous driving cars in smart cities: Recent advances, requirements, and
challenges,” IEEE Network, vol. 34, no. 1, pp. 174–181, Aug. 2019.
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Abstract
In this paper, we investigate the problem of scheduling transmissions for spatially scat-
tered nodes that contribute to a collaborative federated learning (FL) algorithm via wire-
less links provided by a drone. In the considered system, the drone acts as an or-
chestrator, coordinating the transmissions and the learning schedule within a predefined
deadline. The actual schedule is reflected in a planned path: as the drone traverses it,
it controls the distance and thereby the data rate to each node. Hence, the model is
structured such that the drone orchestrator uses the path (trajectory) as its only tool to
achieve fairness in terms of learning staleness, which reflects the learning time discrep-
ancy among the nodes. Using the number of learning epochs performed at each learner
as a performance indicator, we combine the average number of epochs computed and
staleness into a balanced optimization criterion that is agnostic to the underlying FL
implementation. We consider two methods for solving the complex trajectory planning
optimization problem for static nodes: (1) successive convex programming (SCP) and
(2) deep reinforcement learning (RL). Considering the proposed criterion, both methods
are compared in three specific scenarios with few nodes. The results show that drone-
orchestrated FL outperforms an immobile deployment by providing improvements in the
range of 57% to 87.7%. Additionally, RL-guided trajectories are generally superior to
SCP provided ones for complex node arrangements.

1 Introduction
Initially meant for military uses, then followed by a boom in commercial entertainment
usage, the flying drones or unmanned aerial vehicles (UAVs) have a growing importance
in the world of communications. The use of drones for wireless communication purposes
has also received a surge of attention [1, 2] due to their excellent coverage to outdoor
users. In particular, due to their flexibility, low altitude platform (LAP) drones are use-
ful to act as on-demand drone small cells (DSCs) for wireless communication support.
DSCs have the potential to continuously relocate while providing service to spatially
scattered nodes that are unable to establish a high bandwidth ground-to-ground com-
munication. Adhering to the surge of interest in enabling connected intelligence [3, 4],
one can envision the use of such aerial platforms as an effective means to implement
collaborative federated learning (FL), where few geographically scattered nodes collabo-
rate to improve a common machine learning (ML) model. Such an FL use case requires
periodic and high bandwidth communications to take place according to a given sched-
ule. The planning of this schedule is directly dependent on the DSC’s position, and
it imposes various challenges. Moreover, assuming that all learners in an FL contain
non-IID data that is useful to the overall model causes asynchrony between the learning
input (epochs computed) of each node. Therefore, we consider the drone in the role of
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an orchestrator, whose trajectory is the available degree of freedom that can be adjusted
to minimize the maximum staleness (difference between most ML epochs and the least
ML epochs computed at a learner in the FL).

1.1 State of the Art
The effects of dynamic DSCs that move in favor of users’ locations has been investigated
in [5–7], where the focus is on the superior spectral efficiency and latency achieved by
DSCs in various scenarios. In our previous work [8], we demonstrated the impact of
accounting for the dynamic movements of standalone DSC, equipped with a tilting di-
rectional antenna. Moreover, the work in [9] focused on the energy efficiency for DSC
deployment, while the authors in [10] and [11] studied the problem of placement opti-
mization of a single cell and interference-limited multi DSC deployments, respectively.

However, the consideration of dynamic drones calls for efficient trajectory planning.
The work in [12] focused on finding the drone trajectory that achieves minimal UAV
energy expenditure while serving multiple nodes with a rotary-wing UAV. In [13], the
authors investigated energy efficiency by scheduling the sleep timers of ground wireless
nodes as well as the UAV’s trajectory. Purpose-first three-dimensional trajectory design
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can be achieved as done in [14], whose goal was to maximize the minimum average data
collection rate from all nodes for a stochastic channel model. Finally, considering the
complexity of the issue, there is a strong incentive of solving trajectory optimization
problems with the use of reinforcement learning (RL), as done in [15–17].

Drone cloudlet implementations receive a growing attention for edge computation
purposes and offering portable processing services. In this setting, the works in [18]
and [19] investigated the design of a drone trajectory, along with the problem of com-
munications and computational resource allocation in favor of lowering the energy con-
sumption of an Internet of Things (IoT) network. Combining this with the recent works
on efficient offloading of the learning for RL, [20], sparked a new demand for drone-
aided intensive edge computations. In a common centralized ML implementation, the
drone would act as a sink for all the collected data which is then processed, as in the
cloudlet design [18]. Additionally, FL implementations in drones have been a topic
of significant interest in the literature. These prior works mostly consider the drones
as learners [21–24]. However, even with current advances in energy efficient FL [25]
and low power computation systems 1, we consider the concept of drone-mounted ML-
computation hardware as heavy and energy inefficient, thus reducing the flight time of
the UAV.

1.2 Drone Orchestrator for Reducing Staleness
The progress of robot implementations for laborious tasks in remote locations motivates
investigating a setting of connected intelligence. In example, logging robots [26] that
proceed with their main task of woodcutting can enhance their detection performance
of critical flora and fauna through a collaborative learning process. In Fig. F.1, we
show two distant ground robot-nodes L and R that are not energy restricted and are
equipped with powerful ML computation equipment, and due to their spatial arrange-
ment, require the communications support of a mobile drone. In this setting, both the
learning and the sensing are distributed to the robot nodes that perform iterative im-
provements on a common ML model [27] with non-IID data [28] collected from their
own sensors. As such, the drone assumes the role of an FL orchestrator that receives
the model updates and aggregates them. This is a computational task that does not
require powerful processors [27]. Such a setup sees potential practical implementations
such as orchestrating automated agriculture, forestry, personalized healthcare [26], and
border control [29] operations. Finally, this architecture can apply to a plethora of ML
implementations, such as multi-perspective computer vision, multi-agent utility opti-
mization, or semi-supervised parameter estimation. If needed, these implementations
can also exploit the ability of FL to conceal sensitive information collected by the nodes.

In Fig. F.1 and Fig. F.2 we illustrate how each robot-node goes trough three
phases: downloading (DL) model (red), learning, and uploading (UL) model improve-

1https://www.dji.com/dk/manifold-2
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ments (blue). Transmission times to (DL) and from (UL) each node occupy useful time
periods that would be preferably allocated for the learning phase at each robot. In addi-
tion, the learning at each node is impacted by its processing capability; higher processing
capability at a node, with regards to other learners in the network, makes the data col-
lected by its sensors more dominant when constructing the common model. Hence,
the objective is to control the channel to each node through the drone-orchestrator’s
trajectory with the goal to aid the slow learning nodes (low processing capability) by
modifying the DL and UL transmission times in order to minimize the work/learning
discrepancies between nodes, called staleness.

Staleness is a cardinal metric for our setup since all nodes are assumed to pos-
sess useful data and, therefore, stragglers cannot be dropped. This creates asynchrony
between the amount of learning each robot does. We model this asynchrony by the
largest difference of epochs computed among the learners, which has been shown to be
key for the performance of the next generation of asynchronous FL [30–32] The maxi-
mum staleness comes as a consequence of the asynchrony of such an FL implementation
which is an issue that we want to tackle by implementing path planning in the dura-
tion of a single FL round. Solving the issue of staleness by only controlling the drone’s
trajectory requires new approaches as the transmissions occur with variable duration
and only at the head and the tail of a pre-planned trajectory. This is in contrast to
most works that are concerned with trajectory optimization problems whose goal is to
maximize/minimize metrics that are often a direct representation of the aggregate rate
instead of the fairness.

1.3 Main Contributions and Organization
The main contribution of this paper is to develop, to the best of our knowledge, the
first framework that designs a drone trajectory for serving FL networks with the pur-
pose of customizing per node metrics across longer time periods, thus addressing the
problem of staleness for deployments of scattered nodes. Addressing staleness gives
a unique optimization criterion for the trajectory problem since it tackles shortening
the transmission periods while equalizing work across many learners. Such a challenge
makes our problem significantly different from prior works on trajectory optimization
because of the combination of non-linear resource (channel quality across a trajectory)
for solving a combinatorial optimization problem. It is apparent that minimizing stal-
eness is not only limited for FL uses, but it also applies to drone trajectory design for
lowering working-time discrepancies for IoT fields, data freshness for drones data-sink,
and various edge computation scenarios where imbalanced work may harm the outlook
of the implementation and the efficiency of the underlying service.

Section 2 describes the considered system, introduces the wireless communications
traffic model of the FL implementation, and proposes a novel metric that contributes
towards a balance between the total amount of epochs computed and staleness. We
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further compare the performance of two trajectory optimization approaches, successive
convex programming and reinforcement learning, both detailed in Sections 3, and 4
respectively. The SCP requires that we approximate several metrics in order to get to
a solvable form in a computationally efficient manner. The RL approach [33] makes no
such demands and has the potential for future use in a stochastic and unpredictable
environment. Moreover, a key novelty here is the fact that we created a more distance
efficient hexagonal trajectory map and introduced a secondary RL experience buffer
with only good memories that balances convergence and exploration. In Section 5 we
compare and analyze both approaches. Finally, conclusions are drawn in Section 6.

2 System Model
We consider a geographical coverage area (CA) defined by a circular range with radius
Dmax, containing a set of K spatially distributed static nodes with each scattered node
labeled by k ∈ K = {1, 2, ..,K}. A single drone-orchestrator travels across this CA
and has to complete its route within a predefined deadline T referred to as global cycle
clock. The global cycle clock is defined by the FL implementation and it is crucial to the
correct operation of an underlying task. Note that in both FL algorithms FedAvg [27]
and FedProx [28] it is critical that not too much local work (very long T ) takes place
as it impairs the aggregate learning. On the other hand, too little local work (short
T ) means the transmission overhead will become dominant [27]. We further define N
discrete timeslot intervals i ∈ N = {1, 2, .., N} each with a duration of ∆ seconds as
T = N∆. The size of ∆ is determined based on the drone speed and CA radius as
discussed in Section 4 and Section 5. The drone trajectory Pd = {pd

i } ∈ RN×2, where
each pd

i represents a way-point for each timeslot i as the i-th row of Pd is decribed by the
horizontal coordinates pd

i = (xdi , ydi ), while its altitude is always H. The drone can fly
horizontally, limited by a maximum speed of vmax, and it is equipped with a directional
antenna that tilts to ensure coverage over the CA as in [34], so that basic control signaling
is always supported. This does not imply satisfactory FL model transfer rate for distant
users, making it necessary to move the drone closer to ensure faster model exchange.
The K nodes are found on the ground (zero height) at positions pk = (xk, yk) ∀k ∈ K,
resulting in a drone-to-node k horizontal distance of:

di,k(pd
i ) =

√
(xdi − xk)2 + (ydi − yk)2, (F.1)

where k ∈ K. As such, the value of di,k is subject to the anticipated movement of the
drone at time i, which further impacts the data rate Ri,k(pd

i ) for each node. We do
not adjust drone’s height during the trajectory, as it is incompatible with the use of a
directional antenna in a sense that it would affect the size of the CA (e.g., see [1, 2],
and [8]). Moreover, adjusting the height can raise potential liability concerns with
respect to collisions, as well as drastically increase the optimization complexity. We
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Fig. F.3: An example of the FL process with two learners; k = 1 blue-dashed line and k = 2 red-solid
line. Here N1,L = N2,L = 3, and if f1 = f2, the system has zero staleness since both nodes have an
equal amount of epochs.

also consider localization precision defined by a radius of r meters around the allocated
drone position pd

i .

2.1 Federated Learning Traffic Model
At the start of the FL cycle, each node starts with the DL phase that lasts Nk,DL(Pd)
timeslots, implicitly given as:

Nk,DL(Pd)∑
i=0

Ri,k(pd
i ) ·∆ = B ∀k ∈ K, (F.2)

where Ri,k(pd
i ) is the instantaneous data rate for timeslot i of node k. Each node

concludes the FL cycle with the UL phase of duration Nk,UL(Pd) implicitly given by:
N∑

i=N−Nk,UL(Pd)

Ri,k(pd
i ) ·∆ = B ∀k ∈ K. (F.3)

The leftover time in between both transmission phases is where the learning occurs for
each learner. Since all phases need to be completed within N timeslots, the discrete
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learning period Nk,L(Pd) during the drone’s trajectory lasts:

Nk,L(Pd) = N −Nk,DL(Pd)−Nk,UL(Pd), ∀k ∈ K. (F.4)

Fig. F.3 illustrates the phases for K = 2 where the ML process is based on a model
of size B Mb which, for simplicity, is assumed to be identical for both UL and DL. The
illustration portrays a two-dimensional system that has a width of B Mbs and height of
the number of discrete timeslots N . Each one of the dashed-blue (k = 1) and solid-red
(k = 2) lines represent the FL stage. Meanwhile, the slope of the lines capture Ri,k(pd

i )
that changes across all timeslots because the drone moves horizontally and impacts the
wireless channel.

However, ML is an iterative process where each learning pass of the sensed data
is called an epoch Tk. Back in Fig. F.3, the allocated processing time for each node
is three slots, and even though we mitigate the asynchrony introduced by the spatial
arrangement, the computed epochs Tk depend on the processing capabilities of node k.
To account for such learners, referred to as stragglers in the FL community, we scale the
computational capability with a scalar value fk. The value fk represents the amount
of epochs processed per second and is a collective measure of the processor cores and
speed, ML accelerator (such as repurposed rasterisation cores) and/or the environment
sampling rate. The number of epochs spent by device k is therefore a function of the
flown trajectory Pd and is calculated as:

Tk(Pd) = Nk,L(Pd) ·∆ · fk. (F.5)

In classical ML, the more epochs computed and the more data is provided, the higher
the expected model accuracy. FL is a cyclic process whereby at the end of the cycle
there are K models with different weights wk that are received by the drone orchestrator
and are aggregated to the common model [27] [28]. The orchestrator then initiates a
new learning cycle and returns the aggregated model weights wd to all participating
learners/nodes.

2.2 Staleness in a No-Drop Federated Learning
Since in an FL the data is non-IID distributed among learners, we model the perfor-
mance of the FL as a no-drop FL where learning occurs in an asynchronous fashion
and all participants are trustworthy. Like this, discrepancies in Tk between the differ-
ent learners i.e. |Tk(Pd) − Tl(Pd)|; ∀k 6= l; k, l ∈ K, are referred to as staleness [31].
This creates an asynchronous FL where staleness undermines the total learning done∑K
k=1 Tk and therefore slows down FL convergence and lowers overall system accu-

racy in the training phase [30–32]. Moreover, both [28] that tackles learning without
dropping straggles, and the asynchronous optimization [31] work, show that even when
the local optimizer is designed for some asynchronous amount of work the maximum
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staleness impacts the performance of the FL. Hence, we aim to improve learning perfor-
mance when aggregating the collective model by minimizing the largest epoch number
difference between any two learners:

s(Pd) = max(|Tk(Pd)− Tl(Pd)|); ∀k 6= l; k, l ∈ K, (F.6)

where Tk is relaxed to Tk ∈ R+, for the purpose of generalizing the analysis. To avoid
fully neglecting good learners, we introduce the mean of the total number of epochs
performed as a stabilizing factor. We can now define the primary optimization criterion
for our drone trajectory as an average-anchored staleness (AAS):

max
Pd

1
K

K∑
k=1

Tk(Pd)− s(Pd), (F.7)

where the system constraints of speed, initial location, and deadline are described in Sec-
tion 3 for the SCP approach and Section 4 for the RL approac. As mentioned, different
local FL optimizers can tolerate some asynchronous amount of work. Such tolerance stol
can be accounted for in (F.7) by converting the second term s(Pd) to max(s(Pd), stol).
Although the implementation in [32] would moderately tolerate maximum staleness of
4, we proceed the work by tackling the most challenging scenario where the trajectory
would need to be optimized if no tolerance was allowed stol = 0.

A more simplified look at (F.7) is that if node positioning is stochastic as in a point
process, the goal of our optimization problem would map to reducing the maximum
deviation in learning performed. This gives a good general overview that is data-agnostic
[35], without the need to assume the impact of data at some particular learner and
solely on spatial and computational performance. Therefore, AAS provides trajectories
that serve an equally balanced amount of learning and staleness, which can be further
enhanced with additional resource allocation techniques [36] combined with FL incentive
calculations [37]. Finally, with (F.7) we bring asynchronous FL as close as reasonable
by the disposable resources to a classical synchronous FL (where all learners compute
the same amount of epochs in a cycle), without dropping any stragglers.

2.3 Propagation Environment
A node can belong to one of two propagation groups, nodes that have direct line-of-sight
(LoS) or no-LoS (NLoS). As such, the path loss experienced for node k at time i is `i,k
and becomes a sum of the free space path loss (FSPL) and the additional large-scale
shadowing coefficient for each one of the propagation groups. We note that since we
are concerned with lengthy transmission timescales of several seconds we use the mean
fading coefficients for each propagation group, namely ηLoS and ηNLoS. This provides
a well-generalized approach opposed to working with random variables for the fading
calculations of the normally distributed excessive path loss, that is introduced due to
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Fig. F.4: Reference LAP placement (solid blue) and a drone orchestrator in trajectory (dashed red) [8].

the large features of the topology [38]. Taking into account a directional antenna with
directivity defined by Gt, the path loss experienced for each propagation group becomes:

`i,k,LoS(pd
i ) = −10 log(Gt) + 20 log(

√
d2
i,k(pd

i ) +H2) + C + ηLoS, (F.8)

and,
`i,k,NLoS(pd

i ) = −10 log(Gt) + 20 log(
√
d2
i,k(pd

i ) +H2) + C + ηNLoS, (F.9)

where log is a shortened version of the common logarithm log10 and the term C is a
substitute for the carrier frequency fc constant in FSPL C = 20 log ( fc4πc ). Hence, a
node’s probability to belong to either group is directly dependent on the probability
for a LoS to happen, PLoS(pd

i ). To represent the probability we use the s-curve model
defined by [39]:

PLoS(pd
i ) = 1

1 + a exp(−b(θuser(pd
i )− a))

, (F.10)

where a and b are constants dependent on the topological setting, and the elevation
angle at user side θuser(pd

i ), expressed in degrees 0 ≤ θuser(pd
i ) ≤ 90, is a function of the

drone’s horizontal position since the height H is fixed and θuser(pd
i ) = arctan( H

di,k(pd
i
) ),

as illustrated in Fig. F.4.
Given the existence of only two propagation groups, the probability PNLoS(pd

i ) =
1−PLoS(pd

i ) which finally allows us to calculate the final path loss expectation Li,k(pd
i )

for node k as derived from (F.8), (F.9), and (F.10) and given in linear terms as a function
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of the drone’s position through `i,k,LoS(pd
i ) and `i,k,NLoS(pd

i ):

10 log[Li,k(pd
i )] = `i,kLoS(pd

i ) · PLoS(pd
i ) (F.11)

+ `i,kNLoS(pd
i ) · PNLoS(pd

i ) (F.12)
= PLoS(pd

i )(ηLoS − ηNLoS) + `NLoS(pd
i ). (F.13)

2.4 Data Rate
We consider a tilting antenna that keeps the whole CA in a communications coverage
range and can provide a non-zero rate at any time. Such a setup reduces interference to
users outside the CA [8] as well. The gain of the antenna Gt is given by its effectiveness
Er to fit an ideal conical beamwidth Gt = Er10 log(GI), where the ideal conical antenna
has gain:

GI = 2
1− sin (θedge π

180 ) , (F.14)

where θedge = arctan( H
Dmax

) is the elevation angle at the cell edge, when the drone is
positioned in the middle of the CA and applies no antenna tilt, as shown on Fig. F.4.
With this we define the final expected path loss expression, as a function of the location
of the drone, and fully expanded [8]:

10 log(Li,k(pd
i )) = ηLoS − ηNLoS

1 + a exp
{
−b[arctan

(
H

di,k(pd
i
)

)
− a]

}
+ 20 log

(√
d2
i,k(pd

i ) +H2
)

− Er10 log
[

2
1− sin (θedge π

180 )

]
+ C + ηNLoS. (F.15)

We consider an orthogonal multiple access scheme (e.g., using frequency division mul-
tiple access (FDMA)), thus, we consider a noise-limited system with no interference for
both DL and UL phases. Moreover, to emphasize the importance of the drone position
in its trajectory we preallocate a frequency spectrum W that remains constant for each
node. Therefore, at each timeslot the achievable rate becomes:

Ri,k(pd
i ) = W log2

[
1 + Pt

WN0Li,k(pd
i )

]
, (F.16)

where Pt is the transmission power that is assumed to be identical at both node and
drone side, while N0 is the noise spectral density linearly scaling the noise with the
channel bandwidth W .
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3 Problem Analysis and Convex Approximation for
Trajectory Optimization

In this section, we determine the optimal trajectory of the drone orchestrator in a way
to minimize the discrepancy between the Tk values while maximizing each individual
Tk value for a given mission completion time using the SCP technique. We use this
method with the overarching goal of devising an algorithm that will provide a solution
in deterministic polynomial time for any scenario with arbitrary arrangement of nodes.
Due to the several non-convex parameters involved, this is non-trivial and requires a
combination of several analytical techniques.

As defined in Section 2, the value of the length of a timeslot ∆ = T
N is selected such

that any position reachable within that timeslot does not impose significant changes in
the rate performance; i.e. can be considered to be approximately unchanged. Hence
by first order Taylor approximation, at some time instant t, the discrete position of the
drone at the time slot t+ ∆ can be approximated as:

pd
i+1 = pd

i + vd
i ∆ + 1

2ad
i ∆2, ∀i ∈ N . (F.17)

Similarly, the velocity vector for the time slot t+ ∆ can be approximated as:

vd
i+1 = vd

i + ad
i ∆, ∀i ∈ N . (F.18)

The use of time discretization reduces the number of variables to 2 ·N , resulting in the
following staleness minimization problem:

(P1) : maximize
Pd

1
K

K∑
k=1

Tk(Pd)− s(Pd), (F.19)

s.t. |Tk(Pd)− Tl(Pd)| ≤ s(Pd), k, l ∈ K, (F.20)
2BT

∆
∑N
i=1Ri,k(pd

i )
+ Tk(Pd)

fk
≤ T, ∀k ∈ K, (F.21)∥∥pd

i+1 − pd
i

∥∥ ≤ min {2r,∆vmax} , (F.22)
Tk(Pd) ≥ 1, ∀k ∈ K, (F.23)
pd

1 = pI , (F.24)
vd

1 = vI , (F.25)
vd
N = vF , (F.26)∥∥vd
i

∥∥ ≥ vmin, ∀i, (F.27)
(F.17), (F.18). (F.28)

Maximizing the objective function (F.19) is equivalent to minimizing the maximum
difference between the Tk values of the nodes in the CA. (F.21) is the mission completion
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time constraint, where the first term accounts for the time required for transmitting both
uplink and downlink the B bits of data. In the aforementioned term, we approximate
the data rate during the UL and DL phases as the average rate through the full time T .
This avoids having to convert the problem into a mixed-integer one. Constraint (F.22)
represents the localization precision limitation by which the maximum distance between
consecutive positions of the drone is limited to 2 · r as given back in Section 2; (F.24)
is the initial drone position constraint; while (F.23) guarantees at least one iteration of
the local ML model with the given data subset for every node.

It is evident that the average rate of (F.21) depends on pd
i through Li,k(pd

i ) and
therefore the LoS probability. The complex expression of PLoS(pd

i ) as reported in (F.10)
makes solving (P1) using convex methods outside our computational capabilities. To
circumvent the impact of the LoS probability on function convexity, we use a homoge-
neous approximation for the LoS probability [12]. Indeed, since PLoS(pd

i ) is an increasing
function of the elevation angle, we consider the LoS probability of all the nodes equal
to the LoS probability of the edge user device [11], i.e. PLoS(pd

i ) ≈ PLoS(pd
edge)∀i, k :

di,k ≤ Dmax. Hence the corresponding rate value is the lower bound of Ri,k(pd
i ); which

in a LoS dominated region is equal to the actual Ri,k(pd
i ) value. Therefore the lower

bound of the average achievable rate of node k when the drone is at time i becomes:

Ri,k(pd
i ) = W log2

1 + γo(
H2 + d2

i,k

)
L

 , (F.29)

where L = 10{[PLoS(pd
edge)(ηLoS−ηNLoS)+ηNLoS]/10} and γo = Ptc

2GErI
WNo(4πf)2 are obtained by

substituting (F.9) in (F.11). This rate-equivalent approximation is useful in providing
solutions to the convex approximation approach but is not necessary in Section 4 where
we approach the same problem using reinforcement learning.

The objective function and the constraints (F.20), (F.22)-(F.26), (F.17), (F.18) are
convex functions of the position and the velocity variable. However, the mission comple-
tion time constraint (F.21) is non-convex because of the data rate expression in (F.29)
and the minimum velocity constraint is also a non-convex function of the velocity vari-
able. Hence (F.19) cannot be solved directly by using a convex optimization technique.
We will thus address this challenge by using the sequential convex programming tech-
nique.

3.1 Sequential Convex Programming for Trajectory Optimiza-
tion

The SCP approach allows us to represent a non-convex optimization problem as a se-
quence of convex optimization problems, and, then, solve them iteratively until the
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solution converges [40]. The candidate solution obtained through the SCP is guaran-
teed to satisfy the Karush-Kuhn-Tucker (KKT) conditions of the actual non-convex
problem. Hence the solution obtained through the SCP technique cannot be considered
as the global optimum of the problem, but, instead, it is a local optimum. However,
the rate of convergence of the SCP algorithm is linear in complexity thereby making it
suitable for solving real-time drone positioning problems [40].

To solve (F.19) using the SCP technique, we introduce an auxiliary variable λi,k(pd
i )

to tackle the non-convex constraint (F.21); where λi,k(pd
i ) is the first order Taylor

approximation of Ri,k(pd
i ) expressed as:

λi,k(pd
i ) ≤ log2

1 + γ

H2 +
∥∥pd,l

i − pk
∥∥2


− αd,lk,i

(∥∥pd
i − pk

∥∥2 −
∥∥pd,l

i − pk
∥∥2)

, (F.30)

where αd,lk,i = γlog2e

(H2 + γ +
∥∥pd,l

i − pk
∥∥2)(H2 +

∥∥pd,l
i − pk

∥∥2)
;
{

pd,l
i

}
is the set of drone

positions obtained from the lth iteration; γ = γo/L. The right-hand side of (F.30) is
a concave function of pd

i ; hence (F.30) is a convex constraint of the variables pd
i and

λi,k(pd
i ). Similarly the non-convex minimum velocity constraint can be equivalently

represented as;

β ≥ vmin, (F.31)

∥∥vd,l
i

∥∥2 + 2
(

vd
i − vd,l

i

)(
vd,l
i

)T
≥ β2, (F.32)

with (F.30), (F.31), and (F.32), the optimization problem (F.19), can be equivalently
written as;

(P1.1) : maximize
Pd

1
K

K∑
k=1

Tk(Pd)− s(Pd), (F.33)

s.t. 2BT
∆
∑N
i=1 λi,k(Pd)

+ Tk(Pd)
fk

≤ T, k ∈ K, (F.34)

(F.17), (F.18), (F.20), (F.22)− (F.26), (F.31), (F.32). (F.35)

Finally, the objective function and the constraints of (F.33) are convex and the
problem can be iteratively solved as reported in Algorithm 1. In our case, every itera-
tion makes use of available convex optimization tool box by MATLAB called CVX [41].
Finally, we note that the resulting trajectory may be a local maximum that is influ-
enced by the initialization of the approximated trajectory positions. Nonetheless, this
is sufficient given that SCP should provide reliably similar performances across different
testing scenarios and executes in polynomial time.
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Algorithm 1: SCP for Trajectory Optimization
1 Input: l = 0; {pd,l

i }, {v
d,l
i } ∀i ∈ N

2 repeat
3 Solve (P1.1) using available convex optimization tool box to obtain the optimal

solution: {pd
o,i}, {vd

o,i}
4 l = l + 1;
5 pd,l

i = pd
o,i; vd,l

i = vd
o,i ∀i ∈ N

6 until The fractional increase in the objective function of (P1.1) is less than a
threshold δ

7 Output: Optimal drone positions: {pd,l
i }

4 Reinforcement Learning for Trajectory Optimiza-
tion

In Section 3, we analyzed (F.7) by converting it to a convex form and solving it itera-
tively as in SCP. Due to the shortcomings of SCP, we are interested in evaluating the
performance and suitability of RL [33] particularly without making approximations on
the original scenario proposed in Section 2. In addition, RL has a potential to work
with more difficult and realistic models that include stochastic rates, node positions,
and variations in the drone speed, all of which can be suitable for future real-world vari-
ations of the problem. Given this motivation, we will now investigate how to design an
RL that solves the trajectory problem as per the defined model in Section 2. In general,
RL is a learning approach that is used for finding the optimal way of executing a task
by letting an entity, named agent, take actions that affect its state within the acting
environment [33]. The agent improves over time by incorporating the rewards it had
received for its appropriate performance in all episodes within that same environment.

4.1 Environment Remodelling
We discretize the continuous environment by splitting the horizontal space into an odd-r
horizontal layout hexagonal lattice, such as illustrated in Fig. F.5. Beyond reducing the
continuous space, the grid becomes a truthful representation of the trajectory limitations
due to drone positioning. Setting r as the inner radius of each hexagon, shown with
yellow at Fig. F.5, does not harm the precision of the planned trajectory and offers
superior packing. This also requires the position of each static node k defined by the
center of the hexagon it is in. Using the nearest neighbouring center distance 2 · r
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Fig. F.5: A cropped illustration of the odd-r hexagonal lattice (blue) fitting the CA’s border (black
solid line), with few examples of the precision circles with inner radius r (yellow). The drone has flown
a trajectory (dashed orange line) and is faced with deciding among the 7 actions (solid red arrows).

division of CA’s diameter 2 ·Dmax, results in a two dimensional M ×M lattice of size:

M = Dmax

r
. (F.36)

We define as a single episode the completion of the deadline T during which all nodes
need to have their updates sent back to the drone and is discretized by ∆ = T/N for all
N timeslots. The drone starts at point pd

0 and finishes at point pd
N by travelling from

point i to point i + 1 with a maximum speed limitation of pd
i+1−p

d
i

∆ ≤ vd
max. Since the

drone speed is limited, we allow for full trajectory resolution of the hexagonal lattice by
setting:

∆ = 2 · r
vdmax

, (F.37)

resulting in a total number of timeslots as:

N = T · vdmax
2 · r . (F.38)

In this way, at every time-step, the drone has the choice to move to each of the six
neighbouring hexagons or not move at all, illustrated with red at Fig. F.5, totalling to
an action space of 7. Since the trajectory is expressed by all previous drone movements
the problem of trajectory planning becomes a Markov Decision Process (MDP) that
under special conditions has a size of an N -tuple with base 7 totalling to 7N states.

4.2 Drone Trajectory as an MDP
To make the trajectory problem solvable by RL, the main purpose of the reformulation
until now was to make it representable by an MDP. To this end, we use a standard
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MDP representation as a 4-tuple (S,A,P,R) with sets: state space S, action space A,
probability of transition P, and a state-action reward map S ×A− > R.

• S - Each state in the set is defined by the drone’s (x, y) coordinates in the drone
trajectory taken, depicted with orange back in Fig. F.5, the leftover timeslots
that lack coordinates are padded totalling to 2 ·N states. We additionally specify
each state with the number of leftover timeslots N − i, and (xk, yk), fk, and Ri,k
for each node k. Thus we have a state described by F = 1 + (2 · N) + (4 · K)
features. Since the state space for the MDP scales with the number of timeslots
N , the complexity of trajectory optimization becomes more challenging to the RL
agent from two additional perspectives. A larger N directly increases the size of
input features of the network F while it also extends the time for which the agent
needs to finish a whole episode, providing less experience for the same time spent
learning.

• A - The action space is defined by all possible movement directions on the sides
of the hexagon plus the action of remaining in the same place formatted into a
7-tuple.

• P - Since the defined MDP is deterministic, no randomness is included in the
set and all transitions follow the agent’s decisions. Therefore, the next state is a
direct consequence of the action that the agent takes, which is the maximal value
among the seven outputs in the tuple.

• R - Since the performance of the drone can only be known once it completes the
trajectory, defining continuous rewards for the agent will lead to a suboptimal
performance due to the imbalance between the progressive rewards and the op-
timization criterion. Therefore, the reward set R is 0 except for the end of the
episode where the one-time reward is as calculated from (F.7). Through this single
reward the RL agent needs to learn to utilize its movements for, distributing the
rates during DL, moving during the learning period, and distributing the rates
during UL.

4.3 Deep Q-Learning
Due to the size of MDP, we create an RL agent as a feed-forward neural network (NN),
with F input neurons, Y hidden states each with the same number of neurons Z, all
using rectified linear (ReLU) activation functions, and an output neuron count of 7.
Compared to other state of the art Q-function approximators, our selected NNs provide
reasonable accuracy with lower convergence time when compared to e.g. recurrent NNs
(RNNs). When receiving the current state, described with F features as input, the NN
agent outputs its evaluation for all seven actions that can be taken. However, the use of
NNs in RL tasks may fail to converge especially in problems with complex optimal policy
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in great state space [42], such as ours. Therefore, we rely on deep RL, using double Q-
learning and experience replay methods derived from [43] to bring the problem as close
as possible to traditional supervised learning.

Experience replay requires that we store past episodes in a replay buffer. An expe-
rience e is defined as a tuple of five elements that occurred during action step t as in
et = (st, at, rt, st+1, dt) where: st was the starting state of the agent, at is the action
that the agent took, rt is the reward that the agent received, st+1 the state at which it
arrived, and dt = {0, 1} is an indicator for a terminating action that has 1 if the action
finishes the episode or 0 if it leads to another state. This allows the use of mini batches
of size β from the stored experiences. However, considering the vast amount of possible
trajectories that the drone can try there is still a need to reduce the many unproductive
trajectories while exploring the state space. Hence, we also include a secondary experi-
ence buffer that only stores the ten best performing episodes. Both buffers are used for
training each episode as it was observed that such approach accelerates the convergence
while maintaining the exploration.

Finally, for the double-Q-learning RL algorithm, we need to keep two separate agents
with the same properties but with different weight values wP and wT. As such they
will output a different Q-action function when given the same state. One is used to
choose the actions, called a primary model QP(st, at), while the other model evaluates
the action during the training, called a target model QT(st, at). Therefore training
occurs when taking a batch of experiences et from the buffer that is used to update the
model as:

Qnew
P = (1− α)QP + α[rt + (1− dt)γmaxQT(st+1, a)], (F.39)

where maxQT(st+1, a) is the action chosen as per the agent, α is the learning rate which
was an input to the Adam optimizer [44], and γ is a discount factor that reduces the
impact of long term rewards. We implement this with soft updates where instead of
waiting several episodes to replace the target model with the primary. The target model
receives continuous updates discounted by value τ as in wT = wT · (1 − τ) + wP · τ .
Finally, to input new instances in the experience memory, the state space was sampled
using the ε-greedy strategy. Here, with probability ε we take an action uniformly at
random from the action space A, while with probability 1 − ε we act greedily in favor
of the agent’s decision. After each episode, we lower the ε value by multiplying it with
a decay coefficient ψ as in εnew = ε · ψ.

4.4 Training an RL Agent for Trajectory Optimization
In our implementation the drone is trained in an offline manner. In other words, the
drone will compute the full trajectory before taking any action in the simulated environ-
ment, which is modeled as an MDP. Since we use off-policy learning with sampling, this
is easily adaptable to online training, where the ML model would be continuously train-
able even during its operation. This is done with scalability in mind as we anticipate
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Table F.1: Training parameters for RL trajectory optimization

Label Definition Value
γ Q-learning discount factor 0.9999
α Learning Rate 0.0001
τ Soft copy coefficient for double Q-learning 0.005
Y Number of hidden layers 3
Z Number of neurons per hidden layer 512
ε Greedy epsilon coefficient 0.5
ψ Decay factor for epsilon 0.99
β Number of randomly chosen experiences per batch 256

that integrated FL implementations require more fine tuned reward systems.
During the training process, RL needed roughly 50-100 episodes of replaying the

same scenario solely to understand the situation and converge to stable flying routes
that do not incorporate random erratic movements. Once such stability was achieved,
the RL agent managed to learn to fly towards slow learners and away from learners that
received too much attention. After an extensive experimentation, the parameters given
in Table F.1 resulted in a good learning progress. The results provided in the Section 5
were achieved within 400 episodes of training, which took roughly 80− 120 minutes of
training on a GPU accelerated implementation of the script written in Python.

5 Simulation Results and Analysis
The purpose of our simulation is to best evaluate the behaviour of our proposed solutions
to the AAS minimization problem that arises in asynchronous FL networks. Moreover,
we aim to both validate our framework and decide on an optimization approach that
handles the problem based on the values introduced in Sec. 2. Since the performance
of the provided trajectories strongly depends on the arrangement of the nodes, both
approaches were put against a few handpicked scenarios. We chose this testing approach
as aggregation of many randomized runs is unlikely to provide useful results due to the
uniqueness of each scenario. Additionally, as our goal is to inspect the usefulness of
using trajectory when maximizing AAS, we test on deployments with few nodes. In
such scenarios it is easier to sample a challenging scenario for the optimization problems
and execute a performance assessment that is directly observable.

In Table F.2 we list the parameters used for testing both solutions. The parameters
were inspired by object detection models as in IMAGEAI’s YOLOv3 2, being served by

2https://imageai.readthedocs.io/en/latest/detection/
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Table F.2: Testing environment settings [8, 38, 45]

Label Definition Value
fc Channel Carrier Frequency 5.8 Ghz
W Channel Bandwidth for each k 20 Mhz
N0 Noise Spectral Power -174 dBm/Hz
H Drone’s flying altitude 100 m
vmax Maximum achievable drone speed 10 m/s
∆ Time Discretization Interval 0.2 s
Pt Transmission Power 23 dBm
r Localization Precision Radius 1 m
B Machine Learning Model Size 2000 Mb
Dmax Radius of Coverage Area 260 m
T Federated Learning Cycle Deadline 30 s
Er Antenna Effectiveness 0.6
a P(LoS) Constant for Suburban topology 4.88
b P(LoS) Constant for Suburban topology 0.43
ηLoS Added Large Scale for LoS group 0.2
ηNLoS Added Large Scale for NLoS group 24

a rotary-wing UAV 3 in a suburban environment. We judge the performance of the algo-
rithms by how well they maximize the AAS metric from (F.7) that is directly dependent
on the average learning done by all nodes subtracted by the achieved staleness s. As
such, the drone trajectory optimization becomes a balancing act of anticipating moving
towards and away from specific learners and pre-calculating the possible staleness for
that learning cycle. The results shown in this section are calculated with a simulation
of the non-approximated scenario in Section 2, common for both SCP and RL.

For testing, we assume that the drone should start at the center of the CA, pd0 = [0, 0].
This is done in accord with many works that use a recharging or a battery-swap station
[46] at the center of the CA in order to offer uninterrupted, seamless, and standalone
service. In our simulated scenarios, we consider the case in which the drone has finished
a battery swap from a ground station in the center of the CA, elevated itself to a height
H, and initiated its service while it is at a very unbalanced position with regards to the
node arrangement.

In this way we test the trajectory optimization approaches in a very challenging
environment, where the drone trajectory starts in an unbalanced and therefore unfa-
vorable position with regards to the ground FL network. These simulations cover the
first cycle of the drone flight, after the end of which, changes in the area may occur as

3https://www.dji.com/dk/matrice100/info#specs
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Table F.3: Coordinates and Computational Capability for each node k in all three tested scenarios.

Straight K = 2 Hidden K = 3 Forced K = 3
Xk Yk fk Xk Yk fk Xk Yk fk

k=1 60 129 1 10 43 1 0 0 1
k=2 260 0 0.7 29 11 1 1 183 0.7
k=3 N/A N/A N/A 169 183 0.7 40 43 0.7

some learners drop due to lack of data or new learners appearing in other areas of the
CA. Therefore, in each cycle the drone will perform swings across the field of learners,
until the time comes for the drone to go back to the center, recharge, and get back to
orchestrating the FL network. We tested our approach and evaluated its performance
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Fig. F.6: Staleness minimization solutions for Straight where: RL yields an AAS of 7 with s=3.7;
SCP yields AAS=7.32 with s=3.

in Table F.3. These three scenarios are representative of special case arrangements in
which the drone needs to take quick action to best improve the FL’s performance for
that specific FL cycle. The computational capability fk for each device in Table F.3 is
also taken in reference of the task of object detection, where we expect that one epoch
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Fig. F.7: A datarate heatmap showcasing DL (left) - Learning (middle) - UL (right) schedule for both
RL and SCP approaches for each device in Straight.

should last roughly one second on a computationally powerful node.

5.1 Straight Trajectory
The first arrangement, and named Straight, considers only two users K = 2, where
the drone has a clear path to the slowest learner located in the rightmost corner. If
no trajectory is considered, and the service provider is static at the starting location
it would achieve an AAS of 3.90 with s = 5.74. The SCP solution provides a direct
flight towards the slowest learner and achieving an AAS of 7.32 and a staleness s =
3, outperforming the static implementation by 87.7%. On the other hand, the RL
algorithm takes a complicated trajectory, as shown on Fig. F.6, and achieves worse
results an AAS of 7 with s = 3.7, outperforming the static implementation by 79.48%.

Recall that, although no stochastic parameters were involved, the ε-greedy approach
was used in the RL training for the purpose of exploring the state space. This is
significant since it leads the drone to position itself in undesirable locations, at times.
In such cases, the agent eventually receives a lower reward even though the trajectory
change was caused by a random epsilon event. Thus, RL produces a skewed trajectory in
which the drone dramatically evades the good learner k = 2 in a behaviour that is most
likely due to overstating the importance of staleness and the positioning of k = 2. RL
is outperformed in this simple scenario mostly due to the lack of overfitting mitigation
for the Q-learning agent. In future works, we intend to investigate an improved agent
with a combination of RNNs and dropout as in [47].

In Fig. F.7, we show the chronological progression of the data rates for the ML
model transmissions for each link in the Straight scenario. The schedule is clearly
visible, starting with the DL phase (colored bars on the left), followed by a period of
learning (central black bars), and finalize with the UL phase (colored bars on the right).
Therefore, the width of each bar manifests the duration of the phase for that node. The
graph enables us to further analyze the implication of the trajectory, and we notice that
the major difference occurs in the DL phase where the RL provided trajectory manages
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to decrease the rate towards k = 1 enough to finish later than k = 1 with the SCP
trajectory. Since this also comes at a cost to the rate for the straggler node k = 2,
this measure does not sufficiently improve the staleness value in the RL case so as to
outperform the SCP provided solution even though their straggler performance is nearly
equal.

5.2 One Hidden Node
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Fig. F.8: Staleness minimization solutions for Hidden where: RL yields an AAS of 7.8 with s=3.7;
SCP yields an AAS of 7.1 with s=4.72.

The second arrangement, shown in Fig. F.8 and named Hidden, has three learners
K = 3 present in the CA. Here the slowest learner is hidden far away from the center with
two well performing nodes in the way of the direct trajectory connecting it. If static at
the starting location, the orchestrator would achieve an AAS of 4.52 with s = 7.46. Both
algorithms show prowess to discover the policy of breaching the barrier of fast learners
to get to the slowest, hence providing an adequate solution. However, the RL algorithm
does this much more efficiently with an AAS of 7.8 with s = 3.7, outperforming the
static implementation by 72.56%. RL outperforms its SCP counterpart that achieved an
AAS of 7.1 with s = 4.72, outperforming the static implementation by 57.08%. In both
SCP and RL implementations, the drone is trying to leave the barrier of good learners
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Fig. F.9: A datarate heatmap showcasing DL (left) - Learning (middle) - UL (right) schedule for both
RL and SCP approaches for each device in Hidden.

as fast as possible and move towards the neglected user to match the rate it gave to
the fast learners in the DL phase. In this testing scenario, using unapproximated rate
goes massively in the benefit of discovering good positions with high precision for the
RL approach.

Additionally, in Fig. F.9, we show the evolution of the transmission schedule for
the Hidden scenario and highlight the better performance of the RL implementation
particularly when dealing with the slow learner k = 3. Here, the RL guided drone travels
very close to k = 3 during the final UL phase and, thus, it achieves near maximum rates
and transfers ≈ 52 Mbits each timeslot.

An important note is that during RL training, it was observed that the RL agent
would sometimes try a policy of flying away from all nodes in an effort to reduce the
performance of nodes k = 1 and k = 2. This signifies the superiority of using our
AAS metric as opposed to solely relying on s as an optimization metric since AAS
“anchors” the drone from moving away from all learners. If we only relied on staleness
as an independent optimization metric it would reflect heavily in the total amount of
computation work done by the FL nodes, therefore slow down FL convergence.

5.3 Forced Departure
Next, in Fig. F.10, we consider a third scenario named Forced that has one well
performing node directly in the center of the CA and two slow learners scattered at two
positions away from the center. This scenario forces the drone orchestrator to quickly
move out from its starting position to the closest and fastest learner, to serve a more
balanced role away and towards the two other nodes. Here a static drone fixed at the
starting location would achieve an AAS of 4.22 with s = 6.62.

This scenario showcases how the proposed RL algorithm allows the drone to find a
high-performing trajectory that yields an AAS of 7.2 with s = 3.48, thus significantly
outperforming the static implementation by 70.61%. In contrast, here, the SCP algo-
rithm achieved an AAS of 6.74 with s = 4.02, outperforming the static implementation
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Fig. F.10: Staleness minimization solutions for Forced where: RL yields an AAS of 7.2 with s=3.48;
SCP yields an AAS of 6.74 with s=4.02.

by only 59.71%. As the drone shuffles around after reaching some satisfactory dis-
tance from the good node, it is apparent that RL-guided trajectories could incorporate
many erratic and unnecessary movements. This behavior of RL is clearly visible in this
scenario due to the relative closeness of all three nodes next to the starting location.

Finally, in Fig. F.11 we can observe that the performance of both RL and SCP is
very similar in treating the problem of maximizing AAS. Nonetheless, it is noticeable
that RL does well at compensating the most disadvantaged node k = 2, particularly in
the UL phase.

5.4 Key Takeaways
In a nutshell, the RL implementation is bound to be superior in comparison to the SCP
approach due to the granularity of each action it can produce by its progressive deci-
sions. Additionally, as RL needs no approximations for the environmental parameters,
it is capable of discovering true optimums, if given the time and well done exploration,
overfitting avoidance, and good hyper-parameter adjustment. However, to advance the
RL implementation in a realistic environment, it is also beneficial to perform online
learning. This would come with great energy requirements as the drone would have to
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Fig. F.11: A datarate heatmap showcasing DL (left) - Learning (middle) - UL (right) schedule for
both RL and SCP approaches for each device in Forced.
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Fig. F.12: The speed distribution of the drone across time for both RL and SCP guided trajectories,
for all three scenarios.

dedicate a lot of its processing capabilities to improve the implementation (although
some of this could be alleviated through the offline training phase). As such, simplified
approximations such as the SCP approach may be more feasible to implement in first
deployments of drone orchestrators. We are optimistic that later designs of RL imple-
mentations that are guided by the SCP algorithm will provide superior performance.
This combination with offline and online RL training, should be adept in finding near
optimal trajectories in every stochastic, chaotic and energy limited implementations.

An important takeaway from all three scenarios is that SCP generally reacts a lot
slower to the distance discrepancies mainly due to the approximations needed for con-
verting the problem into a convex one. However, the RL approach yields many unnec-
essary movements that may have negative effects on the drone battery life and therefore
its flight duration. For example, Fig. F.12 shows that RL provided trajectories keep the
drone at full speed for the majority of the time. This, combined with our previous result
analysis for Fig. F.10, we can conclude that often times this is unnecessary for the AAS
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performance. The common way to address this in RL is to assign negative rewards for
drone’s movements. This will need to be carefully designed in order to not impair the
performance of the FL network, given the long-term utility of the application.

6 Conclusion
In this paper, we have considered a drone equipped with a wireless interface in the role
of an orchestrator in an FL implementation where it coordinates the transmission and
learning by only adjusting its flying trajectory, and therefore, the horizontal distance
to each node. Considering the total amount of learning performed across all nodes and
the learning discrepancies between them as an optimization criterion, two trajectory
optimization approaches were compared: deep RL and SCP. From our analysis of their
potential in maximizing the combined performance metric, we have concluded that
RL has shown its suitability and general superiority in solving the task of trajectory
optimization for lowering staleness in FL networks. Nonetheless, both solutions for the
drone-orchestrated FL concept outperform a static implementation with improvements
in the range of 57% to 87.7%. All in all, SCP approaches are simpler and reliably
provide decent performance in all scenarios without the need of hardware accelerated
computing. As such, both approaches are important in transitioning towards superior
FL implementations for scattered networks. However, RL implementations are necessary
when encountering realistic wireless channel, weather and user mobility conditions. This
inspires future works where an RL agent goes trough the process of pre-training with
SCP approximated trajectories, and is then transferred for learning in the real world
environments.
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Abstract
In this work, we optimize the 3D trajectory of an unmanned aerial vehicle (UAV)-based
portable access point (PAP) that provides wireless services to a set of ground nodes
(GNs). Moreover, as per the Peukert effect, we consider pragmatic non-linear battery
discharge for UAV’s battery. Thus, we formulate the problem in a novel manner that
represents the maximization of a fairness-based energy efficiency metric and is named
fair energy efficiency (FEE). The FEE metric defines a system that lays importance on
both the per-user service fairness and the PAP’s energy efficiency. The formulated prob-
lem takes the form of a non-convex problem with non-tractable constraints. To obtain a
solution we represent the problem as a Markov Decision Process (MDP) with continuous
state and action spaces. Considering the complexity of the solution space, we use the
twin delayed deep deterministic policy gradient (TD3) actor-critic deep reinforcement
learning (DRL) framework to learn a policy that maximizes the FEE of the system.
We perform two types of RL training to exhibit the effectiveness of our approach: the
first (offline) approach keeps the positions of the GNs the same throughout the training
phase; the second approach generalizes the learned policy to any arrangement of GNs
by changing the positions of GNs after each training episode. Numerical evaluations
show that neglecting the Peukert effect overestimates the air-time of the PAP and can
be addressed by optimally selecting the PAP’s flying speed. Moreover, the user fairness,
energy efficiency, and hence the FEE value of the system can be improved by efficiently
moving the PAP above the GNs. As such, we notice massive FEE improvements over
baseline scenarios of up to 88.31%, 272.34%, and 318.13% for suburban, urban, and
dense urban environments, respectively.

1 Introduction
To provide seamless network connectivity, it is expected that future radio access net-
works implement much denser deployments of small cells, that imply very high deploy-
ment costs. A more cost-efficient solution for serving a set of ground nodes (GNs) is
to use an unmanned aerial vehicle (UAV) that carries a radio access node, hereafter
referred to as a portable access point (PAP) [1].

The third generation partnership project (3GPP) item [2] proposes the architecture
and Quality-of-Service (QoS) requirements for such a system. The ability to have a
controllable maneuver and the presence of line-of-sight (LoS) dominant air to ground
channels [6] make it appropriate for applications such as data collection from wireless
sensor networks (WSNs), enhancing the cellular coverage, remote sensing, emergency
deployments, and so on [1]. The main drawback of the PAP system is its limited air-
time which is a function of the capacity of the onboard battery unit and its power
consumption profile. The air-time of a PAP is defined as the duration it remains aloft.



174 Paper G.

𝛽𝑚,𝑛

(𝑔x,𝑛 , 𝑔y,𝑛, 0)

Ground Node Portable Access Point

𝒖𝑚

Trajectory

𝑢I

𝑢F

𝑢𝑧,min

𝑢𝑧,ma𝑥

Fig. G.1: Trajectory determination scenario.

The power consumed by a PAP varies with its mode of flying; for instance, a PAP
consumes the maximum amount of power when it climbs vertically up, whereas the
power consumption can be the least during a horizontal flight at an certain non-zero
velocity [3]. Hence, the air-time of a PAP can be increased by suitably selecting its flying
mode and velocity. Moreover, the available capacity of a PAP battery unit is a non-linear
function of the power-draw profile of the PAP [4]. Additionally, the air to ground channel
LoS probability and the path loss between a PAP and a GN are proportional functions
of the elevation angle and 3D distance between them, respectively [6]. Consequently, the
trajectory of a PAP can be used as a tool to increase its air-time and improve the channel
to a GN. Hence, in this work, we design a 3D trajectory for a PAP that maximizes the
number of bits transmitted per Joule of energy consumed while guaranteeing a fair
service to the GNs measured in terms of fair energy efficiency (FEE) of the system.

1.1 Related Works
The works in [6]- [29] consider UAV placement optimization and trajectory design prob-
lems with main objectives as maximizing coverage area, throughput, air-time, energy
efficiency, and minimizing mission time, power consumption, e.t.c. The authors of [6]-
[10] consider the 3D placement of UAV(s) to maximize the coverage area. In [6], the
authors propose a probabilistic LoS-non-LoS (NLoS) air to ground channel model and
use it to find the optimal hovering altitude of a stationary UAV that maximizes the
coverage area. [7] and [8] find the optimal altitude that maximizes the coverage area
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of a multi- and single-UAV system using circle packing theory. [9] uses a combination
of exhaustive search and maximal weighted area algorithm to propose an optimal UAV
placement method that maximizes the number of users covered, whereas [10] considers
the placement optimization of a dynamic standalone drone equipped with a steerable
antenna. The work in [11] proposes a power-efficient deployment of multiple UAVs which
are used as aerial base stations to collect data from ground Internet of Things (IoT)
devices, whereas [12] and [13] consider minimizing the total transmit power of a drone
base station by considering a downlink communication scenario.

The authors of [14]- [18] consider the average throughput of a UAV-based aerial
communication system as the performance metric. [14] and [15] maximize the minimum
average throughput by considering an uplink communication between a set of GNs and
a UAV, whereas [16], [17], [18], and [19] consider a downlink communication scenario.
In [20]- [24], the authors consider the aerial vehicle’s energy consumption while proposing
an energy-efficient UAV(s) deployment policy. In [20], the authors propose a tractable
power consumption model for a single-rotor rotary-wing UAV and use it to design a 2D
trajectory that consumes the least amount of energy. In [24], we extend the model to a
multi-rotor UAV and propose a 2D trajectory for a PAP that maximizes the number of
bits transmitted per Joule of energy consumed while following a fly-hover-communicate
protocol to serve the users. The algorithm given in [21] designs an energy-efficient
2D trajectory for a fixed-wing UAV, while in [22], we determine a set of energy-efficient
hovering points using circle packing theory. The works [25]- [27] use a deep reinforcement
learning (DRL) technique to design a UAV(s) placement policy that guarantees fair
service to the users. [25] uses the UAV trajectory as a tool to achieve fairness in terms
of learning staleness, which reflects the learning time discrepancy among the users. The
proposed policies of [26] and [27] achieve fairness in terms of coverage and throughput,
respectively. Comprehensive lists of works that consider placement optimization of a
UAV-based system are available in [28] and [29].

1.2 Main Contributions and Paper Organization
The works in [6]- [17] propose UAV trajectory design algorithms that either maxi-
mize communication-related parameters such as the coverage area and sum or average
throughput or minimize the transmit power. The works mainly design a 2D trajectory
or represent the 3D optimal UAV(s) positioning problems as two subproblems that op-
timize the vertical and horizontal positioning of the UAV(s) recurrently. Even though
the problem formulations to maximize the energy-efficiency in [20]- [24] consider the
aerial vehicle’s power consumption, the solutions are again 2D flight trajectories. Please
note that for an energy-limited system such as a PAP, maximizing the number of bits
transmitted per Joule of energy consumed while ensuring user fairness is paramount.
Maximizing the throughput for a given energy budget is different from maximizing the
energy efficiency since each movement of the UAV should maximize the throughput and
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minimizes the energy consumption simultaneously. Moreover, a UAV consumes different
power during its axial climb and forward flight modes. Neglecting this, as in [18], [19],
and [26], falsely overestimates the air-time of a UAV resulting in the initiation of the
early-landing procedure before completing the planned trajectory. Furthermore, [18]
and [26] propose trajectory planning and resource allocation schemes for high-mobility
users in which the trajectory parameters and the resources are allocated to guarantee
high instantaneous throughput fairness between all users. Even though the proposed
fairness metric is ideal for analyzing the performance of the considered scenario, it might
be sub-optimal for an IoT application such as data collection from an IoT network. For
such applications, long-term fairness metrics are more suitable. For instance, consider
a scenario in which the PAP is deployed to deliver a file of a given size to all the users
by the end of the trajectory. In this case, the service fairness could be measured at the
end of the trajectory; if all the users are delivered with an equal amount of bits on an
average by the end of the trajectory, the fairness between the users will be high.

Suppose the PAP flies near to a user in a given time instant. In that case, it is more
efficient to allocate more resources to that user since the communication channel to the
user, as well as the throughput, will improve. However, to guarantee a high long-term
user fairness, the later segments of the trajectory should be closer to the remaining users.
Finally, none of the above works consider the Peukert effect seen in Li-ion batteries that
are typically used in UAVs. Neglecting the Peukert effect overestimates the air-time
of the PAP, resulting in initiating the early-landing procedure before completing the
planned trajectory. In practise, the PAP will be flying at different velocities resulting
in different power consumption; hence the remaining air-time of the PAP varies after
each action as a non-linear function of the power consumption. This affects the system’s
energy efficiency since the number of trajectory segments varies as a non-linear func-
tion of the power consumption profile. In essence, the 3D trajectory design of a PAP
that maximizes the fairness-based energy efficiency while factoring in the UAV power
consumption and the Peukert effect has, to the best of our knowledge, not yet been
considered in the literature. The main contributions of this work are summarized as
follows:

• We propose a method to model the non-linear Peukert effect of the PAP battery
using the data points from a data sheet;

• We additionally propose an algorithm to estimate the air-time of a PAP by con-
sidering the Peukert effect and the PAP power consumption profile;

• We introduce a user fairness-based energy efficiency metric called the fair energy
efficiency that considers user fairness, sum throughput, and the PAP propulsion
power consumption;

• Finally, we implement a twin delayed deep deterministic policy gradient (TD3)-
based 3D path planning algorithm to design a 3D trajectory for the PAP that
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maximizes the FEE value of the system.

This paper is structured as follows: Section 2 explains the system setup, propagation
environment, the 3D power consumption model of the PAP, and the FEE metric. In the
section, we also detail the Peukert effect of the PAP battery and propose an algorithm
to estimate the air-time of the PAP. Section 3 includes the problem formulation to
maximize the FEE of the system and the solving methodology. Section 4 presents
the main findings through numerical evaluations, and elaborates the significance of the
results. Finally, Section 5 summarizes the main findings of this work. All the quantities
are in SI units unless otherwise specified.

2 System Model
In this work, we consider a PAP deployed to serve a set of N GNs. Each GN n ∈
N = {1, 2, 3, .., N} is located at gn = [gh,n, 0] of Cartesian space (x, y, z) with gh,n =
[gx,n, gy,n], as shown in Fig. G.1. The PAP flies along a 3D path to serve the set of
GNs. Both the PAP and the GNs are assumed to be equipped with omni-directional
antennas.

2.1 PAP Trajectory Model
The optimal flying path of the PAP is obtained by dividing the total air time T into
M time segments of length δt each such that T = Mδt [20]. The value of δt is chosen
so that within each segment the PAP can be assumed to fly with a constant velocity,
and the change in path loss values between the PAP and each GN is insignificant, i.e.,
δtvmax ≤ ∆ where vmax is the maximum speed of the UAV and ∆ is the maximum
change in distance below which the path loss values between the PAP and each GN
remain stationary. Consequently, the path of the PAP can be represented using M + 1
points, whose locations are denoted as um = [uh,m, uz,m], m ∈ M = {1, 2, 3, ..,M + 1}
where uh,m = [ux,m, uy,m] is the projection of the PAP location on the horizontal plane.
The length of each segment and the maximum PAP velocity are constrained as,∥∥um+1 − um

∥∥ = δtvm ≤ δtvmax ≤ ∆ ∀m ∈M
′
, (G.1)

where M′ = {1, 2, ..M}. In a particular segment, the PAP follows a time-division
multiple access (TDMA) scheme to serve the GNs: let Tm,n be the time allocated to
the nth GN while the PAP is flying in the mth path segment with a speed of vm m/s,
then,

ΣNn=1Tm,n = δt ∀m ∈M
′
. (G.2)
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2.2 Propagation Environment
The communication channel between the PAP and a GN at a given time can be either
LoS or NLoS depending on the relative position of the GN with respect to the PAP and
the blockage profile of the environment. The LoS and NLoS path loss values can be
expressed as [6]- [11],

Llos
m,n = 20logd3Dm,n + 20logfc + 20log

(
4π
c

)
+ ηlos, (G.3)

Lnlos
m,n = 20logd3Dm,n + 20logfc + 20log

(
4π
c

)
+ ηnlos, (G.4)

with d3Dm,n =
√
d2Dm,n

2 + u2
z,m and d2Dm,n = ‖uh,m−gh,n‖. fc and c are the carrier frequency

and the velocity of light, respectively. The corresponding probability of existence of a
LoS link between the PAP and the nth GN while the PAP is in the mth path segment
can be expressed as,

P los
m,n = 1

1 + a exp [−b(βm,n − a)] , (G.5)

with βm,n = arctand
(
uz,m

d2Dm,n

)
; a and b are the environment dependent parameters;

ηlos and ηnlos are the mean values of the respective additional path loss values due to
long-term channel variations. For a given elevation angle, this additional path loss has a
Gaussian distribution [5], and we use its mean value in this work [6]- [8]. The mean value
depends on the building profile of the region and it is noticed that the change in the
additional path loss within a particular propagation group (LoS/NLoS) is insignificant
compared to the change in path loss value from one group to the other [5], [6]. This
allows us to model the path loss with a constant gap between the two propagation
groups as given in (G.3) and (G.4). Hence, the expected spectral efficiency to the nth
GN is given by,

Rm,n = P los
m,nR

los
m,n + (1− P los

m,n)Rnlos
m,n, (G.6)

where Rxm,n = log2

(
1 + Pt

σ210Lxm,n/10

)
∀x ∈ {los,nlos}; Pt and σ2 are the respective

transmitted signal and noise power values.

2.3 UAV power consumption model
In this section, we provide the general expressions to calculate the total power con-
sumed by the PAP during a considered time slot. The definitions and values1 of

1https://dl.djicdn.com/downloads/m100/M100_User_Manual_EN.pdf

https://dl.djicdn.com/downloads/m100/M100_User_Manual_EN.pdf
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Table G.1: UAV’s physical properties [24].

Label Definition Value
W Weight of the UAV in Newton 24.5 N
NR Number of rotors 4
vm UAV’s horizontal flying velocity -
vtip Tip speed of the rotor 102 m/s
Af Fuselage area 0.038 m2

ρ(uz,m) Air density at uz,m -
CD Drag Co-efficient 0.9
Ar Rotor disc area 0.06 m2

∆p Profile drag coefficient 0.002
s Rotor solidity 0.05

𝜖m

Y

Z

𝛼m

X

Fig. G.2: Velocity Vector.

all the variables used in this section are given in Table G.1. In the mth time slot,
the PAP moves from um to um+1 in δt seconds. Then, as shown in Fig. G.2, the
PAP velocity vector in the spherical coordinates system can be represented as vm =
(vm, αm, εm), in which vm = ‖um+1 − um‖/δt is the speed of the PAP at which it
travels from um to um+1, αm = arctan [(uy,m+1 − uy,m)/(ux,m+1 − ux,m)] and εm =
arctan [‖uh,m+1 − uh,m‖/(uz,m+1 − uz,m)] are the azimuth and elevation angles of um+1
with respect to the axes located at um. In each time slot, the PAP is in one of the fol-
lowing flight conditions:

Forward flight (vm 6= 0, εm 6= 0)

The forward flight condition contains the following PAP flying modes: 1) the PAP moves
along a plane that is parallel to the horizontal plane (vm 6= 0, εm = 90◦) commonly called
as level forward flight; 2) forward (inclined) ascent or descent mode in which the PAP
moves in the 3D space thereby changing all the 3 coordinates of its position (vm 6= 0,
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εm 6∈ {90◦, 0◦}). The amount of power required to maintain this flight condition can be
determined using [24], [3],

P fwd
uav (vm) = NRPb

(
1 + 3v2

m

v2
tip

)
︸ ︷︷ ︸

Pblade

+ 1
2CDAfρ(uz,m)v3

m︸ ︷︷ ︸
Pfuselage

+W


√√√√(√ W 2

4N2
Rρ

2(uz,m)A2
r

+ v4
m

4 −
v2
m

2

)
+ cosεm


︸ ︷︷ ︸

Pinduce

(G.7)

where Pb = ∆p

8 ρ(uz,m)sArv
3
tip and ρ(uz,m) = (1 − 2.2558.10−5uz,m)4.2577. Pblade and

Pfuselage are the powers required to overcome the profile drag forces of the rotor blades
and the fuselage of the aerial vehicle that oppose its forward movement, respectively,
while Pinduce represents the induced power from the rotation of rotors.

Hover (vm = 0)

In this mode, the PAP is static and its position is the same as that in the previous time
slot. From [24], the hovering power consumption of a PAP is estimated using,

P hov
uav = NRPb + W 3/2√

4NRρ(uz,m)Ar
. (G.8)

Axial climb or descent (vm 6= 0, εm = 0)

Here, the PAP moves along the +/− z-direction. Using (12.35) of [3], the power required
by the PAP to climb vertically (εm = 0) is expressed as,

P vert
uav (vm) = W

2

(
vm +

√
v2
m + 2W

NRρ(uz,m)Ar

)
+NRPb.

(G.9)

Hence, the total power consumed by the PAP while it flies along the mth path segment
is calculated as,

Puav(vm) =

P
fwd
uav (vm) if vm 6= 0 & εm 6= 0,
P hov
uav if vm = 0,

P vert
uav (vm) if vm 6= 0 & εm = 0.

(G.10)
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2.4 Fair Energy Efficiency
The fair energy efficiency (bits/Joule) of the system is expressed as,

FEE (VM ) =
FI (VM )

∑M
m=1

∑N
n=1Dm,n (vm)∑M

m=1 δtPuav(vm)
,

(G.11)

where Dm,n (vm) = BTm,nRm,n is the number of bits transmitted to the nth GN while
the PAP is in the mth segment, and

FI (VM ) =

[∑N
n=1 Dn (VM )

]
2

N
∑N
n=1 D

2
n (VM )

, (G.12)

is the fairness index with Dn (VM ) =
∑M
m=1 Dm,n (vm) /M giving the average number

of bits transmitted to the nth GN by the end of the trajectory. FI (VM ) = 1 means
the PAP sends equal number of data bits to the GNs when it completes the trajectory.
B is the total available bandwidth; VM = {vm,∀m ∈ M

′}. Considering the energy
efficiency metric alone could allow the PAP to fly above a sub-set of GNs to maximize
the energy efficiency by increasing the sum rate. Furthermore, the fairness index can
be maximized either by maximizing the average number of bits transmitted to each GN
or by minimizing it. The FEE metric defined in (G.11) is a weighted energy efficiency
metric, where the weight is the fairness index. This forces the PAP to follow a 3D
trajectory that maximizes energy efficiency and per-user fairness.

2.5 The Peukert Effect
A usual approach to estimate the maximum air-time of a PAP is to find the ratio of the
initial onboard energy to the sum of instantaneous power consumption values [20]- [24].
This calculation has the fundamental assumption that the available discharge time of
the PAP battery remains the same irrespective of the power-draw profile of the PAP.
But, in practice, the battery discharge rate affects its available discharge time as shown
in Fig. G.3, called the Peukert effect [4].

Let co be the rated capacity of a cell of the PAP battery unit in ampere-hours (Ah)
and to be the rated discharge time in hours (h). This means, if the PAP draws 1A of
current from the cell, the cell will be completely discharged after to hours. However, in
practice, the current drawn by the PAP changes with time as a function of the power
required and the terminal voltage of the battery:

Puav(vm) = ibm · nb · V b
m ∀m ∈M

′
, (G.13)

where nb is the number of battery cells connected in series to form the battery unit of
the PAP with V b

m, the terminal voltage of a battery cell at the beginning of the mth



182 Paper G.

0 200 400 600 800 1000
Elapsed Time [s]

2.8

3.0

3.2

3.4

3.6

Ba
tte

ry
 T
er
m
in
al
 V
ol
ta
ge

 (V
m b
)

0

250

500

750

1000

1250

1500

1750

Re
m
ai
ni
ng

 T
im

e 
[s
]

Vmb -Peukert
Vmb -noPeukert
tm-Peukert
tm-noPeukert

Fig. G.3: Air-time with and without considering the Peukert effect for constant 200W power-draw
until the battery discharges completely.

time slot; also, V b
1 = Vo is the nominal voltage of the battery. Hence, the current drawn

by the PAP during the mth slot is ibm = Puav(vm)/(nb · V b
m). After the mth slot, the

battery terminal voltage drops according to,

V b
m+1 = V b

m − sb
m(ibm) · ibmδt ∀m ∈M

′
, (G.14)

where sb
m(ibm) is the rate of change of terminal voltage per Ah that changes as a function

of ibm. In addition to the drop in the battery terminal voltage, the remaining discharge
time also changes after each time slot according to,

tbm+1 = tbm

(
cbm − ibmδt
ibm+1t

b
m

)pb

∀m ∈M
′
, (G.15)

with

tb1 = to

(
co
ib1to

)pb

; (G.16)

cbm = tbmi
b
m with cb1 = co; pb > 1 is the Peukert coefficient that depends on the type

of the battery used; ibm+1 is determined by substituting the voltage determined using
(G.14) in (G.13) to guarantee a power output of Puav(vm+1). The PAP should reach the
destination either before the value of the terminal voltage reaches Vcutoff: V b

M+1 ≥ Vcutoff
or tbM+1 ≥ 0.
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Fig. G.4: Variation of battery discharge slope for different discharge current.

The slope, sb
m(ibm) depends on the type of the battery used in the PAP. For a Li-ion

battery with co = 4.5 Ah, to = 3 h, io = 1 A, Vcutoff = 2.5 V, and Vo = 3.7 V, we
perform a curve fitting over the variation of sb

m(ibm) with regards to ibm using the data
points from the data sheet [30] as shown in Fig. G.4:

sb
m(ibm) = fb

1 · ibm
fb

2 , (G.17)

where fb
1 = 0.2941, and fb

2 = 0.06888.
The Peukert effect is better explained in Fig. G.3. The figure shows the voltage

drop and the remaining discharge time of a typical Li-ion battery (commonly used in
UAVs) during discharge when the PAP draws a power of 200 W continuously. As shown
in the figure, a battery is useful until the terminal voltage or the remaining discharge
time becomes lower than the corresponding threshold values (2.9 V and 30 Seconds,
respectively), whichever happens first. The air-time of the PAP is defined as the time
elapsed from the beginning till the battery is useful. As seen in the figure, neglecting
the Peukert effect overestimates the air-time of the PAP. Thus a trajectory planned
considering the availability of air-time determined without considering the Peukert effect
will initiate the early-landing procedure before completing the trajectory. This affects
the system’s service fairness, sum rate, and energy efficiency. The PAP air-time for a
given power profile considering the Peukert effect can be estimated using Algorithm 1.
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Algorithm 2: PAP Air-Time Estimation
1 Initialize m = 1 Puav(vm), to, Vo, co, Vcutoff, δt;
2 while 1 do
3 if (m == 1) then
4 V b

m = Vo; find ibm from (G.13); find tbm using (G.16);
5 if (tbm ≤ 0) then
6 break;
7 find sb

m(ibm) using (G.17);
8 find V b

m+1 using (G.14);
9 if (V b

m+1 < Vcutoff) then
10 break;
11 m = m+ 1; update Puav(vm);
12 find ibm from (G.13); tbm using (G.15);
13 Output: Air-Time: Tuav = mδt.

3 Trajectory Optimization Using DRL Method
In this section, we formulate the problem and use the deep reinforcement learning tech-
nique to design an optimal trajectory for the PAP that maximizes the FEE of the
system.

3.1 Problem Formulation
The FEE of the considered system can be increased by suitably designing the 3D tra-
jectory of the PAP. The corresponding problem can be formulated as,

(P1) : maximize
VM

FEE (VM ) ,

s.t. V b
M+1 ≥ Vcutoff; tbM+1 ≥ 0, (G.18)
ux,m+1 = ux,m + δtvmsin εmcosαm︸ ︷︷ ︸

∆x
m(vm)

∀m ∈M
′
, (G.19)
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uy,m+1 = uy,m + δtvmsin εmsinαm︸ ︷︷ ︸
∆y
m(vm)

∀m ∈M
′
, (G.20)

uz,m+1 = uz,m + δtvmcos εm︸ ︷︷ ︸
∆z
m(vm)

∀m ∈M
′
, (G.21)

uz,min ≤ uz,m ≤ uz,max ∀m ∈M, (G.22)
ΣNn=1Tm,n = δt ∀m ∈M

′
, (G.23)

uM+1 = uF; u1 = uI, (G.24)
Tm,n ≥ 0 ∀m ∈M

′
, n ∈ N . (G.25)

The objective function of (P1) maximizes the FEE; (G.18) ensures that the PAP will not
run out of onboard available battery capacity at any point of the trajectory. The x, y, and
z coordinates of the PAP position are changed according to (G.19)−(G.21), respectively.
The flying region of the PAP is limited in the z-direction using (G.22) with uz,min and
uz,max as the respective minimum and maximum permitted flying altitudes. (G.23) is
the TDMA scheduling constraint. (G.24) constrains the initial and final positions of
the PAP to be uI and uF, respectively. (P1) is a non-convex optimization problem
with a large number of optimization variables restricting the use of conventional convex
optimization methods such as sequential convex programming [31]. Consequently, (P1)
is equivalently represented as a Markov Decision Process (MDP) with continuous state
and action spaces, and a DRL-based algorithm is proposed to design a 3D trajectory
for the PAP that maximizes the FEE of the system.

The PAP is considered as an agent of the DRL framework; the framework takes the
state observed by the PAP, sm, and outputs an action, am. The agent receives a reward
rm after taking the action am that moves it from state sm to state sm+1. The whole
trajectory of the PAP is considered as an episode of the DRL framework; an episode
ends (i.e., m = M +1) if it runs out of the onboard battery capacity. It should be noted
that the value ofM is not constant here, and it varies according to the profile of the PAP
power consumption. Additionally, to model the FEE solely as a function of the PAP
trajectory, we schedule the data transmission to each GN for a time that is proportional
to the respective expected spectral efficiency (i.e. Tm,n = Rm,n/

∑N
n=1Rm,n, ∀m ∈

M′
, n ∈ N ).

3.2 PAP Trajectory as an MDP
Since the next state and action of the PAP depend only on the present state of the
PAP, we use a standard MDP representation as a 4-tuple (S,A,P,R) with sets: state
space S, action space A, probability of transition P, and a state-action reward map
S ×A− > R.
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State Space, S = {sm}

The state of the PAP consists of 3D-coordinates of the PAP location written relative
to the destination, the PAP’s battery terminal voltage, the total energy consumed,
coordinates of the GNs written relative to the horizontal projection of the PAP position,
and the number of bits transmitted to each GN until the end of the mth time slot:

sm = {{(um − uF), V b
m, Em, {(gh,n − uh,m)}, {Dsum

m,n}},
(G.26)

where Dsum
m,n =

∑m
j=1Dj,n(vj , Tjn) is the total number of bits transmitted to the nth GN

till the end of the mth time slot; Em =
∑m
j=1 δtPuav(vj) is the total energy consumed

until the end of the mth time slot. Hence, sm has 5 + 3 ·N dimensions.

Action Space A = {am}

Since all the state dimensions are functions of the 3D movement of the PAP, the action
am taken by the PAP is velocity-steered and can be expressed as a vector of dimension
3: am = {cxm, cym, czm} ∈ [−1, 1] such that the components of the velocity vector are
given by,

vm =
√
cxm

2 + cym
2 + czm

2 · vmax

3 , (G.27)

εm = arctan


√
cxm

2 + cym
2

czm

 , (G.28)

αm = arctan
(
cym
cxm

)
. (G.29)

Moreover, if the action takes the PAP out of the altitude boundaries, the z-coordinate
of the next state is readjusted to the corresponding boundary value.

Reward Space R = {rm}

The reward function determines how fast the PAP finds the optimal trajectory. Here,
the primary objectives are to maximize the FEE and let the PAP reach the specified
destination before the battery becomes obsolete by satisfying all the constraints of (P1).
To efficiently map the above objectives, we leverage the reward shaping technique [32].
Hence, the reward rm is expressed as,

rm = fm + pm, (G.30)
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where,

pm =
{
FEE(Vm+1) if FEE improves,

0 otherwise/ifm=M+1, (G.31)

is the position reward that encourages the PAP to move in a direction that improves
the FEE of the system, and

fm =
{
κf · FEE(VM ) if m = M + 1,

0 else, (G.32)

is the terminal reward. The value of κf should be selected in a way that ensures the
sum of the position rewards is always less than or equal to the terminal reward. κf is
needed to balance the position and terminal rewards. Otherwise, the position reward
would dominate over the terminal reward.

Since the defined MDP is deterministic, no randomness is considered and all transi-
tions follow the agent’s decisions [25]. Therefore, the next state is a direct consequence
of the current action of the agent.

Episode Termination

The FEE of the system increases when the PAP spends the maximum time over the
air to serve the GNs. Hence, an episode is terminated when the remaining air-time
(Tuav) of the PAP is equal to the minimum time required by the PAP to reach the
destination from the current position with a speed of vmax: Tmin

uav,m = ‖um − uF‖/vmax.
The remaining air-time of the PAP can be estimated using Algorithm 1. Consequently,
if an action takes the PAP to um+1 and if Tuav < Tmin

uav,m+1, the action is discarded and
the PAP moves to the destination from um with a speed of vmax m/s. Accordingly, the
GNs are served for a maximum amount of time while ensuring a safe landing of the PAP
at the destination.

The safety check explained above satisfies (G.18) by ensuring sufficient energy avail-
able at the PAP to fly back to the destination after each action. The 3D coordinates of
the PAP after taking an action are determined by substituting (G.27)-(G.29) in (G.19)-
(G.21), satisfying the PAP movement constraints. The altitude constraint (G.22) is
satisfied by limiting the action space if such an action violates the constraint. The
proposed heuristic time allocation in which the data transmission to each GN is sched-
uled for a time proportional to the respective expected spectral efficiency satisfies the
TDMA constraints (G.23) and (G.25). Finally, all the episodes start and end at uI and
uF, respectively satisfying constraint (G.24).

3.3 TD3-Based PAP 3D Path Design
Here, the objective is to find the optimal policy π that takes the current state of the PAP
(agent) and gives an action that maximizes the expected return: Rm =

∑M
i=m γ

i−mrm,
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where γ is a discount factor determining the priority of short-term rewards. The action
value of a state, Qπ(sm, am), gives the expected return for starting in state sm, taking
action am, and then acting according to the policy π forever after. The optimal action-
value function is given by the Bellman equation as,

Q∗(sm, am) =
[
rm + γ max

am+1
Q∗(sm+1, am+1)

]
.

(G.33)

In DRL, Q∗(sm, am) is approximated by a neural network Qφ(sm, am) with parameters

Algorithm 3: Energy Efficient 3D Path Planning
1 Initialize the locations of GNs;
2 Initialize critic networks Qφ1 , Qφ2 , and actor network µθ with random

parameters φ1, φ2, θ;
3 Initialize target networks φ1,tgt ← φ1, φ2,tgt ← φ2, θtgt ← θ
4 Initialize replay buffer H;
5 for each episode do
6 Initialize the location of PAP to uI , m = 1, V bm = Vo, tm = to; d = 1;
7 Formulate the state of the PAP sm;
8 while the episode is not over do
9 The agent takes an action with exploration noise: am = µθ(sm) + ε,

observe the reward rm and new state sm+1;
10 store (sm, am, rm, sm+1) in the replay buffer;
11 if replay buffer is sufficient then
12 sample mini batch of |H′ | transitions from H;
13 compute target actions using (G.41);
14 compute target using (G.38);
15 update critic networks by one step gradient descent using,

∇φj 1
|H′ |

∑
ei∈H′

(
Qφj (si, µθ(si))− yi

)2

for j ∈ {1, 2};

16 if it is time to update then
17 update policy network by one step gradient ascent using,∑

ei∈H
′ ∇µθ(si)Qφ1 (si,µθ(si))∇θµθ(si)

|H′ | ;
18 update target networks using, θtgt = τθtgt + (1− τθ);
19 φj,tgt = τφj,tgt + (1− τφj) for j ∈ {1, 2}.

20 m = m+ 1;
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φ. Then the closeness of Qφ(sm, am) to Q∗(sm, am) is judged by evaluating the mean-
squared Bellman error (MSBE) function:

L(φ,H) = E
{ei}∼H

(Qφ(si, ai)− yi

)2
 , (G.34)

where

yi = ri + γ(1− d) max
ai+1

Qφ(si+1, ai+1), (G.35)

is the target value and d = 1 represents the terminal state. The expectation in (G.34)
is taken over a mini batch of experiences, {ei} = {(si, ai, ri, si+1, d)} = H′ sampled
from the experience replay buffer, H. The parameter φ is updated to minimize the
MSBE. Since the considered action space is continuous, the evaluation of the MSBE
is not trivial because of the maxai+1 Qφ(si+1, ai+1) term in the target value where the
maximization has to be done over a continuous action space. To tackle this, we use
an actor-critic framework-based twin delayed deep deterministic policy gradient (TD3)
algorithm [33]. An actor-critic framework uses an actor network that takes the state sm
as input and outputs the action am, whereas the Q-value of the taken action am at state
sm is estimated by the critic network. At the end of the training, the actor network
represents the optimal policy, π. Hence, (G.34) and (G.35) can be rewritten as,

L(φ,H) = E
{ei}∼H

(Qφ(si, µθ(si))− yi

)2
 , (G.36)

yi = ri + γ(1− d)Qφ(si+1, µθ(si+1)), (G.37)

where µθ is the actor network with parameters θ and Qφ is the critic network with
parameters φ. From (G.36) and (G.37), the target yi depends on the same parameters
we are trying to train: φ and θ which makes the MSBE minimization unstable. The
solution is to use target networks that have sets of parameters which come close to φ and
θ, but with a time delay. The parameters of the target network are denoted as φtgt and
θtgt, respectively. In order to avoid the overestimation problem of the deep deterministic
policy gradient (DDPG) algorithm [34], the TD3 algorithm proposed in [33] uses:

Clipped Double-Q Learning

in which two critic networks are used instead of one, and uses the smaller of the two
Q-values to form the targets in the MSBE functions:

yi = ri + γ(1− d) min
j=1,2

Qφj,tgt(si+1, µθtgt(si+1)), (G.38)
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where Qφj,tgt for j ∈ {1, 2} are the corresponding target critic networks. Both networks
are then trained to minimize this target:

L(φ1,H) = E
{ei}∼H

[
Qφ1(si, µθ(si))− yi

]2

, (G.39)

L(φ2,H) = E
{ei}∼H

[
Qφ2(si, µθ(si))− yi

]2

, (G.40)

that avoids the overestimation problem;

Delayed Policy Updates

through which the TD3 updates the policy (µθ) and target networks less frequently than
the critic networks (once every K critic networks update);

Target Policy Smoothing

which adds a clipped noise on each dimension of the action produced by the target
policy network. After adding the clipped noise, the target action is then clipped to lie
in the valid action range: [amin, amax],

µθtgt(si+1) = clip
(
µθtgt(si+1) + clip(ε,−c, c), amin, amax

)
,

(G.41)

where ε ∼ N (0, σ) and clip(x, a, b) = max(min(x, b), a). This avoids the problem of
developing an incorrect sharp peak for some actions by the Q-function approximator.
The steps to design a fair energy-efficient 3D trajectory for the PAP using the TD3
framework are given in Algorithm 2.

4 Numerical Evaluation
In this section, we present our main findings obtained through numerical evaluations.
The evaluations consider a square area of 1000 × 1000 meters with 16 GNs. The values
of all the environment-related parameters are listed in Table G.2 [25]. To the best of
our knowledge, the same overall setting has not been considered in the literature yet,
hence we are comparing our results with the following two baseline scenarios:

1. Baseline 1: the first maneuver executed by the PAP is a diagonal climb from uI
up to the center of the region with coordinates (500, 500, 100); hovers there until
it only has sufficient energy to reach its destination; and flies reclined to the end
of its trajectory uF;
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Table G.2: Testing environment settings

Label Definition Value
fc Channel carrier frequency 5.8 GHz
c Velocity of light 3 · 108 m/s
B Channel bandwidth for each GN 40 MHz
N0 Noise spectral power -174 dBm/Hz
uz,min PAP’s minimum flying altitude 20 m
uz,maz PAP’s maximum flying altitude 100 m
vmax Maximum achievable PAP speed 24 m/s
δt Time discretization Interval 1 s
Pt Transmission Power 23 dBm

Table G.3: Network Architecture

Network(s) Layer Depth Activation
Critic Input Layer 56 −
Critic Hidden Layer 1 256 ReLu
Critic Hidden Layer 2 512 ReLu
Critic Hidden Layer 3 512 ReLu
Critic Output Layer 1 ReLu

Actor Input Layer 53 −
Actor Hidden Layer 1 256 ReLu
Actor Hidden Layer 2 512 ReLu
Actor Hidden Layer 3 512 ReLu
Actor Output Layer 3 TanH

2. Baseline 2: the first maneuver executed by the PAP is a diagonal climb from uI to
(200,200,100). It then continues through the shortest path between the locations
of the GNs until it only has sufficient energy to reach its destination. We determine
the shortest path using the well known travelling salesman algorithm.

The simulations are done considering 3 different environment scenarios namely, sub-
urban, urban and dense urban with (a, b, ηLoS, ηNLoS) parameters (4.88, 0.43, 0.2, 24),
(9.61, 0.16, 1.2, 23), and (12.08, 0.11, 1.8, 26), respectively [6].

The architecture of actor and critic networks used in the simulations are listed in
Table G.3. After an extensive experimentation, the values of various hyper parame-
ters associated with the networks that give the maximum FEE value after training the
networks for 1000 episodes are listed in Table G.4. Fig. G.6 plots the PAP power con-
sumption and air-time as a function of the speed. The vertical flying power consumption
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Fig. G.5: Baseline1 scenario to compare the performance; the PAP starts at (0,0,20), flies to the center
of the geographical region (500,500,100), hovers there until the battery capacity reaches the threshold
value, flies back to the destination (1000,1000,20).

increases with speed since the PAP requires more power to overcome the downward drag
force. When the PAP is flying horizontally, the power consumption initially decreases
and then increases after 11 m/s: because the magnitude of power required to overcome
the rotor-induced drag force decreases with the PAP velocity; in the low-speed regime,
it dominates the power consumed to overcome the fuselage and rotor profile drag forces.
Correspondingly, the maximum PAP air-time, using Algorithm 1, is obtained as 1616
seconds (s) when the PAP is flying at a speed of 11 m/s. The figure also shows the
importance of considering the Peukert effect during the trajectory planning of the PAP;
neglecting the Peukert effect overestimates the air-time of the PAP that could force the
PAP to initiate landing procedure before completing the planned trajectory.

Finally, we perform two types of RL training to showcase the effectiveness of our
approach in different scenarios. The first (offline) approach assumes the same fixed user
positions for both the training and testing part. This analysis is done to evaluate the
capability of the actor network to solve problem where all users are uniformly spaced
along the x and y directions, as shown in Fig. G.5. This fixed arrangement has very
sparse GNs which makes it difficult for the FI problem. The second approach considers
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Table G.4: Network Parameters.

Label Definition Value
α Actor learning rate 10−4

β Critic learning rate 10−3

|H′ | Batch size 64
|H| Replay buffer size 2× 105

K Network update interval 2
τ Soft update factor 0.001
γ Discount factor 0.99
κf - 1000
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Fig. G.6: Variation of the PAP power consumption and air-time (endurance) as a function of the
flying velocity. H-fly represents a level forward flight at the maximum height (vm 6= 0, εm = 90◦); v-fly
represents axial climb or descent (vm 6= 0, εm = 0).

random positions, such as in a point process, where the x and y coordinates of each GN
are uniformly distributed for each training episode. In this approach the testing is done
on a set of random GN arrangements that the agent has not used for training before,
which also includes the fixed uniform positions. This is a slightly easier problem when
solving fairness problems such as FI due to the likelihood of users to cluster and/or
disperse due to the entropy of the system.

4.1 Fixed Uniform User Positions (Offline RL)
The resulting trajectories following the training process of the actor network for the first
arrangement are given in Fig. G.7. We notice that in the case of suburban deployments,
the TD3 DRL method behaves very similarly to the stop-and-hover baseline deployment.
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Fig. G.7: Sample PAP trajectories obtained using the trained actor network.
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Fig. G.9: EE, and PAP air-time improvements as the training progresses. The training procedure is
repeated for 16 different random seeds. The shadow regions around the plots show a 95% confidence
interval across randomized repetitions.
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Table G.5: Improvement with respect to the baselines.

Proposed Baseline1 Improvement Baseline2 Improvement

Suburban
FEE 2.039 1.085 87.93 % 1.083 88.27%
FI 0.896 0.975 -8.1 % 0.985 -9.03%
EE 2.276 1.113 104.49% 1.098 107.28%

Urban
FEE 1.4 0.376 272.34% 0.508 175.59%
FI 0.968 0.681 42.14 % 0.971 -0.31%
EE 0.876 0.552 58.69 % 0.523 67.49%

Dense urban
FEE 0.853 0.204 318.13 % 0.329 159.27%
FI 0.902 0.617 46.19 % 0.976 -7.58%
EE 0.946 0.331 185.8 % 0.337 180.71%

This is due to the very high likelihood of having a LoS with all users and gives less
relevance to the position of the PAP. However, opposite to the baseline case, the DRL
method performs occasional repositioning to maintain better FEE. Finally, the TD3-
DRL implementation keeps the PAP in constant movement with speeds around its most
energy efficient velocity. We note that the most energy efficient velocity varies with the
aerodynamics of the specific UAV and can thus be different with UAVs from different
manufacturers. Opposed to the suburban scenario, in Fig. G.7 we can see in the subplots
c) and e) that the PAP maintains much more dynamic movements for the urban and
dense urban scenarios respectively. This is a superior approach to the stop-and-hover
one, due to the short bursts of better LoS connectivity when the PAP travels above
each GN. However, these bursts need to be balanced over the longer period of service
and thus the PAP is always kept on the move. Finally, it is noticeable that in these two
scenarios, the PAP flies off to a position that is far from the center of the area of service.
This is significant for keeping the nodes equally serviced, and thus have improved FEE,
in the more challenging propagation environments.

Figs. G.8a-G.9b show the respective improvement in the fair energy efficiency, fair-
ness index, energy efficiency, and PAP air time as the training progresses. As seen in
the figures, initially, the agent tries random trajectories to explore the state-action space
causing relatively shorter episodes with low FEE, FI, and EE values. Later, this experi-
ence helps the ML model to converge to a better policy that improves the optimization
metric. Moreover, the testing values (the values after 1000 episodes) using the proposed
algorithm outperform the baseline scenarios in all the considered environments, as given
in Table G.5. The maximum gain over Baseline1 is achieved when the PAP is deployed
in a dense urban scenario. This is because the considered setup places a subset of GNs
in the NLoS regime of the PAP’s hovering point, thereby giving a low baseline FI value.
The proposed algorithm improves the FI value by moving the PAP around the GNs,
as shown in Fig. G.7e. The performance gain achieved by Baseline2 is competitive in
urban and dense urban scenarios, with regards to Baseline1, because the correspond-
ing trajectory improves the service fairness among all the GNs. Interestingly, the FEE
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performances of Baseline1 and Baseline 2 in a suburban scenario are comparable since
all the GNs are in LoS with the PAP throughout the respective placement policy, giv-
ing high FI values. This leads us to the conclusion that the suburban environment is
not challenging enough for the problem of trajectory with regards to the scale of our
implementation. . In all the trajectories, the PAP climbs to the maximum altitude
after leaving the starting point and then follows a horizontal flight during the remaining
endurance: as the altitude increases, the throughput between the PAP and a node in-
creases due to an improved LoS probability between them; furthermore, the PAP power
consumption during a vertical flight is much higher compared to a horizontal flight as
shown in Fig. G.6. Hence, flying horizontally at the maximum altitude increases the
PAP air time as well as the number of bits transmitted to the GNs thereby improving
the FEE value of the system. Also, the speed plots of Fig. G.7 show that the actor
proposes to fly the PAP at the optimal flying speed that maximizes the air-time of the
PAP.

4.2 Randomized Uniform User Positions (Online RL)
In this section, we describe the method adopted from [35] to generalize the training
so that the trained actor network performs well for any set of user positions. The
system is trained for a fixed number of episodes Ntrain, where the x and y coordinates
of each GN are uniformly distributed for each training episode. After every 10 training
episodes, we evaluate the actor network on a total of Neval evaluation episodes with
disabled learning to assess the current performance of the actor network. We repeat
this training procedure for Nseed times, each with a different random seed. The average
FEE value after each evaluation phase is used as a metric to select the best-performing
parameter (θ) of the actor network (µθ). At the end of the training procedure, we
further evaluate the learned policy by assessing its performance in Ntest episodes, each
with a different placement of GNs that the agent has not seen during the entire training
process. Moreover, this test phase happens without exploration and learning.

Fig. G.10 shows the training and testing performances for suburban, urban, and
dense urban scenarios with Ntrain = 1000, Neval = 16, and Nseed = 8. The shadow
regions around the plots show a 95% confidence interval across randomized repetitions.
In all the scenarios, the FEE value improves with the training as seen in Fig. G.8a. The
mean and median FEE values obtained after testing the learned policy over Ntest =
512 episodes outperform the mean baseline performances. As observed previously, the
maximum and minimum performance gains are observed in dense urban and suburban
scenarios, respectively. Additionally, the test performances (with learning disabled) are
comparable with the performances at the end of the training phase. Thus the learned
policy can be used to design an energy-efficient 3D trajectory for a PAP deployed to
serve any given distribution of the GNs while guaranteeing per-user service fairness.
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Fig. G.10: Training and testing FEE plots. Circles inside the box plots represent the average test
FEE values. The second and third box plots represent Baselines 1 and 2, respectively.
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5 Conclusion
In this paper, we considered a UAV in the role of a portable access point (PAP) that
aims to maximize the novel fairness-based energy efficiency metric, fair energy efficiency
(FEE). Optimizing the energy-efficiency of PAPs is important but this should not come
at the expense of service fairness. The method we propose here strikes a good balance
between both. Moreover, we defined a pragmatic non-linear discharge behavior of the
PAP battery, as the Peukert effect. As the first work to investigate the Peukert effect in
PAP 3D trajectory optimization for wireless IoT services, we initially investigated the
impact of the non-linearity of the energy storage. As such, we deducted that neglecting
the Peukert effect overestimates the PAP air time which could force the PAP to perform
an early landing. Given the non-convex FEE maximization problem with non-tractable
constraints we proposed an adapted implementation of a twin delayed deep deterministic
policy gradient deep reinforcement learning (TD3-DRL) framework. The optimal solu-
tions provided by TD3-DRL varied by the properties of the propagation environment.
The improvements of using the TD3-DRL in suburban scenarios are moderate with a
gain up to 80% in suburban over the baseline scenarios and around 200% and 300% in
the urban-and dense urban scenarios respectively. Finally, we generalize the network to
any set of GN positions. Thus, we can summarize, that our TD3-DRL implementation
provides a robust solution for PAP trajectory optimization in both strongly LoS and
strongly NLoS environments.
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Abstract
Unmanned Aerial Vehicle (UAV) swarms are often required in off-grid scenarios, such
as disaster-struck, war-torn or rural areas, where the UAVs have no access to the power
grid and instead rely on renewable energy. Considering a main battery fed from two
renewable sources, wind and solar, we scale such a system based on the financial budget,
environmental characteristics, and seasonal variations. Interestingly, the energy source
is correlated with the energy expenditure of the UAVs, since strong winds cause UAV
hovering to become increasingly laborious. The aim is to maximize the cost efficiency of
coverage at a particular location, which is a combinatorial optimization problem for di-
mensioning of the multivariate energy generation system under non-convex criteria. We
have devised a customized algorithm by lowering the processing complexity and reducing
the solution space through sampling. Evaluation is done with condensed real-world data
on wind, solar energy as well as traffic load per unit area, driven by vendor provided
prices. The implementation was tested in four locations, with varying wind or solar in-
tensity. The best results were achieved in locations with mild wind presence and strong
solar irradiation, while locations with strong winds and low solar intensity require higher
CAPEX allocation.

1 Introduction
The use of UAVs, in particular the multi-copter drones, has been praised for the ability of
providing modular, adaptable and scalable wireless communications services as they can
easily be redeployed, target specific users and load balance existing cellular architectures,
[1, 2]. Unfortunately, UAV-mounted small base stations (UAVSBSs) are not a feasible
replacement to traditional base stations in urban areas, mainly due to the safety, privacy
and noise concerns. Opposed to this, UAVSBSs are crucial in scenarios that result in
service outages such as war-torn or disaster struck areas [3] and traffic surges in weakly
serviced areas [4]. In these cases, it should be expected that the existing infrastructure
is unable to support the energy requirements of the UAVSBS system. Moreover, to
satisfy the service constraints of the area, that generally vary during the day [5], the
deployments require multiple UAVs (a.k.a. swarm).

Since UAVs require a lot of energy (stored in a battery) to fly, the goal of this work
is to evaluate the feasibility of self-sustainable energy implementation for long-term
persistent (uninterrupted) operation of UAV swarms. This is targeted for areas where
fixed infrastructure is unavailable and a UAVBS-based solution is deemed acceptable.
As such we aim to provide a solution to finding the ideal scale of the system, for a
particular location, through maximizing the coverage area discounted by its financial
cost. This is a nuanced problem as it solves complex interactions between the energy
generation and consumption systems.
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1.1 Literature Overview
The effects of using UAVSBSs that are positioned to offer service to ground customers
has already been well investigated in [2, 6–13]. In [6–8] the focus is on improving spec-
tral efficiency when exploiting the temporal and spatial mobility of UAVs for servicing
user hotspots. In our previous works [9, 10], we demonstrated the benefit of horizon-
tally positioning a standalone UAVSBS, equipped with a tilting directional antenna.
Moreover, the work in [11] focused on the energy efficiency for UAVSBS deployment,
while the authors in [14] and [15] studied the problem of placement optimization of a
single cell and interference-limited multi UAVSBS deployments, respectively. While the
aforementioned works are concerned with optimizing deployment locations of the UAVs
once they are in the air, they generally ignore the problem of short service durations.

Ever since the proliferation of drones into the mass market, there has been a strive
towards persistent UAV services [16] with several methods. The most prominent method
assumes automated battery swapping [17]. In [18] the authors solve the optimal trajec-
tory for patrolling UAVs that exactly exploit the battery swapping mechanism that is
connected to the grid mains. In [19] the authors consider a mothership-like UAV that
houses and orchestrates the deployment of a swarm of smaller UAVs, where the mother-
ship ensures that the energy requirements for the entire system is satisfied. While such
mothership systems are genuinely useful for achieving unlimited mobility, the creation
of one is complex and assume technical innovation on several fronts which is a signif-
icant shortcoming and would become very costly to implement. On the other hand,
the authors of [20] consider a ground based central unit that serves as a backbone to
the UAVs and has solar panels to manage the energy requirements on the ground. The
shortcoming of the previous work is that it does not consider the impact of wind and
offsetting the influence of air movement. In [21] the authors propose a cost efficient
UAV system for data harvesting from IoT systems, and is not directly related to general
communication services. In [22] we previously investigated the optimal arrangement
for UAVs that need to provide persistent service by interleaved recharging at a ground
station, however the analysis was limited to a single UAV and without the impact of
wind.

We note that per [2], UAV Base Stations are able to alleviate capital and operating
expenditures (CAPEX & OPEX) of telecom operators up to 52% and 42% respectively.
To serve disaster struck, remote, or underdeveloped areas, we focus on works that involve
dimensioning sustainable energy generation systems for wireless communications. As
such, the authors of [23] and [24] proposed alleviating the energy requirements of multi-
tier cellular implementations supported with renewable energy. The work of [25] comes
the closest to our goal of providing cellular connectivity in rural zones. Moreover,
the authors consider an architecture composed of UAV-based BSs to provide cellular
coverage, ground sites to connect the UAVs with the rest of the network, solar panels,
and batteries to recharge the UAVs. The [25] approach is generally simplistic, does
not maximize coverage, and does not account for the impact of wind. And finally, the
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Fig. H.1: Schematic of the energy system at the central station (CS) that consists of wind turbines
(WT), photovoltaic (PV) panels, a central circuit (CC), ground battery (GB) and a UAV battery charger
(UAVBC) that represents the load. The service scenario illustrates a deployment in a mountainous
region.

work [26] analyzes a mothership-orchestrated UAV swarm for wireless communications,
with the goal is to minimize the overall weighted distance traveled by the mothership
for UAV recharge. This work not give realistic overview of the capital expenses, and
omits the impact of wind.

1.2 Off-grid Redeployable UAV Communications System
The proposed communications system is shown in Fig. H.1, and is intended to provide
persistent services to rural, suburban and low-rise urban areas, by deploying a central
station (CS) that supports and coordinates the UAV swarm. Once deployed, the UAVs
hover and provide a satisfactory service rate for the entire area. When a UAV nearly
depletes its battery, it flies back to the CS to replace the energy spent. As in [27], we
consider an automatic battery swapping mechanism that replaces the depleted batteries,
as shown in c) in Fig. H.1.

To ensure a long-term persistent deployment, the system needs to compensate the
power requirements. As Illustrated in Fig. H.1, our considered implementation of a CS
has five energy modules. The wind turbine (WT) and photovoltaic (PV) panels generate
energy to be stored into a central ground battery (GB). The system is interconnected
by a central circuit (CC) module that directly links the load of the system, which is
an automatic UAV battery charger (UAVBC) that charges the hot-swappable UAV
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batteries. Finally, we assume that the CS acts as a sink/middlehaul for the wireless
service that the UAVs offer, which is overprovisioned and provided by low earth orbit
(LEO) satellites [28].

1.3 Main Contributions & Paper Outline
This work provides a fresh perspective on UAV swarm implementations for persistent
wireless service such as:

• We consider long-term standalone deployment of UAVs for remote areas with a
realistic model for the impact of wind onto the energy consumption of the UAVs.
This is the first work in the area to consider the wind intensity giving importance
to the altitude and terrain roughness.

• We model the system as totally self-sustainable and including PV- and WT-based
energy generation modules, where this is the first work to introduce WTs that have
the capability of offsetting the UAV’s energy expenditure due to wind strength.

• We aim to provide coverage in the most efficient manner for a potential capital
investment. To achieve this, we formulate a novel problem that maximizes the
wireless coverage area discounted by the cost of the system. The goal of solving
the problem as coverage maximization, is to understand the scalability of such a
complex system in the many different possible deployment environments. This is
nuanced multi-variate optimization problem and is entirely based on real world
data and current commercial climate.

• We propose a computationally light algorithm that uses greedy sampling and
binary search to find the optimal configuration that is a combination of area
covered, wind turbines, PV panels, cells in the ground battery, and UAVs in the
swarm.

Common abbreviations are contained in Tab. H.1, and commonly used symbols
are contained in Tab. H.2. Symbols introduced later in the papers are contained in
a table within that section. The rest of the paper is organized as follows. In Section
2 we describe the UAV based communications services and its energy expenditure. In
Section 3 we introduce the energy generation and management system. In Section 4 we
define both the formal problem and the proposed algorithmic solution. In Section 5 we
display the results of the implementation, and finally draw the conclusions in Section 6.

2 Modeling UAV Service and Energy
The coverage area (CA), a circle with radius Dmax, contains an arbitrary number of
users that we model in terms of zonal datarate density (ZDD). The ZDD is defined as
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Table H.1: Abbreviations used in this work.

Abbreviation Meaning
BS Base Station
CA Coverage Area
CC Central Circuit
CCEE Cheapest Combination of Energy Elements
CS Central Station
GSS Greedy and Sparse Search
IoT Internet-of-Things
LoS Line-of-Sight
MEL Minimum Energy Load
MPPT Maximum Power Point Tracker
NLOS No-Line-of-Sight
NOC Nominal Operating Conditions
PV Photovoltaic
QoS Quality of Service
ST Standard Testing conditions
UAV Unmanned Aerial Vehicle
UAVBC UAV Battery Charger
UAVSBS UAV-mounted Small Base Station
WT Wind Turbine
ZDD Zonal Datarate Density
CAPEX Capital Expenditure

λh which represents the requested datarate per unit of area, in Mbps/m2, for hour of
the day h = 1, 2...24, that is uniform for the entire area. The goal of ZDD is to properly
scale it for larger time-lengths in the order of hours and adapt it per type of residency
area, such as in [5, 29]. This allows scaling the traffic demand for different sizes of Dmax,
without having to assume a stochastic point process. As a result, the minimum datarate
requested for the entire CA Rh,min, for hour h, is: Rh,min(Dmax) = λhπD

2
max. Note that

we do not consider different rates between days of the year i = 1, 2, ..365, since such a
metric is difficult to obtain and challenges the privacy of users. Considering a fleet of
available drones nUAV, a swarm size of kh ≤ nUAV UAVs is released so that each UAV j
is given an equal amount of area to serve with rate R(kh, Dmax). We can thus linearly
scale the traffic load on each UAV with the swarm size, so that it satisfies:

Rh,min(Dmax)
kh

≤ R(kh, Dmax), ∀h (H.1)

under the condition that maxh (Rh,min) ≤ nUAV ·R(nUAV, Dmax) is satisfied. The data
rate depends on kh and Dmax because the radius of coverage of each UAV in the swarm
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Table H.2: Nomenclature of the symbols used in this work.

Symbol Meaning and unit of measurement
Aeff Antennas’ effectiveness in fitting the CA
Cbat Battery capacity (Wh)
Dj Horizontal Distance of the j-th UAV from CS (m)
Dmax Diameter of coverage area (m)
EUAVs,h,i UAV swarm energy consumption at time h and day i (Wh)
EEAC Energy Efficiency of Annual Coverage (m2/Wh)
F Total cost of the system (€)
Fa Cost of each type of wind turbine (€)
FE Cost of battery system (€)
FPV Cost of photovoltaic system (€)
FUAV Cost of UAVs (€)
FW Cost of wind system (€)
h Hour of the day
i Day of the year
kh Number of UAVs in a swarm
` Path loss (dB)
na Number of wind turbines of each type
nPV Number of solar panels
nUAV Fleet size - Number of available UAVs
pj Hovering location of the j-th UAV
R Instantaneous Data rate (Mbps)
Rh,min Minimum datarate requirement (Mbps)
vwindh,i Wind speed at time h and day i (m/s)
η Mean large scale fading coefficient (dB)
θ Elevation angle at the cell edge (°)
λh Zonal datarate density (Mbps/m2)
τfly Air-time of a UAV (% of hour)

varies within the bounds of 0 < D(kh, Dmax) ≤ Dmax.

2.1 UAV Hovering Locations
The coverage region for each UAV in the swarm is a circle of radius D(kh, Dmax) which
is derived from a packing algorithm [30]. In order to avoid leaving any part of the
area without service, the circles of individual UAV coverage are packed in an over-
lapping manner that fully covers the CA. Making each UAV j ∈ {1, 2, .. kh} equally
relevant, we assign the same radius D(kh, Dmax) = Dj ∀j. Thus, as per the packing
provided in [30], the radius occupies discrete values D(kh, Dmax) = Dmax

γkh
, where γkh =



2. Modeling UAV Service and Energy 213

3 Packing 4 Packing 5 Packing 6 Packing

7 Packing 8 Packing 9 Packing 10 Packing

Fig. H.2: Overlapping packing patterns for UAV regions (blue) with radius D(kh, Dmax) fully covering
the CA (red) with radius Dmax.

1, 1, 1.1547,
√

2, 1.641, 1.7988, 2, for kh = 1, 2, 3, 4, 5, 6, 7, respectively, and Dmax

1+2cos
(

2π
kh−1

)
for kh = 8, 9, 10.

Setting the center of the CA as the center of our coordinate system (0,0), the centers
of the kh = {3, 4, 5, 6} circles are located at {pj(kh, Dmax) = (xj , yj)} where,

xj =D(kh, Dmax)cos
(

2π(j − 1)
kh − 1

)
∀ j ∈ {1, 2, ...kh} , (H.2)

yj =D(kh, Dmax)sin
(

2π(j − 1)
kh − 1

)
∀ j ∈ {1, 2, ...kh} . (H.3)

For the case of 7, the centers of the smaller circles of radius D(7, Dmax) that cover the
region have coordinates {pj(7, Dmax) = (xj , yj)} where,

xj = D(7, Dmax)
√

3cos(2π(j − 1)
6 ) ∀ j ∈ {1, 2, ...6} , (H.4)

yj = D(7, Dmax)
√

3sin(2π(j − 1)
6 ) ∀ j ∈ {1, 2, ...6} , (H.5)

(x7, y7) = (0, 0). (H.6)

As such, the horizontal distance from the CS can be calculated as dj(kh, Dmax) =√
x2
j + y2

j . Finally, for kh = {8, 9, 10}, one circle is concentric with the region and the
centers of the other circles are situated in the vertices of a regular (n − 1)-gon at a
distance of dj(kh) = 2sin( π

(j−1) ) for j ∈ {1, 2, ...(kh − 1)} from the center of the region.
The circle packing formations are shown in Fig. H.2. In order to achieve coverage
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regions with radiusD(kh, Dmax) we adjust the UAV hovering heightH(kh, Dmax), which
is dependent on the propagation environment in the CA and it is covered below.

2.2 Propagation Characteristics with a Directional Antenna
UAV based communication links discriminate two propagation groups, users with direct
line-of-sight (LoS) or no-LoS (NLoS). As such, the path loss ` is a sum of the free space
path loss (FSPL) and the additional large-scale shadowing coefficient for each one of
the propagation groups. The mean large scale fading coefficients for each propagation
group are ηLoS and ηNLoS and come as a consequence of the typology’s features [12].
Thus, the path loss between a user at horizontal distance D and a UAV with altitude
H can be expressed as:

`LoS =− 10 log(Gt) + 20 log(
√
D2 +H2) + C + ηLoS, (H.7)

`NLoS =− 10 log(Gt) + 20 log(
√
D2 +H2) + C + ηNLoS, (H.8)

where, Gt is the antenna gain, log is a shortened version of the common logarithm
log10, and the term C is a substitute for the carrier frequency fc constant in FSPL
C = 20 log ( fc4πc ). Finally, averaging the two propagation groups by the probability of
a LoS occurring gives:

10 log[L] = PLoS(ηLoS − ηNLoS) + `NLoS, (H.9)

where the LoS probability is given by the s-curve model [13]:

PLoS = 1
1 + a exp(−b[arctan

(
H
D

)
− a])

, (H.10)

where a and b are constants dependent on the topological setting.
Each UAV has a downwards facing antenna with gain Gt = Aeff10 log(GI), where

the ideal conical antenna has gain:

GI = 2
1− sin (θ π

180 ) , (H.11)

where θ = arctan(HD ) is the elevation angle at the cell edge and Aeff is the antennas’
effectiveness in fitting an ideal conical beamwidth. This results in the final path loss
expression:

10 log(L) = ηLoS − ηNLoS
1 + a exp {−b[θ − a]} + 20 log

(√
D2 +H2

)
−Aeff10 log

[
2

1− sin (θ π
180 )

]
+ C + ηNLoS. (H.12)
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In order for all the users within the area with radius D to be served, we optimize the
elevation angle of θ = arctan(HD ) from the perspective of a user located exactly at
distance D. Thus, as in [9] we can extract an optimal ratio of D and H, through the
angle θ, by solving:

0 =
π tan (θ π

180 )
9 log(10) + a b(ηLoS − ηNLoS) exp(−b(θ − a))

a exp(−b(θ − a) + 1)2

−Aeff
π cos (θ π

180 )
18 log(10)(1− sin (θ π

180 )) . (H.13)

This makes it easy to calculate the hovering height as H = D tan(θ), which formulates
the pathloss only as a function of the horizontal distance L(D). Finally, the serving
rate for a user at distance D = D(kh, Dmax) becomes:

R(kh, Dmax) = B log2

[
1 + Pt

BN0L(D(kh, Dmax))

]
, (H.14)

where Pt is the transmission power that is assumed to be identical at both user and UAV
side, while N0 is the noise spectral density linearly scaling the noise with the channel
bandwidth B. Since the packing is done in an overlapping manner, we must account for
a total available spectrum of Btot ≥ 3 ·B to avoid inter-UAV-cell interference. Finally,
we note that even though the coverage circles of two UAVs using the same bandwidth
may overlap, such overlap occurs outside both coverage regions, and is thus not harmful
towards the spectrum reuse in the packing algorithm, as it can be seen in Fig. H.2.

2.3 UAV Power Consumption Model
Most of the UAV’s power consumption is absorbed by its rotors, while the power spent
for communications is negligible. To hover, the UAV may have to counteract the wind
speed vwindh,i , for hour h at day i, to achieve net zero speed is remarked as flying hori-
zontally with non-zero velocity. Here we differentiate the wind intensity with regards to
the daily variations since such data is readily available, and has very strict seasons. We
also expect that the horizontal speed required to counteract the wind speed increases
with altitude [31]:

vhov,h,i = vwindh,i

[
H(kh, Dmax)

H0

]Ew
, (H.15)

where H0 is the measurement altitude of the wind velocity vwindh,i , and Ew is the em-
pirically measured indicator derived from the roughness of the surface in the area. To
reach the hovering position pj(kh, Dmax), the UAV ascends vertically with a velocity of
vc to the designated height H(kh, Dmax), and flies horizontally with a velocity of vhfly
the horizontal distance dj(kh, Dmax). Near the end its air-time τfly, the UAV descends
with −vc to represent negative velocity with regards to the coordinate system.
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Table H.3: UAV Flight Parameters.

Label Definition Value
W Weight of the UAV in Newton 23.84 N
NR Number of rotors 4
Fn Upward thrust by the nth rotor -
vhfly UAV’s horizontal flying velocity 10 m/s
vtip Tip speed of the rotor 102 m/s
Af Fuselage area 0.038 m2

ρ(H(kh, Dmax)) Air density -
CD Drag Co-efficient 0.9
Ar Rotor disc area 0.06 m2

∆ Profile drag coefficient 0.002
s Rotor solidity 0.05
vc UAV’s vertical flying velocity 10 m/s
Pvfly Vertical flight power -
Phfly Horizontal flight power -
vhov Flying speed to counteract wind (m/s) -

All the parameters used in the following equations are defined in Table. H.3, and
with the goal to reduce equation clutter the variables H(kh, Dmax) and dj(kh, Dmax)
are reduced to H and dj respectively. The power consumed by the UAV when flying
horizontally with speed v is derived using the axial momentum theory, while assuming
identical rotors [22] as,

Phfly(v) = NRPb

(
1 + 3v2

v2
tip

)
︸ ︷︷ ︸

Pblade

+ 1
2CDAfρ(H)v3︸ ︷︷ ︸

Pfuselage

+ W

(√
W 2

4N2
Rρ

2(H)A2
r

+ v4

4 −
v2

2

) 1
2

︸ ︷︷ ︸
Pinduce

, (H.16)

where Pb = ∆
8 ρ(H)sArv

3
tip, ρ(H) = (1 − 2.2558.10−5H)4.2577. Pblade and Pfuselage

are the powers required to overcome the profile drag forces of the rotor blades and
the fuselage of the aerial vehicle that oppose its forward movement, respectively, while
Pinduce represents the power required to lift the payload.

The power required by the aerial vehicle to climb vertically with a rate vc m/s is
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expressed as,

Pvfly(vc) = W

2

(
vc +

√
v2

c + 2W
NRρ(H)Ar

)
+NRPb. (H.17)

The energy consumption for the entire flight of UAV j occuring at hour h, day i, is
Ej,h,i(kh, Dmax) and can be thus segmented into the three parts, ascent, hovering, and
descent:

Ej,h,i(kh, Dmax) = Pvfly(vc)
H

vc
+ Phfly(vhfly) dj

vhfly︸ ︷︷ ︸
ascent

+Pvfly(−vc)
H

vc
+ Phfly(vhfly) dj

vhfly︸ ︷︷ ︸
descent

+Phfly(vhov,h,i) ·
(
τfly − 2

(
H

vc
+ dj
vhfly

))
︸ ︷︷ ︸

hover

, (H.18)

where τfly is the designated flight time that the UAVmust complete, and 2
(
H
vc

+ dj
vhfly

)
<

τfly. For convenience, we use a flight duration τfly of half an hour, which is reasonable
for state-of-the-art UAV models, since our wind, solar and traffic data are quantized at
each hour of the day. This means that at hour h on day i the UAV consumes a total
energy of:

EUAVs,h,i(kh) = 1
τfly

kh∑
j=1

Ej,h,i(kh). (H.19)

Finally, we note that some of the flight time is spent on flying to and back from
designated hovering positions. To avoid service outage and add leeway for battery
swapping, we assume that the process of positioning occurs at different times for each
UAV To afford such mobility, the system requires one spare auxiliary UAV.

3 Energy Generation and Management at the Cen-
tral Unit

The electricity generated and stored in this system is proportional to its size, and
therefore financial budget. The service availability detailed in the previous section thus
becomes a function of the finantial budget, which is spent on energy generation and
storage systems for the CS.
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Load

Once the UAV lands on the CS, after spending τfly time in the air, it releases its depleted
battery through an automated battery exchange system and receives a new, fully charged
one, as shown back in Fig. H.1 part c). The old battery is then charged until full making
each recharge cycle duration τcharge = Cbat

Pcharge
, where Cbat is the battery capacity, and

Pcharge is the charger power. These are lithium polymer (LiPo) batteries, which have a
predominantly linear charging behaviour [32]. Therefore, the power drawn by a single
battery unit is assumed to be constant, and the overall load profile will look like a step
function directly dependent on the number of batteries recharging at the same time.
The time required for each battery to be guaranteed operational for τfly must satisfy
max (Ej,h,i(kh, Dmax)) ≤ Cbat ∀ j, h, i. Where Cbat should be kept to a minimum with
some margin for errors. Therefore, the number of UAV batteries per single UAV that
are required by the system is defined by the τcharge/τfly ratio. The maximum number
of UAV replaceable batteries is:

bmax =
⌈
nUAV

(
τcharge
τfly

+ 1
)⌉

, (H.20)

which has to be reflected in the purchasing price per UAV in the fleet.

PV

The solar energy generation units are represented by a set of photovoltaic (PV) panels
placed in parallel, all of the same type [33] and with the same working conditions. All
parameters used in these equations are summarized in Table H.4. Their behaviour is
simulated using a simplified version of the 5 parameters model [34], which neglects the
shunt resistance and allows to calculate the maximum power voltage (Vm) and current
(Im) provided at any irradiation (Girr) and ambient temperature (Ta) conditions. This
is made possible using the conservative assumption of a maximum power point tracker
(MPPT) with average efficiency εMPPT = 95% [35].

Vm,h,i = Vm,ST − β (TC,h,i − TST) + Vt,h,i log
Girr
h,i

Girr
ST
, (H.21)

Vt,h,i = ncells
kbnITC,h,i

q
, (H.22)

Im,h,i = Im,ST

(
Girr
ST

Girr
h,i

)
+ α (TC,h,i − TC,ST) , (H.23)

TC,h,i = Ta,h,i + TC,NOC − Ta,NOC

Girr
NOC

Girr
h,i. (H.24)
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Table H.4: PV Parameters from [33].

Label Definition Value
α Thermal coefficient of SC current 0.0474 %/°C
β Thermal coefficient of OC voltage -0.285 %/°C
εconv Converter efficiency 95%
ncells Number of PV cells 60
nI Diode ideality factor 1.5
kb Boltzmann constant 1.380649 · 10−23 J/K
q Electrical charge of an electron 1.602176634 · 10−19 C
Girr
NOC Irradiation at NOC 800 W/m2

Girr
ST Irradiation at ST 1000 W/m2

Im,ST Maximum power current at ST 8.85 A
Ta,NOC Ambient temperature at NOC 20°C
TC,NOC Cell temperature at NOC 45°C
TC,ST Ambient temperature at ST 25°C
Vm,ST Maximum power voltage at ST 31.8 V
εMPPT Maximum Power Point Tracker 95%

Knowing Vm and Im from (H.21) and (H.23), as well as the cell temperature TC, allows
to calculate the output power as:

PPV,h,i(nPV) = nPV · Vm,h,i · Im,h,i · εconv · εMPPT. (H.25)

In the above equations, the subscript ST means standard test conditions (Girr
ST =

1000W/m2, Ta,ST = 25◦C), whereas NOC stands for nominal operating conditions
(Girr

NOC = 800 W/m2, Ta,NOC = 20◦C). The cell temperature at standard test con-
ditions TST, was calculated using (H.24), but using Ta,SC and Girr

ST instead of Ta and G.
The list price for a single panel, pre-VAT, is € 202 resulting in a PV system cost that
scales linearly with the number of solar panels nPV, as FPV = 202 · nPV.

Wind

In favor of precision, the power output of a wind turbine is not calculated with an
analytical model, but the interpolation of power curves found in the data sheet [36],
and shown with blue in Fig. H.3. Two types of wind turbines are considered and
treated as distinct elements of the system:

• A horizontal axis small-WT with standard power output of 500W (unit cost
FW500 = € 1, 429.95);

• A horizontal axis medium-WT with standard power output of 1kW (unit cost
FW1000 = € 2, 738.76);
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Fig. H.3: The wind power curves for two types of horizontal-axis WTs (blue), and UAV power
consumption for hovering at different altitudes (red).

The list prices displayed above are pre-VAT, and were provided by Aeolos Wind Energy
Ltd [36], and include a 9m pole, as well as a rectifier and control system. Finally, the
total power output of the system is scaled to:

PWT,h,i(nW500, nW1000) =
∑
a

naPa(vw,h,i), (H.26)

where a ∈ {W500,W1000} depicts the type of the turbine out of the two suggested
ones, and na is the number of turbines of each type, giving a total financial cost of
FWT =

∑
a Fa · na.

Ground Battery

In order to provide continuous service, an energy storage system with capacity Ecap is
needed. The load is powered by the generation elements when possible, with the storage
elements receiving any excess energy and providing back-up when the generation rate is
too low. Therefore, at the end of the timeslot the net energy in the system is Enet,h,i =
[PPV,h,i(nPV) + PWT,h,i(nW500, nW1000)] δt−EUAVs,h,i(k), where δt = 2τfly is the length
of the time interval. Thus, in case of net positive or negative energy, the battery capacity
at the next time step E(h+1)%24,i+(h+1)/24 (where % is the modulo operator and / is
integer division) will increase or decrease by min(Ecap(ncell), Eh,i + εb,h,iEnet,h,i), with,

εb,h,i =
{
εconv, Enet,h,i ≥ 0

1
εconv

, Enet,h,i < 0 (H.27)

where, Ecap is the total capacity of the battery as a function of the number of cells in
the system ncell, and εb,h,i is the overall efficiency of the storage system. The Li-ion
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battery cells are cylindrical LG MJ1, with unit cost of € 5.75 and capacity of 12.6 Wh,
resulting in a maximum ground battery (GB) capacity of Ecap = 12.6 · ncell requires
spending FE = 5.75 · ncell.

4 Problem Definition and Methodology
The goal of this paper is to find the best value for providing as much coverage as possible
in a geographical region. We thus consider the problem of sizing the entire system as a
combination of six variables: 1) number of communication UAVs in the fleet nUAV; 2)
number of 500W WTs nW500; 3) number of 1kW WTs nW1000; 4) number of PV panels
nPV; 5) number of battery cells in the GB ncell; and 6) the radius of the circular CA
Dmax. In order to evaluate the quality of the system, we use the area πD2

max, in which
the guaranteed communications rate is satisfied, and the total upfront cost F for the
system needed to provide that service.

Since accurately calculating the total capital expenditure of the system is crucial,
the UAV swarm cost plays a big role. Since we use the DJI matrice 100/200 models as a
reference, we take a reference price of € 4000 per UAV, resulting in a total cost for UAV
equipment of FUAV = 4000 · nUAV. Moreover, this budget also covers spare batteries
bmax = 3 ·nUAV that are required for battery swapping. Finally, to guarantee operability
in case of defects in one of the UAVs in the fleet, and to offer better interleaving for
battery swapping [22], there needs to be one spare UAV in the fleet nUAV ≥ 2. To avoid
inconsistencies in the service, a simple timing difference in the UAV swapping time can
be employed. To elaborate, all UAVs do not have to do the battery swap at the same
exact instant which would result in a total outage of the system. To circumvent this
issue, a desynchronization of UAV deployment by a few minutes is used. Finally, in case
of a scheduling failure, the redundant UAV can substitute the designated UAV in the
air.

(P1) : maximize
{nPV,nW500,nW1000,ncell,nUAV,Dmax}

πD2
max
F

,

s.t. R(kh, Dmax) ≤ Rmin,h(Dmax), (H.28)
11 ≥ nUAV ≥ 2, (H.29)
nUAV ≥ max

h
(kh) + 1, (H.30)

Eh,i ≥ 0, (H.31)
F = FPV + FWT + FUAV + FE ≤ Fmax, (H.32)
Dmax ≥ Dlb, (H.33)
Dmax ≤ Dub. (H.34)
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The (P1) objective function maximizes the coverage of the deployment normalized by its
CAPEX; (H.28) guarantees the quality of service for the whole area; (H.29) maintains
eligibility of the number of UAVs in the swarm; (H.30) defines the size of the swarm;
(H.31) guarantees no system outage due to lack of energy; (H.32) defines the financial
budget; (H.33) and (H.34) define the minimum and maximum required coverage. We
note that if the problem is infeasible, the system is inadequate for the application
scenario. Finally, as per (H.28) and (H.31) the system does not allow for any outage
tolerance given the provided data. This is because mismanagement of energy allocation
will not result in a total outage but a reduced quality of service. Since our goal is to
provide average service to the most users, accounting for outages would not be aimed
towards constraining outages for that hour altogether, but a separate problem of QoS
maximization instead of coverage maximization. So, in cases of sub-average performance
of the system, it will operate in a best-effort mode.

Given a fixed coverage area, the problem can be separated into two sub-problems
that construct the CAPEX efficient coverage maximization, and thus solution-searching
can be done iteratively. The easier problem of the two is searching for the minimum
energy load (MEL).

(MEL) : minimize
{kh}

min
kh

EUAVs,h,i(kh, Dmax) ∀h, i,

s.t. R(kh, Dmax) ≤ Rmin,h(Dmax), (H.35)
10 ≥ kh ≥ 1. (H.36)

The MEL problem guarantees coverage for a specific area by satisfying the lower datarate
bound. Extracting the load profile of the entire system for a single area size is a constant
complexity operation, since the number of hours and days for coverage are fixed. As
such, the search of the entire space of eligible coverage areas has linear complexity where
the complexity of that operation scales with the size of the eligible space between both
boundaries (H.28) and (H.29).

The second sub-problem is finding the cheapest combination of energy elements
(CCEE) W500 and W1000 WTs, PVs, and battery cells that satisfies the load profile.
An exhaustive search on the CCEE problem has quartic complexity, which, summed with
an exhaustively searched MEL, create an unreasonably complex problem. In addition,
checking the MEL + CCEE sub-problems for every possible coverage multiplies the
complexity by the size of the space Dlb ≤ Dmax ≤ Dub. Therefore, it is necessary
to find a more efficient way to solve (P1). We approach this by performing greedy
sparse search to reduce the solution space, and simpler algorithms to find near-optimal
solutions. Approximate methods, such as Genetic Algorithms implemented in [37], did
not yield a satisfying performance and are thus left out of this work. However, the
computational performance of GA is given at the end of Section 5.

To elaborate better, there are many challenges that come from the solving the re-
alistic design for a combination of a UAVs swarm supplied with unreliable energy such
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Fig. H.4: EEAC for servicing coverage area, at a suburban/remote setting, in the presence of weak
wind with expected velocity of 3.6 m/s, overlay.

as renewables, in particular wind. First challenge is that the swarm has a varying size
during the day. The second challenge is that the energy expenditure has non-monotone
relationship the wind intensity. The third challenge is that the energy generation also
varies in a non-monotone manner with the wind intensity. However, the biggest chal-
lenge of all is that all aforementioned challenges do not scale linearly with the size of the
coverage area. Thus solving the optimal combination problem for all possible sizes of
cellular coverage is not tractable. Nonetheless, we developed an efficient way to find the
most economical system configuration based on the service demand and the available
resources whose data is region-specific and is obtained from European Commission’s
information system. The methods are elaborated in the following subsection.

4.1 Greedy and Sparse Search (GSS) Algorithm
We define a search algorithm that uses sparse searching of coverage areas where max-
imum coverage per unit cost is likely to occur, and uncover a simplified way to solve
CCEE. Specifically, we investigate the energy efficiency of annual coverage (EEAC) for
each size of coverage area as a proxy-heuristic metric:

EEAC = πD2
max∑

h,iEUAVS,h,i
, (H.37)

where EUAVS,h,i is given by the MEL problem. Looking at Fig. H.4, it is noticeable that
EEAC is not a monotonic nor a convex function of the coverage area. Therefore, it is
convenient to sparsely search for a solution where EEAC is improving. Furthermore,
we can use a greedy approach to shrink the number of samples that will be searched for
a solution to the ones that offer the best improvement with regards to the last sample.
Thus we select only the samples whose second order derivative is larger than zero. In this



224 Paper H.

Algorithm 4: GSS
1 IMPORT: {MEL, BINARY-SEARCH,
2 SAMPLE-mono, SAMPLE-2ndder , SAMPLE-comb}
3 Input: all-constants, all-data, Dlb, Dub max_budget;
4 j=0
5 Dmax = Dlb
6 step_size=1;
7 while Dmax ≤ Dub && kh ≤ nUAV do
8 j=j+1
9 (loadh,i [j] ,FUAV [j])

10 =MEL(EUAVs,h,i(kh, Dmax) ∀h, i)
11 EEAC [j]= πD2

max/
∑

h,i
loadh,i [j]

12 Dmax = Dmax + step_size
13 SAMPLE-mono (EEAC,EEAC*):
14 EEACmnt ← monotonic samples
15 SAMPLE-2ndder (EEACmnt,EEAC*):
16 Dmax_sparse, addr← positive 2nd derivatives
17 j=0
18 for Dmax in Dmax_sparse do
19 j=j+1
20 loadh,i = loadh,i [addr[j]]
21 FUAV = FUAV [addr[j]]
22 Fcomb = 0
23 F =max_budget
24 solutions = []
25 flag==True
26 while flag==True do
27 (nPV, nW500, nW1000), flag ← SAMPLE-comb
28 Fcomb = FPV + FWT + FUAV
29 ncell = b(F − Fcomb)/5.75c
30 if Eh,i(ncell, nPV, nW500, nW1000, load) ≥ 0 then
31 BINARY-SEARCHminimize ncell s.t.
32 Eh,i(ncell, nPV, nW500, nW1000, load) ≥ 0
33 Fcomb = FPV + FWT + FUAV + FE
34 APPEND (Dmax, ncell, nPV, nW500, nW1000, nUAV, Fcomb)
35 TO solutions
36 F = Fcomb

37 fin_sols[j] = minFcomb(solutions)
38 Output: fin_sols
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Fig. H.5: Daily evolution of requested data traffic [5, 29].

way, we still solve the MEL problem for the whole Dlb ≤ Dmax ≤ Dub space beforehand,
with the goal of reducing the search space for the multi-variate CCEE sub-problem by
a significant factor ranging between 100-1000, depending on the scenario we investigate.

The CCEE problem is harder to simplify. However, we can exploit the fact that the
budget can be dedicated to two different purposes: energy generation and storage. We
can easily reduce the complexity of searching the viability of storage once we have suffi-
cient energy generation supporting the system. Thus, we decrease the dimensionality of
the space by increasing the budget until battery storage becomes relevant, i.e. the power
generation profile is able to keep up with the load profile. And since we are looking
to minimize the financial cost, the first eligible solution where battery storage becomes
relevant becomes our new and smaller search space. A simplified representation of the
algorithm is shown in Alg. 4. The GSS approach does not guarantee to always find the
global maximum for the coverage area due to the sampling of Dmax. Despite this, GSS
managed to find the global optimum for all the scenarios that we tested. This is mostly
due to the well sampled areas and the exhaustive search SAMPLE-comb function for
sampling combinations of WTs, PVs, that are monotonously increasing in cost.

5 Numerical Results and Case Analysis
We aim to accurately evaluate the feasibility of the system across seasons or years. How-
ever, due to data sensitivity, the traffic data requested by the populace is only reflected
on a daily cycle λh and does not vary with location, as shown in Fig. H.5. Moreover, we
distinguish two possible types of areas that may need coverage: Suburban and Urban.
These have the (a, b, ηLoS, ηNLoS) propagational parameters of values (4.88, 0.43, 0.2, 24)
and (9.61, 0.16, 1.2, 23), for Suburban and Urban respectively [12]. The rest of the test-
ing parameters are included in Table H.5. Antenna directivity Aeff is considered as a
split variable, since it may impact the aerodynamics of the UAV in ways that the power



226 Paper H.

Table H.5: Simulation Parameters [38, 39]

Label Definition Value
fc Channel carrier frequency 5.8 GHz
c Velocity of light 3 · 108 m/s
B Channel bandwidth 80 MHz
H0 Nominal height for wind measurements 10 m
Ew Environment roughness coefficient 0.335
Btot Available spectral width 480 MHz
N0 Noise spectral power -174 dBm/Hz
Pt Transmission Power 23 dBm
Dlb Lower bound of coverage size 0 m
Dub Upper bound of coverage size ∞ m
Pcharge Power of the charger 180 W
Fmax Total expendable budget € 100000

consumption model cannot predict, and a system integrator may only have few types
available.

For the case analysis, four testing locations with diverse wind speed and solar ir-
radiation patterns were chosen. Two locations are in regions that are prone to grid
and system failures, like the earthquake ridden region around the Italian town of Ama-
trice and the fjord/floodplains of Western Denmark. We also suggest the placement of
the system in common off-grid locations, such as sparsely populated areas in Western
Texas and the touristic region of the Faroe Islands. We also refer to the Faroe Islands
and Western Denmark as windy locations, and Amatrice and Western Texas as sunny
locations.

In Fig. H.6 we illustrate the EEAC across the four scenarios for four different antenna
directivity coefficients Aeff that have negligible impact to the UAVs’ aerodynamics.
More efficient antennas expect higher optimal altitudes, thus consuming more energy for
vertical flights and expecting higher wind velocities. Additionally, larger Dmax expects
larger swarms, that have a lower flying altitude. As discussed in the previous section,
thanks to the aerodynamics of the UAV, the presence of small horizontal wind reduces
the power consumption for hovering and proves beneficial for the flying swarm. This
effect provides interesting results in the case of the more windy locations, such as the
Faroe Islands, which present a distinct improvement in energy efficiency for the coverage
of areas with 3500m ≤ Dmax ≤ 4250m.

All implementations are tested for full annual service on a specified location. This is
the most difficult test for the system as it considers diverse weather patterns of all four
seasons. The productivity of each energy source, wind harvested by WTs and solar har-
vested by PV panels, is tied to the geographical location of the CS and the time of year.
Therefore, we use measurement-driven data provided by the European Commision’s



5. Numerical Results and Case Analysis 227

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

2

4

6

Western Denmark

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

2

4

6

Amatrice, Italy

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

2

4

6

Faroe Islands

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
D

max
 [m]

0

2

4

6

E
ne

rg
y 

E
ffi

ci
en

cy
 o

f A
nn

ua
l C

ov
er

ag
e 

[m
2 /W

h]

Western Texas, USA

A
eff

=0

A
eff

=0.3

A
eff

=0.6

A
eff

=0.9

Fig. H.6: EEAC for all four locations in a suburban environment.

Photovoltaic Geographical Information System1 to extract the annual measurements
of 2015. In this way, by avoiding multi-year averages correlation between hourly sam-
ples is retained. Moreover, we expect solar irradiation and wind speed to be inversely
correlated, as per the study in [40].

It is important to note that the reliability of the system entirely depends on the
data taken in the testing system. In this work, we use four different sets of statistical
data points, wind intensity, solar irradiation, temperature, data traffic pattern, based
on averages over an hour. Thus, the solutions provided by our analysis will thus give
average estimates on communication service performance. This does not mean that an
unexpected fluctuation will result in total system failure but only below average perfor-
mance in the communication service for that timeslot. In the same way, unexpected flux
in energy supply will make the system capable of providing better service than needed,
and therefore provide above average performance. These fluctuations in service are to
be expected in an off-grid system, and the only way to guarantee better service is to
provide stricter sampling (i.e. 75th percentile) of the dataset.

1https://re.jrc.ec.europa.eu/pvg_tools/en/#MR
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Fig. H.7: Implementation feasibility of the off-grid system in a suburban or urban environment.

Since we have set the bound for CA as infinite, in Fig. H.7 we plot the entire solution
space of eligible area CA sizes searched by the GSS. This is done to better illustrate
how the cost efficiency varies when different coverage bounds are imposed. The first
impressions are that there is an obvious advantage of having the setup in an area where
the use of solar panels is feasible. In both sunny locations, the cost-feasibility of the
system is improving by better allocating the available budget, which in turn allows
for exploiting the improved packing efficiency when using bigger swarms. The most
cost efficient deployments are found in the Texian planes where energy can be captured
through both wind and solar. Namely, bigger deployments in this setting do not need
as much PV panels nor wind turbines as the other three locations, to satisfy the energy
requirements of the UAV swarm.

Analyzing the impact of wind, we find that deployments in windy locations tend to
have more volatile solution space opposed to the two sunny locations. The fluctuations
in the curves as the CA gets larger are due to three non trivial effects of wind onto
the energy generation and expenditure of the entire system. The first effect is the
combination of the three non-monotonous curves for energy generation/expenditure in
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Fig H.3. The second effect that causes the strong fluctuations are the variability in wind
speed for energy generation, which in some cases warrants use of solar panels to satisfy
average QoS. The final effect is that denser deployments (when CA is larger it requires
a bigger UAV swarm) tend to have a lower flying altitude. This is particularly impactful
in windy situations as the wind gets logarithmically stronger with the altitude of flying,
and thus increases the energy expenditure of the swarm.

Furthermore, both windy locations do not find use for PV panels and generally use
the bigger 1000W turbines. The first reason is that wind turbines offset the added wind
expenditure of UAV hovering in high winds, and secondly, it makes more sense to exploit
the natural resource with the higher energy output. We note that, the behaviour between
W500 and W1000 WTs is in fact not linear (it has a specific profile) and W1000 can
operate very efficiently in higher winds, as it shown back in Fig. H.3. To add, the UAV
energy expenditure initially dips for weaker winds, as it negates negative effects from
poor aerodynamics. This means that W1000 turbines are better suited for cancelling
the high energy expenditure of winds stronger than 10 m/s. Even in the cases of sunny
deployments, some energy captured from wind power is necessary usually with the W500
WTs. This is done to offset the higher energy expenditure in scenarios where the wind-
speed becomes more challenging, such as when hovering at higher altitudes. As such,
the flying altitude is the main culprit for the comparative efficiency between windy and
sunny locations when the altitude of the UAVs becomes high, and wind speeds become
the main cause of battery exhaustion.

The analytic impact of service in urban and suburban situations vary due to two
effects. The first is the difference in the propagation properties of the environment that
impact the large scale fading. Tougher propagation environments such as the urban
environment have more solid structures and thus expect higher hovering altitudes. And
the second effect is that, urban-type environments need to serve larger expected data
traffic as represented in H.5, which results in smaller coverage areas for same swarm
size.

As we can see in Fig. H.7 the suburban results are not so drastically different in
efficiency (between the sunny and windy locations) in the case where the UAVs have
antennas with high directivity Aeff = 0.9. In accord, deployment efficiency between the
windy and the sunny locations is much closer, mostly due to the higher altitudes of the
UAVs. Nonetheless, UAV swarm deployments are more costly in windy locations and
generally require much higher budget than the € 100000 to achieve coverages bigger than
2700m or 3200m when using Aeff = 0.6 or Aeff = 0.9 respectively. We note that this
is an already high cost and thus we do not recommend the use of UAV swarm wireless
communications for covering big windy areas. In contrast, the scenario in Western Texas
is not limited by the upper CAPEX limit, due to the mild wind presence and reliable
solar irradiation.

Moving over to the Urban environment, we can see that due to the increased user
density and the worse propagation environment, the coverage for the urban implemen-
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tations usually have much smaller CA of radius between 2000− 2700m. Moreover, the
implementations’ efficiency between the windy and sunny locations are much closer.
However, the budget of scaling the system to a bigger coverage area in a windy location,
takes a great toll on CAPEX and exceeds the initial allocation of F = € 100 000. Thus,
serving windy urban areas sees no use for the case of Aeff = 0.6. Again, as seen in Fig.
H.7 the performance for the windy location improves when using better antennas and
allows for bigger swarms.

Finally, we compared the performance of our custom made GSS algorithm to an
exhaustive search solution and a GA implementation. The performance comparison
is in terms of processing time on the same machine with CPU execution, where the
CPU was Intel(R) Xeon(R) Silver 4208 CPU @ 2.10GHz. The processing time for the
case analysis of Western Texas was 51.88 minutes for GSS. Unrestrained exhaustive
search solution containing the same solution space resolution as GSS was calculated to
take around an unreasonable 3.64 years. A more practical, reduced resolution exhaustive
search that was used to verify the GSS results took roughly 14 days of computation. And
finally, a comparison with a GA with the following parameters was tested: population
per generation of 30, number of parents in every generation 5, number of mutating
offspring (in addition to the rest) 15, minimum consecutive generations when goal is
reached 5, and minimum improvement desired by user 0.001 (the algorithm stops after
no improvement higher than 0.001 has been made). The GA approach took 3.1 days of
computation while providing poor results that were very far from the optimal values.

6 Conclusion
In this paper we considered deploying a UAV swarm that offers persistent wireless
services in an entirely off-grid setting. We formulated the problem as CAPEX efficient
coverage area maximization, which is a multi-variate optimization problem for solving
the load profile based on real world data. We considered energy generation from two
sources, wind and solar, that are also taken from real world data. In this paper we have
emphasized the importance of accounting for the impact of wind onto the deployment.
Moreover, we consider the hourly wind intensity as a function of elevation and terrain
roughness, and account for its impact on UAV deployments for long duration hovering.
We have proposed the GSS algorithm that is computationally easy, combining greedy
sampling and binary search to find the optimal combination of wind turbines, PV panels,
cells in the ground battery, and UAVs in the swarm. Using GSS we have calculated the
feasibility of the system in four different locations where the deployment would have
to balance wind or solar power generation. This work opens a plethora of directions
for future works such as investigating the feasibility in very specific areas, specific short
term periods, and different types of UAVs.
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