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A B S T R A C T   

The energy hub (EH) is a promising concept that can accurately evaluate the performance of multi-carrier in-
tegrated energy systems (IESs), ranging from a building to a district, city, region, country, or even an interna-
tional level. Multi-carrier EH-based IESs available in the literature have reached a desirable level of maturity for 
broad scales. However, there is confusion in the literature that misleads readers regarding multi-carrier EH-based 
IESs located on limited scales (e.g., buildings or neighborhood level). Furthermore, multi-carrier EH-based IESs 
studies that involve complexities such as discrete, continuous, or mixed decision-making variables, multiple 
conflicting objective functions, non-linearity, non-convexity, and discontinuity are affected by different techno- 
economic, environmental, and social parameters that are uncertain. Ignoring such uncertain input parameters 
(UIPs) in these studies leads to less adaptable results to realistic conditions. However, their integration is a 
challenging process intensifying these complexities during studies’ modeling, optimization, and decision-making 
processes. Therefore, this review paper aims to fill these gaps by identifying, classifying, assessing, and priori-
tizing different UIPs, their analyzing techniques, and solution approaches, solvers, and software for addressing 
relevant optimization problems to achieve a deeper understanding of current challenges and potential future 
research, trend, and capacities in multi-carrier EH-based IESs studies.   

1. Introduction 

1.1. Background and motivation 

Global energy crises (e.g., the OPEC oil embargo of 1973); policies 
related to climate change (e.g., Paris Agreement and Kyoto Protocol); 
gas dignity upgrade; nuclear generation dilemma; expanding the use of 
renewable energy resources (RERs); and technological progress of co- 
and tri-generation units acted as a trigger for a considerable number of 
countries to integrate their independent infrastructures of energy car-
riers and construct multi-carrier energy ones with interoperability, 
multi-carrier integrated energy systems (IESs) [1]. From technical, 
economic, and environmental (TE&E) as well as security perspectives, 
multi-carrier IESs can be more efficient than independent energy in-
frastructures, and this is now well-proven and recognized by a wealth of 
research publications [1–3]. However, the existence of various energy 

carriers and the integration of their interactions and interdependencies 
increase the complexity of these systems from different aspects. There-
fore, more powerful tools are needed to model and analyze multi-carrier 
IESs. One of the most efficient concepts for analyzing multi-carrier IESs 
is the multi-carrier energy hub (EH). This concept was introduced in a 
project called “a vision of future energy networks (VoFEN)” as an effi-
cient tool to facilitate the move towards non-hierarchical innovative 
multi-carrier IESs systems to benefit from the synergistic of different 
energy carriers [4]. The multi-carrier EH is determined in a system 
where different carriers can be converted, conditioned, stored, and 
distributed to satisfy multi-carrier energy demands [4,5]. 

Regarding spatial scales, the multi-carrier EH can be applied from a 
building to a district, city, province, country, or even at an international 
level. However, its implementation depends on various factors, the most 
important of which are the resources and energy carriers available, the 
desired level of complexity, and others [3]. The multi-carrier EH concept 
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was used in many research projects to scrutinize multi-carrier IESs. As a 
result, about 4663 and 4963 articles are listed in the Scopus and Web of 
Science platforms for the “energy hub” keyword, respectively. This 
number of research activities demonstrates this concept’s importance, 
popularity, and growing trend in recent years. With this growing 
importance, it becomes necessary to scrutinize the principal features 
available in the literature that make the multi-carrier EH the revolu-
tionary tool it is. Therefore, several review papers have been done over 
the last decade to classify these research publications systematically. 
Table A1 lists some of the top ones [1,3,5–17]. 

A retrospective view of review papers presented in Table A1 illus-
trates that the classification of multi-carrier EH-based IESs in them can 
still be used, although some modifications may be necessary to adjust 
them for new criteria. Nonetheless, when there is a need to focus on a 
unique and in-depth audit (e.g., uncertainty, problem-solving process) 
of a specific type of multi-carrier EH-based IESs (e.g., rural, local, urban, 
or industrial multi-carrier EH-based IESs), the effectiveness of these 
review articles is impaired and confuse researchers. Therefore, as tech-
nical publications in the field of multi-carrier EH-based IESs expand, 
finding and filling the existing gaps in the literature by providing an 
accurate classification for each class of these systems can serve as a 
precious resource for researchers and engineers. 

1.2. Contribution 

This paper develops and presents a taxonomy of research publica-
tions that have modeled buildings (e.g., industrial, residential, com-
mercial, office, or public buildings) as multi-carrier IESs using the EH 
concept, so-called micro multi-carrier EH-based IESs (μMEHs). The main 
contribution of the article is to scrutinize μMEHs from two perspectives, 
including uncertainty and problem-solving process, to provide a holistic 
understanding and classification of them by answering the following 
questions.  

• What are the uncertainties and their analyzing techniques in μMEHs’ 
studies?  

• What optimization models and solution methods are considered in 
μMEHs’ studies?  

• What attractive paths can be envisioned for μMEHs’ studies from the 
perspective of uncertainty and problem-solving process? 

1.3. Why μMEHs? 

Approximately 60% of energy consumption can be attributed to 
residential buildings, while the remaining portion is accounted for by 
commercial buildings [18]. Traditionally, buildings were only con-
sumers, passive end-users connected to the energy supply infrastructures 
of different carriers (e.g., electricity, district heating, green gas, district 
cooling, and district hydrogen networks). New paradigm shifts, how-
ever, are occurring due to unbundling and deregulation of power sys-
tems, TE&E advances in small-scale RERs, emerging new multi-carrier 
energy conversion and storage technologies, global environmental pol-
icies, and others. 

These modifications will shake traditional notions about multi- 
carrier energy supply infrastructures and IESs. Buildings are the cen-
tral core of these new paradigms. Their role has transited from the 
consumer to the prosumer, an active one that can consume, produce, 
store, and supply different energy carriers [19,20]. This way, active 
buildings will improve the balance of multi-carrier infrastructures via 
multi-carrier demand side management programs (DSMPs), increase the 
efficiency of future local energy markets of different carriers, reduce 
greenhouse gas emissions by increasing the uptake of small-scale RERs, 
create new business opportunities, and others [19,20]. Furthermore, 
according to International Energy Agency, multi-carrier DSMPs should 
be the top priority of research activities in sustainable energy systems 
[21]. Overall, providing an intelligent classification of μMEHs can help 

researchers to pave new and innovative paths toward adapting buildings 
with multi-carrier energy infrastructures to embrace their countless 
benefits. 

1.4. Why uncertainty and problem-solving process? 

With the integration of interactions and interdependencies between 
different energy carriers, increasing development of small-scale RERs, 
electric vehicles (EVs) connection, and updating local multi-carrier en-
ergy markets rules, and others, new uncertainties are introduced to 
studies related to multi-carrier IESs, especially μMEHs, and the existing 
ones have been escalated [22]. Regarding uncertainty, technical studies 
under the μMEHs concept can be categorized into two central policies: 
deterministic and non-deterministic [23]. In the deterministic policy, 
the μMEH is modeled for the most critical condition (maximum value) of 
all parameters (i.e., multi-carrier energy prices and demands, available 
budget, and the production capacity of RERs), irrespective of their 
probability of occurrence. Implementing studies related to μMEHs under 
the deterministic policy has the benefit of simplicity; however, it cannot 
present an actual (or close to actual) image of behavior related to 
different parameters in real-world conditions and consequently leads to 
unrealistic and impractical results (less adaptable results to realistic 
conditions). Therefore, the rational decision to eliminate this significant 
shortfall inherent in deterministic policy is to investigate these studies 
under the non-deterministic policy [24]. In this policy, the μMEH is 
modeled for all possible cases that may occur in the future for all pa-
rameters with stochastic nature, considering their occurrence’s proba-
bility. This policy is much more flexible than the deterministic and can 
reflect more realistic results in the μMEHs’ studies. However, the 
non-deterministic policy is frequently surrounded by an aura of esoter-
ism and ignored by planners and decision-makers in different fields of 
science that prefer to find a unique (certain) outcome. As a result, some 
may be tempted to give up and accept that the non-deterministic policy 
is not amenable to evaluating models quantitatively or qualitatively. 

Nevertheless, the emergence of new theories, the improvement of the 
existing ones, the development of powerful computational tools, and 
others prove the opposite opinion and facilitate the use of this policy as a 
must to make studies more realistic. Furthermore, it is widely recog-
nized that most of μMEH’s studies are formulated in the form of different 
types of optimization problems. These problems involve complexities 
such as discrete, continuous, or mixed decision-making variables, mul-
tiple conflicting objective functions, non-linearity, non-convexity, 
discontinuity, and others. Moreover, uncertainties integration is 
extremely tough, intensifying these complexities during the modeling, 
optimization, and decision-making processes in the μMEHs’ studies. 
Under this circumstance, identifying and classifying different techniques 
and the problem-solving process (solution approaches, solvers, and 
software) for analyzing these uncertainties and solving the relevant 
optimization problems, respectively, help new research to find and fill 
the current challenges by relying on efficient ones. 

1.5. Paper outline 

The remainder of this article is divided into five sections. In section 
two, selected articles are classified based on the analysis methods. Be-
sides, section three investigates μMEHs’ studies regarding uncertainty 
concepts, including uncertainty definition, uncertainty matrix, and 
widely used sensitivity analysis and uncertainty analysis techniques to 
examine the effects of uncertain parameters. Moreover, section four 
categorizes the μMEHs’ studies regarding the problem-solving process. 
Next, section five presents and discusses the limits and prospects of 
μMEHs’ studies in uncertainty and problem-solving process. Finally, 
section six summarises the identified research gaps, potential research 
directions, and future works for μMEHs’ studies. 
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2. Publication analysis 

A filtering step is applied using the keywords “energy hub” plus 
“building”, “energy hub” plus “neighborhood”, “residential energy 
hub”, “industrial energy hub”, and “commercial energy hub” on the 
available articles in the Scopus and Web of Science platforms that 
investigate the multi-carrier EH-based IESs to build a database of rele-
vant publications for this review paper. Then, an additional filtering 
process is performed to ignore duplicate papers on two platforms, 
descriptive papers, conference papers, technical letters, book chapters, 
and books. Finally, an exhaustive analysis (e.g., the title-keyword- 
abstract investigation, full-text review, forward and backward search) 
is used to create raw materials for the database. The output of this three- 
step filtering process results in about 100 papers, Refs. [25–123], which 
are reasonably consistent with the objective of this paper. A classifica-
tion of these articles in terms of analysis methods of μMEH’s studies is 
presented in Table A2. 

3. μMEHs’ studies based on the uncertainty concepts 

3.1. Uncertainty definition 

Uncertainty is not simply the absence of knowledge. Instead, it can 
be defined as insufficient information, which can be of three sorts: 
inexactness, unreliability, and border with ignorance [124]. 

Moreover, uncertainty can prevail when much information is avail-
able. Furthermore, new information can either decrease or increase 
uncertainty. For example, new knowledge in complicated procedures 
may reveal previously unknown or understated uncertainties. In this 
way, more knowledge illuminates that our understanding is more 
limited or that procedures are more complex than thought before. As a 
general definition, therefore, uncertainty can be defined as any depar-
ture from the unachievable ideal of complete determinism [124]. 

3.2. Uncertainty matrix 

μMEHs’ studies have considered different uncertain input parame-
ters (UIPs) in their models. However, the main drawback of these studies 
is the unclear reasons for choosing these parameters. The determination 
of these reasons requires the classification of UIPs by considering 
different aspects. Nevertheless, considering these parameters can be 
categorized from various criteria, it is challenging to systematically map 
them into a holistic categorization. Also, there is no specific guideline in 
the relevant literature to determine these criteria and consequently 
perform the classification of UIPs. Existing classifications for UIPs in 
multi-carrier IES studies have concentrated on only one dimension of 
these parameters, the nature of UIPs [6,15,17,22]. However, other di-
mensions and features of UIPs can be valuable to categorizing these 
parameters orderly. This paper presents a three-dimensional concept to 
classify UIPs in the μMEH’s studies, inspired by concepts presented in 
Ref. [124], as follows (see Fig. 1). 

• The nature of a UIP: This dimension distinguishes between two ex-
tremes: epistemic and variability uncertainties. The first item refers 
to our insufficient knowledge, which is declining with the advance-
ment of research and experimental attempts. The second item, by 
contrast, refers to inherent variability. Therefore, this dimension 
determines whether the uncertainty of a parameter stems from the 
imperfection of our knowledge or its inherent variability.  

• The level of a UIP: This dimension distinguishes between different 
levels of uncertainty: i) statistical uncertainty, ii) scenario uncer-
tainty, and iii) recognized ignorance. The first item refers to a con-
dition in which the UIP can be defined and formulated adequately in 
statistical terms. In contrast to the first item, the second one relates to 
the condition in which the occurrence of a range of outputs is 
possible; however, the formulation of the probability of the 

occurrence of a specific outcome is very complex and sometimes 
impossible. Finally, the third item refers to the condition in which 
there is a fundamental ignorance of the functional relationships and/ 
or statistical properties. In this item, the scientific foundation to 
define different scenarios is very fragile. It should be noted that these 
levels are located between two limits, including determinism and 
absolute ignorance (indeterminacy). Determinism refers to a condi-
tion in which everything is precisely known. In real-world cases, this 
condition is not attainable. Absolute ignorance, however, refers to a 
deep level of uncertainty. As a general result, this dimension de-
termines where uncertainty stands in the spectrum that extends from 
deterministic knowledge to absolute ignorance.  

• The location of a UIP: This dimension attempts to identify generic 
locations where uncertainty manifests itself and are: i) context, ii) 
model uncertainty, iii) inputs, iv) parameter uncertainty, and v) 
model outcome uncertainty. The first item refers to defining the 
system’s boundaries to be modeled. The second item relates to two 
classes of uncertainties: model structure uncertainty and model 
technical uncertainty. Model structure uncertainty arises from the 
model itself, whereas model technical uncertainty stems from the 
implementation process of the model using computers. The third 
item refers to data that define the base system and external driving 
forces that alter this system and its performance from various per-
spectives. This item can be divided into two classes of uncertainties: 
uncertainty related to the external driving forces and uncertainty 
associated with system data. The first class produces changes within 
the system and the magnitude of the forces. The second class, how-
ever, drives the model and typically quantifies relevant features of 
the reference system and its behavior. The fourth item refers to the 
data and strategies employed to calibrate different parameters of the 
model. Finally, the fifth item refers to the accumulated uncertainty 
related to the model outcomes. As a general result, this dimension 
determines where the uncertainty is in the model. 

For further descriptions of these dimensions, please refer to 
Ref. [124]. 

An analytical tool, the uncertainty matrix, can be defined using these 
dimensions to classify and report different UIPs in μMEHs’ studies. This 
matrix can meet the need of decision-makers for an effective and 
powerful tool to identify, classify, assess, and prioritize the critical fea-
tures of different UIPs involved in μMEHs’ studies systematically and 
graphically. It is necessary to mention that in filling in the uncertainty 
matrix, the level and nature of a UIP that occurs at any location can 
manifest itself in various forms simultaneously. Also, UIPs found in a 
specific section of the matrix may not hold greater significance 
compared to UIPs in other sections of the matrix. Furthermore, this 
matrix looks generally compact. However, the level and nature of each 
UIP must be estimated for any location in the model structure. This 

Fig. 1. A three-dimensional concept to classify UIPs in the μMEH’s studies.  
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process needs significant efforts if UIP must be identified, classified, 
assessed, and prioritized in detail. Moreover, this matrix may charac-
terize UIPs only at a certain point in time and must be updated with 
more information and the development of new circumstances. Next, this 
matrix must be reapplied in any field using experts because those per-
forming the uncertainty studies may have overlooked some relevant 
UIPs. For instance, some experts may not be aware of the incompleteness 
of the model structure in a particular system, which may be emerged by 
other experts in the field or in a self-evaluation process. The insights 
derived from the use of such a matrix can help determine how best to 
allocate project resources to reduce the detrimental effects and/or 
embrace the positive effects of UIPs in the estimates of the outcomes of 
interest (e.g., would it be more worthwhile to concentrate on the 
model’s structure or to gather more data to estimate the model’s pa-
rameters?). The formation of the uncertainty matrix for all UIPs in 
μMEHs’ studies is presented in Table A3. The uncertainty matrix in 
Table A3 illustrates that a remarkable part of μMEHs’ studies has 
focused on the most common, significant, and influential uncertainties, 
such as multi-carrier energy prices and demands and the output power 
of RERs. However, with the increasing level of interaction between 
different energy carriers arising from the use of an updated cluster of 
multi-carrier energy conversion technologies, changing local multi- 
carrier energy market rules, EVs connection, to name a few, the 
severity, importance, and effect of uncertainties in μMEHs’ studies are 
constantly evolving. Therefore, it is necessary for new studies to move 
away from the excessive focus on a confined number of uncertainties 
and to adapt their models to real-world conditions as much as possible 
by integrating new and high-impact uncertainties. As a result, scruti-
nizing the effect of new uncertainties in μMEHs’ studies to update the 
uncertainty matrix can be a suitable path for new studies in this field. 

3.3. Analysis of the effect of UIPs 

In general, sensitivity analysis (posterior) and uncertainty analysis 
(prior) techniques can be used to investigate the effect of changes in 
UIPs on the model output [125]. Sensitivity and uncertainty analysis 
techniques are closely linked but distinct from each other. 

3.3.1. Sensitivity analysis techniques 
From a technical perspective, sensitivity analysis techniques inves-

tigate how model output variations can be apportioned to different UIPs. 
These techniques, thus, measure the change in the model output in a 
localized region of the space of UIPs. Precisely, these techniques address 
how the model’s optimal solution(s) and the optimal decision made by 
the decision-maker would change with changes in UIPs’ values, the level 
of restrictions and target output requirements that depend on UIPs, and 
others. In addition, this kind of analysis can estimate the cost of a spe-
cific change in a particular UIP places on the optimal solution(s) and 
decision. This information is of value to those making decisions in 
different phases of a complex procedure. In the relevant literature, there 
are various techniques for sensitivity analysis. Each technique has 
several advantages and disadvantages regarding its properties, compu-
tational costs, application ranges, and how to implement it. 

Well-known examples of sensitivity analysis techniques include i) 
local sensitivity analysis, ii) screening experiments, and iii) global 
sensitivity analysis [125]. The first technique relies on the local effects of 
UIPs, measured through partial derivatives of the output. Some engi-
neering fields, especially chemistry, are good examples of successfully 
applying this technique, but it is inappropriate for models that are 
computationally expensive to evaluate and have many UIPs. The second 
technique can be a suitable alternative to cope with the pitfalls of local 
sensitivity analysis. This technique needs a low computational burden to 
identify the factors subset that controls most output variability. This 
technique provides qualitative sensitivity measures. It means it ranks 
UIPs in order of importance and does not quantify how much a specific 
UIP is more important than another. There is a trade-off between 

computational burden and information. Unlike previous techniques, the 
global sensitivity analysis considers the full range of variation of UIPs 
along their joint distribution [125,126]. Since UIPs vary simultaneously, 
this involves multidimensional averaging. The global sensitivity analysis 
uses variance-based methods to calculate the contribution of each UIP or 
a group of UIPs to the total output variance. For a particular UIP, 
γn;∀{n∈ ΩN}, the first-order sensitivity measure (importance measure) 
can be defined using Equation (1): 

sn =
V(E(y|γn))

V(y)
;∀{n∈ΩN} (1)  

In this Equation, E(y|γn) is the expected value of the output variable y 
when γn is fixed, and V(y) is the unconditioned variance of the output 
variable y. For independent UIPs, the importance measure equals the 
first-order sensitivity index of Sobol. This Equation demonstrates the 
expected reduction in the variance of the output variable y when 
γn;∀{n∈ ΩN} is fixed. It should be noted that the sum of the first-order 
Sobol sensitivity indices cannot exceed one. In this technique, the 
output variance is univocally decomposed in orthogonal terms of 
increasing dimensionality. For instance, in a model with three UIPs, the 
total variance V(y) is decomposed using Equation (2): 

V(y)=V1(y) + V2(y) + V3(y) + V12(y) + V13(y) + V23(y) + V123(y) (2) 

The first-order terms quantify the impact of each UIP. The second- 
order terms represent the impact due to the interaction between a 
particular pair of UIPs that is not amenable to the linear combination of 
the effects due to each of them. The third-order term is similarly derived. 
It is a complete representation since UIPs’ capacity to appreciate all the 
interaction effects are considered, which is significant for nonlinear and 
nonadditive models. However, the number of terms in Equation (2), by 
raising the number of UIPs, is exponentially increased. It can be the main 
disadvantage of variance-based techniques (curse of dimensionality). 
The total sensitivity indices can be used to cover this drawback. In the 
same three UIPs case, these indices are defined using Equation (3): 

sT1 = s1 + s12 + s13 + s123
sT2 = s2 + s21 + s23 + s213
sT3 = s3 + s31 + s32 + s312

(3)  

In a model with N UIPs, the decision-maker need to investigate N total 
sensitivity indices, unlike the previous method, which requires to 
compute 2N − 1 terms in Equation (2). It should be noted that 
sTn ; ∀{n∈ ΩN} can be calculated independently from the summands that 
compose it. In the relevant literature, other methods exist to compute 
global sensitivity indices. Interested readers may look at [126–128] for 
further information. Among all μMEHs’ studies in the database, twelve 
articles have used sensitivity analysis techniques independently or in 
combination with uncertainty analysis techniques to investigate the ef-
fect of changes in diverse UIPs on their model output [46,61,70,87,92, 
95,98,101,104,112,116,119]. Details of UIPs of each study can be fol-
lowed in Table A3. It is important to note that all these studies have 
presented relatively comprehensive descriptions of the sensitivity 
analysis process, which can be helpful from different aspects. However, 
almost all these studies investigated bounded fluctuations of UIPs on the 
objective function(s) value. It means their methods to execute the 
sensitivity analysis are not based on a global exploration of the space of 
UIPs. In addition, these studies have examined the sensitivity of the 
objective function(s) to the UIPs individually (varying one UIP at a 
time). 

Furthermore, they do not consider the correlation between different 
UIPs, which is abundantly found in practical models. All these things 
cause uncertainty and sensitivity to be wrongly estimated in most of 
these studies. Detailed examination of these cases is beyond the scope of 
this article. However, the interested reader may look at [129] which 
presents a systematic review of sensitivity analysis practices in different 
branches of science and describes why many of these analyses are false. 
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Therefore, the need to heed the cases mentioned above, which causes a 
move towards using more efficient techniques to investigate sensitivity, 
is fully felt, and it can be an attractive study path for future research. 

3.3.2. Uncertainty analysis techniques 
In a broad sense, uncertainty analysis techniques attempt to answer 

this question: How uncertain is the prediction? These techniques 
attempt to map what a model does when selected UIPs are left free to 
vary over their range of existence [127,130]. In a more precise defini-
tion, these techniques aim to quantify the overall uncertainty associated 
with the response due to uncertainties in the model input. Different 
uncertainty analysis techniques have been used to model and examine 
UIPs in multi-carrier IESs studies, especially μMEHs’ studies, that can be 
classified into six main categories, see Fig. 2. 

3.3.2.1. Probabilistic techniques. Probabilistic techniques rely on statis-
tical distributions such as the Weibull probability distribution function 
(PDF) and normal PDF to scrutinize UIPs. For example, let y be a 
multivariate function of N UIPs, y = f(γ);∀γ = {γ1,…,γn,…,γN}. In these 
techniques, the decision-maker seeks to determine the PDF of the output 
variable y, assuming that the PDF of UIPs is known, which is the critical 
assumption. Probabilistic techniques are comprised of two major clas-
ses, numerical and analytical approaches. Numerical approaches rely on 
making different guesses at the solution and investigating whether the 
answer to the problem is acceptable enough to terminate the problem- 
solving process. The analytical ones, by contrast, require framing the 
problem using algebraic equations. Although analytical approaches lead 
to accurate solutions, their implementation for large-scale and compli-
cated problems is challenging and sometimes even impossible. 

On the contrary, numerical ones are easier to implement, especially 
for large-scale and complex problems. Numerical approaches give 
approximate solutions; however, obtained solutions are acceptable in 
various problems, especially problems related to engineering subjects. 
The Monte Carlo experiment (MCE) is the most well-known and widely 
used iterative numerical approach that uses repeated random sampling 
of UIPs to attain numerical results for the output variable(s) [131]. The 
implementation processes of the MCE vary but tend to track steps of the 
same general pattern as follows.  

• Step 1: Define a domain for each member of the vector of UIPs, γ =

{γ1,…, γn,…, γN}.  
• Step 2: Set the counter of the MCE: k = 1.  
• Step 3: Generate a sample for each member of the vector γ based on 

the relevant PDF over the pertinent defined domain in Step 1.  

• Step 4: Compute the output variable y for the generated sample of the 
vector γ in the previous step, supposing that γ = γk = {γk1,…,γkn,…,

γkN}, according to Equation (4): 

yk = f (γk); ∀γk ={γk1,…, γkn,…, γkN} (4)    

• Step 5: Compute the expected value and the variance of the output 
variable y, using Equations (5) and (6), respectively: 

E(y)=
∑

k

yk

k
=Mean(y1,…, yk,…, yK) (5)  

σ(y)=E
(
y2) − E2(y)=STD(y1,…, yk,…, yK) (6)    

• Step 6: Check the stopping criterion. If this criterion is satisfied, go to 
the next step; otherwise, set k = k + 1 and go to Step 3.  

• Step 7: Stop. 

The MCE has been used as the chosen strategy to examine diverse 
UIPs (see Table A3) in almost half of the μMEHs’ studies available in the 
database dealing with uncertainties, including operation [28,63,68,84, 
93,94,106,109], planning [83,87,90], design [61], resilience [76,91]. 
These studies have shown that the MCE can handle uncertainties with 
acceptable accuracy in various problems related to μMEHs with different 
sizes and complexities. However, the high computational burden and 
the total reliance on PDFs of UIPs have been stated as shortcomings of 
this method in these studies. It must be recognized that to relieve the 
second weakness, the model reported in Ref. [93] uses the Gaussian 
mixture model alongside the MCE to generate different scenarios for 
UIPs that do not follow any commonly used PDF. Several enhanced 
versions of the MCE (e.g., non-sequential, pseudo-sequential, and 
sequential MCEs) are developed to improve the performance of this 
method in engineering-related studies; however, their explanation is 
beyond the scope of this paper. Interested readers may look at [6,22, 
130,131]. 

Analytical approaches are broken down into linearization- and PDF 
approximation-based groups [6,22,130]. Different methods of the 
former group (e.g., convolution, cumulant, Gram–Charlier a series, 
Edgeworth expansion, Cornish–Fisher expansion, Taylor series, 
first-order second-moment) lie in the computation of the PDF of a 
linearized combination of UIPs [6,22,130]. The accuracy of these 
methods strongly depends on selecting the appropriate linear function, 
which is a challenging task. These complexities have resulted in the 
development of the latter group. Different methods of this group, such as 
the point estimate (PE) method, unscented transformation, 
scenario-based decision-making (SDM) method, and others, dwell on 

Fig. 2. The classification of different uncertainty analysis techniques to model and examine UIPs in μMEHs’ studies.  
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how to create suitable samples of the UIPs that can maintain an 
acceptable level of information about UIPs’ PDFs [6,22,130]. Among 
analytical approaches, the SDM and two-point estimate (2PE) methods 
have been used in the μMEHs’ studies to examine different UIPs. 

UIPs have countless realizations. However, the decision-maker 
cannot examine all of them. In this situation, a logical solution is to 
transform the continuous infinite uncountable realization space into 
countable finite sections (scenarios) with related weights (probabilities), 
which is the basis for the SDM method. Precisely, based on the PDF of 
each member of the vector γ, a limited list of scenarios is generated. 
Next, the expected value of the output variable y is calculated using 
Equation (7): 

E(y)=
∑S

s
πs.f (γs);∀γs ={γs1,…, γsn,…, γsN}; ∀{s∈ΩS} (7)  

In this Equation, πs is the probability of scenario s. It must be recognized 
that the probabilities of scenarios are different, but their sum must equal 
1. Among μMEHs’ studies available in the database concerning un-
certainties, nine studies have used the SDM method to incorporate and 
examine the impacts of various UIPs (see Table A3) on different μMEHs’ 
studies, including operation [40,69,70,81,106,118], planning [108], 
design [75], resilience [73]. The findings of these research publications 
demonstrate that the SDM method is easily implementable in various 
μMEHs’ studies. However, it needs detailed data on UIPs. Furthermore, 
the SDM method cannot deliver the output variable(s) PDF and only 
gives its expected value. 

The PE method relies on calculating the statistic moments of a 
random quantity that is a function of one or multiple UIPs [132]. For 
example, let y be a multivariate function of N UIPs, y = f(γ); ∀γ = {γ1,… 
, γn,…, γN} and assume that UIPs’ PDFs are available. This method needs 
2N probability concentrations located at 2N different points to replace 
the original joint PDF of UIPs by aligning the second-order and 
third-order non-crossed moments. In real-world and large-scale prob-
lems where the number of UIPs is large, implementing the PE method 
leads to a drastic computational burden, which in many cases is not 
economical and even possible. An applicable variation of the PE method 
entitled the 2PE method was suggested to cope with this drawback 
[133]. In contrast to the PE method, the 2PE one requires only 2N 
probability concentration points, which leads to a sharp reduction in the 
computational burden. A step-by-step procedure for the 2PE method is 
provided as follows:  

• Step 1: Set the number of UIPs equal to N.  
• Step 2: Set the first and second moments of the output variable y, 

according to Equations (8) and (9), respectively: 

E(y)= 0 (8)  

E
(
y2)= 0 (9)    

• Step 3: Set the counter of UIPs: n = 1.  
• Step 4: Calculate the skewness coefficient associated with the UIP n, 

according to Equation (10): 

λγn,3 =E
[(

γn − μγn

)3
]/

(
σγn

)3 (10)  

In Equation (10), μγn 
and σγn are the mean and variance of the UIP n, 

respectively. Also, E[(γn − μγn
)
3
] is calculated using Equation (11): 

E
[(

γn − μγn

)3
]

=
∑T

t

(
γn,t − μγn,t

)3
.p
(
γn,t

)
; ∀{t∈ΩT} (11)  

In Equation (11), T and p(γn,t) are the number of observations of the UIP 
n and the probability of observation t related to the UIP n, respectively.  

• Step 5: Calculate the location and probability (weighting) of two 
concentration points related to the UIP n, using Equations (12) and 
(13), respectively: 

ζγn,i
=

λγn,3

2
+ ( − 1)3− i

.

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

N +
(

λγn,3

/
2
)2

√

;∀{i∈{1, 2}} (12)  

pγn,i =
( − 1)i

.λγn,3

2N.

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

N +
(

λγn,3

/
2
)2

√ ; ∀{i∈{1, 2}} (13)  

In Equation (13), the value of each probability, pγn,i ; ∀{i∈ {1,2}}, can 
vary from 0 to 1; however, their sum always equals 1.  

• Step 6: Calculate two concentration points according to Equation 
(14): 

uγn,i = μγn
+ ζγn,i

.σγn ;∀{i∈{1, 2}} (14)    

• Step 7: Calculate the output variable y concerning the UIPs’ vector, 
using Equation (15): 

y= f (γ); ∀γ =
{

μγ1
, μγ2

,…, uγn,i ,…, μγN− 1
, μγN

}
; ∀{i∈{1, 2}} (15)    

• Step 8: Update E(y) and E(y2), using Equations (16) and (17), 
respectively: 

E(y) ≅
∑N

n=1

∑2

i=1
pγn,i .f

(
μγ1

, μγ2
,…, uγn,i ,…, μγN− 1

, μγN

)
;∀{i∈{1, 2}}

(16)  

E
(
y2)=

∑N

n=1

∑2

i=1
pγn,i .f

(
μγ1

, μγ2
,…, uγn,i ,…, μγN− 1

, μγN

)2
;∀{i∈{1, 2}}

(17)   

• Step 9: Calculate the mean (expected value) and the standard devi-
ation of the output variable y, using Equations (18) and (19), 
respectively: 

μy =E(y) (18)  

σy =
̅̅̅̅̅̅̅̅̅̅̅̅
var(y)

√
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

E(y2) − (E(y))2
√

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

E(y2) −
(
μy
)2

√

(19)    

• Step 10: Set n = n+ 1. If n ≤ N, go to Step 4; otherwise, go to the next 
step.  

• Step 11: Stop. 

The 2PE method is simple-to-use and straightforward; however, it 
lacks high accuracy in real-world and large-scale problems. Further-
more, this method does not give any information about the shape of the 
PDF of the output variable(s) and only provides its mean and standard 
deviation. Among μMEHs’ studies available in the database concerning 
uncertainties, three studies have used the 2PE method to address the 
impact of different UIPs on μMEHs’ operation process [51,94,97]. The 
model reported in Ref. [51] has used the 2PE method to handle uncer-
tainty related to the output power of the rooftop photovoltaic system. 
This reference has shown that considering the photovoltaic system with 
its relevant uncertainty improves the synergy between the output power 
of the photovoltaic system and electricity consumption. This improve-
ment has been made by transferring the controllable demands to sunny 
hours as much as possible. Thus, the μMEH’s energy cost and power 
demand during peak hours have been significantly reduced. The 
framework presented in Ref. [94] has considered the output power of 
the photovoltaic system and electricity price as UIPs and modeled them 
using the 2PE method. The simulation results have demonstrated that it 
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is impossible to reach the optimal operation cost without consideration 
of these uncertainties. Also, test results implied that the 2PE method 
performs better than the MCE. A hybrid framework consisting of the 2PE 
method and information gap decision theory (IGDT) has been proposed 
in Ref. [97] to scrutinize the impacts of UIPs on the μMEH’s operation. 
Modeling uncertainties associated with the output power of RERs 
(photovoltaic panels and wind turbines) and energy demand has been 
done using the 2PE method, whereas the IGDT has been used to 
formulate the severe uncertainty related to gas prices. The primary 
outcome of this reference is the reduction of the complexity of the un-
certainty modeling process through the IGDT by handling a portion of 
them with the 2PE method. 

Stress again that probabilistic techniques rely on the assumption that 
sufficient information is available to construct PDFs related to UIPs. In 
the absence of this information, these strategies will collapse. 

3.3.2.2. Possibilistic techniques. Possibilistic techniques use linguistic 
categories with fuzzy boundaries to examine UIPs in a wide range of 
domains where information is incomplete and imprecise [134]. These 
techniques use different membership functions (MFs), such as trian-
gular, trapezoidal, Gaussian, and others, to scrutinize the membership 
degrees of possibilistic UIPs. Regardless of the shape of MFs, the main 
question is “How to determine the MF of the output variable y if MFs of 
UIPs are known, which is the key assumption in these techniques?“. How 
to answer this question has led to the development of different methods 
(e.g., the α-cut, defuzzification). The possibilistic output variable y of a 
model of epistemic UIPs is usually represented in the form of a multi-
variate function, y = f(γ); ∀γ = {γ1,…, γn,…, γN}. If the possibility dis-
tribution of UIPs is known, the possibility distribution of the output 
variable y can be determined using the well-known α-cut technique. The 
α-cut technique is based on fuzzy logic and fuzzy set theory [135]. The 
fuzzy set A is characterized by an MF mapping element of a domain, 
space, or the universe of discourse γn to the unit interval [0, 1], see 
Equation (20). 

A={(γ́n, μA(γ́n)) : γ́n ∈ γn, μA(γ́n) ∈Un};∀{n∈ΩN} (20) 

Equation (20) describes that A is a function from domain γn to co- 
domain Un, and each element γ́n ∈ γn of the domain maps to element 
uγ́n ∈ Un of the co-domain, which means that μA(γ́n) = uγ́n . Precisely, 
μA : γn→[0,1] is a mapping called the degree of the MF of the fuzzy set A 
and μA(γ́n) is the membership value of γ́n ∈ γn in the fuzzy set A. These 
membership grades are often represented by real numbers ranging from 
[0, 1]. Let the fuzzy MF of UIP n be a symmetric trapezoidal type, as 
depicted in Fig. 3. 

The fuzzy MF depicted in Fig. 3 is characterized by Equation (21) 
through (25): 

support(A)= {γ̇n ∈ γn|μA(γ̇n)> 0}; ∀{n∈ΩN} (21)  

core(A)= {γ̇n ∈ γn|μA(γ̇n)= 1}; ∀{n∈ΩN} (22)  

boundary(A)= {γ̇n ∈ γn|0 < μA(γ̇n)< 1};∀{n∈ΩN} (23)  

crossover(A)= {γ̇n ∈ γn|μA(γ̇n)= 0.5};∀{n∈ΩN} (24)  

bandwith(A)=
{⃒
⃒γ̇n,1 − γ̇n,2

⃒
⃒
⃒
⃒μA

(
γ̇n,1

)
= μA

(
γ̇n,2

)
= 0.5

}
;∀{n∈ΩN} (25) 

Equations (21) and (22) represent the support and core of the fuzzy 
set A, respectively. The support of the fuzzy set A is the crisp set of all 
points γ̇n ∈ γn such that μA(γ̇n) > 0 (nonzero membership grades). It 
should be noted that the support of the fuzzy set A is its strong 0-cut. The 
core, however, is the crisp set of all points γ̇n ∈ γn such that μA(γ̇n) = 1 
(membership grades equal 1). The fuzzy set A is normal if its core is non- 
empty (the high\highest membership value equals 1); otherwise, this set 
is sub-normal. Equation (23) describes the boundary of the fuzzy set A. 
This boundary comprises those elements γ̇n ∈ γn of the universe such that 
0 < μA(γ̇n) < 1. The boundary of a fuzzy set is the difference between its 
support and core. Equations (24) and (25) describe the crossover point 
and the bandwidth of the fuzzy set A, respectively. The crossover is a 
point γ̇n ∈ γn such that μA(γ̇n) = 0.5, whereas the bandwidth (width) is 
the distance between the two unique crossover points. 

For the fuzzy set A of UIP n, the α-cut can be defined using Equations 
(26) and (27): 

Aα ={γ̇n ∈ γn|μA(γ̇n)≥α, 0≤α≤ 1};∀{n∈ΩN} (26)  

Aα = [Aα Āα ] (27)  

In Equation (27), Aα and Āα are the lower and upper bounds of the Aα, 
respectively. For different values of α, we get different crisp sets. In 
general, if α1 > α2, then Aα1 ⊆ Aα2 . Consider two values for the α-cut, as 
depicted in Figure (3). The set Aα1 contains all the elements from γ̇n,1 to 
γ̇n,2, including both end values. The set Aα2 contains all the elements 
from γ̇n,3 to γ̇n,4, including both end values. It should be noted that the 
α-cut converts to the strong the α-cut by replacing Equation (26) with 
Equation (28). 

Aα+ ={γ̇n ∈ γn|μA(γ̇n)> α, 0≤ α≤ 1}; ∀{n∈ΩN} (28) 

Having the α-cut of each UIP, the α-cut of the output variable y can be 
described using Equation (29) through (31): 

yα =
[

yα ȳα ] (29)  

yα = inf
[
f
(

Fα
γ1
,…,Fα

γn
,…,Fα

γN

)]
; ∀{n∈ΩN} (30)  

ȳα = sup
[
f
(

Fα
γ1
,…,Fα

γn
,…,Fα

γN

)]
; ∀{n∈ΩN} (31) 

Fig. 3. The symmetric trapezoidal fuzzy MF of UIP n.  
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In Equations (30) and (31), Fα
γn 

is the α-cut of the UIP n. In each α-cut, one 
minimization and one maximization will be done to obtain the lower 
and upper bounds of the output variable y, yα and ȳα, respectively. 
Readers refer to Ref. [135] for further information about possibilistic 
techniques. None of the studies in the database that have investigated 
uncertainties has focused on the possibilistic techniques. Using these 
techniques to model UIPs and compare them with probabilistic tech-
niques can be a new research path for μMEHs’ studies. 

3.3.2.3. Hybrid possibilistic and probabilistic techniques. Hybrid possi-
bilistic and probabilistic techniques are developed to deal with UIPs, 
some of which can be modeled probabilistically, and the rest can be 
described possibilistically. These techniques combine probabilistic and 
possibilistic concepts in a bi-loop structure (a probabilistic technique in 
the outer loop and a possibilistic one in the inner loop) to represent and 
manage UIPs in modeling, optimization, and decision-making processes. 
In these techniques, UIPs are represented by probability distributions 
and fuzzy sets, which capture the likelihood of events and the degree of 
possibility of their occurrence, respectively. The probabilistic loop of the 
bi-loop structure is used to model random variabilities and uncertainties 
that probability distributions, such as Weibull and normal PDF, can 
describe. On the other hand, the possibilistic loop is used to model un-
certainties arising from incomplete or imprecise information, vagueness, 
and ambiguity (e.g., uncertainty in the data quality, variability in 
human susceptibilities) that a probability distribution cannot represent. 
This bi-loop structure allows for more robust and flexible modeling of 
uncertainty, as it can handle both types of uncertainty in a comple-
mentary way. It also enables decision-makers to incorporate their sub-
jective judgments and domain knowledge into the modeling process, 
which can be helpful when data is limited or unreliable. Examples of the 
most well-known hybrid possibilistic and probabilistic techniques 
include i) the α-cut-MCE, ii) the α-cut-SDM method, and iii) α-cut-un-
scented transformation. Consider the α-cut-MCE. In this technique, the 
outer loop is MCE, and the inner is the α-cut. Details related to MCE and 
α-cut are presented in previous sections of the paper. For a thorough 
discussion regarding hybrid probabilistic and possibilistic techniques, 
interested readers are directed to Refs. [6,22,130]. These techniques 
have not been used in any of the papers available in the database that 
deal with uncertainties. However, since they provide valuable insights 
into the behavior of complex models and help decision-makers make 
more informed and robust decisions in the face of different kinds of 
uncertainty, their implementation in μMEHs’ studies can be an attrac-
tive research path. 

3.3.2.4. Interval arithmetic. Interval arithmetic was introduced to 
compute the exact solution and error as a single entity (interval) [136]. 
This technique can be used to model uncertainty because it provides a 
rigorous and systematic way to represent and manipulate intervals of 
real numbers, which can be used to represent uncertainty in measure-
ments or calculations. The idea behind this technique is straightforward. 
First, the distance between the bottom and top edges of each UIP is 
defined using an interval (a range of possibilities). Then, the 
decision-maker tries to find the lower and upper bounds for the output 
variable(s). This technique performs arithmetic operations on closed 
intervals (interval numbers). Each interval number represents some 
fixed real number between the lower and upper endpoints of the closed 
interval. Therefore, an interval arithmetic operation produces two 
values for each result. These values correspond to the lower and upper 
endpoints of the resulting interval such that the true result certainly lies 
within this interval, and the resulting interval’s width indicates the re-
sult’s accuracy. This process makes interval arithmetic helpful in solving 
problems in which the exact value of a solution is not known, but 
instead, only a range of values for UIPs is available. Let y be a multi-
variate function of N UIPs (real numbers whose values are uncertain), 
y = f(γ);∀γ = {γ1,…, γn,…, γN}. In addition, assume there is sufficient 

information about an acceptable range of γn, γn < γn < γ̄n;∀{n∈ ΩN},
{

γn, γ̄n ∈ R
}
,
{

γn≤Rγ̄n

}
, in which the true value of γn is estimated to lie. 

Therefore, the closed (bounded) nonempty real interval (interval of 
certainty or confidence) of the UIP n can be defined using Equation (32): 

[γn] =
[

γn γ̄n
]
=
{

γn ∈R|γn≤Rγn≤Rγ̄n

}
;∀{n∈ΩN} (32) 

This Equation describes that the true value of [γn] lies within the 
interval 

[
γn γ̄n

]
. The lower and upper interval boundaries for the in-

terval [γn] are returned by the infimum and supremum operators, ac-
cording to Equations (33) and (34), respectively: 

inf ([γn]) =min
( [

γn γ̄n
])

= γn; ∀{n∈ΩN} (33)  

sup ([γn]) =max
( [

γn γ̄n
])

= γ̄n;∀{n∈ΩN} (34) 

If γn = γ̄n then [γn] is a thin or point interval. In addition, [γn] is 
negative if γ̄n < 0, positive if γn > 0, and symmetric if γn = − γ̄n. The 
width\diameter, radius, and midpoint of [γn] can be described using 
Equation (35) through (37): 

w([γn])= sup([γn]) − inf([γn])= γ̄n − γn;∀{n∈ΩN} (35)  

rad([γn])=
w([γn])

2
=

(
γ̄n − γn

)

2
;∀{n∈ΩN} (36)  

mid([γn])=
(inf([γn]) + sup([γn]))

2
=

(
γn + γ̄n

)

2
; ∀{n∈ΩN} (37) 

This technique considers the range of possible instances represented 
by an interval model. In interval arithmetic, given a RN to R continuous 
function y = f(γ); ∀γ = {γ1,…,γn,…,γN}, the interval united extension [f ]
of f corresponds to the range of f-values on its interval argument ([γ1],… 
, [γn],…, [γN]) in I(RN) can be defined using Equation (38): 

[f ]([γ1],…,[γn],…,[γN])={f (γ1,…,γn,…,γN)|γ1∈[γ1],…,γn∈[γn],…,γN∈[γN]}

=[min{f (γ1,…,γn,…,γN)|γn∈[γn]},max{f (γ1,…,γn,…,γN)|γn∈[γn]}]

(38) 

For example, Fig. 4 shows the case N= 2, y= f(γ);∀γ = {γ1, γ2}. In-
tervals for these two UIPs are defined as [γ1]=

[
γ1 γ̄1

]
and [γ2] =

[
γ2 γ̄2

]
. 

These intervals represent the possible range of values each UIP can take 
over the given domain. 

The output variable at each point in the rectangular domain is 
evaluated by substituting the interval values for γ1 and γ2 into the 
function. This results in a new interval output for each point in the 
domain. For instance, at the top-left corner of the rectangle of certainty, 

Fig. 4. A 2-dimensional parallelotope of certainty.  
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where γ1 = γ1 and γ2 = γ̄2, the output variable evaluates to y = f
(

γ1,

γ̄2

)
. Therefore, it represents the range of values the function can take 

over the given domain. This technique keeps track of all UIPs simulta-
neously because an interval arithmetic operation produces an interval of 
certainty within which the true real-valued result is guaranteed to lie. 

Operations applied to the ordinary number system can be extended 
to cover interval numbers. Let [γn] =

[
γn γ̄n

]
and [γm] =

[
γm γ̄m

]
be 

the interval of two UIPs and ∘ ∈ {+ − ×÷} and 0 ∕∈ [γm] when∘ = ÷ be 
one of the four basic arithmetic operators. The generic form of basic 
algebraic operations for interval numbers can be defined using Equation 
(39): 
[

γn γ̄n
]

∘
[

γm γ̄m
]
=
{
[γn] ∘ [γm]|γn ∈

[
γn γ̄n

]
, γm

∈
[

γm γ̄m
]}

;∀{n,m∈ΩN} (39) 

This form can be used for addition, subtraction, multiplication, and 
division of these two UIPs according to Equation (40) through (44): 
[

γn γ̄n
]
+
[

γm γ̄m
]
=
[

γn + γm γ̄n + γ̄m
]
;∀{n,m∈ΩN} (40)  

[
γn γ̄n

]
−
[

γm γ̄m
]
=
[

γn − γ̄m γ̄n − γm
]
;∀{n,m∈ΩN} (41)  

[
γn γ̄n

]
×
[

γm γ̄m
]

=
[

min
(

γnγm, γnγ̄m, γ̄nγm, γ̄nγ̄m

)
max

(
γnγm, γnγ̄m, γ̄nγm, γ̄nγ̄m

) ]
;∀{n,m∈ΩN}

(42)  

[
γn γ̄n

]
÷
[

γm γ̄m
]
=
[

γn γ̄n
]
×

[ 1
γ̄m

1
γm

]

;∀{n,m∈ΩN} (43)  

1
[

γn γ̄n
]=

[ 1
γ̄n

1
γn

]

; ∀{n∈ΩN}, 0 ∕∈
[

γn γ̄n
]

(44) 

Full details of properties related to the algebraic operations of in-
terval numbers (e.g., associative commutative and distributive features) 
are out of the scope of this paper; readers refer to Ref. [136] for further 
information in this regard. 

In interval arithmetic, intervals calculated from arithmetic are 
guaranteed to include all possible combinations of real values within the 
respective input intervals. This vital property ensures the completeness 
of range estimations. However, when UIPs are not independent, the 
output results will overestimate the actual ranges. In this condition, only 
the soundness of estimations is affected, not their completeness. 
Therefore, overestimation caused by interval dependency and wrapping 
is the main drawback of interval arithmetic. To eliminate these draw-
backs, different versions of this technique were developed (please refer 
to Refs. [136,137]). 

Almost all μMEHs’ studies are presented in the form of optimization 
problems. Therefore, a step-by-step procedure to apply the interval 
arithmetic technique in the optimization process can be summarized as 
follows.  

• Step 1: Defining the optimization problem: The objective function, 
constraint, and decision-making variables will be defined. These 
variables should be represented as intervals to capture the uncer-
tainty in their values.  

• Step 2: Determining the search domain: The search domain for each 
decision-making variable will be determined as an interval. This 
domain is the range of values that the decision-making variable can 
take.  

• Step 3: Evaluating the objective function: The objective function will 
be evaluated at each point in the search domain defined by the in-
tervals of decision-making variables. The result is a range of possible 
values for the objective function.  

• Step 4: Finding the optimal solution: The range of possible values for 
the objective function over the entire search domain will be found, 

and then the interval with the smallest (or largest) possible value will 
be selected. This interval represents the range of values for the 
objective function corresponding to the optimal solution.  

• Step 5: Checking for sensitivity: The objective function at different 
points near the optimal solution will be evaluated to determine how 
sensitive the solution is to small changes in the input decision- 
making variables. If the solution is sensitive, go to the next step; 
otherwise, go to Step 7.  

• Step 6: Refining the search domain or modifying the objective 
function: The search domain for the input decision-making variables 
will be refined, or the objective function will be modified to obtain a 
more accurate solution. This process can be done by repeating Steps 
3–5 with a smaller search domain for the input decision-making 
variables.  

• Step 7: Validating the solution: The solution will be validated by 
verifying that it satisfies any constraints or requirements imposed by 
the optimization problem and is physically feasible. 

The reader may look to Ref. [138] for a thorough explanation of 
interval arithmetic. Unfortunately, none of the articles in the database 
has relied on this technique for modeling uncertainties. However, 
considering this technique’s powerful features in uncertainty modeling, 
its use in μMEHs’ studies can be a rational choice for future research. 

3.3.2.5. Robust optimization. Robust optimization (RO) examines the 
fluctuation effects of UIPs on the output of different optimization 
problems through uncertain sets [139]. As long as UIPs’ values are 
within the permissible bounds of the uncertain set, the feasibility of the 
optimization problem’s solution(s) can be guaranteed. The uncertain set 
selection is the key to this technique to address UIPs since it can be 
defined in different forms such as box, ellipsoidal, polyhedral, cone 
(closed, convex, pointed), convex, and others [139]. The concept of this 
technique has continued to develop and adapt. Nowadays, different 
versions and applications are being seen in various branches of science, 
such as engineering, marketing, and business management, that can be 
categorized into three models: i) engineering game, ii) two-stage, and 
iii) distributed RO models. The first model is related to the UIPs that try 
to worsen the performance index of the system while the decision-maker 
attempts to adopt a policy to optimize this index under all possible 
conditions [140]. This model has strong applicability to engineering 
problems. However, decisions taken by the decision-maker are overly 
conservative. The two-stage RO model can be used [141] to eliminate 
this weakness. The concept behind this model is to partition 
decision-making variables into adjustable and non-adjustable for staged 
decision-making. The decision-maker uses non-adjustable decision--
making variables to make relevant decisions before UIPs are realized 
while altering adjustable ones according to UIPs. This process takes 
place based on affine adjustable RO or two-stage adaptive RO. The 
former utilizes an affine function to create affine links between adjust-
able decision-making variables and UIPs that they depend on. The latter 
has a more complex structure. However, it can provide more freedom to 
adjust the operational point (higher adaptation to UIPs), especially in 
the real-time exploration phase. The distributed RO model can also 
overcome the weakness related to relatively conservative decisions in 
other models [142]. In this model, the decision-maker creates an 
ambiguous set of PDFs according to a portion of UIPs’ information and 
makes an optimal decision for the worst PDF of the fuzzy set. The 
distributed RO model relies on constructing fuzzy sets based on statis-
tical moments and distance-based PDFs. To represent a generic 
description of the RO model, let y be a multivariate function of vectors γ 
and w, y = f(γ,w); ∀γ = {γ1,…,γn,…,γN},w = {w1,…,wm,…,wM}, which 
is linear in γ and nonlinear in w. In contrast to the vector w that has 
known values, the values of the vector γ are subjected to uncertainties 
and defined using uncertainty set γ ∈ U(γ) = {γ1,…,γn,…,γN}. Precisely, 
the vector γ can take values from the relevant set U(γ). Then, the general 
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description of the RO model can be defined using Equations (45) and 
(46): 

Maximize
w

y= f (γ,w); ∀γ ={γ1,…, γn,…, γN},w={w1,…,wm,…,wM}

(45)  

where: 

γ ∈U(γ)= {γ1,…, γn,…, γN} (46)  

With a linear relationship between y and the vector γ, the RO model 
defined in Equations (45) and (46) can be rewritten as Equation (47) 
through (50): 

Maximize
w

y (47)  

subject to: 

y≤ f (̃γ,w);∀γ̃ ={γ̃1,…, γ̃n,…, γ̃N},w={w1,…,wm,…,wM} (48)  

h(γ̃,w)=V(w).̃γ+ g(w);∀γ̃ ={γ̃1,…, γ̃n,…, γ̃N},w={w1,…,wm,…,wM}

(49)  

γ̃ ∈U(γ)= {γ||γ − γ̄| ≤ γ̇}; ∀γ ={γ1,…, γn,…, γN}, γ̃ ={γ̃1,…, γ̃n,…, γ̃N}, γ̄
= {γ̄1,…, γ̄n,…, γ̄N}, γ̇ ={γ̇1,…, γ̇n,…, γ̇N}

(50)  

In these Equations, γ̃, γ̄, and γ̇ are the vector of uncertain values, the 
vector of estimated values and the vector of maximum possible devia-
tion of γ from γ̄, respectively. This technique aims to find a solution(s) 
that maximizes the objective function y and ensures the decision-maker 
that its value remains optimal with a high probability when some 
forecast errors exist about the values of the vector γ. A counterpart 
version of the RO model presented in Equation (47) through (50) should 
be built and solved to reach this target. The robust counterpart is 
described using Equation (51) through (55): 

Maximize
w

y (51)  

y≤ f (γ,w);∀γ ={γ1,…, γn,…, γN},w={w1,…,wm,…,wM} (52)  

f (γ,w)=V(w).γ̄+g(w) − Maximize
ui

∑I

i=1
vi(w).γ̇i.ui;∀γ={γ1,…,γn,…,γN},w

={w1,…,wm,…,wM}, γ̄={γ̄1,…, γ̄n,…, γ̄N},{i∈ΩI}

(53)  

∑I

i=1
ui ≤ ψ;∀{i∈ΩI} (54)  

0≤ ui ≤ 1; ∀{i∈ΩI} (55) 

According to the robust counterpart structure, see Equation (51) 
through (55), two nested optimization problems must be solved. Equa-
tion (53) is linear with respect to ui, and its dual form that can be 
described using Equations (56) and (57): 

Minimize

[

ψ.α+
∑I

i=1
δi

]

;∀{i∈ΩI} (56)  

α+ δi ≥ vi(w).γ̇i;∀{i∈ΩI} (57) 

Inserting dual form into the robust counterpart structure gives the 
model presented in Equation (58) through (61): 

Maximize
w,α,δi

y (58)  

y≤ f (γ,w);∀γ ={γ1,…, γn,…, γN},w={w1,…,wm,…,wM} (59)  

f (γ,w)=V(w).γ̄ + g(w) − ψ.α+
∑I

i=1
δi; ∀γ ={γ1,…, γn,…, γN},w

= {w1,…,wm,…,wM}, {i∈ΩI}
(60)  

α+ δi ≥ V(wi).γ̇i;∀{i∈ΩI} (61) 

A detailed discussion of the RO technique is outside the scope of this 
paper. For a complete overview of this technique, please refer to 
Ref. [139]. Among μMEHs’ studies available in the database, four 
studies have focused on the RO strategy to address the effect of UIPs on 
the design and operation process of the μMEHs [32,84,112,119]. The 
authors of [32] have investigated the impact of UIPs (CO2 cost, primary 
energy saving, fuel tariff, and electricity prices) on designing different 
technologies for a μMEH. By examining different levels of conservatism 
on the mean and standard deviation of the objective function and 
analyzing the results, this reference has concluded that the deterministic 
model is preferable. However, it seems that this result is not so much 
resealable. Reported models in Refs. [84,112,119] have incorporated 
different UIPs (see details in Table A3) in the operation process of 
μMEHs. The simulation results in these studies have converged to the 
conclusion that using the RO model to deal with the effects of UIPs can 
assist the operator in improving the operation process of the μMEH from 
different perspectives. 

3.3.2.6. Information gap decision theory. The IGDT is a potent and 
radically different tool for making rational decisions under a severe lack 
of information (e.g., the deficiency or absence of historical data to 
construct PDFs or MFs of UIPs) [143]. The main difference between the 
IGDT and other techniques is how UIPs are modeled. Unlike other 
techniques that rely heavily on PDFs, MFs, uncertain sets, and others, 
this theory uses information gaps to model these parameters. In this 
theory, each UIP is modeled as an information gap (the distance between 
prediction and reality), not a probability [143]. Therefore, there is no 
need for any initial data from the UIP (e.g., PDF, MFs, and uncertain 
sets). Let us define the general form of an optimization problem related 
to the μMEHs’ studies using Equation (62) through (66): 

Minimize
x,γ

f (x, γ) (62)  

subject to: 

gb(x, γ)= 0; ∀{b∈ΩB} (63)  

he(x, γ) ≤ 0;∀{e∈ΩE} (64)  

x={x1,…, xm,…, xM}; ∀{m∈ΩM} (65)  

γ ={γ1,…, γn,…, γN}; ∀{n∈ΩN} (66) 

Equations (63) and (64) describe the equality constraint b and 
inequality constraint e of the optimization problem. In addition, Equa-
tions (65) and (66) represent certain and uncertain decision-making 
variables. Also, let us define the UIP n using the envelope-bound 
model of IGDT, as described in Equation (67): 

Un(Δn, γn)=

{

γ̃n :
|̃γn − γn|

γn
≤Δn

}

;∀{Δn ≥ 0}, {γ̃n ∈U(Δn, γn)}, {n∈ΩN}

(67)  

Equation (67) describes the length of the information gap of the UIP n 
between the expected (predicted) value, γn, and the value that may occur 
(actual value), γ̃n. If the actual value of UIP n is equal to the predicted 
value of this uncertain parameter, the interval of UIP n, Δn, will be equal 
to zero; otherwise, this parameter will be equal to a positive value. It 
should be noted that the magnitude of deviation related to this param-
eter from the predicted value will not exceed the length of the relevant 
information gap Δn [143]. Fig. 5 Illustrates how the robustness region of 
this parameter is described using Equation (68): 

υn = [ (1 − Δn).γn (1 + Δn).γn ];∀{n∈ΩN} (68) 

Now, a key question is raised: How the optimization problem should 
be handled if realized values of UIPs differ from the predicted ones? In 
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such circumstances, the decision-maker can use two different policies, 
risk-averse and risk-taker policies, to puzzle out the optimization 
problem.  

• Risk-averse decision-making policy: Robustness function 

This policy scrutinizes the detrimental effects of UIPs on optimizing 
the μMEHs’ studies. The decision-maker tries to obtain optimal decision- 
making variables (robust decisions) to hedge her\his decisions against 
risks arising from severe UIPs. In this condition, the robustness function 
addresses the greatest level of UIPs, such that the maximum value of the 
objective function cannot be greater than a predetermined critical value. 
The robustness function is, therefore, the degree of resistance against 
UIPs and immunity against smaller values of the objective function at 
which defeat cannot arise. It means that a large value of the robustness 
function is desirable in the optimization problems in the minimization 
form. The robustness function for the optimization problem presented in 
Equation (62) through (66) can be expressed using Equation (69) 
through (73): 

Υ(x,ϖc)=Maximize
Δn

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(Δn) :Maximize
x

γ̃n∈Πn(Δn ,γn)

f (x, γ̃n)≤ϖc

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

;∀{Δn≥0},{n∈ΩN}

(69)  

subject to: 

Maximize
x
γ̃n

{Equation (62)≤ϖc}; ∀{γ̃n =(1+Δn).γn}, {n∈ΩN} (70)  

γ̃n ≤ (1+Δn).γn;∀{n∈ΩN} (71)  

γ̃n ≥ (1 − Δn).γn;∀{n∈ΩN} (72)  

{Equation (63) through Equation (66)}|̃γn; ∀{γ̃n =(1+Δn).γn}, {n∈ΩN}

(73)  

In Equation (69), the predetermined critical value of the objective 
function, ϖc, is obtained using Equation (74): 

ϖc =(1+ωc).ϖb (74)  

In Equation (74), the base value of the objective function, ϖb, is ob-
tained by solving the optimization problem of the μMEHs’ studies pre-
sented in Equation (62) through (66) by considering the predicted 
values for UIPs (deterministic\risk-neutral decision-making policy). It is 
necessary to mention that ωc is the critical cost deviation factor of the 
optimization problem determined by the decision-maker.  

• Risk-taker decision-making policy: Opportunity function 

This policy examines the propitious face of UIPs in the optimization 
process of the μMEHs’ studies. The decision-maker tries to obtain 
optimal decision-making variables (opportunistic decisions) to take 
advantage of the risks arising from severe UIPs. In this condition, the 
opportunity function illustrates the smallest level of the UIPs, such that 

the objective function’s minimum value can be as small as a pre-
determined target value. Therefore, the opportunity function is immu-
nity against a windfall reward, where sweeping success can occur. It 
means that a small value of the opportunity function is desirable in the 
optimization problems in the minimization form. The opportunity 
function for the optimization problem presented in Equation (62) 
through (66) can be described using Equation (75) through (79): 

Γ(x,ϖt)=Minimize
Δn

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(Δn) : Minimize
x

γ̃n∈Πn(Δn ,γn)

f (x, γ̃n) ≤ ϖt

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

;∀{Δn ≥ 0}, {n∈ΩN}

(75)  

subject to: 

Minimize
x
γ̃n

{Equation (62)≤ϖt};∀{γ̃n =(1 − Δn).γn}, {n∈ΩN} (76)  

γ̃n ≤ (1+Δn).γn; ∀{n∈ΩN} (77)  

γ̃n ≥ (1 − Δn).γn; ∀{n∈ΩN} (78)  

{Equation (63) through Equation (66)}|̃γn;∀{γ̃n =(1 − Δn).γn}, {n∈ΩN}

(79)  

In Equation (75), the predetermined target value of the objective func-
tion, ϖt, is obtained using Equation (80): 

ϖt =(1+ωt).ϖb (80) 

The calculation process of the base value of the objective function 
(ϖb), in Equation (80), is like the process described in the risk-averse 
decision-making policy. Furthermore, ωt is the target cost deviation 
factor of the optimization problem determined by the decision-maker. 

Among μMEHs’ studies available in the database, only two studies 
have used the IGDT to examine the effect of UIPs on the operation 
process of the μMEHs [97,118]. The objective function of both studies is 
to decrease the operation and emission costs. These studies show that 
the IGDT assists the decision-maker in making robust decisions against 
severe UIPs, especially the gas price, to reduce operation and emission 
costs. 

As a result, a deep understanding of appropriate and powerful stra-
tegies for modeling and integrating different types of uncertainties in 
mathematical models and adapting these models as much as possible to 
actual conditions is felt. To cover this need, Table A4 presents each 
technique’s main idea, well-known examples, strengths, and weaknesses 
and reviews the literature based on them. It is evident from Table A4 
that most of the μMEHs’ studies have relied on traditional techniques for 
scrutinizing UIPs. These techniques have the appropriate speed, 
acceptable accuracy, and a relatively simple implementation process. 
However, they suffer from a fundamental weakness. These techniques 
require the PDFs and/or MFs of UIPs to scrutinize them. In real-world 
conditions, however, there is insufficient data to construct PDFs and/ 
or MFs with acceptable accuracy for most UIPs. There is a need, then, for 
powerful techniques such as interval arithmetic, RO, and especially 
IGDT to model severe UIPs whose PDFs and/or FMFs are unknown. 

4. Problem-solving process 

The problem-solving process in μMEHs’ studies can be investigated 
from the optimization problem structure and solution method. Techni-
cally speaking, most optimization problems related to μMEHs’ studies 
are complex, practical, nonconvex problems embracing a non-linear and 
blended-integer essence [5,10,17]. However, with the increase of in-
teractions between different energy carriers because of the use of new 
multi-carrier energy conversion technologies, updating of local 

n

Fig. 5. The robustness region associated with the UIP n.  
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multi-carrier energy market’s rules, moving towards maximum use of 
RERs, clarification of new environmental standards to reduce green-
house gas emissions, and others, finding an optimal solution(s) for these 
optimization problems can be much more complicated than before. Most 
research publications abide by two distinct policies to tackle the com-
plexities of the optimization problems of μMEHs’ studies. In the first 
policy, publications examined only a primitive structure of optimization 
problems. 

These publications rely on a single-objective and single-level opti-
mization model, disregard risks resulting from severe uncertainties, re-
gard hypothetical case studies, and neglect practical limitations–to 
name a few. Accordingly, such models of μMEHs lack adequate effi-
ciency to adapt to real-world conditions. In the second policy, however, 
publications consider a more complex structure of optimization prob-
lems. Nevertheless, solving such complex optimization problems is 
fraught with different challenges. Instead of embracing and handling 
these challenges, most publications summon some relaxation (e.g., 
linearization of non-linear models). These relaxations cause the outputs 
obtained from the solving process to be inconsistent with the actual 
conditions. Most of the considered simplifications in optimization 
problems related to μMEH’s studies are due to current shortcomings in 
the second aspect of the problem-solving process (solution methods). 

4.1. Solution method 

Table A5 presents a comprehensive classification of the solution 
methods, including solution approaches, solvers, and software used to 
solve optimization problems related to μMEHs’ studies. In the broadest 
sense, solution methods used to solve the optimization problems con-
cerning μMEHs’ studies can be categorized into three major classes: i) 
deterministic methods, ii) stochastic-based methods, and iii) stochastic- 
learning methods (see Table A5). 

4.1.1. Deterministic methods 
From Table A5, deterministic methods that include different solution 

approaches are the most widely used class for handling the relevant 
optimization problems. However, it should be noted that each solution 
approach of this class has been developed to solve a narrow range of 
optimization problems, and no specific one can solve a wide range of 
problems. Among all solution approaches, solvers, and software related 
to the deterministic methods, the mixed-integer linear programming 
approach, CPLEX solver, and GAMS software are the most popular 
combination. Full details associated with deterministic methods can be 
seen in Table A5. Most solution approaches in the class of deterministic 
methods follow an exact process and rely on objective function(s) de-
rivatives to handle the optimization process. However, the objective 
function of optimization problems related to practical cases of μMEHs’ 
studies involves complexities such as mixed decision-making variables, 
non-differentiability, non-linearity, high multimodality, and disconti-
nuity, as well as comprise many local minima. Moreover, the search 
space and/or dimensions of the optimization problem may be so large 
that the global optimum cannot be found in a reasonable amount of 
time. In this condition, deterministic methods may not be efficient 
enough to find a quality solution. Precisely, the solution obtained from 
these methods relates to the optimization problem with a simplified 
structure and cannot be considered the optimal solution for the original 
non-simplified optimization problem. Hence, stochastic-based methods 
relying on the random search process can be a promising alternative. 

4.1.2. Stochastic-based methods 
Stochastic-based methods consist of two submethods: i) heuristic and 

ii) meta-heuristic. The heuristic submethod relies on the trial-and-error 
process to find the solution to the optimization problem. 

This submethod can reach an acceptable solution to optimization 
problems, especially large-scale and practical ones, in a reasonable time. 
However, since its stopping criterion is often the lack of improvement in 

two consecutive solutions, it may stop even though it has not reached 
the optimal solution. Therefore, the heuristic submethod cannot guar-
antee the optimality of the obtained solution(s). None of the papers in 
the database used a heuristic submethod to solve the optimization 
problem μMEHs’ studies. Meta-heuristic submethod was suggested to 
eliminate the weaknesses of the heuristic one. These techniques solve 
the optimization problem regardless of its structure. Therefore, they can 
solve a more comprehensive range of optimization problems. These 
techniques rely on a memory of data obtained from previous iterations 
to search the feasible search space and find the globally optimal solution 
(s). Further information about the structure and the differences between 
various techniques of this submethod can be found in Ref. [144]. It is 
clear from Table A5 that the use of the metaheuristic submethod in 
μMEHs’ studies is much less favoured compared to exact ones despite 
their relatively acceptable performance. It may be due to the complexity 
of implementation optimization problems related to μMEHs’ studies 
with this submethod. Different techniques of this submethod have been 
used to solve various structures of the optimization problem related to 
the design [38,64,65,74,80,85,96,98,99,101,115], operation [58–60, 
79,94,109,114], and resilience [73,76,91] of μMEHs’ studies. By 
examining the results of references related to the design problem of 
μMEHs’ studies, it can be found that these techniques have obtained a 
well-suited cluster of equipment for the μMEH that meets TE&E criteria. 
This suitable performance for metaheuristic techniques is also observed 
in operation and resilience of μMEHs. More precisely, these studies show 
that metaheuristic techniques offer several advantages. First, they are 
flexible and can be applied to various optimization problem domains or 
structures of μMEHs’ studies, from design to operation and even resil-
ience. Next, they can quickly and efficiently explore large search spaces 
and find the optimal or near-optimal solution(s) in a reasonable amount 
of time. In addition, they can handle optimization problems with noisy 
or incomplete data and continue searching for the optimal solution(s) 
even when faced with unforeseen changes or disruptions. Furthermore, 
they do not require prior knowledge of the problem structure or search 
space (suitable for problems where the underlying structure is unknown 
or difficult to model). However, the main drawback of these techniques 
is that their performance depends on the parameter settings. Therefore, 
the initial value of these parameters significantly impacts the speed, 
efficiency, and quality of the solution(s) found by the technique. As a 
result, the proper choice of the technique and its parameters setting 
should be carefully considered based on the specific optimization 
problem of μMEHs’ studies to ensure the best possible results. In prac-
tical cases, it is also necessary to experiment with different parameter 
settings and evaluate the technique’s performance using appropriate 
metrics to select better initial values. 

4.1.3. Stochastic learning methods 
In optimization problems based on the decision maker’s preference, 

the decision maker’s actions can affect the immediate reward, the 
following situation, and the subsequent reward. Practically speaking, 
μMEHs’ studies, especially the operation of the μMEH, are entirely 
compatible with the structure of such optimization problems. The sto-
chastic learning methods, therefore, can be a suitable option to solve 
such optimization problems. These methods solve the optimization 
problem related to μMEHs’ studies by updating the solution over time; 
hence, they do not depend on the details associated with the μMEH’s 
dynamic. However, only one study from the relevant database of 
research papers has used the reinforcement learning method to solve the 
optimization problem associated with the operation of the μMEH [33]. 
This study has shown that the reinforcement learning method does not 
require any details about the dynamic of the μMEH. More precisely, this 
method swiftly converges to a near-optimal solution and updates the 
solution during the time; hence, it does not face any impediments by 
changing the dynamic of the μMEH. Another strength of this method is 
its high adaptability to implement in the real-time frame to optimally 
control all significant energy loads, storage, and generation devices by 
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considering the customers’ comfort level. The simulation results have 
confirmed the efficiency of the reinforcement learning method by 
demonstrating up to 40% reduction in the electricity and gas cost and a 
17% and 50% reduction in peak load and carbon dioxide emission, 
respectively. As a result, since optimization problems of μMEHs’ studies 
are complex, practical, non-convex problems embracing a nonlinear and 
blended-integer essence, it is acceptable to use simplifications at 
different levels to use various solvers of exact methods. However, re-
searchers can avoid oversimplifications that cause a drastic trans-
formation between the structure of the original optimization problem 
and the simplified one. These oversimplifications enormously reduce the 
compatibility of the solution(s) obtained from the simplified optimiza-
tion problem with the actual condition of the original one. Using sto-
chastic and stochastic learning methods and comparing results with the 
results of exact methods to determine the more efficient methods for 
solving the optimization problems of μMEHs’ studies can contribute to 
covering gaps in the problem-solving process. 

4.2. Decision-making analysis 

Different models reported in the literature of μMEHs’ studies contain 
several non-commensurable, conflicting, and correlated objective 
functions. Therefore, these studies consider two schemes for decision- 
making analysis in their optimization problems: single-objective and 
multi-objective. Table A6 categorizes μMEHs’ studies from the stand-
point of the scheme used for decision-making analysis. 

In the first scheme that most of the μMEHs’ studies have relied on 
(see Table A6), different objective functions are combined to form an 
equivalent objective function and solved with a typical single-objective 
solver. This scheme’s principal target is to find a specific minimum or 
maximum value for the equivalent objective function (optimal solution) 
under the predetermined limitations, if any. This scheme simplifies the 
problem-solving process by moving the decision-making phase before 
the optimization phase. However, this transfer forces the decision-maker 
to adopt his/her preferences without knowledge. Therefore, the solution 
obtained from solving the single-objective optimization problem cannot 
provide a realistic view of the main structure of the optimization algo-
rithm. In the second scheme, however, different objective functions are 
simultaneously optimized. Precisely, the main goal of this scheme is to 
find the Pareto-optimal solution set and then select the most satisfactory 
solution from them, considering the decision maker’s preferences. 
Therefore, in this scheme, the decision-making phase is located after the 
optimization one or combined with it to create a hybrid phase. This 
scheme enables decision-makers to determine their preferences with a 
higher understanding of the optimization problem; scrutinize the in-
terdependencies between decision-making variables, objective func-
tions, and constraints; and finally, make a more knowledgeable choice 
among the Pareto-optimal solution set. Therefore, the final solution from 
the Pareto-optimal solution set aligns better with real-world conditions 
and matches the decision maker’s preferences. In the presence of mul-
tiple non-commensurable, conflicting, and correlated objective func-
tions in optimization problems related to μMEHs’ studies, the most 
rational decision is to use the second scheme to solve the optimization 
problem. However, it increases the complexity of the solving process 
considerably. For more information about multi-objective optimization 
and decision-making analysis, please refer to Ref. [145]. From Table A6, 
only 16 and 3 out of 97 papers have used the bi- and tri-objective 
decision-making analysis in their optimization problems, respectively. 
As a result, according to the existing capacity, it is expected that new 
studies in the field of the μMEH will be more inclined to use the 
multi-objective optimization process to solve their optimization prob-
lems to embrace its benefits. 

Many multi-objective optimization techniques have been developed 
in related literature to find the Pareto-optimal solution set and select the 
final optimal solution. In a general sense, these techniques can be broken 
down into non-interactive and interactive according to the role of the 

decision-maker in the solution process [146–148]. Non-interactive 
techniques do not require any involvement from the decision-maker 
during the optimization process. Instead, they generate diverse and 
non-dominated solutions, and the decision-maker selects the solution 
that best meets their needs [148]. Interactive techniques, however, 
involve the decision-maker in the optimization process. The 
decision-maker provides feedback on their generated solutions, which 
guides the search process towards the desired solution [147]. It is 
necessary to mention that evolutionary multi-objective techniques can 
be either interactive or non-interactive, depending on the implementa-
tion method to involve the decision-maker’s decisions in the optimiza-
tion process [146]. Detailed discussion about multi-objective 
optimization techniques and decision-making can be found in 
Ref. [145]. Table A7 presents each technique’s fundamental idea, ad-
vantages, disadvantages, and familiar examples and reviews the litera-
ture of μMEHs’ studies that used multi-objective decision-making 
analysis in their optimization problems based on them. From this table, 
it can be found that μMEHs’ studies that focused on the use of 
multi-objective decision-making schemes in the optimization process 
used the basic category (e.g., weighting and ε-constraint methods) or 
evolutionary multi-objective techniques in the form of a non-interactive 
technique to obtain the Pareto optimal solution set. These studies have 
preferred the simplicity of implementing these techniques to their 
weaknesses against interactive techniques. However, future research is 
expected to use interactive techniques to solve the optimization prob-
lems of μMEHs’ studies and obtain Pareto optimal solution set since 
these techniques facilitate decision-making and enable decision-makers 
to explore the trade-offs between conflicting objectives dynamically. 

5. Limits and prospects 

In the last decade, many studies have documented the necessity of 
integrating different energy infrastructures to achieve security, tech-
nical, economic, and environmental objectives. To pave this direction, a 
considerable part of these studies is focused on introducing, applying, 
and developing the EH concept as an efficient tool for modeling multi- 
carrier IESs. Therefore, an acceptable level of maturity can be seen in 
the literature related to multi-carrier EH-based IESs. In recent years, 
modeling buildings (e.g., industrial, residential, commercial, office, or 
public buildings) in the form of multi-carrier IESs using the EH concept, 
μMEHs, has become an attractive trend in energy studies. However, 
maturity is lost when the literature on multi-carrier IESs is narrowed 
down to μMEHs, and different problems and challenges will appear. In 
this paper, the authors have examined these systems from perspectives 
of uncertainty and problem-solving process. A Sankey chart is illustrated 
in Fig. 6 to create an accurate understanding of the relevance of μMEHs’ 
studies in these perspectives. It should be noted that the description 
related to the abbreviations used in Fig. 6 is like the description in 
Table A5. 

By using this figure and analysis done in previous sections of the 
paper, the main existing challenges and potential future research, trend, 
and capacities in μMEHs’ studies can be expressed as follows.  

• Uncertainty: Uncertainty considerations have been ignored in most 
μMEHs’ studies. Ignoring uncertainties leads to results that are the 
least compatible with real-world conditions and, as a result, presents 
an unrealistic image of the μMEH’s performance. In the first step, 
future studies are expected to be conducted with different un-
certainties. Multi-carrier energy prices and demands are integral to 
uncertainty modeling in μMEH’s studies. Existing studies have also 
examined them in detail. However, increasing interaction between 
different energy carriers due to using new equipment and rules 
changes the severity, importance, and effects of uncertainties. 
Therefore, in the second step, future research is expected to update 
uncertainties with efficient tools (e.g., uncertainty matrix) and use 
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an updated combination of uncertainties instead of focusing on 
common ones.  

• Sensitivity analysis techniques: Sensitivity analysis in most of 
μMEH’s studies was wrongly estimated because they investigate 
bounded fluctuations of UIPs on the objective function(s) value, 
examine the sensitivity of the objective function(s) to the UIPs 
individually, and do not consider the correlation between different 
UIPs, which are common features of practical models. Therefore, 
future research in μMEH’s studies is expected to use more efficient 
techniques to investigate sensitivity considering all aspects of prac-
tical models. 

• Uncertainty analysis techniques: An overemphasis on using tradi-
tional techniques to model uncertainties is observed in μMEHs’ 
studies. These techniques need the PDFs and/or MFs of UIPs to model 
and investigate them. However, access to such data is impossible in 
many real-world cases. Therefore, using modern techniques (e.g., 
interval arithmetic, RO and IGDT) that integrate, model, and scru-
tinize the effects of uncertainties without access to their initial data 
can be an attractive path for future research in μMEHs’ studies.  

• Solution approach: Different solvers from deterministic methods 
have been widely used to find the solution(s) to the optimization 
problems related to μMEHs’ studies. These solvers require different 
levels of simplifications in optimization problems depending on the 
procedure to find the solution(s). Under this circumstance, the 
founded solution(s) is optimal for the simplified optimization prob-
lem structure and cannot be generalized to the original structure of 
the problem. Therefore, it is suggested to rely on alternative methods 
(e.g., stochastic method and stochastic learning method) to solve 
optimization problems associated with μMEHs’ studies in future 
research or on using solvers that require lower levels of simplifica-
tions. This process makes the founded solution(s) more compatible 
with the original structure of the optimization problem.  

• Decision-making analysis: The single-objective analysis is the 
dominant scheme for decision-making analysis in optimization 
problems related to μMEHs’ studies. This scheme transfers the 
decision-making phase to before the optimization phase. Under this 
circumstance, the decision maker’s preferences are chosen without 
knowledge, which reduces the obtained solution’s adaptability with 

the optimization problem’s original structure. Therefore, more 
studies are expected to be done using multi-objective analysis. Also, 
all μMEHs’ studies used non-interactive techniques to solve the 
multi-objective optimization problem and obtain the Pareto optimal 
solution set. These techniques have many weaknesses (see details in 
Table A7); therefore, future research is expected to rely on interac-
tive techniques. 

6. Conclusion remarks 

The main driver for this work was that, despite a maturity in the 
multi-carrier EH-based IESs that are located on broad scales, there is 
confusion in the literature for readers regarding a unique and in-depth 
audit (e.g., uncertainty and problem-solving process) of limited scales 
multi-carrier EH-based IESs (e.g., buildings or district scales). Therefore, 
this article has aimed at bridging this gap by presenting a critical review 
of the principal features and modeling techniques of uncertainties as 
well as the optimization problem structure and solution methods 
(approach, solver, software) in multi-carrier EH-based IESs applications, 
focusing on the neighborhood level, backed by the recent publications in 
this field. The obtained review outcomes demonstrate that several open 
questions have still remained in μMEHs’ studies regarding uncertainty 
and problem-solving process. 

Of these problems in μMEHs’ studies, ignoring uncertainties through 
developing models based on the deterministic policy, disregarding new 
and high-impact UIPs through an excessive focus on common UIPs, 
omitting powerful techniques to scrutinize UIPs via an overemphasis on 
traditional ones, neglecting the powerful solution methods to handle the 
original structure of the optimization problem by relying on solution 
methods that require oversimplifying the optimization problem’s 
structure, and dismissing the multi-objective analysis by transferring the 
decision-making phase before the optimization in the single-objective 
analysis seem outstanding. Based on the above discussion, this paper 
presented potential future research, trend, and capacities to relax these 
problems. These capacities can pave new paths to reach more realistic 
frameworks in future μMEHs studies. Future research to back this review 
aims to investigate the structure (multi-carrier energy resources and 
demands as well as energy conversion and storage technologies) and 
analysis methods (dynamic, operation, control, design, planning, 

Fig. 6. The Sankey chart for classifying and linking μMEHs’ studies from different perspectives.  
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reliability, and resilience) of μMEHs, which the authors are currently 
doing. 
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Appendix  

Table A1 
Review papers in the field of multi-carrier EH-based IESs.  

Ref. Highlight Published 
year 

[3] Presenting a critical discussion of models and assessment approaches of multi-carrier IESs from different perspectives as well as various criteria for their 
TE&E evaluation 

2014 

[6] Categorizing various modeling and optimization frameworks of optimal operation related to multi-carrier EH-based IESs in uncertain environments 2017 
[7] Classifying multi-carrier EH-based IESs in terms of their structure (e.g., inputs, outputs, converters, and storage systems) 2017 
[8] Examining main aspects and potential research topics on demand side management programs in multi-carrier EH-based IESs 2017 
[9] Providing a thorough study of concepts and applications of multi-carrier EH-based IESs in various energy sectors 2018 
[10] Arranging multi-carrier EH-based IESs according to modeling methods, applications, and TE&E considerations 2019 
[5] Overviewing multi-carrier EH-based IESs with an emphasis on the operation and expansion planning problems of such systems 2019 
[11] Evaluating demand side management programs in multi-carrier EH-based IESs from different perspectives 2020 
[12] Investigating the design and operation process of multi-carrier EH-based IESs in terms of optimization problems features (e.g., models, objectives, 

algorithms) 
2020 

[13] Scrutinizing different models developed for the operation and performance evaluation of multi-carrier IESs 2020 
[14] Assessing the economics and reliability indices related to the performance of multi-carrier EH-based IESs and energy storage systems 2021 
[15] Labeling multi-carrier EH-based IESs according to design methods, topologies, input-output energy carriers, and elements 2021 
[1] Organizing the prominent problems and solutions related to multi-carrier EH-based IESs 2022 
[16] Studying multi-carrier IESs in terms of time and space, uncertainty, energy behavior, and energy transition 2022 
[17] Analyzing smart multi-carrier EH-based IESs in terms of uncertainty modeling, optimization challenges, and performance 2022   

Table A2 
The classification of μMEH’s studies regarding analysis methods.  

Analysis 
method 

Definition Reference 

Design Finding the optimal combination and size of various components of the μMEH from TE&E 
perspectives to satisfy multi-carrier energy demands 

[25,27,30,38,41,45,52,53,55,61,62,64,65,73–75,77,78,80, 
85,89,92,96,99,101,103,104,107,115,121] 

Planning Finding the optimal decision(s) to invest in the expansion of the μMEH’s structure from TE&E 
perspectives to meet future multi-carrier energy demands 

Static [29,42,43,86,87,90,102,105,111]: 
Pseudo-dynamic [32,71,83,108,110,116]: 

Operation Seeking to find an optimal schedule(s) for existing components in the μMEH to generate, convert, 
transfer, and distribute different energy carriers to minimize/maximize TE&E objectives under 
predetermined limitations, if any 

[26,28,31,33–37,40,44,46–51,54,56–60,63,66–70,79,81,82, 
84,88,93,94,97,106,109,112–114], [117–119] 

Dynamic Investigating dynamic aspects of different components of the μMEH that couple multiple energy 
carriers under normal and abnormal operating conditions 

[39] 

Control Using various strategies to determine and coordinate the actions of different components in the 
μMEH or a cluster of μMEHs to manage the multi-carrier energy flow in their structures 

[72,120] 

Reliability Examining the existence of sufficient facilities to produce, convert, transfer, and distribute different 
carriers to meet multi-carrier energy demands as well as the ability to respond to local and 
widespread dynamic and transient disturbances to which the μMEH is exposed 

[122,123] 

Resilience Evaluating the ability of the μMEH to i) anticipate, withstand, and minimize impacts of natural and/ 
or man-made low-frequency high-impact disasters and/or faults, ii) bounce back to the pre- 
disrupting condition in the shortest possible time, and iii) adapt to respond to newly emerging 
threats more effectively 

[76,91,95,98,100]   

Table A5 
A classification of the solution methods, including the solution approaches, solvers, and software used to solve optimization problems related to μMEHs’ studies.  

Class Solution Ref. Class Solution Ref. 

(continued on next page) 
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Table A3 
The uncertainty matrix for UIPs in μMEHs’ studies.  

The UIP Ref. Dimension of the UIP 

Nature Level Location 

Epistemic 
uncertainty 

Variability 
uncertainty 

Statistical 
uncertainty 

Scenario 
uncertainty 

Recognized 
ignorance 

Context Model uncertainty Inputs Parameter 
uncertainty 

Model 
outcomes 

Model 
structure 

Model 
technical 

External 
driving 
forces 

System 
data 

Energy price EL: [28,32,40,61,63,68,69,73,84,90,94,104,108], GA: 
[28,32,61,63,69,90,97,104,108,118], HE: [28], FF: [40], 
BI: [61,104], WA [90]:  

* *       *   

Energy demand EL: [32,40,46,61,63,68–70,73,87,90,93,95,97,101,108, 
112,115,118,119], HE: [32,40,61,68,69,73,75,90,93,95, 
101,104,108,109,112,115,118,119], CO: [32,68,75,97, 
101,112,115,118,119], WA: [90], HY [118]:  

*  *      *   

Production 
capacity of 
RERs 

PV: [46,51,61,68–70,73,75,76,81,83,90,91,93,94,97,101, 
106,112,115,118,119], WT: [69,73,75,81,90,97,118,119], 
TI [90]:  

*  *      *   

Cost IN: [32,61,108,110], O&M: [32,108], CO2 emission [32]:  *  *       *  
Energy charged 

to and energy 
discharged 
from the 
storage 

HE [40,61]:  * *      *    

Energy imported 
to and energy 
produced from 
the converter 

HE [40]:  * *      *    

Efficiency of 
converters 

[61] *    *    *    

Charge/ 
discharged 
rate of the 
storage 

HE [61]:  *  *      *   

Loss of the 
storage 

EL: [61], HE [61]:  * *       *   

Emission factor CO2 emission [61]: *   *     *    
The efficiency of 

the upstream 
network 

DHN [61]: *    *    *    

Electrical load 
curtailment 

[73]  *  *       *  

Network outage EN, NGN [76,91]:  * *       *   
Charging load of 

EVs 
[84,118]  *  *      *   

Cost per PV 
module 

[92]  *  *       *  

Initial resource 
of hydrogen 

[95] *  *       *   

(continued on next page) 
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Table A3 (continued ) 

The UIP Ref. Dimension of the UIP 

Nature Level Location 

Epistemic 
uncertainty 

Variability 
uncertainty 

Statistical 
uncertainty 

Scenario 
uncertainty 

Recognized 
ignorance 

Context Model uncertainty Inputs Parameter 
uncertainty 

Model 
outcomes 

Model 
structure 

Model 
technical 

External 
driving 
forces 

System 
data 

The output 
power of CHP 

[95] *  *        *  

Boiler efficiency [95] *    *    *    
Building form [98] *  *      *    
Urban density [98] *  *      *    
Climate 

variations 
[98]  *  *      *   

Price of 
electricity 
generated by 
PV 

[104]  * *       *   

Power obtained 
from 
regenerative 
braking 

[106]  *  *      *   

Comfort level 
relative to 
illumination, 
temperature, 
and the charge 
level of EVs 

[109] *    * *       

Interest rate [110]  * *       *   
The charging 

rate of EVs 
[110]  * *       *   

Mobility demand 
factor 

[110]  *  *      *   

Carbon intensity 
of the 
electricity grid 

[110] *    *    *    

Electricity 
supply 

[116]  *  *      *   

In this table: EL, electricity; GA, gas; HE, heating; FF, fossil fuel; BI, biomass; WA, water; CO, cooling; HY, hydrogen; IN, investment; O&M, operational and maintenance; CO2 emission, carbon dioxide emission; PV, 
photovoltaic panel; WT, wind turbine; TI, tidal unit; DHN, district heating network; EN, electricity network; NGN, natural gas network; SOC, state of charge; EV, electric vehicle.  

M
. Kiani-M

oghaddam
 et al.                                                                                                                                                                                                                  



Energy281(2023)128263

18

Table A4 
Different techniques to model uncertain parameters in μMEHs’ studies.  

Technique Sub- 
technique 

Method The key idea for modeling 
UIPs 

Well-known 
example 

Strength Weakness Ref. 

Probabilistic Numerical 
approaches 

– Using statistical 
distributions to simulate 
real states 

MCE High accuracy; simple to implement; suitable 
performance on large and complicated problems; can 
simulate actual conditions; can consider the 
correlation between UIPs 

Time-consuming process; high computational 
burden; needs the accurate information of UIPs 

MCE: 
[28,61,63,68,76,83, 
84,87,90,91,93,94, 
106,109], Gaussian 
mixture model [93]: 

Analytical 
approaches 

Linearization- 
based 

Using linearization concept Gram 
Charlier 

Simple to implement; fast Low accuracy in calculating high order moments; 
needs the accurate information of UIPs  

PDF 
approximation- 
based 

Dividing realization space 
into different scenarios with 
a certain probability for 
each scenario 

SDM 
method 

Simple to implement; fast; can consider the 
correlation between UIPs; can convert the continuous 
uncertain space to different discrete scenarios with 
various probability; appropriate accuracy if the 
correct number of scenarios are selected 

Needs accurate information on UIPs; cannot give 
the PDF of the output variable and only gives its 
expected value; computational burden increases 
sharply with the increase of scenarios; gives an 
approximate response 

SDM method [40,69, 
70,73,75,81,106, 
108,118]: 

Using PDF approximation 2PE method Straightforward to implement; fast; suitable accuracy; 
can consider the correlation between UIPs; has no 
converge problem 

Cannot give the PDF of the output variable; can 
only give the mean and standard deviation of the 
output variable; needs the accurate information of 
UIPs; computational burden and runtime depend 
on the number of UIPs 

2PE method [51,94, 
97]: 

Possibilistic   Using fuzzy MFs α-cut 
method 

Straightforward to implement; can give the MF of the 
output variable 

Time-consuming process; high computational 
burden; needs the accurate information of UIPs; 
cannot consider the correlation between UIPs  

Hybrid 
probabilistic- 
possibilistic   

Using both probabilistic 
and possibilistic concepts 

α-cut-MCE High accuracy; can simulate actual conditions; can 
consider the correlation between UIPs; can model 
both possibilistic and probabilistic uncertainties 

Time-consuming process; complex to implement; 
needs the accurate information of UIPs  

Interval 
arithmetic   

Using interval bounds Interval 
arithmetic 

Effective for conditions that there is only an interval 
bound for each UIP 

Complex to implement, especially in nonlinear 
problems; cannot consider the correlation 
between intervals  

RO   Using intervals and sets RO Effective for conditions that there is only an interval 
bound for each UIP 

Complex to implement, especially in nonlinear 
problems; cannot consider the correlation 
between intervals and sets 

[32,84,112,119] 

IGDT   Using a variable set around 
the predicted value 

IGDT Effective for decision-making under severe 
uncertainties; there is no need for any initial 
information related to UIPs 

Complex to implement (inherently is a bi-level 
optimization problem) 

[97,118] 

Not specified [101,110,115]   
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Table A5 (continued ) 

Class Solution Ref. Class Solution Ref. 

Approach Solver Software Approach Solver Software 

Approach Solver Software Approach Solver Software 

Deterministic MILP CPLEX GAMS [34,35,43,63,67,68,71,75,81,82,90,95,97,106,119] Deterministic MINLP DICOPT GAMS [48,49,56,112,118] 
MATLAB [38,65,87,111] BONMIN GAMS [50] 
IBM ILOG [80,84,103,121] BARON GAMS [97] 
AIMMS [52,55] MIQP CPLEX GAMS [56] 
AMPL [93,104]   [72] 

GUROBI MATLAB [70,113] GUROBI MATLAB [120] 
Python [107,110,116] DP  MATLAB [108] 

YALMIP MATLAB [77,87] CO ADMM  [66] 
Intlinprog MATLAB [57] NCO NC&CG MATLAB [69]  

GAMS [105] BMIBNB MATLAB [44]   
[42,45,62] Stochastic GA  MATLAB [65,94,99,109,114] 

LP CPLEX MATLAB [47] PSO  MATLAB [58,60,74,114] 
GAMS [32] EB  – [64,73,85,96,98] 

GUROBI Python [89] NSGA-II  MATLAB [38,80,101] 
MATLAB [102] FPA  MATLAB [60,76,91] 

YALMIP MATLAB [102] TS  – [59]  
MATLAB [41] ABC  – [79]   

[100,114] GWO  MATLAB [109] 
MIP CPLEX GAMS [78,118] SFLA  MATLAB [109] 

GUROBI Python [92] TLBO  MATLAB [109]  
GAMS [37] GRFO-SPO  MATLAB [115] 

NLP GRGA  [25,27,30,53] Stochastic learning RL  MATLAB [33] 
BARON GAMS [46] Not specified   – [28,31,36,40,61] 
CONOPT GAMS [83]   MATLAB [26,39,88,117] 
CIP MATLAB [54]   GAMS [39,51] 
SNOPT  [86]       

GAMS [29]      

In this table: MILP, mixed-integer linear programming; LP, linear programming; NLP, non-linear programming; GRGA, generalized reduced gradient algorithm; CIP, 
constraint integer program; MIP, mixed-integer programming; MIQP, mixed-integer quadratic programming; DP, dynamic programming; CO, convex optimization; 
ADMM, alternating direction method of multipliers; NCO, nonconvex optimization; NC&CG, nested column-and-constraint generation; B&B, branch and bound; 
NSGA-II, non-dominated sorting genetic algorithm II; GA, genetic algorithm; PSO, particle swarm optimization; EB, evolutionary-based algorithms; FPA, flower 
pollination algorithm; TS, tabu search; ABC, artificial bee colony; GWO, grey wolf optimizer; SFLA, shuffled frog-leaping algorithm; TLBO, teaching-learning-based 
optimization; GRFO-SPO, joint Garra rufa fish optimization and student psychology optimization; RL, reinforcement learning.  

Table A6 
A classification of μMEHs’ studies from the perspective of the scheme used for decision-making analysis.  

Decision-making analysis Ref. 

Single objective [25–33,36,37,39–41,43–51,53–63,65–70,72,74–79,82–84,86–95,97,99,100,102,103,105,107–110,112–114,117–121] 
Multi-objective Bi objective [34,35,38,42,52,64,71,80,81,85,96,98,104,106,115,116] 

Tri-objective [73,101,111]   
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Table A7 
A classification of μMEHs’ studies from the perspective of multi-objective optimization techniques to find the Pareto-optimal solution set.  

Technique Category Key idea Main advantage Main disadvantage Familiar example Ref. 

Non-interactive Basic These techniques transform the multi- 
objective problem into a single-objective one 
using weights or constraints. The aggregated 
objective function represents a compromise 
solution that balances the conflicting 
objectives.  

• Simplicity: They are easy to understand 
and implement.  

• Lack of sensitivity analysis: They cannot 
provide information on the sensitivity of the 
solution to changes in the weights or 
constraints.  

• Weighting method Weighting method [35, 
71,104,111]: 
ε-constraint method [34, 
42,52,80,81,106,116]:  

• Efficiency: They are computationally 
efficient and suitable for solving large- 
scale optimization problems. 

•Limited decision support: They cannot provide 
decision support to the decision-maker. 

•ε-constraint method  

• Flexibility: They can handle multiple 
objectives and constraints. 

•Risk of overlooking important trade-offs: They 
do not explicitly account for trade-offs between 
objectives. 

No 
preference 

These techniques find some compromise 
solution typically ’in the middle’ of the 
Pareto optimal set because there is no 
preference information available to direct the 
solution process otherwise.  

• Pareto optimality: They represent the best 
possible trade-offs between conflicting 
objectives.  

• Computationally intensive: They are 
computationally intensive, especially for large- 
scale problems.  

• Method of global 
criterion 

–  

• Non-dominance: They avoid explicit 
trade-offs or preferences by identifying 
non-dominated solutions. 

•Limited decision support: They do not provide 
explicit decision support to the decision-maker, as 
they do not involve the decision-maker in the 
decision-making process or provide feedback on 
the trade-offs between objectives. 

•Neutral compromise 
solution  

• Wide range of solutions: They identify a 
wide range of Pareto-optimal solutions. 

•Risk of overfitting: They can overfit the 
optimization problem if the algorithm is not 
calibrated correctly or the objective function is 
not appropriately defined. 

A prior These techniques obtain a solution that 
satisfies predefined constraints and 
objectives without explicitly considering 
trade-offs between conflicting objectives. 

•Simplicity: They are relatively simple and 
easy to understand. 

•Ignores trade-offs: They do not consider the 
trade-offs between conflicting objectives. 

•Value function 
method 

– 

•Single solution: They provide a solution 
that meets the decision-makers’ predefined 
criteria. 

•Arbitrary weights: The choice of weights or 
priorities in a priori techniques is subjective and 
arbitrary and can significantly affect the resulting 
solution. 

•Lexicographic 
ordering 

•Handles soft constraints: They handle soft 
constraints that allow for some deviations 
from the targets. 

•Limited flexibility: They are inflexible and 
cannot handle changes in the problem 
formulation or the decision-maker’s preferences. 

•Goal programming 

A posterior These techniques generate and represent the 
Pareto optimal set to the decision-maker, 
who selects the most satisfactory solution as 
the final one.  

• Identifies Pareto-optimal solutions: They 
identify a set of Pareto-optimal solutions 
representing the best possible trade-offs 
between conflicting objectives.  

• Computationally intensive: They are 
computationally intensive, requiring the 
optimization technique to be run multiple 
times to generate a set of solutions.  

• Method of weighted 
metrics 

–  

• Flexibility: They handle changes in the 
problem formulation or the decision- 
maker’s preferences.  

• A large number of solutions: They result in 
many solutions that can be difficult for the 
decision-maker to analyze and interpret.  

• Achievement 
scalarizing function 
approach  

• Handles hard constraints: They handle 
hard constraints that must be satisfied 
strictly.  

• Approximation 
methods 

Interactive These techniques identify optimal solutions 
that best meet the decision-maker’s 
preferences and requirements by providing  

• Customization: They allow for the 
customization of solutions based on the 
decision-maker’s preferences, which can  

• Time-consuming: They are time-consuming, 
involving multiple iterations and evaluations, 
which may not be feasible in time-critical 
situations.  

• Trade-off based 
methods 

– 

(continued on next page) 
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Table A7 (continued ) 

Technique Category Key idea Main advantage Main disadvantage Familiar example Ref. 

more control and flexibility for the decision- 
maker in the decision-making process. 

lead to more personalized and satisfactory 
outcomes.  

• Flexibility: The iterative nature of these 
techniques allows for greater flexibility in 
the decision-making process, as the 
decision-maker can adjust their prefer-
ences and priorities as they go along. 

•Expertise: They may require expertise in using 
and interpreting the results, which can be a 
barrier for some decision-makers. 

•Reference point 
methods  

• Improved decision-making: They give the 
decision-maker various alternatives with trade- 
offs and benefits. 

•Cost: Implementing an 
interactive technique 
may require significant 
resources, such as 
software, hardware, 
and personnel, which 
can be costly. 

•Classification-based methods  • Reduced 
complexity: 
They help 
reduce the 
complexity of 
decision- 
making by 
breaking it 
down into 
smaller, more 
manageable 
steps. 

•Limited 
scope: 
They may 
be limited 
and cannot 
consider 
all possible 
factors and 
variables 
that can 
impact the 
decision. 

Evolutionary multi-objective These techniques simultaneously optimize 
multiple conflicting objectives to provide a 
range of trade-off solutions to help decision- 
makers make informed choices. 

•Flexibility: They require no prior 
knowledge about the problem or the 
objectives to be optimized.  

• Time-consuming: They are computationally 
expensive and time-consuming, especially for 
high-dimensional problems.  

• Non-dominated 
sorting genetic 
algorithm-II (NSGA- 
II) 

Joint Garra rufa fish 
optimization and student 
psychology optimization 
[115]: 
NSGA-II [101]: 
Multi-objective genetic 
algorithm [38]: 
Co-operative 
co-evolutionary 
algorithm [85,98]: 
Evolutionary algorithm 
[73,96]: 
Steady-state epsilon 
dominance method [64]: 

•Wide range of solutions: They generate 
diverse Pareto-optimal solutions, allowing 
the decision-maker to choose a solution that 
best suits their preferences.  

• Converge problem: They suffer from premature 
convergence, which converges to a suboptimal 
solution before finding the true Pareto-optimal 
front. 

•Strength Pareto 
evolutionary 
algorithm-2 (SPEA2) 

•Adaptability: They handle multiple 
conflicting objective functions having 
complex, nonlinear, and non-convex, nature.  

• Dependence on parameters setting: They 
require carefully selecting parameters and 
settings to perform well. 

•Multi-objective 
particle swarm 
optimization (MOPSO)  

• A large number of solutions: They generate too 
many solutions, making it difficult for the 
decision-maker to choose the best one.   
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