
 

  

 

Aalborg Universitet

Multi-dimensional Probabilistic Regression over Imprecise Data Streams

Gao, Ran; Xie, Xike; Zou, Kai; Bach Pedersen, Torben

Published in:
WWW 2022 - Proceedings of the ACM Web Conference 2022

DOI (link to publication from Publisher):
10.1145/3485447.3512150

Publication date:
2022

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Gao, R., Xie, X., Zou, K., & Bach Pedersen, T. (2022). Multi-dimensional Probabilistic Regression over
Imprecise Data Streams. In WWW 2022 - Proceedings of the ACM Web Conference 2022 (pp. 3317-3326).
Association for Computing Machinery. https://doi.org/10.1145/3485447.3512150

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: May 10, 2024

https://doi.org/10.1145/3485447.3512150
https://vbn.aau.dk/en/publications/77e7cd5c-302b-4091-bec1-1439e4d1dfbd
https://doi.org/10.1145/3485447.3512150


Multi-dimensional Probabilistic Regression
over Imprecise Data Streams

Ran Gao*, Xike Xie*, Kai Zou*, and Torben Bach Pedersen†

gr0719@mail.ustc.edu.cn,xkxie@ustc.edu.cn,slnt@ustc.edu.cn,tbp@cs.aau.dk

*University of Science and Technology of China

† Daisy, Aalborg University, Denmark

ABSTRACT
In applications of Web of Things or Web of Events, a massive vol-

ume of multi-dimensional streaming data are automatically and

continuously generated from different sources, such as GPS, sensors,

and other measurement devices, which are essentially imprecise

(inaccurate and/or uncertain). It is challenging to monitor and get

insights over imprecise and low-level streaming data, in order to

capture potentially important data changing trends and to initi-

ate prompt responses. In this work, we investigate solutions for

conducting multi-dimensional and multi-granularity probabilis-

tic regression for the imprecise streaming data. The probabilistic

nature of streaming data poses big computational challenges to

the regression and its aggregation. In this paper, we study a se-

ries of techniques on multi-dimensional probabilistic regression,

including aggregation, sketching, popular path materialization, and

exception-driven querying. Extensive experiments on real and syn-

thetic datasets demonstrate the efficiency and scalability of our

proposals.

1 INTRODUCTION
In the context of Web of Things (WoT), Web of Events (WoE), Web

of Energy, etc., massive volumes of streaming data are continuously

and automatically generated from various sources in the under

infrastructures, such as sensor networks, RFID devices, GPS, and

so on [1, 2]. The stream of sensor data serves as the backbone of

emerging smart applications, such as smart warehousing, smart

buildings, and smart cities. Therefore, the real-time monitoring [3,

4] and analyzing [5, 6] of streaming data are important in intelligent

WoT and WoE event processing and decision making [3–6].

Regression and Multi-dimensional Regression. Conven-
tional multi-dimensional regression of precise data stream is funda-

mental in online streaming data analytics [7]. Regression analysis

is the study of dependent variables on independent variables. For

example, let time be the independent variable 𝑡𝑖 , and measure (e.g.,

temperature)𝑀𝑖 be the dependent variable. Then, we get a series

of tuples like ⟨(𝑡1, 𝑀1), (𝑡2, 𝑀2), ...⟩, which can be summarized by a

regression line 𝛾 , with slope 𝜂 and intersect 𝜃 .

𝛾 : 𝑀̂ = 𝜂 ∗ 𝑡 + ˆ𝜃, where (1)

𝜂 =

∑
𝑖 (𝑡𝑖 − 𝑡) ∗ (𝑀𝑖 −𝑀)∑

𝑖 (𝑡𝑖 − 𝑡)2
and

ˆ𝜃 =𝑀 − 𝜂 ∗ 𝑡

Measure𝑀𝑖 can be specified by a given set of dimensions (e.g., type

and location).

Imprecise Data Streams. However, the streaming data in WoT

and WoE applications are often imprecise and inaccurate, the so-

called veracity challenge. According to [8–12], data imprecision in

WoT is inherent, and is caused by various reasons, including mea-

surement inaccuracies [13, 14], interpolation errors [10], and trans-

mission latencies [11]. Nevertheless, inWoE, events are usually non-

deterministic due to unreliable data sources and networks [8]. R2C2:

To tackle the veracity challenge, probabilistic modeling has been

applied for capturing the imprecision of WoT streaming items[8, 9],

in order to get the confidence of upper level event and query evalu-

ation [8–12]. In this work, we model the imprecision of streaming

data items by the general and commonly accepted tuple-uncertainty
model in probabilistic datamanagement [15], and study the problem

of multidimensional probabilistic regression.

Object Time Instance Location,Type Measure Prob

𝑜1 𝑡1
𝑠1 𝑈𝑆, 𝐿𝑒𝑣𝑒𝑙 𝐼 2 0.6

𝑠2 𝑈𝑆, 𝐿𝑒𝑣𝑒𝑙 𝐼 1 0.4

𝑜2 𝑡2
𝑠3 𝑈𝑆, 𝐿𝑒𝑣𝑒𝑙 𝐼 3 0.5

𝑠4 𝑈𝑆, 𝐿𝑒𝑣𝑒𝑙 𝐼 7 0.5

𝑜3 𝑡1
𝑠5 𝑈𝐾, 𝐿𝑒𝑣𝑒𝑙 𝐼 2 0.5

𝑠6 𝑈𝐾, 𝐿𝑒𝑣𝑒𝑙 𝐼 3 0.5

𝑜4 𝑡2 𝑠7 𝑈𝐾, 𝐿𝑒𝑣𝑒𝑙 𝐼 4 1.0

(a) Probabilistic Streaming Raw Data

(b) Regression data cube for Figure 1a

Figure 1: An Example of Probabilistic Streaming Regression

An Example. In Figure 1a, there are three streaming objects 𝑜1

to 𝑜3, with timestamps 𝑡1 to 𝑡2. Each object has multiple possible

instances, due to multiple possible values caused by measurement

errors, or multiple readings caused by signal bouncing, etc., which

can be captured by the common tuple uncertainty model [15–18].

Each instance has multiple dimensions and a measure value, as-

sociated with a probability mass function (pmf), indicating the

possibility of its appearance. For example, in Figure 1a, object 𝑜1

has two possible instances, 𝑠1 and 𝑠2, with probabilities 0.6 and 0.4,

respectively. The probabilistic data streams can thus be modelled

as a sequence of imprecise objects ⟨(𝑡𝑠 , 𝑜𝑠 ), ..., (𝑡𝑖 , 𝑜𝑖 ), ..., (𝑡𝑒 , 𝑜𝑒 )⟩,
where 𝑜𝑖 refers to the object arriving at time 𝑡𝑖 .



Figure 2: Framework

Framework. The framework for probabilistic streaming data

regression aggregates the probabilistic regressions of multiple di-

mensions and multiple levels, as shown in Figure 2. Conceptually, a

cuboid [19] corresponds to a group-by of a particular combination

of dimensions. A cell refers to a tuple of a given cuboid. An example

is shown in Figure 1b. There are 4 cuboids (group-bys), and cuboid

(Location, Type) has 2 cells 𝐶1 and 𝐶2. Probabilistic regressions

can be used for monitoring the trend by regressing imprecise data

streams in real-time, alerting to streaming trend exceptions, and

thus offering insights from multiple aspects.

Table 1: PRL under Possible World Semantics

ID Possible world𝑊𝑖 𝛾𝑖

𝑊1 {(𝑡1, 𝑠1), (𝑡2, 𝑠3) } (1, 1, 0.3)
𝑊2 {(𝑡1, 𝑠1), (𝑡2, 𝑠4) } (5,−3, 0.3)
𝑊3 {(𝑡1, 𝑠2), (𝑡2, 𝑠3) } (2,−1, 0.2)
𝑊4 {(𝑡1, 𝑠2), (𝑡2, 𝑠4) } (6,−5, 0.2)

Probabilistic Regression. The regression result of a series of

imprecise streaming objects, can be represented as a Probabilistic

Regression Line (PRL in short). A PRL is essentially a set of triples

{(𝜂𝑖 , 𝜃𝑖 , 𝑝𝑖 )}𝑖=1,2,... , where a (𝜂𝑖 , 𝜃𝑖 ) pair uniquely represents a possi-
ble regression and 𝑝𝑖 is the corresponding probability. A PRL can be

interpreted by Possible World Semantic (PWS in short) [17], which
transforms a probabilistic time series into a set of non-probabilistic

time series. Each non-probabilistic time series is called a possible

world𝑊𝑖 associated with probability 𝑝 (𝑊𝑖 ).𝑊𝑖 can be obtained by

selecting an instance from each object at a time. Considering the

regression aggregation of cell 𝐶1 in Figure 3a, there are 4 possible

worlds, as shown in Table 1. The probability of each possible world

equals to the product of the corresponding instance probabilities,

e.g., 𝑝 (𝑊1) = 𝑝 (𝑠1) · 𝑝 (𝑠3) = 0.6 × 0.5 = 0.3. By doing that, we can

get the regression result for each possible world, and formulate the

PRL by integrating the regression results. Since each possible world

has a probability, the integrated PRL is a two-dimensional pmf, i.e.,

probability distribution for all (𝜂𝑖 , 𝜃𝑖 ) pairs, as shown in Table 1.

Challenges in Probabilistic Regression. Despite the semantic

comprehensiveness of PWS, the computational cost is high. If there

are 𝑛 objects, each with 𝑚 instances, there can be 𝑚𝑛 possible

worlds, which makes the aggregation infeasible in any case, in

particular for real-time stream processing. To tackle that, we present

a convolution-based method to process probabilistic regression

in polynomial time. It satisfies PWS, so that the correctness is

guaranteed [17]. Further, we offer an alternative aggregation of

regression, called sketch-based regression, which approximates

convolution-based regression in linear time.

Challenges in Popular-pathMaterialization. In analysis over
multiple dimensions, cuboids are usually computed along a pre-

defined popular path, instead of fully materializing all cuboids,

since that would require excessive space and time. R3C1: A popular
path [7] refers to a user-specified path from a lower to an upper

level of cuboids, within the cuboid lattice. For example, we give two

paths from𝑎𝑙𝑙 to (𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛,𝑇𝑦𝑝𝑒) in Figure 3b, and choose one path
from (𝑎𝑙𝑙) to(𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛, ∗) to (𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛,𝑇𝑦𝑝𝑒) as a popular-path.

(a) Multi-D Prob Stream Regression (b) Popular path

Figure 3: Interpretation of streaming cubes and popular path

R1C1: Contribution. In this paper, we present the first work

on multi-dimensional probabilistic regression for imprecise data

streams. For efficient regression processing, we propose convolution-

based and sketch-based regressions, taking polynomial and linear

time, respectively. We study intra- and extra-regressions, which

support popular-path materialization in real-time. Finally, we study

probabilistic exception-driven queries.

R2C1: Relevance.Web OLAP (WOLAP) has already been suc-

cessfully used to analyze semi-static (semantic/linked) web data [20–

23] and even semi-static WoT data [5]. Stream mining and ana-

lytics are becoming increasingly important in the Web commu-

nity [4, 24, 25]. Recently, WoT technology has been applied to un-

certain/imprecise data [8, 9]. Thus, there is an unmet need to extend

current WOLAP techniques and engines to imprecise streaming

sensor data from WoT devices. This paper fills this need. Specifi-

cally, our techniques support real-time WOLAP over high-speed

sensor data streams, where data imprecision from disparate WoT

streams is covered by probabilistic modeling.

Organization. The rest of the paper is organized as follows.

Section 2 studies convolution-based aggregation, which handles

probabilistic regression in polynomial time. Section 3 investigates

sketch-based aggregation, which approximates probabilistic regres-

sion in linear time. Section 4 introduces drilling path query, based

on convolution- and sketch-based aggregation. Section 5 presents

comprehensive empirical studies on the performance of our pro-

posals, with extensive experiments. Section 7 concludes the paper.

Table 2 lists all notations used throughout this paper.

2 CONVOLUTION-BASED REGRESSION
2.1 Preliminaries
Existential Pmf and Measure Pmf. Of probabilistic data streams,

an object corresponds to a set of possible instances, representing

2



Table 2: Notations

Notation Meaning
𝑜𝑖 Probabilistic data stream item

𝑠𝑖 Data instance

𝑡𝑖 Timestamp when data stream item 𝑜𝑖 is read

𝜂 Slope of regression line

𝜃 Intercept of regression line

𝛾 A probabilistic regression line

⊗ Intra-regression

⊙ Extra-regression

its possible existence. Each instance is associated with a probability,

indicating the likelihood of its appearance in the domain space. Of

an object, the summation of all instances’ possibilities equals to 1,

indicating the object must exist. For example, object 𝑜1 in Table 1

(a) arrives at 𝑡1, with existential pmf as {(𝑠1, 0.6), (𝑠2, 0.4)}. Measure

represents aggregated results of specific dimensions. Since objects

are imprecise, the measure is also imprecise. Considering object

𝑜1, the measure pmf of 𝑜1 can thus be represented by 𝑔𝑜1
(𝑀) =

{(2, 0.6), (1, 0.4)}, if modifying the existential pmf by replacing its

instances 𝑠1 and 𝑠2 by corresponding measures 2 and 1, respectively.

Notice that 𝑔𝑜1
(𝑀) can also be represented as a binary function

𝑔𝑜1
(𝜂, 𝜃 ), because of the quantitative relation between measure𝑀

and parameters 𝜂 and 𝜃 , according to Equation 1.

Regression Pmf. Designed for trend analysis, probabilistic re-

gression targets on finding critical changes over imprecise data

streams. In particular, the time dimension is taken as the indepen-

dent variable, and the measure of specified dimensions is treated

as the dependent variable. Since measure follows probabilistic pmf

as aforementioned, the regression is evaluated in a probabilistic

manner, called probabilistic regression lines (PRL in short). A PRL

𝛾 is represented by a set of repression lines, following a probability

mass function 𝑓𝛾 . Since a regression line can be denoted as the slope-

intercept pair (𝜂𝑖 , 𝜃𝑖 ), the pmf of 𝛾 is essentially a two-dimensional

distribution, written as 𝑓𝛾 (𝜂, 𝜃 )={(𝜂1, 𝜃1, 𝑝1), (𝜂2, 𝜃2, 𝑝2), ...}.

2.2 Operations for Probabilistic Regression
Since streaming objects arrive sequentially, their regression should

also be processed incrementally. For efficient processing, we intro-

duce two operations for fulfilling probabilistic regression, intra-
regression ⊗ and extra-regression ⊙. The former refers to the case

that the incoming object is “obsolete”, meaning that the object’s

timestamp is not the latest in the current cell. The latter refers to the

case that the object is the latest object of the current cell. Thus, the

two operations are defined according to the two cases, respectively.

Intra-regression. The concept of intra-regression is formalized

in Definition 1. An example is shown in Figure 4, before incoming

object 𝑜 arrives, there are three objects at time window [1, 3]. Ini-
tially there is only one regression line in the regression pmf 𝛾𝑆 in

Figure 4, made up by these three objects 𝑆 = {𝑜1, 𝑜2, 𝑜3} in Figure 4b.
After 𝑜 arrives, whose timestamp is 2, we can get a regression pmf

𝛾𝑆′ of 2 possible regression lines in Figure 4a. Noticed that the time

windows is still [1, 3]. The correctness of operation ⊗ is guaranteed

by Lemma 1.

Definition 1 (Operation ⊗). Given a PRL 𝛾𝑆 ∼ 𝑓𝛾𝑆 (𝜂, 𝜃 ) with
time window [𝑡𝑠 , 𝑡𝑒 ], where 𝑆 = {𝑜1, 𝑜2, ...} refers to the set of ob-
jects formulating the regression. Suppose an incoming object 𝑜 whose
measure pmf is 𝑔𝑜 = {(𝑀1, 𝑝1), ..., (𝑀𝑚, 𝑝𝑚)}. The timestamp of 𝑜
is 𝑡𝑜 , satisfying 𝑡𝑜 ∈ [𝑡𝑠 , 𝑡𝑒 ]. The updated PRL is thus represented by
𝛾𝑆′ ∼ 𝑓𝛾𝑆′ , where 𝑆

′ = 𝑆 ∪ {𝑜}. Formally,

𝑓𝛾𝑆′ (𝜂, 𝜃 ) = (𝑓𝛾𝑆 ⊗ 𝑔𝑜 ) (𝜂, 𝜃 )

=
∑︁

(𝜂1,𝜃1)
𝑓𝛾𝑆 (𝜂1, 𝜃1) · 𝑔𝑜 (𝑌 )

(2)

where 𝑌 is a function of (𝜂, 𝜃, 𝜂1, 𝜃1), defined as :

𝑌=

𝜂 − 𝜂1

𝐴1

, 𝑖 𝑓
𝜂 − 𝜂1

𝐴1

=
𝜃 − 𝜃1

𝐵1

𝑁𝑈𝐿𝐿

(3)

where


𝐴1 =

6(2𝐾 −𝑇 − 1)
𝑇 3 −𝑇 , 𝐵1 =

2(2𝑇 − 3𝐾 + 1)
𝑇 (𝑇 − 1)

𝑇 = 𝑡𝑒 − 𝑡𝑠 + 1, 𝐾 = 𝑡𝑜 − 𝑡𝑠 + 1

(4)

When 𝑌 is 𝑁𝑈𝐿𝐿, the value of 𝑌 does not exist in 𝑔𝑜 , and 𝑔𝑜 (𝑁𝑈𝐿𝐿)
is set as 0.

(a) PRL Interpretation (𝛾𝑆 )

𝛾𝑆 , where 𝑆 = {𝑜1, 𝑜2, 𝑜3}
ID (𝜂, 𝜃 ) Prob

𝑊1 (5,−5) 1

𝛾𝑆′ , where 𝑆
′ = {𝑜1, 𝑜2, 𝑜3, 𝑜}

ID (𝜂, 𝜃 ) Prob

𝑊2 (5,−2.67) 0.5

𝑊3 (5,−2.33) 0.5

(b) Possible World Interpretation

Figure 4: An Example of Operation ⊗

Lemma 1. Given a pmf of a PRL, 𝑓𝛾𝑆 , with time window is [𝑡𝑠 , 𝑡𝑒 ],
and a measure pmf 𝑔𝑜 = {(𝑀1, 𝑝1), ..., (𝑀𝑚, 𝑝𝑚)} of an incoming
object 𝑜 , with timestamp 𝑡𝑜 ∈ [𝑡𝑠 , 𝑡𝑒 ], the intra-regression of 𝑓𝛾𝑆 and
𝑔𝑜 is 𝑓𝛾𝑆′ (𝜂, 𝜃 ) = (𝑓𝛾𝑆 ⊗ 𝑔𝑜 ) (𝜂, 𝜃 ), which satisfies PWS.

Proof 1. Let 𝐼 (𝑥) be an indicator function, which returns 1 if 𝑥 is
true and 0 otherwise.𝑊 is the set of all possible worlds. We have:

𝑓𝛾𝑆′ (𝜂, 𝜃 ) =
∑︁

(𝜂1,𝜃1 )
𝑓𝛾𝑆 (𝜂1, 𝜃1) · 𝑔𝑜 (𝑌 ) (5)

=
∑︁

𝑊𝑖 ∈W
𝑝 (𝑊𝑖 ) · 𝐼

(𝜂1,𝜃1,𝑀𝑖 )∈𝑊𝑖

(𝜂1 +𝐴1 ·𝑀𝑖 = 𝜂 and 𝜃2 + 𝐵2 ·𝑀𝑖 = 𝜃 )

We proof that 𝜂 = 𝜂1 +𝐴1 ·𝑀𝑖 and 𝜃 = 𝜃1 +𝐵1 ·𝑀𝑖 for each possible
world𝑊𝑖 . The measure of𝑊𝑖 at 𝑡𝑜 before 𝑜 arrived is 𝑀𝑡 , and will
become 𝑀𝑡 +𝑀𝑖 after 𝑜 arrived, and the mean of measure 𝑀 of𝑊𝑖

3



become𝑀 ′ = 𝑇𝑀̄+𝑀𝑖

𝑇
.

𝜂 =

∑𝑇
𝑡=1

𝑡 ·𝑀′
𝑡 −𝑇 · 𝑡 · 𝑀̄′∑𝑇

𝑡=1
(𝑡 − 𝑡 )2

=

∑𝑇
𝑡=1

𝑡 ·𝑀𝑡 −𝑇 · 𝑡 · 𝑀̄∑𝑇
𝑡=1

(𝑡 − 𝑡 )2

+ 𝑡𝑜 ·𝑀𝑖 − 𝑡 ·𝑀𝑖∑𝑇
𝑡=1

(𝑡 − 𝑡 )2

= 𝜂1 +
6(2𝐾 −𝑇 − 1)

𝑇 3 −𝑇 𝑀𝑖

Then we can use 𝜃 = 𝑀 ′ − 𝜂 ·
∑𝑇

𝑡=1
𝑡

𝑇
to proof 𝜃 = 𝜃1 + 𝐵1 ·𝑀𝑖

Extra-regression. The concept of extra-regression is formalized

in Definition 2. An example is shown in Figure 5. Before 𝑜 arrives,

there are two objects at the timewindow [1, 2], and there is only one
PRL in regression pmf 𝛾𝑆 in Table 5b, made up by two objects 𝑆 =

{𝑜1, 𝑜2}. After 𝑜 arrives at 𝑡𝑜 = 3, it expands the time window of the

current cell from [1, 2] to [1, 3]. We can get an updated regression

pmf 𝛾𝑆′ of 2 possible regression lines, as shown in Table 5b. The

correctness of operation ⊙ is formally proved in Lemma 2.

Definition 2 (Operation ⊙). Given a PRL 𝛾𝑆 ∼ 𝑓𝛾𝑆 (𝜂, 𝜃 ) with
time window [𝑡𝑠 , 𝑡𝑒 ], where 𝑆 = {𝑜1, 𝑜2, ...} refers to the set of ob-
jects formulating the regression. Suppose an incoming object 𝑜 whose
measure pmf is 𝑔𝑜 = {(𝑀1, 𝑝1), ..., (𝑀𝑚, 𝑝𝑚)}. The timestamp of 𝑜
is 𝑡𝑜 , satisfying 𝑡𝑜 = 𝑡𝑒 + 1. The updated PRL is thus represented by
𝛾𝑆′ ∼ 𝑓𝛾𝑆′ , where 𝑆

′ = 𝑆 ∪ {𝑜}. Formally,

𝑓𝛾𝑆′ (𝜂, 𝜃 ) = (𝑓𝛾𝑆 ⊙ 𝑔𝑜 ) (𝜂, 𝜃 )

=
∑︁

(𝜂1,𝜃1)
𝑓𝛾𝑆 (𝜂1, 𝜃1) · 𝑔𝑜 (𝑌 )

(6)

where 𝑌 is a function of (𝜂, 𝜃, 𝜂1, 𝜃1), defined as :

𝑌=


𝜂 −𝐶1𝜂1 −𝐶2𝜃1

𝐶3

, 𝑖 𝑓
𝜂 −𝐶1𝜂1 −𝐶2𝜃1

𝐶3

=
𝜃 −𝐷1𝜂1 −𝐷2𝜃1

𝐷3

𝑁𝑈𝐿𝐿

(7)

where


𝐶1 =

𝑇 − 4

𝑇 + 2

,𝐶2 = − 6

(𝑇 + 1) (𝑇 + 2) ,𝐶3 =
6

(𝑇 + 1) (𝑇 + 2)

𝐷1 = 2, 𝐷2 =
𝑇 + 3

𝑇 + 1

, 𝐷3 = − 2

𝑇 + 1

𝑇 = 𝑡𝑒 − 𝑡𝑠 + 1

(8)

When 𝑌 is 𝑁𝑈𝐿𝐿, the value of 𝑌 does not exist in 𝑔𝑜 , and 𝑔𝑜 (𝑁𝑈𝐿𝐿)
is set as 0.

(a) PRL Interpretation (𝛾𝑆 )

𝛾𝑆 , where 𝑆 = {𝑜1, 𝑜2, }
ID (𝜂, 𝜃 ) Prob

𝑊1 (6,−4) 1

𝛾𝑆′ , where 𝑆
′ = {𝑜1, 𝑜2, 𝑜}

ID (𝜂, 𝜃 ) Prob

𝑊2 (2, 1.33) 0.5

𝑊3 (5.5,−3.33) 0.5

(b) Possible World Interpretation

Figure 5: An Example of Operation ⊙

Lemma 2. Given a pmf of a PRL 𝑓𝛾𝑆 with time window [𝑡𝑠 , 𝑡𝑒 ], and
a measure pmf 𝑔𝑜 = {(𝑀1, 𝑝1), (𝑀2, 𝑝2), ..., (𝑀𝑚, 𝑝𝑚)} of an object
𝑜 , with timestamp 𝑡𝑜 = 𝑡𝑒 + 1, the extra-regression of 𝑓𝛾𝑆 and 𝑔𝑜 is
𝑓𝛾𝑆′ (𝜂, 𝜃 ) = (𝑓𝛾𝑆 ⊙ 𝑔𝑜 ) (𝜂, 𝜃 ) which satisfies PWS.

Proof 2. Similar proof 1, we should prove

𝑓𝛾𝑆′ (𝜂, 𝜃 ) =
∑︁
𝑊𝑖

𝑝 (𝑊𝑖 ) · 𝐼
(𝜂1,𝜃1,𝑀𝑖 )∈𝑊𝑖

(𝐶1𝜂1 +𝐶2𝜃1 (9)

+𝐶3 ·𝑀𝑖 = 𝜂 and 𝐷1𝜂1 +𝐷2𝜃1 +𝐷3 ·𝑀𝑖 = 𝜃 )

After extra-regression, the time window becomes [1,𝑇 + 1]. Ac-
cording to Equation 1, the integrated slope 𝜂𝑖 of possible world𝑊𝑖
is:

𝜂 =

∑𝑇+1

𝑡=1
𝑡 ·𝑀′

𝑡 − (𝑇 + 1) · 𝑡 · 𝑀̄′∑𝑇+1

𝑡=1
(𝑡 − 𝑡 )2

=

∑𝑇
𝑡=1

(𝑡 − 𝑡 )2∑𝑇+1

𝑡=1
(𝑡 − 𝑡 )2

𝜂 +
(𝑇 + 1)𝑀𝑖 + (𝑇 + 1) 𝑇

2
𝑀̄ − (𝑇 ) 𝑇+1

2
𝑀̄′∑𝑇+1

𝑡=1
(𝑡 − 𝑡 )2

(10)

The variables𝑀 and𝑀 ′ of Equation 10 are as follows.

𝑀 = 𝜂
𝑇

2

+ 𝜃 and𝑀′ =
𝑀̄ · 𝑇 +𝑀𝑖

𝑇 + 1

(11)

Substituting the two items into Equation 10, we can have 𝜂 = 𝐶1𝜂1 +
𝐶2𝜃1 +𝐶3𝑀𝑖 . Similarly, we can proof 𝜃 = 𝐷1𝜂1 + 𝐷2𝜃1 + 𝐷3 ·𝑀𝑖 .

The execution of the two operations are done in a convolution

manner. Thus, we call the probabilistic regression based on the

two operations as convolution-based regression. By defining the two

operations, the probabilistic regression can be done in polynomial

time.

Suppose each object has at most𝑚 instances. The operation ⊗ or

⊙ over two objects takes at most𝑂 (𝑚2) time cost and 2𝑚 space cost,

because of the two loops in the convolution of Equation 2 or 9. Then,

the pmf length of the two objects’ PRL is at most 2𝑚. A convolution

operation, i.e., ⊗ or ⊙, between the PRL and an object can thus be

evaluated in 𝑂 (𝑚2) time. The resulted PRL pmf takes at most 3𝑚

space. Notice that the pmf length increases as convolution continues.

Convoluting 𝑛 objects results in a pmf length 𝑂 (𝑚𝑛) at most, so

that the time cost would be 𝑂 (𝑚2𝑛2). The time efficiency can be

improved to 𝑂 (𝑚2𝑛2𝑙𝑜𝑔(𝑚𝑛)), if the two-dimensional Fast Fourier

Transformation (FFT) is used. It can be simplified as 𝑂 (𝑛2𝑙𝑜𝑔(𝑛)),
if𝑚 is a constant.

Algorithm 1 Convolution-based regression

Input: A new object 𝑜 , 𝑔𝑜 and regression pmf 𝑓𝛾𝑆
Output: Updated regression pmf 𝑓𝛾𝑆′

for each cuboid in popular-path do
Find the cell match the value of dimensions

𝑓𝛾𝑆′ = 𝑓𝛾𝑆 ⊗ 𝑔𝑜 or 𝑓𝛾𝑆′ = 𝑓𝛾𝑆 ⊙ 𝑔𝑜
end for

Discussion. So far, we have a polynomial-time solution for re-

gression aggregation. There are two questions to be answered. First,

is the convolution-based method adequate for streaming setting?

Second, when analyzing probabilistic regression lines from regres-

sion, do we need to query the regression pmf for all cells every

time? For the first question, we devise an alternative solution called
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sketch for fast approximating the regression aggregation and pro-

cess online within the linear overhead. For the second problem, we

chose pruning for certain cells which were of no analytical value

with sketch, which can help improve query efficiency.

3 SKETCH-BASED REGRESSION
Convolution-based regression does not meet the velocity challenge

of data streams. Therefore, we seek for alternative probability dis-

tribution representations for accelerating the aggregation of regres-

sion. In this section, we introduced cumulants, which are considered

as effective features of probability distributions.

3.1 Cumulants: Sketch Variables for Regression
Cumulants are quantitative measures for defining the shape of a

probability distribution. Usually, we call the first and second order

cumulants the mean and variance. Theoretically, the collection of

all cumulants of all orders, i.e., 𝑘 = 1, ...∞, can uniquely determine

a probability distribution.

𝐸 (𝑋 ) =
∑︁
𝑥

𝑥 𝑓𝑋 (𝑥) (12)

𝑉𝑎𝑟 (𝑋 ) = 𝐸 (𝑋 2) − 𝐸2 (𝑋 ) =
∑︁
𝑥

𝑥2 𝑓𝑋 (𝑥) − (
∑︁
𝑥

𝑥 𝑓𝑋 (𝑥))2

An alternative way of approximately representing a PRL is to

evaluate its cumulants of a series of orders, instead of the exact form

of probabilistic distributions. Ideally, a probabilistic distribution is

equivalently to the series of all orders of cumulants. In practice, it

is often adequate to approximate the cumulants of low orders, e.g.,

the first two orders of cumulants, according to [26] and [16].

So, for a cell, we maintain 5 sketching variables for representing

the first two orders of cumulants, including the first two orders of

cumulants 𝐸 (𝜂), 𝐸 (𝜃 ), 𝑉𝑎𝑟 (𝜂), 𝑉𝑎𝑟 (𝜃 ), and covariance 𝐶𝑜𝑣 (𝜂, 𝜃 ).
The covariance is needed, because the variables 𝜂 and 𝜃 are not

independent.

3.2 Operations for Sketch Regression
Now we study the operations for sketch-based regression. Suppose

an incoming object 𝑜 , which arrives at time 𝑡𝑜 with measure pmf

𝑓𝑜 (𝑀) = {(𝑀𝑖 , 𝑝𝑖 )}𝑖≤𝑚 , and the time span of current PRL is [𝑡𝑠 , 𝑡𝑒 ].
There are two possibilities for aggregating 𝑜 into the regression,

1) 𝑜 is the latest object, 𝑡𝑜 = 𝑡𝑒 + 1; 2) 𝑜 is not the latest objects

𝑡𝑜 ∈ [𝑡𝑠 , 𝑡𝑒 ]. For the first case, after the insertion of 𝑜 , 𝑡𝑒 is replaced

by 𝑡𝑜 .

We consider two types of sketch-based regression, intra- and

extra-regressions, in consistent with convolution-based regressions.

The two operations are covered by Lemmas 3 and 4, respectively.

Lemma 3 (Sketching Operation ⊗). Given a PRL 𝛾𝑆 ∼ 𝑓𝛾𝑆 (𝜂, 𝜃 )
represented by its first two order cumulants, and an incoming objet
𝑜 ∼ 𝑔𝑜 (𝑀), the cumulants of updated PRL 𝛾 ′

𝑆
∼ 𝑓𝛾 ′

𝑆
(𝜂 ′, 𝜃 ′), where

𝑓𝛾 ′
𝑆
(𝜂 ′, 𝜃 ′) = 𝑓𝛾𝑆 ⊗ 𝑔𝑜 (𝜂 ′, 𝜃 ′) are as follows.

𝐸 (𝜂 ′) = 𝐸 (𝜂) +𝐴1𝐸 (𝑀)
𝑉𝑎𝑟 (𝜂 ′) = 𝑉𝑎𝑟 (𝜂 ′) +𝐴2

1
𝑉𝑎𝑟 (𝑀)

𝐸 (𝜃 ′) = 𝐸 (𝜃 ) + 𝐵1𝐸 (𝑀)
𝑉𝑎𝑟 (𝜃 ′) = 𝑉𝑎𝑟 (𝜃 ) + 𝐵2

1
𝑉𝑎𝑟 (𝑀)

𝐶𝑜𝑣 (𝜂 ′, 𝜃 ′) = 𝐶𝑜𝑣 (𝜂, 𝜃 ) +𝐴1𝐵1𝑉𝑎𝑟 (𝑀)

where


𝐴1 =

6(2𝐾 −𝑇 − 1)
𝑇 3 −𝑇 , 𝐵1 =

2(2𝑇 − 3𝐾 + 1)
𝑇 (𝑇 − 1)

𝑇 = 𝑡𝑒 − 𝑡𝑠 + 1, 𝐾 = 𝑡𝑜 − 𝑡𝑠 + 1

(13)

Proof 3. As shown in Lemma 1, for operation ⊗, each possible
world of 𝛾𝑆 can be expanded as 𝑚 possible worlds of 𝛾 ′

𝑆
after 𝑜 is

convoluted. Let pmf of 𝑜 be 𝑓𝑜 = {(𝑀1, 𝑝𝑀1) ...(𝑀𝑚, 𝑝𝑀𝑚)}. We have:

𝐸 (𝜂 ′) =
∑︁

𝜂 ′𝑖𝑝
′
𝑖 =

∑︁
(𝜂 +𝐴1𝑀𝑖 )𝑝 ′𝑖 =

∑︁
(𝜂 +𝐴1𝑀𝑖 )𝑝𝑖𝑝𝑀𝑖

=
∑︁

𝜂𝑝𝑖 +𝐴1

∑︁
𝑀𝑖𝑝𝑀𝑖 = 𝐸 (𝜂) +𝐴1𝐸 (𝑀)

Then,𝑉𝑎𝑟 (𝜂 ′) can be directly obtained by substituting 𝐸 (𝜂 ′) into the
equation of variance.

𝑉𝑎𝑟 (𝜂 ′) = 𝐸 (𝜂 ′2) − 𝐸 (𝜂 ′)2 = 𝐸 ((𝜂 +𝐴1𝑀𝑖 )2) − 𝐸 (𝜂 +𝐴1𝑀𝑖 )2

= (𝐸 (𝜂2) − 𝐸 (𝜂)2) +𝐴2

1
(𝐸 (𝑀2) − 𝐸 (𝑀)2) = 𝑉𝑎𝑟 (𝜂) +𝐴2

1
𝑉𝑎𝑟 (𝑀)

Similarly, we can derive 𝐸 (𝜃 ′), 𝑉𝑎𝑟 (𝜃 ′), and 𝐶𝑜𝑣 (𝜂 ′, 𝜃 ′). Hence, the
lemma is proved.

Lemma 4 (Sketching Operation ⊙). Given a PRL 𝛾𝑆 ∼ 𝑓𝛾𝑆 (𝜂, 𝜃 )
represented by its first two order cumulants, and an incoming objet
𝑜 ∼ 𝑔𝑜 (𝑀), the cumulants of updated PRL 𝛾 ′

𝑆
∼ 𝑓𝛾 ′

𝑆
(𝜂 ′, 𝜃 ′), where

𝑓𝛾 ′
𝑆
(𝜂 ′, 𝜃 ′) = 𝑓𝛾𝑆 ⊙ 𝑔𝑜 (𝜂 ′, 𝜃 ′) are as follows.

𝐸 (𝜂 ′) = 𝐶1𝐸 (𝜂) +𝐶2𝐸 (𝜃 ) +𝐶3𝐸 (𝑀)
𝐸 (𝜃 ′) = 𝐷1𝐸 (𝜂) + 𝐷2𝐸 (𝜃 ) + 𝐷3𝐸 (𝑀)

𝑉𝑎𝑟 (𝜂 ′) = 𝐶2

1
𝑉𝑎𝑟 (𝜂) +𝐶2

2
𝑉𝑎𝑟 (𝜃 ) + 2𝐶1𝐶2𝐶𝑜𝑣 (𝜂, 𝜃 ) +𝐶2

3
𝑉𝑎𝑟 (𝑀)

𝑉𝑎𝑟 (𝜃 ′) = 𝐷2

1
𝑉𝑎𝑟 (𝜂) + 𝐷2

2
𝑉𝑎𝑟 (𝜃 ) + 2𝐷1𝐷2𝐶𝑜𝑣 (𝜂, 𝜃 ) + 𝐷2

3
𝑉𝑎𝑟 (𝑀)

𝐶𝑜𝑣 (𝜂 ′, 𝜃 ′) = (𝐶1𝐷2 +𝐶2𝐷1)𝐶𝑜𝑣 (𝜂, 𝜃 ) +𝐶1𝐷1𝑉𝑎𝑟 (𝜂)
+𝐶2𝐷2𝑉𝑎𝑟 (𝜃 ) +𝐶3𝐷3𝑉𝑎𝑟 (𝑀)

where


𝐶1 =

𝑇 − 4

𝑇 + 2

,𝐶2 = − 6

(𝑇 + 1) (𝑇 + 2) ,𝐶3 =
6

(𝑇 + 1) (𝑇 + 2)

𝐷1 = 2, 𝐷2 =
𝑇 + 3

𝑇 + 1

, 𝐷3 = − 2

𝑇 + 1

𝑇 = 𝑡𝑒 − 𝑡𝑠 + 1

(14)

The proof of Lemma 4 is similar to that of Lemma 3, and are

omitted due to page limits. For ease of understanding, we show an

example of sketch-based operations in Table 3. In particular, we

show how the expectation of 𝜃 ′ is derived from cumulants of 𝜃

and 𝑔𝑜 in operation ⊗. Here, 𝑇 equals 3 − 1 + 1 = 3 and 𝐾 equals

2−1+1 = 2, according to Equation 13 and the timestamp information

of {𝑜1, 𝑜2, 𝑜3, 𝑜}, as shown in Figure 4a. The value of 𝐵1 can be

calculated by
2(2×3−3×2+1)

3×(3−1) = 1

3
. The expectation of 𝑜’s measure

𝐸 (𝑀) is 7 × 0.5 + 8 × 0.5 = 7.5. By substituting 𝐸 (𝑀) and 𝐵1 into

𝐸 (𝜃 ′), we get that 𝐸 (𝜃 ′) = −5+7.5/3 = −2.5. The result is consistent

with the one derived from 𝑓𝛾 ′ , that is −2.67×0.5+−2.33×0.5 = −2.5.

It shows that the sketching operation, ⊗ or ⊙, can be done in

linear time complexity w.r.t. the number of imprecise objects, which

is much more efficient that convolution-based regression. Thus,

sketch-based regression is appropriate for handling imprecise data

streams. Next, we show how sketch-based regression supports

queries.
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Table 3: Example of Lemma 3 For Fig 4

𝑓𝛾𝑆 (𝜂, 𝜃 ) = {(5,−5, 1.0)}, 𝑔𝑜 (𝑀) = {(7, 0.5), (8, 0.5)}
𝑓𝛾𝑆′ (𝜂 ′, 𝜃 ′) = {(5,−2.67, 0.5), (5,−2.33, 0.5)}

𝐸 (𝜂) 5

𝑉𝑎𝑟 (𝜂) 0

𝐸 (𝜃 ) −5

𝑉𝑎𝑟 (𝜃 ) 0

𝐶𝑜𝑣 (𝜂, 𝜃 ) 0

𝐸 (𝜂 ′) 5

𝑉𝑎𝑟 (𝜂 ′) 0

𝐸 (𝜃 ′) −2.5

𝑉𝑎𝑟 (𝜃 ′) 6.31

𝐶𝑜𝑣 (𝜂 ′, 𝜃 ′) 0

4 EXCEPTION-DRIVEN QUERIES WITH
PROBABILISTIC REGRESSIONS

In this section, we discuss how probabilistic regressions support

exception detection for imprecise data streams.

4.1 Exception-driven Queries
By analyzing PRLs, we can monitor the trend of the probabilistic

data streams for a specific set of dimensions over a period of time.

Similar to [7], we define exceptions based on the existence of slope

outliers, i.e., the slope is higher than a threshold. Since the regres-

sion is probabilistic, we would like to return the exceptions which

are above user-specified confidence threshold. Therefore, we define

the probabilistic exception queries as follows.

Definition 3 (Probabilistic ExceptionQueries). Over a set
of given dimensions, a probabilistic exception query (PEQ in short)
returns cells, whose slope values are higher than the slope threshold
𝜏𝜂 , and the qualification probability is higher than the probability
threshold 𝜏𝑝 .

Let 𝜂 ∼ 𝐹𝑐 (𝜂) be a random variable representing the slope value

of cell 𝐶 . The qualification probability equals to the integration of

pmf 𝐹𝑐 over the range satisfying the query threshold. Then, PEQ

returns all cells meeting 𝜏𝜂 and 𝜏𝑝 , formally,

PEQ = {𝐶𝑘 |𝑃𝑟𝑜𝑏 (𝜂 ≥ 𝜏𝜂 ) > 𝜏𝑝 } = {𝐶𝑘 |
∑︁
𝜂≥𝜏𝜂

𝐹𝐶𝑘
(𝜂) > 𝜏𝑝 }

This way, if a cell is returned by PEQ as exceptions, indicating

the abnormal trend alerted. In Definition 3, the query semantics of

PEQ focus on retrieving cells with the increasing trend faster than

user-specific thresholds. Notice that the query semantics can also

be extended to handle more general cases with slight modification.

After we gave the PEQ based on the exception definition of the

Regression Pmf, the real-time response of the data only updated the

Sketch variables. The cumulants of PRL pmfs can be used to get the

upper and lower bounds for approximating PEQ qualification prob-

abilities. Intuitively, if a cell’s lower bound is above 𝜏𝑝 , it qualifies

for the query. Otherwise, if a cell’s upper bound is below 𝜏𝑝 , it is

not qualified for the query answer. With so-called sketched-based

pruning, the efforts on refinement process can be much saved. The

formalization of upper and lower bounds are shown in Lemmas 5

and 6.

Lemma 5 (Upper Bounds). If the expectation of the aggregated
variable 𝜂 is at most 𝜏𝜂 , the probability that 𝜂 > 𝜏𝜂 is at most
𝑉𝑎𝑟 (𝜂)

𝑉𝑎𝑟 (𝜂)+𝑎2
, where 𝑎 = |𝜏𝜂 − 𝐸 (𝜂) |. In other words, if 𝐸 (𝜂) ≤ 𝜏𝜂 ,

then 𝑃𝑟𝑜𝑏 (𝜂 > 𝜏𝜂 ) ≤ 𝑉𝑎𝑟 (𝜂)
𝑉𝑎𝑟 (𝜂)+𝑎2

.

Lemma 6 (Lower Bounds). If the expectation of the aggregated
variable 𝜂 is at least 𝜏𝜂 , the probability that (𝜂 > 𝜏𝜂 ) is at most

𝑎2

𝑉𝑎𝑟 (𝜂)+𝑎2
, where 𝑎 = |𝜏𝜂 − 𝐸 (𝜂) |. In other words, if 𝐸 (𝜂) ≥ 𝜏𝜂 , then

𝑃𝑟𝑜𝑏 (𝜂 > 𝜏𝜂 ) ≤ 𝑎2

𝑉𝑎𝑟 (𝜂)+𝑎2
.

The error bounds can be efficiently derived based on sketching

variables, e.g., 𝐸 (𝜂) and 𝑉𝑎𝑟 (𝜂). Notice that there is no need to

explicitly derive both of the two bounds, when applying sketch-

based approximation. If the expectation of𝜂 is higher than threshold

𝜏𝜂 , the upper bound is derived for approximating the qualification

probabilities. Otherwise, the lower bound is derived. Both bounds

can be directly obtained from one-sided Chebyshev’s inequality, so

the proofs are omitted.

5 EXPERIMENTAL EVALUATION
We introduce the experimental setting in Section 5.1. We present

the experimental result in Section 5.2

5.1 Setup
Datasets. We use the synthetic data (an adapted version of the

well known TPC-H
1
) and real data (US Climate 2014

2
). For each

tuple in the dataset, we viewed it as a multi-dimensional point. The

uncertainty is injected into the tuple by creating a set of 5, 10, and

15 possible instances. The instance is randomly generated from

a multi-dimensional orthogonal region, which is centered at the

tuple. The side length of the region is about 20% of its dimensional

value. By default, there are 10 possible instances for each object. The

probability distribution of the instances are generated randomly.

Then, we can get two probabilistic datasets, denoted as TPC-H and

Climate. The statistics of the two datasets are shown as below.

• TPC-H. We select Items, Suppliers, Consumers, and Loca-

tions as dimensions, besides the temporal dimension. We use

price as the measure for the trend analysis.

• Climate. We identify attributes Wind Direction, Wind Speed,

and Sea level pressure as dimensional attributes, besides

the temporal dimensional attribute. We use Temperature as

the measure. The analysis is on monitoring the temperature

trend of sea area.

Implementation. In convolution aggregation, the slope and

intercept, which range from negative infinite to positive infinite,

are rounded to integers. The sketch-based method uses the first

two orders of cumulants. All our programs were implemented in

C++, with VS2019 IDE, and run on a PC with a 2.6GHz processor

and 8GB RAM. Each point is the average of 10 runs.

5.2 Results
5.2.1 Aggregation. We compare the performance of aggregation

for three methods, PWS, convolution-based method, and sketch-

based method. We show the time cost of aggregation on TPC-H in

Fig. 6, and the time cost on Climate in Fig. 7. The results show that

the time cost of PWS increases dramatically w.r.t. to the number of

objects. R2C4: On both datasets, PWS does not finish in acceptable

time. It times out after 1000s when processing 1000 data objects.

1
http://www.tpc.org/tpch/

2
http://www.ncdc.noaa.gov/cdo-web/datasets
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(a) Time vs Obj.(TPC-H) (b) Space vs Obj.(TPC-H) (c) Time vs𝑚.(TPC-H)

Figure 6: Aggregation(TPC-H)R2C3

(a) Time vs Obj.(Climate) (b) Space vs Obj.(Climate)

Figure 7: Aggregation(Climate)R2C3

(a) Time vs of 𝜏𝜂 .(TPC-H) (b) Time vs of 𝜏𝑝 .(TPC-H)

Figure 8: Query(TPC-H)

(a) Time vs of 𝜏𝜂 .(Climate) (b) Time vs of 𝜏𝑝 .(Climate)

Figure 9: Query(Climate)

(a) TPS vs of path length.(TPC-H) (b) TPS vs cells.(TPC-H)

Figure 10: Throughput(TPC-H)

(a) TPS vs of path length.(Climate) (b) TPS vs cells.(Climate)

Figure 11: Throughput(Climate)

In comparison to that, the performance of convolution- and sketch-

based methods are much more efficient. It is therefore consistent

with the time complexity analysis that PWS runs in exponential

time, and the other two can be done in polynomial time. Also,

sketch-based aggregation consumes orders of magnitudes less than

convolution-based method in terms of time cost. For example, in

Fig. 6a, when 10, 000 objects are aggregated, convolution-based

method takes about 480 seconds, while the sketch-based method

takes about 0.05 seconds. Similar observations can be drawn from

the Climate dataset, in Fig. 7a.

Then, we consider the space cost in Fig. 6b and Fig. 7b. The

space cost of all the three methods increases with respect to the

number of objects. PWS methods consumes highest space cost of

the three competitors, since the number of possible worlds is ex-

ponential. Convolution-based aggregation takes space for storing

pmfs of PRLs, so the time cost increases polynomially. The trend is

super-linearly, because the pmf becomes longer for a larger number

of objects. In contrast, sketch-based method only store 5 sketch-

ing variables, including the two expectation, two variance, and the

covariance, for 𝜂 and 𝜃 . So, the time cost increases linearly w.r.t.

the number of objects. In particular, when 5, 000 objects are aggre-

gated, convolution-based method takes 127 KB, while sketch-based

method takes merely 0.12 KB, in Fig. 6b. Similar observations can

be drawn from Climate in Fig. 7b.

We also examine the effect of uncertainty by varying the num-

ber of possible instances of an object in Fig. 6c. It shows that both

convolution- and sketch-based increase sub-linearly w.r.t. the num-

ber of instances𝑚. In particular, when𝑚 grows 3 times (i.e., from 5

to 15), the time cost of convolution-based method only increases by

0.6 times. The time overhead of sketch-based method in insensitive

to the increase of𝑚. For example, when𝑚 grows 3 times, the time

cost of sketch-based method increases by 0.3 times. From now on,

we only show the results of convolution- and sketch-based methods,

since PWS is completely dominated by the two.

5.2.2 Queries. We examine the performance of probabilistic ex-

ception queries, in Fig. 8 and Fig. 9. We test the result by varying

the parameter 𝜏𝑝 and 𝜏𝜂 . In all testings, curves are in the bell shape,

the query time first increases then decreases w.r.t. to 𝜏𝑝 and 𝜏𝜂 .

This is as expected. For example, when 𝜏𝑝 equals 50%, it refers to

the most ambiguous case so that the pruning effect is the mostly

weakened. When 𝜏𝑝 increased to 70% and 90%, the pruning effect

with different 𝜏𝜂 improved significantly in Fig. 8a and Fig. 9a(When

we test the relationship between pruning action and 𝜏𝑝 , we set 𝜏𝑝
close to the majority of a PRL slope to avoid the effect of 𝜏𝑝 ). When

𝜏𝑝 increases, more cells are disqualified with PEQ inquiry by using

sketch-based pruning bounds. Reversely, if 𝜏𝑝 is set too low, most

cells are directly qualified, because their lower bound easily above

the threshold. Similar facts on 𝜏𝜂 can also be observed in Fig. 8b

and Fig. 9b(When we test the relationship between pruning action

and 𝜏𝜂 , we set 𝜏𝑝 equals 50% to avoid the effect of 𝜏𝑝 ). When 𝜏𝜂
is close to the majority of a PRL slope, a tuple becomes harder to

be pruned. This is consistent with Lemmas 5 and 6. If the value of

𝜏𝜂 is close to the expectation of 𝜂, 𝑎 is close to zero, and the value

of
𝑉𝑎𝑟 (𝜂)

𝑉𝑎𝑟 (𝜂)+𝑎2
is close to 1, making the pruning bounds trivial. It is

worth noting that the pruning bounds are adequate for exception
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queries. Because a normal exception threshold is used to detect

minorities instead of majorities, and the threshold value should be

set away from the majority.

Then, we analyze the query processing to examine the effect

of sketch-based pruning. Recall that the query overhead includes

three parts, cell retrieval, pruning, and online cubing. The query

performance can be much accelerated if a larger number of cells

can be qualified or disqualified. Therefore, we compare the result

with and without sketch-based pruning. The results show that the

pruning effect is significant except extreme setting, as aforemen-

tioned. Also, we can observe that, in all testing, the query can be

finished within 11 seconds, even for the worst case. Notice that in

the worst case, few cells can be rejected by pruning bounds and all

cells on the drilling path are cubing online. For example, in Fig. 8a,

the majority is below 4 seconds. It demonstrate the efficiency of

our proposed techniques.

5.2.3 Throughput. Hereby, we examine the throughput of online

processing for cuboids on the popular-path in Fig. 10 and Fig. 11.

In our experiments, we set different length of popular-path. R3C3.

Notice that the length of a popular path reflects two things: 1) the

number of the cuboid of the path to be materialized; 2) the dimen-

sionality of cuboids, i.e., a longer path corresponds to a cuboid with

more dimensions. Also, for a cuboid with more dimensions, there

tends to be more cells for aggregation. The corresponding computa-

tion overhead is thus higher. Then, we report the throughput w.r.t.

the varied popular-path length in Fig. 10a and the number of cells

on path in Fig. 11a. It shows that 1) the sketch-based online process-

ing is capable of handling thousands of updates per second (mini-

mum 3.9𝐾 TPS on TPC-H and minimum 5.8𝐾 on Climate); 2) the

convolution-based online processing can handle about tens to hun-

dreds of times per second depending on the path length(minimum

55 and maximum 140 TPS on TPC-H,minimum 65 and maximum

85 TPS on Climate); 3) the performance decreases with increasing

path length, and the sketch-based update is relatively stable, while

the convolution-based update performance degrades significantly

as the path becomes longer. This is due to the different complexity

of algorithms. We also test the performance w.r.t. the number of

cells on popular-path. As the path becomes longer, the number of

cells on the path increases accordingly, which increases the amount

of computation and leads to performance decline in both Fig. 10b

and Fig. 11b.

6 RELATEDWORKS
There have been many works proposed to process or apply proba-

bilistic data aggregation. In particular, [27] studies aggregation with

the algebraic structures of semirings and semimodules. [26] consid-

ers the aggregation representationwith histograms andwavelets. [28]

and [29] investigate ranking semantics for probabilistic data. [18]

uses frequency moments for efficient probabilistic data aggregation.

Other query variants include reverse nearest neighbor queries [30]

and skyline queries [31], etc. [16] and [32] study OLAP queries and

cubematerialization for static probabilistic objects. [33] scales down

the large deterministic optimization problem in probabilistic query

evaluation into a sequence of smaller near-optimal problems so as

to improve the efficiency and quality. [34] extends tuple-uncertainty

model for probabilistic databases to supporting probabilistic graphs.

[35] utilizes probabilistic database model to represent Debugging

Query 2.0 statements as a differentiable functions in order to sup-

port model inference and influence analysis. [36] studies work-

flow performance optimization by considering system variations as

time-dependent random variables with probabilistic distributions.

However, these works are not for probabilistic data streams.

There have also been works on probabilistic aggregation on data

streams. [37] studies efficient inference with probabilistic graph

models under temporal correlations. [38] calculates expectation

and variance for probabilistic variables of data streams. [39] and

[40] model event streams as probabilistic strings in supporting

decision making of IoT applications. [41] studies tracking of proba-

bilistic items in distributed environments. [42] investigates efficient

evaluation of top-𝑘 queries for probabilistic data streams. Other

query variants include range queries [43], join queries [44], near-

est neighbor queries [45, 46], trajectory queries [47, 48], reverse

nearest neighbor queries [30, 46], and skyline queries [31], data

cleansing [49, 50], etc. However, none of them focuses on multidi-

mensional regression analysis.

The problem ofmulti-dimensional regression for non-probabilistic

streams is proposed in [7] and [51], where the ideas of 𝑜- and𝑚-

layers are firstly initiated. [52] generalizes the regression aggrega-

tion to pattern recognition so that interesting patterns can be auto-

matically discovered from multi-dimensional data. [53] further pro-

poses a structured knowledge representation for multi-dimensional

data, and designs score functions to qualify commonness and ex-

ceptions. [54] uses multivariate Gaussian model to approximately

represent multi-dimensional cuboids over massive data points in or-

der to support fast interactive data analyzing. Those works are not

for probabilistic data, where objects are represented in probabilistic

distributions instead of precise values.

R3C2. In summary, there exist works on streaming regression

for non-probabilistic data, and exist works on non-streaming aggre-

gation for probabilistic data. As aforementioned, there is an unmet

need for integrating the two in WoT computing environment. To

our best knowledge, our work is the first on multi-dimensional

probabilistic regression.

7 CONCLUSION
In this paper, we study the problem of multi-dimensional regres-

sion over probabilistic streaming data. To tackle the challenge of

computation intensiveness, we study a series of techniques, includ-

ing convolution- and sketch-based aggregation and probabilistic

exception querying. For the aggregation, we propose convolution-

and sketch-based aggregation, covering intra-regression and extra-

regression on popular-path, and can be processed online. For both

two aggregation methods, we prove their correctness through pos-

sible world semantics and analyze their complexity. We also study

how the probabilistic exception queries can be facilitated by the

aforementioned techniques, defines an exception query PEQ which

focuses on trend analysis, and give a way for pruning determined

cells/tuples with sketch. Experiment results show that our solution

achieves good performance in combating the velocity and veracity

challenge of probabilistic data streams.
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