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A Critical Look at the Laplace Transform Method
in Engineering Education

Imad Abou-Hayt Department of Planning, Aalborg University, Denmark

Bettina Dahl Department of Planning, Aalborg University, Denmark

Abstract—Contribution: This article presents a new look at
teaching the Laplace transform for engineering students by
emphasising the obsolescence of the current method of finding the
inverse Laplace transform when solving differential equations,
and by recognising the important role of a computer-assisted
environment in helping the students understand the main idea
behind the Laplace transform, instead of asking the students
to repeat computational processes by hand. Background: The
Laplace transform is a widely used integral transform that
has important applications in many areas of engineering, and
therefore, has a central place in the curricula for engineer-
ing education. However, according to several research articles,
many students experience great difficulties understanding the
Laplace transform. Research Question: Is the use of partial
fractions and Laplace transform tables necessary for a proper
conceptual understanding of the Laplace transform method?
Methodology: Using the Anthropological Theory of the Didactic
as an educational platform, the current teaching of the Laplace
transform method, is analysed. A parallel discussion of the
teaching of logarithms at the upper secondary school level is
drawn, where, previously, this also took place using the tables of
logarithms, but now the reliance on calculators is overwhelming.
The authors suggest a method of teaching the Laplace transform
in a computer-assisted environment. Findings: In the light of the
shift in computer hardware and software, the authors conclude
by calling for innovation in and revision of engineering education
through bridging the gap between procedures and understanding,
by using computer software, where it is suitable.

Index Terms—Laplace transform, CAS-assisted environment,
anthropological theory of the didactic, engineering education,
mathematics education.

I. INTRODUCTION

ORDINARY and partial differential equations describe the
time evolution of certain physical quantities. Examples

of these quantities are the current in an electric circuit, the
oscillation of a vibrating membrane and the heat flow through
an insulated conductor. The differential equations are usually
supplemented with initial conditions that describe the state of
the modelled system at time t = 0.

A very powerful method for solving such equations is that of
the Laplace transform, which is defined as a mapping between
the time domain and the domain of the complex variable s:
[1]

F (s) = L(f(t)) =
∫ ∞

0

f(t)e−stdt (1)

The complex-frequency variable s = σ + jω is used to
transform a large class of time functions, such as constants,
sinusoids, and exponentials, which are frequently used in
circuit analysis and control systems.

The Laplace transform is named after the French mathe-
matician Pierre Simon Laplace (1749–1827), who did the
theoretical background work. In his work on probability theory
and his search for solutions of differential equations, Laplace
studied integral transforms of the form

F (s) =

∫ b

a

K(s, t)f(t)dt (2)

which obviously include the Laplace transform defined in (1).
Laplace took a critical step forward by applying the idea of
transformation, rather than just looking for a solution in the
form of an integral. According to [2], the modern use of
the Laplace transform is a relatively recent development, and
less than three generations ago, other approaches were still in
widespread use, such as the operational calculus, developed by
the English electrical engineer Oliver Heaviside (1850–1925).

The Heaviside calculus was popular among electrical engi-
neers in the 1920s and 1930s, especially after the publication
of the book Electric Circuit Theory and the Operational
Calculus [3] in 1926 by the American electrical engineer John
R. Carson (1886–1940). Three years later, a German edition of
this book was published, and soon induced a debate between
the adherents of the Heaviside method and those of the modern
Laplace transform. In the 1950s, mathematicians began to
realise the advantages of the modern Laplace transform, which
led to its complete acceptance among them. For a more
detailed history of the development of the Laplace transform,
the reader can consult the two papers [4] and [5].

The Laplace transform literally converts the original
differential equation into an algebraic equation. The latter,
being much easier to solve than the first, is then transformed
back to the time domain, using the inverse Laplace transform.
Several textbooks on linear circuit analysis (e.g. [6]) and
control systems (e.g. [7]) introduce the Laplace transform both
as a method of solving a linear differential equation, and in the
definition of a transfer function, which is merely an algebraic
representation of the differential equation, describing a dy-
namic system [1]. The Laplace transform yields an expression
Y (s) that seldom appears in Laplace transform tables. The
procedure required here is to decompose the function Y (s)
into so-called partial fractions to determine the time-response
function y(t).

The partial fraction decomposition itself is often a tedious
and time-consuming technique, and it should be mastered
in order to match an entry in Laplace transform tables. It
is interesting to note that the same technique is used to
evaluate many indefinite integrals with the help of tables of
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indefinite integrals in calculus books, as in, e.g., [8]. The use
of Laplace transform tables is also analogous to the use of the
somewhat old-fashioned tables of logarithms in mathematics at
the secondary school: after transforming a product of numbers
to a sum of logarithms, one previously uses the tables to find
the number (the antilogarithm!) corresponding to that sum.
However, the logarithm itself is usually defined as an exponent,
not by using tables [9].

The authors wish here to raise the question whether the use
of partial fractions and Laplace transform tables is necessary
for a proper conceptual understanding of the Laplace trans-
form method. This is the research question of this concept
paper.

II. LITERATURE REVIEW

The research literature on the Laplace transform is still
scarce. However, the authors did an online search and found
four sources that are relevant to this study. All these sources
concluded that the students find the Laplace transform difficult.

In her PhD thesis [10], the author argues that, although the
Laplace transform is considered a difficult concept for many
students to discern, the teaching methods used to introduce
the Laplace transform play a crucial role in how the student
understand the Laplace transform.

In [11], the authors mentioned some obstacles that could
arise in the teaching and learning of Laplace transforms and
concluded that it is one of the most difficult topics for electrical
engineering students to grasp, when learning electric circuit
theory. They pointed out that what makes transient response
difficult is that the mathematics used is rather advanced.

The authors of the paper [12] interviewed 22 university
teachers regarding the difficulties involved in the learning,
and the relevance of, the Laplace transform in engineering
education. They concluded that the teachers did not have a
unified view on either the difficulties involved in learning, or
the importance of, the Laplace transform. While educational
research often focuses on the students’ conceptions and mis-
conceptions of the Laplace transform, the paper also points to
the importance of studying the conceptions of the instructors
themselves.

In the article [13], the authors, who all taught similar
courses, concluded that students find the Laplace transform
difficult, mainly because there is significant confusion in its
definition, as presented in many of the standard textbook on
the subject. Specifically, most engineering textbooks define the
Laplace transform as

F (s) = L(f(t)) =
∫ ∞

0−
f(t)e−stdt (3)

where the lower limit of the integral is set to 0− so that
discontinuities and impulses are included at the time t = 0,
while mathematicians use 0+ as the lower limit.

III. USING A COMPUTER ENVIRONMENT TO STUDY A
MATHEMATICAL TOPIC

Contemporary educational researchers and practitioners
seem to agree on the basic principle that teaching should not

just transmit knowledge to students but should also promote
the students to work independently, in order to learn. There are
many general educational models suggesting more elaborate
characteristics of the ways in which students could work
autonomously, in terms of taxonomies that describe different
degrees of autonomy of the students’ work. One such model
is a CAS-assisted learning environment (CAS stands for
Computer Algebra System). From a didactical perspective,
CAS-assisted learning describes an interactive educational
environment where computer software is integrated in teaching
to help the students visualise a certain concept or discern a
specific topic. In this regard, a vast number of research articles
and PhD theses (e.g., [14], [15]) indicate that computer-based
interventions facilitate the students’ conceptual learning and
have a significant impact on their learning.

Studying a mathematical subject such as the Laplace trans-
form, simply means doing mathematical work in that subject
for educational purposes [16]. In a teaching and learning
context, as well as in professional research, working in an
area of mathematics is attempting to solve a set of problems,
by using techniques and creating new concepts. The new
capabilities of modern powerful computational tools can give
rise to expanded possibilities, not only in solving tasks within
a mathematical field, but also in helping students to become
aware of some aspects of a mathematical concept, which
may remain implicit in the conventional paper-and-pencil
instrumentation [17].

Thus, following [18], it is argued that working in a mathe-
matical field, involves three structural levels:

1) Tasks
2) Techniques
3) Theories

Tasks constitute the first structural level. They do not just
include individual problems but rather more general types of
problems. For instance, within the topic of Laplace trans-
form, the task “solve the given differential equation using the
Laplace transform method” refers to a certain type of problems
but not to others.

The second level is that of techniques. A technique means
a method of doing tasks. Using techniques helps in arranging
and differentiating tasks. For instance, the technique to solve
the task ”find the time function that corresponds to a given
function in the Laplace domain” depends on the type of the
function, e.g. whether partial fraction decomposition should
be used or not.

The third level is that of theories. While the first two
levels are related to an action to be executed, this level is
related to discourse and validation. Here, the consistency and
effectiveness of techniques are validated through mathematical
concepts, theorems, structures, and properties.

It should be emphasised that this three-level structure is
merely an assumed didactical model, which, hopefully, will
help in reflecting on whether the use of CAS can positively
contribute to the students’ conceptual understanding, since
tasks and techniques play an important role in an engineering
classroom.

Anthropological and socio-cultural approaches seem to be
more appropriate to understand the role played by instruments
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in didactical situations, and are able to rehabilitate the role of
techniques in mathematical activities. Therefore, this simple
didactical model leads to the concept of praxeology introduced
in a more elaborate approach, namely the Anthropological
Theory of the Didactic (ATD), that was proposed by the
French mathematician Yves Chevallard in 1991 [19]. A brief
account of this approach is presented in the next section.

IV. THE ANTHROPOLOGICAL THEORY OF THE DIDACTIC

The Anthropological Theory of the Didactic (ATD) is a
relatively recent approach to the didactics of mathematics.
It views mathematics as a product of a human activity in
the sense that mathematical concepts and thinking modes
depend on the social and cultural contexts where they develop.
According to ATD, a body of knowledge is subject to a
transformation from the moment it is produced, put into
use, selected, and designed to be taught, until it is actually
taught in a given educational institution. As a consequence,
mathematical objects are not absolute, eternal objects, but
are entities that are created from the practices of given
institution. In this theory, an institution has to be understood
in a very broad sense: a ministry of education, a department
of engineering, and even a book publisher, are examples of
institutions. Any social or cultural practice takes place in such
an institution. These practices or praxeologies, as they are
called by Chevallard, consist of two blocks: the practical block,
formed by types of problems or tasks and by the techniques
used to solve them, and the knowledge (or theory) block
that provides the discourse necessary to justify and interpret
the practical block. The knowledge block itself is structured
in two levels: the technology, which provides a first level
of justification and explanation of the technique used, and
the theory that constitutes a deeper level of justification. A
praxeology is therefore a quadruple (T , τ , θ, Θ) that consists
of four components: a task T , a technique τ , a technology θ,
and a theory Θ.

ATD imparts a wider sense to a technique than its usual
meaning in educational discourse, comprising not just recog-
nised routines for standard tasks, but more complex assemblies
of reasoning and routine work, whereas mainstream mathe-
matics education research delimits the technique component
τ more narrowly in terms of routine manipulations, computa-
tional procedures, and algorithmic skills [20].

At the university, a task can, for example, be an exercise
taken from a mathematics text, such as the task T of solving a
first-order differential equation. The students need a technique
τ to solve the task, such as separating the variables in the
equation. The technology θ may consist of validating the
method used, such as verifying that the differential equation is
separable. The technology may itself be explained and justified
by the theory component. For example, the existence and
uniqueness of a solution of a first-order differential equations
is the theory Θ that explains the technology θ.

V. THE DIDACTICAL CHALLENGE OF TEACHING THE
LAPLACE TRANSFORM

From the instructor’s perspective, the textbook represents
the knowledge to be taught, together with the course syllabus.

However, presenting the definition of the Laplace transform
as it is given in many standard textbooks, is what Freudenthal
[21] would call an anti-didactical inversion: it may not make
sense to the students, since meaning, motivation, and curiosity
are taken away from them, not to mention the reasons why
other definitions or attempts failed.

A. How Is the Laplace Transform Method Introduced to the
Students

A brief description of a teaching practice in the Laplace
transform method will be presented here. The teaching method
is currently used by the first author of this article in an
introductory course in modelling and simulation of dynamic
systems, given to third year students in Sustainable Design
at Aalborg University, Copenhagen, Denmark. The teaching
is partially based on the didactic paradigm called questioning
the world [22], where the instructor’s role is like that of a
supervisor of scientific research, rather than the still dominant
paradigm of visiting monuments. This didactic contract is
therefore different from traditional teaching in an engineering
or mathematics classroom: the students should be given the
opportunity to experience the reasoning behind the Laplace
transform before it is abstracted, and motivate them to study
it.

Two teaching sessions, of approximately three hours each,
are allocated to the Laplace transform method in the course:
the first one provides a thorough introduction to the Laplace
transform method, while the second session is reserved to ex-
ercises in transforming differential equations into the Laplace
domain by hand and using MATLAB1 to obtain the solution
in the time domain. The first author starts the first teaching
session by writing the following equation on the board

y′′(t) + 3y′(t) + 2y(t) = 1, y(0) = 0, y′(0) = 0 (4)

and ask the students the following questions:

1) What dynamic system could the equation model?
2) What does the time function y(t) represent in the system

you chose?
3) What does the number 1 stand for in your system?

The students investigate these questions by any means avail-
able, e.g. books, notes, computers and the web. Through these
questions, it may be clear that the purpose is to embed the
intended teaching situation in the Laplace transform method
within an engineering context: the equation describes the same
dynamics of many kinds of engineering systems, such as a
mechanical system that consists of a mass, damper, and a
spring, or an RLC electric circuit, shown in Fig. 1, where
y(t) represents the charge on the capacitor C and the input
voltage ein(t) is a unit voltage pulse for t ≥ 0.

1MATLAB is a programming language and a numeric computing environ-
ment, developed by the software company MathWorks.
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Fig. 1: An RLC circuit.

The answers of these questions give rise to a discussion in
the class of the various systems that could be modelled by
the equation. The following questions are then added to the
previous list:

4) Consider a homogeneous linear second-order differential
equation of your choice. Where does its characteristic
equation come from?

5) What is the method of undetermined coefficients about?
6) What is the solution of equation (4)?
The rationale behind these questions is twofold:
• To prepare the students for another method of solving the

differential equation, different from the one they have
studied in their first year, so that they will, hopefully,
relate their previous knowledge to the new method they
will encounter.

• To give them an opportunity to work as research mathe-
maticians, like, for example Laplace, in his search for
solutions of differential equations. For example, seeking
a solution of the form y = ert will lead to the charac-
teristic equation of a homogeneous linear second-order
differential equation.

The next step is to prepare the students to the introduction of
the Laplace transform method, by giving them the following
task:

7) Multiply each side of equation (4) by e−st and integrate
from t = 0 to t = ∞. What kind of function do you get?

It is the authors’ experience that many students struggle
to evaluate integrals like

∫∞
0

y′(t)e−stdt. Due to the time
constraint of the teaching session, the authors reason that it
would be pedagogically sound to intervene rather than leaving
these students frustrated for a long time. The students are
reminded of the method of integration by parts, and asked
to search for worked examples of this method. In this regard,
a related question is asked:

8) If you know the result of
∫∞
0

y′(t)e−stdt, can you find∫∞
0

y′′(t)e−stdt by inspection?
Here, the aim is to lead the students to an important discovery:
the second derivative in the time domain corresponds to the
square of the variable s. This is in fact related to the students’
previous knowledge about characteristic equations, where the
“square” corresponds to the second derivative.

It is clear that these last two questions are more closed
than the previous ones, in the sense that they are directing the
students towards a specific target knowledge. The purpose here
is to let the students acquire a specific piece of knowledge,

namely the Laplace transform method, and not just certain
modes of work and thought. Moreover, one cannot afford to
discard the knowledge accumulated by Laplace, Heaviside and
others, and require the students to reconstruct it anew.

Through interactive and CAS-assisted lecturing, the stu-
dents are guided to recover the time function y(t) from the
expression they find, using MATLAB.

Finally, the culmination of these questions involves the
institutionalisation of the method of the Laplace transform
to solve linear differential equations: the students are con-
fronted with the formal definition of the Laplace transform,
its properties and its use, as given in their textbook. The
session ended by asking the students whether they have met
an analogous process in their upper secondary mathematics. It
is of course the process of taking the logarithms of both sides
of an exponential equation, that is meant here.

B. An Anthropological Analysis of the Laplace Transform
Method

The study of the life of the theory of Laplace transform
at an engineering department requires the identification of the
praxeology which brings it into play. At the undergraduate
engineering level, the task block T is usually ”solve a linear
differential equation by the Laplace transform method”. Here,
an essential role is played by the technique τ : it consists of
transforming the equation into the Laplace domain first, using
routine sub-tasks, and then transforming the Laplace function
found back into the time domain, either by using partial
fraction decomposition and a Laplace table, or by letting a
CAS tool do the work and get an answer. In either case,
techniques may not have only a pragmatic value which permits
them to produce results, they may also have an epistemological
value, since they can be a source of new questions about
mathematical knowledge, and thus may contribute to the
understanding of the objects they involve.

The technology θ, being a discourse on the praxis, consists
of the general properties of Laplace transforms that explain the
transformed equation, as well as the Laplace transform tables,
as it is precisely these tables that justify the technique of partial
fraction decomposition and validate the answers found: the aim
is to match the Laplace function found with an entry in these
tables in order to find the final solution in the time domain.

Regarding the theory component Θ, it constitutes a deeper
level of justification of how the Laplace tables themselves
are compiled: there is essentially a one-to-one correspondence
between time-domain functions and their Laplace transforms
[23], and the following result provides the raison d’ˆetre or
the rationale of the technology θ:

The time-domain function f(t) can be recovered by using
the inverse-transform integral

f(t) = L−1{F (s)} =
1

2πj

∫
Γ

F (s)estds , t ≥ 0 (5)

where Γ is a contour within the region of convergence that
goes from s = σ− j∞ to s = σ+ j∞. The evaluation of this
integral involves a knowledge of complex-variable theory [24]
and is beyond the reach of undergraduate engineering students.
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Thus, the theory component Θ is missing from the praxeol-
ogy quadruple (T , τ , θ, Θ) in the sense that, even if equation
(5) appears in a textbook, the students are not required to use
it or even understand it: the final justification of the techniques
is given by the Laplace tables, not by the theory behind them.

The instructor, being the director of the didactic situation
in the classroom, is certainly affected by this mathematical
constraint: It significantly determines her/his practice and
ultimately the praxeology actually taught. The instructor is
therefore restricted to design tasks whose techniques are solely
justified by the Laplace transform pairs she/he gives to the
students. This issue is illustrated by reconsidering the task of
solving equation (4):

Find the solution of the initial-value problem

y′′(t) + 3y′(t) + 2y(t) = 1, y(0) = 0, y′(0) = 0 (6)

using the Laplace transform.
The Laplace transform of the equation is given by

s2Y (s)) + 3sY (s) + 2Y (s) =
1

s
(7)

Solving for Y (s), one obtains

Y (s) =
1

s(s2 + 3s+ 2)
(8)

Showing the Laplace transform in action, this paper-and-
pencil technique clearly has an epistemological value, since it
is linked to knowledge of the linearity property of the Laplace
transform, as well as its basic merit, which is, converting
a differential equation into an algebraic one. In fact, the
conceptual value attained in taking the Laplace transform
of a differential equation is very similar to that of taking
the logarithms of both sides of an exponential equation. For
example, a common task in upper secondary mathematics is
solving an exponential equation [9], such as

2x = 5 (9)

whose logarithmic transform

x =
ln(5)

ln(2)
(10)

illustrates the concept that exponentiation and taking loga-
rithms are inverse operations. Therefore, the purpose of both
the Laplace transform and the logarithm transform is to make
tedious calculations easier and they are quite analogues proce-
dures: the Laplace transform converts a differential equation
into an algebraic equation, while the logarithmic transform
converts hard multiplication into easy addition:

ln(ab) = ln(a) + ln(b) (11)

Returning to the original task, in order to find the inverse
Laplace transform L−1{Y (s)} = y(t), the instructor expects
that the students perform an algebraic manipulation in the form
of partial fraction decomposition:

1

s(s2 + 3s+ 2)
=

1

s(s+ 1)(s+ 2)
(12)

=
A

s
+

B

s+ 1
+

C

s+ 2
(13)

After some manipulation, the constants A, B, and C are
determined, yielding the expression

Y (s) =
1
2

s
+

−1

s+ 1
+

1
2

s+ 2
(14)

Using a table of Laplace transforms, one finally get the
solution in the time domain:

y(t) =
1

2
− e−t +

1

2
e−2t (15)

It should be noted that, partial fraction decomposition
becomes more tedious and painstaking, if the denominator
of the Laplace function includes complex or repeated poles.
However, the manipulation itself can have an epistemological
value in another mathematical topic, namely, the knowledge
of elementary algebraic properties and manipulations of ex-
pressions, but it retains little conceptual value for the Laplace
transform method itself: what is being done here is engaging
the student to apply a repetitive computational process, like a
computer does, in order to match an entry in a Laplace table.
If the student gets the correct answer, all what the instructors
have done, would be a verification that they have trained a
well-prepared student to be replaced by a computer.

C. Using a CAS Environment in the Laplace Transform
Method

Many modern computer software are available to find the
inverse Laplace transform of equation (8). As mentioned
before, the first author uses MATLAB in the course. MATLAB
is one of the most popular CAS programs that is used in
mathematics and engineering classrooms at many universities
worldwide [25]. In MATLAB, the inverse Laplace transform
can be found using the following code:

%% Inverse Laplace transform in MATLAB
% Define the symbols
syms s t
% Define the Laplace function
Y=1/(s*(sˆ2+3*s+2))
% Find the time-domain function
y=ilaplace(Y)
pretty(y)

In MATLAB Command Window, the solution (15) is shown
in the following form:

exp(−2t)

2
− exp(−t) +

1

2
(16)

The use of a CAS tool for this task makes it possible for the
students to do more exercises, where the instructor can orient
the activity towards pattern discovery, for instance recognising
that 1

s+2 gives the decaying exponential function e−2t in
the time domain, while 1

s−2 gives the increasing exponential
function e2t. Similarly, the students can alter the values of a
and b in the Laplace function b

(s−a)2+b2 to gain insight into the
behaviour of the corresponding time-function eat · sin(bt): for
example, if a is negative, the time function is an exponentially
decreasing sinusoid, and for increasing values of b, the damped
period of the sinusoid decreases.
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Through this pattern discovery in the Laplace transform
theory, the students can develop a bridge between skills and
understanding, but also between the technique τ and the
technology θ in the Laplace praxeology (T , τ , θ, · · · ), where,
as mentioned, the theory Θ is missing. Therefore, pencil-and-
paper techniques in evaluating the inverse Laplace transform
are challenged by a CAS tool, just like, for example, in finding
the solution of the exponential equation (9): using a table
of logarithms to find ln(2) and ln(5) is nowadays almost
obsolete, since a CAS tool, such as GeoGebra, can find the
numerical solution in just one operation:

x =
ln(5)

ln(2)
≈ 2.32 (17)

It is interesting to note that the modern theory behind the
compilation of a table of logarithms is also beyond the reach
of upper secondary school students, since a knowledge of, for
example, Maclaurin series is required:

ln(1+x) =

∞∑
n=1

(−1)n−1

n
xn = x− x2

2
+

x3

3
− x4

4
+ · · · (18)

where its interval of convergence is −1 < x ≤ 1. Thus, the
logarithm praxeology and the Laplace praxeology share the
same structure (T , τ , θ, · · · ), and are analogous. In fact, they
are epistemologically identical in the sense that, in both, the
technology θ depends on the use of either tables or CAS,
and the theory Θ is absent. The question is why the Laplace
praxeology is still lagging behind in the use of CAS. There
may be many answers to this question, that can be addressed
in future studies.

To shed more light on the issue, consider a related task
from the topic of indefinite integrals. The first author asks the
students to evaluate the following integral, using pencil and
paper: ∫

1

x(x2 + 3x+ 2)
dx (19)

Again, the instructor anticipates that the students use partial
fraction decomposition in order to match an entry in a table
of indefinite integrals:

∫
1

x(x2 + 3x+ 2)
dx (20)

=

∫ ( 1
2

x
+

−1

x+ 1
+

1
2

x+ 2

)
dx (21)

=
1

2

∫
1

x
dx−

∫
1

x+ 1
dx+

1

2

∫
1

x+ 2
dx (22)

It is only in the final step that the mathematical topic of inte-
grals retains a conceptual value: an integral depends linearly
on the integrand. The decomposition part itself does not belong
to that topic and can be easily implemented in MATLAB:

%% Partial Fraction Decomposition in
MATLAB

% Define the symbol
syms x
% Define the function
f=1/(x*(xˆ2+3*x+2))
% Find the partial fractions
pretty(partfrac(f))

In MATLAB Command Window, the decomposition is shown
in the following form:

1

2(x+ 2)
− 1

x+ 1
+

1

2x
(23)

Thus, even though the use of CAS requires new techniques,
dependent on the tool, it can open up systematic conceptual
structures more directly and quickly than the old techniques,
whose routinisation in an institution is no longer necessary.

VI. DISCUSSION AND CONCLUSION

The impact of computers on teaching and learning activities
at all levels of education is huge, and the extent of use
increases as computers become more user-friendly and less
expensive to buy and maintain. Using computer software,
one can easily find the inverse Laplace transform of an
expression, without the need to simplify in order to use the
Laplace transform tables. Therefore, engineering textbooks on
the subject ought to cover the use of CAS tools in their
introduction to the Laplace transform method.

The authors believe that the difficulties which engineering
students encounter in understanding the Laplace transform are
mainly due to two practices in the traditional teaching of the
subject:

• Training the students to apply a repetitive computational
process, like a computer does, such as finding the inverse
Laplace transform of an expression by hand in order to
strike an entry in a Laplace transform table: for many
engineering students, this is an uninteresting mechanical
process to be mastered, just like struggling to evaluate an
indefinite integral by hand.

• Introducing the Laplace transform by starting with its
standard mathematical definition, as it is in textbooks: it
may not make sense to many engineering students, since
meaning and motivation are taken away from them, not to
mention the reason why the Laplace transform is defined
as such [26], and on top of that, the connections among
concepts, formal representations, and the real world are
often lacking in traditional instruction [27].

Therefore, the ability of many modern CAS tools to perform
Laplace transforms and inverse Laplace transforms renders
traditional Laplace tables obsolete.

Even the pragmatic and epistemological value of the
Laplace transform method itself should be subject to revision,
since this method is challenged by commands and mouse
clicks in a computer software, that can even tackle more
complex differential equations. The authors are here ques-
tioning the relevance of the Laplace transform method to
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solve a narrow type of differential equations in engineering
education, given the fact that there are well-established time-
domain techniques to solve such equations, beside the use
of CAS. It is not, however, the intention of the authors to
undermine the importance of the Laplace transform theory
in mathematics, physics, and engineering. On the contrary,
the Laplace transform is one of the essential tools used
by scientists and researchers in finding the solution to their
problems. In fact, the authors of the paper [28] reviewed 25
research papers in various disciplines and discussed how the
Laplace transform was used to solve some research problems.

We suggest that engineering education reconsiders the study
of domains and acknowledges new techniques as components
of new praxeologies for these domains, and recognises that
CAS tools can contribute to the students’ conceptual under-
standing.

The dichotomy between a procedural approach and a con-
ceptual approach to mathematics is ancient, especially in the
field of algebra. For instance, teachers in the USA, even in
the year 1890, were opposed to what they call an overem-
phasis on manipulative skills, and called for a meaningful
treatment of algebra that would bring about more conceptual
understanding [29]. Thus, in line with [30], when mathematical
knowledge, such as the Laplace transform theory, is being re-
contextualised to engineering science courses, a conceptual
approach to mathematics is more essential than a procedural
approach. For example, [31] argues that reducing engineering
mathematics to procedural and algorithmic skills may ob-
scure the role that mathematical thinking plays in engineering
practices. Similarly, the employers of engineers, who are
interviewed by Kent and Noss [32], put more emphasis on a
holistic awareness of the mathematical needs for engineering
work than on manipulative skills.

Thus, in light of the development of computational tech-
nologies, a need of a broader spectrum of mathematical skills
for practising engineers, including conceptual understanding,
rather than a narrow focus on procedural skills, is required. A
concept-based instruction in undergraduate engineering mathe-
matics education can develop conceptual knowledge, without
losing out on the procedural skills.

Finally, this paper does not recommend that the students
should only use CAS in their mathematics or engineering
science courses. Rather, it is a call for a new balance in
engineering education, where a CAS-assisted teaching envi-
ronment is integrated with paper-and-pencil techniques so that
the students get the “best of both worlds”.
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