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Abstract: The increasing penetration of distributed generation (DG) to power distribution networks 

mainly induces weaknesses in the sensitivity and selectivity of protection systems. In this manner, 

conventional protection systems often fail to protect active distribution networks (ADN) in the case 

of short-circuit faults. To overcome these challenges, the accurate detection of faults in a reasonable 

fraction of time appears as a critical issue in distribution networks. Machine learning techniques are 

capable of generating efficient analytical expressions that can be strong candidates in terms of reli-

able and robust fault detection for several operating scenarios of ADNs. This paper proposes a deep 

group method of data handling (GMDH) neural network based on a non-pilot protection method 

for the protection of an ADN. The developed method is independent of the DG capacity and 

achieves accurate fault detection under load variations, disturbances, and different high-impedance 

faults (HIFs). To verify the improvements, a test system based on a real distribution network that 

includes three generators with a capacity of 6 MW is utilized. The extensive simulations of the power 

network are performed using DIgSILENT Power Factory and MATLAB software. The obtained re-

sults reveal that a mean absolute percentage error (MAPE) of 3.51% for the GMDH-network-based 

protection system is accomplished thanks to formulation via optimized algorithms, without requir-

ing the utilization of any feature selection techniques. The proposed method has a high-speed op-

eration of around 20 ms for the detection of faults, while the conventional OC relay performance is 

in the blinding mode in the worst situations for faults with HIFs. 

Keywords: GMDH-based fault detection; conventional protection scheme; active distribution  

networks; blinding areas 

 

1. Introduction 

Distributed generations (DGs) have significantly changed many features of power 

systems, such as reducing network losses, voltage profiles, and serving as back-ups, etc. 

[1–3]. Although DGs can improve some electrical parameters, they may cause several 

types of problems in power systems [4]. These problems have direct effects on the con-

ventional protection schemes in active distribution networks (ADNs). Blinding protection 

areas [5], sympathetic tripping (the false tripping of feeders) [6], and failures of the auto-

reclosers [7] are the main challenges that are created by the presence of DG units in dis-

tribution networks. Blinding zones cause the relay to operate with a delay or non-tripping 

[8,9]. Protective relays are not able to detect faults in the blinding mode. Indeed, when the 

short circuit of the feeders is smaller than the pickup current of the protective relays, the 

protection system is under a blinding area [10]. In sympathetic tripping, the fault current 

feeds from more than one direction due to the presence of DGs. 
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The protective relays of the overcurrent (OC) and earth fault (EF) are the conventional 

protection devices used in ADNs. Traditional inverse time current protective relays have 

been used as the main protection schemes for radial distribution systems [11]. There have 

been several methods proposed to solve the conventional protection problems due to the 

presence of DGs. In [12], the protection blinding challenge in the OC protection with the 

presence of DGs was investigated. The presented method used mathematical formulations 

to increase the resiliency of the OC protective relays. Changing the protective relay settings 

to protect the ADN from blinding zones is the conventional method. Changing the trip time 

of the OC relays may cause protection coordination loss and may cause damage to the 

power systems [12]. In [13], the authors presented a double-inverse OC relay method for 

improving the coordination with the optimal settings and considering the DGs’ stability 

constraints. In [14], a directional OC protection technique for protecting the distribution net-

work with a DG embedded was proposed. Adaptive, directional OC protection was em-

ployed to determine the optimal protection setting. However, the directional OC protection 

scheme is commonly proposed as a solution for the improvement of protection systems’ 

selectivity in meshed distribution networks. Reference [15] presented adaptive OC protec-

tive relays for microgrid applications with distributed generation. The superposition theo-

rem for the calculation of the relay pickup current was utilized. In [16], an adaptive, direc-

tional OC relay method was presented based on the positive and negative sequences of the 

current for microgrid protection. Moreover, the proposed method could estimate the direc-

tion of the fault using the phase changes during the fault conditions. Reference [17] pre-

sented an adaptive OC protection method with a dual-setting directional recloser to coordi-

nate the recloser–fuse with the presence of DGs in distribution networks. Reference [18] uti-

lized a dynamic, adaptive OC relaying scheme to estimate the relay pickup that ensured 

significantly less communication overhead. The method used the communication link to 

relay the coordination for low short circuit currents in micro-grid modes. 

Although conventional protection systems have many advantages, these systems have 

many challenges when facing network changes such as the presence of DGs. For these rea-

sons, several adaptive, intelligent protection methods have been suggested to protect the 

power systems with microgrids and the presence of DGs in recent years [19–25]. In [19], an 

adaptive protection method based on histogram-based gradient boosting in distribution 

networks was utilized. It used spectral kurtosis for the feature extraction of faulted transient 

signals. Reference [20] presented a deep learning method for fault detection based on unsu-

pervised and supervised learning in distribution systems. In [21], a protection technique 

according to a deep neural network with Hilbert–Huang transform in micro-grid systems 

was developed. It used time–frequency signal processing for the feature extraction for the 

training of the machine learning method. Reference [22] proposed machine learning (ML) 

and signal processing tools for fault detection in ADNs. The ML method was based on feed-

forward neural networks. In [23], the authors proposed optimal setting group coordination 

to address the protection problems with mixed-integer linear programming for ADNs. Ref-

erence [24] proposed a radial feeder protection method based on an artificial neural network 

(ANN). The proposed method used a centralized, intelligent electronic device (CIED) with 

the current transformers and circuit breakers of the feeder in a 34-node radial test feeder. 

They require communication links between protective devices. In [25], a multiagent deep 

deterministic policy gradient (MADDPG) protection scheme in distribution networks with 

the presence of DGs was presented. The proposed method had a better performance than 

that of conventional protection systems. 

In this paper, a group method of data handling (GMDH)-based protection scheme is 

proposed to protect distribution networks with the presence of DGs and high-impedance 

faults. The proposed method is based on a non-pilot scheme that does not require any 

communication signals; it has a high-speed fault detection scheme in active distribution 

networks. The proposed method can detect the fault at the blinding areas in an ADN. 

Moreover, the method is not dependent on the DG capacity, and it is robust against HIFs. 

The main scientific contributions of this research are considered to be as follows: 
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(i) GMDH is used for its capability to create simple model equations between input and 

target variables without attempting to apply feature selection techniques, 

(ii) Fault detection in blinding areas and improving the protection system in ADNs, 

(iii) The proposed method achieves high-speed and accurate fault detection independent 

of the DG capacities, load variations, disturbances, and impedance faults. 

The rest of the paper is organized as follows. Sections 2 and 3 elaborate on the pro-

posed conventional overcurrent protective relays and the GMDH-based fault detection 

method with a flowchart, respectively. Section 4 discusses the DIgSILENT simulation per-

formance that compares the conventional OC protective relay with the proposed method. 

Finally, the conclusion is presented in Section 5. 

2. Conventional OC Protective Relay 

Overcurrent and earth fault relays have been used as the main protection and con-

ventional protection devices in real distribution networks. The OC and EF protective relay 

settings are determined by the pickup current (Ip), fault current (If), and time setting mul-

tiplier (TMS). In Equation (1) the operating time of OC and EF relays is shown as follows. 

𝑡𝑜𝑝 =
𝛼 × 𝑇𝑀𝑆

(
𝐼𝑓
𝐼𝑝
)
𝑛

− 1

 
(1) 

where α and n are constants of an inverse-definite minimum time (IDMT) that are given 

in Table 1 [26]. 

Table 1. IEC standard constants for OC and EF time characteristics. 

Type of Characteristics α n 

Normal Inverse (N.I) 0.14 0.02 

Very Inverse (V.I) 13.5 1 

Extremely Inverse (EI) 80 2 

A traditional OC protective relay becomes more challenging with the presence of 

distributed generation. Figure 1 depicts the conventional OC relay characteristic curve in 

the operation and blinding zones. The relay has pickup and instantaneous characteristics, 

which are denoted by “IP” and “Iinst”, respectively. The operation time between the pickup 

and instantaneous currents is according to the inverse time characteristic, and the opera-

tion time is a definite time characteristic after Iinst. A fault with a current less than the 

pickup current is shown as the OC relay blinding zone, as illustrated in Figure 1. 

 

Figure 1. OC relay characteristic curve of the substation 20 kV feeder. 
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3. GMDH Neural Network 

Machine learning (ML) techniques are able to solve many different tasks of complex 

problems with a high accuracy. Therefore, different ML methods have been widely used 

in power systems, especially in protection schemes, in order to achieve the fast and accu-

rate detection of faults or fault locations [27,28]. The use of ML techniques appears to be a 

promising option for enhancing the ability for fault detection. Within this context, GMDH 

networks are scrupulously utilized, as they present a reasonable mathematical model be-

tween defined input values and output values. The GMDH method can be basically rep-

resented as a feed-forward and multilayer neural network. This method is extensively 

used to create optimal mathematical relations for the modeling of complex systems due 

to it requiring minimized prior knowledge [29]. The GMDH technique provides the pos-

sibility of creating a self-organizing network by changing the number of neurons, neuron 

connections, and layers during the training stage to find the best solution. Hence, the 

structure of the optimal model can be defined by sorting out possible combinations. In 

addition, two data sets, including the primary training data set and control data set, are 

utilized for the training stage. When the error rate measured through the control data set 

is increased, the training stage is stopped to prevent overfitting [30]. The variables of the 

training set are cross-recombined to create a pair of variables and are trained as a neuron. 

The output of the trained neuron can be represented as a high-order polynomial function. 

These functions in other ways, and the neurons are assessed by defined criteria. The neu-

rons with acceptable performances are preserved for the next layer. Hence, the process is 

repeated to determine the optimal analytical model among the input and target variables. 

The general structure of GMDH is illustrated in Figure 2 [31]. 

 

Figure 2. GMDH network topology. 

In Figure 2, “x” indicates the input features and “y” is the output. It can be seen that 

the output of the previous layer is taken as the input of the next layer. The created input 

combinations are directly transferred to the first layer. If “n” is the number of neurons in 

a layer, the candidate number of neurons for the next layer can be calculated as in Equa-

tion (2). 

(
𝑛
2
) =

𝑛(𝑛 − 1)

2
 (2) 
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White neurons are strong ones, which are transferred to the next layer. On the other 

hand, green neurons can be represented as weak ones, which are eliminated after an ac-

curacy assessment. GMDH neural networks generally utilize least squares regression to 

determine the optimal analytic relation between the input variables and target variables, 

using a reference function that can be shown in Equation (3) [31]. 

�̅� = 𝑎0 + ∑ 𝑎𝑖𝑥𝑖
𝑛
𝑖=1 + ∑ ∑ 𝑎𝑖𝑗𝑥𝑖𝑥𝑗

𝑛
𝑗=1

𝑛
𝑖=1 + ∑ ∑ ∑ 𝑎𝑖𝑗𝑘𝑥𝑖𝑥𝑗

𝑛
𝑘=1

𝑛
𝑗=1

𝑛
𝑖=1 𝑥𝑘 +… (3) 

where “�̅�” indicates the output value, 𝑋 = (𝑥𝑖 , 𝑥𝑗 , 𝑥𝑘 , … , 𝑥𝑛) represents the input vector, 

and 𝐴 = (𝑎0, 𝑎𝑖 , 𝑎𝑖𝑗 , 𝑎𝑖𝑗𝑘 , … , 𝑎𝑛) shows the polynomial coefficients. 

When only the two input parameters are considered, the quadratic form of the equa-

tion will be obtained as below. 

𝑦 =  𝑎0 + 𝑎1𝑥𝑖 + 𝑎2𝑥𝑗 + 𝑎3𝑥𝑖𝑥𝑗 + 𝑎4𝑥𝑖
2 + 𝑎5𝑥𝑗

2 (4) 

The coefficients of the polynomial equation are calculated by using the least square 

method, as given in Equation (5). 

{
 
 

 
 𝑒 = ∑(𝑦𝑛 − �̅�𝑛)

2

𝑁

𝑛=1

𝜕𝑒

𝜕𝑎𝑘
= 0, 𝑘 = 1, 2, 3, …

 (5) 

A flowchart that reflects the computational algorithm of the proposed scheme is 

given in Figure 3. The data set to be processed is divided into two parts for the training 

process. The data matrix is created by performing different case studies on the test system. 

Different fault points and fault impedances are taken into consideration during the data 

set preparation to increase the sensitivity and selectivity of the fault detection model. The 

test system matrix Ga×b with a = 1200 rows, which show the number of performed cases, 

and b = 2 columns, which depict the input features utilized in each case study. The output 

test matrix Fa𝑥b with a = 1200 rows, which illustrate the target values, and b = 1, which 

gives the fault detection. The overall data are divided randomly, in such a manner where 

80% of the data are used for the training stage, while 20% of the data are used for prevent-

ing overfitting as the control data set. The control data set is employed to stop the training 

process in order to prevent overfitting. In the training stage, the mean squared error is 

calculated for each neuron by also applying it to the control data set. The operation behind 

preventing overfitting stands on measuring the error rate with the control data. When the 

error rate begins to increase, the algorithm will stop the training. The training process 

continues to build the next layer if the MSE of the best neuron in the current layer, as 

assessed using the control data, is less than the MSE of the best neuron in the layer before 

and the maximum number of layers has not yet been reached. If not, the training process 

is ended, as shown in Figure 3. 

It should be noted that the training data are obtained through the distribution net-

work given in the DIGSILENT software (version 2022, DIgSILENT, Gomaringen, Ger-

many) by applying faults to several points with different fault impedances. Then, the al-

gorithm is trained by using Matlab software  (MATLAB R2022a) and tested through the 

DIgSILENT Power Factory (version 2022, DIgSILENT, Gomaringen, Germany).on a real 

active distribution network. 
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Figure 3. Flowchart of GMDH network. 

4. Simulation Results 

This section is divided into three parts: (1) the case study, (2) the conventional distri-

bution network protection results, and (3) the proposed GMDH-based protection scheme 

results. The traditional protection device is considered as an OC protective relay in this 

study. 

4.1. Case Study 

The case study consists of the real distribution networks of 20 kV feeders with DG. 

Figure 4 depicts a single-line diagram (SLD) of the test system. As can be seen from the 

figure, there are two feeders, a main feeder that the DG is connected to and an adjacent 

feeder it can ring with. The DG consists of three combined heat and power (CHP) gener-

ators, each with a capacity of 2 MW, and it is connected to the distribution network at the 

PCC. The maximum currents of the main feeder and adjacent feeder are 95 A and 120 A, 

respectively. The high-voltage substation consists of two 132/20 kV transformers rated at 

30 MVA and the three-phase short-circuit current on the substation 20 kV bus is around 

14.08 kA. 

The candidate fault points in the test system include Point 1 (the middle of the main 

feeder as the inside zone) and Point 2 (the end of the adjacent feeder, where the feeders 

are in the ring condition, in which both feeders are fed by the main feeder). 

Start

Divide data set into training set and 

controlling set 

Set network parameters and number of 

neurons Layer k=1, n=20

Estimation of weights for each neuron in 

the layer k based on training data

Calculate output of each 

neuron

Selection of layer(s) and neurons(s) based on MSE

Is layer K 

final?

Outputs of layer k are set to inputs of

 layer k+1 

(Increment of layer set k=k+1)

End

No

Yes



Energies 2023, 16, 6867 7 of 16 
 

 

 

Figure 4. The SLD of a real distribution network with DG. 

4.2. Overcurrent Protective Relay 

In this section, the OC protective relay operations are investigated with different DG 

capacities and HIFs. Table 2 illustrates the OC relay settings of the main feeder, PCC, and 

one of the DGs. 

Table 2. Protective relay settings. 

OC Settings CT IP(A) Curve TMS Instantaneous Current 

20 kV Feeder 400/1 1 × In N.I 0.1 10 × In 

PCC-DG 200/1 1 × In N.I 0.1 6 × In 

DG1 (2 MW) 100/1 0.7 × In N.I 0.12 10 × In 

Table 3 introduces the operating times of the main feeder OC protective relay with 

different DG capacities and HIFs for the fault that occurs at Point 1. The fault current 

magnitude decreases by increasing the DG capacity and HIF. Therefore, the operating 

time of the OC relay is increased. The operating times of OC relays linearly increase when 

increasing the HIF and DG capacity. The feeder relay cannot detect a fault impedance of 

more than 26 Ω with the presence of DGs. Indeed, the OC protective relay is in the blind-

ing zone. As a result, the operation time of the high-voltage substation feeder protective 

relay increases with an increase in the DG capacity. 

Table 3. Relay operation time of the main feeder with HIF—Point 1. 

Fault Impedance (Ω) Without DG DG (2 MW) DGs (4 MW) DGs (6 MW) 

Z = 0 Ω 0.135 s 0.135 s 0.135 s 0.135 s 
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Z = 5 Ω 0.423 s 0.429 s 0.435 s 0.442 s 

Z = 10 Ω 0.661 s 0.678 s 0.696 s 0.715 s 

Z = 15 Ω 1.023 s 1.067 s 1.114 s 1.164 s 

Z = 20 Ω 1.700 s 1.829 s 1.974 s 2.138 s 

Z = 23 Ω 2.518 s 2.812 s 3.172 s 3.621 s 

Z = 25 Ω 3.536 s 4.146 s 4.984 s 6.191 s 

Z = 26 Ω 4.368 s 5.340 s 6.818 s Not Trip 

Z = 27 Ω 5.648 s Not Trip Not Trip Not Trip 

Z = 28 Ω Not Trip Not Trip Not Trip Not Trip 

Figure 5 demonstrates a comparison of the OC protective relay characteristic curves 

of the main feeder, PCC, and DG1 (with a 2 MW capacity) in the case of a 5 Ω impedance 

fault at Point 1. As can be seen, the substation 20 kV feeders relay operates at 442 ms. On 

the other hand, the OC protective relay of the PCC and DG1 cannot detect a fault of more 

than 4 Ω. 

 

Figure 5. OC relay characteristic curves of substation 20 kV main feeder, PCC and DG1 with fault 

at point 1. 

Figure 6 shows the OC protective relay performance of the main feeder with a 6 MW 

DG capacity for the fault that occurs at Point 1. The performance of the OC relay is shown 

with different impedance faults. The relay becomes insensitive to detecting faults in the 

case of fault impedance increments. It can be observed that, for impedance faults more 

than 26 Ω, the relay fails to detect these faults and remains insensitive by operating in non-

trip mode. Therefore, the result reveals the necessity of a robust method for detecting 

faults with the presence of DGs and HIFs. 
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Figure 6. OC relay characteristic curve of 20 kV feeder with 6 MW DG capacity and different HIF 

faults at Point 1. 

Figure 7 and Table 4 illustrate the feeder operating times of the OC protective relay 

with different fault impedances and DG capacities at the ring situation in the case of a 

fault occurring at Point 2. The relay cannot detect a fault with more than 15 Ω fault re-

sistance and 6 MW DGs. 

 

Figure 7. Operating times of the main feeder OC protective relay with different fault impedances 

and DG capacities—ring situation (at point 2).  
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Table 4. Relay operation times of high-voltage substation 20 kV feeder with HIFs—fault at Point 2. 

Fault Impedance (Ω) Without DG DG (2 MW) DGs (4 MW) DGs (6 MW) 

Z = 0 Ω 0.639 s 0.689 s 0.709 s 0.729 s 

Z = 5 Ω 0.922 s 0.997 s 1.042 s 1.088 s 

Z = 10 Ω 1.432 s 1.587 s 1.705 s 1.834 s 

Z = 15 Ω 2.596 s 3.083 s 3.571 s 4.197 s 

Z = 17 Ω 3.627 s 4.614 s 5.803 s Not Trip 

Z = 18 Ω 6.039 s Not Trip Not Trip Not Trip 

Z = 19 Ω 6.139 s Not Trip Not Trip Not Trip 

Figure 8 shows the OC protective relay time operation of the main feeder, PCC, and 

DG1 at the ring situation with a 6 MW DG presence without fault impedance. The OC 

relay operation of the 20 kV feeder is 729 ms, whereas the DG relays cannot detect faults 

at the end of the adjacent feeder. Therefore, conventional protection systems cannot effec-

tively protect distribution networks with the presence of DGs and HIFs. 

 

Figure 8. OC relay characteristic curves of substation 20 kV main feeder, PCC, and DG1—ring situ-

ation (fault at Point 2). 

4.3. GMDH-Based Protection Scheme 

This section explains the performance of the differential protection scheme based on 

the ML method, in order to detect faults with the presence of HIFs and DGs in an ADN. 

Several performance parameters are considered while choosing the ML methods for the 

fault detection. These parameters are the implementation complexity, computational bur-

den, accuracy, detection speed, and sensitivity to disturbances. During the determination 

of the method, different machine learning methods, such as linear regression, support 

vector machines (SVM), decision trees (DT), and random forest (RF), are examined. Many 

analyses are performed with these ML methods to find the best model in terms of perfor-

mance parameters. However, linear regression and SVM are eliminated due to their high 

sensitivity to disturbances. When high fault impedance and noise situations are included 

in the data set, the accuracy of the model is remarkably reduced. Although the DT and RF 
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methods provide a high accuracy in the case of disturbances in the data set, they fail in 

terms of the implementation complexity. However, the GMDH network is capable of gen-

erating simple model equations. Its easy implementation and high accuracy, independent 

of the DG capacities, load variations, disturbances, and impedance faults, make this 

method more attractive. 

The created GMDH network is structured by using two variable quadratic models. 

The parameters for the GMDH network are determined, as given in Table 5. 

Table 5. Train parameters for GMDH network. 

Parameters Values 

Maximum network layer 20 

Maximum polynomial order 16 

Convergence tolerance 104 

Control data 20% 

The best polynomial model is obtained at the end of the training stage, as given in 

Equation (6). N represents the neurons from N1 to N16. Each neuron also includes a poly-

nomial equation. Dg and F indicate the short-circuit current level of the PCC of the DG and 

20 kV feeder of the high-voltage substation, respectively. 

𝑓𝑜𝑢𝑡 = −0.032763 + 0.00063𝐹 + 0.311162𝑁2 − 0.000731𝐹𝑁2 + 1.43932 × 10
−8 × (𝐹)2 + 0.878435(𝑁2)

2 (6) 

The transferred neuron equations are also given in Equation (7). 

𝑁(5) = 0.110693 − 0.001095𝐷𝐺 + 0.000719𝐹 + 1.198253 × 10−7𝐷𝐺𝐹 + 0.000001(𝐷𝐺)2 − 1.122735 × 10−7(𝐹)2

𝑁(4) = −0.200433 + 0.001023𝐷𝐺 + 2.424491𝑁(5) − 0.000912𝐷𝐺𝑁(5) − 1.920248 × 10−7(𝐷𝐺)2 − 1.194054𝑁(5)2

𝑁(2) =  −0.120179 + 0.000986𝐷𝐺 + 1.555664𝑁(4) − 0.001139𝐷𝐺𝑁(4) + 1.859033 × 10−7(𝐷𝐺)2 − 0.414087𝑁(4)2
}  (7) 

The obtained transferred neuron equations and best polynomial equation given in 

Equations (6) and (7) can be summarized, as shown in Table 6. 

Table 6. Coefficients and parameters of the transferred neuron equations and best polynomial equa-

tion. 

Parameters Coefficients 

𝒚 𝒙𝒊 𝒙𝒋 𝒂𝟎 𝒂𝟏 𝒂𝟐 𝒂𝟑 𝒂𝟒 𝒂𝟓 

𝑁(5) 𝐷𝐺 𝐹 0.110693 −0.001095 0.000719 1.198253 × 10−7 0.000001 −1.122735 × 10−7 

𝑁(4) 𝐷𝐺 𝑁(5) −0.200433 0.001023 2.424491 −0.000912 −1.920248 × 10−7 −1.194054 

𝑁(2) 𝐷𝐺 𝑁(4) −0.120179 0.000986 1.555664 −0.001139 1.859033 × 10−7 −0.414087 

𝑓𝑜𝑢𝑡 𝐹 𝑁(2) −0.032763 0.00063 0.311162 −0.000731 1.43932 × 10−8 0.878435 

To verify the performance of the developed model, some statistical performance in-

dices are utilized. When the accuracy of the developed GMDH-based fault detection 

method is evaluated according to the mean absolute error (MAE), root mean squared error 

(RMSE), coefficient of variation (R2), and mean absolute percentage error (MAPE), the re-

sults show that the fault in the power network can be detected in a very short time, thanks 

to the obtained mathematical model. The overall performance of the developed model is 

provided in Table 7. 

Table 7. Overall performance of the developed model for fault detection. 

 MAE RMSE R2 (%) MAPE (%) 

GMDH 0.034 0.059 98.57 3.510 
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Figure 9 shows the current and voltage of the main feeder during the fault at Point 1 

with a 4 MW DG capacity. The short-circuit current is around 1.95 kA with a 5 Ω imped-

ance fault, as shown in Figure 9a. All the faults are initiated at 0.8 s. The voltage level of 

the busbar decreases by around 0.07 pu during the fault, as illustrated in Figure 9b. The 

different load variations and the change in the operational mode (the ring connection of 

two feeders) are considered as disturbances in order to reveal the performance of the pro-

posed fault detection method. 

 

Figure 9. Electrical characteristics of the main feeder with 4 MW DG capacity and 5 Ω impedance 

fault at Point 1. (a) Current and (b) voltage. 

Figure 10 displays the performance of the proposed method during the fault induced 

at Point 1 with a 4 MW DG capacity and 5 Ω impedance fault. In this case, the threshold 

value is considered as 0.5 and the fault detection time is obtained around 20 ms. The pro-

posed method has a high-speed operation in comparison to conventional OC relays. The 

operation time of the conventional OC relay is more than 435 ms with the same short-

circuit level, as shown in Table 3. 

 

Figure 10. GMDH fault detection method for the main feeder with 4 MW DG capacity and HIF—

fault at Point 1. 
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Figure 11 displays the current and voltage of the main feeder during the applied fault 

at Point 1 with a 6 MW DG capacity. The fault current is around 0.448 kA with a 25 Ω 

impedance fault, as shown in Figure 11a. The voltage level of the busbar has some fluctu-

ations during the load variations, as depicted in Figure 11b. In fault conditions, the voltage 

level fluctuates. It decreases initially and then it increases due to the high-impedance fault. 

 

Figure 11. Electrical characteristics of the main feeder with 6 MW DG capacity and 25 Ω impedance 

fault at Point 1. (a) Current and (b) voltage. 

Figure 12 shows the performance of the proposed method with the fault at Point 1. 

The threshold value is considered as 0.5, and the fault detection time is observed around 

20 ms with a short-circuit current around 448 A under a 25 Ω impedance fault case. The 

various load variations with the different DG capacities and the ring connection of two 

feeders (as disturbances) are considered in order to conduct a performance evaluation of 

the proposed ML fault detection method. The proposed method has a high-speed opera-

tion in comparison to conventional OC relays. The operation time of the conventional OC 

relay is more than 6 s with the same short-circuit level as that shown in Figure 6. 

 

Figure 12. GMDH fault detection method for the main feeder with 6 MW DG capacity and 25 Ω 

impedance fault—fault at Point 1. 
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Figure 13 displays the performance of the proposed method with a 5 Ω impedance 

fault and a 6 MW DG capacity under the fault conditions at Point 2. The fault detection 

time is determined around 20 ms with an 800 A short-circuit current level. The fault is 

initiated at 0.8 s. The proposed method has a high-speed operation in comparison to con-

ventional OC relays. The operation time of a conventional OC relay is more than 1 s with 

the same short-circuit level as that given in Table 4. 

 

Figure 13. GMDH fault detection method for the main feeder with 6 MW DG capacity and HIF—

fault at Point 2. 

Table 8 displays a comparative assessment of the proposed protection method and 

other existing methods. As can be seen from the table, the proposed protection method 

shows high-speed fault detection. Moreover, it does not require communication links. The 

maximum detection time is based on the primary protection. 

Table 8. Comparison of the proposed method with other methods. 

Ref. Algorithm Signal Used 
Max. Detection 

Time (s) 

Communication 

Required 

Max. Fault Resistance 

(Ω) 

[32] OC Current <1 Yes 50 

[33] DOC * Current 1.92 Yes 10 

[34] ORCM * Current <2 Yes --- 

[35] DOC-MEFOA * Current <0.8 No --- 

Proposed method GMDH Current 0.02 No 30 

* Directional overcurrent (DOC), Optimal Relay Coordination Method (ORCM), and Modified Elec-

tromagnetic field optimization algorithm (MEFOA). 

5. Conclusions 

This paper presented an efficient GMDH-based protection method for the protection 

of a real active distribution network. The main advantage of the developed method over 

conventional protection schemes lies in achieving a high detection sensitivity, independ-

ent of the DG capacity, load variations, disturbances, and different high-impedance faults. 

The proposed non-pilot method’s performance validation was conducted by using the 

sample data of real distribution networks of 20 kV feeders with DGs. Firstly, the case 

events created by considering different fault impedances and DG capacities were utilized 

to analyze the conventional protection system. The HIFs’ and DG capacity effects on the 

conventional OC protective relays in the ADN were clearly demonstrated. As a result, it 

was observed that the operating time of the OC relays gradually increased with an in-

crease in the DG capacity. The OC relay of the main feeder could not detect faults with 

more than 26 Ω and 15 Ω impedance faults at Points 1 and 2 (with a 6 MW DG capacity), 

respectively. In this manner, the results revealed the necessity of using a robust method 
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to detect faults with the presence of DGs and HIFs. The proposed GMDH-based protec-

tion technique has a high-speed and high-accuracy fault detection ability for active distri-

bution network protection. The proposed fault detection method’s fault detection time 

was around 20 ms under different disturbances and high-impedance faults. A mean abso-

lute percentage error of 3.51% for the GMDH network-based fault detection cases was 

accomplished thanks to formulation via optimized algorithms, without applying any fea-

ture selection techniques. The performance analysis illustrated that the accuracy of the 

proposed method was independent of the DG capacity and HIFs. 
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