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ABSTRACT

As the usage of Renewable Energy Sources (RES) in electricity grids
increases in popularity, energy flexibility has a crucial role. The
most common weaknesses of current flexibility models are: i) being
hard-coded for specific devices, ii) not scaling for long time hori-
zons and many devices, iii) losing a lot of flexibility if the model
is approximated, and iv) not considering the uncertainty affecting
flexibility representations, which causes the model to capture too
much excess flexibility when imbalance penalties are high. The
FlexOffer (FO) model can perform approximations of flexibility
with good accuracy across different devices, and scales well to long
time horizons and many devices: this work extends FOs to uncer-
tain FOs (UFOs), which keep the good properties while capturing
uncertainty. We show that UFOs are very fast by performing opti-
mization in under 5.27 seconds for a 24 hours time horizon, while
exact models use more than 29.05 hours for even a 6 hours 15 min-
utes time horizon, making them totally infeasible in practice. UFOs
can capture more flexibility than other uncertain models: UFOs con-
sidering energy dependencies can model flexibility without losses
for a charging battery, and retain 86.8% of the total flexibility for
batteries and 87.5% for EVs when imbalance penalties are high,
compared to 79.6% and 74.4% respectively for other models. UFOs
allow to aggregate up to 6000 loads for up to 96 time units while
retaining 90.5% of the total flexibility: exact models fail already for
330 loads or 21 time units.
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1 INTRODUCTION

In the last decades, the use of Renewable Energy Sources is becom-
ing more prominent in electrical grids. The capability of adjusting
energy demand to RES production is therefore very valuable; to
this purpose, some grid users (prosumers) can change their energy
consumption in time and amount. This ability is called flexibility.
Description of flexibility has been treated extensively in litera-
ture [18]. Flexibility can be used for optimization towards several
objectives, such as minimizing energy costs [24, 26] or CO2 emis-
sions [11], maximizing renewable energy consumption [31], peak
shaving [4, 9], matching demand for power with supply (demand
response) [5], ancillary services [34] and avoiding local grid con-
gestions [8]. In some cases, those objectives are related, e.g. energy
prices may vary to encourage demand response [37]. Flexibility
also enables prosumers to participate to spot (day-ahead, intraday)
and balancing energy markets, either on their own or joining their
flexibility with other prosumers. Thus, various mathematical mod-
els have been created in order to describe flexibility, with different
properties depending on the considered cases [22]. We want to cre-
ate a model that can capture flexibility from many different types
of devices [13], optimize the flexibility for generic purposes (in
this paper we will consider the specific use case of cost reduction),
aggregate the flexibility from many small energy loads into a few
bigger ones [7], and do the opposite process (disaggregation) [27]
in order to control the actual loads. To achieve this, the flexibility
model needs to have the following properties: i) it has to model
flexibility from different device types in an unified format; ii) it has
to be scalable with respect to optimization for long time horizons,
and aggregation of many loads; iii) it has to capture most/all of
the total available flexibility, and iv) it has to consider that flex-
ibility over long time horizons is subject to uncertainty, e.g. the
prosumer might be unable to deliver it as promised. Considering
uncertainty is especially important when approximations are pe-
nalized for overestimating flexibility, e.g. when imbalance penalties
are high. Therefore, the scenario of high imbalance penalties is
the primary use case of this work. For representing flexibility in
a unified format, the models from [32] and [6] provide some ex-
amples. Regarding accuracy, linear time invariant (LTI) state-space
models [3, 15] are very precise in representing batteries and heat
pumps. The model from [14] accurately represents flexibility for
building heating systems and water towers, and can model uncer-
tainty; however, being a state-space model, it does not address ii).
Existing uncertainty representations consider external variables
like weather [19] and user behavior [12], but not the intrinsic uncer-
tainty of the approximation itself. About scalability, [16] proposes
a scalable and approximate geometrical model for flexibility aggre-
gation. In particular, FlexOffer (FO) [29] is a model which generates
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l Parameter [ Description ‘
SoC(t) State of charge at time t.
SoCmin Minimum state of charge.
SoCrax Maximum state of charge.
Enmin Maximum energy taken from the device.
Emax Maximum energy given to the device.
K Fraction of energy that is kept at each operation.
Py Probability threshold for UFOs
P Time uncertainty
fr Amount uncertainty
PF Profit function.
Spr Spot market prices.
Ipr Imbalance market prices.

Table 1: Table of symbols used through this paper.

good approximations of flexibility for many different types of loads,
which can be aggregated and optimized in a scalable way [33], thus
effectively addressing properties i) - iii). However, property iv) has
not been considered yet: our contribution is to build a model that
extends FOs and considers uncertainty, while still being device-
independent, scalable and retaining most of the available flexibility,
so that it addresses all of the properties i) - iv). This work extends
the work done in [21], by describing in detail the definition of
UFOs, the algorithms for optimization and aggregation, and the
experiments done for validating them.

We call our proposal uncertain FlexOffers (UFOs). Throughout the
paper, when describing examples, we will use short time horizons
and 1 hour time units for simplicity; however, as we will explain
in Section 4, when discussing real-life feasibility, we will refer to
time horizons of 96 time units, 15 minutes each (i.e., 24 hours),
as upcoming energy market regulations dictate. UFOs scale better
than exact models: optimization for 96 time units is performed in
5.27 seconds, while exact models need more than 29.05 hours for
25 or more time units (6 hours 15 minutes), making them infeasible
in practice. UFOs are capable to model flexibility without losses
for a charging battery, and capture 86.8% of the total flexibility
when imbalance penalties are high, compared to the 79.6% for other
uncertain models. Regarding EVs, UFOs can retain up to 87.5% of
the total flexibility when imbalance penalties are high, while other
uncertain models can retain up to 74.4% of the total flexibility. UFOs
also allow to aggregate up to 6000 loads or up to 96 time units while
retaining more than 90.5% of the total flexibility for batteries, and
up to 86.8% for EVs; exact models fail already for more than 330
loads or 21 time units, and the uncertain baseline only retains 82%
of flexibility for batteries, and 84.5% for EVs. The remainder of the
paper is organized as follows: Section 2 describes the FO model,
Section 3 outlines our proposed model, Section 4 describes our
experiments and Section 5 concludes the paper.

2 PRELIMINARIES

2.1 Running example

In this subsection we describe a specific energy load, which will be
used through the paper as a running example. We will consider a
Tesla Powerwall battery with capacity 14 kWh, maximum charging/
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discharging power of 5 kW, and round-trip efficiency of 90%. We
use one hour time units, i.e., the battery can either be charged
or discharged up to 5 kWh at each time unit. For describing the
functioning of the battery, we use Coulomb counting [25]. At each
time unit ¢, we write the state of charge (SoC) of the battery as

SoC(t) = SoC(t—1)+K-ef +K™1-ef

S0Cmin < SoC(t) < SoCmax; Emin < et < Emax.

1)

Here, SoC(t) is the amount of energy in the battery at time unit
t, in kWh. e; is the amount of energy that the prosumer gives
to/receives from the battery at time t, in kWh: e; is positive if
the battery is being charged, negative otherwise. e/ is max{e;, 0},
e; is min{e;,0}. K € [0, 1] measures how much energy is kept
while charging/discharging the battery. If losses are not equal for
the charging or discharging processes, Eq. 1 can be generalized
by replacing K and K~! with K; € [0,1] and K» € [1,00) re-
spectively; however, for simplicity, in this paper we will assume
Kz = K[ 1 S0Cpmin and SoCpax are the minimum and maximum
state of charge of the battery in kWh, respectively. Ey,in and Epax
are the minimum and maximum amounts of energy (in kWh) that
can be taken from/given to the battery in one time unit, from the
perspective of the prosumer. In the running example: SoCp,i, = 0
kWh, SoCpax = 14 kWh, Epmin = -5 kWh, Epgx = 5 kWh,
K = V0.9 ~ 0.948. We will consider two use cases: in the first,
SoC(1) = 0 kWh and the battery can only be charged (charging
only case), in the second, SoC(1) = 7 kWh and the battery can be
either charged or discharged at each time unit (switching case).

2.2 FlexOffer life-cycle

The baseline for this work is the FO model [29]. Suppose we want
to model flexibility for a certain device: an FO can be seen as a set
of constraints on the values of consumable energy for the upcom-
ing time units, which describe the flexibility available from said
device. Figure 1 shows the life-cycle of an FO. Two main parties are
involved: the prosumer, who generates and executes the FO, and
the aggregator [28], who processes and issues schedules for the FO.
The tasks on the prosumer’s side are performed automatically by
an agent, which operates according to the prosumer’s requirements.
First, the prosumer agent forecasts flexibility for the devices, and
generates FOs according to that. Each FO is then sent to the aggre-
gator, which determines if the FO is useful for its needs, decides
whether to accept the FO or not and informs the prosumer of the
response. If the FO is rejected, it is not executed and the cycle ends
here. Otherwise, the aggregator processes it (e.g., aggregating it
with other FOs, performing optimization), and establishes a sched-
ule for each FO. FO schedules are then sent back to the prosumer
agent, which will execute them by controlling the devices.

2.3 Description of a FlexOffer

An FO is an approximation of the available flexibility, expressed
in terms of constraints over the usable amount of energy at each
time unit. In this section, call e; the amount of energy consumed at
time ¢, and T the time horizon we are considering. There are many
types of constraints that have been used to define FOs: the most
simple ones are slice (energy) constraints. An energy constraint
establishes, at each time unit, the minimum and maximum amount
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Figure 1: A schematic description of the FO life-cycle.
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of energy that the load can consume: at every time ¢, the energy thata- (e1+...+e;—1) +b-e; < c. A dependency FO (DFO) is an
constraint specifies a lower and an upper bound emin; and emax; FO with dependency energy constraints.
such that emin; < e; < emax;. A standard FO (SFO) is an FO whose There are two main types of approximations: inner and outer.
constraints are all slice constraints. Another type of constraint is An inner approximation models less flexibility than the actually
the total energy constraint (TEC), which specifies the lower (TEnin) available amount, while an outer approximation models more. Outer
and upper (TE;nqx) bounds for the energy that can be consumed FOs generate more flexibility compared to inner FOs, but some
over the considered time horizon. A total energy constraint standard of the modeled configurations may actually be infeasible. In our
FO (TEC-SFO) is an FO with slice and total energy constraints. A use case, , high imbalance penalties, an outer approximation with
further type of constraint is the dependent energy constraint. This excessive constraint violation is severely penalized. Figure 2 shows
constraint specifies at each time unit ¢ a lower and an upper bound the constraints described in this section for the charging only case
on the amount of energy that can be consumed, depending on the of the running example from Section 2.1: (a) represents an inner
total amount of energy that has been consumed before time unit ¢. approximation SFO and (b) an outer approximation SFO. At each
Formally, this means that there are three real numbers a, b, ¢ such time unit, the column describes the amount of energy that can be

used, and the horizontal line is an example schedule.A TEC-SFO is
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represented in (c), with the TEC shown above the slice constraints,
and (d) shows a DFO: for each time unit ¢, the x axis indicates
how much energy has been consumed in total before time ¢, and
the y axis indicates how much energy can be consumed based on
the value on the x axis. For the switching case the battery can be
both charged and discharged, and as a consequence the FO slices
can also represent negative values of energy, which correspond
to discharging the battery. However, in Figure 2 FOs we show the
charging only case for simplicity: in this case only positive values
for energy are shown, since the battery can only be charged.

3 UNCERTAIN FLEXOFFERS

3.1 Types of uncertainty

The purpose of this work is to propose a new type of FO, which takes
uncertainty into account. We consider two types of uncertainty
over flexible loads: time uncertainty, and amount uncertainty.
Time uncertainty is the uncertainty about if and when the flexible
load will be available, while amount uncertainty is the uncertainty
about how much energy will be consumed by the load per time
slice and overall. Consider FOs as energy profiles: time uncertainty
is the uncertainty about being able to deliver the energy described
in the profile, and amount uncertainty is the uncertainty on the
amount of energy of the profile. For example, suppose a prosumer
wants to recharge an electric vehicle (EV) overnight, in order to
use it the next day. At each time unit, time uncertainty refers to
the probability of the user having the EV plugged in for recharge
at that time, and amount uncertainty refers to the amount of en-
ergy that can be given to/taken from the EV at that time. Table 2
shows which types of uncertainty affect each device. Wet devices
(i.e., washing machines, dishwashers) can only provide flexibility
when the prosumer loads them, and sets the device to ready [10],
therefore they have time uncertainty, depending on if and when the
prosumer will set the devices to ready. However, since their energy
profiles are pre-determined, there is no amount flexibility. Heat
pumps do not have time uncertainty, as they are always plugged
in (if inactive, their consumption is simply zero); they however
have amount uncertainty, as their energy consumption is not pre-
determined. EVs have both types of uncertainty, as shown above.
Finally, home batteries are always plugged in, and therefore have
no time uncertainty; they do however have amount uncertainty, as
the amount of charge or discharge is not pre-determined.

| Device [ Time [ Amount ‘
Wet device v
Heat pump v
EV v v
Home battery v

Table 2: Type of uncertainty for each device.

Throughout this paper we will talk about two main use cases:
a battery, and an EV. We start with batteries because they only
have amount uncertainty, which is the most general type to model.
After this, we describe EVs because they are affected by all two
types of uncertainty, and therefore are the most general case. This
means that if we can model uncertainty for EVs, we can do the same
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for all other types of devices. We start by explaining how amount
uncertainty works for batteries, and then we will show how, in
addition to that, time uncertainty is modeled for EVs.

3.2 Definition of uncertain FlexOffers

To create an uncertainty-aware FO, we first need to model uncer-
tainty. For simplicity, we start by considering amount uncertainty,
and we consider the case of a battery. With a slight abuse of no-
tation, in this section we will denote by e; the amount of energy
that the battery receives from/gives to the prosumer. Call T the
time horizon we are considering. Since the flexibility available
at time t depends on SoC(t), we will have to model uncertainty
for the value SoC(t) at each t € {1,...,T}. SoC(1) can be mea-
sured, which means that for t = 1 we can determine the available
flexibility with certainty. However, for t > 1, SoC(t) depends on
the amount of energy used before: therefore, the uncertainty for
SoC(t+1) depends on the uncertainty for e;. Suppose that we know
the probability distribution function (PDF) that describes the prob-
ability for e; to assume each possible value in [Epin, Emax], for
eacht € {1,...,T}, and call this PDF e;: it is then possible to deter-
mine the PDF SoC,,; that describes the probability for SoC(t + 1)
to assume each possible value in [S0Cpin, SOCimax]. We already
know SoC(1), so SoC(1) = Jsoc(1), the Dirac delta distribution
concentrated at SoC(1). The random variable with PDF SoCt41 has
to be the sum of the random variable with PDF SoC; and the one
with PDF e;, which can be written as:

Emax

SoCra1 (x) = / SoCs(x = 1) - & (r)dr. @

Emin

We now know the probability distributions related to SoC, and
we want to determine the uncertainty in value flexibility. At time ¢,
call I; the set of all values that e; can possibly assume. We know
that I; is an interval and that I; C [Emin, Emax]. Our purpose
is to build a function f; : [Emin, Emax] — [0, 1] that, for every
X € [Emin> Emax], describes the probability that x € I;. f; isnot a
PDF: f;(x) does not describe the probability that e; will assume the
value x when the schedule is determined. f;(x) instead describes
the probability that x belongs to the set of the feasible values for e;
before the schedule is chosen. We define f; as

SoCrax—x
fe(x) = SoCy(r)dr
SoCmin—x

This is because x € I if and only if SoCpin < SoC(t) +x < S0Crmax,
or equivalently SoCpmin — x < SoC(t) < SoCpmax — x: the integral
from Eq. 3 describes the probability for this condition to be re-
spected. Since it is difficult from a computational perspective to
create pointwise-defined functions as in Eq. 2 and 3, we created a
discrete approximation approach. We assume that SoC(t) and e;
can only have values which are multiples of gr (a number describing
the granularity of the approximation), and therefore &; and SoC;
are discrete distributions.

Figure 3 shows SoC; for the running example, and Figure 4
shows f;. It can be noticed that at time ¢, %t behaves locally like
a polynomial of degree t — 1.

®)
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Figure 4: Flexibility probability functions.

We now want to describe time uncertainty. For this, we define an
example that will be denoted through the paper as the EV charging
only example. Consider the case of a prosumer who recharges an
EV overnight. Suppose that the probability of the user plugging in
the EV for a certain day is 95% if it is a weekday, and 20% if it is a
weekend day. Suppose also that, when the recharging happens, it
always happens overnight, at a time between 17 of the considered
day and 8 of the following day. In our example, plug-in and plug-out
times are modeled by lognormal distributions, tuned as in the graph
from [1]. Finally, the SoC at the plug-in is modeled by a uniform
distribution [17], with a mean value of 40% [35].

At each time ¢, we denote by P; the probability that the EV will
be plugged in at that time: in our example, during the weekdays we
have P17 = 0, P13 = 0.475 and P19 = 0.83, and during the weekend
it results P17 = 0, P1g = 0.1 and P9 = 0.17. Lastly, as shown in the
battery case, at each time ¢ we create the function f; describing
amount uncertainty for each possible energy value. In this case,
amount uncertainty comes from the inability to know the state of
charge of the EV at plug-in time when we issue the UFO, which
is many hours before the EV is plugged in. If flexibility cannot be
provided, we denote by d; the default consumption for the device at
time ¢. In the EV charging only example, when the prosumer plugs
in at 19, we have dig = 0 kWh.

With this notation, we can represent the combined uncertainties

by some functions gy, . .., g7, where
(o) = fi(ex) ifep =dy
Gk\ek) = P:(F) - fi(ex) otherwise.

In general, we define an uncertain FlexOffer F as a tuple
{91,92 - ..,91}, where, g1 ..., gr are functions from R to [0, 1] such
that g;(e;) represents the probability for the device to be able to
consume the amount of energy ey at time ¢.
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Additionally, in the EV case, a TEC is being considered, since
the EV needs to be charged by at least a certain amount for a user-
defined deadline. Denoting by SoCy;p, the desired final amount of

T
charge for the EV, the constraint can be expressed as K ... Y e; =

=1
S0Cfinar — S0C(0). The user-defined deadline is modeledtby the
time uncertainty: P; describes the probability that the EV can be
charged at time ¢: this includes both the EV being plugged in and
user settings allowing the charging operation, and in particular
being before the charging deadline.

3.3 Optimization

FOs described in Section 2 can be seen as a set of constraints on the
energy consumed by the modeled device: in particular, it is possible
to use those constraints for solving optimization problems, which
are defined by an objective function, e.g., cost minimization, and a
set of constraints, defined by the FO over the energy variables e;. In
this subsection, we describe how UFOs can be used for optimization.

A schedule s = (s1,...,st) for energy consumption is a vector
of size T, such that its ¢-th component s; describes the energy
consumption for the time unit ¢. Given a UFO F and a schedule s, we
define P(s) as the probability for the schedule to be supported by F.
Our idea for optimizing energy consumption is to set a probability
threshold Py, and use P(e1,...,er) = Py as a constraint for the
optimization. However, since this is a nonlinear constraint, we
chose another approach: create an SFO Fp, whose solution space
respects this constraint. Algorithm 1 shows how to create Fp, . First,
we compare P; to Py (Line 2). If P; < Py, the procedure ends and
the schedule (dj,...,dr) is generated (Lines 3-5), since it is the
only possible schedule s such that P(s) > Py. Otherwise, we define
P, = 5—2 as the residual uncertainty left (Line 6). Now, for every
t € {1,...,T}, we divide the residual uncertainty in T parts: this
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Algorithm 1: Generating an SFO from a UFO

Algorithm 2: SFO from aggregating UFOs

Input: T - time horizon;

F - UFO (vector of length T);

Py - probability threshold

Output: F; - A standard FO
1 Function generateSFO(F, P ):

2 if F.P; < Py then

3 Fst.emin «— (F.dy,...,F.dr)

4 Fs¢.emax «— (F.dy,...,F.dr)

5 return Fg;

P,

6 P, «— 17‘;

7 pri,...,prr «— Pr

8 fort «— 1:T do

9 Fg¢.eming < argmin f;(x) > pr;
X

10 Fgt.emax; « arg max f;(x) > pry
X

11 return Fg;

is done by generating T numbers pry,...,prr € (0,1] such that
their product is equal to Py, and imposing for every ¢ the condition
fi(et) > pre. There are many possible ways to generate the numbers
pry: the simplest is to assign to each one of them the value 4/P;, thus
distributing uncertainty equally over the time units, as we show
in the algorithm. Another possibility is to distribute uncertainty
only among some of the time units in case we are not interested
about uncertainty at that time: for example, if we are not interested
for t = 1, we impose pri = 1. The slices at each time ¢ represent
the values which respect this condition (Lines 9-10). This condition
ensures that P(s) > Py for every possible schedule s obtained by
these constraints. The time complexity of this algorithm is O(T).

Once the SFO has been generated, we solve the optimization
problem. We choose the function over the energy variables e; that
we want to optimize, and we find the minimum or the maximum
of this function, depending on the objective. The constraints on
the energy variables are given by the SFO that we just generated.
An example of objective function is profit, which is defined as
PF(e) = —Spr - e. Here, e = (e, ..., er) is the energy consumed at
each time 1,...,T, and Spr = (Spr, ..., Iprr) are the spot prices
at time 1,...,T. An example for the constraints is the SFO shown
in Figure 2(a): here we have T = 8, and the constraints are

OkWh < e; < 4kWh  if £ € {1, 2}
0kWh < ¢; < 3kWh  if ¢ € {3,4}
e; = 0kWh if t > 4.

3.4 Aggregation

An important property of FOs is aggregation: given a number N
of FOs, it is possible to generate M < N FOs which together rep-
resent the combined flexibility of the original N FOs, with some
losses. Aggregation allows single prosumers to participate in the
energy market by having their flexibility aggregated with other
prosumers’, thus being able to meet the requirements for minimum
bid size. The aggregation and the market bids are performed by
the aggregator, as shown in Figure 1. Also, optimizing flexibility
for thousands of prosumers would normally be a computationally
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Input: T - time horizon;
{F1,...,FN} - UFOs(vectors of length T);
Py - probability threshold
Output: F; - A standard FO
1 Function generateSFO(F, P ):

2 Py — {/Py

3 fort — 1:Tdo

4 Fst.eming, Fsy.emaxy < 0,0

5 fork < 1: N do

6 Fst.eming < Fs;.eming + arg minftk(x) > P
X

7 Fs;.emax; < Fg;.emax; + arg maxftk(x) > P
X

s return Fg;

hard problem: aggregation allows to manage the flexibility from
many prosumer in a small number of FOs, making optimization
much faster. This section shows how UFOs can be aggregated.
Suppose we have N UFOs Fy,..., Fy. Without loss of general-
ity, we make some assumptions: first, for all the UFOs, d; = 0
for every t € {1,...,T}. Second, for every function ftk, we have
ftk (0) = 1, and those functions are concave and monotonous when
restricted to R~ and R*. We then define the aggregated UFO F¢
as follows: given my, ..., my_1, my as non-negative numbers such
that m; +... + my = x, ftk(mk) > ftk“(mkﬂ) for every k < N

N
and mpy is minimum. We define then g¢(x) = [] ftk(mk), and
k_

=1

F4 = {g{,...,g7} is the aggregated UFO. In order to exploit F*
for optimization, given a threshold Py, we want to create an SFO
Flﬁo like in the previous subsection: Algorithm 2 does this without
actually computing F?. We first define P; as the N—th root of Py
(Line 2). After that, for every ¢t € {1,...,T}, we define the slice
constraints emin; and emax; as the sum over k of the minimum
(or maximum, respectively) values for x such that ftk (x) = Pp:
from the definition of F¢, this guarantees g¢(emin;) > Py and
g7 (emax;) > Py (Lines 4-7). The time complexity of this algorithm
is O(N - T). Disaggregating a schedule obtained from the optimiza-
tion of an aggregated UFO can be done in a similar way. Algorithm 3
shows how this is done: first, at every time ¢, we define P; as the
N—th root of the aggregated probability for s; to be feasible (Line 3).
Then, for every k € {1, ..., N}, we define the t—th element of the
respective schedule as the minimum x such that ftk (x) > P; and
the constraint s’f +...+ s’;] = s; is not violated, if s; < 0; otherwise,
we define it as the maximum x with such properties. The time
complexity of this algorithm is O(N - T).

An aggregator can also decide to use a different bidding strategy,
as follows. Let Fy, ..., FNr be UFOs and, with the previous notation,
let Pf be the probability describing time uncertainty at time ¢ for
the k-th UFO. The aggregator can then do the following: first, con-
sider fi,..., fN, i.e., the functions describing amount uncertainty
for Fy,..., Fn, respectively. Second, aggregate fi,. .., fy with the
procedure described in Algorithm 2, generating a UFO denoted by
F4. Third, at each time ¢, the aggregator will only bid a part of the
available flexibility, which is proportional to the time uncertainty
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Algorithm 3: Disaggregation of a UFO

Input: T - time horizon;
{F1,...,FN} - UFOs(vectors of length T);
s =(s1,...,8T) - schedule
Output: s1, ..., sN - schedules
1 Function disaggregateUncFO(F, P, ):
2 fort «— 1:Tdo

3 P1 «— Ng¢(st)

4 fork — 1:N do

5 if s; < 0 then

6 sf — arg min ftk (x) =P
x|s1+..ASk_1>Sr—X

7 else

8 sf — arg max ftk (x) =P
x|s1+.. Sk <Sp—X

9 return sl,...,s

of each UFO Fy, ..., Fy. Denoting by FB? the total amount of flexi-

bility that the aggregator can bid at time ¢, and by FBI; the amount
of flexibility provided by Fj at time t, the aggregator will bid an
amount of flexibility equal to

5 (PK - FBf)
k=1 . FB?
>, FBF

k=1

at each time ¢.

The rationale of this strategy is to bid only a part of the flexibil-
ity from each FO, which at each time is the expected value of the
flexibility while taking uncertainty into account. We give a sim-
ple example to describe this strategy. Suppose we have ten UFOs,
Fi,. .., Fio, with no amount uncertainty: in other words, we can see
the functions f; as slice constraints, defined as the points for which
f has value 1. Suppose that, at time 1, all F;. have a slice constraint
with eminll‘ = 0 kWh, emax{‘ = 10 kWh, and P{c = 0.9. By using
this strategy, the aggregator will bid flexibility like an SFO with
emin; = 0 kWh and emax; = 10 - 0.9 - 10 = 90 kWh. This corre-
sponds to the expected value of the available flexibility: we have ten
UFOs that can provide 10 kWh of flexibility each, but for each one
of them flexibility has a 90% probability of being available, therefore
the expected flexibility would be 90 kWh, as on average only 9 FOs
out of 10 will be able to be delivered. This is a simple strategy, but
performs better than just aggregating the slice constraints obtained
by f;: the aggregator bids the amount of flexibility that is available
on average, thus reducing the risk for high imbalance penalties.

It is important to note that the aggregation strategies described
in this section refer specifically to UFOs. If an FO does not consider
uncertainty, it can be modeled as a UFO whose parameters (P;, f;)
can only have values in {0, 1}: in this case, both this aggregation
strategy and UFO aggregation described by Algorithm 2 behave
like standard FO aggregation.

3.5 Correlation between probability functions

A UFO F = {g1,...,97} is defined so that g;(e;) describes the
probability that, without any other information about e for k #
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t, e; is a feasible value for energy consumption. However, if we
have this kind of information, this probability may change. This
dependency can be expressed in the following way. First, let e}
be the total amount of energy consumed before time unit t. We
define the two quantities SoCmax(efw) and SoCmm(e;“’t) as the
maximum and minimum possible state of charge of the battery
if the total energy consumed up to that moment is e!°’. Calling
Isc = [SCrmin, SCmax] the possible interval of the state of charge,

we define f; (e, eror) as the minimum of 1 and

t(Isc N [SoCmin, SOCmax — er] N [SoCmin — €r, S0Cmax])
t(Isc)

where ¢ is the length of the considered interval. In other words,
the probability of e; being feasible is the probability that, choosing
v € Isc randomly with uniform distribution, e; does not violate the
constraints of the battery if SoC(t) = v. In order to exploit informa-
tion on correlation between the functions f; for optimization, we
propose a two-step optimization. First, we obtain a schedule by per-
forming an optimization with outer DFOs; second, we see if at each
t, fr(et, uror) = Po holds. If yes, the schedule at time ¢ is confirmed;
if not, we choose the closest e} such that ft(e}, uror) = Po, and use
it for creating an additional slice constraint for optimization, ensur-
ing that the resulting schedule respects the probability threshold
condition. The optimization problem can be formulated as follows.
Like in Section 3.3, we choose the function over the energy variables
e; that we want to optimize, and we find the minimum or maximum
of this function, depending on the objective. First, this function is
optimized by using the outer DFOs as constraints over the energy
variables. After this, sequentially over ¢, the solution for e; that has
been found is checked for the inequality f; (ez, uror) = Po and, if it
does not hold, an additional constraint over e; (depending on u;ot)
is added and the optimization is run again, with this additional
constraint. We can use the same example of Section 3.3 for the first
step, except that the constraint needs to be a DFO, so we can use
the one from Figure 2(d) instead. Here, for example, the constraints
relative to ¢t = 4 would be:

0kWh < e4 < 5kWh
0kWh < e + e2 + e3 + e4 < 14kWh.

Once this optimization has been performed, for every ¢, we check
if f;(er, uror) = Po is true: if it is not, we find two threshold values
az, by such that f;(x,uz0r) = Py for every x € (ag, b;), we add
ar < ey < by to the list of constraints, and we perform the same
process again, until t = T. The strong point of this optimization is
that the amount of excess flexibility considered can be decreased
at will, at the cost of losing some feasible flexibility: this allows
UFOs to behave in either a more conservative or a more aggressive
way, depending on the value of Py. Therefore, we will choose lower
values of Py if we want a more aggressive approach, and higher
values if we want a more conservative approach. To be more specific,
UFOs are inner approximations for Py = 1 and outer approximations
for Py = 0. For intermediate values, they may be neither inner nor
outer approximations; however, if a UFO is an inner approximation
for Py = a, it is an inner approximation for Py = k for every
k € [a, 1]. Similarly, if a UFO is an outer approximation for Py = a,
it is an outer approximation for Py = k for every k € [0, a].
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4 SIMULATIONS AND RESULTS
4.1 Scalability and retained flexibility

In order to evaluate the performances of UFOs, we have run some
experiments and measured the amount of provided flexibility. There
are several metrics for this purpose [36], but in a real case, one of the
most important is economic revenue [20]: it is defined by the profit
function PF(e), defined as in Section 3.3. We denote the imbalance
prices by Ipr = (Ipry,. .., Iprr). We simulated the battery B from
Section 2.1, and the EV from Section 3.2. Data for prices have been
taken from a sample in NordPool, and include spot prices and
imbalance prices between January 1, 2018 and December 31, 2018.
Throughout this section we will mention profits and imbalance
costs relative to single prosumers/loads. In reality, as explained
when describing the FO life-cycle (Section 2.2), flexibility provided
by the prosumers is collected by the aggregator. The aggregator is
the actor who actually bids flexibility in the market, makes profit
from it, and has to pay for imbalance when the used flexibility is
different from the predicted amount. We will refer to profits and
imbalance costs relative to a single load, as the contribution that the
load gives to the aggregator on the profit it obtains and imbalance
penalties it has to pay respectively. The aggregator operates on the
day-ahead spot market: for this reason all the operations described
in this paper, i.e., flexibility generation, aggregation and optimiza-
tion, are performed more than 12 hours before the beginning of
the day when flexibility is actually executed, and flexibility will be
modeled for all the 24 hours of the following day. Also, spot prices
are known the day before, while imbalance prices are forecast.
Our experiment for batteries works as follows. B starts with the
settings of the switching example, and we choose a time horizon T
and a probability threshold Py. Now, we generate a FO for the next
T time units, and we optimize it with the objective to maximize
the profit function PF, where the constraints on e are defined by
the FO. We then check whether the schedules obtained by the
optimization violate the constraints of the battery model; if yes, we
calculate the imbalance penalties as the minimum possible cost of
the difference between the schedule and a feasible one. This cost is
calculated as Cost(e) = Ipr - e. We then repeat this procedure for
the next T time units again and again, until the simulation covers
a total of 365 days. The approaches used for the experiments are:
the theoretical optimum based on battery constraints (Theo.Opt.),
DFOs, UFOs with different values of Py (UFO-P), an uncertain
baseline (UOnDFO) and correlation-aware UFOs with two-step
optimization (2UFO-Py). The approximation Theo.Opt. uses the
most accurate representation possible of flexibility, but it is not
exact since the representation depends on SoC(1). As we said at
the beginning of Section 4.1 an FO is generated at least 12 hours
prior to its execution, so the value for SoC(1) has to be predicted
and is therefore subject to error, and so is Theo.Opt., which is
however the most accurate representation possible of flexibility
at that point in time as the constraints are modeled without error.
The approximation UOnDFO models flexibility by DFO constraints
(described in Section 2), whose generation considers uncertainty
over the maximum charge value. This uncertainty is modeled with
the technique used in [19], by a uniform distribution, with the
following procedure. When generating the DFO, we assume that
the maximum state of charge is modeled by an uniform distribution
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Type l Pre-Imb l Imb.Pen. l Profit l % of TO
High penalties
Theo.Opt. 14.27 0 14.27 100%
DFO 18.34 6.94 11.40 79.8%
2UFO0-0.95 12.98 0.60 12.38 86.8%
UOnDFO0-0.95 18.35 6.98 11.36 79.6%
2UFO0O-0.6 15.16 2.80 12.36 86.6%
UOnDFO-0.6 18.34 6.97 11.37 79.7%
All penalties
Theo.Opt. 38.10 0 38.10 100%
DFO 55.28 31.48 23.80 62.5%
2UFO0-0.95 20.59 0.75 19.84 52.1%
UOnDFO0-0.95 55.34 31.60 23.74 62.3%
2UFO-0.6 50.02 24.73 25.29 66.4%
UOnDFO-0.6 55.34 31.57 23.77 62.4%

Table 3: Results for switching process (T = 6), measured in
thousands of euro.

between S0Cpax and SoCpyax plus the maximum possible amount
of energy that may have been dispersed by losses. We have interest
in comparing UFOs with this baseline, since they both consider
uncertainty, while the other proposed approaches are deterministic.
We have run this experiment for T = 6 and different values of P,.

Figure 5 shows the optimization time. As explained at the begin-
ning of Section 4.1, FOs are issued day-ahead, and in a real case
they would be generated for the whole duration of the following
day. However, all the EU markets are moving in the direction of
using 15 minutes long time units instead of hourly: for this reason,
in order to be feasible in practice, a flexibility model has to be able
to perform optimization for T = 96. Time for optimizing the theo-
retical optimum grows exponentially in T, for T = 24 (6 hours) it is
higher than 5.6 hours and for T = 25 (6 hours 15 minutes) or higher
takes more than 29.05 hours, making it infeasible in practice. In
comparison, for the time horizon T = 96, UFOs can be optimized in
0.277 seconds, DFOs and UOnDFO in 1.301 seconds and two-step
UFOs in 5.270 seconds. Table 3 shows the results for profit. The
columns describes respectively: Type of approximation, value of
the PF function calculated before imbalance penalties (Pre-Imb),
imbalance penalties (Imb.Pen.), Profit calculated after considering
imbalance penalties, and percentage of profits compared to the
theoretical optimum (% of TO).

Table 3 presents the results for the switching case. In particular,
we have run the experiment for the switching case in two scenarios.
One is our primary use case, in which the difference between im-
balance and spot prices is higher than a certain threshold th (high
penalties); the other scenario, in which the difference between
imbalance and spot prices has no pre-determined lower bound (All
penalties), is reported for completeness. We ran the experiment for
th = 20, 30, 40, 50 respectively. For the high penalties case, results
show that UFOs behave a lot better compared to DFOs. In particu-
lar, Table 3 shows the results for th = 50: the approximation made
with UFOs can capture up to 86.8% of the total profits, against the
79.6% obtained by UOnDFO at its best and the 79.7% for DFOs.
In this case, however, high values of Py such as Py = 0.95 obtain
the best results: since the imbalance penalties are high, for lower
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Figure 5: Time for optimization and constraints generation

values of Py they become too high compared to the profits that
would be obtained by the increased flexibility, although UFOs still
outperform the baselines. For the all penalties case, for Py = 0.6
and lower, UFOs perform better than DFOs and UOnDFO: they
are able to capture up to 66.4% of the total profits, against the 62.5%
obtained from the DFOs and the 62.4% from UOnDFO. In this case,
high values of Py have lower performance, since outer approxima-
tions are not punished for causing imbalance as in the main (high
penalties) case. It has to be noted that Theo.Opt. is never penalized,
since it models the battery constraints exactly and therefore never
occurs on violations of those. We chose to show results for one
relatively high value and one relatively low value of Py: we chose
Py = 0.95 because it is a common threshold for statistic tests (95%
confidence), and Py = 0.6 because with lower values the increase in
profit from UFOs is minimal, as the increased amount of flexibility
is balanced by the increasing penalties. It is important to remark
that the all penalties case refers to all the 365 days of 2018, while the
high penalties case only refers to 118 days of the year 2018, when
the differences between the tariffs are high enough.

Regarding EVs, our experiment has been designed as follows.
We consider the case of a Tesla model S, with the following specifics:
capacity is 75 kWh, state of charge has to stay between 20% and
80%, charging power is 7 kW, charging efficiency is 84%. We are
considering the EV charging only example described in Section 3.2.
The experiment works like the battery experiment described earlier
in this section: the FO is optimized in order to minimize costs, and
then energy costs are calculated like in the battery case. As said
at the beginning of Section 4.1, imbalance penalties are calculated
depending on how the actions of the prosumer impact the imbal-
ance penalties that the aggregator has to pay. For example, if the
EV is not plugged in when the aggregator predicts it to be, the
aggregator’s prediction of consumption will be higher than the
amount of energy actually consumed, generating imbalances. In
a similar way, overestimating or underestimating the amount of
energy needed to charge the EV will result in the aggregator re-
spectively overestimating or underestimating the amount of energy
consumption, causing imbalances. When the FO is aware of time
uncertainty, a reduced amount of flexibility is bid, proportional to
the value P; from Section 3.2, since we assume that the aggregator
bids that amount of flexibility, following the strategy described in
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Type [ Pre-Imb [ Imb.Pen. [ Cost [ % of TO [
High penalties
Theo.Opt. 73.17 0 73.17 100%
DFO 63.31 55.01 118.32 61.8%
2UFO0-0.95 53.05 3941 92.46 79.1%
UOnDFO0-0.95 51.87 46.50 98.37 74.4%
2UFO0-0.6 52.83 30.77 83.60 87.5%
UOnDFO-0.6 60.80 39.72 100.52 72.8%
All penalties
Theo.Opt. 340.76 0 340.76 0%
DFO 318.42 122.23 440.65 77.3%
2UFO0-0.95 275.11 96.11 371.22 91.9%
UOnDFO0-0.95 260.79 110.93 371.72 91.7%
2UFO0-0.6 306.06 63.22 369.28 92.0%
UOnDFO-0.6 296.34 82.14 378.48 90.0%

Table 4: Costs for charging the EV in the EV charging only
example, measured in thousands of euros.

Section 3.4. For this experiment we have compared: the theoretical
optimum (Theo.Opt.), DFOs, 2-UFOs and an uncertain baseline
built on the same principle as UOnDFOs for the battery case. In
this case, the theoretical optimum is the same as the battery case,
and also assumes that we know whether the EV will be plugged in
or not, as well as plug-in and plug-out times, exactly and in advance.
Obviously this is not realistic and such a baseline cannot exist in
real life, and is only used to evaluate the performance of the other
baselines.

4.2 Aggregation

We have performed experiments for measuring the effectiveness
of UFOs aggregation. We compared it against four approaches:
UOnDFO, Minkowski, an approach based on an approximated
Minkowski sum [2] (AppMink), and an exact baseline called LTI
Aggregation [20] (LTIAgg). Minkowski aggregates flexibility poly-
gons by computing their Minkowski sum, AppMink computes an
approximate Minkowski sum that is faster to calculate, UOnDFO
is DFO aggregation over the DFOs on which uncertainty is then
modeled (which is also aggregated as an uniform distribution), and
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Figure 7: Results for aggregation time (a-b), profit for batteries (c-d) and costs for EVs (e-f).

LTIAgg combines many LTI models into one single LTI model. An
LTI model [3, 15] is a model that describes the evolution over time of
a physical system, by a set of linear recurrence relations; in our case,
the recurrence relations of the model of a single battery are the ones
in Eq. 1. We measure the amount of retained flexibility by economic
revenue. Like the previous subsection, we have performed two types
of experiments: one for batteries, and one for EVs. The purpose of
the first experiment is to aggregate NB batteries, which are %
copies of B, and NB copies of a Pika Energy Harbor battery, which
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specifics are: SoOCmax = 20kWh, SoCmax = —S0Cpin = 6.7kWh,
round-trip efficiency 96.5%. First, we choose a time horizon T and
a probability threshold Py for generating FOs. Now, for each bat-
tery, we instantiate an LTI model, a DFO and a UFO. After this,
we perform aggregation on those models by using the respective
approaches, and we perform optimization for each of the resulting
aggregated models, with the objective of maximizing PF. After this,
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we calculate imbalance costs as described in the experiment in Sec-
tion 4.1, and finally we perform disaggregation on the aggregated
models. This procedure is then repeated again and again.

In the EV experiment, we simulate the behavior of a number
NEV of prosumers: half of the considered EVs is the same as de-
scribed in the EV charging only example, the other half are Renault
Meganes (for our purposes the specs are the same as Tesla model
S, except the capacity is 60kWh). Their probability to be plugged
in during weekdays and weekends is like in the EV charging only
example, and their plug-in time follows the pattern described in [1],
although different users may have different mean plug-in time, for
which we followed the distribution in [30]. We generate the FOs,
aggregate them, perform cost optimization and then disaggregate
them. After this, we check the amount of flexibility that has effec-
tively been delivered, and calculate imbalance penalties accordingly.
As described in Section 3.4, the aggregator bids only a part of its
available flexibility which is proportional to time uncertainty. The
procedure is then repeated again and again.

Since bids for flexibility need to be done at most one hour before
the deadline, in order to reduce errors [23], and flexibility has to
be modeled before it can be aggregated, we chose to consider 30
minutes as the time limit within which an approach is considered
feasible. Figure 6 shows results for feasibility. It is possible to ag-
gregate 6000 UFOs for a time horizon of T = 24, and 750 UFOs for
T = 96, and the same is true for UOnDFO, which in the graph is
overlapped by UFOs, as their aggregation process works similarly
to DFOs. In comparison, LTIAgg fails for T > 21 or 330 devices,
Minkowski and AppMink are infeasible for T > 6, and the first
fails for 180 devices, and the second for 290 devices. Figure 7(a) and
(b) shows results for the time needed for each single process . As it
can be seen, aggregation time grows exponentially with respect to
T for Minkowski and AppMink, and grows linearly for LTIAgg,
UOnDFO and UFOs. Aggregation time with respect to number
of devices grows linearly for UFOs and UOnDFO, and grows su-
perlinearly for Minkowski, AppMink and LTIAgg. Optimization
time grows exponentially in T for Minkowski, AppMink and
LTIAgg, which is the reason why LTIAgg fails for T > 21. Disag-
gregation time grows linearly for every approach except LTIAgg,
for which it is always 0.001s. Figure 7(c) and (d) shows results for
profit for batteries in the high penalties case (results for NB > 130
are estimated). It can be seen that for T = 6, UFOs can retain up
to 92.5% of the profits, while UOnDFO can only retain around
82% of the profits. Scalability with respect to time is also good: for
NB = 60, UFOs can capture 90.5% of the profits even for T = 18,
against the 88% obtained from UOnDFO. Figure 7(e) and (f) shows
results for costs for charging EVs in the high penalties case (results
for NEV > 120 are estimated). Similar to Section 4.1, we measure
retained flexibility as the ratio between the costs in the LTIAgg
case and the costs obtained by each baseline. With this premise, the
graphs show that in general UFOs are capable of retaining up to
86.8% of the total amount of flexibility even for long time horizons
and many devices, while the UOnDFO approach can capture up to
84.5% of the total flexibility.

In summary, the experiments show that: i) theoretical optimum
baselines fail for many loads and/or long time horizons, ii) UFOs
scale well with both number of loads and time horizon, and iii) UFOs
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can retain most of the profits after aggregation, outperforming the
baselines.

5 CONCLUSIONS AND FUTURE WORK

The purpose of this work is to propose a model for flexibility which i)
captures flexibility from different devices in an unified format; ii)
is scalable for long time horizons and aggregation of many loads;
iii) can capture most of the available flexibility; iv) takes into ac-
count uncertainty that affects flexibility when modeled for many
time units.In this paper, we propose Uncertain FlexOffers (UFOs),
which capture uncertainty while fulfilling i)-iii) like the previously
existing FlexOffer (FO) model. We show how UFOs can be gen-
erated, optimized and aggregated, and how UFOs can consider
dependency between energy consumption at different times. The
model is device-independent, which accomplishes property i). We
then compared UFOs to exact baselines and FOs, and showed how
the inclusion of uncertainty allows UFOs to outperform FOs, while
remaining still scalable. Flexibility operations (generation, optimiza-
tion and aggregation) are performed day-ahead: as energy markets
are adopting 15 minutes long time units, those operations have to be
performed for time horizons of 96 time units. Our results show that
UFOs can perform optimization in 5.27 seconds for 96 time units
(6 hours 15 minutes) ahead, while exact models need more than
29.05 hours for optimizing 25 time units in advance, which makes
them infeasible in a practical case: this achieves property ii). For a
charging battery, UFOs are able to model flexibility without losses;
when penalties are high, UFOs can capture up to 86.8% of the total
profits when penalties are high, compared to the 79.6% retained by
the uncertain baseline. For EVs, UFOs are able to retain up to 87.5%
of the total flexibility in the high penalties case, while the uncertain
baseline can only capture 74.4% of it. Furthermore, UFOs permit to
aggregate up to 6000 loads or for 96 time units, while exact models
are infeasible above 330 loads or 21 time units. When penalties
are high, aggregated UFOs retain more than 90.5% of the available
flexibility for batteries, against the 82% from the uncertain baseline.
For EVs, UFOs can retain 86.8% of the total amount of flexibility,
while the uncertain baseline can capture 84.5% of it. The fact that
UFOs can retain most of the available flexibility satisfies iii), and
uncertainty modelization makes them perform well in our primary
use case, i.e., when inaccurate approximations are penalized, which
accomplishes iv). Future work will focus on improving accuracy of
UFOs in capturing flexibility, and creating better analytic generation
methods for further improving their scalability.
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