

Aalborg Universitet

Baskarp Sand No. 15

data report 9301

Ibsen, Lars Bo; Bødker, Lars Bødker

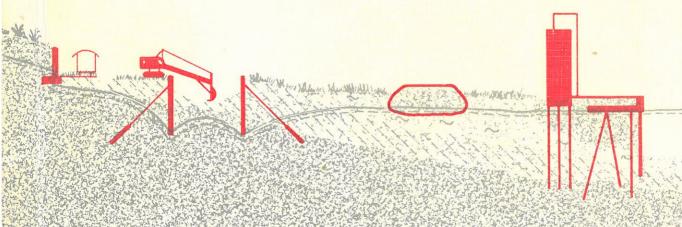
Publication date: 1994

Document Version Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):

Ibsen, L. B., & Bødker, L. B. (1994). Baskarp Sand No. 15: data report 9301. Geotechnical Engineering Group. Data Report No. 9401


General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal -

If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

LABORATORIET FOR FUNDERING INSTITUTTET FOR VAND JORD OG MILJØTEKNIK AALBORG UNIVERSITETSCENTER

DATA REPORT 9301

Baskarp Sand No 15

Lars Bo Ibsen & Lars Bødker August 1994

Tels1 Janouer 1161

DATA REPORT 9301

Baskarp Sand No 15

Lars Bo Ibsen & Lars Bødker August 1994

List of symbols.

Latin letters

```
= diameter of grain
         = 10% fractile
d_{10}
d_{50}
         = 50% fractile
         = 60% fractile
         = grain density
         = void ratio
         = void ratio before test
         = void ratio at failure
         = maximum void ratio
         = minimum void ratio
\boldsymbol{e}_{\text{min}}
         = density index
I_{D}
         = mean stress = 1/3(\sigma_1 + 2\sigma_3)
p
         = deviatoric stress = 1/2(\sigma_1 - \sigma_3)
 q
 S_w
          = saturation
```

= effective stress

Greek letters

```
\begin{array}{ll} \epsilon & = \operatorname{strain} \\ \epsilon_1 & = \operatorname{vertical strain} \\ \epsilon_v & = \operatorname{volumetric strain} = \epsilon_1 + 2\epsilon_3 \\ \epsilon_\rho & = \operatorname{shear strain} = 2/3(\epsilon_1 - \epsilon_3) \\ \\ \sigma & = \operatorname{stress} \\ \sigma_1 & = \operatorname{vertical stress} \\ \sigma_3 & = \operatorname{confining pressure} \\ \\ & = \operatorname{effective stress} \\ \\ \rangle & = \\ \\ \psi & = \\ \end{array}
```

Introduction.

The Soil Mechanics Laboratory has started performing tests with a new sand, Baskarp No 15. Baskarp No 15 is a graded sand from Sweden. The shapes of the largest grains are round, while the small grains have sharp edges. The main part of Baskarp No 15 is quarts, but it also contains feldspar and biotit. Mainly the sand will be used for tests concerning the development of the theory of building up pore pressure in sand, L.B Ibsen 1993.

For the classification of the sand the performed tests are :

- · Sieve test
- Grain density, d_s
- Maximum, e_{max} , and minimum, e_{min} , void ratio

To determine the strength parameters of Baskarp No 15 some drained and undrained triaxial tests have been performed using the Danish Triaxial Cell. The Danish Triaxial Cell prescribes smooth pressure heads and specimens with equal height and diameter. Three series with $I_{\rm D}$ equal to 0.01, 0.51 and 0.80 have been performed.

Classification of the sand.

From the sieve test following parameters have been determined /Hedegaard et al., 1993/:

- $d_{50} = 0.14 \text{ mm}$
- $d_{60}^{30}/d_{10} = 1.78$

The distribution of the grains is illustrated in figure 1.

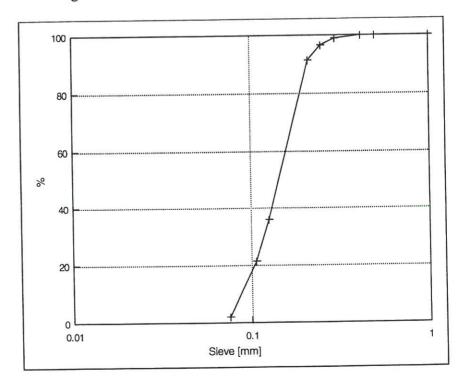


Figure 1 Distribution of grains for Baskarp No 15.

To make sure that the sand is dry, when it is kept in the laboratory, a test has been made to check the water content. It has been measured to 0.035 %, which means that the sand is dry. The grain density, maximum and minimum void ratios have been determined to /Hedegaard et al., 1993/:

$$d_s = 2.64$$
 $e_{max} = 0.858$
 $e_{min} = 0.549$

All the tests have been performed according to the standard procedures used in the laboratory.

Triaxial tests.

To investigate the strength parameters of the sand three series of drained and undrained triaxial tests have been performed. Together with strength parameters also deformation parameters have been investigated. The three series are performed with three different void ratios going from a very loose specimen to medium dense specimen.

Besides the strength parameters at failure also the parameters to describe the characteristic state will be investigated. This state is defined as $\delta \varepsilon_v = 0$, and is called the characteristic line, CL.

The tests are performed in the Soil Mechanics Laboratory, and the dimension of the cylindrical specimen is height = 70 mm and diameter = 70 mm. Creating homogeneous stress and deformation conditions in the specimen also smooth pressure heads are used.

Drained triaxial tests.

The performed drained tests are listed in table 1, where the testnumber, void ratio and stress level are typed.

Stress level, σ_{3} [kPa]	Void ratio, $e = 0.85$	Void ratio, $e = 0.70$	Void ratio, $e = 0.61$
5	9301_19	9301_26	9301_12
10	9301_17	9301_24	9301_11
20	9301_13	9301_25	9301_10
40	9301_16	9301_22	9301_04
80	9301_14	9301_20	9301_02
160	9301_15	9301_21	9301_03
320	9301_18	9301_27	9301_05-9301_07
640	9301_30	9301_28	9301_08
800	9301_31	9301_29	9301_32

Table 1 Testnumbers for the performed drained tests with void ratios from 0.61 to 0.85 and stress levels from 5 to 800 kPa.

The three tests with e=0.61 and σ_3 '=320 kPa are because of the specimen slipped out just before failure for the tests 9301_05 and 9301_06.

The main results from the performed tests are listed in the following tables. To each test series two tables are connected. One for values at failure and one for values at $\delta \varepsilon_v = 0$.

BASKARP No 15

Test serie	es CD, I _D =	=0.01							
Test No	e _o	e _c	S _w	σ ₃ '	p'	q'	$\epsilon_{_{1}}$	$\epsilon_{_{ m v}}$	$\epsilon_{ m p}$
				kPa	kPa	kPa	%	%	%
9301_19	0.85	0.88	0.96	5.1	13	22	16.69	-1.67	17.24
9301_17	0.86	0.89	1	10.1	23	39	16.57	-1.99	17.23
9301_13	0.85	0.86	1.02	20.2	41	62	12.02	-0.9	12.32
9301_16	0.85	0.88	0.94	40	79	110	17.38	-1.58	17.9
9301_14	0.84	0.86	1.06	80.1	148	202	15.96	-0.87	16.25
9301_15	0.85	0.85	0.99	160.1	280	360	14.58	-0.03	14.59
9301_18	0.85	0.85	0.98	320	554	701	14.38	0.17	14.32
9301_30	0.86	0.85	0.95	640.2	1,096	1,368	15.21	0.19	15.15
9301_31	0.85	0.82	1.01	800	1,383	1,748	17.21	1.19	16.92

Table 2.a Values at failure for Baskarp No 15 with I_D equal to 0.01.

Test seri	Test series CD, I _D =0.01			Values at $\delta \varepsilon_{\nu} = 0$						
Test No	e _o	e _f	S _w	σ₃' kPa	p' kPa	q' kPa	ε _ι %	ε _ν %	ε _ρ %	
9301_19	0.85	0.88	0.96	5.1	7	6	0.15	0.01	0.15	
9301_17	0.86	0.89	1	10.1	14	10	0.15	0.01	0.15	
9301_13	0.85	0.86	1.02	20.2	35	43	2.02	0.1	1.99	
9301_16	0.85	0.88	0.94	40	66	79	2.45	0.12	2.41	
9301_14	0.84	0.86	1.06	80.1	133	159	3.51	0.49	3.35	
9301_15	0.85	0.85	0.99	160.1	261	303	4.96	0.15	4.91	
9301_18	0.85	0.85	0.98	320	523	609	5.78	0.85	5.5	
9301_30	0.86	0.85	0.95	640.2	1,033	1,180	6.39	0.86	6.11	
9301_31	0.85	0.82	1.01	800	1,354	1,661	10.43	1.42	9.96	

Table 2.b Values at the characteristic state, CL, for Baskarp No 15 I_D equal to 0.01.

Test serie	es CD, I _D =	=0.51		Values at failure						
Test No	e _o	e _f	S _w	σ₃' kPa	p' kPa	q' kPa	ε _ι %	ε _ν %	ε _ρ %	
9301 26	0.7	0.75	0.99	5	14	28	5.62	-2.57	6.47	
9301_24	0.7	0.75	0.98	10.1	27	50	6.74	-3.41	7.87	
9301_25	0.7	0.75	0.99	20	46	78	7.11	-3.1	8.13	
9301_22	0.7	0.76	1.04	40.1	93	160	9.63	-3.52	10.79	
9301_20	0.71	0.74	0.97	80.1	164	253	6.68	-1.94	7.32	
9301_21	0.7	0.73	1.02	160	325	495	7.32	-1.89	7.94	
9301_27	0.7	0.73	0.94	320	645	974	6.54	-1.67	7.09	
9301_28	0.7	0.72		640.1	1,244	1,811	9	-1.53	9.5	
9301_29	0.7	0.72	1.01	800.2	1,529	2,188	9.18	-1.14	9.56	

Table 3.a Values at failure for Baskarp No 15 with I_D equal to 0.51.

Test serie	es CD, I _D =	=0.51		Values at $\delta \varepsilon_{\nu} = 0$							
Test No	e _o	e _f	S _w	σ₃' kPa	p' kPa	q' kPa	ε ₁	ε _ν %	ε _ρ %		
9301_26	0.7	0.75	0.99	5.1	8	7	0.14	0.02	0.13		
9301_24	0.7	0.75	0.98	10	13	10	0.07	0.01	0.07		
9301_25	0.7	0.75	0.99	20	30	29	0.31	0.04	0.3		
9301_22	0.7	0.76	1.04	40.1	68	83	0.5	0.08	0.47		
9301_20	0.71	0.74	0.97	80.1	133	158	0.94	0.15	0.89		
9301_21	0.7	0.73	1.02	160	267	322	1.26	0.22	1.19		
9301_27	0.7	0.73	0.94	320	530	629	1.06	0.15	1.01		
9301_28	0.7	0.72		640	1,062	1,267	2.5	0.3	2.4		
9301_29	0.7	0.72	1.01	799.9	1,339	1,618	3.05	0.38	2.92		

Table 3.b Values at the characteristic state, CL, for Baskarp No 15 I_D equal to 0.51.

Test serie	es CD, I _D =	0.80			V	alues at fail	ure		
Test No	e _o	e _f	S _w	o₁' kPa	p' kPa	q' kPa	ε ₁	ε _ν %	ε _ρ %
9301_12	0.62	0.68	1	5	20	45	5.02	-4.13	6.38
9301_11	0.61	0.66	1.05	10.1	32	64	4.27	-3.24	5.34
9301_10	0.61	0.67	1.08	20.1	54	102	5.16	-3.65	6.36
9301_04	0.61	0.66	1.07	39.9	103	189	5.6	-3.5	6.76
9301_02	0.61	0.63		100.3	237	412	6.16	-1.22	6.56
9301_03	0.61	0.66	0.99	160.7	371	632	5.97	-2.69	6.86
9301_05	0.61		1.11	320.2		1,218			
9301_06	0.62		0.96	320.2		1,218		s.	
9301_07	0.62	0.66	0.96	320.1	726	1,218	6.14	-2.53	6.97
9301_08	0.62	0.65	1.08	640.2	1,390	2,251	7.6	-2.21	8.33
9301_32	0.61	0.65	1.05	800.2	1,705	2,714	8.3	-1.97	8.95

Table 4.a Values at failure for Baskarp No 15 with I_D equal to 0.80.

0

Test serie	es CD, I _D =	=0.80				Values at	$\delta \epsilon_{v} = 0$		
Test No	e _o	e _f	S _w	σ₃' kPa	p' kPa	q' kPa	ε _ι %	ε _ν %	ε _ρ %
9301_12	0.62	0.68	1	5	10	14	0.07	0.01	0.07
9301_11	0.61	0.66	1.05	10	17	21	0.12	0.02	0.11
9301_10	0.61	0.67	1.08	20	34	42	0.16	0.03	0.15
9301_04	0.61	0.67	1.07	39.9	72	100	0.34	0.05	0.32
9301_02	0.61	0.63		100.1	199	296	1.1	0.61	0.9
9301_03	0.61	0.66	0.99	160.4	278	352	0.79	0.13	0.75
9301_05	0.61		1.11	320.2	553	697	1.34	0.22	1.27
9301_06	0.62		0.96	320.2	555	704	1.03	0.12	0.99
9301_07	0.62	0.66	0.96	320	547	682	1	0.12	0.96
9301_08	0.62	0.65	1.08	640.1	1,079	1,316	2.14	0.23	2.06
9301_32	0.61	0.65	1.05	800.1	1,371	1,712	2.62	0.38	2.49

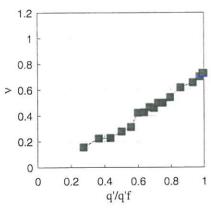
Table 4.b Values at the characteristic state, CL, for Baskarp No 15 I_D equal to 0.80.


The tables 2.a, 2.b, 3.a, 3.b, 4.a and 4.b will form the basis of the interpretation of the parameters to describe the strength of Baskarp No 15.

Undrained triaxial tests, $CU_{u=0}$.

The main results from the performed undrained tests are listed in the following table. The tests are performed as $CU_{u=0}$ tests that mean the tests are run with constant volume.

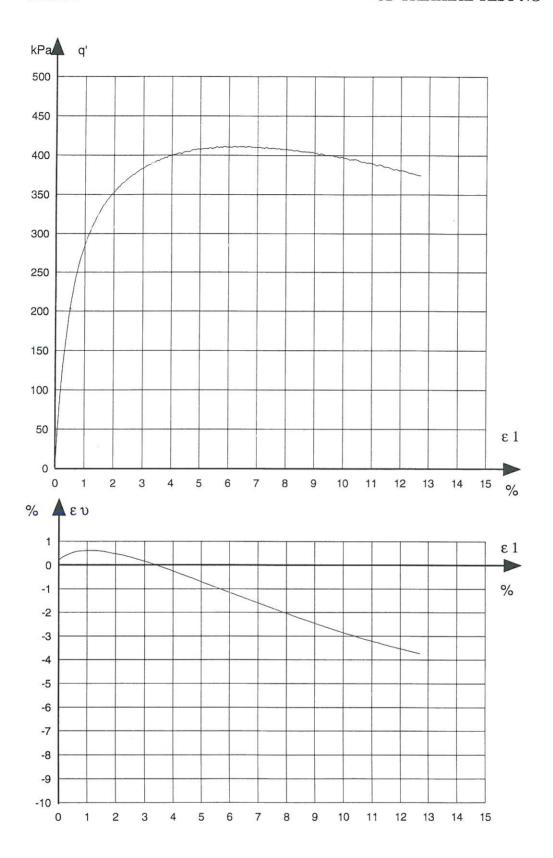
Test series CU _{u=0}			Values at start			Values for minimum of σ_3 '					
Test No	e _o	S _w	σ ₃ ' kPa	p' kPa	q' k P a	σ ₃ ' kPa	p' kPa	q' kPa	ε ₁ %	ε _q %	ε _ν
9401_03	0.61	1.19	100	99.8	0.7	64.3	110.7	139.2	0.32	0.32	0
9401_01	0.7	0.96	10	10.1	0.3	7.2	10.3	9.4	0.07	0.07	0
9401_02	0.85	1	10	10.2	0.3	5.9	9.8	11.6	0.92	0.92	0


Table 5 Characteristic values to describe the three undrained triaxial tests, $CU_{u=0}$

Description of soil			Before test	At failure
Baskarp No 15		Water content % Grain density	2.64	627
Calibration file	Date	Void ratio	0.60 %	0. 669-
		Saturation		
kal4	22.10.93	Dimension H mm	71.5	
		D mm	69.7	

TEST-PROGRAM	Drained compression.		
	1. Isotropic compression.	σ3	100-100 kPa
CD - Triaxial test.		ε1	0.000 %
free ends		εν	0.048 %
	2.Drained compression.		
	Deformation ra	ate:	6.1 % ph

		Values at	failure	Values for	$\Delta \epsilon \nu = 0$
Deviator stress	q'	411.56	kPa	308.10	kPa
Mean normal stress	p'	237.39	kPa	202.90	kPa
Confining pressures	σ3	100.20	kPa	100.20	kPa
Vertical strain	ε1	6.16	%	1.24	%
Volumetric strain	εν	-1.22	%	0.61	%

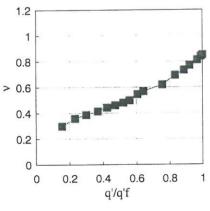


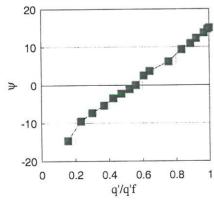
20					
10					-
0	Jan San San San San San San San San San S	10			-
> -10					
-20		p=0			
-30		/			
-40]
0	0.2	0.4 q'/d	0.6 q'f	8.0	1

p'	ε1	εν
100.31	0.00	0.00
123.63	0.11	0.31
137.66	0.20	0.37
150.06	0.30	0.43
159.53	0.40	0.48
168.66	0.51	0.53
176.37	0.61	0.57
182.12	0.71	0.58
187.21	0.81	0.60
191.84	0.91	0.60
195.52	1.00	0.61
198.86	1.10	0.61
202.90	1.24	0.61
209.22	1.50	0.59
217.88	2.00	0.47
228.02	3.01	0.16
233.73	4.01	-0.25
236.10	5.02	-0.70
237.08	6.02	-1.15
237.39	6.16	-1.22
236.13	8.01	-2.04
232.67	10.01	-2.86
227.24	12.00	-3.53
224.89	12.70	-3.74
	123.63 137.66 150.06 159.53 168.66 176.37 182.12 187.21 191.84 195.52 198.86 202.90 209.22 217.88 228.02 233.73 236.10 237.08 237.39 236.13 232.67 227.24	100.31 0.00 123.63 0.11 137.66 0.20 150.06 0.30 159.53 0.40 168.66 0.51 176.37 0.61 182.12 0.71 187.21 0.81 191.84 0.91 195.52 1.00 198.86 1.10 202.90 1.24 209.22 1.50 217.88 2.00 228.02 3.01 233.73 4.01 236.10 5.02 237.08 6.02 237.39 6.16 236.13 8.01 227.24 12.00

Job:	Encl. No
Baskarp No 15	
Exc:	Check:
LB	LB

Remark:			
Preparation	[%]	$\Delta \epsilon 1 =$	-0.094
~ - · P	F 3		

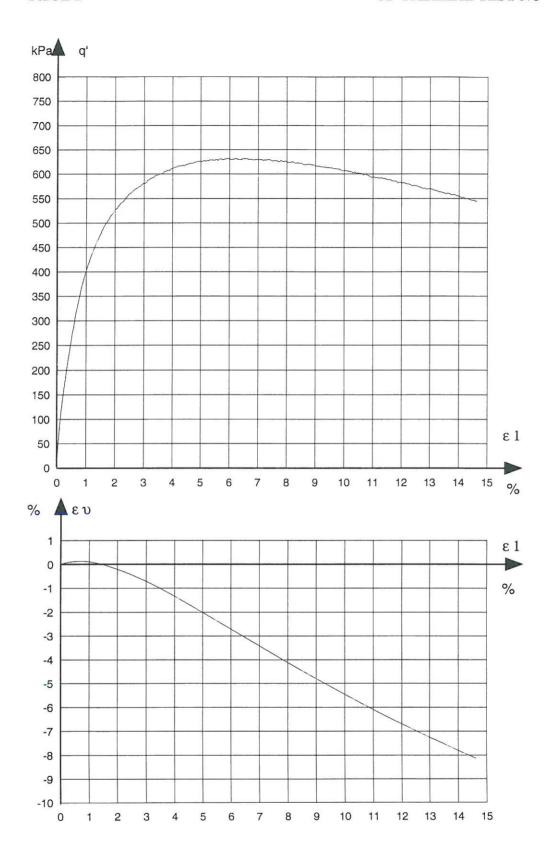



Job:	Encl. No
Baskarp No 15	
Exc:	Check:
LB	LB

Description of soil Baskarp No 15		Water content % Grain density	Before test 22.9 2.64	At failure 0,655 0.698
Calibration file	Date	Void ratio Saturation	0.612 0.99	0.698
kal4	25.10.93	Dimension H mm	71.5	
		D mm	69.7	

TEST-PROGRAM	Drained compression.	2	100 100 LPa
	1. Isotropic compression.	σ3	100-160 kPa
CD - Triaxial test.		ε1	0.033 %
free ends		εν	0.015 %
MODEL MASSAC STORMS SECTION	2.Drained compression.		
	Deformation ra	ate:	6.2 % ph

		Values at	failure	Values for	$\Delta \varepsilon \nu = 0$
Deviator stress	g'	631.62	kPa	352.42	kPa
Mean normal stress	, מ	371.24	kPa	277.87	kPa
Confining pressures	σ3	160.70	kPa	160.40	kPa
Vertical strain	ε1	5.97	%	0.79	%
Volumetric strain	εv	-2.69	%	0.13	%

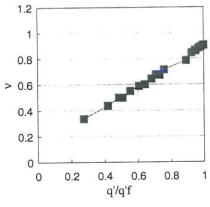


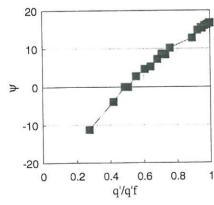
q'	p'	ε1	εν
0.65	160.42	0.00	0.00
97.19	192.60	0.11	0.04
146.17	208.92	0.20	0.07
189.26	223.29	0.30	0.09
232.91	237.94	0.40	0.11
268.11	249.57	0.50	0.12
298.74	259.78	0.60	0.13
329.60	270.17	0.70	0.13
352.42	277.87	0.79	0.13
382.73	288.18	0.91	0.12
405.00	295.70	1.01	0.11
477.00	319.60	1.50	-0.01
526.12	335.97	2.00	-0.21
560.28	347.46	2.52	-0.45
581.78	354.53	3.02	-0.72
611.40	364.40	4.02	-1.34
625.45	369.08	5.01	-2.02
631.62	371.24	5.97	-2.69
630.50	370.87	6.02	-2.72
623.86	368.55	8.02	-4.13
605.93	362.68	10.01	-5.47
582.04	354.61	11.99	-6.69
553.64	345.15	14.03	-7.81
544.81	342.20	14.63	-8.13

Job:	Encl. No
Baskarp No 15	
Exc:	Check:
LB	LB

Remark: Preparation [%] $\Delta \epsilon 1 = 0.009$

Job:	Encl. No
Baskarp No 15	
Exc:	Check:
LB	LB


Description of soil			Before test	At failure
Baskarp No 15		Water content %	24.7 2.64	0 665
		Grain density	A STATE OF THE STA	0.665
Calibration file	Date	Void ratio	0.608	-0.70 8
		Saturation	1.07	
kal4	26.10.93	Dimension H mm	71.5	
	10-11-00 Eps. 9 000 1000 97 9800 90 1000 1000	D mm	69.7	


TEST-PROGRAM CD - Triaxial test. free ends	Drained compression. 1. Isotropic compression.	σ3 ε1 εν	100-40 kPa -0.067 % -0.180 %
	2.Drained compression.		
	Deformation ra	ate:	7.9 % ph

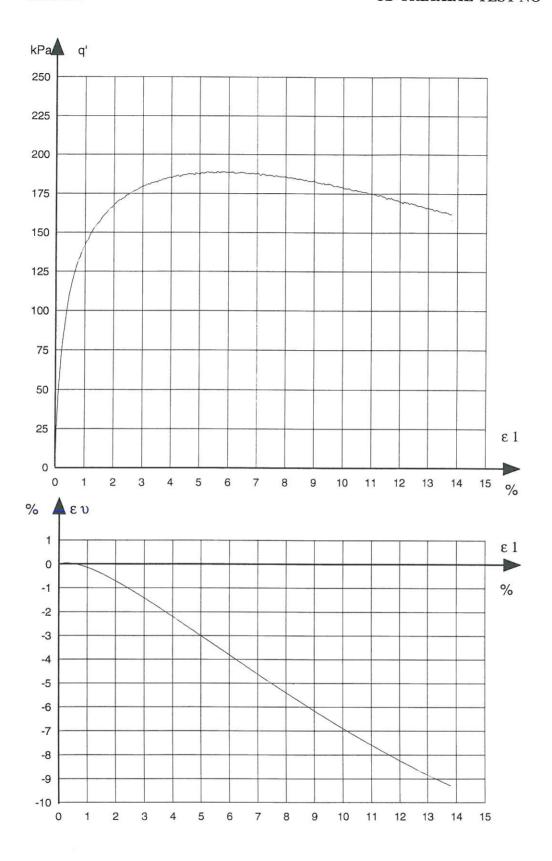
		Values at	failure	Values for	$\Delta \epsilon \nu = 0$
Deviator stress	a'	188.76	kPa	95.59	kPa
Mean normal stress	p'	102.82	kPa	71.76	kPa
Confining pressures	σ3	39.90	kPa	39.90	kPa
Vertical strain	ε1	5.60	%	0.34	%
Volumetric strain	٤٧	-3.49	%	0.05	%

q'

1.29

1.29	40.55	0.00	0.00
51.61	57.10	0.10	0.03
78.95	66.22	0.22	0.05
91.76	70.49	0.31	0.05
95.59	71.76	0.34	0.05
104.52	74.74	0.41	0.04
114.35	78.02	0.51	0.02
120.97	80.22	0.60	0.00
128.80	82.83	0.71	-0.03
133.74	84.48	0.82	-0.07
138.06	85.92	0.90	-0.10
142.94	87.55	1.01	-0.14
168.29	96.00	2.03	-0.72
179.63	99.78	3.02	-1.43
184.93	101.54	4.01	-2.21
188.76	102.82	5.60	-3.49
188.48	102.73	6.02	-3.83
187.58	102.43	7.03	-4.64
185.36	101.69	8.02	-5.41
182.55	100.75	9.03	-6.18
178.55	99.42	10.01	-6.90
174.66	98.12	11.01	-7.59
169.76	96.49	12.03	-8.25
161.71	93.80	13.81	-9.28

p' 40.33 ε1

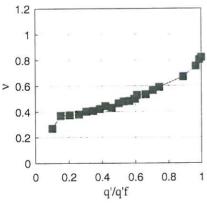

0.00

εν

0.00

Job:	Encl. No
Baskarp No 15	
Exc:	Check:
LB	LB

Remark: Preparation	δε1 =	-0.017
9-00°C		

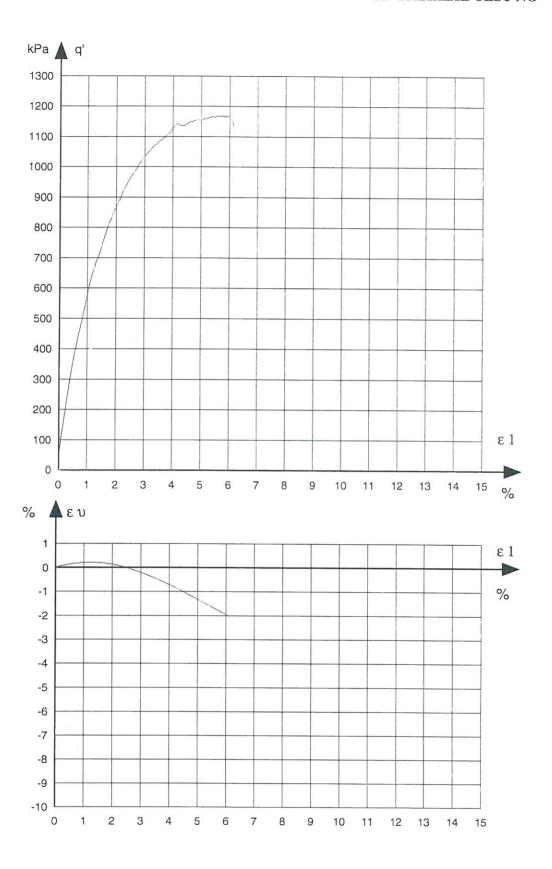


Job:	Encl. No
Baskarp No 15	
Exc:	Check:
LB	LB

Description of soil			Before test	At failure
Baskarp No 15		Water content %	25.6	
		Grain density	2.64	0,637
Calibration file	Date	Void ratio	0.608	0.679 -
		Saturation	1.11	
kal4	28.10.93	Dimension H mm	71.5	
		D mm	69.7	0

TEST-PROGRAM	Drained compression.		
	1. Isotropic compression.	σ3	100-320 kPa
CD - Triaxial test.		ε1	0.112 %
free ends		εν	0.352 %
	2.Drained compression.		
	Deformation ra	ate:	5.5 % ph

0		Values at	failure	Values for	$\Delta \varepsilon \nu = 0$
Deviator stress	q'	1,168.82	kPa	696.91	kPa
Mean normal stress	p'	709.81	kPa	552.50	kPa
Confining pressures	σ3	320.20	kPa	320.20	kPa
Vertical strain	ε1	5.78	%	1.34	%
Volumetric strain	εν	-1.82	%	0.22	%

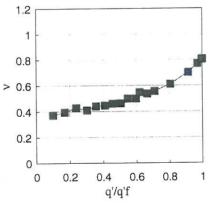


20					
10		12 Se			-
> 0				_	
-10 -					
-20	•				
0	0.2	0.4 q'/d	0.6 q'f	8.0	1

q'	p'	ε1	εν
1.30	320.53	0.00	0.00
116.55	358.95	0.10	0.05
175.99	378.26	0.20	0.07
238.24	399.51	0.30	0.10
302.00	420.77	0.41	0.12
354.38	438.23	0.51	0.14
401.83	454.04	0.60	0.16
448.88	469.73	0.70	0.18
489.05	483.22	0.80	0.19
533.95	498.08	0.90	0.20
583.22	514.51	1.01	0.21
618.04	526.21	1.10	0.21
657.14	539.15	1.21	0.22
691.95	550.75	1.32	0.22
696.91	552.50	1.34	0.22
710.53	556.94	1.40	0.21
772.78	577.79	1.61	0.20
823.02	594.44	1.80	0.17
868.39	609.56	2.01	0.14
1038.18	666.26	3.02	-0.21
1128.77	700.06	4.00	-0.71
1153.78	704.79	5.01	-1.33
1168.82	709.81	5.78	-1.82
1130.42	696.91	6.14	-2.03

Job:	Encl. No	
Baskarp No 15		
Exc:	Check:	
LB	LB	

Remark: Preparation	δε1 =	-0.009
Specimen slip	ped out.	

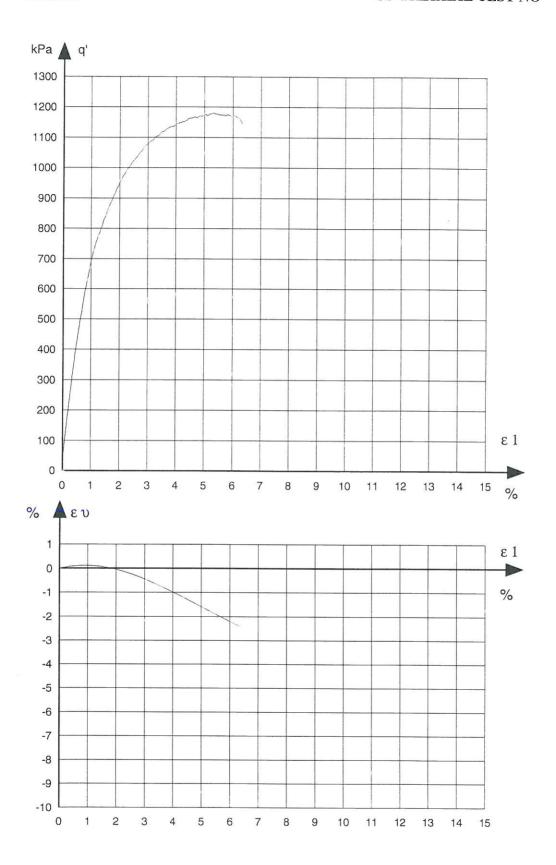


Job:	Encl. No
Baskarp No 15	
Exc:	Check:
LB	LB

Description of soil Baskarp No 15		Water content % Grain density	Before test 22.5 2.64	At failure
Calibration file	Date	Void ratio	0.618 0.96	0.689
kal4	29.10.93	Saturation Dimension H mm	71.5	
		D mm	69.7	

TEST-PROGRAM	Drained compression.		
TEST THOUSANT	1. Isotropic compression.	σ3	100-320 kPa
CD - Triaxial test.	1. Isotropio compressioni	ε1	0.048 %
free ends		εν	0.330 %
	2.Drained compression.		
	Deformation ra	ate:	5.6 % ph

	1	Values at	failure	Values for	$\Delta \epsilon \nu = 0$
Deviator stress	g'	1,180.61	kPa	704.47	kPa
Mean normal stress	p'	713.84	kPa	555.02	kPa
Confining pressures	σ3	320.30	kPa	320.20	kPa
Vertical strain	ε1	5.29	%	1.03	%
Volumetric strain	εν	-1.77	%	0.12	%

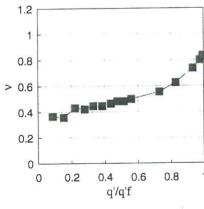


	15			4,2		9
	10					
_	5			ــــــــــــــــــــــــــــــــــــــ	_ P(
>	0 -			7-		
	-5	, ¹² ,	-			
	-10		1	1		
	0	0.2	0.4 q'/d	0.6 q'f	8.0	1

q'	p'	ε1	εν
0.32	320.31	0.00	0.00
116.58	359.06	0.10	0.03
199.64	386.65	0.20	0.05
280.28	413.63	0.31	0.06
355.30	438.63	0.41	0.08
420.20	460.17	0.50	0.09
483.66	481.42	0.60	0.10
539.61	499.97	0.70	0.11
596.39	519.00	0.80	0.12
646.55	535.72	0.91	0.12
704.47	555.02	1.03	0.12
731.15	563.92	1.11	0.11
784.39	581.76	1.30	0.10
836.65	599.18	1.50	0.07
950.09	637.00	2.01	-0.04
1079.22	680.04	3.01	-0.45
1145.54	702.15	4.02	-1.00
1175.10	712.00	5.02	-1.60
1180.61	713.84	5.29	-1.77
1168.32	709.74	6.00	-2.20
1143.14	701.35	6.33	-2.39
		1	3

Job:	Encl. No
Baskarp No 15	
Exc:	Check:
LB	LB

Remark: Preparation	$\delta\epsilon 1 =$	-0.039
Specimen slip	ped out.	

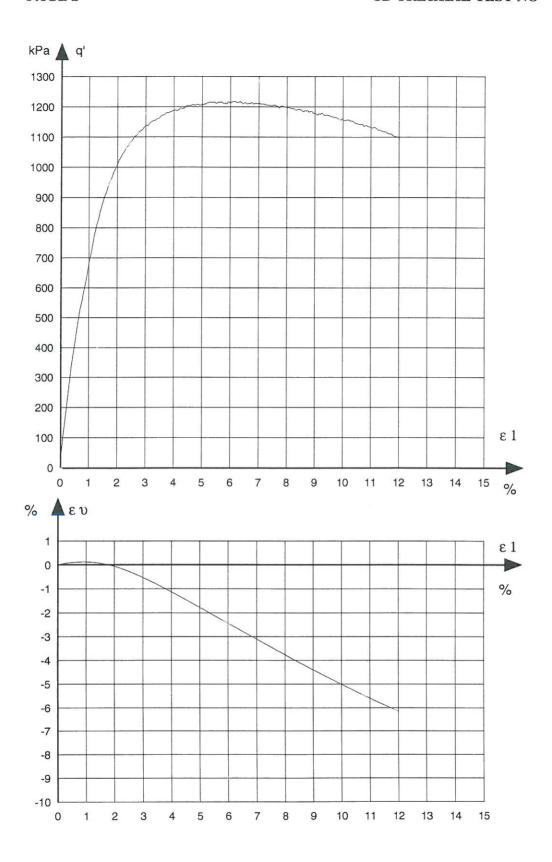


Job:	Encl. No
Baskarp No 15	
Exc:	Check:
LB	LB

Description of soil Baskarp No 15		Water content % Grain density	Before test 22.4 2.64	At failure 0,651 0.700
Calibration file	Date	Void ratio	0.616	0.700
		Saturation	0.96	
kal4	01.11.93	Dimension H mm	71.5	
		D mm	69.7	

TEST-PROGRAM	Drained compression. 1. Isotropic compression.	σ3	100-320 kPa
CD - Triaxial test.	1. 250 a pri	ε1	0.026 %
free ends		εν	0.345 %
	2.Drained compression.		
	Deformation ra	ate:	4.8 % ph

		Values at	failure	Values for	$\Delta \varepsilon \nu = 0$
Deviator stress	g'	1,217.86	kPa	681.54	kPa
Mean normal stress	p'	726.05	kPa	547.18	kPa
Confining pressures	σ3	320.10	kPa	320.00	kPa
Vertical strain	ε1	6.14	%	1.00	%
Volumetric strain	εν	-2.53	%	0.12	%

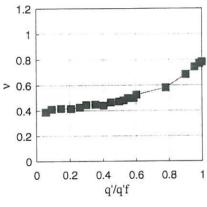


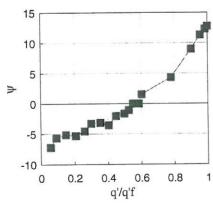
20					
10					
> 0	H-				-
-10	H.				
-20 0	0.2	0.4	0.6	0.8	1
		q'/d	q'f		

q'	p'	ε1	εν
0.32	320.01	0.00	0.00
105.61	355.20	0.10	0.03
185.49	381.83	0.20	0.05
268.44	409.38	0.30	0.07
339.01	433.00	0.40	0.08
401.02	453.67	0.50	0.10
466.79	475.60	0.60	0.11
531.11	496.94	0.70	0.11
578.25	512.65	0.80	0.12
625.60	528.53	0.90	0.12
681.54	547.18	1.00	0.12
887.96	616.09	1.50	0.07
1009.05	656.45	2.00	-0.06
1136.54	698.95	2.99	-0.52
1188.72	716.24	4.00	-1.13
1208.57	722.96	5.01	-1.79
1215.13	725.14	6.00	-2.44
1217.86	726.05	6.14	-2.53
1210.74	723.68	7.00	-3.10
1198.80	719.70	8.00	-3.76
1156.51	705.60	10.01	-5.02
1096.15	685.48	11.99	-6.14
1088.75	683.02	12.02	-6.15

Job:	Encl. No
Baskarp No 15	
Exc:	Check:
LB	LB

Remark:		
Preparation	$\delta \epsilon 1 =$	-0.098

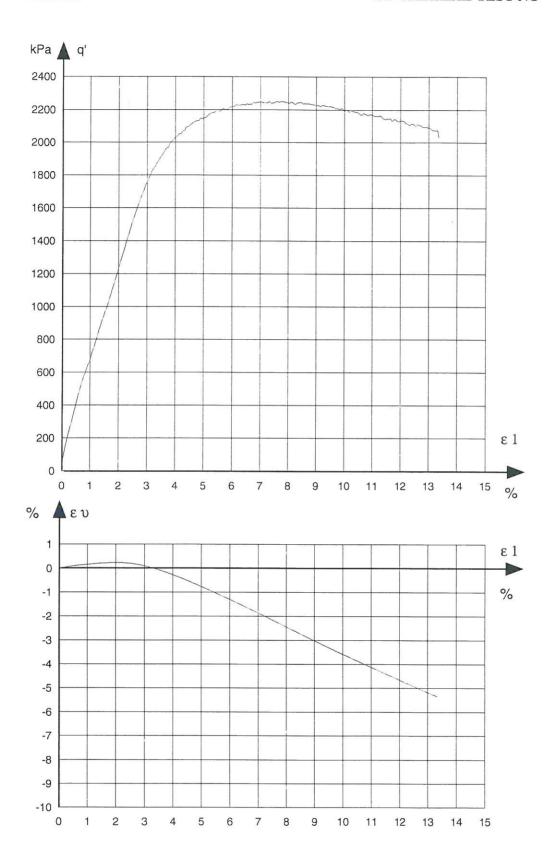



Job:	Encl. No
Baskarp No 15	
Exc:	Check:
LB	LB

Description of soil			Before test	At failure
Baskarp No 15		Water content %	25.3	
		Grain density	2.64	0,652 0.695
Calibration file	Date	Void ratio	0.617	0.695
		Saturation	1.08	
kal4	02.11.93	Dimension H mm	71.5	
		D mm	69.7	

TEST DDOGDAM	Drained compression.		
1E31-FROGRAM	1. Isotropic compression.	σ3	100-640 kPa
CD - Triaxial test.	1. Isotropie compression	ε1	0.240 %
free ends		εν	0.597 %
	2.Drained compression.		
	Deformation ra	ate:	5.6 % ph

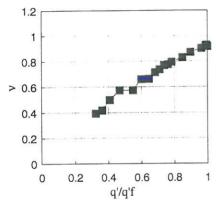
		Values at	failure	Values for	$\Delta \varepsilon \nu = 0$
Deviator stress	g'	2,250.60	kPa	1315.95	kPa
Mean normal stress	מ'	1,390.40	kPa	1078.75	kPa
Confining pressures	σ3	640.20	kPa	640.10	kPa
Vertical strain	ε1	7.60	%	2.14	%
Volumetric strain	εν	-2.21	%	0.23	%



q'	p'	ε 1	εν
2.59	640.96	0.00	0.00
125.41	681.90	0.10	0.02
202.37	707.56	0.20	0.04
331.65	750.75	0.40	0.07
465.69	795.33	0.60	0.11
583.12	834.47	0.80	0.14
671.77	864.02	1.00	0.16
794.70	905.10	1.21	0.18
905.51	941.94	1.40	0.20
1005.37	975.22	1.61	0.22
1119.96	1013.52	1.81	0.23
1178.79	1033.03	1.91	0.23
1236.48	1052.26	2.01	0.23
1315.95	1078.75	2.14	0.23
1353.45	1091.35	2.21	0.23
1756.11	1225.57	3.00	0.10
2028.16	1316.25	4.01	-0.28
2150.98	1357.19	5.01	-0.77
2216.28	1378.96	6.02	-1.31
2249.08	1389.79	7.01	-1.87
2250.60	1390.40	7.60	-2.21
2225.89	1382.16	9.01	-3.02
2168.90	1363.17	11.01	-4.13
2028.86	1316.49	13.34	-5.34

Job:	Encl. No
Baskarp No 15	
Exc:	Check:
LB	LB

Remark:			
Preparation	[%]	$\Delta \epsilon 1 =$	-0.049

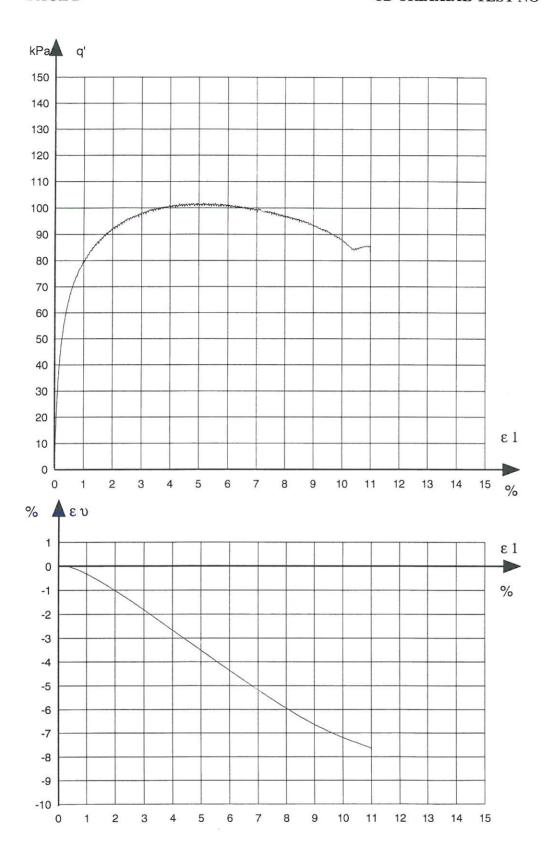


Job:	Encl. No	
Baskarp No 15		
Exc:	Check:	
LB	LB	

Description of soil			Before test	At failure
Baskarp No 15		Water content %	25	
-		Grain density	2.64	0,667
Calibration file	Date	Void ratio	0.6	0.710
		Saturation	1.08	
kal3	15.11.93	Dimension H mm	71.5	
		D mm	69.7	

TEST-PROGRAM	Drained compression.		
	1. Isotropic compression.	σ3	100-20 kPa
CD - Triaxial test.	•	ε1	-0.089 %
free ends		εν	-0.231 %
	2.Drained compression.		
	Deformation rate:		4.2 % ph

		Values at	failure	Values for	$\Delta \epsilon \nu = 0$
Deviator stress	g'	101.90	kPa	41.49	kPa
Mean normal stress	p'	54.07	kPa	33.83	kPa
Confining pressures	σ3	20.10	kPa	20.00	kPa
Vertical strain	ε1	5.16	%	0.16	%
Volumetric strain	εν	-3.65	%	0.03	%

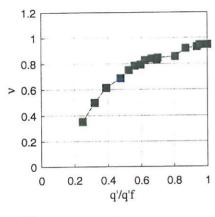


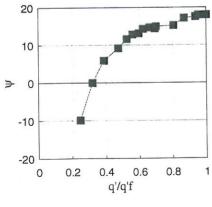
20					
10					
0					
-10	0.2	0.4 q'/d	0.6 q'f	0.8	1

q'	p'	ε1	εν
0.38	20.13	0.00	0.00
32.91	30.97	0.10	0.02
36.95	32.32	0.13	0.03
41.49	33.83	0.16	0.03
47.66	35.89	0.21	0.02
55.82	38.71	0.31	0.00
60.92	40.41	0.40	-0.03
65.63	41.98	0.50	-0.06
69.44	43.25	0.59	-0.10
72.22	44.17	0.69	-0.15
75.11	45.14	0.80	-0.21
77.50	45.83	0.90	-0.26
79.74	46.68	1.01	-0.32
86.40	48.90	1.51	-0.65
91.44	50.58	2.00	-1.02
98.10	52.80	3.01	-1.83
100.79	53.60	4.01	-2.67
101.25	53.85	5.01	-3.52
101.90	54.07	5.16	-3.65
100.63	53.54	6.01	-4.37
99.48	53.26	7.00	-5.18
97.15	52.48	8.00	-5.95
92.76	50.92	9.00	-6.64
83.30	47.77	10.99	-7.63

Job:	Encl. No
Baskarp No 15	
Exc:	Check:
LB	LB

Remark: Preparation [%]	Δε1 =	-0.025
Specimen slipped	out.	

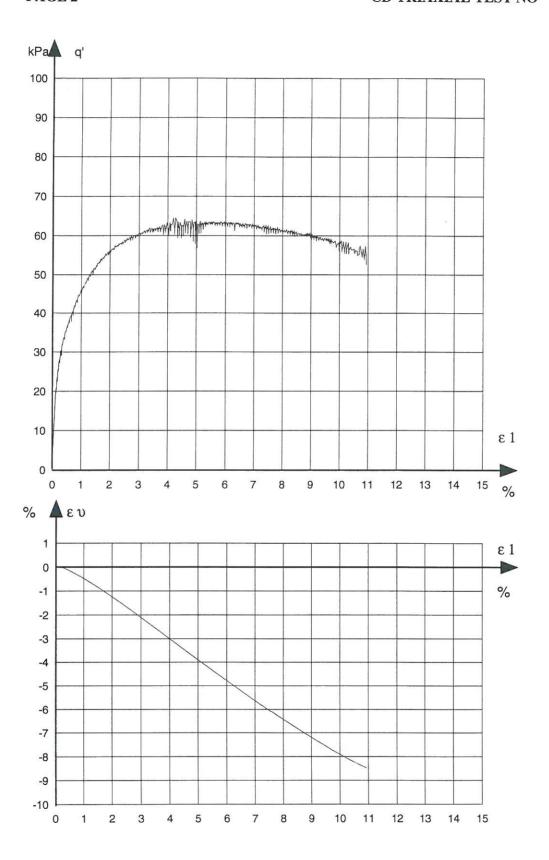



Job:	Encl. No
Baskarp No 15	
Exc:	Check:
LB	LB

Description of soil			Before test	At failure
Baskarp No 15		Water content %	24.3	./-
		Grain density	2.64	0,660
Calibration file	Date	Void ratio	0.608	0.703
		Saturation	1.05	
kal3	19.11.93	Dimension H mm	71.5	
1		D mm	69.7	

TEST-PROGRAM	Drained compression.		
	1. Isotropic compression.	σ3	100-10 kPa
CD - Triaxial test.		ε1	-0.129 %
free ends		εν	-0.312 %
	2.Drained compression.		
	Deformation ra	ate:	4.2 % ph

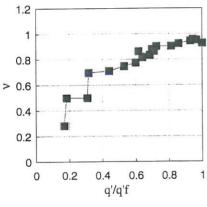
		Values at	failure	Values for	$\Delta \epsilon \nu = 0$
Deviator stress	q'	64.47	kPa	20.62	kPa
Mean normal stress	מ'	31.59	kPa	16.87	kPa
Confining pressures	σ3	10.10	kPa	10.00	kPa
Vertical strain	ε1	4.27	%	0.12	%
Volumetric strain	εν	-3.24	%	0.02	%

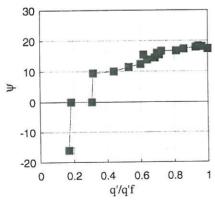


q'	p'	ε1	εν
0.38	10.13	0.00	0.00
15.95	15.32	0.08	0.02
20.62	16.87	0.12	0.02
25.02	18.44	0.20	0.00
30.54	20.28	0.30	-0.04
33.77	21.36	0.40	-0.09
36.11	22.14	0.49	-0.14
38.44	22.91	0.59	-0.20
40.12	23.47	0.71	-0.27
42.69	24.33	0.80	-0.34
44.74	25.01	0.90	-0.40
45.16	25.05	1.00	-0.47
51.95	27.42	1.51	-0.83
56.02	28.77	2.00	-1.24
60.39	30.23	3.00	-2.11
61.47	30.49	4.02	-3.02
64.47	31.59	4.27	-3.24
61.46	30.49	5.02	-3.92
63.51	31.17	6.00	-4.78
62.65	30.98	7.01	-5.64
60.98	30.33	8.00	-6.43
59.78	30.03	9.00	-7.20
58.95	29.75	10.00	-7.90
52.51	27.50	10.95	-8.48

Job:	Encl. No	
Baskarp No 15		
Exc:	Check:	
LB	LB	

Remark: Preparation	[%]	Δε1 =	-0.008
Specimen sl	ipped	out.	

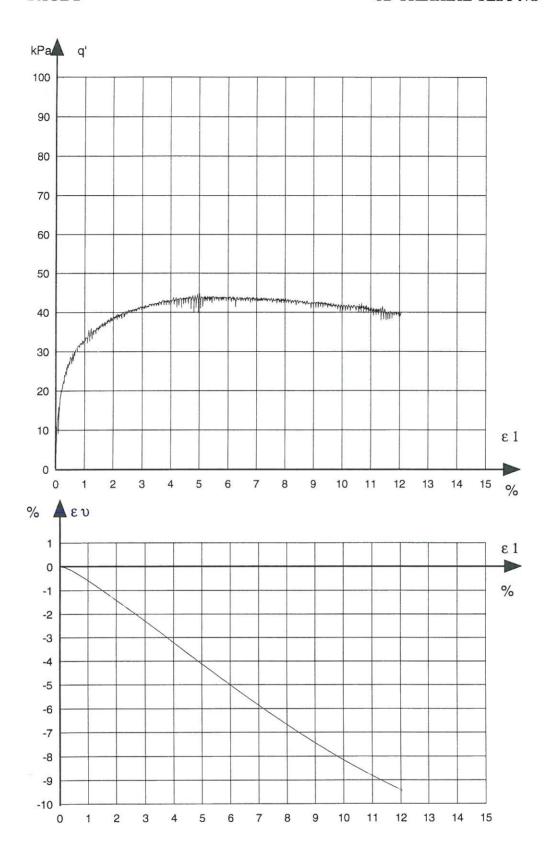



Job:	Encl. No
Baskarp No 15	
Exc:	Check:
LB	LB

Description of soil	***************************************		Before test	At failure
Baskarp No 15		Water content % Grain density	23.2 2.64	0 683
Calibration file	Date	Void ratio	0.616	0,683 0.726
		Saturation	1	
kal3	30.11.93	Dimension H mm	71.5	
	Personal Control of the Control of t	D mm	69.7	

TEST-PROGRAM	Drained compression.		
12011110	1. Isotropic compression.	σ3	100-5 kPa
CD - Triaxial test.		ε1	-0.161 %
free ends		εν	-0.220 %
	2.Drained compression.		
	Deformation ra	ate:	4.3 % ph

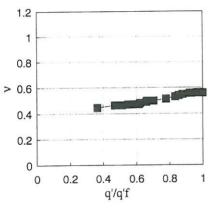
		Values at	failure	Values for	$\Delta \varepsilon \nu = 0$
Deviator stress	q'	44.88	kPa	13.81	kPa
Mean normal stress	p'	19.96	kPa	9.60	kPa
Confining pressures	σ3	5.00	kPa	5.00	kPa
Vertical strain	ε1	5.02	%	0.07	%
Volumetric strain	εν	-4.13	%	0.01	%

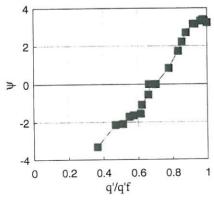


q'	p'	ε1	εν
0.76	5.35	0.00	0.00
7.61	7.54	0.03	0.01
8.24	7.75	0.03	0.01
13.81	9.60	0.07	0.01
14.19	9.73	0.10	0.00
19.73	11.58	0.19	-0.04
23.74	12.91	0.30	-0.10
26.86	13.95	0.40	-0.15
28.70	14.57	0.50	-0.21
27.65	14.22	0.60	-0.28
30.73	15.24	0.71	-0.36
31.30	15.43	0.82	-0.44
31.88	15.63	0.90	-0.50
32.45	15.82	0.99	-0.57
36.48	17.16	1.50	-0.99
38.47	17.82	2.01	-1.41
41.71	18.90	3.00	-2.30
42.33	19.11	4.01	-3.22
43.28	19.43	4.98	-4.10
44.88	19.96	5.02	-4.13
43.34	19.45	7.00	-5.86
41.03	18.68	9.00	-7.44
39.31	18.10	11.00	-8.82
39.95	18.32	12.06	-9.44

Job:	Encl. No
Baskarp No 15	
Exc:	Check:
LB	LB

Remark: Preparation	[%]	Δε1 =	0.000
No measure	ment d	luring pre	paration

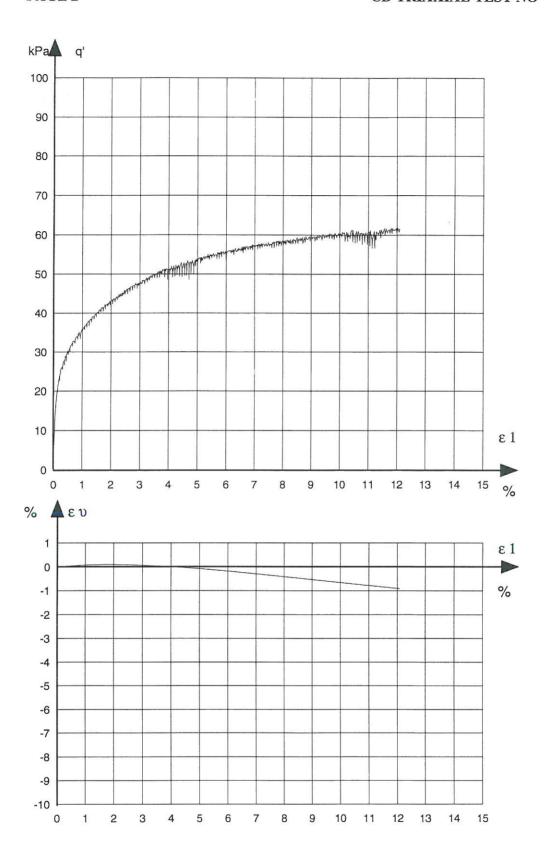



Job:	Encl. No
Baskarp No 15	
Exc:	Check:
LB	LB

Description of soil Baskarp No 15		Water content % Grain density	Before test 32.8 2.64	At failure
Calibration file	Date	Void ratio	0.846	0.911
	Star Charles Star Hollowers	Saturation	1.02	
kal3	06.12.93	Dimension H mm	71.5	
	***************************************	D mm	69.7	The control of the second control of the control of

TEST-PROGRAM	Drained compression.		
	1. Isotropic compression.	σ3	100-20 kPa
CD - Triaxial test.	2.2	ε1	-0.117 %
free ends		εν	-0.227 %
Tree chas	2.Drained compression.		
	Deformation ra	ate:	4.8 % ph

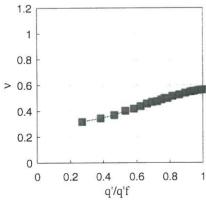
		Values at	failure	Values for	$\Delta \varepsilon \nu = 0$
Deviator stress	q'	61.77	kPa	43.37	kPa
Mean normal stress	ֶם 'מ	40.79	kPa	34.66	kPa
Confining pressures	σ3	20.20	kPa	20.20	kPa
Vertical strain	ε1	12.02	%	2.02	%
Volumetric strain	εν	-0.90	%	0.10	%

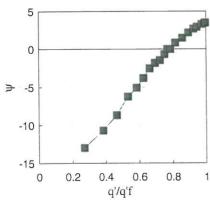


	1	c 1	εν
g'	p'	ε1	
2.15	21.02	0.00	0.00
22.51	27.70	0.20	0.02
29.04	29.88	0.40	0.04
31.63	30.74	0.61	0.05
33.96	31.52	0.80	0.06
35.40	32.00	1.00	0.07
37.96	32.85	1.21	0.08
38.39	33.00	1.40	0.09
40.69	33.76	1.60	0.10
41.52	34.04	1.70	0.10
40.97	33.86	1.81	0.10
41.93	34.18	1.90	0.10
43.37	34.66	2.02	0.10
48.09	36.23	3.00	0.07
51.46	37.35	4.00	0.00
52.81	37.80	5.00	-0.08
54.22	38.27	6.00	-0.18
56.87	39.16	7.01	-0.29
57.47	39.36	8.01	-0.41
59.42	40.01	9.00	-0.53
60.15	40.25	10.02	-0.66
60.74	40.45	11.03	-0.78
61.77	40.79	12.02	-0.90
61.61	40.74	12.09	-0.91

Job: Baskarp No 15	Encl. No	
Exc:	Check:	
LB	LB	

Remark: Preparation [%] $\Delta \epsilon 1 = 0.329$ Preparation at 20 kPa vacuum.

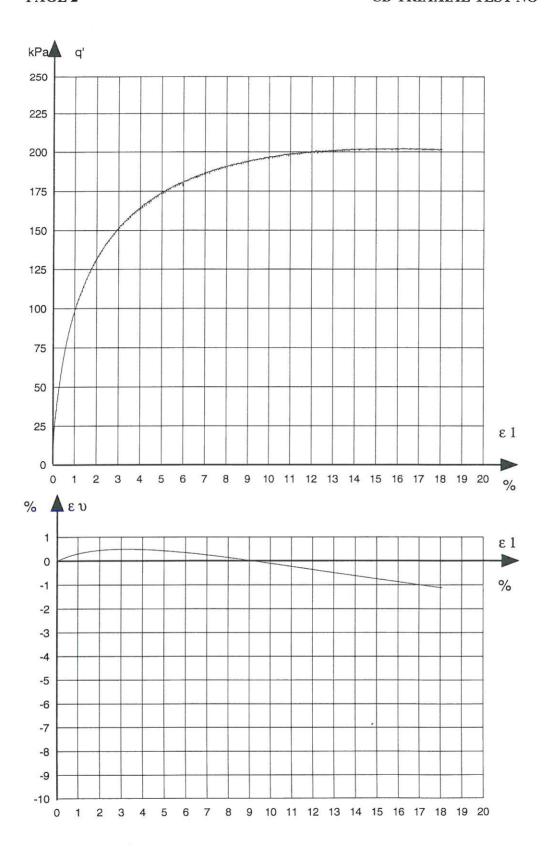



Job:	Encl. No
Baskarp No 15	
Exc:	Check:
LB	LB

Description of soil			Before test	At failure
Baskarp No 15		Water content %	33.8	
-		Grain density	2.64	0,860 0.908
Calibration file	Date	Void ratio	0.844	0.908
		Saturation	1.06	
kal5	07.12.93	Dimension H mm	71.5	
		D mm	69.7	

TEST-PROGRAM	Drained compression.		
	1. Isotropic compression.	σ3	100-80 kPa
CD - Triaxial test.		ε1	-0.018 %
free ends		εν	-0.033 %
3556 H C 385 C 38 - 32 C 5 4 5 5 7 C 7 C 7 C 7 C 7 C 7 C 7 C 7 C 7 C	2.Drained compression.		
	Deformation ra	ate:	4.2 % ph

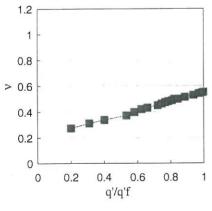
		Values at	failure	Values for	$\Delta \epsilon \nu = 0$
Deviator stress	q'	202.39	kPa	158.89	kPa
Mean normal stress	p'	147.56	kPa	133.06	kPa
Confining pressures	σ3	80.10	kPa	80.10	kPa
Vertical strain	ε1	15.96	%	3.51	%
Volumetric strain	εν	-0.87	%	0.49	%



q'	p'	ε1	εν
0.25	80.08	0.00	0.00
54.68	98.23	0.31	0.11
77.69	105.90	0.60	0.21
94.16	111.49	0.90	0.28
107.62	115.97	1.21	0.34
118.02	119.44	1.51	0.39
126.34	122.21	1.80	0.43
133.84	124.71	2.10	0.45
140.17	126.82	2.40	0.47
146.22	128.84	2.69	0.49
151.57	130.62	3.01	0.49
155.17	131.82	3.30	0.49
158.89	133.06	3.51	0.49
164.92	135.07	4.00	0.48
173.32	137.87	4.98	0.43
180.66	140.32	6.00	0.35
187.05	142.45	7.01	0.25
191.18	143.83	8.00	0.14
196.93	145.74	10.00	-0.10
200.65	146.98	11.99	-0.36
201.64	147.31	14.00	-0.62
202.39	147.56	15.96	-0.87
201.39	147.23	18.01	-1.11
201.52	147.27	18.07	-1.12

Job:	Encl. No
Baskarp No 15	
Exc:	Check:
LB	LB

Remark: Preparation [%] $\Delta \epsilon 1 = -0.063$ Preparation at 20 kPa vacuum

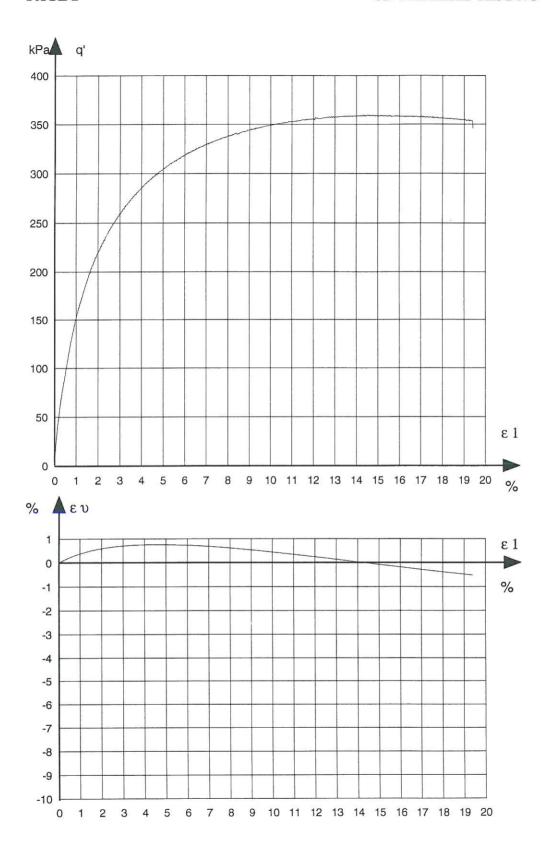



Job:	Encl. No
Baskarp No 15	
Exc:	Check:
LB	LB

Description of soil			Before test	At failure
Baskarp No 15		Water content %	31.9	
1		Grain density	2.64	0,853
Calibration file	Date	Void ratio	0.853	0.901
		Saturation	0.99	
kal5	09.12.93	Dimension H mm	71.5	
		D mm	69.7	

TEST-PROGRAM	Drained compression.		
	1. Isotropic compression.	σ3	100-160 kPa
CD - Triaxial test.		ε1	0.064 %
free ends		εν	0.029 %
	2.Drained compression.		
	Deformation ra	ate:	4.2 % ph

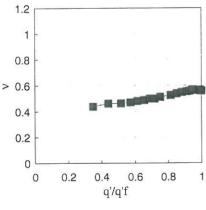
		Values at	failure	Values for	$\Delta \varepsilon \nu = 0$
Deviator stress	q'	359.56	kPa	303.11	kPa
Mean normal stress	p'	279.95	kPa	261.14	kPa
Confining pressures	σ3	160.10	kPa	160.10	kPa
Vertical strain	ε1	14.58	%	4.96	%
Volumetric strain	εν	-0.03	%	0.76	%

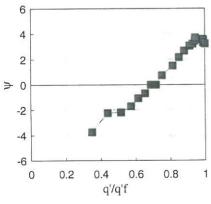


	o - w was		
q'	p'	ε1	εν
0.25	160.18	0.00	0.00
71.78	183.83	0.31	0.14
111.57	197.09	0.61	0.25
144.63	208.21	0.91	0.35
191.92	223.97	1.51	0.50
209.13	229.71	1.80	0.56
224.20	234.73	2.10	0.61
237.32	239.11	2.39	0.65
259.78	246.49	3.00	0.71
268.04	249.35	3.30	0.73
276.26	252.09	3.59	0.74
282.78	254.26	3.90	0.76
290.70	257.10	4.21	0.76
295.90	258.73	4.50	0.76
303.11	261.14	4.96	0.76
318.89	266.40	6.01	0.73
337.33	272.54	8.00	0.62
348.89	276.40	10.01	0.44
355.76	278.69	12.01	0.25
358.76	279.69	14.02	0.03
359.56	279.95	14.58	-0.03
358.71	279.67	16.00	-0.18
355.82	278.71	17.99	-0.38
345.36	275.12	19.40	-0.51

Job:	Encl. No	
Baskarp No 15		
Exc:	Check:	
LB	LB	

Remark:		
Preparation [%]	$\Delta \epsilon 1 =$	0.048
Preparation at 30	kPa vacuu	m
Specimen slipped	out.	War sale

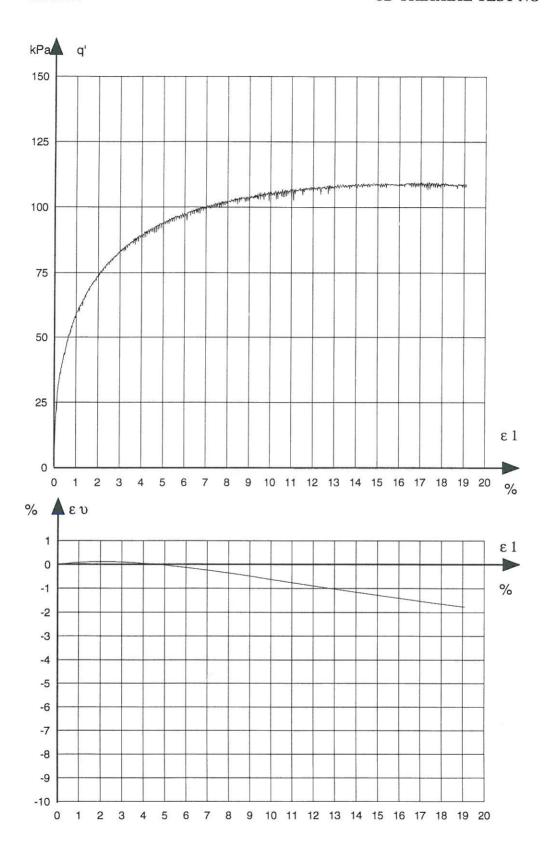



Job:	Encl. No
Baskarp No 15	
Exc:	Check:
LB	LB

Description of soil			Before test	At failure
Baskarp No 15		Water content %	30.4	
		Grain density	2.64	0,882
Calibration file	Date	Void ratio	0.853	0.931
		Saturation	0.94	
kal5	12.12.93	Dimension H mm	71.5	
		D mm	69.7	

TEST-PROGRAM	Drained compression.		
	1. Isotropic compression.	σ3	100-40 kPa
CD - Triaxial test.		ε1	-0.083 %
free ends		εν	-0.048 %
	2.Drained compression.		
6	Deformation ra	ate:	4.3 % ph

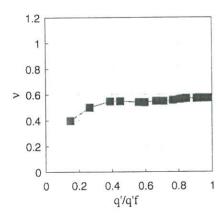
		Values at	failure	Values for	$\Delta\epsilon \; \nu = 0$
Deviator stress	q'	109.73	kPa	78.70	kPa
Mean normal stress	p'	76.58	kPa	66.23	kPa
Confining pressures	σ3	40.00	kPa	40.00	kPa
Vertical strain	ε1	17.38	%	2.45	%
Volumetric strain	εν	-1.58	%	0.12	%

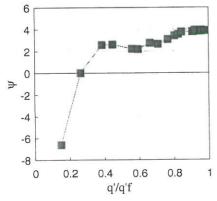


		_ 1	
q'	p'	ε 1	εν
0.25	40.08	0.00	0.00
38.22	52.74	0.30	0.04
48.34	56.01	0.59	0.06
56.64	58.78	0.89	0.08
62.87	60.96	1.21	0.10
67.44	62.48	1.50	0.11
71.85	63.95	1.82	0.12
75.49	65.16	2.11	0.12
77.75	65.92	2.40	0.12
78.70	66.23	2.45	0.12
82.56	67.52	3.00	0.10
89.44	69.81	4.02	0.05
93.40	71.13	5.00	-0.03
96.72	72.24	6.02	-0.13
100.08	73.36	6.99	-0.24
102.00	74.00	8.02	-0.36
103.44	74.48	8.99	-0.48
103.69	74.56	11.00	-0.76
108.18	76.06	13.01	-1.03
108.70	76.23	15.03	-1.29
108.71	76.24	17.01	-1.53
109.73	76.58	17.38	-1.58
108.92	76.31	18.99	-1.76
107.86	75.95	19.09	-1.77

Job:	Encl. No
Baskarp No 15	
Exc:	Check:
LB	LB

Remark: Preparation [%] $\Delta \varepsilon 1 = 0.271$ Preparation at 20 kPa vacuum

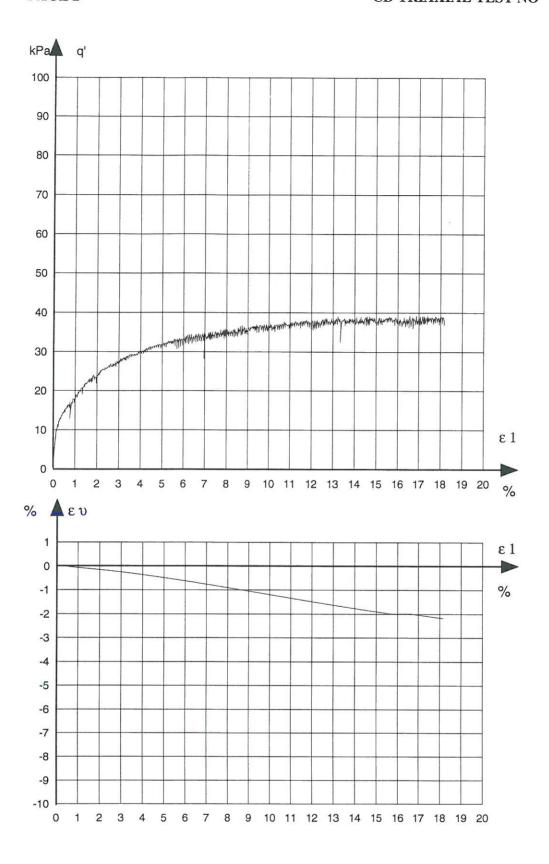



Job:	Encl. No
Baskarp No 15	
Exc:	Check:
LB	LB

Description of soil		Winter and Ci	Before test 32.3	At failure
Baskarp No 15		Water content % Grain density	2.64	0,892
Calibration file	Date	Void ratio	0.855	0.941
		Saturation	1	
kal5	13.12.93	Dimension H mm	71.5	
	SHEAR ALL STATES AND THE SHEAR SHEAR SHEAR	D mm	69.7	

TEST-PROGRAM	Drained compression.		
TEST THE CHARLE	1. Isotropic compression.	σ3	100-10 kPa
CD - Triaxial test.		ε1	-0.263 %
free ends		εν	-0.608 %
	2.Drained compression.		
	Deformation ra	ate:	4.2 % ph

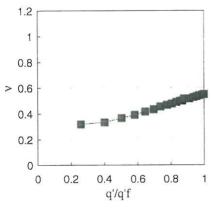
		Values at	failure	Values for	$\Delta \varepsilon \nu = 0$
Deviator stress	g'	39.32	kPa	10.35	kPa
Mean normal stress	מ'	23.21	kPa	13.55	kPa
Confining pressures	σ3	10.10	kPa	10.10	kPa
Vertical strain	ε1	16.57	%	0.15	%
Volumetric strain	εν	-1.99	%	0.01	%



q'	p'	ε1	εν
0.25	10.18	0.00	0.00
5.81	12.04	0.05	0.01
10.35	13.55	0.15	0.01
15.22	15.17	0.50	-0.02
17.63	15.98	1.00	-0.07
22.02	17.44	1.50	-0.11
23.38	17.89	2.01	-0.15
26.08	18.79	2.51	-0.20
27.89	19.40	3.00	-0.25
30.11	20.14	4.00	-0.36
31.67	20.66	5.01	-0.49
32.48	20.93	6.00	-0.62
33.23	21.18	7.07	-0.77
35.73	22.01	8.03	-0.91
35.87	22.06	9.01	-1.05
36.21	22.17	10.00	-1.19
37.53	22.61	11.02	-1.34
37.73	22.68	12.00	-1.48
38.43	22.91	13.01	-1.63
37.95	22.75	13.99	-1.77
37.56	22.62	15.01	-1.90
36.99	22.43	16.00	-1.99
39.32	23.21	16.57	-1.99
36.78	22.36	18.17	-2.18

Job:	Encl. No
Baskarp No 15	
Exc:	Check:
LB	LB

Remark:		
Preparation	$\delta \epsilon 1 =$	0.193
Preparatio at 2	0 kPa vacuu	ım
No failure, spe	ecimen slipp	ed out.

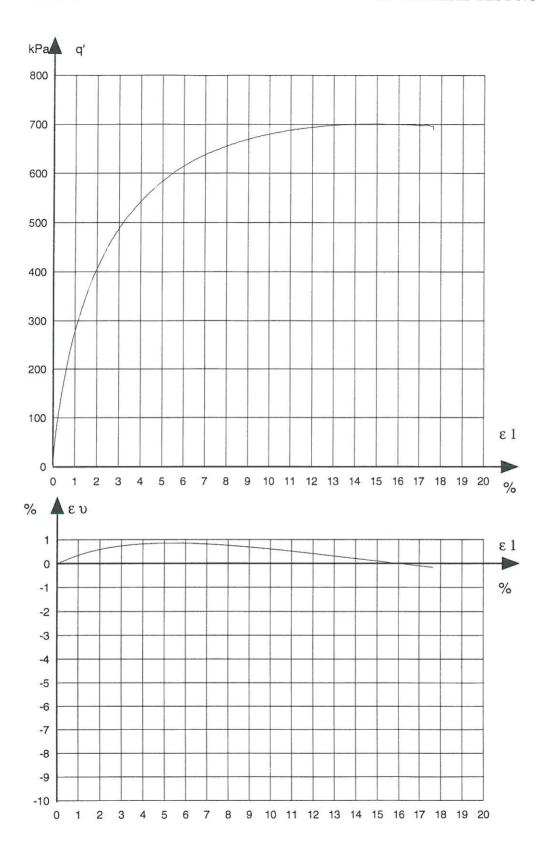


Job:	Encl. No
Baskarp No 15	
Exc:	Check:
LB	LB

Description of soil			Before test	At failure
Baskarp No 15		Water content %	31.7	
C-1433 (1030) ▲1 (111 ± 12)		Grain density	2.64	10,851
Calibration file	Date	Void ratio	0.85%	0'.898
		Saturation	0.98	
kal5	03.01.94	Dimension H mm	71.5	
	1900 (190) (1900 (190) (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (190) (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (190) (1900 (1900 (1900 (1900 (1900 (1900 (1900 (190) (1900 (1900 (1900 (190) (1900 (1900 (1900 (1900 (1900 (1900 (1900 (190) (1900 (1900 (190) (1900 (1900 (1900 (1900 (1900 (190) (1900 (1900 (190) (1900 (1900 (190) (1900 (1900 (190) (1900 (1900 (190) (1900 (1900 (190) (1900 (1900 (190) (1900 (1900 (190) (1900 (190) (1900 (1900 (190) (1900 (190) (1900 (190) (1900 (190) (1900 (1900 (190) (1900 (190) (1900 (190) (1900 (190) (1900 (190) (1900 (190) (1900 (190) (1900 (190) (1900 (190) (1900 (190) (1900 (190) (190) (190) (1900 (190) (1900 (190) (1900 (190) (1900 (190) (D mm	69.7	

TEST-PROGRAM	Drained compression.		
	1. Isotropic compression.	σ3	100-320 kPa
CD - Triaxial test.		ε1	0.134 %
free ends		υ3	0.455 %
	2.Drained compression.		
	Deformation ra	ate:	3.6 % ph

		Values at	failure	Values for	$\Delta \epsilon \nu = 0$
Deviator stress	q'	701.38	kPa	608.63	kPa
Mean normal stress	p'	553.79	kPa	522.88	kPa
Confining pressures	σ3	320.00	kPa	320.00	kPa
Vertical strain	ε1	14.38	%	5.78	%
Volumetric strain	εν	0.17	%	0.85	%

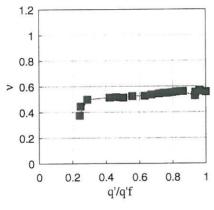


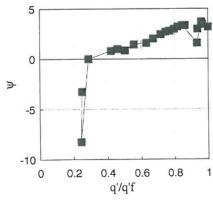
5		(1000-11			1
0					
> -5				1	
-10	21				
-15					
0	0.2	0.4 q'/d	0.6 q'f	0.8	1

q'	p'	ε1	εν
0.25	320.28	0.00	0.00
181.27	380.52	0.51	0.18
281.40	413.90	1.01	0.35
351.91	437.40	1.51	0.48
407.07	455.79	2.01	0.59
452.05	470.78	2.51	0.68
487.59	482.63	3.01	0.74
516.29	492.20	3.50	0.79
542.93	501.08	4.01	0.82
564.06	508.12	4.49	0.84
584.07	514.79	5.00	0.85
600.38	520.23	5.50	0.85
608.63	522.88	5.78	0.85
615.54	525.28	6.01	0.85
637.97	532.76	7.00	0.81
655.66	538.75	8.00	0.76
669.06	543.12	9.01	0.69
680.23	546.74	10.02	0.60
694.71	551.47	12.02	0.41
700.43	553.48	14.01	0.21
701.38	553.79	14.38	0.17
700.69	553.46	15.01	0.11
697.83	552.61	17.01	-0.10
687.25	548.98	17.65	-0.16

Job:	Encl. No
Baskarp No 15	
Exc:	Check:
LB	LB

Remark: Preparation [%] $\Delta \varepsilon 1 = 0.184$ Preparation at 20 kPa vacuum

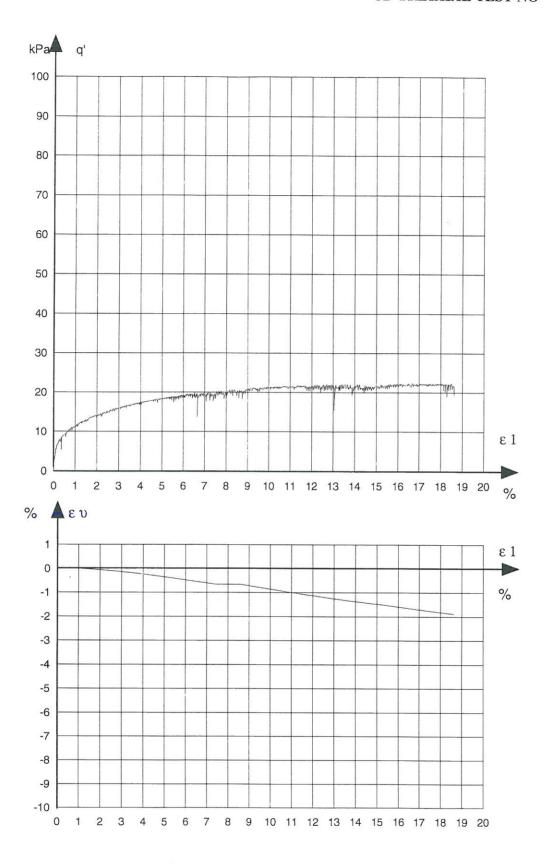



Job:	Encl. No
Baskarp No 15	
Exc:	Check:
LB	LB

Description of soil			Before test	At failure
Baskarp No 15		Water content %	30.8	
		Grain density	2.64	0,282
Calibration file	Date	Void ratio	0.852	0.931
		Saturation	0.96	
kal5	05.01.94	Dimension H mm	71.5	
	50-25	D mm	69.7	

TEST-PROGRAM	Drained compression.		
	1. Isotropic compression.	σ3	100-5 kPa
CD - Triaxial test.	3000 Maria M	ε1	-0.248 %
free ends		εν	-0.652 %
	2.Drained compression.		
*	Deformation ra	ate:	4.2 % ph

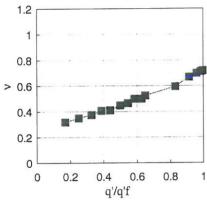
		Values at	failure	Values for	$\Delta \varepsilon \nu = 0$
Deviator stress	g'	22.37	kPa	6.43	kPa
Mean normal stress	p'	12.56	kPa	7.24	kPa
Confining pressures	σ3	5.10	kPa	5.10	kPa
Vertical strain	ε1	16.69	%	0.15	%
Volumetric strain	εν	-1.67	%	0.01	%



q'	p'	ε1	εν
0.25	5.08	0.00	0.00
5.55	6.95	0.10	0.01
5.43	6.91	0.12	0.01
6.43	7.24	0.15	0.01
9.42	8.24	0.54	0.00
10.28	8.43	0.75	-0.00
11.26	8.85	1.00	-0.01
12.44	9.15	1.50	-0.04
14.10	9.80	2.02	-0.07
15.01	10.10	2.52	-0.10
16.03	10.34	3.01	-0.15
16.67	10.66	3.50	-0.19
17.18	10.73	4.00	-0.25
17.81	11.04	4.50	-0.30
18.30	11.10	5.00	-0.36
19.27	11.42	6.00	-0.48
18.92	11.41	7.04	-0.61
20.89	12.06	9.00	-0.72
21.49	12.26	11.03	-1.00
21.61	12.30	13.01	-1.26
20.97	11.99	15.00	-1.47
22.37	12.56	16.69	-1.67
21.56	12.29	17.00	-1.70
19.29	11.43	18.60	-1.88

Encl. No	
Check:	
LB	
	Check:

Remark: Preparation [%] $\Delta \epsilon 1 = 0.124$ Preparation at 20 kPa vacuum. Membrane fold

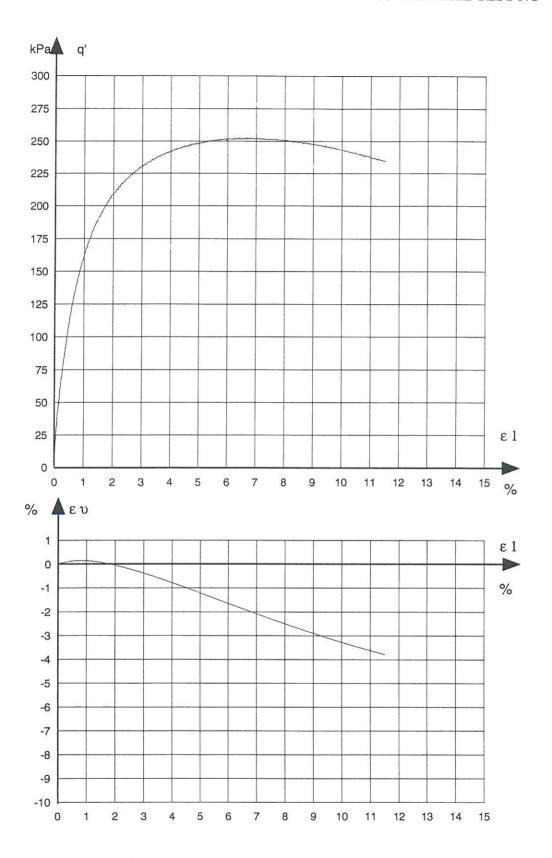


Job:	Encl. No	
Baskarp No 15		
Exc:	Check:	
LB	LB	

Description of soil			Before test	At failure
Baskarp No 15		Water content %	25.8	
1		Grain density	2.64	0,738 0.783
Calibration file	Date	Void ratio	0.705	0.783
		Saturation	0.97	
kal5	07.01.94	Dimension H mm	71.5	
		D mm	69.7	

TEST-PROGRAM	Drained compression.		
	1. Isotropic compression.	σ3	100-80 kPa
CD - Triaxial test.		ε1	-0.103 %
free ends		εν	-0.015 %
	2.Drained compression.		
	Deformation ra	ate:	4.0 % ph

		Values at	failure	Values for	$\Delta \epsilon \nu = 0$
Deviator stress	q'	252.80	kPa	158.32	kPa
Mean normal stress	p'	164.37	kPa	132.87	kPa
Confining pressures	σ3	80.10	kPa	80.10	kPa
Vertical strain	ε1	6.68	%	0.94	%
Volumetric strain	εν	-1.94	%	0.15	%

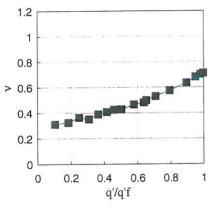


15						
10						-
5			**********		—	
→ 0						
-5			, 100			
-10						
-15			i			
()	0.2	0.4 q'/q	0.6 'f	0.8	1

q'	p'	ε1	εν
0.25	80.08	0.00	0.00
42.76	94.25	0.10	0.04
63.27	101.09	0.20	0.07
82.48	107.49	0.30	0.09
97.60	112.53	0.40	0.11
110.93	116.98	0.50	0.13
126.11	122.04	0.61	0.14
137.72	126.01	0.72	0.15
147.43	129.24	0.81	0.15
154.73	131.68	0.90	0.15
158.32	132.87	0.94	0.15
163.86	134.72	1.02	0.14
209.66	149.99	2.01	-0.05
230.87	156.96	3.01	-0.38
242.36	160.89	4.00	-0.78
248.82	163.04	5.01	-1.21
251.79	164.03	6.02	-1.65
252.80	164.37	6.68	-1.94
252.63	164.31	7.01	-2.08
250.79	163.70	8.02	-2.50
247.88	162.63	9.01	-2.91
242.85	160.95	10.01	-3.28
237.38	159.13	11.01	-3.63
234.71	158.24	11.51	-3.79

Job:	Encl. No
Baskarp No 15	
Exc:	Check:
LB	LB

Remark: Preparation	[%]	Δε1 =	0.014

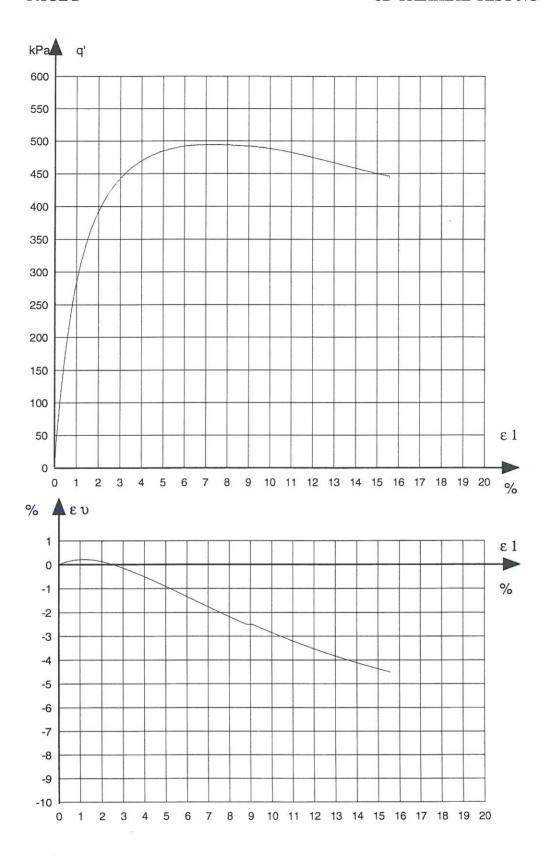


Job:	Encl. No
Baskarp No 15	
Exc:	Check:
LB	LB

Description of soil			Before test	At failure
Baskarp No 15		Water content %	26.8	
1		Grain density	2.64	0,727
Calibration file	Date	Void ratio	0.695	0.772
		Saturation	1.02	
kal5	10.01.94	Dimension H mm	71.5	
		D mm	69.7	

TEST-PROGRAM	Drained compression.	-2	100-160 kPa
	1. Isotropic compression.	σ3	
CD - Triaxial test.		ε1	-0.030 %
free ends		εν	0.550 %
	2.Drained compression.		
	Deformation ra	ate:	3.6 % ph

		Values at	failure	Values for	$\Delta \epsilon \nu = 0$
Deviator stress	q'	494.83	kPa	322.35	kPa
Mean normal stress	p'	324.94	kPa	267.45	kPa
Confining pressures	σ3	160.00	kPa	160.00	kPa
Vertical strain	ε1	7.32	%	1.26	%
Volumetric strain	εν	-1.89	%	0.22	%

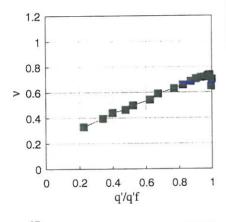


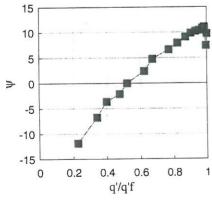
15					
10					-
5					
> 0					\dashv
-5					
-10		£			
-15					
0	0.2	0.4 q'/d	0.6 q'f	8.0	1

q'	p'	ε1	εν
0.38	160.13	0.00	0.00
51.01	177.00	0.10	0.04
91.24	190.41	0.20	0.07
122.88	200.96	0.30	0.10
151.94	210.65	0.40	0.13
179.79	219.93	0.50	0.15
205.56	228.52	0.60	0.17
226.84	235.61	0.69	0.18
248.32	242.77	0.80	0.20
285.55	255.18	1.01	0.21
315.07	265.02	1.21	0.22
322.35	267.45	1.26	0.22
349.98	276.66	1.50	0.21
392.36	290.79	2.00	0.13
442.92	307.64	3.00	-0.14
470.04	316.68	4.00	-0.51
484.59	321.53	5.01	-0.91
493.42	324.47	7.00	-1.76
494.83	324.94	7.32	-1.89
492.58	324.19	9.00	-2.50
482.23	320.84	11.01	-3.20
466.28	315.43	13.01	-3.84
449.93	309.98	15.00	-4.37
442.71	307.57	15.58	-4.51

Job:	Encl. No		
Baskarp No 15			
Exc:	Check:		
LB	LB		

Remark:			
Preparation	[%]	$\Delta \varepsilon 1 =$	0.008

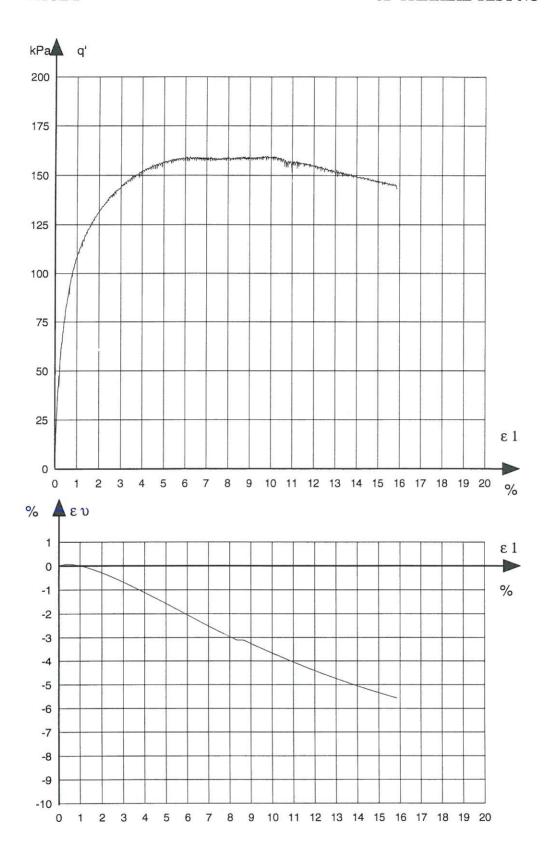



Job:	Encl. No
Baskarp No 15	
Exc:	Check:
LB	LB

Description of soil Baskarp No 15		Water content %	Before test 27.7	At failure
Daskarp No 13		Grain density	2.64	0,763
Calibration file	Date	Void ratio	0.703	-0.808
		Saturation	1.04	
kal5	12.01.94	Dimension H mm	71.5	
******		D mm	69.7	9

CD - Triaxial test.	Drained compression. 1. Isotropic compression.	σ3 ε 1	100-40 kPa -0.140 % -0.121 %
free ends	2.Drained compression.	εν	-0.121 %
	Deformation ra	ate:	4.0 % ph

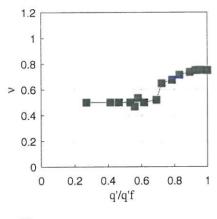
		Values at	failure	Values for	$\Delta \varepsilon \nu = 0$
Deviator stress	g'	159.85	kPa	83.38	kPa
Mean normal stress	מ'	93.38	kPa	67.89	kPa
Confining pressures	σ3	40.10	kPa	40.10	kPa
Vertical strain	ε1	9.63	%	0.50	%
Volumetric strain	εν	-3.52	%	0.08	%



q'	p'	ε1	εν
0.13	40.14	0.00	0.00
36.01	52.00	0.11	0.04
54.47	58.16	0.21	0.06
63.80	61.27	0.30	0.07
76.25	65.52	0.41	0.08
83.38	67.89	0.50	0.08
99.53	73.18	0.75	0.05
107.28	75.76	1.00	0.01
122.93	80.98	1.52	-0.12
131.56	83.85	2.00	-0.28
139.14	86.38	2.50	-0.47
144.27	88.19	3.00	-0.67
148.80	89.60	3.50	-0.89
152.17	90.72	4.00	-1.11
155.58	91.96	5.00	-1.57
157.20	92.50	6.00	-2.05
157.60	92.63	7.00	-2.51
157.60	92.63	8.00	-2.97
159.04	93.11	8.99	-3.26
159.85	93.38	9.63	-3.52
159.29	93.10	10.01	-3.67
154.85	91.62	12.01	-4.41
148.65	89.55	14.01	-5.05
143.02	87.77	15.87	-5.57

Job:	Encl. No	
Baskarp No 15		
Exc:	Check:	
LB	LB	

Remark:			
Preparation	[%]	$\Delta \varepsilon 1 =$	-0.010

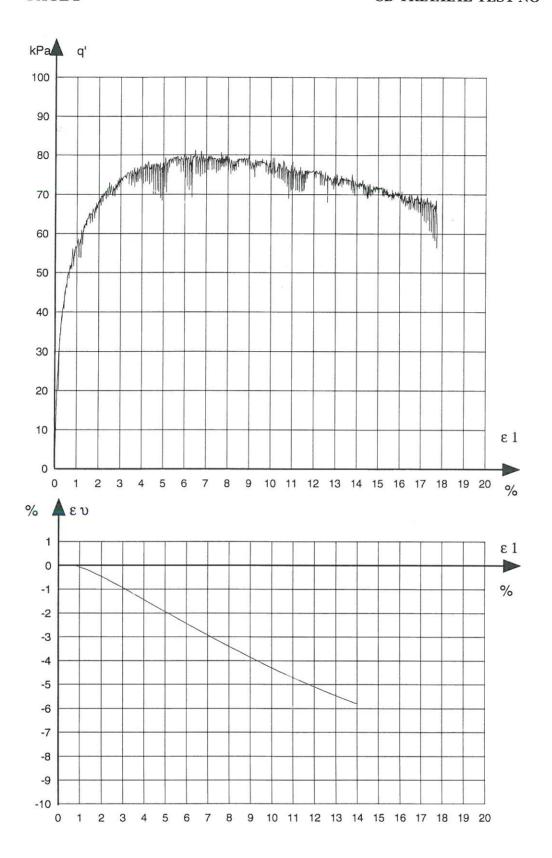


Job:	Encl. No
Baskarp No 15	
Exc:	Check:
LB	LB

Description of soil Baskarp No 15		Water content % Grain density	Before test 27.9 2.64	At failure
Calibration file	Date	Void ratio	0.702	0.793
		Saturation	1.05	
kal5	14.01.94	Dimension H mm	71.5	
		D mm	69.7	

TEST-PROGRAM	Drained compression.		
	1. Isotropic compression.	σ3	100-20 kPa
CD - Triaxial test.		ε1	-0.181 %
free ends		εν	-0.275 %
	2.Drained compression.		
	Deformation ra	ate:	4.1 % ph

		Values at	failure	Values for	$\Delta \epsilon \nu = 0$
Deviator stress	q'	81.26	kPa	45.41	kPa
Mean normal stress	p'	47.19	kPa	35.24	kPa
Confining pressures	σ3	20.10	kPa	20.10	kPa
Vertical strain	ε1	6.49	%	0.46	%
Volumetric strain	εν	-2.68	%	0.00	%

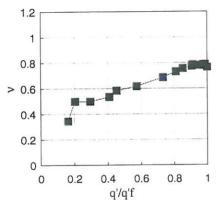


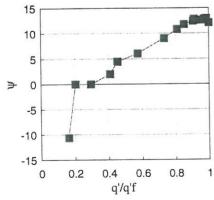
15					
10				, m ^(d)	
> 5 -					
0				<u> </u>	
-5	0.2	0.4	0.6	0.8	
U	0.2	q'/d		0.0	

		100000000000000000000000000000000000000	
q'	p'	ε1	εν
0.00	20.10	0.00	0.00
21.90	27.40	0.10	0.00
33.64	31.31	0.21	0.00
37.78	32.69	0.31	0.00
43.29	34.53	0.41	0.00
45.41	35.24	0.46	0.00
47.03	35.68	0.52	0.00
50.00	36.87	0.62	0.00
56.06	38.89	0.81	-0.01
58.64	39.75	1.05	-0.08
63.76	41.35	1.51	-0.24
67.38	42.56	2.00	-0.45
72.59	44.30	3.01	-0.93
76.62	45.64	4.02	-1.44
75.25	45.18	5.00	-1.93
77.55	45.95	6.02	-2.45
81.26	47.19	6.49	-2.68
78.99	46.43	7.03	-2.94
78.49	46.26	9.03	-3.87
78.10	46.13	-11.02	-4.72
75.18	45.16	13.01	-5.48
71.81	44.04	15.00	-6.11
68.58	42.96	17.03	-6.62
56.28	38.86	17.73	-6.77

Job:	Encl. No
Baskarp No 15	
Exc:	Check:
LB	LB

Preparation $\delta \epsilon 1 = -0.011$	Remark:		
	Preparation	$\delta \epsilon 1 =$	-0.011

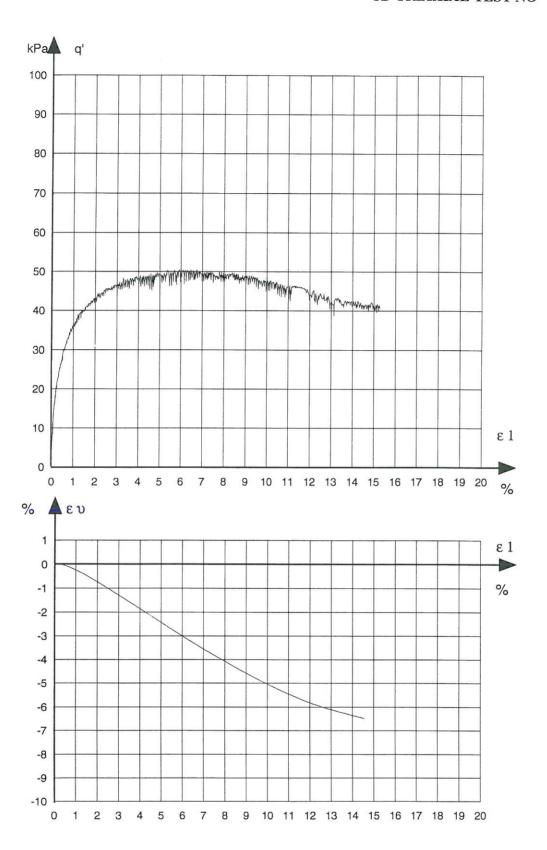

Job:	Encl. No	
Baskarp No 15		
Exc:	Check:	
LB	LB	


Description of soil			Before test	At failure
Baskarp No 15		Water content %	26	
I I		Grain density	2.64	0,759
Calibration file	Date	Void ratio	0.696	0.717
		Saturation	0.98	~69T+
kal4	17.01.94	Dimension H mm	71.5	O_f
	Comment approximation of	D mm	69.7	

9301.24

TEST-PROGRAM	Drained compression.		
	1. Isotropic compression.	σ3	100-10 kPa
CD - Triaxial test.	ε1		-0.116 %
free ends	εν		-0.257 %
	2.Drained compression.		
	Deformation rate:		4.2 % ph

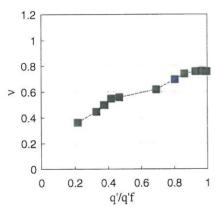
		Values at	failure	Values for	$\Delta \varepsilon \nu = 0$
Deviator stress	g'	50.46	kPa	10.23	kPa
Mean normal stress	יֹם	26.92	kPa	13.41	kPa
Confining pressures	σ3	10.10	kPa	10.00	kPa
Vertical strain	ε1	6.74	%	0.07	%
Volumetric strain	εν	-3.41	%	0.01	%



q'	p'	ε1	εν
0.01	10.00	0.00	0.00
8.12	12.71	0.05	0.01
10.23	13.41	0.07	0.01
14.84	14.95	0.11	0.01
20.61	16.97	0.21	0.01
22.83	17.61	0.30	-0.01
28.92	19.64	0.50	-0.05
32.97	20.99	0.75	-0.14
36.89	22.30	1.00	-0.24
40.82	23.61	1.52	-0.48
42.95	24.32	2.00	-0.73
45.69	25.23	2.50	-1.00
46.45	25.48	3.01	-1.29
45.95	25.32	3.50	-1.57
49.15	26.38	4.50	-2.14
49.75	26.58	5.52	-2.73
48.76	26.25	6.51	-3.28
50.46	26.92	6.74	-3.41
48.60	26.20	7.04	-3.57
48.33	26.11	9.01	-4.58
46.21	25.40	11.00	-5.46
42.32	24.11	13.01	-6.11
41.12	23.71	15.02	-6.58
40.67	23.56	15.28	-6.63

Job:	Encl. No
Baskarp No 15 Exc:	Check:
LB	LB

Remark: Preparation	δε1 =	-0.116	
Specimen slip	ped out.		

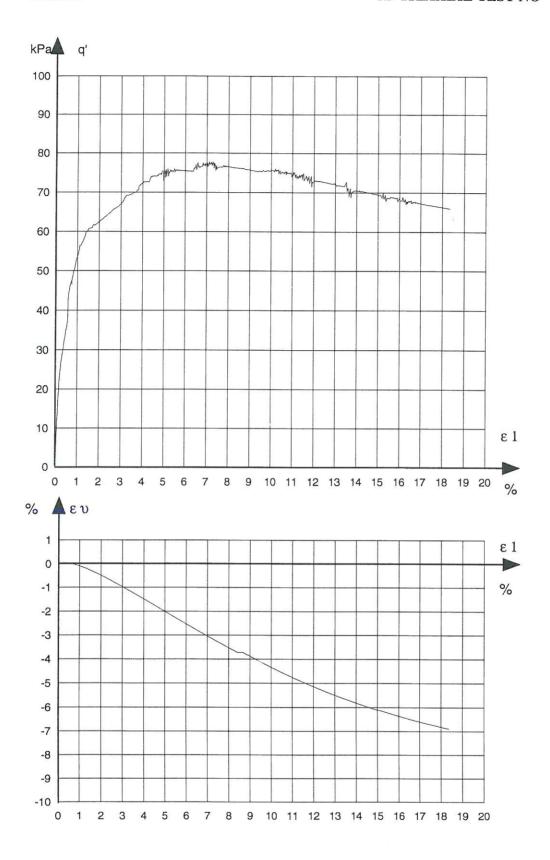


Job:	Encl. No
Baskarp No 15	
Exc:	Check:
LB	LB

Description of soil			Before test	At failure
Baskarp No 15		Water content %	26.1	Marin Sant San
		Grain density	2.64	0,749
Calibration file	Date	Void ratio	0.696	0.794
		Saturation	0.99	
kal6	20.01.94	Dimension H mm	71.5	
		D mm	69.7	

TEST-PROGRAM	Drained compression.		
	1. Isotropic compression.	σ3	100-20 kPa
CD - Triaxial test.		ε1	-0.155 %
free ends		εν	-0.301 %
	2.Drained compression.		
	Deformation ra	ate:	3.7 % ph

	***	Values at	failure	Values for	$\Delta \varepsilon \nu = 0$
Deviator stress	q'	77.85	kPa	29.37	kPa
Mean normal stress	p'	45.85	kPa	29.79	kPa
Confining pressures	σ3	19.90	kPa	20.00	kPa
Vertical strain	ε1	7.11	%	0.31	%
Volumetric strain	εν	-3.10	%	0.04	%

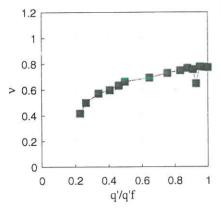


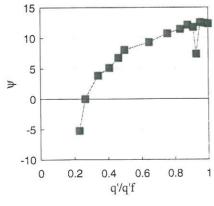
15					
10				B B	
5 -		98		ľ	
> 0 ├		-			-
-5	/				
-10					
-15			1		
0	0.2	0.4 q'/d	0.6 q'f	8.0	1

p'	ε1	εν
19.90	0.00	0.00
25.51	0.11	0.03
28.40	0.21	0.04
29.67	0.29	0.04
29.79	0.31	0.04
30.83	0.39	0.03
32.10	0.51	0.02
37.81	1.00	-0.10
40.85	2.01	-0.49
42.35	3.00	-0.97
44.09	4.00	-1.49
45.10	5.00	-2.01
45.18	6.00	-2.53
45.84	7.02	-3.05
45.85	7.11	-3.10
45.52	8.00	-3.53
45.24	9.01	-3.89
45.18	10.00	-4.34
44.92	11.01	-4.76
44.16	12.00	-5.14
43.49	14.01	-5.82
42.53	16.00	-6.36
42.09	18.00	-6.81
41.98	18.36	-6.89
	25.51 28.40 29.67 29.79 30.83 32.10 37.81 40.85 42.35 44.09 45.10 45.18 45.84 45.85 45.52 45.24 45.18 44.92 44.16 43.49 42.53 42.09	19.90 0.00 25.51 0.11 28.40 0.21 29.67 0.29 29.79 0.31 30.83 0.39 32.10 0.51 37.81 1.00 40.85 2.01 42.35 3.00 44.09 4.00 45.10 5.00 45.18 6.00 45.84 7.02 45.85 7.11 45.52 8.00 45.18 10.00 44.92 11.01 44.16 12.00 43.49 14.01 42.53 16.00 42.09 18.00

Job:	Encl. No
Baskarp No 15	
Exc:	Check:
LB	LB

Remark:			
Preparation	[%]	$\Delta \varepsilon 1 =$	0.003

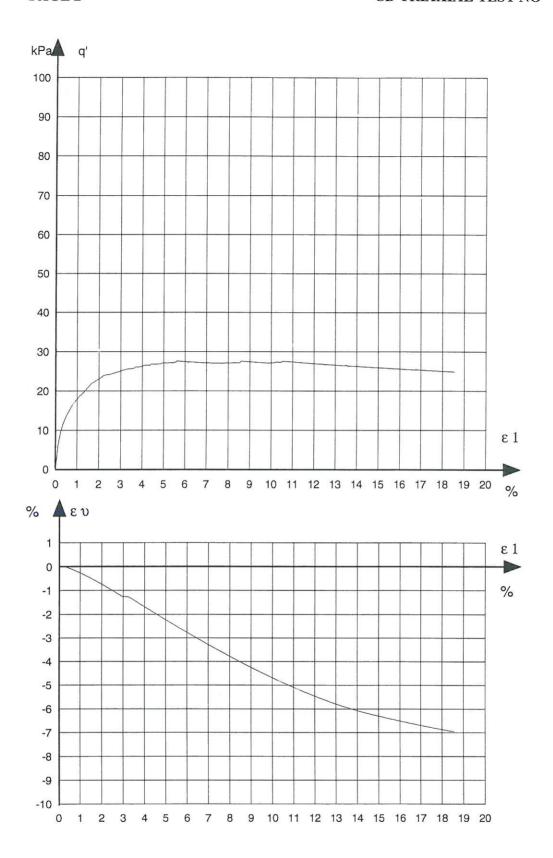



Job:	Encl. No
Baskarp No 15	
Exc:	Check:
LB	LB

Description of soil				Before test	At failure
Baskarp No 15		Water conter	nt %	26.5	
-		Grain density	y	2.64	0,748
Calibration file	Date	Void ratio		0.704	0.793
		Saturation		0.99	
kal6	24.01.94	Dimension	H mm	71.5	
			D mm	69.7	

TEST-PROGRAM	Drained compression.		
	1. Isotropic compression.	σ3	100-5 kPa
CD - Triaxial test.		ε1	-0.226 %
free ends		εν	-0.627 %
	2.Drained compression.		
	Deformation ra	ate:	4.2 % ph

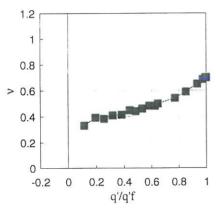
		Values at	failure	Values for	$\Delta \varepsilon \nu = 0$
Deviator stress	q'	27.65	kPa	7.28	kPa
Mean normal stress	p'	14.22	kPa	7.53	kPa
Confining pressures	σ3	5.00	kPa	5.10	kPa
Vertical strain	ε1	5.62	%	0.14	%
Volumetric strain	εν	-2.57	%	0.02	%



q'	p'	ε1	εν
0.00	5.20	0.00	0.00
6.30	7.20	0.11	0.02
7.28	7.53	0.14	0.02
9.38	8.13	0.21	0.01
11.24	8.75	0.31	-0.01
12.74	9.25	0.40	-0.04
13.75	9.58	0.50	-0.07
17.83	11.04	1.00	-0.26
20.89	11.96	1.50	-0.49
23.01	12.67	2.00	-0.74
24.23	13.08	2.51	-1.01
25.16	13.39	3.00	-1.26
25.66	13.55	3.51	-1.41
26.31	13.77	4.01	-1.69
27.08	14.03	5.00	-2.23
27.65	14.22	5.62	-2.57
27.45	14.25	6.05	-2.79
27.12	14.04	8.00	-3.78
27.11	14.14	10.04	-4.70
26.95	13.98	12.04	-5.48
26.29	13.76	14.01	-6.08
25.60	13.63	16.04	-6.52
25.02	13.34	18.01	-6.87
24.87	13.29	18.56	-6.96

Job:	Encl. No
Baskarp No 15	
Exc:	Check:
LB	LB

Remark:	r~7	1	0.006
Preparation	[%]	$\Delta \varepsilon 1 =$	0.006

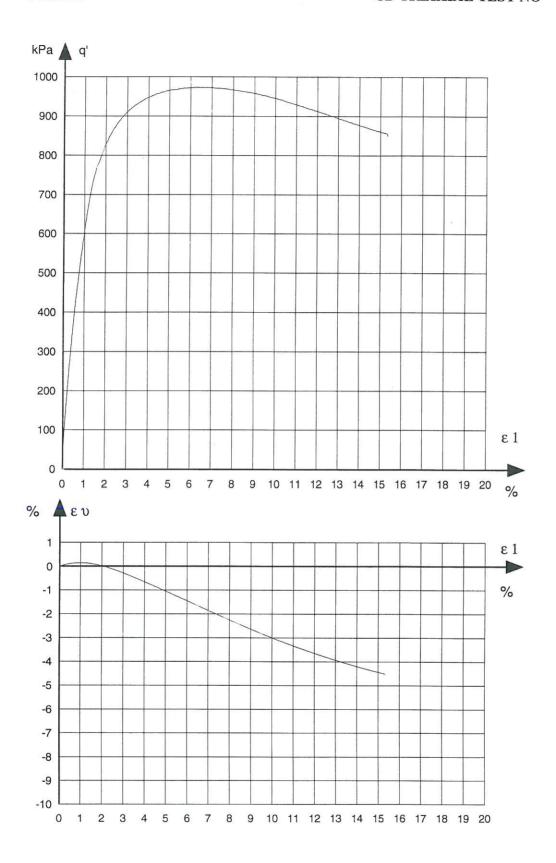


Job:	Encl. No
Baskarp No 15	
Exc:	Check:
LB	LB

Description of soil			Before test	At failure
Baskarp No 15		Water content %	24.8	
200 Asservation 10 10 10 10 10 10 10 10 10 10 10 10 10		Grain density	2.64	0,727
Calibration file	Date	Void ratio	0.698	-0.771
		Saturation	0.94	
kal7	27.01.94	Dimension H mm	71.5	
	Wallet Andrews Co. Market	D mm	69.7	

TEST-PROGRAM	Drained compression.		
	1. Isotropic compression.	σ3	100-320 kPa
CD - Triaxial test.		ε1	-0.013 %
free ends		εν	1.008 %
	2.Drained compression.		
	Deformation ra	ate:	3.7 % ph

		Values at	failure	Values for	$\Delta \varepsilon \nu = 0$
Deviator stress	q'	973.87	kPa	628.85	kPa
Mean normal stress	p'	644.62	kPa	529.62	kPa
Confining pressures	σ3	320.00	kPa	320.00	kPa
Vertical strain	ε1	6.54	%	1.06	%
Volumetric strain	εν	-1.67	%	0.15	%

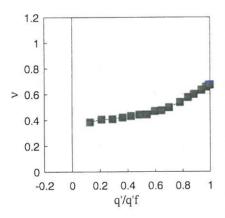


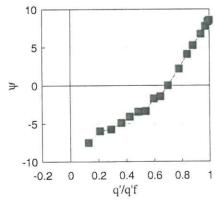
15	1				
10				٠.	þ
5 -				_=	
> 0					\dashv
-5					
-10 -					
-15		 		- 1	
-0.2	0	0.4 q'/q'f	0.6	8.0	1

q'	p'	ε1	εν
-0.71	319.76	0.00	0.00
110.41	356.80	0.10	0.03
188.56	382.85	0.20	0.05
249.36	403.12	0.29	0.08
309.68	423.23	0.40	0.10
373.04	444.35	0.50	0.11
429.59	463.20	0.61	0.12
471.70	477.23	0.70	0.14
517.57	492.52	0.80	0.14
567.78	509.26	0.91	0.15
607.48	522.49	1.01	0.15
628.85	529.62	1.06	0.15
751.16	570.49	1.50	0.11
829.28	596.53	2.01	0.02
909.34	623.21	2.99	-0.27
947.61	635.87	4.00	-0.65
965.81	642.04	5.00	-1.05
972.35	644.22	6.01	-1.46
973.87	644.62	6.54	-1.67
972.54	644.28	7.01	-1.87
958.67	639.56	9.00	-2.64
929.08	629.79	11.00	-3.34
895.25	618.52	13.00	-3.93
848.82	602.94	15.34	-4.51

Job:	Encl. No
Baskarp No 15	
Exc:	Check:
YB. LB	LB

Remark: Preparation [%] $\Delta \epsilon 1 = -0.004$ Problem during saturation.

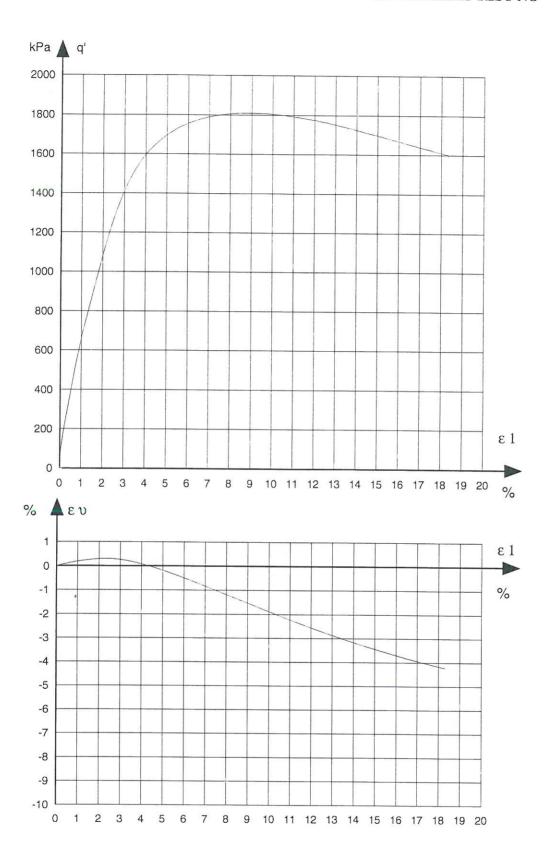



Job:	Encl. No
Baskarp No 15	
Exc:	Check:
LB	LB

Description of soil			Before test	At failure
Baskarp No 15		Water content % Grain density	2.64	0,724
Calibration file	Date	Void ratio	0.698	0.768
		Saturation		
kal7	31.01.94	Dimension H m	m 71.5	
		D mr	n 69.7	

TEST-PROGRAM	Drained compression.			
	1. Isotropic compression.	σ3	100-640	kPa
CD - Triaxial test.		ε1	0.153	%
free ends		εν	0.572	%
	2.Drained compression.			
	Deformation ra	ate:	3.8	% ph

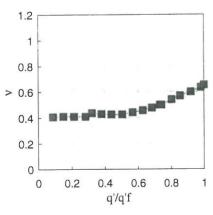
		Values at	failure	Values for	$\Delta \varepsilon \nu = 0$
Deviator stress	q'	1,810.74	kPa	678.01	kPa
Mean normal stress	p'	1,243.68	kPa	866.00	kPa
Confining pressures	σ3	640.10	kPa	640.00	kPa
Vertical strain	ε1	9.00	%	1.04	%
Volumetric strain	εν	-1.53	%	0.20	%



q'	p'	ε1	εν
-1.05	639.65	0.00	0.00
230.75	716.92	0.25	0.06
380.88	766.96	0.51	0.11
525.89	815.30	0.75	0.15
657.67	859.32	1.00	0.19
767.34	895.88	1.25	0.22
877.09	932.36	1.51	0.25
974.80	965.03	1.74	0.28
1080.02	1000.01	2.00	0.29
1166.44	1028.81	2.22	0.30
1266.70	1062.23	2.50	0.30
1412.06	1110.69	3.01	0.26
1518.98	1146.43	3.51	0.19
1595.33	1171.88	4.00	0.09
1697.39	1205.90	5.01	-0.18
1756.34	1225.45	6.01	-0.49
1790.23	1236.84	7.01	-0.83
1806.96	1242.42	8.01	-1.18
1810.74	1243.68	9.00	-1.53
1792.56	1237.62	11.01	-2.22
1752.25	1224.18	13.00	-2.87
1697.27	1205.86	15.00	-3.44
1639.31	1186.54	17.00	-3.94
1593.32	1171.21	18.31	-4.23

Job:	Encl. No
Baskarp No 15	
Exc:	Check:
JB, LB	LB

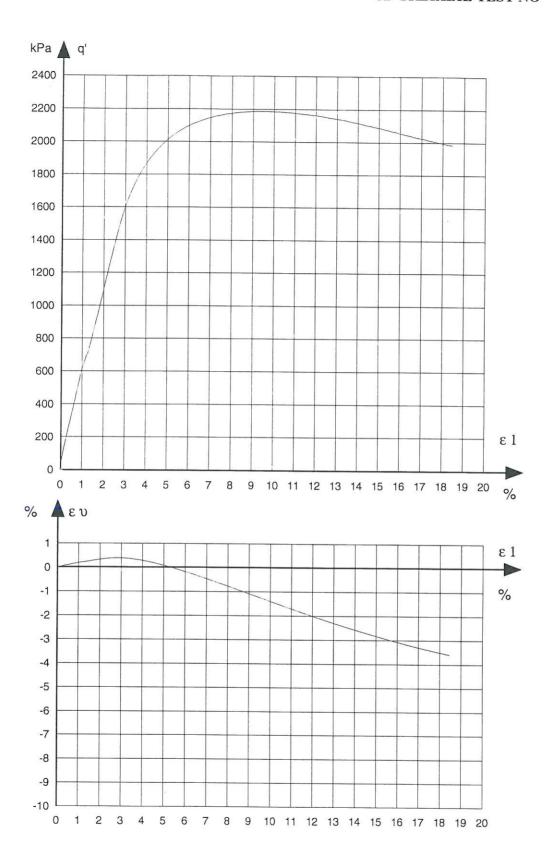
Remark: Preparation [%] $\Delta \epsilon 1 = -0.031$ Problem with measurement during saturation.



Job:	Encl. No
Baskarp No 15	
Exc:	Check:
YB, LB	LB

Description of soil			Before test	At failure
Baskarp No 15		Water content % Grain density	26.7 2.64	0,718
Calibration file	Date	Void ratio Saturation	0.69 9 1.01	0.762
kal7	08.02.94	Dimension H mm	71.5	
		D mm	69.7	

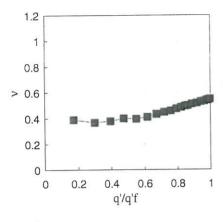
TEST-PROGRAM	Drained compression.		
	1. Isotropic compression.	σ3	100-800 kPa
CD - Triaxial test.	1	ε1	0.225 %
free ends		εν	0.979 %
	2.Drained compression.		
	Deformation ra	ate:	3.6 % ph

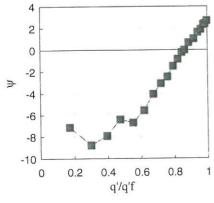

	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	Values at	failure	Values for	$\Delta \epsilon \nu = 0$
Deviator stress	q'	2,187.60	kPa	1617.78	kPa
Mean normal stress	p'	1,529.40	kPa	1339.16	kPa
Confining pressures	σ3	800.20	kPa	799.90	kPa
Vertical strain	ε1	9.18	%	3.05	%
Volumetric strain	εν	-1.14	%	0.38	%

10					
5					1
> 0			_		_
-5	8080				
-10	0.2	0.4	0.6	0.8	
Ü	0.2	q'/d		0.0	

q'	p'	ε1	εν
-3.17	798.94	0.00	0.00
188.64	862.88	0.25	0.05
326.03	908.58	0.50	0.09
465.33	955.01	0.75	0.14
618.26	1006.09	1.01	0.18
701.30	1033.77	1.24	0.21
828.32	1076.11	1.50	0.25
958.68	1119.56	1.75	0.29
1099.53	1166.41	2.00	0.32
1238.56	1212.85	2.25	0.35
1373.09	1257.70	2.51	0.37
1494.25	1297.98	2.75	0.38
1600.36	1333.35	3.00	0.38
1617.78	1339.16	3.05	0.38
1755.53	1385.28	3.50	0.35
1867.16	1422.59	4.00	0.28
2012.18	1470.93	5.00	0.08
2145.72	1515.44	7.00	-0.47
2186.72	1529.11	9.00	-1.09
2187.60	1529.40	9.18	-1.14
2175.31	1525.30	11.01	-1.71
2140.38	1513.56	13.02	-2.30
2088.69	1496.43	15.00	-2.83
1983.75	1461.45	18.46	-3.59

Job:	Encl. No
Baskarp No 15	
Exc:	Check:
LB	LB

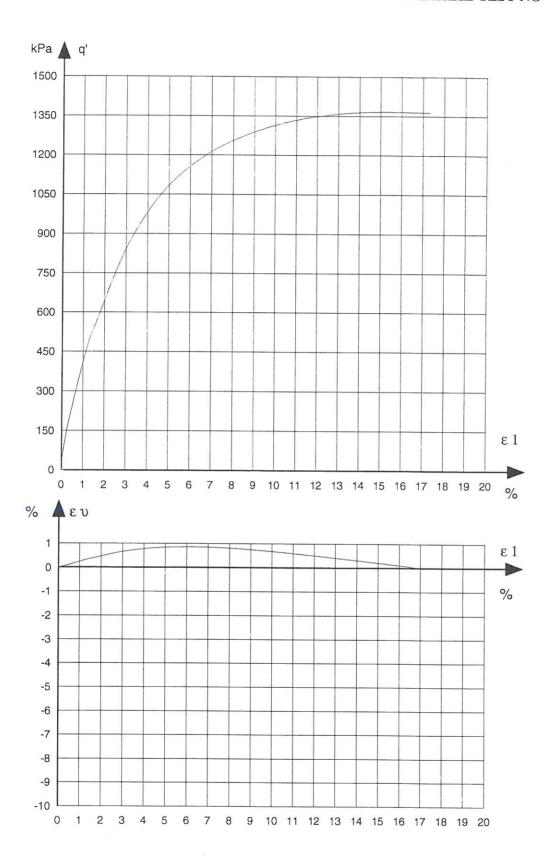



Job:	Encl. No
Baskarp No 15	
Exc:	Check:
LB	LB

Description of soil			Before test	At failure
Baskarp No 15		Water content %	30.8	8. 00
		Grain density	2.64	0, \$ \$7 0,900
Calibration file	Date	Void ratio	0.85 6	0′.900
		Saturation	0.95	
kal7	11.02.94	Dimension H mm	71.5	
		D mm	69.7	

TEST-PROGRAM	Drained compression.		
	1. Isotropic compression.	σ3	100-640 kPa
CD - Triaxial test.		ε1	0.287 %
free ends		εν	0.880 %
	2.Drained compression.		
	Deformation ra	ate:	4.2 % ph

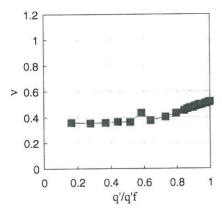
		Values at	failure	Values for	$\Delta \epsilon \nu = 0$
Deviator stress	g'	1,367.94	kPa	1179.88	kPa
Mean normal stress	יֹם'	1,096.18	kPa	1033.49	kPa
Confining pressures	σ3	640.20	kPa	640.20	kPa
Vertical strain	ε1	15.21	%	6.39	%
Volumetric strain	εν	0.19	%	0.86	%

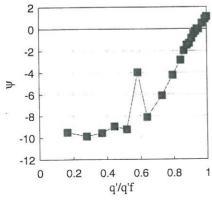


q'	p'	ε1	εν
-1.76	639.61	0.00	0.00
234.56	718.39	0.50	0.11
408.09	776.13	1.00	0.24
539.53	820.04	1.51	0.37
648.43	856.34	2.00	0.47
752.58	890.96	2.51	0.57
842.39	920.90	3.01	0.66
918.54	946.28	3.51	0.73
981.56	967.39	4.01	0.78
1036.16	985.59	4.50	0.82
1083.13	1001.34	5.00	0.84
1122.71	1014.44	5.51	0.86
1155.93	1025.51	5.99	0.86
1179.88	1033.49	6.39	0.86
1213.26	1044.52	7.00	0.85
1255.49	1058.70	8.00	0.81
1288.06	1069.55	9.00	0.75
1314.80	1078.47	10.01	0.68
1335.39	1085.33	11.00	0.60
1348.42	1089.67	12.00	0.51
1363.36	1094.65	14.01	0.31
1367.94	1096.18	15.21	0.19
1366.56	1095.72	16.01	0.11
1362.21	1094.27	17.33	-0.02

Job:	Encl. No
Baskarp No 15	
Exc:	Check:
LB	LB

Remark: Preparation [%] $\Delta \varepsilon 1 = 0.085$ Preparation at 20 kPa vacuum.

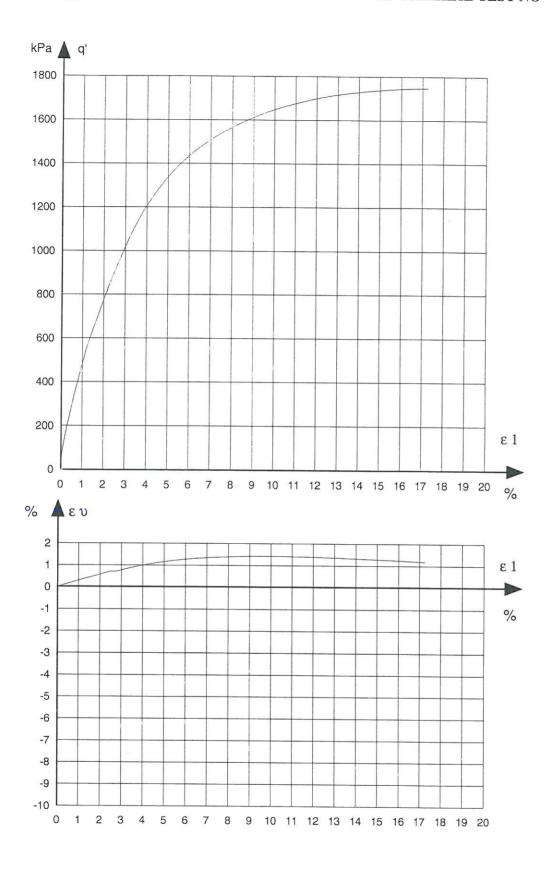



Job:	Encl. No
Baskarp No 15	
Exc:	Check:
LB	LB

Description of soil Baskarp No 15		Water content % Grain density	Before test 32.4 2.64	At failure 0,824
Calibration file	Date	Void ratio	0.846 1.01	0.871
kal7	13.02.94	Saturation Dimension H m	N-100 N-	
		D mr	n 69.7	

TEST-PROGRAM	Drained compression.		
	1. Isotropic compression.	σ3	100-800 kPa
CD - Triaxial test.		ε1	-0.042 %
free ends		εν	4.069 %
	2.Drained compression.		
	Deformation ra	ate:	3.8 % ph

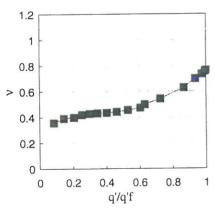
		Values at	failure	Values for	$\Delta \varepsilon \nu = 0$
Deviator stress	q'	1,748.07	kPa	1660.53	kPa
Mean normal stress	p'	1,382.69	kPa	1353.51	kPa
Confining pressures	σ3	800.00	kPa	800.00	kPa
Vertical strain	ε1	17.21	%	10.43	%
Volumetric strain	εν	1.19	%	1.42	%

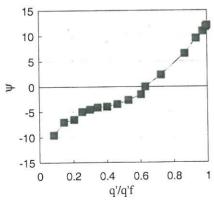


q'	p'	ε1	εν
-1.46	799.51	0.00	0.00
284.99	895.00	0.50	0.14
484.04	961.25	1.00	0.29
643.08	1014.36	1.51	0.43
773.67	1057.89	2.00	0.56
902.52	1100.74	2.50	0.70
1019.19	1139.63	3.01	0.77
1118.26	1172.65	3.50	0.89
1276.69	1225.56	4.51	1.09
1390.16	1263.29	5.49	1.22
1473.42	1291.24	6.50	1.32
1508.74	1303.01	7.00	1.35
1540.10	1313.47	7.51	1.37
1566.28	1322.19	8.01	1.40
1589.12	1329.81	8.51	1.41
1610.49	1336.83	9.01	1.42
1630.05	1343.45	9.50	1.42
1647.54	1349.18	10.00	1.42
1660.53	1353.51	10.43	1.42
1700.33	1366.78	12.00	1.39
1730.11	1376.70	14.00	1.33
1745.52	1381.84	16.00	1.25
1748.07	1382.69	17.21	1.19
1747.09	1382.36	17.25	1.19

Job:	Encl. No
Baskarp No 15	
Exc:	Check:
LB	LB

Remark: Preparation [%] $\Delta \epsilon 1 = 0.568$ Preparation at 20 kPa vacuum.

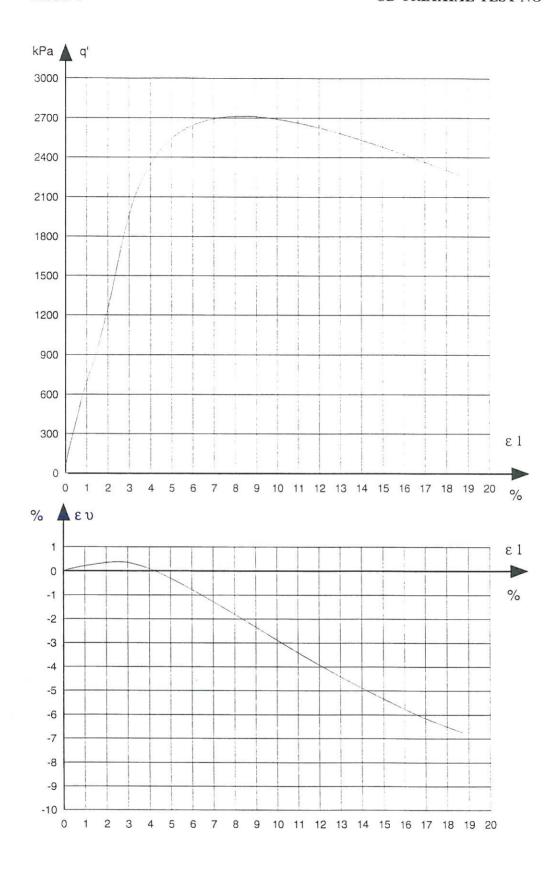



Job:	Encl. No
Baskarp No 15	
Exc:	Check:
LB	LB

Description of soil			Before test	At failure
Baskarp No 15		Water content %	24.4	
Duomap 110 20		Grain density	2.64	0,646
Calibration file	Date	Void ratio	0.614	0.688
Cultoration 1110		Saturation	1.05	
kal7	15.02.94	Dimension H mm	71.5	
Kul /	10.02.7	D mm	69.7	

TEST-PROGRAM	Drained compression.			
TEST TROOM IN	1. Isotropic compression.	σ3	100-800 kPa	
CD - Triaxial test.	1, 2001 op 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ε1	0.211 %	
free ends		εν	4.564 %	
	2.Drained compression.			
	Deformation ra	ate:	4.6 % ph	

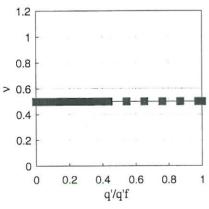
		Values at	failure	Values for	$\Delta \varepsilon \nu = 0$
Deviator stress	q'	2,713.80	kPa	1712.10	kPa
Mean normal stress	ם' מ	1,704.80	kPa	1370.80	kPa
Confining pressures	σ3	800.20	kPa	800.10	kPa
Vertical strain	ε1	8.30	%	2.62	%
Volumetric strain	εν	-1.97	%	0.38	%

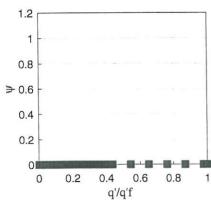


q'	p'	ε1	εν
-1.83	801.49	0.00	0.00
224.27	874.86	0.24	0.07
390.89	930.40	0.50	0.12
555.01	985.10	0.75	0.18
688.30	1029.53	1.00	0.22
813.04	1071.01	1.25	0.25
936.90	1112.30	1.50	0.29
1091.44	1163.91	1.75	0.32
1253.82	1217.94	2.01	0.35
1434.46	1278.15	2.25	0.37
1639.76	1346.59	2.53	0.38
1712.10	1370.80	2.62	0.38
1968.92	1456.41	3.01	0.35
2351.86	1584.05	4.01	0.10
2537.65	1645.98	4.99	-0.29
2644.38	1681.66	6.02	-0.77
2693.47	1697.92	7.02	-1.29
2710.97	1703.86	8.01	-1.81
2713.80	1704.80	8.30	-1.97
2690.00	1696.87	10.00	-2.88
2624.63	1674.98	12.01	-3.93
2530.44	1643.68	14.00	-4.89
2422.84	1607.71	16.01	-5.77
2259.46	1553.35	18.70	-6.74
2693.47 2710.97 2713.80 2690.00 2624.63 2530.44 2422.84	1697.92 1703.86 1704.80 1696.87 1674.98 1643.68 1607.71	7.02 8.01 8.30 10.00 12.01 14.00 16.01	-1.29 -1.81 -1.97 -2.88 -3.93 -4.89 -5.77

Job:	Encl. No
Baskarp No 15	
Exc:	Check:
LB	LB

Remark: Preparation [%] $\Delta \epsilon 1 = -0.008$

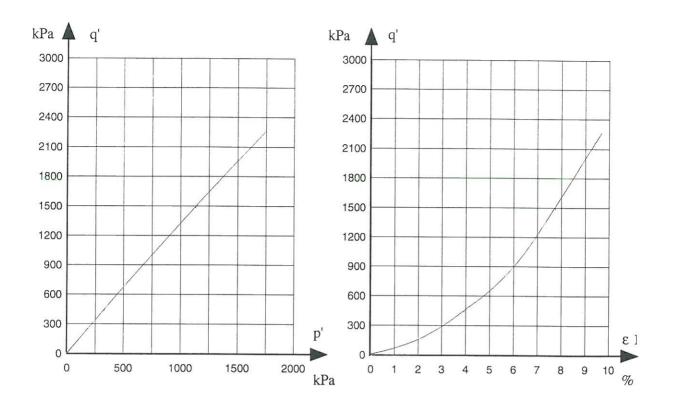


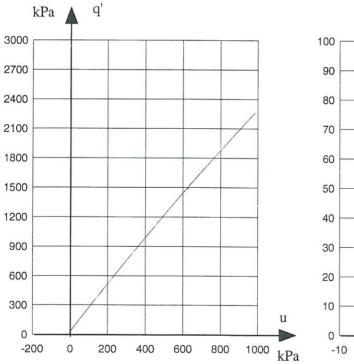

Job:	Encl. No
Baskarp No 15	
Exc:	Check:
LB	LB

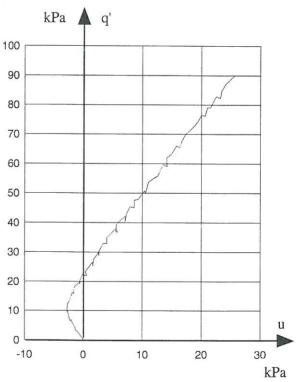
Description of soil			Before test	At failure
Baskarp No 15		Water content %	25.4	
		Grain density	2.64	
Calibration file	Date	Void ratio	0.698	
	10000 04000000	Saturation	0.96	
kal7	16.02.94	Dimension H mm	71.5	
- 100 T 100 T	50000000000000000000000000000000000000	D mm	69.7	

TEST-PROGRAM	Drained compression.		
	1. Isotropic compression.	σ3	100- 10 kPa
CU - Triaxial test.		ε1	-0.219 %
free ends		εν	-0.363 %
	2.Undrained compression.		
	Deformation ra	ate:	3.7 % ph

		Maximum	values	Minimum valu	ies foi σ3
Deviator stress	q'	2,261.40	kPa	9.39	kPa
Mean normal stress	p'	1,750.63	kPa	10.33	kPa
Confining pressures	σ3	997.60	kPa	7.20	kPa
Vertical strain	ε1	9.69	%	0.07	%
Volumetric strain	εν	0.00	%	0.00	%

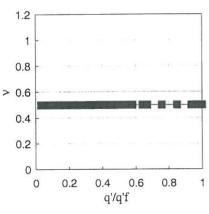





q'	p'	ε1	εν
0.32	10.11	0.00	0.00
2.91	9.97	0.01	0.00
6.80	10.27	0.04	0.00
9.39	10.33	0.07	0.00
25.17	20.09	0.36	0.00
50.78	37.33	0.76	0.00
101.22	73.84	1.41	0.00
148.99	108.86	1.92	0.00
198.62	145.81	2.35	0.00
246.44	181.65	2.70	0.00
296.15	218.02	3.04	0.00
394.26	291.12	3.62	0.00
491.81	363.14	4.14	0.00
591.77	437.96	4.69	0.00
691.64	512.85	5.18	0.00
789.29	587.40	5.59	0.00
886.69	661.26	5.96	0.00
984.38	735.53	6.29	0.00
1229.04	923.78	7.00	0.00
1473.35	1114.32	7.64	0.00
1722.86	1311.59	8.28	0.00
1966.70	1507.87	8.91	0.00
2210.51	1707.54	9.53	0.00
2261.40	1749.00	9.67	0.00

Job:	Encl. No		
Baskarp No 15			
Exc:	Check:		
LB	LB		

Remark:			
Preparation	[%]	$\Delta \epsilon 1 =$	0.019

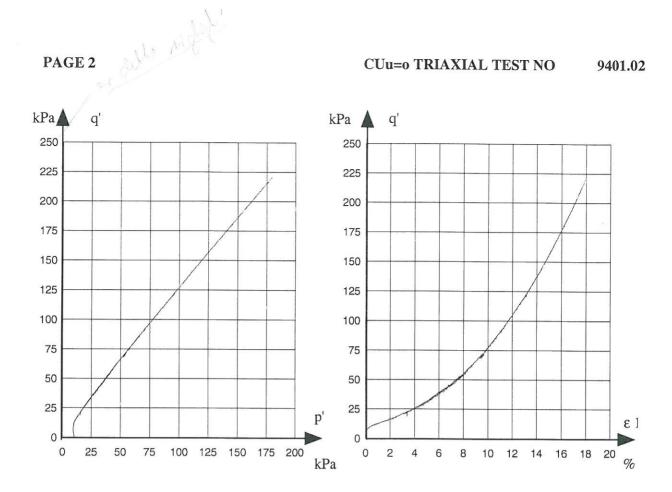


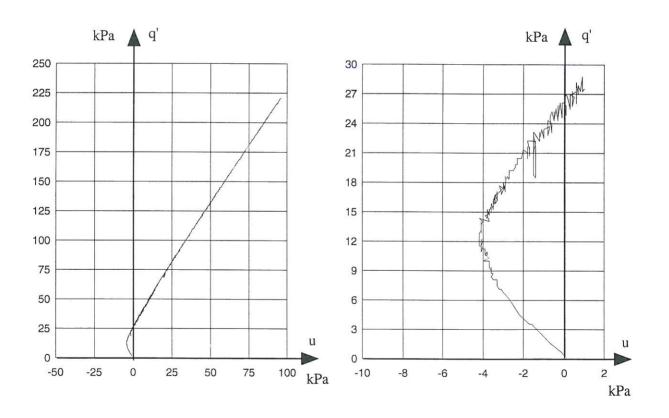
Job:	Encl. No
Baskarp No 15	
Exc:	Check:
LB	LB

Description of soil			Before test	At failure
Baskarp No 15		Water content %	32.4	
1		Grain density	2.64	
Calibration file	Date	Void ratio	0.854	
	145e.3.1.4564000ee65.e	Saturation	1	
kal7	17.02.94	Dimension H mm	71.5	
		D mm	69.7	

TEST-PROGRAM	Drained compression.		
	1. Isotropic compression.	σ3	100- 10 kPa
CU - Triaxial test.		ε1	-0.243 %
free ends		εν	-3.343 %
	2. Undrained compression.		
	Deformation ra	ite:	4.2 % ph

		Maximum	values	Minimum valu	ies foi σ
Deviator stress	q'	220.68	kPa	11.56	kPa
Mean normal stress	p'	179.66	kPa	9.75	kPa
Confining pressures	σ3	106.10	kPa	5.90	kPa
Vertical strain	ε1	17.97	%	0.92	%
Volumetric strain	εν	0.00	%	0.00	%

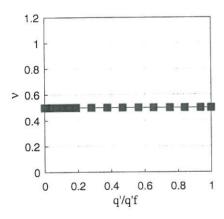


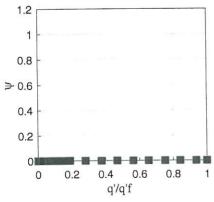

1.2						
1						
0.8						
> 0.6	-					
0.4	_					
0.2	-					
0		BRAN	40日日日	28 PM		-
	0	0.2	0.4 q'/c	0.6 q'f	8.0	1

q'	p'	ε1	εν
0.32	10.21	0.00	0.00
7.12	9.37	0.13	0.00
10.00	9.43	0.44	0.00
11.56	9.75	0.92	0.00
14.67	11.19	1.59	0.00
19.84	14.31	2.78	0.00
29.66	21.39	4.64	0.00
39.59	28.60	6.00	0.00
50.15	36.62	7.32	0.00
59.68	44.29	8.36	0.00
69.09	52.03	9.27	0.00
78.97	59.82	10.07	0.00
89.00	68.07	10.82	0.00
99.14	76.65	11.58	0.00
108.92	84.41	12.24	0.00
118.10	92.27	12.81	0.00
127.93	100.54	13.43	0.00
141.22	111.57	14.22	0.00
147.60	117.20	14.55	0.00
167.21	134.04	15.56	0.00
187.31	150.74	16.48	0.00
206.54	167.05	17.34	0.00
216.70	175.73	17.76	0.00
220.68	179.66	17.97	0.00

Job:	Encl. No		
Baskarp No 15			
Exc:	Check:		
LB	LB		

Remark:			
Preparation	[%]	$\Delta \varepsilon 1 =$	0.145
Prepulation	1. A 20	kPa ve	ervom

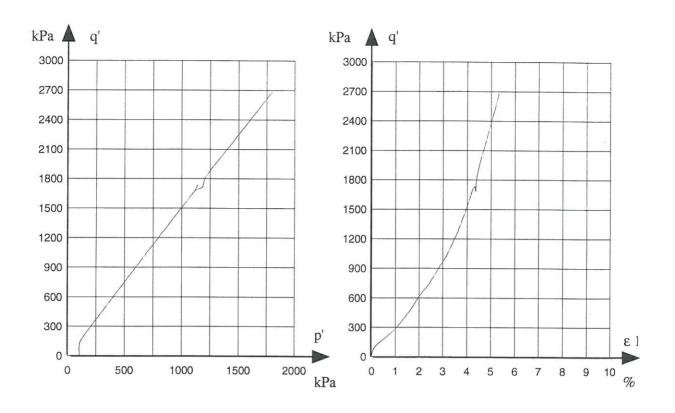


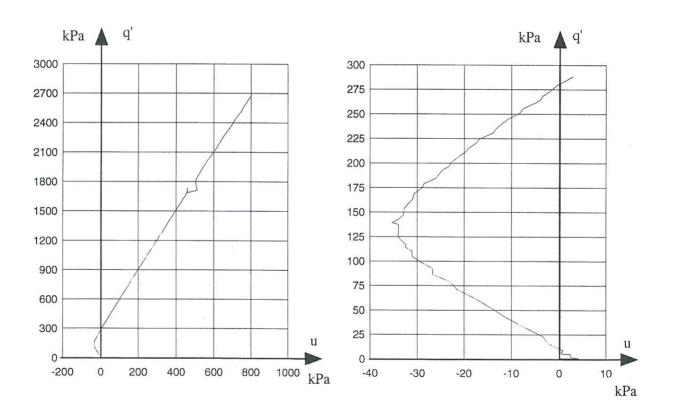

Job:	Encl. No
Baskarp No 15	
Exc:	Check:
LB	LB

Description of soil Baskarp No 15		Water content %	Before test 27.5	At failure
		Grain density	2.64	
Calibration file	Date	Void ratio	0.611	
		Saturation	1.19	
kal4	19.10.93	Dimension H mm	71.5	
		D mm	69.7	

TEST-PROGRAM	Drained compression.		
	1. Isotropic compression.	σ3	100-100 kPa
CU - Triaxial test.	1	ε1	0.002 %
free ends		εν	0.000 %
1900 A COLUMN	2. Undrained compression.		
	Deformation ra	ate:	3.7 % ph

		Maximum	values	Minimum valu	es for σ3
Deviator stress	g'	2,682.64	kPa	139.15	kPa
Mean normal stress	p'	1,798.41	kPa	110.68	kPa
Confining pressures	σ3	904.20	kPa	64.30	kPa
Vertical strain	ε1	5.32	%	0.32	%
Volumetric strain	εν	0.00	%	0.00	%





q'	p'	ε1	εν
0.65	99.82	0.00	0.00
0.65	102.92	0.00	0.00
0.65	102.12	0.00	0.00
23.26	103.95	0.02	0.00
52.00	102.73	0.05	0.00
86.18	101.63	0.11	0.00
104.85	103.45	0.17	0.00
117.05	106.22	0.22	0.00
132.12	109.64	0.28	0.00
139.15	110.68	0.32	0.00
150.35	116.82	0.37	0.00
200.39	143.60	0.62	0.00
300.55	205.88	1.05	0.00
405.86	275.39	1.42	0.00
506.27	339.76	1.71	0.00
753.70	503.03	2.45	0.00
1007.16	667.92	3.09	0.00
1257.16	833.05	3.58	0.00
1509.97	1003.62	3.97	0.00
1753.39	1190.66	4.37	0.00
2016.01	1338.80	4.58	0.00
2255.14	1502.51	4.86	0.00
2509.67	1681.66	5.15	0.00
2682.64	1798.41	5.32	0.00

Job:	Encl. No
Baskarp No 15	
Exc:	Check:
MB & JH	LB

Remark:				
Preparation	[%]	$\Delta \varepsilon 1 =$	0.041	

Job:	Encl. No
Baskarp No 15	
Exc:	Check:
MB & JH	LB