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� It is possible to obtain good classification results of cardiovascular autonomic neuropathy using supervised machine learning.
� The best classifier is the random forest classifier with a F1-score of 60% on the reduced dataset.
� In the ensembled data no standard clinical biochemical analytes were present in the 10 best classifiers.
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Objective: Using supervised machine learning to classify the severity of cardiovascular autonomic neu-
ropathy (CAN). The aims were 1) to investigate which features contribute to characterising CAN 2) to gen-
erate an ensembled set of features that best describes the variation in CAN classification.
Methods: Eighty-two features from demographic, beat-to-beat, biochemical, and inflammation were
obtained from 204 people with diabetes and used in three machine-learning-classifiers, these are: sup-
port vector machine, decision tree, and random forest. All data were ensembled using a weighted mean
of the features from each classifier.
Results: The 10 most important features derived from the domains: Beat-to-beat, inflammation markers,
disease-duration, and age.
Conclusions: Beat-to-beat measures associate with CAN as diagnosis is mainly based on cardiac reflex
responses, disease-duration and age are also related to CAN development throughout disease progres-
sion. The inflammation markers may reflect the underlying disease process, and therefore, new treatment
modalities targeting systemic low-grade inflammation should potentially be tested to prevent the devel-
opment of CAN.
Significance: Cardiac reflex responses should be monitored closely to diagnose and classify severity levels
of CAN accurately. Standard clinical biochemical analytes, such as glycaemic level, lipidic level, or kidney
function were not included in the ten most important features. Beat-to-beat measures accounted for
approximately 60% of the features in the ensembled data.
� 2023 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. This is an open

access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction 783 million people will be affected in 2045 (Sun et al., 2022). As
It is estimated that diabetes affects more than 535 million
people globally, with projections suggesting that upwards of
a result, clinical relevant micro- and macro-vascular complications
are also expected to increase (Sinnreich et al., 2005). Among the
lesser understood microvascular complications, is diabetic
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autonomic neuropathy, which among others affects the cardiovas-
cular systems (Vinik et al., 2013). Though autonomic neuropathy of
the cardiovascular system (CAN) increases the risk of silent
myocardial ischemia and mortality (Feldman et al., 2019; Pop-
Busui, 2012), it is still not clearly understood why some develop
this, while others do not.

Precision diagnostics tailor clinical diagnosis to the individual
by use of biomedical information coupled with machine learning.
This approach can facilitate earlier diagnosis and individual risk
(Chung et al., 2020). Clinically, this has been used to gain insights
into diabetic sensorimotor polyneuropathy (Haque et al., 2022),
general complications (Ljubic et al., 2020), and recently CAN
(Abdalrada et al., 2022).

The use of machine learning allows for the selection of features
from large samples of complementary clinical data. To improve
generalisability and minimise overfitting to a particular training
set, feature selection techniques must be employed. Support vector
machines (SVMs) are well-established algorithms for performing
classification on both linear and non-linear data, often in clinical
settings (Kumari and Chitra, 2013; Othman, 2011). A common
issue involving SVMs is their operation as a ‘black box’
(Cherkassky and Dhar, 2015). For this reason, medical analysis is
often performed with hierarchical models (Burgess et al., 2000;
Wang and Gatsonis, 2008) to eliminate the uncertainty in the
weighting of variables that produce a classification. A common
hierarchical model (in this case, a hierarchical clustering model)
is a decision tree, which has merited medical applications in the
diagnosis of type 2 diabetes (Habibi et al., 2015; Al Jarullah,
2011). This model classifies data by producing a condition on indi-
vidual features or nodes to produce two sub-nodes that stem from
each decision. By following this tree from the topmost node and
following the numerical conditions on each node until an end node
is met, a prediction can be made for each feature set. In reducing
the issue of overfitting with decision trees, the technique of ensem-
ble learning is often applied. Ensembling such trees produce a ran-
dom forest (Breiman, 2001), which has similarly been applied to
the risk prediction of type 2 diabetes (Xu et al., 2017). With the
introduction of multiple models, a metric for aggregating the
importance’s over each model can be utilised to preserve the fea-
tures that are consistently useful in modelling. Such approaches
are referred to as ensembling, much like the intuition of random
forests, and have seen both theoretical (Seijo-Pardo et al., 2015)
and commercial use (Shah and Peretiatko, 2021).

We hypothesised that the severity of CAN may be classified
based on clinical features, heart rate variability measures, and bio-
chemical measures including inflammatory markers using a com-
bination of supervised machine learning techniques and
aggregation of the best performing features.

The aims were to 1) investigate which clinical and paraclinical
features can help explain the characteristics of CAN, and 2) gener-
ate an ensembled set of features that best describes the variation in
CAN severity.
2. Method

2.1. Study population

This cross-sectional dataset was comprised from two cohorts of
people with diabetes recruited from the Department of Endocrinol-
ogy, Aalborg University Hospital: Cohort 1: Cross-sectional study
investigating cardiovascular and autonomic complications in con-
secutive patients attending the annual health visit with unknown
status of diabetic neuropathy (type 1 diabetes, n = 56; Type 2
diabetes, n = 100) and Cohort 2: Baseline data from a randomized
201
controlled trial (RCT) (Brock et al., 2019) in 48 participants with
type 1 diabetes and verified peripheral neuropathy according to
the Toronto criteria. The studies comprising the current dataset
were conducted in accordance with the Declaration of Helsinki,
local regulations, and International Conference on Harmonization
Good Clinical Practice guidelines. The North Denmark Region Com-
mittee on Health Research Ethics, Denmark approved both studies
(N-20170045 and N-20130077). Furthermore, Cohort 2 was
approved by the Danish Health and Medicines Authority (EudraCT
No.: 2013–004375-12). All participants gave their written
informed consent before participating in any data recording. The
clinical characteristics of the cohorts is available in Table 1.
2.2. Clinical measures

Characteristics of the dataset consist of age, sex, disease dura-
tion, and smoking habits. Height was measured using a stadiome-
ter (Seca GmbH & Co. KG., Hamburg, Deutschland). Weight was
assessed with a standardised calibrated scale (BWB-800AS, Tanita,
Arlington Heights, Illinois, USA). Body mass index was calculated
based on height and weight. Cardiac measures (Heart rate, resting
systolic, and diastolic blood pressures) were obtained in a seated
position using a blood pressure monitor (Intellisense�, Omron
Healthcare, Inc., Bannockburn, Illinois, USA). Additionally, a vibra-
tion perception threshold of the first toe was performed on the side
of the dominant hand.
2.3. Clinical biochemistry

On the day of examination fasting blood samples for assessment
of: blood glucose, haemoglobin A1c, lipid profiles (cholesterol, LDL
cholesterol, HDL cholesterol, and triglycerides), haematology (ery-
throcytes, haemoglobin, thrombocytes, leucocytes, iron, transfer-
rin, transferrin saturation, ferritin, cobalamin), renal function
(estimated glomerular filtration rate, creatinine, sodium, albumin,
potassium, and uric acid), liver function (alanine transaminase,
alkaline phosphatase, bilirubin), pancreatic function (amylase),
and thyroid function (thyroid-stimulating hormone, thyroxine T4,
triiodothyronine T3). The blood samples were obtained according
to the standard laboratory procedures and analysed at the Depart-
ment of Clinical Biochemistry, Aalborg University Hospital.
2.4. Assessment of cardiovascular autonomic neuropathy

All participants underwent cardiovascular autonomic reflex
testing in the morning (between 8:00 and 10:00 a.m.) in a consis-
tently lit, quiet laboratory. This was done to minimize variance in
circadian rhythm The diagnosis of CAN was performed using either
orthostatic hypotension measure or The VagusTM device (Medicus
Engineering ApS, Aarhus, Denmark). Validation of the VagusTM

has been described elsewhere (Ejskjaer et al., 2008; Fleischer
et al., 2011). Following 10 minutes of rest a CAN score was calcu-
lated based on three recordings using theVagusTMdevice: electro-
cardiographic recordings at rest, and during cardiovascular
autonomic reflex tests consisting of deep breathing (expiration/in-
spiration ratio), The valsalva ratio, and postural change (30:15
supine to standing ratio). I To help mitigate missing data if one
of the tests were not completed, the CAN score was estimated from
the remaining two procedures. The state established CAN (CAN 2)
was defined if two or more abnormal reflex tests were registered,
or orthostatic hypotension defined as > 20 mmHg reduction in sys-
tolic blood pressure on standing; borderline CAN (CAN 1) was
selected if one abnormal reflex test was present, and no CAN



Table 1
Demographic and variables of the study cohorts, divided over the three cardiovascular autonomic neuropathy (CAN) grades 0, 1, and 2. A one-way ANOVA using CAN as a
categorical independent variable to test differences of variables, gender and diabetes type was tested using Pearson’s Chi-squared test. For a description of cardiovascular
autonomic neuropathy (CAN) see: ‘‘Assessment of cardiovascular autonomic neuropathy” For a description of biochemical measures see: ‘‘Clinical biochemistry” For a description
of heart rate variability see: ‘‘Heart rate variability”. Body mass index (BMI), alanine aminotransferase (ALAT), low-density lipoprotein (LDL), high-density lipoprotein (HDL),
estimated glomerular filtration rate (eGFR), Root mean square of successive differences (rMSSD), standard deviation of the averages of RR (SDANN), standard deviation of the
averages of RR (SDNN), mean standard deviation of the averages of RR for each 5-minute interval (SDNNi), very low frequency (VLF), low frequency (LF), high frequency (HF), The
inflammation markers are tumour necrosis factor (TNF) and IL- are serum concentrations of cytokines (interleukin).

CAN; Fraction of dataset

0; 45.1% 1; 22.55% 2; 32.35% Difference

Demographics
Gender (M/F) 50/42 30/16 47/19 p = 0.087
Diabetes type (T1/T2) 34/58 15/31 55/11 p = <0.001
Age (years) 55 ± 17.6 57 ± 13 52 ± 11.3 p = 0.197
Disease duration (years) 15 ± 11.6 16 ± 11.5 28 ± 12.3 p = <0.001
Height (cm) 171 ± 8.9 173 ± 8.9 177 ± 9.3 p = <0.001
Weight (kg) 86.2 ± 18.4 88.7 ± 14.5 88.6 ± 17.4 p = 0.598
BMI (kg/m2) 29.5 ± 5.9 29.8 ± 5.4 28.2 ± 4.7 p = 0.247
HbA1c (mmol/mol) 56.4 ± 9.7 61.6 ± 10.7 64.5 ± 13.9 p = <0.001
Biochemistry
Creatinine (lmol/L) 75.8 ± 27.9 76.8 ± 19 83.1 ± 27.4 p = 0.198
Cholestrol (mmol/L) 4 ± 0.9 4.2 ± 0.9 4.4 ± 0.8 p = 0.052
Triglycerides (mmol/L) 1.4 ± 1 1.6 ± 1.2 1.2 ± 1 p = 0.122
ALAT (U/L) 28.8 ± 16.9 27.9 ± 15.8 26 ± 13.7 p = 0.54
HDL (mmol/L) 1.4 ± 0.4 1.4 ± 0.5 1.6 ± 0.5 p = 0.129
LDL (mmol/L) 2.1 ± 0.8 2.1 ± 0.7 2.3 ± 0.6 p = 0.054
eGFR (ml/min) 82.9 ± 12.9 82.5 ± 12.4 79.4 ± 14.4 p = 0.249
Heart
rMSSD 37.4 ± 17.2 27.2 ± 7.8 21.8 ± 10.1 p = <0.001
SDANN 119.7 ± 41.4 103.3 ± 26.2 103.8 ± 29.5 p = 0.005
SDNN 141.3 ± 42.1 115.7 ± 31.1 114.4 ± 32.3 p = <0.001
SDNNI 54.2 ± 18.7 45.5 ± 13.2 40.9 ± 16.7 p = <0.001
VLF 1726.7 ± 1134.7 1202.2 ± 723.7 1116.9 ± 669.7 p = <0.001
LF 949.1 ± 818.2 533.2 ± 433 458.6 ± 363.8 p = <0.001
HF 474 ± 474.7 217.7 ± 148.6 173.9 ± 166.3 p = <0.001
Inflammation (pg/mL)
TNF-a 1.5 ± 1.2 1.4 ± 0.5 1.5 ± 0.6 p = 0.759
IL-6 1.3 ± 3.2 1.5 ± 4.1 1 ± 0.9 p = 0.665
IL-8 13.9 ± 11.1 13.2 ± 5.2 13 ± 5 p = 0.773
IL-10 0.4 ± 0.5 0.3 ± 0.1 0.4 ± 0.5 p = 0.414
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(CAN 0) was used when tests were within the normal range of the
specific age-dependent cut-off values (Spallone et al., 2011).
2.5. Heart rate variability

Holter monitoring was performed using either the ePatch elec-
trocardiographic Recorder (BioTelemetry Technology ApS,
Hørsholm, Denmark) or Holter monitor (Lifecard CF; Del Mar Rey-
nolds, Spacelabs Healthcare, Snoqualmie, WA, USA). This monitor-
ing was performed for 24 hours. The monitor was mounted in the
morning, and heart rate variability parameters were computed for
the entire 24 hour recording period. Data was analysed using Car-
dioscopeTM (SmartMedical, Gloucestershire, United Kingdom) for
the ePatch, or Pathfinder (Software revision B code; Spacelabs
Healthcare, Hertford UK) for the Lifecard CF system. The time-
derived measures of HRV were: Standard deviation of all normal
RR (SDNN), standard deviation of the averages of RR (SDANN),
mean standard deviation of the averages of RR for each 5-minute
interval (SDNNi), and root mean square of the successive differ-
ences (RMSSD). The frequency domain measures of HRV were:
Very low frequency (VLF), low frequency (LF), and high frequency
(HF). The frequency measures were analysed and interpreted
according to (Malik et al., 1996).

Additionally, cardiac vagal tone (CVT), was analysed using the
ProBioMetrics online app version 1.0 (ProBioMetrics, Kent, UK).
Artifacts in the recordings were defined as a change in two suc-
ceeding QRS complexes exceeding 15 beats per minute, files were
inspected and cleaned by removing five heartbeats before and after
202
to derive and artefact free CVT. The data was removed from analy-
sis if the number of removed heartbeats exceeded 20%.
2.6. Inflammatory markers

On the day of examination blood samples were drawn from the
cubital vein of fasting participants. The blood was centrifuged at
2500 rpm for 10 minutes, the serumwas stored in a �80 �C freezer.
Biomarker concentrations in plasma samples were analysed using
the V-PLEX Neuroinflammation Panel 1 Human Kit (Meso Scale
Diagnostics� [MSD], Gaithersburg, MD, USA) on a MESO QuickPlex
SQ 120 instrument (MSD) according to the manufactureŕs specifi-
cations. The analysis was conducted at the CoreLab of Steno Dia-
betes Center Copenhagen. Serum concentrations of cytokines
(interferon- (IFN)-c, tumor necrosis factor (TNF)-a, TNF-b, eotaxin,
eotaxin-3, IFN-c-induced protein (IP)-10, interleukin- (IL-) �1a,
�1b, �2, �4, �5, �6, �7, �8, �10, �12/-23p40, �13, �15, �16,
�17A, macrophage-derived chemokine (MDC), monocyte
chemoattractant protein (MCP)-1, MCP-4, macrophage inflamma-
tory protein (MIP)-1a, MIP-1b, CC chemokine ligand 17 (CCL17),
and CRP. Sample values below the detection limit of the assay were
assigned a value of the detection limit divided by

p
2. If more than

30% of the measured samples for any given biomarker were below
the detection limit, the biomarker was excluded from the analysis.
Likewise, samples with a coefficient of variation > 30% between
duplicate measurements were excluded from the analysis
(Croghan and Egeghy, 2003).
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2.7. Pre-processing

Anymissing fields were filled with the mean value from the fea-
ture of the respective diabetic disease (type 1 or type 2). After pre-
processing missing values by averaging the remaining data over
diabetes type two datasets are yielded: 1) The full dataset, which
comprises all demographic, heart, blood sample, and inflammation
data (n = 82) and 2) the reduced dataset, which only consists of the
most important features produced by the feature extraction tech-
niques (n = 10), this is visualised in Fig. 1. Each feature selection
technique hence generates a separate reduced dataset that is inde-
pendently analysed.

The use of feature selection in dataset reduction has gained suc-
cess when the dataset is reduced to a minimum size of

ffiffiffiffi

N
p

(Hastie
et al., 2009) or log2ðNþ 1Þ (Breiman, 2001) for use in random forest
classifiers. This size may require an increase to 3 log2ðNþ 1Þ with
many categorical (discrete) variables. However, with a dimension-
ality of 82 features, Breiman 2021 (Breiman, 2001) suggests that
ffiffiffiffiffiffi

82
p

� 9, or log2 82þ 1ð Þ � 6 features are required for a suitable
model. A total of 10 features are thus offered to capture greater
dataset variance and offer more potential for the exploration of
the features that may influence CAN Score.
2.8. Data analysis

All analysis was performed using the Python3 scikit-learn
(Pedregosa et al., 2011) library and all figures were produced using
the ‘‘matplotlib” (Hunter, 2007) library. A variety of classification
techniques documented below are investigated using the full data-
set with a 20% test-train split, with all results (accuracies, features,
Fig. 1. Pre-Processing pipeline and number of f
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and confusion matrices) averaged over 1000 iterations. The key
features that contribute to each classifier are then documented
and aggregated to establish which clinical trials are most impor-
tant in classifying the CAN scores of a patient.

2.8.1. Classification techniques with embedded methods
These methods incorporate feature selection directly into the

training of the model (Lal et al., 2006), such as with regularisation
(Zhang et al., 2020), where certain variable coefficients (the
‘weight’ applied to the feature) are intentionally set to 0 to reduce
overfitting. This has the innate effect of eliminating irrelevant fea-
tures. The following section investigates a set of classifiers with
embedded methods applied.

2.8.2. Support vector machines
The SVM model is generated using a randomised grid search

with 5-fold cross-validation. This grid search evaluated SVMs with
linear, polynomial (degrees 2–5), and radial basis function (RBF)
kernels for regularization costs of 1 to 1000 logarithmically. The
product of the grid search was an RBF kernel with gamma equal
to 1e-4 and a regularization cost of 1. To perform feature extrac-
tion, the permutation importance (Altmann et al., 2010) of the best
model in fitting the test data to its labels is evaluated. This allows
for the extraction of unbiased feature importance with non-linear
kernels.

2.8.3. Decision trees and ensemble learning
Performances with both an individual decision tree (to yield an

interpretable diagram) and a random forest (for improved classifier
accuracy) are assessed. The random forest is implemented with 50
eatures from each subdomain of the data.
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trees with a maximum depth of 8 for minimising overfitting and,
like the single decision tree, utilise the mean decrease in impurity
to extract the 10 most important features. Importantly, for both the
decision tree and random forest classifiers, the comparatively
smaller sample size of CAN 1 patients is compensated for by apply-
ing class weight balancing, thereby penalising mispredictions of
CAN 1 more harshly than CAN 0 or CAN 2. This results in the clas-
sifier prioritising the learning of CAN 1 predictions.

2.8.4. Evaluation of classifiers
Two metrics are used for the classifier evaluation: both its test/-

training accuracy and F1-score. Whilst the former helps with iden-
tifying overfitting, the latter is useful for assessing performance
with imbalanced classes (Cruz et al., 2016). This is particularly rel-
evant for this dataset, as the proportion of CAN 1 patients is signif-
icantly smaller than the other classes.

2.8.5. Feature importance ensembling
For this method, a similar approach to Rajiv Shah et al. (Shah

and Peretiatko, 2021) is taken, but instead weighing the scores
by model performance, to prioritise features that contribute to a
more successful model.

Algorithmically, this is described as follows:

1. Normalise importances for each model (of 10 features) such
that they sum to 1

2. Multiply all importances for each model by test performance of
model

3. Sum scores for each feature and list in descending order

Which results in the pipeline illustrated in Fig. 2. This creates a
set of features that is, effectively, a weighted sum of the best fea-
tures from each model. This resultingly encourages generalisability
of results, as these features should be prevalent irrespective of the
classification tool used.

2.8.6. Wrapper methods
Wrapper methods perform feature selection by generating

increasingly large subsets (recursively adding features) of the orig-
inal feature space up to a limit until the best combination of fea-
tures is found. This has seen medical applications using
supervised learning with Naïve Bayes amongst other classification
algorithms (Karegowda et al., 2010; Singh and Singh, 2021).

2.8.7. Receiver operator characteristic
Following the extraction of the 10 best features across all mod-

els through ensembling, the sensitivity and specificity of the best
classifier for a binary comparison of CAN classes were derived
using receiver operator characteristic (ROC) curves. A brute force,
wrapper approach was implemented by exhaustively generating
combinations of variables up to 3 features and evaluating the area
under the curve (AUC).

3. Results

3.1. Support vector Machine

The training and test accuracies for the support vector machine
are for the full dataset: 92.0% training and 55.0% testing with an
F1-score of 53.6%. For the reduced dataset, the accuracies were
59.1% for training and 55.4% for testing with an F1-score of 56.4.
The 10 best performing features were: rMSSD, disease duration,
SDNN, CVT, VEGF-D, VLF, LF, IL-7, height, and Flt-1. These results
are also visualised in Fig. 2. By retraining the model on the 10 most
significant features, a similar test accuracy (a 0.4% improvement)
204
can be achieved with a large reduction (�33%) in training accuracy.
This illustrates that overfitting is significantly reduced, allowing for
a more generalisable model.

3.2. Decision tree

The training and test accuracies for the decision tree are for the
full dataset: 97.0% training and 47.3% testing with an F1-score of
47.1%. For the reduced dataset, the accuracies were 92.7% training
and 50.7% testing with an F1-score of 51.8%. The 10 best perform-
ing features were: rMSSD, disease duration, HF, VEGF-D SDNN, IL-
2, CCL17, age, TSH, and CVT. The four highest decision tree
branches are displayed in Fig. 3 and the features are also visualised
in Fig. 2. A reduction in training accuracy of �4.3% permits an
increase in test accuracy of �3.4%.

3.3. Random forest

The training and test accuracies for the random forest are for
the full dataset: 58.0% training and 61.6% testing with an F1-
score of 61.7%. For the reduced dataset, the accuracies were
58.9% training and 59.7% testing with an F1-score of 60.1%. The
10 best performing features were: rMSSD, disease duration, HF,
SDNN, CVT, IL-5, VEGF-D, LF, IL-2, and transferrin. These results
are also visualised in Fig. 2. The random forest classifier uses the
‘out of bag’ (OOB) error as a means of quantifying the test and
training accuracies. This computes the inaccuracy in predicting a
training sample using only the trees that did not have this training
sample in their bootstrap. The reduced dataset produced a 0.9%
increase in training accuracy with a 1.9% decrease in test accuracy.
Due to the similar magnitudes of test and training accuracy, how-
ever, it is not the case that this classifier is overfitting. Instead, a
relatively high accuracy can be maintained despite the smaller
input space.

3.4. Confusion matrices

The accuracies of individual CAN predictions in the confusion
matrix of the best performing classifier, which was the random for-
est classifier, were visualised in Fig. 4. For the full dataset (n = 90),
the true predictions were: 85.2% (CAN 0), 7% (CAN 1), and 67.5%
(CAN 2). For the reduced dataset (n = 10), the true predictions
were: 76.1% (CAN 0), 18.7% (CAN 1) and 68.2% (CAN 2).

3.5. Feature importance ensembling

Ensembling the features from the three classifiers resulted in
the 10 most important features being: rMSSD, disease duration,
SDNN, VEGF-D CVT, HF, IL-2, CCL17, LF, and age. Looking at the pro-
portion of total feature importance beat-to-beat data accounted for
approximately 60% of the data followed by demographic data and
inflammatory markers. Notably, no features from the standard bio-
chemical blood sample dataset were part of the top 10 ensembled
features. The 10 most important features were stratified according
to the CAN score in Table 2.

3.6. Receiver operator characteristic curves

Evaluating the random forest classifier with binarized classes
and performing feature selection with an exhaustive search (up
to a maximum of n = 3 features) yields the results shown in Sup-
plementary Fig. 1. The extracted features, up to n = 3, the sensitiv-
ity and specificity at the optimal discriminator (highest AUC of all
feature combinations), as well as AUC. These results are sum-
marised in Table 3.



∑

Fig. 2. Training and testing accuracies of the three classifiers support vector machine, decision tree classifier, and random forest classifier in the full (n = 82) and reduced
(n = 10) datasets. The method of ensembling takes the best performing features from each classifier accounting for test accuracies. This results in the 10 most important
ensembled features. Root mean square of successive differences (rMSSD), disease duration (DD), high frequency (HF), vascular endothelial growth factor (VEGF)-D, standard
deviation of the averages of RR (SDNN), Interleukin (IL)-2, �5, CC chemokine ligand (CCL)17, thyroid stimulating hormone (TSH), cardiac vagal tone (CVT), very low frequency
(VLF), low frequency (LF), vascular endothelial growth factor receptor 1 (Flt-1).
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Fig. 3. Structure of an example decision tree. Taking the left path from each node evaluates its rule as true and false otherwise. Darker coloured boxes for each colour
correspond to the certainty of prediction. The grey boxes at the bottom of the tree denote truncation, as showing the maximum depth of the tree would hinder readability.
Root mean square of successive differences (rMSSD), vascular endothelial growth factor (VEGF)-D, low frequency (LF), standard deviation of the averages of RR (SDNN),
disease duration (DD), Interleukin (IL)-2, high frequency (HF), cardiac vagal tone (CVT).
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Fig. 4. Class prediction accuracies (confusion) for A) full (n = 90) and B) reduced (n = 10) dataset based on demographics, blood data, heart data, and inflammation data, and
averaged across 1000 random forest classifiers. Each confusion matrix shows the true and predicted accuracy across the left to right diagonal of the cardiovascular autonomic
neuropathy (CAN).

Table 2
Ten most important features derived from ensembling and stratified by cardiovas-
cular autonomic neuropathy (CAN) Score. The features are ordered in order of
importance. Root mean square of successive differences (rMSSD), standard deviation
of the averages of RR (SDNN), vascular endothelial growth factor (VEGF)-D, cardiac
vagal tone (CVT), high frequency (HF), Interleukin (IL)-2, CC chemokine ligand (CCL)
17, low frequency (LF).

CAN Score

0 1 2

rMSSD 37.4 ± 17.2 27.2 ± 7.8 21.8 ± 10.1
Disease duration 15.2 ± 11.6 15.8 ± 11.5 27.8 ± 12.3
SDNN 141.3 ± 42.1 115.7 ± 31.1 114.4 ± 32.3
VEGF-D 1266.5 ± 376.4 1380.1 ± 494.8 1756 ± 1029.1
CVT 5.4 ± 3.6 3.7 ± 2 3.6 ± 2.3
HF 474 ± 474.7 217.7 ± 148.6 173.9 ± 166.3
IL-2 0.2 ± 0.1 0.1 ± 0.1 0.2 ± 0.5
CCL17 306.1 ± 200.2 254.6 ± 136.2 469.3 ± 965
LF 949.1 ± 818.2 533.2 ± 433 458.6 ± 363.8
Age 55 ± 17.6 57 ± 13 52 ± 11.3

R.B. Nedergaard, M. Scott, A.-M. Wegeberg et al. Clinical Neurophysiology 154 (2023) 200–208
4. Discussion

Early detection of CAN is clinically relevant, as progression may
be halted or even reversed through intervention. To classify the
severity of CAN, we identified the 10 most important features
using the ensembling method: rMSSD, disease duration, SDNN,
VEGF-D, CVT, HF, IL-2, CCL17, LF, and age. Some methods have
shown that inflammatory markers and heart rate-derived mea-
sures associate with neurocardiac function and pose possible
screening tools (Wegeberg et al., 2020a, 2020b; Wegeberg et al.,
2022). The variables rMSSD, SDNN, CVT, HF, and LF are all heart
rate variability derived time- and frequency domains. Parasympa-
thetic activity affects primarily the time-derived measure RMSSD
along with the variability of the high frequency components of fre-
quency data (0.15–0.4 Hz) (Pop-Busui, 2012). These features have
all previously been reported to be diminished by CAN, due to
parasympathetic withdrawal causing sympathetic dominance
(Wegeberg et al., 2020a; Wegeberg et al., 2020b). Disease duration
and age were expected to contribute to CAN development through-
out diabetic disease progression. Especially in type 2 diabetes, age
and disease duration are less interdependent in comparison to type
1 diabetes. VEGF-D, IL-2, and CCL17 are all markers of inflamma-
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tion. Increased VEGF-D has been reported to be overexpressed in
diabetic atherosclerosis (Wong et al., 2011), which is associated
with reduced heart rate variability (Jaiswal et al., 2013). IL-2 has
been associated with changes in sympathetic activity, but the sub-
tle magnitude of the marker limits its use as a clinical biomarker
(Guinjoan et al., 2009; Tio et al., 2000). CCL17 level is increased
with age and correlates with cardiac dysfunction (Zhang et al.,
2022).

4.1. Evaluation of classifiers

Although manymodels exist for performing supervised learning
on a clinically obtained dataset, the models in this paper are
selected for the following reasons: the SVM is a well-established
classifier that has seen countless medical implementations and is
known to offer high performance. However, due to its functionality
as a ‘black box,’ other methods are preferable, for example if visu-
alising the numerical ‘cut-offs’ that classify a patient is desired. In
this case, a decision tree model is preferred. This model is known to
suffer from overfitting, so the use of a random forest model is often
used to negate this problem, although this comes at the cost of
visualisation. Since all models offer positives and negatives to this
task, and all may produce varying features, it is important to pool
their responses to produce a set of features that persists across all
models (ensembling), to maximise generalisability.

4.1.1. Quantitative analysis
The use of a classifier for feature selection is entirely dependent

on its performance. With performance ranging from �51% with
decision trees to �60% with ensembled random forests, we accept
that this model is insufficient as a clinical tool if an accurate diag-
nosis needs to be performed. Instead, this model is offered for
explorative purposes. Randomly guessing a patient’s CAN score
would yield an accuracy of 33.3%, and ‘‘strategically” guessing
the CAN score based on the majority class (CAN 0) would yield
45.1% accuracy. For this reason, having demonstrated that the best
model offers a 15%-point improvement in classification accuracy,
these features may contribute to an understanding of the underly-
ing mechanisms resulting in CAN. The training accuracy is reduced
in all cases despite maintaining or increasing the test accuracy, this
illustrates that the features selected are suitable for generalising
the model, thereby reducing overfitting to the dataset.



Table 3
Summary of information from receiver operator characteristic (ROC) curve analysis. Cardiovascular autonomic neuropathy (CAN), standard deviation of the averages of RR
(SDNN), CC chemokine ligand (CCL)17, Interleukin (IL)-2, root mean square of successive differences (rMSSD), vascular endothelial growth factor (VEGF)-D.

CAN Features Sensitivity Specificity AUC

CAN 0, CAN 1 SDNN, CCL17, Age 0.7 1.0 0.883
CAN 0, CAN 2 IL-2, CCL17, Age 1.0 0.88 0.922
CAN 0, CAN 1 + 2 rMSSD, CVT, Age 0.7 0.95 0.867
CAN 1, CAN 2 Disease Duration, VEGF-D 0.85 0.9 0.946
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Generating the confusion matrices for both the full and reduced
datasets for the best performing classifier (random forest) allows
for a direct comparison of the inter-class classification accuracies.
From Fig. 4, both the full and reduced datasets performwell at clas-
sifying CAN 0 and CAN 2, with accuracies of 85.2% and 67.5% for the
full dataset and 76.1% and 68.2%, for the reduced dataset. This
demonstrates that the full dataset is better when categorising
CAN 0, offering a �9% improvement, however, both classifiers offer
similar performance with regard to categorising CAN 2.

Both classifiers struggle with the classification of CAN 1 as the
full dataset offers a 7% accuracy, with 66.6% of the predictions
incorrectly assigned to CAN 0. This may reflect the clinical chal-
lenge in the early detection of CAN 1. Similarly, the reduced dataset
has an 18.7% classification accuracy for CAN 1, with 55.8% of these
predictions assigned to CAN 0. From these results, the difficulty in
distinguishing between CAN 1 and CAN 0 is evident, although the
reduced dataset does offer a considerable, threefold improvement
of �12%. This suggests that feature selection ‘de-noises’ the classi-
fier well.

4.2. Clinical implications

To our surprise, none of the standard clinical biochemical ana-
lytes, such as those describing the glycaemic level, lipidic level,
or kidney function were included in the most important features
accounting for prediction accuracies in any of the three classifiers,
nor in the ensembled model. This may be due to a non-linear
development of diabetic microvascular complications developing
independently of each other. Furthermore, this may underscore
the importance of recognizing systemic inflammatory markers in
the investigation of CAN and is supported by other findings that
associate interleukin markers with dysfunctional heart rate vari-
ability (Wegeberg et al., 2022). The clinical classification of CAN
1 is difficult in both the full and reduced dataset, which underlines
the complexity of this subsection of the patient population and
emphasizes the silent nature and multifaceted underlying patho-
physiology. However, our findings implies that cardiac reflex
responses should be monitored closely to diagnose and classify
severity levels of CAN accurately.

4.3. ROC curve analysis

We used feature selection to find the features that best
described the distinction between different CAN stages, but no
more than three. Interestingly, different combinations of features
appear to provide the best distinction between the different stages,
presenting with highly sensitive and specificity scores at the opti-
mal disclination point. As expected, the group with severe CAN
(CAN2) were easier to discriminate from no or less severe CAN
(CAN 0 and CAN 1), providing higher AUC based on inflammatory
markers and age or disease duration, though interestingly, without
taking into consideration heart rate variability measures. For dis-
tinguishing less severe CAN (CAN 1) from no CAN (CAN 0), which
is useful for early detection of cardiovascular autonomic neuropa-
thy, a heart rate variability element was, however, necessary to
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achieve optimal discrimination. Additionally, age appears to be a
prominent factor when distinguishing no CAN from the presence
of any type of CAN, suggesting CAN arises later in life.
4.4. Limitations

The recruitment in the cohorts were vulnerable to selection bias
as in particularity individuals with a surplus of resources, might be
overrepresented. The choice to not include diabetes type into the
model was done to minimise the risk of overfitting data since a
large part of the group of people with CAN 2 have type 1 diabetes.
We hypothesise that while the underlying differences between
diabetes type one and two are very different the effects of inade-
quate management of the disease will have similar systemic bodily
effect. CAN has previously been shown to be independent of dia-
betes type (Pop-Busui, 2012). In machine learning, the number of
features that can be utilised is closely related to the number of sub-
jects that are being analysed. This is observable in the overfitting in
the full dataset parts of the analysis, but mitigated by selecting
fewer features resulting in closer resemblance in the testing and
training accuracies. A partial explanation for the lower classifica-
tion accuracies of CAN 1 is the class imbalance with CAN 1 having
the lowest number of participants (22.55%) and CAN 0 having the
largest (45.1%).
5. Conclusion

Surprisingly, none of the standard clinical biochemical analytes,
describing the glycaemic level, lipidic level, or kidney function
were included in the ten most important features associated with
CAN. In contrast, the most important features are beat-to-beat
measures accounting for approximately 60% of the feature impor-
tance of the ensembled data. Unsurprisingly, the extracted beat-to-
beat measures are primarily suggestive of reduced parasympa-
thetic activity. Furthermore, disease duration and age are expected
to correlate with CAN development, since these increase with dis-
ease progression. Most importantly, our models indicate a higher
impact of markers reflecting systemic inflammation. Thus, new
treatment modalities targeting systemic low-grade inflammation
could potentially serve as a therapeutical target in the attempt to
halt the development and progression of CAN.
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