

Aalborg Universitet

Changing mycobiota of buildings

Loukou, Evangelia; Andersen, Birgitte

Publication date: 2023

Document Version Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):

Loukou, E., & Andersen, B. (2023). Changing mycobiota of buildings. Poster presented at Westerdijk Spring Symposium, Amsterdam, Netherlands.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal -

If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Changing mycobiota of buildings

Evangelia Loukou & Birgitte Andersen

Fungi and problematic substances Building Technology, Management and Indoor Environment, BUILD, Copenhagen

Introduction

- Every natural habitat has its own mycobiota and so do our homes
- Research has shown that water-damaged, traditional building materials have their own mycobiota (Table 1)
- ► The material type and moisture content determine its mycobiota
- The green transition has introduced alternative materials
- Alternative, biogenic materials may harbour other fungal species

1. Fungi on Traditional Materials

Materials [1-5]	Fungi
Gypsum wallboard	Alternaria chartarum
	Aspergillus versicolor
	Chaetomium globosum
	Cladosporium halotolerans
	Cladosporium sphaerospermum
	Penicillium chrysogenum
	Sarocladium strictum
	Stachybotrys chartarum
Wallpapered surfaces	Alternaria alternariae
	Aspergillus versicolor
	Cladosporium sphaerospermum
	Penicillium chrysogenum
	Sarocladium strictum
	Stachybotrys chartarum
Plastered surfaces	Aspergillus versicolor
	Cladosporium sphaerospermum
	Paecilomyces variotii
	Penicillium chrysogenum
	Sporothrix schenckii
	Wallemia sebi
Mineral insulation	Aspergillus versicolor
	Cladosporium langeronii
	Penicillium chrysogenum
Painted surfaces	Aspergillus versicolor
	Cladosporium sphaerospermum
	Penicillium chrysogenum
	Wallemia sebi
	vvalletitla sebi

Results

- New species are emerging from traditional building materials, which can also be detected in floor dust (Table 2)
- New species with allergenic and toxic potential can be found in alternative building materials (Table 3)
- The use of traditional and alternative materials may lead to crosscontamination in water-damaged building constructions

Eelgrass & Hay

2. Emerging Fungi on Traditional Materials

Materials [2,6]	Fungi
Brick with paint	Acremonium charticola
(growth)	Akanthomyces lecanii*
	Aspergillus canadensis
	Debaryomyces hansenii*
	Niesslia tenuis
	Penicillium roseopurpureum
	Verrucocladosporium dirinae
Gypsum wallboard	Aspergillus hiratsukae
(growth)	Gibellulopsis nigrescens*
	Tausonia pullulans*
	Wallemia muriae*
Floor dust*	Akanthomyces spp.
(as spores)	Debaryomyces hansenii
	Gibellulopsis nigrescens
	Tausonia pullulans
	Wallemia muriae

Materials and Methods

- Literature survey
- Field and laboratory sampling
- ► Tape preparations, culture-based & DNA identification methods

3. Potential Fungi on Alternative Materials

Materials [7-9]	Fungi
Hay	Aspergillus fumigatus
Grasses and other	Aspergillus glaucus
herbaceous plants	Chaetomium globosum
	Harzia acremonioides
	Sordaria fimicola
	Wallemia sebi
Hemp	Alternaria alternata
Cannabis sativa	Beauveria bassiana
	Botrytis cinerea
	Chaetomium globosum
	Cladosporium westerdijkiae
	Penicillium olsonii
	Penicillium roqueforti
	Penicillium simplicissimum
	Penicillium spathulatum
	Penicillium copticola
Eelgrass	Chaetomium -like fungus (Figure)
Zostera marina	Cladosporium sphaerospermum
	Penicillium antarcticum
	Penicillium atrovenetum
	Penicillium coprobium

Conclusions

- Need for further research in the production of allergens and toxins in the building construction
- ► The new, emerging species need to be surveyed and characterised
- Evaluation of the existing sampling strategies and analytical methods and ensuring they can cover the emerging mycobiota
- ► New sampling strategies and detection methods need to be developed for moisture- or water-damaged buildings and materials

References

- Andersen B, Frisvad JC, Søndergaard I, et al. (2011). Associations between fungal species and water-damaged building materials. Applied and environmental microbiology 77(12): 4180-4188.
- Andersen B, Frisvad JC, Dunn RR, et al. (2021). A pilot study on baseline fungi and moisture indicator fungi in Danish homes. Journal of Fungi 7(2): 71.
- Samson RA, Houbraken J, Summerbell RC, et al. (2002). Common and important species of fungi and actinomycetes in indoor environments. Microorganisms in home and indoor work environments: diversity, health impacts, investigation and control, 285-473.
- 4. Samson RA, Houbraken J, Thrane U, et al. (2019). Food and indoor fungi. Westerdijk Fungal Biodiversity Institute.
- 5. Lian X, Lackner M, De Hoog GS, et al. (2011). Assessment of identity of filamentous fungi colonizing from water-damaged building materials. Sydowia 63.
- Andersen B (2022). Anvendelse af støv fra støvsugerposer-som mål til vurdering af skimmelvækst i boliger. BUILD rapport 2022 (12). Andersen B, Phippen C, Frisvad JC, et al. (2020). Fungal and chemical diversity in hay and wrapped haylage for equine feed. Mycotoxin research 36: 159-172.
- 8. Ettinger CL, Eisen JA (2020). Fungi, bacteria and comycota opportunistically isolated from the seagrass, Zostera marina. PloS one 15(7): e0236135.
- 9. Kusari P, Kusari S, Spiteller M, et al. (2013). Endophytic fungi harbored in Cannabis sativa L.: diversity and potential as biocontrol agents against host plant-specific phytopathogens. Fungal diversity 60: 137-151.