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It is well known that exact notions of model abstraction and reduction for dynamical 
systems may not be robust enough in practice because they are highly sensitive to 
the specific choice of parameters. In this paper we consider this problem for nonlinear 
ordinary differential equations (ODEs) with polynomial derivatives. We introduce a model 
reduction technique based on approximate differential equivalence, i.e., a partition of the set 
of ODE variables that performs an aggregation when the variables are governed by nearby 
derivatives. We develop algorithms to (i) compute the largest approximate differential 
equivalence; (ii) construct an approximately reduced model from the original one via 
an appropriate perturbation of the coefficients of the polynomials; and (iii) provide a 
formal certificate on the quality of the approximation as an error bound, computed 
as an over-approximation of the reachable set of the reduced model. Finally, we apply 
approximate differential equivalences to case studies on electric circuits, biological models, 
and polymerization reaction networks.
© 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

Ordinary differential equations (ODEs) are a fundamental dynamical model across many branches of science and engi-
neering. In particular, ODEs with polynomial right-hand sides are prominent for the study of nonlinear interactions occurring 
under the assumption of opportunistic contacts between classes of interacting populations, such as in biology [1], chem-
istry [2], and ecology [3] but can also be used to encode electric circuits [4] and control systems [5]. Obviously, polynomial 
ODE systems cover linear ODEs as special cases.

Since closed-form solutions of initial value problems with polynomial ODEs (abbreviated as PIVPs throughout the re-
mainder of this paper) are available only in special cases, a major problem when dealing with complex models regards 
the computational cost of the analysis, which generally is conducted by means of numerical integration. This problem has 
spurred a considerable amount of cross-disciplinary research on model reduction (e.g., [6,7]). Under this term one generally 
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refers to (automatic) techniques that provide a lower-dimensional representation of a given ODE system which retains an 
appropriate projection of its dynamics through a reduced cost of analysis.

Roughly speaking, model reduction methods can be categorized into two main classes: exact methods provide a reduced 
model which introduces no error in projected dynamics that it preserves (e.g., the early work by Aoki [8]). Approximate 
methods, on the other hand, may introduce errors; depending on the specific technique, these errors may be equipped 
with formal bounds (e.g., [9] and references therein). Among the types of model-reduction methods including time-scale 
separation, balanced truncation, and singular value decomposition (see [6,2,7] for general reviews on this subject), lumping
is an established concept (e.g., [10]) whereby each variable in the reduced model (the macro-variable) is associated with an 
ODE giving the dynamics of a (linear or nonlinear) combination of the ODE variables in the original system.

Here we are concerned with a specific class of lumping induced by a so-called differential equivalence—i.e., a partition 
of the set of variables in a given PIVP—such that each macro-variable represents the sum of the variables in a partition 
block [11]. Specifically, we consider both backward and forward differential equivalence (abbreviated BDE and FDE, respec-
tively). In the former case, variables in the same block have exactly the same solution if starting from the same initial 
condition; in the latter case, each macro-variable exactly represents the sum of the original variables, but from the reduced 
model one cannot recover the solution of an individual original variable in general.

It has been shown that, for both equivalences, one can prove the existence of a maximal exact reduction (or equivalently, 
of a coarsest partition) [11], which can be computed by building on fundamental algorithmic results in computer science 
related to partition-refinement algorithms [12]. In particular, restricting to polynomial derivatives enables the computation 
of differential equivalences on a suitable encoding of the ODEs into a hyper-graph akin to a formal chemical reaction 
network [13]. This finitary encoding ultimately allows for algorithms that efficiently run in polynomial time and space with 
respect to the size of the original ODE system, related to the number of variables and of monomials appearing in the right-
hand sides [14]. (This is in contrast to significantly more expensive symbolic checks for a more general class of nonlinear 
ODE systems studied in [11,15].)

Although exact reduction methods prove effective in a variety of models (e.g., performance engineering [16–19], bio-
chemistry [20–22] or physical engineering [23,24]), especially when they have “structural” symmetries that are not depen-
dent on specific values of the parameters, they may not be effective in applications domains where parameter uncertainty, 
error tolerances, and calibration from finite-precision measurements are common, such as in biology or engineering [7,25]. 
To cope with this challenge, in this paper we introduce approximate variants of differential equivalence for polynomial ODE 
systems. Our main idea is to consider a threshold parameter ε ≥ 0, which intuitively captures perturbations in polynomials 
coefficients. This allows relating ODE variables in the same partition block that would be distinct otherwise. The extension 
is conservative in the sense that the case ε = 0 corresponds to an exact differential equivalence of [14]. In addition to 
defining criteria for approximate differential equivalences, we provide an algorithm for obtaining the maximal one, still in a 
partition-refinement framework.

The reduction is represented as a reference model, obtained through a perturbation of the coefficients of the original 
model which makes the given approximate differential equivalence an exact one. By considering a metric (the Euclidean 
norm) to measure the degree of perturbation, the reference model is the one which minimizes such perturbation. This can 
be done efficiently by solving an optimization problem which runs polynomially with the size of the ODE system [26]. This 
approach is analogous to optimal approximate lumping for Markov chains (e.g., [27]), although our theory can be applied to 
other choices of reference models.

The bound of the error produced by the reference model with respect to the original system can be computed by study-
ing the reachable set of the reference model from an uncertain set of initial conditions that covers the applied perturbation. 
Therefore, this reachable set becomes a formal bound that relates the reference model to the original model. Section 4
presents a bound which relies on a linearization of the reference model (which can be efficiently computed in the case of 
polynomial ODE systems). First, we bound the reachable set of the linearized model using closed form solutions, similarly 
to [28]. Then, we provide a conservative condition (i.e., an over-approximation) that ensures that the linearized model de-
scribes the original nonlinear behavior dynamics well. Our bound is given in terms of an ε-δ argument (similar in spirit to 
the ones routinely used in calculus). Informally, it states the following: for any choice of the tolerance ε, there exist a degree 
of perturbation δ and an amplifier λ such that, for any ODE system obtained by applying a perturbation to the reference 
model of at most δ, at all time points the difference between the solution of the reference model and the perturbed one is 
at most λ times the perturbation.

Being based on a linearization, it is perhaps not surprising that the as-computed δ will account only for small perturba-
tions of the parameters. Yet numerical experiments in Section 5 show that these can be enough to explain quasi-symmetric 
behavior due to parametric tolerances in components of real electric network designs [29]. We show that our bounding tech-
nique can complement a state-of-the-art overapproximation technique, CORA [30,31], in that it can scale to larger systems 
while being more conservative in the size of the initial uncertain set that it supports.

Further related work Differential equivalence is related but not comparable to the notion of bisimulation for differential 
systems [32,20] since it partitions ODE variables rather than the state space. Likewise, it complements [23] in that captures 
nonlinear relations between ODE variables but does not enjoy a polynomial time algorithm like [14]. Instead, classic approx-
imation approaches relying on Lyapunov-like functions [33,34] may provide tight bounds but their automatic computation 
remains a challenging task. A restriction to special classes of Lyapunov-like functions (e.g., sum-of-squares polynomials [32]), 
2
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instead, leads to efficient construction algorithms which may provide tight bounds, but existence is not guaranteed. On 
the other hand, approaches based on monotonic systems and differential inequalities [35] are more efficient, the current 
approach can be expected to provide tighter bounds when applicable. Abstraction, supported e.g. by CORA, locally approx-
imates the nonlinear model by a multivariate polynomial or an affine system, see [36,37] and references therein. In that 
spirit, we linearize across a reference trajectory, a concept known also from gain scheduling [38]. A closer approach to ours 
is discussed in [39]. It combines local Lyapunov-like functions and techniques based on sensitivity analysis [28]. Our bound 
is however different because the nonlinear part is bounded analytically by restricting to polynomial derivatives.

More in general, research on approximate reduction of ODE systems spans many disciplines. In chemistry, it can be 
traced back to Kuo and Wei [40]. They studied monomolecular reaction networks, which give rise to affine ODE systems. 
The approximation consists in nearly exact lumping, i.e., a linear transformation of the state space that would be exact 
up to a perturbation of the parameters (hence we are similar in spirit). The approximation, however, only applies when 
the transition matrix underlying the linear system is diagonalizable. Li and Rabitz extend approximate lumping to general 
CRNs [41], but an explicit error bound is not given. In a similar vein, approximate quotients in ecology have been studied 
from the point of view of finding a reduced ODE system whose derivatives are as close as possible (in norm) to the 
derivatives of the original ODE system, where the 0-distance induce the exact quotient [42]. The justification that variables 
underlying similar ODEs have nearby solutions is grounded on Gronwall’s inequality which is also at the basis of more 
recent quotient constructions [43,44], which however are not algorithmic.

Relationship with [45] This work extends the conference paper [45] by presenting full detail of all the proofs and a more 
extensive evaluation section covering biological, cyber-physical and chemical case studies in addition to the electric circuits 
already analyzed in [45].

2. Background

In this section we introduce the basic background useful for the rest of the paper. Let us consider a polynomial initial 
value problem (PIVP) over the set of ODE variables S = {x1, . . . , xn}. We let xi(t) be the unique solution for variable xi at 
time point t . The initial conditions are given by σ : S → R such that xi(0) = σ(xi). We assume to work with PIVPs that 
do not exhibit explosion in finite time, i.e., they admit solutions on arbitrary long time intervals. This assumption is not 
restrictive because the majority of practical models satisfy this property. In any case this could be checked via numerical 
ODE solvers.

The PIVP is composed of ODEs in the form ẋi = qi , 1 ≤ i ≤ n, where qi is a multivariate polynomial over S . We say that a 
PIVP satisfies the normal form when each monomial xα ≡ ∏

xi∈S x
αxi
i , where α ∈NS

0 is a multi-index, appears in qi at most 
once. Without loss of generality, we assume that the polynomials qi of in the PIVPs are in normal form and we indicate this 
with the notation N (qi).

Let c(qi, xα) denote the coefficient of the monomial xα in a normal form polynomial qi with variables in S , where 
α ∈NS

0 .

Example 1. We use the following ODE system, with variables S = {x1, x2, x3}, as a running example.

ẋ1 = −4.00x1 + x2 + x3

ẋ2 = 1.99x1 − x2 (1)

ẋ3 = 2.01x1 − x3 (2)

BDE and FDE were originally provided in [11] for a class of nonlinear ODE systems covering derivatives more general 
than polynomials. Here we restate these notions for an PIVP. (The proofs for this correspondence are straightforward hence 
we omit them.)

BDE assures that variables in the same equivalence class have the same solutions at all time points. These relations are 
built by making pairwise comparisons between the coefficients of the polynomials related to any two variables in the same 
equivalence class.

Definition 1 (Backward differential equivalence (BDE)). Fix a PIVP, a partition H of S and write xi ∼B
H x j if all coefficients of 

the following polynomial are zero,

℘H
i, j := (qi − q j)

[
x〈H ′,1〉

/
xH ′ , . . . , x〈H ′,|H ′|〉

/
xH ′ :H ′ ∈H

]
i.e., when∑

α∈NS
0

|c(℘H
i, j, xα)| = 0. (3)

A partition H is a BDE if H = S/(∼B∗ ∩ ∼H).
H

3
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The definition states that a candidate partition is a BDE if for any two variables in same block, the differences between 
the coefficients on the same monomials are zero.

Example 2. In our running example let us consider the partition of variables H = {H1, H2}, with H1 = {x1} and H2 = {x2, x3}. 
Then H is not a BDE because

℘H
2,3 = −0.02x1 and c(℘H

2,3, x1) = −0.02 = 0.

FDE relates sums of variables. More in detail, it identifies a partition that induces a quotient ODE that tracks sums of 
variables in each equivalence class. This can be done by replacing any two variables in the same equivalence class with their 
sum.

Definition 2 (Forward differential equivalence (FDE)). Fix a PIVP, a partition H of S and write xi ∼F
H x j if all coefficients of the 

polynomial 
∑

H∈H ℘H
i, j are zero, where

℘H
i, j :=

∑
xk∈H

qk −
∑
xk∈H

qk[xi/s(xi + x j), x j/(1 − s)(xi + x j)]

and s is an auxiliary variable which does not denote any state. That is, when

m∑
k=1

∑
α∈NS∪̇{s}

0

|c(℘Hk
i, j , xα)| = 0. (4)

H = {H1, . . . , Hm} is an FDE when H = S/(∼F ∗
H ∩ ∼H).

For a PIVP, FDE can be checked by requiring that the evaluation of the polynomial that represents the quotient deriva-
tive for an equivalence class is invariant with respect to a redistribution of the values of any two variables within that 
equivalence class.

Example 3. Let us consider the partition {{x1}, {x2, x3}} in our example, it is an FDE because we can find the following 
system for x2 + x3:

ẋ1 = −4.00x1 + (x2 + x3)

˙(x2 + x3) = 4.00x1 − (x2 + x3)

Replacing the variable x23 with x2 + x3 we obtain the quotient ODE

ẋ1 = −4.00x1 + x23

ẋ23 = 4.00x1 − x23

Thus we can conclude that the solution satisfies x23(t) = x2(t) + x3(t) for all times t if this holds for the initial condition, 
i.e., x23(0) = x2(0) + x3(0).

3. Approximate differential equivalences

In this section we present two different approximate versions of BDE and FDE. In an approximate differential equivalence, 
we allow the conditions (3)-(4) to be satisfied with a certain amount of tolerance.

Definition 3 (Approximate BDE). Fix a PIVP, a partition H = {H1, . . . , Hm} of S , and ε ≥ 0. We write xi ∼B
H,ε x j if ∑

α∈NS
0

|c(℘H
i, j, x

α)| ≤ ε, where ℘H
i, j is as in Definition 1. A partition H is an ε-BDE if H = S/(∼B∗

H,ε ∩ ∼H).

Definition 4 (Approximate FDE). Fix a PIVP, a partition H = {H1, . . . , Hm} of S , and ε ≥ 0. We write xi ∼F
H,ε x j if 

m∑
k=1

∑
α∈NS∪̇{s}

|c(℘Hk
i, j , xα)| ≤ ε, where ℘H

i, j is as in Definition 2. A partition H is an ε-FDE when H = S/(∼F ∗
H,ε ∩ ∼H).
0

4
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In the definitions above ∗ represents the transitive closure of this relation while B and F stand, respectively, for BDE 
and FDE. Setting ε = 0 recovers the exact counterparts in both cases. That is, H is an BDE (resp., FDE) partition if and only 
if H is a 0-BDE (resp., 0-FDE) partition. The two approximate differential equivalences are not comparable since their exact 
counterparts are not [11]. Since these two notions have similar structure, in the rest of this paper we will illustrate only 
approximate BDE using simple examples. Instead, both notions will be discussed in more detail for the numerical evaluation 
of Section 5.

Example 4. Let us consider our running example (1). Then, the partition 
{{x1}, {x2, x3}

}
is a 0.02-BDE partition, as can be 

easily seen from Example 2.

The next two theorems are concerned with providing an algorithm to compute an approximate differential equiva-
lence. Specifically, Theorem 1 shows the existence of the largest approximate differential equivalence; Theorem 2 proves 
the correctness of the partition-refinement algorithm to compute it as the coarsest refinement of a given initial partition of 
variables.

Theorem 1. Fix a PIVP, a partition G of S , and ε ≥ 0. Then, there exists a unique coarsest ε-FDE (ε-BDE) partition refining G .

Proof. Assume that H1, . . . , Hn are ε-FDE partitions of S and define ∼l:=∼F
Hl,ε

∩ ∼Hl and ∼:=∼H , where H :=
S/

(⋃n
l=1 ∼l

)∗
. Note that the definition of ε-FDE implies that Hl = S/∼∗

l for all 1 ≤ l ≤ n.
Let us fix arbitrary 1 ≤ l ≤ n and xi ∼l x j . It can be easily seen that for any H ∈H there exist unique blocks G H

1 , . . . , G H
mH

∈
Hl such that 

⊎mH
k=1 G H

k = H . With this, it holds that

∑
H∈H

∑
α∈NS∪̇{s}

0

|c(℘H
i, j, xα)| =

∑
H∈H

∑
α∈NS∪̇{s}

0

|c(
mH∑
k=1

℘
G H

k
i, j , xα)|

≤
∑
H∈H

mH∑
k=1

∑
α∈NS∪̇{s}

0

|c(℘G H
k

i, j , xα)|

=
∑

G∈Hl

∑
α∈NS∪̇{s}

0

|c(℘G
i, j, xα)|

≤ ε,

where the first estimation follows from the triangle inequality, while the second estimation is thanks to the definition of 
∼l . The above readily implies that H is an ε-FDE partition.

We now turn to the case of ε-BDE. Similarly to the ε-FDE case, we assume that H1, . . . , Hn are ε-BDE partitions of 
S and ∼l , ∼:=∼H and H are as above. Note that the definition of ε-BDE implies that Hl = S/∼∗

l for all 1 ≤ l ≤ n. For 
arbitrary 1 ≤ l ≤ n and xi ∼l x j , it holds that∑

α∈NS
0

|c(℘H
i, j, xα)| ≤

∑
α∈NS

0

|c(℘Hl
i, j , xα)|

since Hl refines H. The above implies that H is an ε-BDE partition.
So far, we have shown that the coarsening S/

(⋃n
l=1 ∼l

)∗
of ε-FDE/BDE partitions H1, . . . , Hn is again an ε-FDE/BDE 

partition. The claim follows by noting that Lemma 26 in [46] ensures that S/
(⋃n

l=1 ∼l
)∗

is a refinement of G if each S/ ∼l
is a refinement of G . �

The following lemma will be needed in the proof of Theorem 2.

Lemma 1. Let G, H be two partitions of S . Then, for any ε > 0, the following can be shown.

i) xi ∼F ∗
H,ε x j implies xi ∼F ∗

G,ε x j if H is a refinement of G .

ii) xi ∼B∗
H,ε x j implies xi ∼B∗

G,ε x j if H is a refinement of G .

Proof. Let us assume that xi ∼F
H,ε x j , which is equivalent to∑

H∈H

∑
α∈NS∪̇{s}

|c(℘H
i, j, xα)| ≤ ε
0

5
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Algorithm 1 Template partition refinement algorithm for the computation of the coarsest ε-FDE/ε-BDE partition that refines 
a given initial partition G .
Require: A PIVP over variables S , a partition G of S , a threshold ε ≥ 0, and a mode χ ∈ {F , B}.
H ←− G
while true do

H′ ←− S/(∼χ∗
H,ε ∩ ∼H)

if H′ = H then
return H

else
H ←− H′

end if
end while

Since H is a refinement of G , for any G ∈ G there exist unique blocks H G
1 , . . . , H G

mG
∈ H such that 

⊎mG
k=1 H G

k = G . With this, 
it holds that

∑
G∈G

∑
α∈NS∪̇{s}

0

|c(℘G
i, j, xα)| =

∑
G∈G

∑
α∈NS∪̇{s}

0

|c(
mG∑
k=1

℘
H G

k
i, j , xα)|

≤
∑
G∈G

mG∑
k=1

∑
α∈NS∪̇{s}

0

|c(℘H G
k

i, j , xα)|

=
∑
H∈H

∑
α∈NS∪̇{s}

0

|c(℘H
i, j, xα)|

≤ ε,

thus showing xi ∼F
G,ε x j . This yields the first statement. Let us now assume that xi ∼B

H,ε x j which corresponds by definition 
to 

∑
α∈NS

0
|c(℘H

i, j, x
α)| ≤ ε. Moreover,

∑
α∈NS

0

|c(℘G
i, j, xα)| ≤

∑
α∈NS

0

|c(℘H
i, j, xα)|

because H is a refinement of G . Hence, we infer that xi ∼B
G,ε x j . This readily implies the second statement. �

Theorem 2. Fix a PIVP, a partition G of S , and ε ≥ 0. Then, Algorithm 1 computes the coarsest ε-FDE (ε-BDE) that refines G if χ = F
(χ = B).

Proof. Let G′ denote the coarsest ε-FDE (ε-BDE) partition that refines H0 := G and set Hk+1 := S/(∼χ∗
Hk,ε

∩ ∼Hk ) for all 
k ≥ 0. Then, the sequence (Hk)k≥0 is such that G′ is a refinement of Hk for all k ≥ 1. We prove this by induction on k.

• k = 1: Since G′ is a refinement of H0, Lemma 1 ensures the first claim.
• k → k + 1: Thanks to the fact that G′ is a refinement of Hk by induction, Lemma 1 ensures the first claim.

From the fact that G′ is a refinement of any Hk , we conclude that G′ = Hk whenever Hk is an ε-FDE (ε-BDE) partition. 
Since Hk is a refinement of Hk−1 for all k ≥ 1 and S is finite, we can fix the smallest k ≥ 1 such that Hk = Hk−1. This, in 
turn, implies that Hk−1 =Hk = S/(∼χ∗

Hk−1,ε ∩ ∼Hk−1 ). �
Example 5. We decided to apply the Algorithm 1 on the running example. For this purpose we set an ε = 0.02 and the 
initial partition G = {x1, x2, x3}. In the first iteration the partition was split in two blocks H = {{x1}, {x2, x3}}. In the next 
iteration H can not be split anymore and the algorithm return it as the 0.02-BDE partition.

We now study how efficiently the conditions for approximate differential equivalence can be computed. Since the re-
ductions techniques are concerned with the coefficients of the polynomials, we define the complexity in terms of ℘H

i, j and 
℘H

i, j . In the case of ε-FDE, we estimate an exponential complexity due to term replacement. Suppose to have the PIVP 
ẋ1 = xk

2, ̇x2 = xk
1, for some k > 0, then, for H = {{x1, x2}}, the term q1[x1/s(x1 + x2), x2/(1 − s)(x1 + x2)] will be of size O(2k).

The ε-BDE case is different because the conditions involve a difference between polynomials terms with no term rewrit-
ings. This discussion can be formalized as follows.
6
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Theorem 3. There exists a polynomial 	 such that, under the assumptions of Theorem 2, the number of steps done by Algorithm 1 is 
O

(
	(2d · p)

)
if χ = F and O

(
	(p)

)
if χ = B, respectively, where d is the maximum degree of the polynomial and p is the number of 

monomials present in the PIVP.

Proof. Follows from the proof of Theorem 2. �
As already mentioned, the approximate differential equivalences are a relaxation of the exact counterparts; for this reason 

the above results provide a complexity bound for a subclass of ODE considered in [11].
In practice, d is not large. Indeed, in the numerical evaluations in Section 5, d was no larger than two. For instance, in 

a PIVP of a chemical reaction network with mass-action kinetics, one typically has d = 2 because, in nature, at most two 
species interact in a given reaction [47].

For the sake of completeness, we take into account another complexity measure. Another natural definition could be the 
maximal distance between derivatives “semantically”, i.e., under all possible evaluations within a given domain of interest. 
For example, consider the PIVP ẋ1 = x3

1 − x2, ẋ2 = x1 − x3
2. Establishing that {{x1, x2}} is an ε-BDE would require checking 

that the difference between the derivatives satisfies

|ẋ1 − ẋ2| = |x3
1 − x1 + x3

2 − x2| ≤ ε, (5)

for all 0 ≤ x1, x2 ≤ C and for some finite bound C > 0. Since this question is in general equivalent to solving a non-convex 
optimization problem, we infer that the problem is NP-hard [48].

Despite this, if a partition H satisfies constraints like (5) with respect to some ε > 0, then we can prove that H is 
an O(ε)-FDE/BDE, and vice versa. The basic idea is to observe that a polynomial is the zero function if and only if its 
coefficients are all zero. In this sense, our techniques defined through the coefficients of the polynomials correspond to 
check if (5) holds.

Given a partition of variables that represents an approximate differential equivalence, we construct a reference PIVP by 
finding a “perturbation” of the original PIVP — i.e., a modification of the initial condition σ and the coefficients present 
in q1, . . . , qn — which ensures that partition becomes an exact differential equivalence. On this reference PIVP one can use 
the quotienting algorithms for FDE/BDE developed in [11] (and not restated here formally for brevity). Therefore, the as-
obtained quotient represents an approximate reduction of the original PIVP. We obtain the desired perturbation by treating 
the original initial conditions and polynomial coefficients uniformly as initial conditions on an extended PIVP where every 
coefficient is parameterized and turned into a new ODE variable.

The perturbation to use in order to achieve this result can be found by considering an extended PIVP where every 
coefficient and initial condition is parameterized and turned in a new ODE variable.

Definition 5. The parameterization of a polynomial qi in normal form with variables S is denoted by q̂i and arises from qi

by replacing, for each α ∈NS
0 , the constant c(qi, xα) with the parameter c(q̂i, xα).

Example 6. The polynomials q2 = 1.99x1 − x2 and q3 = 2.01x1 − x3 from Example 1 give rise to the parameterized polyno-
mials q̂2 = c(q̂2, x1)x1 + c(q̂2, x2)x2 and q̂3 = c(q̂3, x1)x1 + c(q̂2, x3)x3, respectively.

Definition 6 (Extended PIVP). For a PIVP P with variables S , set � = {c(q̂i, xα) | 1 ≤ i ≤ n, α ∈ NS
0 }. Its extended version 

P̂ has variables S ∪ � and is given by ẋi = q̂i and ċ(q̂i, xα) = 0, where xi ∈ S and α ∈ NS
0 . For a given σ̂ ∈ RS∪� , let 

P̂(σ̂ ) denote the PIVP which arises from P̂ by replacing each v ∈ S ∪ � by the corresponding real value σ(v) ∈R in P̂ . In 
particular, let σ̂0 ∈RS∪� be such that P(σ ) = P̂(σ̂0).

Example 7. If P is the PIVP from Example 1, its extended version P̂ is

ẋ1 = c(q̂1, x1)x1 + c(q̂1, x2)x2 + c(q̂1, x3)x3,

ċ(q̂1, xi) = 0, i = 1,2,3,

ẋ2 = c(q̂2, x1)x1 + c(q̂2, x2)x2,

ċ(q̂2, xi) = 0, i = 1,2,3,

ẋ3 = c(q̂3, x1)x1 + c(q̂3, x2)x2,

ċ(q̂3, xi) = 0, i = 1,2,3.

The corresponding σ̂0 satisfies σ̂0(xi) = σ(xi) for 1 ≤ i ≤ 3 and
7
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σ̂0
(
c(q̂1, x1)

) = −4.00, σ̂0
(
c(q̂1, x2)

) = 1.00,

σ̂0
(
c(q̂1, x3)

) = 1.00, σ̂0
(
c(q̂2, x1)

) = 1.99,

σ̂0
(
c(q̂2, x2)

) = −1.00, σ̂0
(
c(q̂3, x1)

) = 2.01,

σ̂0
(
c(q̂3, x2)

) = −1.00.

The following is needed for the definition of the reference PIVP.

Definition 7. Given constant free polynomial ℘̂ (i.e., such that ℘̂(0) = 0) and � ⊆ S ∪ � ∪ {s}, let t(℘̂, xα, �) denote the 
coefficient term of xα in N (℘̂, �), where α ∈ N�

0 and N (℘̂, �) is the normal form of ℘̂ where variables outside � are 
treated as parameters.

Example 8. With q̂2 and q̂3 as in Example 6 and � = {x1, x2, x3}, the normal form N (q̂2 − q̂3, �) is given by (c(q̂2, x1) −
c(q̂3, x1))x1 + (c(q̂2, x2) − c(q̂3, x2))x2, while t(q̂2 − q̂3, x1, �) = c(q̂2, x1) − c(q̂3, x1).

For an H to be an FDE/BDE, the coefficients of certain polynomials need to coincide or, alternatively, the corresponding 
differences to be zero. These constraints can be described by linear equations introduced next.

Definition 8. Given a PIVP with variables S and an ε-FDE partition H of S , the set of linear constraints of H is given by
{
t(℘̃H

i, j, xα,S ∪ {s}) = 0 | α ∈NS∪{s}
0 , H ∈ H and xi ∼H x j

}
(6)

with ℘̃H
i, j = ∑

xk∈H q̂k −∑
xk∈H q̂k[xi/s(xi + x j), x j/(1 − s)(xi + x j)]. Instead, if H is an ε-BDE partition of S , the corresponding 

set of linear constraints is
{
t(℘̃H

i, j, xα,S) = 0 | α ∈NS
0 , xi ∼H x j

}∪{
xi j − xi j+1 = 0 | 1 ≤ j ≤ k − 1 and {xi1 , . . . , xik } ∈ S/∼H

}
, (7)

where ℘̃H
i, j = (q̂i − q̂ j)

[
xH ′,1

/
xH ′ , . . . , xH ′,|H ′|

/
xH ′ :H ′ ∈H]

.

We next showcase the linear equations on our example.

Example 9. From Example 2, we know that H = {{x1}, {x2, x3}} is a 0.02-BDE partition of the PIVP (1). The set of linear 
constraints underlying H is given by c(q̂2, x1) − c(q̂3, x1) = 0 and x2 − x3 = 0.

Remark 1. In line with its exact counterpart, an ε-BDE is “useful” under the further constraint that related variables have 
the same initial conditions in the reference model, as a necessary condition for having equal solutions at all time points. 
This translates into adding the constraints in (7) that perturbed initial conditions of related variables are equal. This leads, 
for instance, to the constraint x2 − x3 = 0 in the running example. For ε-FDE, instead, only constraints on the parameters �
are made.

Theorem 4. Given a PIVP P with variables S , an ε-FDE/BDE partition H and a configuration σ̂ ∈RS∪� that satisfies (6)/(7), it holds 
that H is an FDE/BDE of P̂(σ̂ ).

Proof. Fix a partition H and consider the system of equations (6)
{
t(℘̃H

i, j, xα,S ∪ {s}) = 0 | α ∈NS∪{s}
0 , H ∈ H and xi ∼H x j

}
By definition, t(℘̃H

i, j, x
α, S ∪ {s}) = 0 states that the coefficient of monomial xα in polynomial ℘̃H

i, j is zero. Likewise, by 
definition, H is an FDE if and only if all polynomials ℘̃H

i, j , where xi ∼H x j , are zero. Since a polynomial is zero if and only 
if all its coefficients are zero, we thus obtain that any choice of parameters satisfying the above set of equations yields an 
FDE. The proof for BDE proceeds along the same lines. �

In general, an approximate quotient is not unique; indeed, the linear system of constraints from Theorem 4 is underde-
termined. Here, we fix one candidate perturbation by assuming that nearby initial conditions yield nearby trajectories. This 
fact is asymptotically true due to Gronwall’s inequality, as mentioned in Section 1. For this purpose, we set the Euclidian 
norm as objective function in a linear system with the constraints defined by 4.

σ̂∗ = argmin
σ̂ :Eq. (6)/(7) holds

‖σ̂ − σ̂0‖2 (8)

This yields a convex quadratic program that can be solved in polynomial time [26].
8
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Fig. 1. Given a PIVP P , a partition G of S , and an ε > 0, the coarsest ε-FDE/BDE partition H that refines G is constructed. Afterwards, the solution σ̂∗ of 
the optimization problem (8) is computed in Fig. 1(a). This allows to compute the ε-FDE/BDE quotient P̂(σ̂∗) of H. With this, λ and δ from Theorem 8
are calculated. In the case the distance between σ̂0 and σ̂∗ does not exceed δ, the tight bounds of Theorem 8 can be applied and relate the trajectories of 
P̂(σ̂∗) and P̂(σ̂0) = P(σ ), as depicted in Fig. 1(b).

Example 10. Let us continue Example 9 and assume that σ(x2) = σ(x3). In such a case, it can be easily seen that σ̂∗ and σ̂0

satisfy σ̂∗(c(q̂2, x1)) = σ̂∗(c(q̂3, x1)) =
(
σ̂0(c(q̂2, x1)) + σ̂0(c(q̂3, x1))

)
/2 = 2.00 and coincide on all other parameters. In other 

words, the closest PIVP that enjoys an exact BDE relating x2 and x3 is given, as expected, by perturbing the coefficients 1.99
and 2.01 of (1) to their average value, yielding:

ẋ1 = −4.00x1 + x2 + x3

ẋ2 = 2.00x1 − x2

ẋ3 = 2.00x1 − x3

The above discussions are summarized in the following.

Theorem 5. Given a PIVP, ε ≥ 0, and an ε-FDE/BDE partition H, the solution of (8) exists and can be computed in polynomial time.

Proof. Follows from Theorem 3, Theorem 4 and [26]. �
The solution of the optimization problem (8) stated in Theorem 5 is informally depicted in Fig. 1a.
The reference PIVP is the extended, exactly reducible PIVP with the optimum initial condition σ̂∗ , i.e., P̂(σ̂∗). Its ODE 

solution is called the reference trajectory.

4. Error bounds

The objective of this section is to provide a formal bound between the solution of the original PIVP and the reference 
one. For this, we consider two parameters δ > 0 and λ > 0. The former corresponds to the size of a ball around the initial 
condition σ̂∗ of the reference PIVP; the latter is an amplifier that relates the maximum distance between trajectories to the 
distance between the initial conditions. Every time the initial condition of the original PIVP P̂(σ̂0) stays inside the δ ball it 
is possible to show that the maximum error is limited by a formal bound affected by λ. This idea is visualized in Fig. 1(b).

The next definitions and theorems build the theory necessary to formalize this idea. We start recalling the notion of 
Jacobian matrix.

Definition 9. Given an extended PIVP with variables S ∪ �, the entries of the Jacobian matrix A = (Ai, j)xi ,x j∈S∪� are given 
by Ai, j = ∂x j q̂i , where ∂x denotes the partial derivative with respect to x.

Let A(t) ∈ RS∪�×S∪� denote the Jacobian obtained by plugging in the reference trajectory xσ̂∗ (t). We will need the 
following result from the theory of ODEs.

Theorem 6. There exists a family of matrices �(t0, t1), with 0 ≤ t0 ≤ t1 ≤ τ̂ , such that the solution of ẏ(t) = A(t)y(t) + u(t), where 
y(t0) = y0 and u is continuous, is given by y(t) = �(t0, t)y0 + ∫ t

t0
�(s, t)u(s)ds for all 0 ≤ t0 ≤ t ≤ τ̂ .

Proof. See [49, Theorem 1, Section 1.10]. �
Fix some arbitrary σ̂1 ∈RS∪� and let P̂ be given by ẋ = q̂(x). Using Taylor’s expansion of q̂ at point xσ̂∗ (s), it holds that 

q̂(xσ̂1 (s)) = q̂(xσ̂∗ (s)) + A(s)(xσ̂1 (s) − xσ̂∗ (s)) + r(s, xσ̂1 (s) − xσ̂∗ (s)), where r is the remainder function which accounts for the 
higher order terms of q̂ at point xσ̂∗ (s). This implies that
9
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(ẋσ̂1(t) − ẋσ̂∗(t)) = A(t)(xσ̂1(t) − xσ̂∗(t)) + r(s, xσ̂1(t) − xσ̂∗(t)),

meaning that xσ̂1 −xσ̂∗ can be interpreted as a solution of the linear ODE system from Theorem 6 with input function u(s) =
r(s, xσ̂1 (s) − xσ̂∗ (s)). Let �x denote the solution of �ẋ(t) = A(t)�x(t) with �x(0) = xσ̂1 (0) − xσ̂∗ (0). The above discussion 
and Theorem 6 then ensure that the auxiliary function z = xσ̂1 − xσ̂∗ −�x satisfies z(t) = �(0, t)z(0) + ∫ t

0 �(s, t)r(s, xσ̂1 (s) −
xσ̂∗ (s))ds. With z(0) = 0, we thus get the following.

Theorem 7. With the notation from above, it holds that ‖xσ̂1(t) − xσ̂∗ (t)‖ ≤ ‖�x(t)‖ + ‖∫ t
0 �(s, t) · (r(s, xσ̂1 (s) − xσ̂∗ (s))

)
ds‖.

Since �x ≡ xσ̂1 − xσ̂∗ only if the remainder function r is zero (that is, only if the original ODE system is linear), we call 
�x the linearization of the true difference function xσ̂1 − xσ̂∗ . With this, we are in a position to show Theorem 8 and 9.

Theorem 8. Consider an extended PIVP P̂ with variables S ∪ � and define λ0 = max0≤t≤τ̂ ‖�(0, t)‖ and λ1 = max
0≤t0≤t1≤τ̂

‖�(t0, t1)‖. 

Further, define the remainder function r : [0; τ̂ ] ×RS∪� →RS∪� via

r(t, x − xσ̂∗(t)) = q̂(x) − q̂(xσ̂∗(t)) − A(t)(x − xσ̂∗(t))

and let 0 ≤ d2, d3, . . . be such that ‖r(t, y)‖ ≤ ∑deg(P̂ )

k=2 dk‖y‖k for all y ∈RS∪� and 0 ≤ t ≤ τ̂ . Then, with λ = 2λ0 , for any xσ̂1(0) ∈
RS∪� , it holds that

‖xσ̂1(0) − xσ̂∗(0)‖ ≤ δ ⇒ max
0≤t≤τ̂

‖xσ̂1(t) − xσ̂∗(t)‖ ≤

λ‖xσ̂1(0) − xσ̂∗(0)‖
whenever δ > 0 satisfies 

∑deg(P̂ )

k=2 dk(2λ0δ)
k−1 ≤ (2λ1τ̂ )−1 .

Proof. It can be efficiently checked whether P(σ̂∗) exhibits singularities on [0; T ] by using a numerical ODE solver. Hence, 
if P(σ̂∗) is singularity free, the bound which is to be proven next ensures that P(σ̂1) is singularity free as long as ‖xσ̂1 (0) −
xσ̂∗ (0)‖ ≤ δ.

Let δ = ‖xσ̂1 (0) − xσ̂∗ (0)‖ satisfy 
∑deg(P̂ )

k=2 dkδ
k−1+ < (2λ1τ̂ )−1 for δ+ = 2λ0δ. Since δ < δ+ , it holds that

0 < τ(δ) = inf{0 ≤ t ≤ τ̂ | ‖xσ̂1(t) − xσ̂∗(t)‖ ≥ δ+},
where inf∅ := ∞ as usual. With this, it holds that

∥∥∥∥∥∥
t∫

0

�(s, t)r(s, xσ̂1(s) − xσ̂∗(s))ds

∥∥∥∥∥∥ ≤ λ1t
deg(P̂)∑

k=2

dkδ
k+

for all t ≤ min{τ (δ), τ̂ }. Hence, Theorem 9 and 7 yield

‖xσ̂1(t) − xσ̂∗(t)‖ ≤ λ0δ + λ1τ̂

deg(P̂)∑
k=2

dkδ
k+ =

δ+
2

+ λ1τ̂

deg(P̂)∑
k=2

dkδ
k+ < δ+

for all t ≤ min{τ (δ), τ̂ }, where the last inequality follows from straightforward algebraic manipulation. This implies that 
τ (δ) = ∞, thus showing that ‖xσ̂1 (t) − xσ̂∗ (t)‖ < 2λ0‖xσ̂1 (0) − xσ̂∗ (0)‖ for all 0 ≤ t ≤ τ̂ because δ+ = 2λ0δ. �

Through the Theorem 8 we show that there exists a formal bound proportional to λ in terms of the initial perturbation 
if this is smaller than δ.

We wish to point out that the maximal δ satisfying 
∑deg(P̂ )

k=2 dk(2λ0δ)
k−1 ≤ (2λ1τ̂ )−1 is a root of a polynomial in one 

variable and thus can be efficiently approximated from below via Newton’s method. Instead, the assumption ‖r(s, y)‖ ≤∑deg(P̂ )

k=2 dk‖y‖k on the remainder function r states essentially that, for any k ≥ 2, the sum of all k-th order derivatives of r
is bounded by dk along the reference trajectory xσ̂∗ .

The previous Theorem could be more precise in the special case of linear systems (i.e., deg(P̂) = 1) as discussed in [50]. 
In the next result we consider this context and we show that the amplifier could be halved, this is because Theorem 9 need 
10
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not estimate nonlinear terms present in remainder function r. More importantly, Theorem 9 shows that the amplifier of 
Theorem 8 cannot be substantially improved.

Theorem 9. If an extended PIVP P̂ satisfies deg(P̂) = 1 and λ = 2λ0 , it holds that

max
0≤t≤τ̂

‖xσ̂1(t) − xσ̂∗(t)‖ ≤ λ

2
‖xσ̂1(0) − xσ̂∗(0)‖

for any xσ̂1 (0) ∈ RS∪� . The bound is tight in the sense that there exist 0 ≤ t ≤ τ̂ and xσ̂1 (0) ∈ RS∪� such that ‖xσ̂1(t) − xσ̂∗ (t)‖ =
λ
2 ‖xσ̂1 (0) − xσ̂∗ (0)‖.

Proof. As pointed out above, in the case of deg(P̂) = 1, it holds that r ≡ 0. This and Theorem 6 imply xσ̂1 (t) − xσ̂∗ (t) =
�x(t) = �(0, t)�x(0) = �(0, t)(xσ̂1 (0) − xσ̂∗ (0)) for any xσ̂1 (0) ∈ RS∪� and 0 ≤ t ≤ τ̂ , thus yielding the first claim. The 
second claim, instead, follows by noting that

max
0≤t≤τ̂

max
‖�x(0)‖=1

‖�x(t)‖ = max
0≤t≤τ̂

max
‖�x(0)‖=1

‖�(0, t)�x(0)‖ = max
0≤t≤τ̂

‖�(0, t)‖ = λ0 �

Remark 2. We note that λ0, λ1 can be estimated efficiently. Indeed, let exi ∈ RS∪� be the xi -th unit vector in RS∪� , i.e., 
exi (x j) = δi, j where δi, j is the Kronecker delta. Then, if y(t0) = exi , Theorem 6 implies y(t1) = �(t0, t1)exi . Since �(0, t1)exi

is the xi -column of �(0, t1) and �(t0, t1) = �(0, t1)�(0, t0)
−1, this shows that the matrices �(t0, t1) can be computed by 

solving |S ∪ �| instances of the linear ODE system from Theorem 6 up to time τ̂ .

By calculating a bound L > 0 on max0≤t≤τ̂ ‖A(t)‖ and by computing the matrices �(ti, t j) for all time points tk underly-
ing a fixed discretization step �t > 0 of [0; τ̂ ], the following can be shown.

Lemma 2. Together with λ+
0 = maxi‖�(0, ti)‖ and λ+

1 = maxi≤ j‖�(ti, t j)‖, it holds that λ0 ≤ λ+
0 eL�t and λ1 ≤ λ+

1 [1 + L�t(eL�t +
1)].

Proof. Fix 0 ≤ s ≤ t ≤ τ̂ and assume that |s − t| ≤ �. Since (∂t�)(s, t) = A(t)�(s, t), it can be shown (see Lemma 1 and 2
in [44]) that ‖�(s, t)‖ ≤ eL(t−s) ≤ eL�t and the claim holds true. Using this, it can be also seen that

‖�(0, t)‖ = ‖�(ti, t)�(0, ti)‖ ≤ λ+
0 eL�t

for some ti ≤ t such that t − ti ≤ �t . Let us now assume that |s − t| > �t . Then there exist ti ≤ t j such that s ≤ ti ≤ t j ≤ t
with ti − s, t − t j ≤ �. With this it holds that

‖�(ti, t j) − �(s, t)‖ ≤ ‖�(ti, t j) − �(ti, t)‖ + ‖�(ti, t) − �(s, t)‖
The bound on λ1 then follows by noting that

‖�(ti, t j) − �(ti, t)‖ = ‖�(ti, t j) − �(t j, t)�(ti, t j)‖
= ‖(�(t j, t j) − �(t j, t))�(ti, t j)‖
≤ λ+

1 L�t

and

‖�(ti, t) − �(s, t)‖ = ‖�(ti, t) − �(ti, t)�(s, ti)‖
= ‖�(ti, t)(�(s, s) − �(s, ti))‖
= ‖�(t j, t)�(ti, t j)(�(s, s) − �(s, ti))‖
≤ eL�tλ+

1 L�t. �
The next result simplifies the constraints on δ from Theorem 8 if deg(P̂) ≤ 3.

Lemma 3. In the case where deg(P̂) ≤ 3, the constraint on δ of Theorem 8 simplifies to δ ≤
[

2τ̂ λ0λ1

(
d2 +

√
d2

2 + 2d3
)]−1

.

λ1 τ̂

11
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Proof. For deg(P̂) = 3, the constraint writes as d2(2λ0δ)
2 + d3(2λ0δ)

1 ≤ (2λ1τ̂ )−1. Since the left-hand side is monotonic 
increasing in δ, it thus suffices to solve the quadratic equation d2(2λ0δ)

2 + d3(2λ0δ)
1 = (2λ1τ̂ )−1. The following formula, 

known as Muller’s variant, can be readily checked to solve a quadratic equation ax2 + bx + c:

x = −2c

b ± √
b2 − 4ac

Matching the coefficients gives the claim. The claim for deg(P̂) = 2, instead, is trivial. �
The above lemma applies, for instance, to most biochemical systems, as discussed in Section 3. The next result, instead, 

allows for an efficient estimation of dk , with 2 ≤ k ≤ deg(P̂).

Lemma 4. Given an extended PIVP P̂ with variables S ∪ �, let #k(q̂i) be the number of degree k monomials in N (q̂i) and D(q̂i, σ̂ )

the largest coefficient of N (q̂i) for configuration σ̂ ∈ RS∪� . With C = max0≤t≤τ̂ ‖xσ̂∗ (t)‖, M = maxxi∈S maxk≥2 #k(q̂i) and D =
maxxi∈S D(q̂i, σ̂∗), it suffices to set dk in Theorem 8 to Cdeg(P̂ )−k M D.

Proof. Fix some xi ∈ S ∪ � and 0 ≤ s ≤ τ̂ . Then, the multidimensional Taylor expansion of q̂i at point xs := xσ̂∗ (s) is given by

q̂i(x) =
∑

|α|≤deg(P̂)

(Dαq̂i)(xs)

α! (x − xs)
α,

where Dα = ∂ |α|∏
xi∈S ∂x

αxi
i

is the standard compact notation of the partial derivative underlying the multi-index α ∈ NS∪�
0 with α! =

∏
xi∈S∪� αxi ! and |α| = ∑

xi∈S αxi . Using the concept of Jacobi matrix, the above formula rewrites to

q̂i(x) = q̂i(xs) + eT
xi

A(xs)(x − xs) +
∑

2≤|α|≤deg(P̂)

(Dαq̂i)(xs)

α! (x − xs)
α (9)

Since this shows that

ri(s, y) =
∑

2≤|α|≤deg(P̂)

(Dαq̂i)(xs)

α! yα,

a straightforward estimation of the terms yields the claim. �
For the case of linear systems whose parameters are subject to perturbation, instead, the following lemma can be applied. 

It provides a sharper estimate on d2 but comes at the price of more involved computation.

Lemma 5. Given an extended PIVP P̂ with variables S ∪�, the Hessian matrix Hk = (Hk
i, j)xi ,x j of q̂k is given by Hk

i, j = ∂xi ∂x j q̂k . With 
this, d2 can be chosen as d2 = 1

2 · maxxi∈S∪� max0≤t≤τ̂ ‖Hi(xσ̂∗ (t))‖.

Proof. Using the concept of Hessian matrix, (9) from the proof of Lemma 4 can be rewritten into

q̂i(x) = q̂i(xs) + eT
xi

A(xs)(x − xs) + 1
2 (x − xs)

T Hi(xs)(x − xs) +
∑

|α|=3

(Dαq̂i)(xs)

α! (x − xs)
α,

thus readily implying the claim. �
Example 11. Since deg(P̂) = 2 in Example 7, coefficients d3, d4, . . . are zero and we only need to bound d2. Moreover, the 
constraint in Theorem 8 simplifies to δ ≤ (4τ̂ λ0λ1d2)

−1 thanks to Lemma 3. By applying Lemma 4, instead, we see that it 
suffices to choose d2 = 2.00 because M = 2.00 and D = 1.00. In the case of τ̂ = 3.00, we thus get λ0 = λ1 = 1.40 which 
yields δ ≤ 0.02.

5. Evaluation

In this section let show the application of ε-BDE (FDE) on real case studies. More in detail, we take into account three 
different examples: an electrical network, a protein interaction network and a polymerization model. For every model we 
provide the results achieved applying the reductions implemented in the ERODE tool and we compare them against CORA. 
The results reported were computed on a laptop with Windows 10 64 bits over an actual Intel Core i7 machine with 16 GB 
of RAM.
12
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Fig. 2. H-tree network adapted from [29].

Table 1
Nominal parameters of elec-
tronic components at differ-
ent depths i.

i R∗
i (m�) C∗

i (fF)

1 3.19 0.280
2 6.37 0.300
3 12.75 0.130
4 25.50 0.140
5 50.00 0.070
6 100.00 0.070

5.1. Electrical network

We consider a simplified (inductance free) version of a power distribution electrical network from [29], arranged as a 
tree called H-tree (Fig. 2). We let N be the depth of the tree and denote the resistances and the capacitances at depth i by 
Ri,k and Ci,k , respectively. The source voltage is vs , here assumed to be constant, vs = 2.0V. Then, the voltage across Ci,k , 
denoted by vi,k , obeys the affine ODE

v̇1,1 = v S − v1,1

R1,1C1,1
− v1,1 − v2,1

R2,1C1,1
− v1,1 − v2,2

R2,2C1,1
, (10)

v̇ i,k = vi−1,l − vi,k

Ri,kCi,k
,

where 1 ≤ i ≤ N , k = 1, . . . , 2i−1, and l = �k/2�, where �·� denotes the ceil function. Here we considered networks with 
depth up to N = 6. For depths i ≤ 4, the nominal parameter values R∗

i and C∗
i were taken from [29]; for i ≥ 5, instead, we 

extrapolated them. The parameters are summarized in Table 1.
In [29] the authors show that when the values of resistors and capacitors of any depth are equal, i.e., Ri,· ≡ R∗

i and 
Ci,· ≡ C∗

i then the network is symmetric. That is, the voltages at the capacitors in any level are equal at all time points. 
Indeed, 

{{vi,k | 1 ≤ k ≤ 2i−1} | 1 ≤ i ≤ N
}

is an exact BDE partition (with N equivalence classes).
We now study the robustness of the symmetry under the realistic assumption that resistances and capacitances are only 

approximately equal. In particular, we test whether it is possible to explain quasi-symmetries when the parameters have 
tolerance η = 0.01%. This corresponds to a practical situation when components or measurements parameters enjoy high 
accuracy.

We considered networks of different size by varying the maximum depth N from 2 to 6. For each size, we built an ODE 
models by sampling values for Ri,k and Ci,k uniformly at random within η percent from their nominal values.

To each model we applied the ε-BDE reduction algorithm; choosing ε = 6.00E-4, it returned a quotient corresponding to 
a perfectly symmetrical case. We computed the values of δ and λ over a time horizon of 7 time units. This was chosen as 
a representative time point, for any N , of the transient state of the network (to account for the fact that, typically, circuits 
are analyzed in the time domain for transient analysis only).
13



L. Cardelli, G. Squillace, M. Tribastone et al. Journal of Logical and Algebraic Methods in Programming 134 (2023) 100876
Table 2
H-tree model results. The Bound column in the ε-BDE side refers to the 
quantity λ ‖·‖ .

ε-BDE CORA

N Time (s) δ ‖·‖ Bound Time (s) Bound

2 7.06E-1 7.95E–4 6.64E–5 3.59E–4 2.05E+1 3.90E–3
3 1.33E+0 6.34E–4 6.70E–5 4.20E–4 5.60E+1 3.00E–3
4 2.62E+0 4.71E–4 8.79E–5 6.84E–4 3.04E+2 2.30E–3
5 9.20E+0 4.71E–4 1.27E–4 9.88E–4 4.02E+3 1.60E–3
6 2.57E+1 4.71E–4 1.58E–4 1.23E–3 —

The presence of uncertain parameters required us to transform the originally affine system (10) into a polynomial system 
of degree two (by substituting each 1/(Ri,kC j,l) with a corresponding new state variable) with 2N+1 states. Since this 
required nonlinear over-approximation techniques, it ruled out standard over-approximation approaches for linear systems.

In Table 2 we present the results for the random models generated. The runtimes (second column) refer to the com-
putation cost of the λ-δ pair. In all cases, δ turned out to be larger than the distance between the original model and its 
quotient ‖σ̂0 − σ̂∗‖ = ‖xσ̂0 (0) − xσ̂∗ (0)‖ (shown in column ‖·‖). This demonstrates that the 0.01% tolerance can be formally 
explained by approximate differential equivalence, indeed the precondition of Theorem 8 hold and we can provide a formal 
bound.

For CORA we set time step equal to 0.01 as this led to tight enough bounds. For our approach, instead, we used time 
step 0.023 because this ensured tight approximations of λ0 and λ1 via Lemma 2. In all cases the time-out was set to 3 
hours.

The comparison results are also reported in Table 2. For a network of depth N , the over-approximations for CORA is 
reported as the maximal diameter of the flowpipe underlying v N,1 across all time points. As such, it can be compared to 
the product λ · ‖σ̂0 − σ̂∗‖ given by our bound, which is also explicitly reported in the table for the sake of easy comparability 
(column Bound in Table 2).

CORA reported tight bounds, but ours are better, approximately 1 order of magnitude less. CORA failed to compute the 
symbolic Jacobian matrices for N > 5. Our approach, instead, reaches good performance also for N = 6, not only, we wish 
to point out that our algorithm naturally applies to parallelization. Indeed, its bottleneck is in the computation of the set of 
linear ODE systems discussed in Remark 2, which can be trivially solved independently from each other.

5.2. Polymerization model

In chemistry, polymerization is the process by which basic compounds, called monomers, react and bind to form chains 
of several units. A prototypical CRN for modeling such situation in the case of homo-polymerization (when monomers are 
of the same species), may be as follows: A + A → A A, A A + A → A A A, and so on until the polymer grows so large that 
other phenomena will cause instability, preventing further binding of monomers. To allow for an exact quotient, the kinetic 
rates are typically set equally in all reactions. However this assumption is challenged by measurements, explained by the 
fact that the geometrical conformation of polymers of different length affects reactivity [51].

Here, we consider the polymerization scenario taken from [51, Chapter 7] illustrating the formation of polycyclic aromatic 
hydrocarbons in flame combustion. The CRN describes the growth of a molecule with i aromatic rings, denoted by the formal 
chemical species Ai , according to the infinite reaction scheme

Ai + H
αi−→Aĩ + H2 (i,1) (11)

Aĩ + H2
αi−→Ai + H (i,1)

Aĩ + C2H2
βi−→AiCHCH˜ (i,2) (12)

AiCHCH˜ β i−→Aĩ + C2H2 (i,2)

AiCHCH˜+ C2H2
γi−→Ai+1 + H (i,3) . . . (i + 1,1)

Here Aĩ is an aromatic radical formed by H abstraction from Ai , and AiCHCH ˜ is a radical formed by adding C2H2 to Aĩ . 
The reactions (i, 1) and (i, 1), and similarly (i, 2) and (i, 2), model reversible mechanisms. In this section we consider finite 
truncations of the previous model, like the following one.

A1 + H
α1−→A1̃ + H2 (1,1) (13)

A2 + H
α2−→A2̃ + H2 (2,1)

A1̃ + H2
α1−→A1 + H (1,1) (14)
14
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Table 3
Polymerization models results. The Bound column in the ε-BDE side refers 
to the quantity λ ‖·‖ .

ε-BDE CORA

N Time (s) δ ‖·‖ Bound Time (s) Bound

2 4.80 4.21E–2 1.50E–3 3.02E–3 21.54 1.50E–2
3 6.75 2.14E–2 4.00E–3 8.07E–3 48.60 1.50E–2
4 9.80 1.29E–2 4.20E–3 8.44E–3 81.27 1.50E–2
5 11.97 8.60E–3 4.60E–3 9.32E–3 231.81 1.50E–2
6 14.10 6.20E–3 5.80E–3 1.17E–2 432.47 1.50E–2

A2̃ + H2
α2−→A2 + H (2,1)

A1̃ + C2H2
β1−→A1CHCH˜ (1,2)

A2̃ + C2H2
β2−→A2CHCH˜ (2,2) (15)

A1CHCH˜ β1−→A1̃ + C2H2 (1,2)

A2CHCH˜ β2−→A2̃ + C2H2 (2,2) (16)

A1CHCH˜+ C2H2
γ1−→A2 + H (1,3) (17)

A2CHCH˜+ C2H2
γ2−→A1 + H (2,3)

In this case we restrict only to the dynamics of polymers up to length 2 (i.e., with i ∈ {1, 2}), and redirect the flux originally 
going in A3 to A1, see reaction (2, 3). Intuitively, this mimics the fact that polymers of length 3 become unstable due to 
their length. Let define N the length of the polymers, in this section we take into account three different truncation with N
from 2 to 6. For sake of simplicity, the set-up of the experiments is explained below only for the model with N equals to 2, 
the discussion easily extends for the other models. A model with polymers of length N has 3 · (N + 1) ODEs.

In [51] it is assumed that the dynamics of polymers do not depend on their length. In our truncated model, this cor-
responds to setting perfectly symmetric values for rates, i.e., α1 = α2, β1 = β2, γ1 = γ2, α1 = α2, β1 = β2. Then, it can be 
shown (similarly to [51]) that xA1 and xA2 , xA1̃ and xA2̃ , and xA1CHCH ˜ and xA2CHCH ˜ are related by FDE.

We now consider a variant with approximately equal rates by perturbing the parameters of 0.1%, while we kept the 
reversed rates equal, i.e., α1 = α2 = 0.1 and β1 = β2 = 0.2. The perturbation was made around the values 1.0, 2.0 and 3.0 
respectively for α, β and γ .

To study the approximation error, we set the initial concentrations of H, H2, C2H2 and A1 to 5, with a 0.06 time horizon, 
which ensures a good part of the models’ dynamic.

The CORA bound corresponds to the maximal flowpipe diameter of molecule A1.
The experimental results are reported in Table 3. For each model the norm ‖·‖ is less than δ which imply the existence 

of the formal bound λ ‖·‖ computed in column Bound. The running times show that ε−FDE reduction is quicker than CORA, 
not only, also our formal bounds outperform the ones provided by CORA.

5.3. Protein interaction networks

We tested approximate differential equivalence on another example of polynomial ODE systems from computational 
biochemistry. Here a recurring case is the dynamics of complexes such as receptors and scaffold proteins, which have 
multiple binding domains (e.g., [52,53]). Let us consider a prototypical situation where a molecule A has two independent 
binding sites to which molecule B can bind reversibly. We denote by A10 and A01 the species obtained when A and B are 
bound via the first or second binding site of A, respectively, while the other binding site is free. Instead, A11 denotes the 
complex obtained when A is bound to two molecules of B . This situation can be described using the following mass-action 
CRN:

A + B
kb1−−→ A10 A10

ku1−−→ A + B

A + B
kb2−−→ A01 A01

ku2−−→ A + B

A01 + B
kb1−−→ A11 A11

ku1−−→ B + A01

A10 + B
kb2−−→ A11 A11

ku2−−→ B + A10
15
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Table 4
Binding model: parameters and reduction results.

Rates of bindings Runtime (s)

N kb1 kb2 kb3 kb4 0.8-FDE 0.4-BDE |H|
2 10.0748 9.9864 — — 0.003 0.001 4
3 9.9174 10.0575 9.9740 — 0.010 0.001 5
4 10.0886 10.0226 9.9418 9.9505 0.078 0.002 6

Table 5
Results of ε-BDE and CORA for the model reported in Table 4. The horizon 
τ is equals to 8E-4. The Bound column in the ε-BDE side refers to the 
quantity λ ‖·‖ .

ε-BDE CORA

N Time (s) δ ‖·‖ Bound Time (s) Bound

2 4.02 2.00E–0 6.25E–2 1.30E–1 5.80 1.13E–1
3 6.69 5.19E–1 9.97E–2 2.00E–1 14.25 1.34E–1
4 11.35 1.22E–1 1.19E–1 2.40E–1 —

In the PIVP each species S will have an associated ODE ẋS = qS where qS is a degree-two polynomial, together with an 
initial condition xS (0) that gives its initial concentration. For instance, the first reaction contributes the monomial −kb1 xA xB

to the ODE of each reagent, i.e. xA and xB , and kb1 xA xB to the ODE of the product x10.
Many models in the literature assume perfectly symmetric binding sites, where the kinetic constants do not depend on 

which particular binding site is involved in the interaction (e.g., [54,55]). Mathematically, this is translated into assuming 
that kb1 = kb2 and ku1 = ku2 . At the ODE level, these perfect symmetries between the species A10 and A01 are captured by 
both FDE and BDE [46,11], as well as by domain-specific techniques [56,52,53]. However, it is well understood that in reality 
distinct binding sites will have different kinetic rates to account for their different conformation, or just for the ineluctable 
uncertainty introduced by difficulties in measuring such rates. Thus, the assumption of perfect symmetry can be seen as a 
mathematical convenience to simplify the description of a more heterogeneous real system. With approximate differential 
equivalences we can study how strong the assumption of perfect symmetry actually is.

We considered variants of this binding model by increasing the number of sites N of molecule A from 2 to 4, each 
site being involved in binding events with its own rate denoted by kbi ; for simplicity, instead, we assume that unbinding 
events have the same kinetic constant kui = 0.1 for every site i. The model with N binding sites has 2N + 1 ODEs. Similarly 
to the H-tree case study, the values of kbi were sampled uniformly in an interval around an arbitrarily fixed value of 10. 
The interval considers a 1% perturbation of the fixed value. In this way, the original model was always contained in the δ
neighborhood around the reference PIVP, where all binding rates then become equal to 10 by construction. In Table 4 let 
show the values for the model taken into account for experimental results.

Since distinct binding rates are used, none of the models can be reduced by FDE or BDE. Instead, we set ε = 0.8 and 
ε = 0.4 for ε-FDE and ε-BDE, respectively. With these, all models for 2 ≤ N ≤ 4 feature the same ε-FDE and ε-BDE coarsest 
partition (column |H| gives the number of blocks). This is similar to the exact counterpart where all the binding rates are 
equal. The fact that ε-BDE has much better runtime performance than ε-FDE backs the complexity result in Theorem 3.

We computed the bounds for the ε-BDE only. We set up the time horizon τ̂ equals to 8.0E–4, starting from an initial 
condition where the concentrations were always set to 20 for the free molecules A and B , and to zero for the other 
species. With this set-up, the values of δ were computed using Lemma 3. The results, together with the runtimes for these 
computations, are reported in Table 5. We find that δ decreases as the number of asymmetric binding sites increases; The 
results confirm that the δ neighborhood does contain the original model in all cases, consequently also in this case we can 
provide a formal bound for each model.

The comparison with CORA was performed similarly to the H-tree case studies. In particular, in all cases we used the time 
horizons τ̂ and we set time step equal to τ̂ /100 for CORA. For our approach, instead, in order to ensure tight approximations 
of λ0 and λ1 via Lemma 2 we used a time steps equal to 1E–6. The CORA bound was computed as the maximal flowpipe 
diameter for the value of species A across the time interval. In the models with N equals to 2 and 3 the CORA bounds are 
tighter. Despite this the ε-BDE provide good formal bounds in a smaller amount of time. In the last model CORA did not 
terminate its computation within the 3 hours timeout, instead our tool returns a good formal bound.

5.4. Mobile virus model

We consider a simplified mobile virus propagation model inspired by [57]. Here a region is divided into cells where 
the mobile virus can spread following an SI model [58]. The SI model describes the spread of an infection in a population 
composed of two kinds of individuals: susceptible (S) and infected (I). The former are the ones that can contract the 
virus, while the latter are the ones already infected. The proportion of infected grows according to the differential equation 
İ = β S I/N , where the parameter β is called infection rate.
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Table 6
Results of ε-BDE and CORA for the multiclass SI models. The Bound column in the 
ε-BDE side refers to the quantity λ ‖·‖ .

ε-BDE CORA

N τ̂ Time (s) δ ‖·‖ Bound Time (s) Bound

4 1.50 5.70E–1 3.80E–3 8.65E–4 1.89E–3 3.69E+1 1.68E–2
8 0.80 2.13E+0 2.80E–3 1.90E–3 4.52E–3 1.24E+3 4.17E–2
12 0.50 6.63E+0 2.40E–3 2.00E–3 5.18E–3 —

More in detail, we consider a multiclass SI model where each cell represents a class of the model. In this case, the 
individuals are mobile phones that infect each other through messages exchange. We can organize the cells in a network 
where nodes represent a SI model with Si susceptible and Ii infected phones. An edge from a node i to a node j has a 
weight that represents the cross-class infection rate βi j . The self loops represent the spreading of the disease within the 
cell.

We generate three fully connected networks with 4, 8, and 12 nodes. We split the nodes in two groups with different 
parameters. We set up the infection rate βi j equal to 1 for node i in the first group and equal to 2 for node i in the second 
group. In line with other case studies, we perturb these parameters of 0.1% around their fixed value. We expect to get a 
reduced model where the infected and susceptible belonging to the same group are lumped together. This corresponds to 
the following partition

{{S1, ..., S N
2
}, {S N

2 +1, ..., SN}, {I1, ..., I N
2
}, {I N

2 +1, ..., IN}}.
As initial conditions, we pick a proportion of the susceptible equal to 0.9 for the first group and 1.0 for the second. We 
set up different time horizons τ̂ for each network to ensure the system’s steady state. We chose a time step equal to 0.01 
for both CORA and ε-BDE. We reduce the model with ε = 5E–3. The CORA bound was computed as the maximal flowpipe 
diameter for the value of species S1 across the time interval.

In Table 6, we report the results for each network considered. Our approach provides Bounds one order of magnitude 
smaller than CORA. Increasing the dimension of the model, the number of parameters grows quickly. CORA goes out of 
memory for the model with 12 nodes, while we can compute the Bound in a small amount of time. The reduced model 
aggregates variables that are generated from the same group showing that our approach can lump similar equations con-
sidering a perturbation of their parameters.

6. Conclusion

Reasoning about quantitative properties approximately can represent an effective way of taming the complexity of real 
systems. Here we have considered ordinary differential equations (ODEs) with polynomial derivatives. We developed notions 
of equivalence as a relaxation of their exact counterparts, allowing the derivatives of related ODE variables to vary up to a 
desired tolerance. Our algorithmic approach can be useful to systematically discover quasi-symmetries in situations such as 
those presented in our case study. The evaluation section shows that our approach is complementary to established over-
approximation techniques such as CORA. Our approach handled better smaller uncertainties on larger models, while CORA 
handled better larger uncertainties on smaller models. In future work, it would be also possible to integrate other bounding 
techniques, such as [35] which lacks an automatic synthesis of a reference model but can offer a tradeoff between tightness 
of the bound and computation cost in its derivation.
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