
 

  

 

Aalborg Universitet

Codes from order domains

Andersen, Henning Ejnar

Publication date:
2005

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Andersen, H. E. (2005). Codes from order domains. Dept. of Matheamtical Science, Aalborg University.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: May 13, 2024

https://vbn.aau.dk/en/publications/67946130-9f92-11da-917e-000ea68e967b


Ph.D. Thesis

Codes from Order Domains

Koder baseret p̊a ordensomr̊ader

Henning E. Andersen

July 2005

�

Department of Mathematical Sciences
Aalborg University, Denmark





Preface

This thesis is the result of my Ph.D. study at Department of Mathematical Sciences,
Aalborg University, Denmark, conducted in the period from August 1st 2002 to July
31st 2005. The theme of this thesis is the construction of codes from order domains and
development of bounds on their minimum distances.

The thesis is in two parts. In Part A the basic theory of order domains and Gröbner
basis is introduced. Furthermore, Part A contains results from a study of Buchberger’s
algorithm and a case study of codes from the Suzuki curve constructed using order
domains.

Part B contains reproductions of the submitted papers [2] and [1]. The paper [2] is the
result of work done in cooperation with Associate Professor Olav Geil, Aalborg University,
Denmark.

Each of the papers in Part B are self-contained and can be read independently of Part A.
Thus the notation used in the included papers might differ slightly from the notation in
Part A where the notation from [8] (modified to my personal likings) is used.

Part of the work was done during spring 2004 while visiting Associate Professor Marc P.
C. Fossorier at Department of Electrical Engineering, University of Hawai’i at Manoa,
Honolulu.
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Summary

This thesis is in two parts. In Part A the basic theory of order domains and Gröbner
bases is introduced. Furthermore, Part A contains results from a study of Buchberger’s
algorithm and a case study of codes from the Suzuki curve constructed using order
domains.

Part B contains reproductions of the submitted papers [2] and [1]. The paper [2] is the
result of work done in cooperation with Associate Professor Olav Geil, Aalborg University,
Denmark.

Each of the papers in Part B are self-contained and can be read independently of Part A.
Thus the notation used in the included papers differ slightly from the notation in Part A
where the notation from [8] (modified to my personal likings) is used.

Summary of Part A

Chapter 2 gives a short introduction to the concept of an order function and an order
domain as introduced by Høholdt, van Lint and Pellikaan in [21] and [20]. Furthermore,
it contains a brief introduction to Gröbner basis theory and the construction of order
domains using factor rings Fq[x1, x2, . . . , xm]/I, where I ⊂ Fq[x1, x2, . . . , xm] is an ideal.

Given a well-order (Γ,≺) and a Fq-algebra, denoted R, then an order function is a
surjective map ρ : R → Γ that meet five criterions and a weight function is an order
function that also meets a sixth criterion. An order domain is then a Fq-algebra that has
an order function and the triplet (R, ρ, Γ) is called an order structure. The important fact
is that given an order structure (R, ρ, Γ) then the set {fγ | ρ(fγ) = γ}γ∈Γ constitutes
a basis for R as a vector space over Fq. Then using another surjective map (called a
morphism), ϕ : R → Fn

q , it is possible to find a set Δ(R, ρ, ϕ) = {α(1), α(2), . . . , α(n)}
such that the set S = {ϕ(fα(1)), ϕ(fα(2)), . . . , ϕ(fα(n))} spans Fn

q . Codes described by
means of their parity check matrix or generator matrix can then be defined by selecting
a subset of S as the rows in the corresponding matrix. Furthermore, bounds on their
minimum distance can be given as in [12, 20] and [2].

However, constructing order domains might not be simple but here Gröbner basis
theory offers a solution. Given an ideal I ⊂ Fq[x1, x2, . . . , xm] then the factor ring
Fq[x1, x2, . . . , xm]/I can be used as an order domain with a specific weight function if it
meets the conditions given in Pellikaan’s factor ring theorem from [33]. One of these con-
ditions is that a Gröbner basis for I must consist of polynomials having two monomials
of highest weight in their support.

Gröbner basis theory also offers the notion of a footprint, which, given an ideal I ⊂
Fq[x1, x2, . . . , xm], is defined to be the set of monomials in Fq[x1, x2, . . . , xm] that are not
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Summary

leading monomial of any polynomial f ∈ I. The footprint of an ideal I is very useful,
since it offers an upper bound on the number of points in Fn

q , where all polynomials in I
are zero. This result is known as the footprint bound and allows us to give lower bounds
on the minimum distance of a code, since a code word can be seen as a polynomial f
that is a linear combination of monomials in the footprint of I.

One of the properties of a Gröbner basis for an ideal I is that it allows us to find the
number of elements in the footprint of I, thus finding a Gröbner basis for an ideal is very
useful. This can be done by using Buchberger’s algorithm so Chapter 3 is concerned with
the study of Buchberger’s algorithm and the division algorithm involved. The study of
these two algorithms is the foundation of many of the proofs given in this thesis.

Now, assume that we are given an ideal I ∈ Fq[x1, x2, . . . , xm] meeting the conditions
in Pellikaan’s factor ring theorem and having Gröbner basis G = {f1, f2, . . . , fs} of the
required form, i.e. fi = xai + ηix

bi + f ′
i(x1, x2, . . . , xm), for i = 1, 2, . . . , s and ηi ∈ Fq,

where the weight of xai is equal to the weight of xbi which again is larger than the
weighted degree of f ′

i . Then we define the binomial part of G, denoted B(G), to be the
set B(G) = {b1, b2, . . . , bs}, where bi = xai + ηix

bi , for i = 1, 2, . . . , s.
The key result in Chapter 3 is, given a code polynomial f with leading monomial xi,

then the footprint of the ideal 〈f1, f2, . . . , fs, f〉 is a subset of the footprint of the ideal
〈b1, b2, . . . , bs, x

i〉. This result is used in Chapter 4 to give a lower bound on the minimum
distance of the evaluation codes defined in Chapter 4 and [4].

The bound given in Chapter 4 turns out to be equal to the bound given in [2], so in
Chapter 5 we try a different approach to bounding the minimum distance of codes as
defined in Chapter 4 but restricting ourselves to a special class of order domains of the
form in Pellikaan’s factor ring theorem.

The structure of the polynomials in the Gröbner basis for such an ideal allows us to
find an upper bound on the size of the footprint of 〈b1, b2, . . . , bs, x

i〉 without doing any
iterations in Buchberger’s algorithm or any polynomial divisions but merely by defining
a function on the leading monomial of a code polynomial f . This result is found by only
considering some of the S-polynomials constructed when running Buchberger’s algorithm
and omit the rest. Unfortunately, as simple and promising as it may seem, we arrive at
a well-known bound which is also easily calculated. Thus this approach yields nothing
new.

In Chapter 6 we study the use of Buchberger’s algorithm on a class of ideals called
toric ideals. It is shown that if 〈b1, b2, . . . , bs〉 is a toric ideal, then the approach taken
in Chapter 5 is actually not bad, because the S-polynomials omitted in the method
developed in Chapter 5 adds nothing new when running Buchberger’s algorithm. On the
other hand: Since the bound given in Chapter 4 and [2] is better than the one found in
Chapter 5, we will be do better by using that instead.

Finally, Chapter 7 contains a case study based on [6] where Chen and Duursma consider
codes of length 64 based on the Suzuki curve over a finite field F8. In Chapter 7 we use the
bounds from [2, 20, 12] and Chapter 4 to estimate the parameters of codes constructed
from an order domain of the form in Pellikaan’s factor ring theorem and where the ideal I
is constructed to capture the relation between the four rational functions involved in [6].
The resulting parameters are in a few cases better than the ones found in [6]. Chapter 7
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also contains an example of codes of length 1024 based on the Suzuki curve over a finite
field F32 which was given as an example in [19].

Summary of Part B

Chapter 8 is a reproduction of the paper [2] which contains results found in cooperation
with Associate Professor Olav Geil, Aalborg University, and Chapter 9 is a reproduction
of the paper [1], which recently has been accepted for publishing in Finite Fields and
Their Applications. Both papers can be read independently of Part A (and of each
other), thus an extended abstract of each chapter is given separately.

Chapter 8

In [12] Feng and Rao showed how to estimate the minimum distance of a large class
of algebraically defined codes by considering certain relations between the rows in the
corresponding parity check matrices. This result is known today as the Feng-Rao bound.
Using this bound Feng and Rao were able to improve a large class of well-known codes
by leaving out certain rows in the corresponding parity check matrices.

In [30] and [31] Miura observed that the results by Feng and Rao can be obtained by
using only linear algebra. In particular one can view the Feng-Rao bound as a bound on
the minimum distance of any linear code (with known parity check matrix). Furthermore
it was shown in [31] how to improve the Feng-Rao bound slightly in this general set-up.

What is obviously missing is a Feng-Rao type bound on the minimum distance of codes
which are not defined on the basis of parity check matrices but are defined on the basis
of generator matrices. This question was treated by Shibuya and Sakaniwa in [34] where
they use the theory of generalized Hamming weights to translate the Feng-Rao bound for
the codes defined by means of parity check matrices into a bound for the codes defined
by means of generator matrices. The bound derived in this way is of a much more
complicated form than the Feng-Rao bound and the problem of improving the codes by
using the information from the bound is not so easy. Furthermore, the proof of the bound
by Shibuya and Sakaniwa is rather complicated.

In this paper we derive a new and very simple bound on the minimum distance of codes
defined by means of their generator matrices. Our bound is of a form very similar to
the Feng-Rao bound and in particular from our bound it is obvious how to improve the
codes. Furthermore our bound not only deals with the minimum distance but actually
gives lower bounds on any generalized Hamming weights of the considered codes. We
show how to deal with the new bounds and the new code construction from an order
domain theoretical point of view. We give some very concrete results on how to deal with
the code construction in the case of affine variety codes1 defined from order domains and
we derive some results concerning the connection between the Feng-Rao improved codes
and the new improved codes. Also we show how to understand our new bound and code
construction from a Gröbner basis theoretical point of view. For the case of one-point
geometric Goppa codes our bound can easily be shown to be an improvement of the usual

1So named in [13].
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Summary

bound from algebraic geometry and in many cases we are able to improve substantial on
the one-point geometric Goppa code construction. In this way we improve the results in
[34] where it was shown that their bound is at least as good as the usual bound from
algebraic geometry for the case of one-point geometric Goppa codes from Cab curves. Our
new construction and our new bounds can be viewed as a generalization of the recent
Gröbner basis theoretical descriptions in [17] and [16] concerning Reed-Muller codes,
hyperbolic codes2 and codes from norm-trace curves. For these codes our bounds are
tight.

Chapter 9

Constructing codes from existing ones is not a new idea and over the years several ways
of doing so has been developed. One such construction is by means of puncturing.
Puncturing an (n, M, d) code t, (t < d), times yields an (n − t, M, � d − t) code where
the parameter d − t is a lower bound on the minimum distance [24, p. 28].

However, it is not clear how to select which t coordinates to erase in an existing code
to get the best result or whether an optimal strategy for making such a selection exists
for a given code and a given value t. The general bound given above is usually not tight
which will be shown by an example.

Here we consider codes from Norm-Trace curves3 which were studied in detail in [16].
Here we use nothing but order domains and Gröbner basis theory for code construction
and the methods developed in [20, 2, 21, 11, 12] for estimating the minimum distances
of the codes.

By [18] every finitely generated order domain can be represented as a factor ring
Fq[x1, x2, . . . , xm]/I, where I ⊂ Fq[x1, x2, . . . , xm] is an ideal of a special form. Us-
ing such an order domain and the usual evaluation map ϕ : Fq[x1, x2, . . . , xm]/I → Fn

q

we define Ẽ codes as a linear subspace of Fn
q spanned by the image of selected elements

from Fq[x1, x2, . . . , xm]/I under ϕ and C̃ codes as the dual of such an image under ϕ

(These are the improved Ẽ codes from [2] and the improved C̃ codes from [20, 12]).
In this setting puncturing a code can be done by reducing the dimension of the cor-

responding factor ring Fq[x1, x2, . . . , xm]/I as a vector space over Fq by adding extra
polynomials to the basis of the defining ideal I to define an new ideal J . This corre-
sponds to redefining the evaluation map by leaving out a number of points from the
variety V (I), since I ⊂ J has the consequence that V (J) ⊂ V (I) [8].

Leaving out t points from the variety V (I) can be done in several ways by adding
different sets of polynomials to the basis of the ideal I to form the ideal J such that
#V (J) = #V (I)−t. The evaluation map ϕ is still a morphism so the methods developed
in [20, 2, 12] enables us to estimate the minimum distances of the codes constructed by
using the variety V (J). This in turn allows us to choose the set of polynomials added
to the basis of I (i.e. choose the ideal J) which has the smallest cost in terms of loss in
minimum distance for a given integer t and a given code rate.

2Also called Massey-Costello-Justesen codes (see [22] and [25].
3Norm-Trace curves are a special case of the Cab curves classified by Miura and Kamiya in [32].
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The main result in this paper is that for any positive integer t < d it is possible to
construct a set of polynomials {g1, g2, . . . , gs} such that a code of length n− t is obtained
by using the ideal J = I + 〈g1, g2, . . . , gs〉 and the affine variety V (J). Furthermore, the
proof given here is constructive and examples of such constructions are included.
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Danish summary (Dansk resumé)

Denne afhandling er i to dele. I Del A introduceres den grundlæggende teori om or-
densomr̊ader og Gröbner baser. Ydermere indeholder Del A resultater fremkommet ved
studiet af Buchbergers algoritme og et studie af koder baseret p̊a Suzuki-kurven, men
hvor ordensomr̊ader anvendes i stedet for den sædvanlige tilgang.

Del B indeholder reproduktioner af de to artikler [2] og [1], der begge er indsendt til vi-
denskabelige tidsskrifter, og hvoraf artiklen [2] er resultatet af et samarbejde med Lektor
Olav Geil, Aalborg Universitet.

Begge de to artikler i Del B er selvstændige artikler, der kan læses uafhængigt af Del A.
Derfor kan notationen i de inkluderede artikler afvige en smule fra notationen anvendt
i Del A, hvor notationen fra [8] (tilpasset min personlige smag) hovedsageligt bliver an-
vendt.

Resumé af Del A

Kapitel 2 giver en kort introduktion til ordensfunktioner og ordensomr̊ader som blev
indført af Høholdt, van Lint og Pellikaan i [21] og [20]. Ydermere indeholder kapitlet en
kort introduktion til Gröbnerbasisteori og konstruktionen af ordensomr̊ader ved hjælp af
faktorringe Fq[x1, x2, . . . , xm]/I, hvor I ⊂ Fq[x1, x2, . . . , xm] er et ideal.

Givet en s̊akaldt vel-ordning (Γ,≺) og en Fq-algebra, betegnet med R, s̊a er en ordens-
funktion en surjektiv afbildning ρ : R → Γ, der opfylder fem kriterier, og en vægtfunktion
er en ordensfunktion, der opfylder et sjette kriterium. Et ordensomr̊ade er da en Fq-
algebra, der har en ordensfunktion og triplen (R, ρ, Γ) kaldes en ordensstruktur. Et vigtigt
faktum er at givet en ordensstruktur, s̊a er mængden {fγ | ρ(fγ) = γ}γ∈Γ en basis for R
som vektorrum over Fq. Ved at anvende endnu en surjektiv afbildning (kaldet en morfi),
ϕ : R → Fn

q , s̊a er det muligt at finde en mængde Δ(R, ρ, ϕ) = {α(1), α(2), . . . , α(n)}
s̊aledes at mængden S = {ϕ(fα(1)), ϕ(fα(2)), . . . , ϕ(fα(n))} udspænder hele Fn

q . Fejlkor-
rigerende koder beskrevet ved hjælp af enten deres paritetscheckmatrice eller deres gen-
eratormatrice kan nu defineres ved at vælge en delmængde af S som rækkerne i den
tilhørende matrice. Desuden kan grænser for deres minimumsafstand gives som vist i
[12, 20] og [2].

At konstruere ordensomr̊ader er ikke nødvendigvis simpelt, men her er Gröbnerbasis-
teori en god hjælp. Givet et ideal I ⊂ Fq[x1, x2, . . . , xm], s̊a kan faktorringen
Fq[x1, x2, . . . , xm]/I anvendes som ordensomr̊ade med en specifik vægtfunktion, hvis
Fq[x1, x2, . . . , xm]/I opfylder betingelserne i Pellikaans faktorringssætning fra [33]. En
af disse betingelser er, at I skal have en Gröbnerbasis, der best̊ar af polynomier med
præcist to monomier af højeste vægt i supporten.
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Danish summary (Dansk resumé)

Fra Gröbnerbasisteorien har vi ogs̊a begrebet “fodaftryk”, der, givet et ideal I ⊂
Fq[x1, x2, . . . , xm], er defineret som mængden af monomier i Fq[x1, x2, . . . , xm], der ikke
er ledende monomium i noget polynomium f ∈ I. Fodaftrykket af et ideal I er meget nyt-
tigt, idet det antallet af elementer i fodaftrykket giver en øvre grænse for antallet af punk-
ter i Fn

q , hvor alle polynomier i I er nul. Dette resultat er kendt som “fodaftryksgrænsen”
og tillader os at finde nedre grænser for minimumsafstanden i en fejlkorrigerende kode,
idet et kodeord kan ses som et polynomium f skrevet som en linearkombination af
monomier i fodaftrykket af I.

En af egenskaberne ved en Gröbnerbasis for et ideal I er, at den tillader os at finde
antallet af elementer i fodaftrykket af I, s̊a det er nyttigt at kunne finde en Gröbnerbasis
for et ideal. Dette kan gøres ved hjælp af Buchbergers algoritme, s̊a Kapitel 3 omhandler
et studium af Buchbergers algoritme og divisionsalgoritmen, der er en del heraf. Studiet
af disse to algoritmer er grundlaget for mange af beviserne i denne afhandling.

Antag nu, at vi har et givet ideal I ∈ Fq[x1, x2, . . . , xm], der opfylder betingelserne i
Pellikaans faktorringssætning, med Gröbnerbasis G = {f1, f2, . . . , fs} p̊a den krævede
form, dvs. fi = xai + ηix

bi + f ′
i(x1, x2, . . . , xm), for i = 1, 2, . . . , s og ηi ∈ Fq, hvor

vægten af xai er den samme som vægten af xbi , der igen er større end den vægtede
grad af f ′

i . Da definerer vi den binomielle del af G, skrevet B(G), til at være mængden
B(G) = {b1, b2, . . . , bs}, hvor bi = xai + ηix

bi , for i = 1, 2, . . . , s.
Det vigtigste resultat i Kapitel 3 er, at givet et kodepolynomium f med ledende

monomium xi, s̊a er fodaftrykket af idealet 〈f1, f2, . . . , fs, f〉 indeholdt i fodaftrykket
af idealet 〈b1, b2, . . . , bs, x

i〉. Dette resultat bliver i Kapitel 4 anvendt til at give en nedre
grænse for minimumsafstanden i evalueringskoderne defineret i Kapitel 4 og [4].

Grænsen fundet i Kapitel 4 viser sig at være den samme som grænsen fundet i [2], s̊a
i Kapitel 5 forsøges en anden tilgang til at give en grænse for minimumsafstanden af
koderne defineret i Kapitel 4, men i Kapitel 5 begrænser vi os til en speciel klasse of
ordensomr̊ader p̊a formen givet i Pellikaans faktorringssætning.

Strukturen af polynomierne i Gröbnerbasen for et s̊adant ideal tillader os at finde en
øvre grænse for antallet af elementer i fodaftrykket af idealet 〈b1, b2, . . . , bs, x

i〉, uden at
skulle køre Buchbergers algoritme eller foretage nogen polynomiumsdivisioner, men ved
blot at definere en funktion p̊a det ledende monomium i et kodepolynomium f . Dette
resultat findes ved kun at betragte en passende delmængde af de S-polynomier, der vil
blive konstrueret ved anvendelsen af Buchbergers algoritme, og s̊aledes udelade resten.
Uanset hvor simpelt og lovende denne tilgang måtte lyde, s̊a ender vi med at finde en
velkendt grænse, der ligeledes er nem at beregne. Tilgangen anvendt i Kapitel 5 giver os
s̊aledes intet nyt.

I Kapitel 6 studeres anvendelsen af Buchbergers algoritme p̊a en klasse af idealer kalder
“toriske idealer”. Det vises, at hvis 〈b1, b2, . . . , bs〉 er et torisk ideal, s̊a er tilgangen i
Kapitel 5 ikke d̊arlig, idet de udeladte S-polynomier i metoden udviklet i Kapitel 5 ikke
giver anledning til yderligere tilføjelser ved anvendelse af Buchbergers algoritme. P̊a den
anden h̊and: Da grænsen givet i Kapitel 4 og [2] er bedre end den fundet i Kapitel 5, s̊a
er det bedre at anvende den i stedet for.

Endelig indeholder Kapitel 7 et studium baseret p̊a [6] hvor Chen og Duursma kon-
struerer koder af længde 64 ved hjælp af Suzuki-kurven over et endeligt legeme F8. I
Kapitel 7 anvendes grænserne fra [2, 20, 12] og Kapitel 4 til at estimere parametrene
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for koder baseret p̊a et ordensomr̊ade p̊a formen i Pellikaans faktorringssætning og hvor
idealet I er konstrueret til at indfange relationerne mellem de fire implicerede rationelle
funktioner fra [6]. De fundre parametre er i enkelte tilfælde bedre end dem, der blev
fundet i [6]. Kapitel 7 indeholder ogs̊a et eksempel p̊a koder baseret p̊a Suzuki-kurven
over et endeligt legeme F32, der blev anvendt som eksempel i [19].

Resumé af Del B

Kapitel 8 er en reproduktion af artiklen [2], der indeholder resultater opn̊aet i samarbejde
med Lektor Olav Geil, Aalborg Universitet, og Kapitel 9 er en reproduktion af artiklen
[1], der for nylig er blevet accepteret til publikation i tidsskriftet Finite Fields and Their
Applications. Begge artikler kan læses uafhængigt af Del A (og uafhængigt af hinanden),
hvorfor der gives separate resuméer af de to kapitler nedenfor.

Kapitel 8

I [12] viste Feng og Rao hvordan minimumsafstanden for en stor klasse af algebraisk
definerede koder kan estimeres ved at betragte bestemte relationer mellem rækkerne i de
tilhørende paritetscheckmatricer. Dette resultat kendes idag som Feng-Rao-grænsen. Ved
hjælp af denne grænse lykkedes det Feng og Rao at forbedre en stor klasse af velkendte
koder ved at udelade visse rækker i de tilhørende paritetscheckmatricer.

I [30] og [31] observerede Miura at resultaterne opn̊aet af Feng og Rao kan vises
udelukkende ved hjælp af lineær algebra. Specielt s̊a kan Feng-Rao-grænsen ses som
en grænse for minimumsafstanden af enhver lineær kode (med kendt paritetscheckma-
trice). Ydermer blev det i [31] vist, hvordan Feng-Rao-grænsen kan forbedres lidt i denne
generelle opsætning.

Det, der tydeligvis mangler i ovenst̊aende beskrivelse, er en grænse for minimumsaf-
standen af samme type som Feng-Rao-grænsen for koder, der ikke er definerede ved
hjælp af paritetscheckmatricer men ved hjælp af generatormatricer. Dette spørgsmål
blev behandlet af Shibuya og Sakaniwa i [34], hvor de bruger teorien og generelis-
erede Hammingvægte til at oversætte Feng-Rao-grænsen for koder defineret ved hjælp af
paritetscheckmatricer til en grænse for koder defineret ved hjælp af generatormatricer.
Den grænse, de p̊a den måde udleder, er meget mere kompliceret end Feng-Rao-grænsen
og problemet med at anvende denne information til forbedring af koderne er ikke nemt.
Ydermer er beviset for grænsen udledt af Shibuya og Sakaniwa forholdsvis kompliceret.

I denne artikel udleder vi en ny og meget simpel grænse for minimumsafstanden af koder
defineret ved hjælp af deres generatormatricer. Vores grænse er p̊a en form, der meget
ligner Feng-Rao-grænsen, og specielt er det indlysende, hvordan koderne kan forbedres.
Ydermere s̊a giver vores grænse ikke bare en grænse for minimumsafstanden men fak-
tisk ogs̊a for en hvilken som helst genereliseret Hammingvægt af de betragtede koder.
Vi viser, hvordan den nye grænse og konstruktionen af koder h̊andteres ud fra et or-
densomr̊ade-teoretisk synspunkt. Vi viser nogle meget konkrete resultater vedrørende
kodekonstruktionen i tilfældet med affine varietets koder4 baseret p̊a ordensomr̊ader og

4Navngivet s̊aledes i [13].
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Danish summary (Dansk resumé)

vi udleder nogle resultater vedrørende forbindelsen mellem koder forbedret ved hjælp
af Feng-Rao-grænsen og de nye forbedrede koder. Desuden viser vi, hvordan vores nye
grænse og nye kodekonstruktion kan forst̊as fra et Gröbnerbasisteoretisk synspunkt. I
tilfældet med et-punkts geometriske Goppa-koder kan det nemt vises, at vores grænse er
en forbedring i forhold til den sædvanlige grænse fra algebraisk geometry og i flere til-
fælde er vi i stand til at forbedre dramatisk p̊a konstruktionen af et-punkts geometriske
Goppa-koder. P̊a denne måde forbedrer vi resultaterne i [34], hvor det blev vist at deres
grænse er mindst lige s̊a god som den sædvanlige grænse fra algebraisk geometri i til-
fældet med et-punkts geometriske Goppa-koder fra Cab-kurver. Vores nye konstruktion
og nye grænse kan ses som en generelisering af den forholdsvis nye Gröbnerbasisteoretiske
beskrivelse i [17] og [16] vedrørende Reed-Muller koder, hyperbolske koder5 og koder fra
Norm-Trace kurver. For disse koder angiver grænsen de virkelige minimumsafstande.

Kapitel 9

Konstuktion af nye koder ud fra eksisterende er ikke nogen ny idé og gennem årene er
adskillige metoder hertil blevet udviklet. Én s̊adan metode kaldes “punktering”. Ved at
punktere en (n, M, d)-kode t gange, hvor t < d, s̊a f̊aes en (n − t, M, � d − t)-kode, hvor
parameteren d − t er en nedre grænse for minimumsafstanden [24, p. 28].

Men det er ikke umiddelbart klart hvilket t koordinater, der skal slettes i en eksisterende
kode for at opn̊a det bedste resultat, eller hvorvidt en optimal strategi for udvælgelsen
af de t koordinater for en given kode og en given værdi t findes. Den sædvanlige grænse
er som regel ikke god, hvilket vil blive vist ved hjælp af et eksempel.

Her betragtes koder baseret p̊a Norm-Trace-kurver6, der blev studeret i detalje i [16].
Her anvender vi udelukkende ordensomr̊ader og Gröbnerbasisteori til konstruktion af
koder og metoderne udviklet i [20, 2, 21, 11, 12] til vurdering af minimumsafstanden.

Ifølge [18] kan ethvert endeligt genereret ordensomr̊ade repræsenteres som en faktorring
Fq[x1, x2, . . . , xm]/I, hvor I ⊂ Fq[x1, x2, . . . , xm] er et ideal p̊a en speciel form. Ved hjælp
af et s̊adant ordensomr̊ade og den sædvanlige evalueringsafbildning
ϕ : Fq[x1, x2, . . . , xm]/I → Fn

q defineres Ẽ-koder som et lineært underrum af Fn
q udspændt

af billedet under ϕ af udvalgte elementer i Fq[x1, x2, . . . , xm]/I, og C̃-koder defineres som
nul-rummet af et s̊adant billede under ϕ (Dette er de forbedrede Ẽ-koder fra [2] og de
forbedrede C̃-koder fra [20, 12]).

I denne opsætning kan punkteringen af en kode udføres ved at reducere dimensionen
af den tilsvarende faktorring Fq[x1, x2, . . . , xm]/I som vektorrum over Fq, ved at tilføje
ekstra polynomier til basen for idealet I og derved definere et nyt ideal J . Dette svarer til
en redefinition af evalueringsafbildningen ved at udelade et antal punkter fra varieteten
V (I), idet I ⊂ J medfører at V (J) ⊂ V (I) [8].

Udeladelse af t punkter fra varieteten V (I) kan gøres p̊a mange forskellige måder ved
at tilføje forskellige mængder af polynomier til basen for idealet I og derved konstruere
idealet J s̊aledes at #V (J) = #V (I) − t. Evalueringsafbildningen ϕ er stadigvæk en
morfi, s̊a metoderne udviklet i [20, 2, 12] finder stadigvæk anvendelse ved vurdering af

5Ogs̊a kaldet Massey-Costello-Justesen koder (se [22] og [25]).
6Norm-Trace-kurverne er et specialtilfælde af Cab-kurverne klassificeret af Miura og Kamiya i [32].
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minimumsafstanden i de koder, der konstrueres ved hjælp af varieteten V (J). Dette
tillader os at vælge den mængde polynomier, der tilføjes til basen for I (dvs. vælge
idealet J), s̊aledes at tabet i minimumsafstand er mindst muligt for en given værdi t og
en given kodehastighed.

Hovedresultatet i denne artikel er, at for ethvert positivt heltal t < d er det muligt at
konstruere en mængde polynomier {g1, g2, . . . , gs} s̊aledes at en kode med længde n − t
opn̊aes ved at anvende idealet J = I + 〈g1, g2, . . . , gs〉 og varieteten V (J). Ydermere er
beviset herfor konstruktivt og eksempler p̊a konstruktioner er indkluderet.
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2.1. Order domains and codes . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
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1. Introduction

1.1. A brief survey of order domains

The notion of an order domain was introduced in [20, 21] to make understanding of a
large class of algebraic geometry codes easier and to give the code construction presented
in [11, 12] a simpler foundation. Readers interested in the connection between the theory
of order domains and the theory of algebraic geometry are recommended to read [20, 33].

Some of the results in [20, 21, 33] were found independently by Miura and published
in Japanese in [29, 31, 30]. A proof in English of some of these results can be found in
[26] and the connection to the work in [20, 21, 33] is studied in [27]. Since then order
domains have been studied and used extensively in for instance [33, 18, 16, 15].

1.2. Codes from order domains

The order domains considered here are factor rings of the form Fq[x1, x2, . . . , xm]/I,
where I ⊂ Fq[x1, x2, . . . , xm] is an ideal, as described in Pellikaan’s factor ring theorem
[33, Thm. 5.11]. By [18] every finitely generated order domain (with weights embedded
in Nr

0) can be represented as a factor ring Fq[x1, x2, . . . , xm]/I of this form, where I ⊂
Fq[x1, x2, . . . , xm] is an ideal. In Part A of this thesis we only consider weights in N0 but
an example using weights in N2

0 is given in Example 8.39.
Using such an order domain and an evaluation map ϕ : Fq[x1, x2, . . . , xm]/I → Fn

q then
the Ẽ codes are defined as a linear subspace of Fn

q spanned by the image of selected
elements from Fq[x1, x2, . . . , xm]/I under ϕ and the C̃ codes as the dual of such an image
under ϕ . These codes are the improved Ẽ codes from [2] and the improved C̃ codes from
[20, 12]. Only these improved codes will be considered throughout this thesis.

Also, using [13, Pro. 1] every Fq-linear code may be represented as what the authors
call affine variety codes, i.e. codes constructed from factor rings Fq[x1, x2, . . . , xm]/I
using an evaluation map ϕ. This fact makes the study of factor rings interesting and in
particular factor rings of the form in [33, Thm. 5.11] (finitely generated order domains)
which can be used to describe a large class of Fq-linear codes.

1.3. Outline of this thesis

This thesis is in two parts. In Part A of the thesis an introduction to order domains
and Gröbner basis theory is given. Furthermore, some of the results from [4] leading to
the more general result in [2] are stated and proven. This part also includes results on
finding a Gröbner basis for toric ideals, results concerning a special case of a factor ring

3



1. Introduction

as in [33, Thm. 5.11] and a pure Gröbner basis theoretical approach to a case study of
codes from Suzuki curves as seen in [6] and [19].

Part A is organized as follows: In Chapter 2 a short presentation of order domains
and Gröbner basis theory is given, Chapter 3 contains details about using Buchberger’s
algorithm and the division algorithm, Chapter 4 contains the code definition and the
lower bound on the minimum distance from [2] and [4] but as opposed to the proof in
[2], only Gröbner basis theory is used in the proofs in Chapter 4. Chapter 5 holds an
attempt to improve on the bound given in Chapter 4 and and Chapter 6 holds results on
toric ideals. Finally, in Chapter 7 a case study of codes from Suzuki curves in the two
cases considered in [6] and [19] is given.

Part B of this thesis contains the reproduction of the two submitted papers [1] and [2]
which both are self-contained and can be read independently of Part A. The paper [1]
has recently been accepted for publishing in Finite Fields and Their Applications.
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2. Order domains and Gröbner basis
theory

This chapter contains a short introduction to order domains in Section 2.1 and short
introduction to Gröbner basis theory and the construction of order domains in Section 2.2.

2.1. Order domains and codes

The presentation of order domains given here is based on [2, 18]

Definition 2.1 Let F be a field. Then an F-algebra is a commutative ring with unity
that contains F as a unitary subring.

Definition 2.2 Given a set Γ and a total ordering ≺ on Γ, then (Γ,≺) is called a well-
order if every non-empty subset of Γ has a smallest element with respect to ≺.

Given a well-order (Γ,≺), add an element −∞ to Γ such that Γ−∞ = Γ∪{−∞} and ex-
tend the ordering ≺ with the rule −∞ ≺ γ, for all γ ∈ Γ. Then (Γ−∞,≺) is a well-order.

Example 2.3 Let N0 denote the non-negative integers and let Γ ⊂ N0. If we add an
element −∞ to Γ such that Γ−∞ = Γ ∪ {−∞} and extend the ordinary ordering < on
elements in N0 with the rule −∞ < n, for all n ∈ N0, then (Γ−∞, <) is a well-order. �

Definition 2.4 Let (Γ−∞,≺) be a well-order, let F be a field and let R be a F-algebra. A
surjective map ρ : R → Γ−∞ that satisfies the following five conditions for all f, g, h ∈ R
is called an order function on R.

1. ρ(f) = −∞ if and only if f = 0.

2. ρ(af) = ρ(f) for all non-zero a ∈ F.

3. ρ(f + g) 
 max{ρ(f), ρ(g)} and equality holds when ρ(f) �= ρ(g).

4. If ρ(f) ≺ ρ(g) and h �= 0, then ρ(fh) ≺ ρ(gh).

5. If f and g are non-zero and ρ(f) = ρ(g), then there exists a non-zero α ∈ F such
that ρ(f − αg) ≺ ρ(g).

5



2. Order domains and Gröbner basis theory

For the rest of Part A we will only consider well-orders of the form in Example 2.31,
i.e. Γ ⊂ N0.

Given a well-order (Γ−∞, <), where Γ ⊆ N0, consider the following definition.

Definition 2.5 Let (Γ−∞, <) be a well-order, let F be a field and let R be an F-algebra.
A weight function ρ : R → Γ−∞ is an order function ρ on R that also satisfy the condition

6. ρ(fg) = ρ(f) + ρ(g)

where + is the ordinary addition on N0 extended with the rule that −∞+a = a+(−∞) =
−∞ + (−∞) = −∞ for all a ∈ Γ−∞.

It is now possible to define an order structure and an order domain.

Definition 2.6 Let F be a field, let R be an F-algebra, ρ an order function and Γ a
well-order. Then (R, ρ, Γ) is called an order structure and R is called an order domain
(over F).

The order function being surjective ensures the existence of sets of the form
{fγ | ρ(fγ) = γ}γ∈Γ with the following property from [18, Def. 3.1 & Pro. 3.2].

Theorem 2.7 Let F be a field. Given an order structure (R, ρ, Γ) then any set B =
{fγ | ρ(fγ) = γ}γ∈Γ constitutes a basis for R as a vector space over F. For any
f = cγ1fγ1 + · · · + cγd

fγd
with cγ1 , . . . , cγd

∈ F \ {0}, ρ(f) = max≺{γ1, . . . , γd} holds. In
particular {fλ ∈ B | λ 
 γ} constitutes a basis for Rγ = {f ∈ R | ρ(f) 
 γ} as a vector
space over F.

Let Fq denote a finite field with q elements and consider the following definition.

Definition 2.8 Let R be an Fq-algebra. A map ϕ : R → Fn
q is called a morphism of

Fq-algebras if ϕ is Fq-linear and ϕ(fg) = ϕ(f) ∗ ϕ(g) for all f, g ∈ R, where ∗ denotes
component-wise multiplication.

From now on we will only consider order domains R over finite fields Fq and surjective
morphisms ϕ.

Definition 2.9 Given an order structure (R, ρ, Γ) and a surjective morphism ϕ, let α(1)
be equal to the smallest element of Γ. For i = 2, 3, . . . , n define recursively α(i) to be
the smallest element in Γ greater than α(1), α(2), . . . , α(i − 1) and satisfying ϕ(Rγ) �
ϕ(Rα(i)), for all γ < α(i). Write Δ(R, ρ, ϕ) = {α(1), α(2), . . . , α(n)}.

1More general well-orders can be found in [18]
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2.1. Order domains and codes

Note, that if Γ ⊂ N0 and ρ in Definition 2.9 is a weight function (See Definition 2.5),
then α(1) in Definition 2.9 is equal to 0 ∈ N0. From Definition 2.9 we also see that the
set B = {ϕ(fα(1)), ϕ(fα(2)), . . . , ϕ(fα(n))} constitutes a basis for Fn

q as a vector space
over Fq.

Definition 2.10 For α(i) ∈ Δ(R, ρ, ϕ) define

N(α(i)) = {(β1, β2) ∈ (Δ(R, ρ, ϕ))2 | ρ(fβ1fβ2) = α(i)}

and define μ(α(i)) = #N(α(i)).
Furthermore, for α(j) ∈ Δ(R, ρ, ϕ) define

M(α(j)) = {γ ∈ Δ(R, ρ, ϕ) | ∃β ∈ Δ(R, ρ, ϕ) with ρ(fα(j)fβ) = γ}

and define σ(α(j)) = #M(α(j)).

Note that if ρ in Definition 2.10 is a weight function then the two sets N(α(i)) and
M(α(j)) can be defined as

N(α(i)) = {(β1, β2) ∈ (Δ(R, ρ, ϕ))2 | β1 + β2 = α(i)}

and
M(α(j)) = {γ ∈ Δ(R, ρ, ϕ) | ∃β ∈ Δ(R, ρ, ϕ) with α(j) + β = γ},

where + is the ordinary addition on elements in N0 extended as in Definition 2.5.
Both evaluation codes and dual codes from an order domain can now be defined. The

codes considered here are the improved codes Ẽ and C̃ from [16, 20, 2, 12].

Definition 2.11 Consider a basis {fγ | ρ(fγ) = λ}λ∈Γ for an order structure (R, ρ, Γ)
over Fq. Let ϕ be a morphism as in Definition 2.8 and let Δ(R, ρ, ϕ) be as in Defini-
tion 2.9 so B = {ϕ(fα(1)), ϕ(fα(2)), . . . , ϕ(fα(n))} constitutes a basis for Fn

q . Define

C̃(η) = {c ∈ Fn
q | c · ϕ(fα(i)) = 0 for all α(i) ∈ Δ(R, ρ, ϕ) with μ(α(i)) < η}

Ẽ(δ) = SpanFq

{
ϕ(fα(i)) | α(i) ∈ Δ(R, ρ, ϕ) and σ(α(i)) � δ

}

The following result concerning C̃(η) is from [20, 12] and the result concerning Ẽ(δ) is
from [2] (included in Part B).

Theorem 2.12 The minimum distance of C̃(η) and Ẽ(δ) satisfy d(C̃(η)) � η and
d(Ẽ(δ)) � δ.

We now know (in principle) how to construct the Ẽ and C̃ codes and estimate their
minimum distance using Theorem 2.12 above but we need a practical way of constructing
order domains. This is where Gröbner basis theory will be applied.

7



2. Order domains and Gröbner basis theory

2.2. Gröbner basis theoretical approach to order domains

The Gröbner basis theory presented in this section is based on [8, 33] unless otherwise
stated. First we need some fundamental definitions and some notation.

Definition 2.13 A monomial in m variables x1, x2, . . . , xm is a product of the form

xa1
1 xa2

2 · · ·xam
m ,

where all the exponents a1, a2, . . . , am ∈ N0. Whenever m is clear from the context let
xa denote the monomial xa1

1 xa2
2 · · ·xam

m , where a = (a1, a2, . . . , am) ∈ Nm
0 .

Definition 2.14 Let F be a field. A polynomial f in m variables x1, x2, . . . , xm with
coefficients in F is a finite linear combination (with coefficients in F) of monomials. A
polynomial f is written in the form

f =
∑

i

cix
ai , ci ∈ F

where the sum is over a finite set of m-tuples ai = (ai,1, ai,2, . . . , ai,m) ∈ Nm
0 . The set

of all polynomials in x1, x2, . . . , xm with coefficients in F is denoted F[x1, x2, . . . , xm].
Moreover, we call cix

ai a term in f and the set {xai | ci �= 0} the support of f , denoted
Supp(f).

Let Fq be a finite field and let Mm denote the set of monomials in Fq[x1, x2, . . . , xm]
given by

Mm =
{
xa
∣∣ a = (a1, a2, . . . , am) ∈ Nm

0

}
.

In order to define a division algorithm (See [8, §2.3] or Chapter 3) on polynomials in
several variables we need a way to order the set of monomials in Mm. Thus we have the
following definition.

Definition 2.15 A monomial ordering ≺ on Mm is a relation on Nm
0 satisfying the

following conditions:

1. ≺ is a total ordering on Nm
0 .

2. If a ≺ b and c ∈ Nm
0 , then a + c ≺ b + c.

3. Every non-empty subset of Nm
0 has a smallest element under ≺ ,i.e. the relation ≺

is a well-ordering on Nm
0 .

An example of a monomial ordering is the lexicographic ordering defined below (See [8,
§2.2, Pro. 4]).
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2.2. Gröbner basis theoretical approach to order domains

Definition 2.16 Let a = (a1, a2, . . . , am) and b = (b1, b2, . . . , bm) ∈ Nm
0 , a �= b, and let

i, where 1 � i � m, be the largest index such that ai−bi �= 0 in the vector difference a−b.
Then a is said to be lexicographically smaller than b, denoted a ≺lex b, if ai − bi < 0.
We write xa ≺lex xb, if a ≺lex b.

Definition 2.17 Given a monomial ordering ≺ on Mm and a polynomial f ∈
Fq[x1, x2, . . . , xm] of the form

f = c1x
a1 + c2x

a2 + · · · + cnxan ,

where xa1 ≺ xa2 ≺ · · · ≺ xan , ci ∈ Fq and ci �= 0, for i = 1, 2, . . . , n, we call

1. cnxan the leading term in f , denoted lt(f),

2. cn the leading coefficient in f , denoted lc(f),

3. xan the leading monomial in f , denoted lm(f),

4. an the multidegree of f , denoted multideg(f),

all with respect to the monomial ordering ≺.

Definition 2.18 Let N denote the positive integers. Given elements (called weights)
w(x1), w(x2), . . . , w(xm) ∈ N define a monomial function w : Mm → N0 by

w(xa1
1 xa2

2 · · ·xam
m ) =

m∑
i=1

aiw(xi).

For a monomial xa ∈ Mm we call w(xa) the weight of xa.
Furthermore, for a polynomial f ∈ Fq[x1, x2, . . . , xm] we define the weighted degree of

f , denoted wdeg(f), to be the highest weight (with respect to the ordering � on N0) that
appears as the weight of a monomial in the support of f .

Definition 2.19 The weighted degree ordering ≺w induced by w from Definition 2.18
and a monomial ordering ≺ on Mm is the monomial ordering defined as follows. Given
xa, xb ∈ Mm then xa ≺w xb if one of the following two conditions hold:

1) w(xa) < w(xb) 2) w(xa) = w(xb) and xa ≺ xb.

Definition 2.20 A subset I ⊆ F[x1, x2, . . . , xm] is called an ideal if it satisfies the fol-
lowing three conditions:

9



2. Order domains and Gröbner basis theory

1. 0 ∈ I.

2. If f, g ∈ I, then f + g ∈ I.

3. If f ∈ I and h ∈ F[x1, x2, . . . , xm], then hf ∈ I.

Definition 2.21 Let f1, f2, . . . , fs ∈ F[x1, x2, . . . , xm] be polynomials. Define

〈f1, f2, . . . , fs〉 =

{
s∑

i=1

hifi

∣∣∣∣∣ h1, h2, . . . , hs ∈ F[x1, x2, . . . , xm]

}
.

From [8, §1.4, Lemma 3] the set 〈f1, f2, . . . , fs〉 is an ideal in F[x1, x2, . . . , xm]. We call
〈f1, f2, . . . , fs〉 the ideal generated by f1, f2, . . . , fs. Given a set F = {f1, f2, . . . , fs} let
〈F 〉 denote the ideal generated by the elements in F , i.e. 〈F 〉 = 〈f1, f2, . . . , fs〉.

Definition 2.22 Let I ⊂ Fq[x1, x2, . . . , xm] be an ideal. Given a monomial ordering ≺
on Mm the set

Δ≺ (I) =
{
xa ∈ Mm

∣∣ xa is not a leading monomial of any polynomial f ∈ I
}

is called the footprint of I with respect to ≺.

Remark 2.23 Notice that if I, J ⊆ F[x1, x2, . . . , xm] are ideals such that I ⊆ J , then
Δ≺ (J) ⊆ Δ≺ (I). This is true since a leading monomial of a polynomial in I is also a
leading monomial of a polynomial in J . �

Definition 2.24 Let I = 〈f1, f2, . . . , fs〉 be an ideal in Fq[x1, x2, . . . , xm], let V (I) de-
note the corresponding variety given by

V (I) = {p1, p2, . . . , pn} = {p ∈ Fm
q | f(p) = 0 for all f ∈ I}.

The following proposition from [8, §5.3, Pro. 8] and [9, Pro. 2.7] is known as the
footprint bound.

Proposition 2.25 Let F be a field and let I ⊂ F[x1, x2, . . . , xm] be an ideal. Then
#V (I) � #Δ (I). Furthermore, if I is a radical ideal and F is algebraically closed then
equality holds.

Recall, that an ideal I ⊆ F[x1, x2, . . . , xm] is called a radical ideal when f ∈ I if and
only if fm ∈ I, for some positive integer m.

10



2.2. Gröbner basis theoretical approach to order domains

Definition 2.26 Fix a monomial order. A finite subset G = {g1, g2, . . . , gs} of an ideal
I is said to be a Gröbner basis if 〈lt(g1), lt(g2), . . . , lt(gs)〉 = 〈lt(I)〉, where 〈lt(I)〉 denotes
the ideal generated by the set of leading terms of polynomials in I.

Remark 2.27 A consequence of Definition 2.26 is that every leading term of polyno-
mials in I can be generated by the leading terms of the polynomials in a Gröbner basis
G for the ideal I. Thus it follows from Definition 2.22 that the footprint Δ≺ (I) of I is
exactly the set of monomials in Mm which can not be divided by any leading monomial
of polynomials in G, i.e. finding a Gröbner basis G for an ideal I gives us a way to find
the set Δ≺ (I). �

A special kind of Gröbner basis is defined below.

Definition 2.28 A minimal Gröbner basis for a polynomial ideal I is a Gröbner basis
G for I such that:

1. lc(g) = 1, for all g ∈ G.

2. For all g ∈ G, lt(g) /∈ 〈lt(G \ {g})〉.

The existence of a minimal Gröbner basis as in Definition 2.28 follows by [8, §2.7,
Lemma 3] given below.

Lemma 2.29 Let G be a Gröbner basis for the polynomial ideal I. Let f ∈ G be a
polynomial such that lt(f) ∈ 〈lt(G \ {f})〉. Then G \ {f} is also a Gröbner basis for I.

The following proposition is from [8, 2§6, Pro. 1].

Proposition 2.30 Let G = {g1, g2, . . . , gs} be a Gröbner basis for an ideal I ⊂
F[x1, x2, . . . , xm] and let f ∈ F[x1, x2, . . . , xm] be a polynomial. There is a unique
r ∈ F[x1, x2, . . . , xm] with the following properties:

1. No term of r is divisible by any of lt(g1), lt(g2), . . . , lt(gs).

2. There is g ∈ I such that f = g + r.

In particular, r is the remainder on division of f by G (see Theorem 3.1)no matter how
the elements of G are listed when using the division algorithm. We will use the notation
f̄ for the unique remainder r on division of f by G.

The division algorithm mentioned in Proposition 2.30 will be stated in Chapter 3 (Or
see [8, §2.3, Thm. 3]).

Proposition 2.30 has the following important corollary from [8, Cor. 2, §2.6] which we
will be using in Chapter 6.
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2. Order domains and Gröbner basis theory

Corollary 2.31 Let G = {g1, g2, . . . , gs} be a Gröbner basis for an ideal I ⊆
F[x1, x2, . . . , xm] and let f ∈ F[x1, x2, . . . , xm] be a polynomial. Then f ∈ I if and
only if the remainder on division of f by G is zero, i.e. f̄ = 0.

A Gröbner basis as in Definition 2.26 for an ideal I can always be found using Buch-
berger’s algorithm (See [8, §2.7] or Chapter 3). S-polynomials defined below are an
essential part of Buchberger’s algorithm.

Definition 2.32 Let F be a field, let f, g ∈ F[x1, x2, . . . , xm] be non-zero polynomials
and let ≺ be a monomial ordering on the set Mm.

Let lm(f) = xα1
1 xα2

2 · · ·xαm
m and let lm(g) = xβ1

1 xβ2
2 · · ·xβm

m with respect to ≺ and define
xγ1

1 xγ2
2 · · ·xγm

m , where γi = max{αi, βi}, for 1 � i � m.
The S-polynomial of f and g, written S(f, g), is the combination

S(f, g) =
xγ1

1 xγ2
2 · · ·xγm

m

lt(f)
· f − xγ1

1 xγ2
2 · · ·xγm

m

lt(g)
· g.

Notice that the monomial xγ1
1 xγ2

2 · · ·xγm
m in Definition 2.32 is the least common multiple

of xα = xα1
1 xα2

2 · · ·xαm
m and xβ = xβ1

1 xβ2
2 · · ·xβm

m , denoted lcm(xα, xβ).
The following Definition is from [8, §2.9, Def. 1].

Definition 2.33 Fix a monomial order and let G = {g1, g2, . . . , gs} ⊂ F[x1, x2, . . . , xm].
Given a polynomial f ∈ F[x1, x2, . . . , xm], we say that f reduces to zero modulo G, writ-
ten f →G 0, if f can be written in the form f = a1g1 + a2g2 + · · · + asgs, such that
whenever aigi �= 0, we have multideg(f) � multideg(aigi).

The S-polynomials in Definition 2.32 has the following property from [8, §2.9, Thm. 3]
which is used in Buchberger’s algorithm. We will study aspects of the algorithm itself
later on.

Theorem 2.34 A basis G = {g1, g2, . . . , gs} for an ideal I ∈ F[x1, x2, . . . , xm] is a
Gröbner basis for I if and only if S(gi, gj) →G 0, for all i �= j.

The S-polynomials in Definition 2.32 also has the following property from [8, §2.9,
Pro. 4] which can be used to make Buchberger’s algorithm faster by avoiding certain
polynomial divisions.

Proposition 2.35 Given a finite set G ⊂ F[x1, x2, . . . , xm], suppose that we have f, g ∈
G such that lcm(lm(f), lm(g)) = lm(f) · lm(g). This means that the leading monomials
of f and g are relatively prime. Then S(f, g) →G 0.

Now, consider the following relation.
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2.2. Gröbner basis theoretical approach to order domains

Definition 2.36 Let I ⊂ F[x1, x2, . . . , xm] be an ideal and let f, g ∈ F[x1, x2, . . . , xm].
We say that f and g are congruent modulo I, written f ≡ g mod I, if f − g ∈ I.

The most important property of the congruence relation from Definition 2.36 is that it
is an equivalence relation on F[x1, x2, . . . , xm] [8, 5§2, Pro. 2].

Recall that an equivalence relation on a set L partitions L into a collection of disjoint
subsets called equivalence classes. For any f ∈ F[x1, x2, . . . , xm] the equivalence class of
f , written [f ], is the set

[f ] = {g ∈ F[x1, x2, . . . , xm] | g ≡ f mod I}.

The set [f ] is also called the coset of f . Consider the following definition.

Definition 2.37 The quotient of F[x1, x2, . . . , xm] modulo I, written F[x1, x2, . . . , xm]/I,
is the set of equivalence classes for congruence modulo I:

F[x1, x2, . . . , xm]/I = {[f ] | f ∈ F[x1, x2, . . . , xm]}.

Proposition 2.30 motivates the use of f̄ as the standard representative for the equiva-
lence class [f ] ∈ F[x1, x2, . . . , xm]/I. Addition and multiplication of elements in
F[x1, x2, . . . , xm]/I are described in the following proposition from [8, §5.3, Pro. 8].

Proposition 2.38 Let I ⊂ F[x1, x2, . . . , xm] be an ideal and let G = {g1, g2, . . . , gt}
be a Gröbner basis for I with respect to a given monomial order ≺ . For each [f ] ∈
F[x1, x2, . . . , xm]/I we get the standard representative f̄ in the set S =
Span {xa | xa /∈ 〈lt(I)〉} . Then

1. [f ] + [g] is represented by f̄ + ḡ

2. [f ] · [g] is represented by f̄ · ḡ

The operations in Proposition 2.38 are well-defined by [8, §5.2, Pro. 5]. For a detailed
description of computations in F[x1, x2, . . . , xm]/I see [8, Ch. 5].

A connection between the quotient F[x1, x2, . . . , xm]/I from Definition 2.37 and order
domains from Definition 2.6 is given by Pellikaan’s factor ring theorem from [33, Thm.
5.11].

Theorem 2.39 Let I be an ideal in F[x1, x2, . . . , xm] with Gröbner basis G with respect
to ≺w from Definition 2.19. Suppose that the elements of the footprint of I have mutually
distinct weights and that every element of G has exactly two monomials of highest weight
in its support. Then there exists a weight function ρ on R = F[x1, x2, . . . , xm]/I with the
property that ρ([f ]) = wdeg(f̄), for all polynomials f , where [f ] is the coset of f modulo
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2. Order domains and Gröbner basis theory

I and f̄ is the standard representative for [f ].

For the remaining part of Part A we will only consider order domains of the form
described in Theorem 2.39.

Note that the Gröbner basis in Theorem 2.39 can (using Lemma 2.29) be assumed to be
a minimal Gröbner basis as in Definition 2.28. Thus G can be assumed to be of the form
G = {f1, f2, . . . , fs}, where fi = xβi + ηix

αi + f ′
i(x1, x2, . . . , xm), w(xαi) = w(xβi) >

wdeg(f ′
i(x1, x2, . . . , xm)), xαi ≺w xβi and ηi ∈ F \ {0}, for i = 1, 2, . . . , s, where xβi

does not divide xβj for any i �= j.
From now on, whenever we refer to Theorem 2.39, we will assume that the Gröbner

basis G is minimal and of the form described above.
Theorem 2.39 also motivates the following definition.

Definition 2.40 Let G = {f1, f2, . . . , fs} ⊂ Fq[x1, x2, . . . , xm] be a set of polynomials
where fi = xβi+ηix

αi+f ′
i(x1, x2, . . . , xm), w(xαi) = w(xβi) > wdeg(f ′

i(x1, x2, . . . , xm)),
xαi ≺w xβi and ηi ∈ F, for i = 1, 2, . . . , s.

Define bi = xβi + ηix
αi , for i = 1, 2, . . . , s, and let B(G) denote the set B(G) =

{b1, b2, . . . , bs} related to G. We call B(G) the binomial part of G (with respect to ≺w).

Since we are going to construct evaluation codes using the factor ring
Fq[x1, x2, . . . , xm]/I as an order domain, we need a morphism as in Definition 2.8 to
be able to use both the code construction from Definition 2.11 and the bound on the
minimum distance in Theorem 2.12. The morphism we will be using is the evaluation
map ϕ defined below.

Definition 2.41 Consider the ideal I = 〈f1, f2, . . . , fs〉 ⊂ Fq[x1, x2, . . . , xm] and the va-
riety V (I) = {p1, p2, . . . , pn}. The evaluation map ϕ : Fq[x1, x2, . . . , xm]/I → Fn

q is given
by ϕ([f ]) = (f̄(p1), f̄(p2), . . . , f̄(pn)).

The surjective map ϕ([f ]) is independent of the choice of representative of the equiv-
alence class [f ], since every f ∈ [f ] can be written as f = g + f̄ , for g ∈ I, such that
f(p) = g(p) + f̄(p) = f̄(p), for all p ∈ V (I).

Surjectivity of ϕ can be shown by constructing polynomials f1, f2, . . . , fn such that

fi(pj) =

{
1 , if i = j

0 , otherwise,

for pj ∈ V (I), as it is done in the proof of [8, §5.3, Pro. 8]. This way

Fn
q = SpanFq

{ϕ([f1]), ϕ([f2]), . . . , ϕ([fn])} ,

since [f1], [f2], . . . , [fn] ∈ Fq[x1, x2, . . . , xm]/I can be shown to be linearly independent
(see the proof of [8, §5.3, Pro. 8]).
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3. On Buchberger’s algorithm

In this chapter we will be concerned with how Buchberger’s algorithm finds a Gröbner
basis for a polynomial ideal I. This chapter is based on [8, Ch. 2]. In this chapter
the focus will be on using details from the algorithm as given in [8, §2.7, Thm. 2]. For
reference the theorem is given in Section 3.2 with a small change in notation. Also, since
polynomial division is an essential part of Buchberger’s algorithm, the division algorithm
from [8, §2.3, Thm. 3] is given in Section 3.1.

3.1. A division algorithm

Here we give the division algorithm as stated in the proof of [8, §2.3, Thm. 3] since we
will be using the algorithm in the proofs in Section 3.3 and in Chapter 5.

Theorem 3.1 Fix a monomial order ≺ on Nn
0 , and let F = (f1, f2, . . . , fs) be an ordered

s-tuple of polynomials in F[x1, x2, . . . , xm]. Then every f ∈ F[x1, x2, . . . , xm] can be
written as

f = a1f1 + a2f2 + · · · + asfs + r,

where ai, r ∈ F[x1, x2, . . . , xm], and either r = 0 or r is a linear combination, with coef-
ficients in F, of monomials, none of which is divisible by any of lt(f1), lt(f2), . . . , lt(fs).
We will call r the remainder of f on division by F . Furthermore, if aifi �= 0, then we
have multideg(aifi) 
 multideg(f).

We will use the notation given in the following definition from [8, §2.6, Def. 3].

Definition 3.2 We will write f
F

for the remainder on division of f by the ordered s-
tuple F = (f1, f2, . . . , fs). If F is a Gröbner basis for the ideal 〈f1, f2, . . . , fs〉, then we
can regard F as a set (without any particular order) by Proposition 2.30.

The algorithm as stated in the proof of Theorem 3.1 given in [8, §2.3, Thm. 3] is given
below.
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3. On Buchberger’s algorithm

Input: An ordered s-tuple F = (f1, f2, . . . , fs) and a polynomial f

Output: a1, a2, . . . , as, r

a1 := 0; a2 := 0; . . . ; as := 0; r := 0
p := f
WHILE p �= 0 DO
BEGIN

i := 1
divissionoccurred := false
WHILE i � s AND divisionoccurred = false DO
BEGIN

IF lt(fi) divides lt(p) THEN
BEGIN

ai := ai + lt(p)/lt(fi)
p := p − (lt(p)/lt(fi))fi

divissionoccurred := true
END
ELSE
BEGIN

i := i + 1
END

END
IF divissionoccurred = false THEN
BEGIN

r := r + lt(p)
p := p − lt(p)

END
END

Given an ordered s-tuple F = (f1, f2, . . . , fs) of polynomials in F[x1, x2, . . . , xm] and
a polynomial f ∈ F[x1, x2, . . . , xm] the algorithm does the following. Let the temporary
variable p be initialized as being equal to f . The variable p will be holding an intermediate
polynomial while the algorithm progresses.

First, we find the smallest index i such that lt(fi) divides lt(p). If we can find such
an index i then we add the term lt(p)/lt(fi) to ai and construct a new p by subtracting
(lt(p)/lt(fi))fi from the old p. The algorithm then continues with this new p by again
finding the smallest index i such that lt(fi) divides lt(p)

If no index i � s exists such that lt(fi) divides lt(p) then we add lt(p) to the variable
r (which in the end will hold the remainder on division of f by F ) and construct a new
p by subtracting lt(p) from the old p. If the newly constructed p is non-zero then the
algorithm makes another iteration.

The algorithm stops when p = 0. The variable r then contains the remainder on division
of f by the ordered s-tuple F and the variables ai contains polynomials such that

f = a1f1 + a2f2 + · · · + asfs + r
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3.2. Buchberger’s algorithm

as given in Theorem 3.1.

3.2. Buchberger’s algorithm

Here we give Buchberger’s algorithm as stated in [8, §2.7, Thm. 2], with a slightly
changed notation.

Theorem 3.3 Let I = 〈f1, f2, . . . , fs〉 �= {0} be a polynomial ideal. Then a Gröbner
basis for I can be constructed in a finite number of steps by the following algorithm:

Input: F = (f1, f2, . . . , fs)

Output: a Gröbner basis L = (g1, g2, . . . , gt) for I, with F ⊆ L

L := F
REPEAT
BEGIN

L′ := L
FOR each pair {p, q}, p �= q in L′ DO
BEGIN

R := S(p, q)
L′

IF R �= 0 THEN L := L ∪ {R}
END

END
UNTIL L = L′

Buchberger’s algorithm utilizes the property of a Gröbner basis given in Theorem 2.34
by expanding a given ordered list of polynomials until nothing new is added to the list
and Theorem 2.34 is satisfied.

The algorithm does the following. Given an ordered list F = (f1, f2, . . . , fs) of polyno-
mials in F[x1, x2, . . . , xm] it starts by setting the two temporary lists L and L′ equal to
F . It then constructs the S-polynomials S(p, q) for every pair p �= q in the list L′. If a

non-zero remainder on division of S(p, q) by L′ is found, i.e. R := S(p, q)
L′

�= 0, then this
remainder R is added to the end of the list L. This continues until we have constructed
S(p, q), for every pair p �= q in L′.

If anything new was added to the list L during this iteration, then we let L′ := L and
make another iteration with this new list L′. The algorithm continues until it encounters
an iteration that adds nothing new to L, i.e. L = L′ after this iteration, and the algorithm
stops.

That the elements in the list L is a basis for the ideal I follows from the fact that the
elements in F are in L and the elements in F are a basis for I. Furthermore, the elements
in L constitutes a Gröbner basis for I since they are constructed to satisfy Theorem 2.34.
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3. On Buchberger’s algorithm

3.3. On finding a Gröbner basis for ideals from
Theorem 2.39

We will be using Buchberger’s algorithm in Section 3.2, the division algorithm in Sec-
tion 3.1 and the definition of S-polynomials in Definition 2.32 in the proofs of the following
lemmas.

Consider an ideal I having Gröbner basis G of the form given in Theorem 2.39 and a
polynomial g ∈ F[x1, x2, . . . , xm], where Supp(g) ∈ Δ≺ (I). In the proof of Lemma 3.6 we
will consider S-polynomials of the form P(j1) = S(fj1 , g), where fj1 ∈ G, and polynomials
P(j1,j2,...,jt) defined recursively as

P(j1,j2,...,jt) = S(fjr , P(j1,j2,...,jt−1)),

where fj1 , fj2 , . . . , fjt ∈ G (with possible repetitions).
In the proofs of Lemma 3.5 and Lemma 3.6 we need to know something about the

structure of these S-polynomials, thus we give the following Lemma 3.4. The proof of
Lemma 3.4 may seem rather complicated at first glance but in reality the lemma follows
just by writing the S-polynomials involved and observe what their leading monomials
look like.

Lemma 3.4 Let I be an ideal having Gröbner basis G = {f1, f2, . . . , fs} as in The-
orem 2.39 with respect to ≺w as defined in Definition 2.19. For i = 1, 2, . . . , s, let
fi = xβi + ηix

αi + f ′
i(x1, x2, . . . , xm), w(xαi) = w(xβi) > wdeg(f ′

i(x1, x2, . . . , xm)) and
lm(fi) = xβi .

Let g = xa + g′(x1, x2, . . . , xm) be a polynomial in F[x1, x2, . . . , xm] such that
w(g′(x1, x2, . . . , xm)) < w(xa) and Supp(g) ⊂ Δ≺w (I) .

Define the polynomial P(j1,j2,...,jt) recursively as

P(j1) = S(fj1 , g)

for some 1 � j1 � s, and

P(j1,j2,...,jt) = S(fjt , P(j1,j2,...,jt−1)),

for some 1 � jt � s. Then P(j1,j2,...,jt) is of the form

P(j1,j2,...,jt) = ηjt · xpjt + P ′
(j1,j2,...,jt)

(3.1)

for specific pjt
= (pjt,1, pjt,2, . . . , pjt,m) ∈ Nm

0 depending only on the two monomials
of highest weight in fj1 , fj2 , . . . , fjt and on lm(g). Furthermore, ηjt ∈ Fq \ {0} and
w(P ′

(j1,j2,...,jt)
) < w(xpjt ) holds, i.e. lm(P(j1,j2,...,jt)) = xpjt .

Proof: The lemma is proven by induction in t.
Basis:

18



3.3. On finding a Gröbner basis for ideals from Theorem 2.39

When t = 1 the polynomial P(j1) is given by

P(j1) = S(fj1 , g)

=
xγj1

xβj1

(
xβj1 + ηj1x

αj1 + f ′
j1

)
− xγj1

xa
(xa + g′)

= ηj1x
γj1

−βj1
+αj1 + xγj1

−βj1 · f ′
j1 − xγj1

−a · g′,

where γj1 = (γj1,1, γj1,2, . . . , γj1,m) ∈ Nm
0 and γj1,u = max{βj1,u, iu}, for u = 1, 2, . . . , m.

Furthermore, we have

w(xγj1
−a · g′) < w(xγj1 ) = w(xγj1

−βj1
+αj1 )

and
w(xγj1

−βj1 · f ′
j1) < w(xγj1 ) = w(xγj1

−βj1
+αj1 )

because w(xβj1 ) = w(xαj1 ), wdeg(g′) < w(xa) and wdeg(f ′
j1

) < w(xβj1 ) by definition
of fj1 and g.

Step:
Assume that the lemma holds for t � 1 and

P(j1,j2,...,jt) = ηjt · xpjt + P ′
(j1,j2,...,jt)

.

Then for jt+1 ∈ {1, 2, . . . , s} we have

P(j1,j2,...,jt+1) = S
(
fjt+1 , P(j1,j2,...,jt)

)
=

x
γjt+1

x
βjt+1

(
x

βjt+1 + ηjt+1 · xαjt+1 + f ′
jt+1

)

− x
γjt+1

ηjt · xpjt

(
ηjt · xpjt + P ′

(j1,j2,...,jt)

)
= ηjt+1 · x

γjt+1
−βjt+1

+αjt+1 + x
γjt+1

−βjt+1 · f ′
jt+1

− 1
ηjt

· xγjt+1
−pjt · P ′

(j1,j2,...,jt)
,

where γjt+1
= (γjt+1,1, γjt+1,2, . . . γjt+1,m) ∈ Nm

0 and γjt+1,u = max{βjt+1,u, pjt,u}, for
u = 1, 2, . . . , m. Furthermore, we have that

w
(
x

γjt+1
−pjt · P ′

(j1,j2,...,jt)

)
< w

(
x

γjt+1
)

= w
(
x

γjt+1
−βjt+1

+αjt+1

)
and

w
(
x

γjt+1
−βjt+1 · f ′

jt+1

)
< w

(
x

γjt+1
)

= w
(
x

γjt+1
−βjt+1

+αjt+1

)
because w(xβjt+1 ) = w(xαjt+1 ) and w(P ′

(j1,j2,...,jt)
) < w(xpjt ) using the definition of

fjt+1 and the induction hypothesis. �
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At this point we make the following three important observations which will be used
in the proofs of Lemma 3.5 and Lemma 3.6 (among others).

Observation 1:
The first observation follows from the proof of Lemma 3.4 given above. If we consider

an ideal I having Gröbner basis G = {f1, f2, . . . fs} of the form given in Theorem 2.39 and
a polynomial g = xa + g′(x1, x2, . . . , xm) ∈ F[x1, x2, . . . , xm], where Supp(g) ⊂ Δ≺ (I)
and lm(g) = xa. Furthermore, let B(G) = {b1, b2, . . . , bs} be the binomial part of G as
in Definition 2.40. Then from the proof of Lemma 3.4 it is clear that f ′

i and g′ have no
influence on what the leading monomial of P(j1,j2,...,jt) is, for any i ∈ (j1, j2, . . . , jt).

Now, let (j1, j2, . . . , jt) be fixed and replace the polynomials fi with their corresponding
binomial part bi and g by it’s leading monomial xa in the lemma above. Then construct
Q(j1) = S(bj1 , g) and Q(j1,j2,...,jt) = S(bjt , q(j1,j2,...,jt−1)) recursively and we have the
equality

lm
(
Q(j1,j2,...,jt)

)
= lm

(
P(j1,j2,...,jt)

)
, (3.2)

for a fixed monomial ordering ≺ and any t � 1.

Observation 2:
The second observation regards S-polynomials and their connection to the division

algorithm given in Section 3.1. Consider two polynomials p, q ∈ F[x1, x2, . . . , xm] such
that lm(q) divides lm(p), i.e. lcm(lm(q), lm(p)) = lm(p), with respect to a monomial
ordering ≺. Then from Definition 2.32 we have

S(p, q) =
lcm(lm(p), lm(q))

lt(p)
· p − lcm(lm(p), lm(q))

lt(q)
· q

=
lm(p)
lt(p)

· p − lm(p)
lt(q)

· q

=
1

lc(p)
· p − lm(p)

lt(q)
· q, (3.3)

which basically is the same as constructing the polynomial

p := p − (lt(p)/lt(q))q (3.4)

during an iteration of the division algorithm (except that the new p in (3.4) not necessarily
has the same leading coefficient as the S-polynomial in (3.3)).

When dividing S(fj1 , g) �= 0 with G (regarded as an ordered s-tuple), where fj1 , g and
G are as in Lemma 3.4, then the division algorithm updates the variable p, say t times,
as in (3.4), before adding the first term γ �= 0 to the variable r ( r holds the reminder
when the algorithm stops) and construct a new p from the old one by letting p := p− γ.

Assume that this new p �= 0. Since p ≺ γ and the division algorithm has the property
given in Theorem 3.1, then any non-zero term added to r in later iterations is smaller
than γ (with respect to ≺). Thus the remainder S(fj1 , g)

G �= 0 on division of S(fj1 , g)
by G has the same leading monomial as some P(j1,j2,...,jt) from Lemma 3.4, where lt(fji)
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divides lt(P(j1,j2,...,ji−1)), for all i = 2, 3, . . . , t, and no fi ∈ G divides P(j1,j2,...,jt), i.e we
have that

lm
(
S(fj1 , g)

G
)

= lm
(
P(j1,j2,...,jt)

)
, (3.5)

for some t � 2, if S(fj1 , g) �= 0. Note that P(j1,j2,...,jt) may not be equal to the remainder

S(fj1 , g)
G

but all we need is the equality in (3.5). By using (3.3) and (3.4) in every

iteration of the division algorithm it follows that if S(fj1 , g)
G

= 0 then there exists a
t � 2 such that P(j1,j2,...,jt) = 0 and lt(fji) divides lt(P(j1,j2,...,ji−1)), for all i = 2, 3, . . . , t.

Observation 3:
The third observation concerns footprints. Consider two ideal I, J ⊆ F[x1, x2, . . . , xm]

with Gröbner basis F = {f1, f2, . . . , fs} and G = {g1, g2, . . . , gt} respectively. Assume
that for every g ∈ G there exists a f ∈ F such that lt(f) divides lt(g), then it follows
from Remark 2.27 that

Δ≺ (I) ⊆ Δ≺ (J) (3.6)

holds.

Lemma 3.5 will prove that given a Gröbner basis G for an ideal I as in Theorem 2.39,
then the binomial part of G, i.e. B(G), constitutes a Gröbner basis for the ideal 〈B(G)〉.

Lemma 3.5 Let Fq[x1, x2, . . . , xm]/I be an order domain with Gröbner basis G =
{f1, f2, . . . , fs} as described in Theorem 2.39 and let B(G) = {b1, b2, . . . bs} be the bi-
nomial part of G as in Definition 2.40. Then B(G) is a Gröbner basis for the ideal
〈b1, b2, . . . , bs〉.

Proof: Since G is a Gröbner basis for I then S(fi, fj)
G

= 0, for all i �= j, using

Theorem 2.34. Thus if we can show that S(bi, bj)
B(G)

= 0 follows, for all i �= j, then we
have proven the lemma. The proof relies very much on observations 1 and 2 on page 20.

First we repeat the definition of the polynomials we need and take a look at the structure
of the S-polynomials S(fi, fj) and it’s connection to S(bi, bj), for fixed i �= j.

Let fi = xβi + ηix
αi + f ′

i(x1, x2, . . . , xm) = bi + f ′
i(x1, x2, . . . , xm), where w(xαi) =

w(xβi) > wdeg(f ′
i(x1, x2, . . . , xm)), xαi ≺w xβi and ηi ∈ Fq \ {0}, for i = 1, 2, . . . , s.

Thus lt(fi) = lt(bi) = xβi , for all i = 1, 2, . . . , s, and

S(fi, fj) =
xγij

xβi
ηix

αi +
xγij

xβi
f ′

i(x1, x2, . . . , xm) − xγij

xβj
ηjx

αj − xγij

xβj
f ′

j(x1, x2, . . . , xm),

(3.7)

= S(bi, bj) +
xγij

xβi
f ′

i(x1, x2, . . . , xm) − xγij

xβj
f ′

j(x1, x2, . . . , xm),

where xγij = lcm(xβi , xβj ) and lt(S(fi, fj)) = lt(S(bi, bj)), if S(bi, bj) �= 0. The last
statement follows by inspecting S(bi, bj) and by noticing that

w(xγij−βi+αi) = w(xγij−βj+αj ) > wdeg(xγij−βi · f ′
i(x1, x2, . . . , xm))

21



3. On Buchberger’s algorithm

and
w(xγij−βj+αj ) > wdeg(xγij−βj · f ′

j(x1, x2, . . . , xm)),

since w(xβi) = w(xαi) > wdeg(f ′
i(x1, x2, . . . , xm)) and w(xβj ) = w(xαj ) >

wdeg(f ′
j(x1, x2, . . . , xm)) by definition of fi and fj.

Then define P(j1) = S(fi, fj) and define P(j1,j2,...,jt) recursively as

P(j1,j2,...,jt) = S(fjt , P(j1,j2,...,jt−1)),

for t � 1.
Now, using observation 2 on page 20 and the fact that G is a Gröbner basis for I, there

exists a t such that P(j1,j2,...,jt) = 0 = S(fi, fj)
G

, where lt(fju) divides lt(P(j1,j2,...,ju−1)),
for u = 2, 3, . . . , t and t is as small as possible.

Claim: The support of P(i,j1,j2,...,ju) contains two monomials of the highest weight, for
all u = 1, 2, . . . , t − 1.

Our claim is proven by contradiction. Assume that for some k, where 1 � k � t − 1,
the support of P(j1,j2,...,jk) contains only one monomial of highest weight. Then so would

P(j1,j2,...,jk+1), P(j1,j2,...,jk+2), . . . , P(j1,j2,...,jt−1),

since fjk+1 , fjk+2 , . . . , fjt−1 all have two monomials of highest weight in their support.
Thus we would never be able to cancel the monomial of highest weight in P(j1,j2,...,jt−1)

by dividing it with fjt which contradicts the definition of P(j1,j2,...,jt). This concludes
the proof of our claim.

Let k be the smallest index such that wdeg(P(j1,j2,...,jk)) < wdeg(P(j1,j2,...,jk−1)). This
happens exactly when the two monomials of highest weight in fjk

cancel the two mono-
mials of highest weight in P(j1,j2,...,jk−1).

Let i, j, (j1, j2, . . . , jk) and k � t be fixed. Define Q(j1) = S(bi, bj) and define Q(j1,j2,...,ju)

recursively as

Q(j1,j2,...,ju) = S(bju , Q(j1,j2,...,ju−1)),

for 1 � u � k. Then from the proof of Lemma 3.4 (with fj playing the role of g)
and observation 1 on page 20, we have that lm(Q(j1,j2,...,ju)) = lm(P(j1,j2,...,ju)), for all
u = 1, 2, . . . , k − 1, since f ′

j1
, f ′

j2
, . . . , f ′

ju
and f ′

j has no influence on what is the leading
monomial of P(j1,j2,...,ju) and fv = bv + f ′

v, for all v = 1, 2, . . . , s.
Furthermore, since the support of P(j1,j2,...,ju) contains two monomials of highest weight,

for all u = 1, 2, . . . , k − 1 and fv = bv + f ′
v, for all v = 1, 2, . . . , s, then the support of

Q(j1,j2,...,ju) contains two monomials of highest weight, for all u = 1, 2, . . . , k − 1.
Since the two monomials of highest weight in fjk

cancel the two monomials of highest
weight in P(j1,j2,...,jk−1), we have that Q(j1,j2,...,jk) = 0. Which again (using observation

2 on page 20) means that S(bi, bj)
B(G)

= 0, for all i �= j, since i �= j were random. �

Lemma 3.6, which will be essential in Chapter 4, is proven by using the three obser-
vations above, i.e. by using (3.2), (3.5) and (3.6), and Lemma 3.5. The rather technical
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3.3. On finding a Gröbner basis for ideals from Theorem 2.39

proof relies very much on Buchberger’s algorithme given in Section 3.2, the division
algorithm given in Section 3.1 and the three observations right after Lemma 3.4.

Lemma 3.6 only states the inclusion from Lemma 1 in the Appendix of [4], thus the
proof given below is different than the one given in the Appendix of [4].

Lemma 3.6 Let Fq[x1, x2, . . . , xm]/I be an order domain with Gröbner basis G =
{f1, f2, . . . , fs} as described in Theorem 2.39 and let B(G) = {b1, b2, . . . bs} be the bi-
nomial part of G as in Definition 2.40.

Let g be a polynomial in Fq[x1, x2, . . . , xm], let lm(g) = xa with respect to ≺w and
assume that Supp(g) ⊂ Δ≺w (〈f1, f2, . . . , fs〉). Then

Δ≺w (〈f1, f2, . . . , fs, g〉) ⊆ Δ≺w (〈b1, b2, . . . , bs, x
a〉) . (3.8)

Proof: The lemma is proven by studying what happens when running Buchberger’s
algorithm on the ordered list M = (b1, b2, . . . , bs, x

a) compared to what happens when
running the algorithm on the ordered list L = (f1, f2, . . . , fs, g). In other words: we will
show that every time a remainder q is added to the list M , when running Buchberger’s
algorithm on M , we can add a polynomial p ∈ 〈L〉 to the list L such that lm(p) = lm(q).
After expanding L this way we can use observation 3 on page 21 to prove the theorem.

In the following we will use the term inner loop for the FOR-loop in the algorithm and
the term outer loop for the REPEAT-UNTIL-loop (See the listing of the algorithm in
Section 3.2).

In the following, let M∗ denote the ordered list (b1, b2, . . . , bs) and let L∗ denote the

ordered list (f1, f2, . . . , fs). First, notice that S(bi, bj)
M∗

= 0 and S(fi, fj)
L∗

= 0, for
all i �= j, since {f1, f2, . . . , fs} is a Gröbner basis for I = 〈f1, f2, . . . , fs〉 and, using
Lemma 3.5, {b1, b2, . . . , bs} is a Gröbner basis for J = 〈b1, b2, . . . , bs〉.

Now, consider what happens during the first iteration in both the outer and the inner
loop of Buchberger’s algorithm running on the ordered list M given above. Then the
only S-polynomials that might add something to M during the first iteration is an S-
polynomial S(bj1 , x

a) (which consists of one term), for some 1 � j1 � s.
Let Q(j1,j2,...,jt) be defined as in observation 1 on page 20, for some fixed t as small

as possible, such that lm(Q(j1,j2,...,jt)) = lm(S(bj1 , x
a)

M∗
) �= 0, using observation 2 on

page 20 and (3.5). Using observation 1 and 2 we also have that

lm
(
S(bj1 , x

a)
M∗)

= lm
(
Q(j1,j2,...,jt)

)
= lm

(
P(j1,j2,...,jt)

)
= lm

(
S(fj1 , g)

L∗)
, (3.9)

for this t, where P(j1,j2,...,jt) is from observation 1 on page 20 and (j1, j2, . . . , jt) is fixed.
We now have two cases to consider.

Case 1: xa does not divide S(bj1 , x
a)

M∗
.

In this case Buchberger’s algorithm will add S(bj1 , x
a)

M∗
to the ordered list M .
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Since lm(g) does not divide S(bj1 , x
a)

M∗
and (3.9) holds, we add S(fj1 , g)

L∗
to the or-

dered list L, since we could add this remainder to L when running Buchberger’s algorithm
on L.

Thus, during this first iteration we add polynomials p and q to the lists L and M
respectively, both having the same leading monomial, no matter which j1 we choose.

Case 2: xa divides S(bj1 , x
a)

M∗
.

In this case Buchberger’s algorithm will not add anything to the list M since

S(bj1 , x
a)

M∗
consists of one term and the remainder on division of S(bj1 , x

a)
M∗

by
xa is zero.

In this case we add nothing to L either.

This ends the two cases. Now, since the algorithm only updates the list M once in the
beginning of every iteration of the outer loop, all the iterations of the inner loop will only
add polynomials qi to the list M , as described in Case 1 above (and add polynomials pi

to the list L having lm(pi) = lm(qi), when running on L).
This means that after the first iteration of the outer loop (and the lists are updated)

the following holds: For every polynomial q ∈ M there exists a polynomial p ∈ L such
that lm(p) is equal to lm(q).

Now, let consider a successive iteration in the outer loop in Buchberger’s algorithm
running on the list M such that

M = [b1, b2, . . . , bs, x
a, q1, q2, . . . , qu], (3.10)

where q1, q2, . . . , qu have been added in the previous iterations. Furthermore, assume
that #M = #L and for every qi ∈ M there exists a pi ∈ L such that lm(pi) = lm(qi).

First look at the list M in (3.10). Since the polynomials q1, q2, . . . , qu all consists of
one term, any S-polynomial S(qi, qj) = 0, for all i and j. The same holds for any S-
polynomial S(xa, qi), for all i. Thus the only S-polynomials that might add something
to the list M are S-polynomials of the form S(bi, qj).

Let Q(j1,j2,...,jk) be defined as before such that lm(Q(j1,j2,...,jk)) = lm(S(bj1 , qj)
M∗

) �= 0,
for some fixed k as small as possible. Since for every qi ∈ M there exists a pi ∈ L such
that lm(pi) = lm(qi), then, using observation 1 and 2 again, we also have that

lm
(
S(bj1 , x

a)
M∗)

= lm
(
Q(j1,j2,...,jk)

)
= lm

(
P(j1,j2,...,jk)

)
= lm

(
S(fj1 , g)

L∗)
, (3.11)

for this k, where P(j1,j2,...,jk) is from observation 1 on page 20 and (j1, j2, . . . , jk) is fixed.
Again we have two cases to consider (which we will call Case 3 and Case 4 to distinguish

them from the two first cases above).

Case 3: Neither xa nor any qi divides S(bj1 , qj)
M∗

, for i = 1, 2, . . . , u,

In this case Buchberger’s algorithm will add S(bj1 , qj)
M∗

to the ordered list M .

Since neither lm(g) or lm(pi) = lm(qi) divides S(bj1 , qj)
M∗

, for any i = 1, 2, . . . , u, and

(3.11) holds, we add S(fj1 , pj)
L∗

to the ordered list L.
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Thus during this iteration we again add polynomials p and q to the lists L and M
respectively, both having the same leading monomial, no matter which j1 or j we choose.

Case 4: xa or lm(qi) divides S(bj1 , qj)
M∗

, for some i.
In this case Buchberger’s algorithm will not add anything to the list M since

S(bj1 , qj)
M∗

consists of one term and the remainder on division of S(bj1 , qj)
M∗

by xa or
qi is zero. Thus we add nothing to L.

This ends Cases 3 and 4. When running Buchberger’s algorithm on the list M new
polynomials will only be added when in Cases 1 and 3. When the algorithm stops we
have added polynomials pi to the ordered list L such that lm(pi) = lm(qi) for every qi

added to M during the iterations.
Notice, that the elements in the expanded list L may not be a Gröbner basis for

〈f1, f2, . . . , fs, f〉 so we could run Buchberger’s algorithm on L to find one. The impor-
tant facts are that the polynomials pi added to L are polynomials in 〈L〉 and for every
polynomial qi added to M when running Buchberger’s algorithm on M , there exists a
pi ∈ L such that lm(pi) = lm(qi).

Thus observation 3 on page 21 holds, i.e. Δ≺ (f1, f2, . . . , fs, g) ⊆ Δ≺ (b1, b2, . . . , bs, x
a)

holds. �

Lemma 3.6 has the following corollary which follows by letting f ′
i(x1, x2, . . . , xm) = 0,

for all i = 1, 2, . . . , s.

Corollary 3.7 Let Fq[x1, x2, . . . , xm]/I be an order domain with Gröbner basis G =
{f1, f2, . . . , fs} as described in Theorem 2.39 and let B(G) = {b1, b2, . . . bs} be the bino-
mial part of G as in Definition 2.40.

Let g be a polynomial in Fq[x1, x2, . . . , xm], let lm(g) = xa with respect to ≺w and
assume that Supp(g) ⊆ Δ≺w (〈f1, f2, . . . , fs〉). Then

Δ≺w (〈b1, b2, . . . , bs, g〉) ⊆ Δ≺w (〈b1, b2, . . . , bs, x
a〉) . (3.12)

We expect the inclusion

Δ≺w (〈f1, f2, . . . , fs, g〉) ⊆ Δ≺w (〈b1, b2, . . . , bs, g〉) (3.13)

to hold as well but a proof similar to the one given for Lemma 3.6 requires us to keep
track of additional S-polynomials of the form S(g, qj) as well (which is not an easy task).
In Chapter 6 we will show that for a special kind of ideals the equality in (3.12) holds and
the inclusion in (3.13) then follows from Lemma 3.6, i.e. for this special kind of ideals
[4, Lemma 1] holds.
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4. A Gröbner basis theoretical approach
to codes from order domains

The main result given as Theorem 4.4 in Section 4.1 is presented in [2, Thm. 2] in a
more general setting which includes generalized Hamming weights but the presentation
and proof given here relies only on Gröbner basis theoretical methods while the more
general result in [2] relies on the notion of a weakly well-behaving basis. The results
given here were published in [4] which is a predecessor of [3] and [2].

4.1. Defining evaluation codes

First we need a few definitions. The first one is from [4, Def. 6].

Definition 4.1 Let Fq[x1, x2, . . . , xm]/I be an order domain as in Theorem 2.39 with
Gröbner basis G = {f1, f2, . . . , fs} and let B(G) = {b1, b2, . . . , bs} be the binomial part of
G. For any monomial xa ∈ Mm define

S(xa) = Δ≺w (〈b1, b2, . . . , bs, x
a〉) ,

Ŝ(xa) = S(xa) ∩ Δ≺w (〈xq
1 − x1, x

q
2 − x2, . . . , x

q
m − xm〉) ,

S̃(xa) = S(xa) ∩ Δ≺w (〈f1, f2, . . . , fs, x
q
1 − x1, x

q
2 − x2, . . . , x

q
m − xm〉)

and let D(xa) = #S(xa), D̂(xa) = #Ŝ(xa) and D̃(xa) = #S̃(xa).

The following theorem, which is [4, Thm. 3], makes it possible to use Proposition 2.25
to give a lower bound on minimum distances in Theorem 4.4.

Theorem 4.2 Let Fq[x1, x2, . . . , xm]/I be an order domain as in Theorem 2.39, let f
be a polynomial in Fq[x1, x2, . . . , xm], let lm(f) = xa with respect to ≺w, let Supp(f) ⊆
Δ≺w (〈f1, f2, . . . , fs, x

q
1 − x1, x

q
2 − x2, . . . , x

q
m − xm〉) and let S(xa), Ŝ(xa) and S̃(xa) be

defined as in Definition 4.1. Then the following holds

Δ≺w (〈f1, f2, . . . , fs, x
q
1 − x1, x

q
2 − x2, . . . , x

q
m − xm, f〉) ⊆ S̃(xa) ⊆ Ŝ(xa) ⊆ S(xa).

Proof: The first inclusion follows from Lemma 3.6, Definition 4.1 and observation 3 on
page 21, since

Δ≺w (〈f1, f2, . . . , fs, x
q
1 − x1, x

q
2 − x2, . . . , x

q
m − xm, f〉)

⊂ Δ≺w (〈f1, f2, . . . , fs, x
q
1 − x1, x

q
2 − x2, . . . , x

q
m − xm〉) ,
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using observation 3, and

Δ≺w (〈f1, f2, . . . , fs, x
q
1 − x1, x

q
2 − x2, . . . , x

q
m − xm, f〉)

⊆ Δ≺w (〈f1, f2, . . . , fs, f〉) ⊆ Δ≺w (〈b1, b2, . . . , bs, x
a〉) ,

using observation 3 and Lemma 3.6. The remaining inclusions follows from Definition 4.1.
�

Proposition 2.25 and Theorem 4.2 motivates the following definition from [4, Def. 7].

Definition 4.3 Let Fq[x1, x2, . . . , xm]/I be an order domain as in Theorem 2.39 and let
Iq = I + 〈xq

1 − x1, x
q
2 − x2, . . . , x

q
m − xm〉. Define

F (t) = SpanFq

{
ϕ(xa) | xa ∈ Δ≺w (Iq) , D(xa) � t

}
F̂ (t) = Span

Fq

{
ϕ(xa) | xa ∈ Δ≺w (Iq) , D̂(xa) � t

}
F̃ (t) = SpanFq

{
ϕ(xa) | xa ∈ Δ≺w (Iq) , D̃(xa) � t

}
where ≺w denotes the monomial order from Definition 2.19 and ϕ is the evaluation map
from Definition 2.41.

A lower bound on the minimum distance of the codes in Definition 4.3 is given in
Theorem 4.4, which is from [4, Thm. 4].

Theorem 4.4 The minimum distances of the codes F , F̂ and F̃ are bounded by:

d(F (t)) � n − max
{
D̃(xa) | D(xa) � t

}
� n − max

{
D̂(xa) | D(xa) � t

}
� n − t

d(F̂ (t)) � n − max
{
D̃(xa) | D̂(xa) � t

}
� n − t

d(F̃ (t)) � n − t.

Proof: Consider the bound d(F̃ (t)) � n − t. Let Iq = 〈f1, f2, . . . , fs, x
q
1 − x1, x

q
2 −

x2, . . . , x
q
m − xm〉 as in Definition 4.3 and VFq (Iq) = {p ∈ Fm

q | g(p) = 0, for all g ∈ Iq}
and #V (Iq) = n.

Then a codeword c ∈ F̃ (t) is constructed as ϕ(f), for some polynomial f , where
Supp(f) ∈ Δ≺w (Iq) and ϕ : V (Iq) → Fn

q is the evaluation map from Definition 2.41.
This means that the number of zeroes in c is upper bounded by the number of elements

in the set {p ∈ V (Iq) | f(p) = 0}, which again (using Proposition 2.25) is upper bounded
by #Δ≺w (Iq + 〈f〉) � t, where the last equality follows from Definition 4.3, Theorem 4.2
and Definition 4.1.

Also, from Theorem 4.2 and Definition 4.1 it follows that D̃(xa) � D̂(xa) � D(xa),
thus the remaining two bounds holds. �
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The result regarding F̃ (t) in Theorem 4.4 corresponds to the result in [2, Thm. 3] ,i.e.
D̃(xa) = σ(w(xa)), for xa ∈ Δ≺w (Iq). This result is stated as Proposition 9 in the
appendix of [2] (included as Proposition 8.41 in Part B), where the proof is given.

Notice, that the set {B1, B2, . . . , Bs} in the proof of Proposition 8.41 is different than
the set we have called the binomial part in Part A and in [4], but a proof similar to
the one given for Lemma 3.5 can be given to show that the set {B1, B2, . . . , Bs} in
Proposition 8.41 is a Gröbner basis for the ideal 〈B1, B2, . . . , Bs〉.

Regarding the F̂ (t) codes examples have shown that they tend to have parameters very
close to those of the F (t) codes. See [4, Ex. 2] for an example.
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5. Evaluation codes from a special class
of order domains

In this chapter we will present a special class of order domains and a different approach
than the one taken in Chapter 4 to bounding the minimum distance of codes from this
class of order domains.

5.1. A special class of order domains

The following results regards a special class of order domains on the form in Theorem 2.39
where the two monomials of highest weight in the polynomials fi generating I are mono-
mials in one variable and where the weights of monomials are positive integers as in
Example 2.3. Theorem 5.1 is from [4, Thm. 5].

Theorem 5.1 Given positive integers α1, β1, α2, β2, . . . , αm−1, βm−1 such that
gcd(αi, βj) = 1 whenever i � j. Define weights w(xr) =

∏r−1
i=1 αi ·

∏m−1
j=r βj for r =

1, 2, . . . , m, where the empty product is defined to be 1, and let ≺w be the monomial order
from Definition 2.19 with ≺Mm=≺lex and x1 ≺lex x2 ≺lex · · · ≺lex xm.

For r = 1, 2, . . .m − 1 let the polynomials fr = xαr
r − xβr

r+1 + f ′
r(x1, x2, . . . , xm) ∈

Fq[x1, x2, . . . , xm] be such that w(xαr
r ) = w(xβr

r+1) > wdeg(f ′
r(x1, x2, . . . , xm)).

Let I = 〈f1, f2, . . . , fm−1〉, then the following holds:

(1) The factor ring Fq[x1, x2, . . . , xm]/I is an order domain as described in Theo-
rem 2.39.

(2) For any monomial xa ∈ Δ≺w (I) we have D(xa) � w(xa), where D(xa) is from
Definition 4.1.

The result in (1) in Theorem 5.1 is proven now and the proof of (2) is postponed until
the end of this chapter.
Proof of Theorem 5.1 (1):
From the construction of f1, f2, . . . , fm−1 and the definition of ≺w it follows that lm(fr) =
xβr

r+1. Since xβi

i+1 and x
βj

j+1 are relatively prime, for i �= j, it follows from Proposition 2.35
that {f1, f2, . . . , fm−1} is a Gröbner basis for I, which by construction meets the condition
in Theorem 2.39. Then

Δ≺w (I) =
{
xa1

1 xa2
2 · · ·xam

m ∈ Mm

∣∣ 0 � ai < βi−1 for i = 2, 3, . . . , m
}

.
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The factor ring Fq[x1, x2, . . . , xm]/I is an order domain, using Theorem 2.39, with weight
function ρ([f ]) = w(f̄), for [f ] ∈ Fq[x1, x2, . . . , xm]/I where f̄ denotes the standard
representative for [f ], if we can prove that the monomials in Δ≺w (I) have mutually
distinct weights.

We will prove this by induction in the number of variables m.

Basis: m = 2
Here w(x1) = β1, w(x2) = α1 and gcd(α1, β1) = 1. Let xu1

1 xu2
2 , xv1

1 xv2
2 ∈ Δ≺w (I) be

such that w(xu1
1 xu2

2 ) = w(xv1
1 xv2

2 ). This means that (u1 − v1)β1 = (v2 − u2)α1. Since
v2, u2 < β1 and lcm(α1, β1) = α1β1 then v2 = u2 is the only possibility. Thus u1 = v1

and xu1
1 xu2

2 = xv1
1 xv2

2 holds.

Step: m � 2
Assume that in m variables the monomials in Δ≺w (I) all have mutually distinct

weights, i.e. whenever w(xu1
1 xu2

2 · · ·xum
m ) = w(xv1

1 xv2
2 · · ·xvm

m ), for xu, xv ∈ Δ≺w (I),
then ur = vr, for all r = 1, 2, . . . , m.

We will show that this also holds for m + 1 variables. Let wm(xr) denote the weight of
xr in the case of m variables, for r = 1, 2, . . . , m, and notice that from the definition of
the weights we have wm+1(xr) = βm ·wm(xr), for all r = 1, 2, . . . , m, and wm+1(xm+1) =∏m

r=1 αr.
Let xu1

1 xu2
2 · · ·xum

m x
um+1
m+1 and xv1

1 xv2
2 · · ·xvm

m x
vm+1
m+1 be two monomials in Δ≺w (I) (in the

case of m + 1 variables) such that

wm+1(xu1
1 xu2

2 · · ·xum
m x

um+1
m+1 ) = wm+1(xv1

1 xv2
2 · · ·xvm

m x
vm+1
m+1 ),

which can be rewritten as

(wm(xu1
1 xu2

2 · · ·xum
m ) − wm(xv1

1 xv2
2 · · ·xvm

m ))βm = (vm+1 − um+1)
m∏

r=1

αr.

Since gcd(αr, βm) = 1, for r � m, and vm+1, um+1 < βm, we have vm+1 = um+1 as the
only possibility. Thus wm(xu1

1 xu2
2 · · ·xum

m ) = wm(xv1
1 xv2

2 · · ·xvm
m ) must hold and, by the

induction hypothesis, this means that ur = vr, for r = 1, 2, . . . , m.
This proves part (1) of the theorem. �

The proof of (2) in Theorem 5.1 is postponed until the end of the chapter, because we
need the results in the next section to prove it.

5.2. An attempt to improve the bound in Theorem 4.4

We could use the factor ring in Theorem 5.1 to construct codes as in Definition 4.3 and
then use Theorem 4.4 to give a bound on their minimum distance but in this section we
try another approach to bounding the minimum distance.

Notice, that one key element in the bounds in Theorem 4.4 is the sequence of inclusions
in Theorem 4.2 but the definition of S̃(xa) in Definition 4.1 may seem rather unnatural.

32



5.2. An attempt to improve the bound in Theorem 4.4

The question is: Can we do better by estimating the size of

Δ≺w (f1, f2, . . . , fs, x
q
1 − x1, x

q
2 − x2, . . . , x

q
m − xm, f)

directly by some (hopefully simple) function used on the polynomial f? Such an attempt
on making a function Ω is made in this section.

First, by using observation 3 on page 21 we have that

Δ≺w (f1, f2, . . . , fs, x
q
1 − x1, x

q
2 − x2, . . . , x

q
m − xm, f) ⊆ Δ≺w (f1, f2, . . . , fs, f) , (5.1)

where equality might hold.
We would also like to find a way to estimate the size of the right hand side of (5.1)

without having to run Buchberger’s algorithm on the ordered list L = (f1, f2, . . . , fs, f),
since running Buchberger’s algorithm might take a long time - even on a computer.1

The results shown below are based on the study of how Buchberger’s algorithm in
Section 3.2 constructs a Gröbner basis for an ideal 〈f1, f2, . . . , fs, f〉 and, in particular,

how the division algorithm in Section 3.1 constructs S(fi, f)
L

but before going into details
we will try to explain where our function Ω given in Definition 5.2 comes from and what
we aim to do.

Let I be an ideal as in Theorem 5.1 with Gröbner basis G = {f1, f2, . . . , fm−1}, where

fr = xαr
r − xβr

r+1 + f ′
r(x1, x2, . . . , xm), (5.2)

for r = 1, 2, . . . , m − 1. Furthermore, let w(xr), for all r, and ≺w be defined as in The-
orem 5.1, i.e. lm(fr) = xβr

r+1, for all r. Let f = xa + f ′(x1, x2, . . . , xm) be a polynomial
in Fq[x1, x2, . . . , xm] such that Supp(f) ∈ Δ≺w (I) and lm(f) = xa = xa1

1 xa2
2 · · ·xam

m .
If we construct S(fk−1, f), where 2 � k � m, we then have

S(fk−1, f) =
xa1

1 xak
2 · · ·xak−1

k−1 x
βk−1
k x

ak+1
k+1 · · ·xam

m

−x
βk−1
k

(
x

αk−1
k−1 − x

βk−1
k + f ′

k−1

)

−
xa1

1 xak
2 · · ·xak−1

k−1 x
βk−1
k x

ak+1
k+1 · · ·xam

m

xa1
1 xa2

2 · · ·xam
m

(xa1
1 xa2

2 · · ·xam
m + f ′) , (5.3)

which (using Lemma 3.4) has leading monomial

xa1
1 xa2

2 · · ·xak−2
k−2 x

ak−1+αk−1
k−1 x

ak+1
k+1 · · ·xam

m . (5.4)

When constructing the remainder of S(fk−1, f) on division by fk−2 we get

S(fk−1, f) + xa1
1 xak

2 · · ·xak−2
k−2 x

ak−1+αk−1−βk−2
k−1 x

ak+1
k+1 · · ·xam

m

(
x

αk−2
k−2 − x

βk−2
k−1 + f ′

k−2

)
,

1Cryptosystems based on a set of polynomial equations have been proposed. Such a system might
be cracked by running Buchberger’s algorithm but the claim is that this is not feasible due to the
complexity of the algorithm when working over a large finite field Fq, (q � 28). See for instance [7]
for a reference.
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which has leading monomial

xa1
1 xa2

2 · · ·xak−2+αk−2
k−2 x

ak−1+αk−1−βk−1
k−1 x

ak+1
k+1 · · ·xam

m

by Lemma 3.4.
Now, imagine running the division algorithm on the ordered list L =

(fm−1, fm−2, . . . , f1, f) (i.e. with the fr’s in reversed order), when constructing the

remainder S(fk−1, f)
L
. Then, due to the ordering of L, the division algorithm will do

division with fk−2 exactly sk−2 = �ak−1+αk−1
βk−2

� times to construct a polynomial (again
using Lemma 3.4 and observation 2 on page 20) with leading monomial

xa1
1 xak

2 · · ·xak−2+sk−2·αk−2
k−2 x

ak−1+αk−1−sk−2·βk−2
k−1 x

ak+1
k+1 · · ·xam

m . (5.5)

Then the division algorithm will do division with fk−3 exactly sk−3 = �ak−2+sk−2·αk−2
βk−3

�
times to produce another polynomial, which might be divided with fk−4 and so on. We
continue this way until we have done all the divisions we can with f1 and no polynomials

fr ∈ L divides the result. Call the remainder of these divisions p, i.e. p = S(fk−1, f)
L∗

,
where L∗ = (fm−1, fm−2, . . . , f1).

Now, notice the following:

• The constants ak+1, ak+2, . . . , am are not affected by the divisions with the fr, for
r < k, due to the structure of fr in (5.2).

• The leading monomial in f might not divide the leading monomial of p since
lm(f) = xa contains the variable xak

k , where 0 � ak < βk−1.

• If f does not divide p then we have found S(fk−1, f)
L
. If f divides p then we at

least have found a leading monomial in the ideal 〈f1, f2, . . . , fm−1, f〉, since p is a
linear combination of f1, f2, . . . , fm−1, f .

• The procedure above is highly systematic, thus we can compute the leading mono-

mial of S(fk−1, f)
L∗

without doing any polynomials divisions. This fact is again
due to the structure of the fr in (5.2), which allows us to eliminate one variable at
the time (except x1 since it is not in a leading monomial of any fr).

• Since Supp(S(fk−1, f)
L∗

) ∈ Δ≺w (I) and lm(p) = lm(S(fk−1, f)
L∗

) by observation
2 on page 20, we can do this recursively by letting p have the role of f , i.e. by

constructing S(fr, p)
L∗

, for some r, as well. Note that Supp(p) may not be in

Δ≺w (I) but using p instead of S(fk−1, f)
L∗

does not affect the leading monomial
of the resulting remainder by Lemma 3.4.

Furthermore, given a subset S ⊆ {2, 3, . . . , m} we can construct leading monomials in
〈f1, f2, . . . , fm−1, f〉 with xr eliminated, for all r ∈ S. This is true because we can elim-
inate the variables xr recursively in decreasing order, where r ∈ S, since the exponents
larger than the one of xr are not affected by the procedure this way, for any r ∈ S.
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Now, let T be the set of leading monomials constructed this way, for all possible sub-
sets S ⊆ {2, 3, . . . , m} (including the empty set, i.e. lm(f) ∈ T ). Then the number of
elements in Δ≺w (f1, f2, . . . , fm−1, f) is upper bounded by the number of elements in
Δ≺w (〈T 〉 + 〈lm(f1), lm(f2), . . . , lm(fm−1)〉) by Remark 2.27. Thus if f is a code poly-
nomial then the number of elements in Δ≺w (〈T 〉 + 〈lm(f1), lm(f2), . . . , lm(fm−1)〉) can
be used to bound the minimum weight of the code word ϕ(f) and thereby the minimum
distance of the code as in Theorem 4.4, which is our goal.

Hopefully the reader by now has a good idea of what we are about to do, so let us
get started and begin by defining a monomial function Ω, which will eliminate the k-th
variable from the monomial as described above.

The following definition is from [4, Def. 8].

Definition 5.2 Let I and ≺w be as in Theorem 5.1. Let xi1
1 xi2

2 · · ·xik

k be a monomial in
Mm, where 0 � ir < βr−1 for all r = 2, 3, . . . , k � m.

Let j1, j2, . . . , jk−1 ∈ N0 be defined as

j1 = i1 + s1 · α1

j2 = i2 + s2 · α2 − s1 · β1

...
jr = ir + sr · αr − sr−1 · βr−1

jr+1 = ir+1 + sr+1 · αr+1 − sr · βr

...
jk−2 = ik−2 + sk−2 · αk−2 − sk−3 · βk−3

jk−1 = ik−1 + αk−1 − sk−2 · βk−2,

where sr = � ir+1+sr+1·αr+1
βr

�, for r = k − 2, k − 3, . . . , 1 and sk−1 = 1. Define Ω to be the
monomial function

Ω
(
xi1

1 xi2
2 · · ·xik

k

)
= xj1

1 xj2
2 · · ·xjk−1

k−1 .

First we will show that using the function Ω from Definition 5.2 on a monomial in the
footprint of I yields another monomial in the same footprint.

Lemma 5.3 Let I and ≺w be as in Theorem 5.1 and let j1, j2, . . . , jk−1 ∈ N0 be the
integers from Definition 5.2. Then

0 � jr < βr−1 for r = 2, 3, . . . , k − 1 < m.
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Proof: Let jr and sr be as in Definition 5.2, for r = 1, 2, . . . , k − 1. By definition of jr

we have
jr = ir + sr · αr − sr−1 · βr−1 (5.6)

where sr−1 = � ir+sr·αr

βr−1
� and sk−1 = 1.

If βr−1 | (ir + sr · αr) then

ir + sr · αr

βr−1
= sr−1 >

ir + sr · αr

βr−1
− 1 (5.7)

and if βr−1 � (ir + sr · αr) then

ir + sr · αr

βr−1
> sr−1 >

ir + sr · αr

βr−1
− 1, (5.8)

by definition of sr−1.
Using (5.6), (5.7) and (5.8) we have

jr = ir + sr · αr − sr−1 · βr−1

� ir + sr · αr −
(

ir + sr · αr

βr−1

)
βr−1

= ir + sr · αr − ir − sr · αr = 0

and

jr = ir + sr · αr − sr−1 · βr−1

< ir + sr · αr −
(

ir + sr · αr

βr−1
− 1
)

βr−1

= ir + sr · αr − ir − sr · αr + βr−1 = βr−1

which concludes the proof. �

Lemma 5.4 is a key result in this section since it’s proof makes the connection between
the monomial function Ω in Definition 5.2 and the use of Buchberger’s algorithm.

Lemma 5.4 is essentilly a rewritten version of Lemma 2 from the Appendix of [4] and
the proof promised in [4] is given below.

Lemma 5.4 Let I and ≺w be as in Theorem 5.1 and let f ∈ Fq[x1, x2, . . . , xm] be a
polynomial of the form f = xi − f ′(x1, x2, . . . , xm), where Supp(f) ∈ Δ≺w (I) and
w(xi) > wdeg(f ′(x1, x2, . . . , xm)). Let J = I+〈f〉 and let Ω and jr, for r = 1, 2, . . . , k−1,
be as in Definition 5.2.

Then for every k = 2, 3, . . . , m there exists a polynomial h(k)(x1, x2, . . . , xm) ∈ J of the
form

h(k) = xj1
1 xj2

2 · · ·xjk−1
k−1 · xik+1

k+1 · · ·xim
m + h′

(k)(x1, x2, . . . , xm),

where
w
(
xj1

1 xj2
2 · · ·xjk−1

k−1 · xik+1
k+1 · · ·xim

m

)
> wdeg

(
h′

(k)(x1, x2, . . . , xm)
)

,
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with xj1
1 xj2

2 · · ·xjk−1
k−1 · xik+1

k+1 · · ·xim
m ∈ Δ≺w (I) and

xj1
1 xj2

2 · · ·xjk−1
k−1 · xik+1

k+1 · · ·xim
m = Ω

(
xi1

1 xi2
2 · · ·xik−1

k−1 xik

k

)
· xik+1

k+1 · · ·xim
m .

Proof: Let fr be defined as in Theorem 5.1, for r = 1, 2, . . . , m − 1, let f be defined as
in the lemma and let k be a fixed integer, where 2 � k � m.

Now, construct the polynomial p1 = S(fk−1, f) given by

p1 = S(fk−1, f)

=
xi1

1 · · ·xik−1
k−1 x

βk−1
k x

ik+1
k+1 · · ·xim

m

−x
βk−1
k

· fk−1 −
xi1

1 · · ·xik−1
k−1 x

βk−1
k x

ik+1
k+1 · · ·xim

m

xi
· f

=
xi1

1 · · ·xik−1
k−1 x

βk−1
k x

ik+1
k+1 · · ·xim

m

−x
βk−1
k

·
(
x

αk−1
k−1 − x

βk−1
k − f ′

k−1(x)
)

−
xi1

1 · · ·xik−1
k−1 x

βk−1
k x

ik+1
k+1 · · ·xim

m

xi
·
(
xi − f ′(x)

)
= −xi1

1 · · ·xik−1+αk−1
k−1 x

ik+1
k+1 · · ·xim

m

+ xi1
1 · · ·xik−1

k−1 x
ik+1
k+1 · · ·xim

m · f ′
k−1(x) + x

βk−1−ik

k · f ′(x),

which has lm(p1) = xi1
1 · · ·xik−1+αk−1

k−1 x
ik+1
k+1 · · ·xim

m by Lemma 3.4.
Notice that lm(p1) may not be in Δ≺w (I) since ik−1 + αk−1 may not be smaller than

βk−2. This can be taken care of by finding the remainder of p1 divided by fk−2 = x
αk−2
k−2 −

x
βk−2
k−1 − f ′

k−2(x) exactly sk−2 = � ik−1+αk−1
βk−2

� times, thereby constructing a polynomial p2

given by

p2 = xi1
1 · · ·xik−2+sk−2·αk−2

k−2 x
ik−1+sk−1·αk−1−sk−2·βk−2
k−1 x

ik+1
k+1 · · ·xim

m

+ xi1
1 · · ·xik−2+(sk−2−1)·αk−2

k−2 x
ik−1+sk−1·αk−1−sk−2·βk−2
k−1 x

ik+1
k+1 · · ·xim

m · f ′
k−2(x)

+ xi1
1 · · ·xik−2+(sk−2−2)αk−2

k−2 x
ik−1+sk−1·αk−1−(sk−2−1)βk−2
k−1 x

ik+1
k+1 · · ·xim

m · f ′
k−2(x)

...

+ xi1
1 · · ·xik−2+αk−2

k−2 x
ik−1+sk−1·αk−1−2·βk−2
k−1 x

ik+1
k+1 · · ·xim

m · f ′
k−2(x)

+ xi1
1 · · ·xik−2

k−2 x
ik−1+sk−1·αk−1−βk−2
k−1 x

ik+1
k+1 · · ·xim

m · f ′
k−2(x)

+ xi1
1 · · ·xik−1

k−1 x
ik+1
k+1 · · ·xim

m · f ′
k−1(x) + x

βk−1−ik

k · f ′(x)

where sk−1 = 1 and sk−2 = � ik−1+sk−1·αk−1
βk−2

�.
The leading monomial of p2 is

xi1
1 · · ·xik−2+sk−2·αk−2

k−2 x
ik−1+sk−1·αk−1−sk−2·βk−2
k−1 x

ik+1
k+1 · · ·xim

m , (5.9)
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using Lemma 3.4 and observation 2 on page 20. Furthermore, notice that w(lm(p2)) =
w(lm(p1)).

We continue to construct polynomials pr+1 as the remainder on division of pr by the
polynomial fk−r−1 exactly sk−r−1 times, for r = 1, 2, . . . , k − 2, until we get the polyno-
mial pk−1 given by

pk−1 = xi1+s1·α1
1 xi2+s2·α2−s1·β3

2 · · ·xik−2+sk−2·αk−2−sk−3·βk−3
k−2

· xik−1+sk−1·αk−1−sk−2·βk−2
k−1 x

ik+1
k+1 · · ·xim

m + p′k−1(x)

= xj1
1 xj2

2 · · ·xjk−1
k−1 x

ik+1
k+1 · · ·xim

m + p′k−1(x)

= Ω
(
xi1

1 · · ·xik

k

)
· xik+1

k+1 · · ·xim
m + p′k−1(x),

where j1, j2, . . . , jk−1 and the function Ω are from Definition 5.2. Furthermore, using
Lemma 3.4 and observation 2 on page 20 we have that

lm(pk−1) = xj1
1 xj2

2 · · ·xjk−1
k−1 x

ik+1
k+1 · · ·xim

m = Ω
(
xi1

1 · · ·xik

k

)
· xik+1

k+1 · · ·xim
m

since w(lm(p1)) = w(lm(p2)) = · · · = w(xj1
1 xj2

2 · · ·xjk−1
k−1 x

ik+1
k+1 · · ·xim

m ) > w(p′k−1(x)),
where the equalities are due to the structure of fr, for r = 1, 2, . . . , k − 1, i.e. because fr

has two monomials of highest weight in it’s support.
Let h(k) = pk−1, then the polynomial h(k) is in J since it is a linear combination of

f1, f2, . . . , fm−1, f. Furthermore, using Lemma 5.3 lm(h(k)) ∈ Δ≺w (I) holds. �

As explained in the beginning of this section we would like to be able to do the
following: Given a subset S ⊆ {2, 3, . . . , m} we want to construct leading monomials
in 〈f1, f2, . . . , fm−1, f〉 with xr eliminated, for all r ∈ S. The following corollary of
Lemma 5.4 allows us to do exactly that.

Corollary 5.5 Let I and ≺w be as in Theorem 5.1 and let f ∈ Fq[x1, x2, . . . , xm] be
a polynomial of the form f = xi − f ′(x1, x2, . . . , xm), where Supp(f) ∈ Δ≺w (I) and
w(xi) > wdeg(f ′(x1, x2, . . . , xm)). Let J = I + 〈f〉.

For every subset S ⊆ {2, 3, . . . , m} there exists a polynomial h(S)(x1, x2, . . . , xm) ∈ J
on the form

h(S) = xk1
1 xk2

2 · · ·xkm
m + h′

(S)(x1, x2, . . . , xm),

where
w
(
xk1

1 xk2
2 · · ·xkm

m

)
> wdeg

(
h′

(S)(x1, x2, . . . , xm)
)

,

where xk1
1 xk2

2 · · ·xkm
m ∈ Δ≺w (I) and where kr = 0, for every r ∈ S.

Proof: The result follows by using Lemma 5.4 recursively as explained in the begin-
ning of this section. That is: Given a subset S = {l1, l2, . . . , lt} ⊆ {2, 3, . . . , m} such
that l1 < l2 < · · · < lt, we can, by using Lemma 5.4, construct a polynomial h(lt)

such that xlt has exponent 0 in lm(h(lt)) and Supp(h(lt)) ∈ Δ≺w (I) . Then we can use
h(lt) to construct a polynomial h(lt,lt−1) such that xlt and xlt−1 both have exponent 0
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in lm(h(lt,lt−1)) and Supp(h(lt,lt−1)) ∈ Δ≺w (I) . We continue this way until we have a
polynomial h(S) such that xl1 , xl2 , . . . , xlt all have exponent 0 in the leading monomial
of h(S) and lm(h(S)) ∈ Δ≺w (I). This proves the theorem. �

The result in Corollary 5.5 inspires the following definition.

Definition 5.6 Let I and ≺w be as in Theorem 5.1 and let f ∈ Fq[x1, x2, . . . , xm] be
a polynomial of the form f = xi − f ′(x1, x2, . . . , xm), where Supp(f) ∈ Δ≺w (I) and
w(xi) > wdeg(f ′(x1, x2, . . . , xm)).

Define the set H(xi) by

H(xi) =
{

lm(h(S))
∣∣∣ S ⊆ {2, 3, . . . , m}

}
,

where lm(h(S)) denotes the leading monomial of h(S) from Corollary 5.5 with respect to
the monomial ordering ≺w .

Note, that the set H(xi) from Definition 5.6 can be constructed by recursively using
the function Ω from Definition 5.2 on the monomial xi since neither f ′ nor any f ′

r

has any influence on what is the leading monomial of h(S), for all r and all subsets
S ⊆ {2, 3, . . . , m}.

Our goal is to count the number of elements in Δw(〈H(xi)〉 + 〈xβ1
2 , xβ2

3 , . . . , x
βm−1
m 〉)

and use this as our bound as explained in the beginning of this section. It actually turns
out that #Δw(〈H(xi)〉 + 〈xβ1

2 , xβ2
3 , . . . , x

βm−1
m 〉) = w(xi) as stated in Lemma 5.8. A key

element in the proof of Lemma 5.8 is the following result.

Lemma 5.7 Let I and ≺w be as in Theorem 5.1 and let f ∈ Fq[x1, x2, . . . , xm] be
a polynomial of the form f = xi − f ′(x1, x2, . . . , xm), where Supp(f) ∈ Δ≺w (I) and
w(xi) > wdeg(f ′(x1, x2, . . . , xm)). Then the following holds for all m � 2:

w
(
Ω
(
xi1

1 xi2
2 · · ·xim

m

))
− w

(
xi1

1 xi2
2 · · ·xim−1

m−1

)
= αm−1 · w(xm−1),

where Ω is the function from Definition 5.2.

Proof: Let m � 2 be fixed and let I, w(xr) and ir be defined as in the lemma, for
r = 1, 2, . . . , m, and let jr and sr be defined as in Definition 5.2, for r = 1, 2, . . . , m − 1.
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Consider the difference

w(Ω(xi1
1 xi2

2 · · ·xim
m )) − w(xi1

1 xi2
2 · · ·xim−1

m−1 )

= w(xj1
1 xj2

2 · · ·xjm−1
m−1 ) − w(xi1

1 xi2
2 · · ·xim−1

m−1 )

=
m−1∑
r=1

(jr − ir) · w(xr)

=
(
i1 + s1 · α1 − i1

)
· w(x1)

+
m−2∑
r=2

(
ir + sr · αr − sr−1 · βr−1 − ir

)
· w(xr)

+
(
αm−1 − sm−2 · βm−2

)
· w(xm−1).

= s1 · α1 · w(x1)

+
m−2∑
r=2

(
sr · αr · w(xr) − sr−1 · βr−1 · w(xr)

)
+ αm−1 · w(xm−1) − sm−2 · βm−2 · w(xm−1). (5.10)

The sum in (5.10) is a telescoping sum including terms sr ·αr ·w(xr) and −sr ·βr ·w(xr+1)
for all r = 1, 2, . . . , m−2. All these terms cancel because αr ·w(xr) = w(xαr

r ) = w(xβr

r+1) =
βr · w(xr+1) by definition of the polynomials fr and weights w(xr). The only term left
in (5.10) is then the term αm−1 · w(xm−1). �

Given an ideal I as in Theorem 5.1 and a polynomial f ∈ Fq[x1, x2, . . . , xm] on the form
f = xi − f ′(x1, x2, . . . , xm), where Supp(f) ∈ Δ≺w (I) and lm(f) = xi, it follows from
Corollary 5.5 that the monomials in H(xi) are leading monomials in the ideal I + 〈f〉
so the footprint of I + 〈f〉 is contained in the footprint of H(xi) by observation 3 on
page 21. The following lemma then gives an upper bound on the size of

Δw(I + 〈f〉) ⊆ Δw(H(xi) + 〈xβ1
2 , xβ2

3 , . . . , xβm−1
m 〉).

Lemma 5.8 is essentially a rewritten version of Lemma 3 from the Appendix of [4] and
the proof promised in [4] is given below.

Lemma 5.8 Let I and ≺w be as in Theorem 5.1 and let f ∈ Fq[x1, x2, . . . , xm] be
a polynomial of the form f = xi − f ′(x1, x2, . . . , xm), where Supp(f) ∈ Δ≺w (I) and
w(xi) > w(f ′(x1, x2, . . . , xm)).

Let Tm ⊂ Fq[x1, x2, . . . , xm] be the ideal given by

Tm =
〈
H(xi)

〉
+
〈
xβ1

2 , xβ2
3 , . . . , xβm−1

m

〉
,

where H(xi) is the set from Definition 5.6. Then #Δ≺w (Tm) = w(xi1
1 xi2

2 · · ·xim
m ).
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Proof: The theorem is proven by induction in the number of variables m. Let I, ≺w

and w(xr) be as in Theorem 5.1, let Ω be the function in Definition 5.2 and let H(xi)
be the set from Definition 5.6.

Basis:
Let m = 2. Then H(xi1

1 xi2
2 ) = {xi1

1 xi2
2 , Ω(xi1

1 xi2
2 )} = {xi1

1 xi2
2 , xi1+a1

1 } and T2 =
〈xi1

1 xi2
2 , xi1+a1

1 , xb1
2 〉. We now have

#Δ≺w (T2) = #Δ≺w

(
〈xi1

1 xi2
2 , xi1+α1

1 , xβ1
2 〉
)

= β1(i1 + α1) − (i1 + α1 − i1)(β1 − i2)

= i1β1 + i2α1 = w(xi1
1 xi2

2 )

by definition of w(x1) and w(x2) in Theorem 5.1.
Step:
Assume that the theorem holds for m variables where ir < βr−1 for r = 2, 3, . . . , m.

That is #Δ≺ (Tm) = w(xi1
1 xi2

2 · · ·xim
m ) for m variables and let wm(xr) denote the weight

of xr calculated in the case of m variables, i.e. wm(xr) =
∏r−1

i=1 αi ·
∏m−1

j=r βj , where the
empty product is defined to be 1. Furthermore, let wm+1(xr) =

∏r−1
i=1 αi ·

∏m
j=r βj denote

the weight of xr in the case of m + 1 variables and let i1, i2, . . . , im, im+1 be fixed.
Consider the set H(xi1

1 xi2
2 · · ·xim+1

m+1 ). It can be divided into two disjoint subsets:
The first subset is the set where we keep x

im+1
m+1 and then eliminate all possible subsets

S ⊆ {2, 3, . . . , m}. This is the set given by

Q =
{
γ · xim+1

m+1

∣∣∣ γ ∈ H
(
xi1

1 xi2
2 · · ·xim

m

)}
⊂ H

(
xi1

1 xi2
2 · · ·xim+1

m+1

)
. (5.11)

Since xi1
1 xi2

2 · · ·xim
m is a monomial in m variables in Δ≺w (I), then by the induction

hypothesis we have that

#Δ≺w

(〈
H
(
xi1

1 xi2
2 · · ·xim

m

)〉
+
〈
xβ1

2 , xβ2
3 , . . . , xβm−1

m

〉)
= wm

(
xi1

1 xi2
2 · · ·xim

m

)
. (5.12)

The second subset is the set where we first eliminate xm+1 and then eliminate all
possible subsets S ⊆ {2, 3, . . . , m}. This is the set given by

H
(
Ω
(
xi1

1 xi2
2 · · ·xim+1

m+1

))
⊂ H

(
xi1

1 xi2
2 · · ·xim+1

m+1

)
. (5.13)

Since Ω(xi1
1 xi2

2 · · ·xim+1
m+1 ) is a monomial in m variables and, by Lemma 5.3, is in Δ≺w (I),

then by the induction hypothesis we have that

#Δ≺w

(〈
H
(
Ω(xi1

1 xi2
2 · · ·xim+1

m+1 )
)〉

+
〈
xβ1

2 , xβ2
3 , . . . , xβm−1

m

〉)
= wm

(
Ω(xi1

1 xi2
2 · · ·xim+1

m+1 )
)

. (5.14)

Let Tm+1 = 〈H(xi1
1 xi2

2 · · ·xim+1
m+1 )〉 + 〈xβ1

2 , xβ2
3 , . . . , xβm

m+1〉. Now we have to count the
number of elements in Δ≺w (Tm+1). We will do so by counting the number of monomials
in the intersection of the two footprints generated by the two subsets above.
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First, consider the set Q in (5.11). Since x
im+1
m+1 is present in every monomial in Q we

have that for every monomial

ν ∈ Δ≺w

(
〈H(xi−1

1 xi2
2 · · ·xim

m )〉 + 〈xβ1
2 , xβ2

3 , . . . , xβm−1
m 〉

)
there exists βm monomials of the form ν · xa

m+1, where 0 � a < βm, in the footprint

Δ≺w

(
〈Q〉 + 〈xβ1

2 , xβ2
3 , . . . , xβm

m+1〉
)

. (5.15)

This is true since multiplying x
im+1
m+1 on every monomial in H(xi−1

1 xi2
2 · · ·xim

m ) does not
put any restriction on the monomials in

Δ≺w

(
〈H(xi−1

1 xi2
2 · · ·xim

m )〉 + 〈xβ1
2 , xβ2

3 , . . . , xβm−1
m 〉

)
, (5.16)

only the presence of xβm

m+1 in (5.15) does. Thus we have that the number of elements in
(5.15) is at least the number of elements in (5.16) multiplied by βm, i.e. using (5.12) we
have that

#Δ≺w

(
〈Q〉 + 〈xβ1

2 , xβ2
3 , . . . , xβm

m+1〉
)

= wm

(
xi1

1 xi2
2 · · ·xim

m

)
· βm. (5.17)

Note, that we have not yet counted the number of elements xk1
1 xk2

2 · · ·xkm
m in the foot-

print in (5.15) such that xk1
1 xk2

2 · · ·xkm−1
m−1 is not in the footprint in (5.16) but where

xk1
1 xk2

2 · · ·xkm−1
m−1 is in the footprint in (5.18). We will count those next.

Now, consider a monomial ν in the footprint

Δ≺w

(〈
H
(
Ω(xi1

1 xi2
2 · · ·xim+1

m+1 )
)〉

+
〈
xβ1

2 , xβ2
3 , . . . , xβm−1

m

〉)
(5.18)

but not in the footprint in (5.16). Since no monomial in H(Ω(xi1
1 xi2

2 · · ·xim+1
m+1 )) contains

the variable xm+1, any monomial of the form ν ·xa
m+1, where 0 � a < βm, are present in

the footprint

Δ≺w

(〈
H
(
Ω(xi1

1 xi2
2 · · ·xim+1

m+1 )
)〉

+
〈
xβ1

2 , xβ2
3 , . . . , xβm−1

m , xβm

m+1

〉)
. (5.19)

But since every monomial in Q contains x
im+1
m+1 and Q ⊂ Tm+1, then the number of

monomials in the footprint of (5.19) but not in the footprint (5.15) is

im+1

(
wm

(
Ω
(
xi1

1 xi2
2 · · ·xim

m x
im+1
m+1

))
− wm

(
xi1

1 xi2
2 · · ·xim

m

))
(5.20)

by using (5.12) and (5.14). This includes the monomials not counted in (5.17). We have
counted every monomial in the intersection of the footprint in (5.15) and the footprint
in (5.19) and no other monomials are in Δ≺w (Tm+1), thus we have that #Δ≺w (Tm+1)
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is the number in (5.17) plus the number in (5.20), i.e.

#Δ≺ (Tm+1) = βm · wm

(
xi1

1 xi2
2 · · ·xim

m

)
+im+1

(
wm

(
Ω
(
xi1

1 xi2
2 · · ·xim

m x
im+1
m+1

))
− wm

(
xi1

1 xi2
2 · · ·xim

m

))
= wm+1

(
xi1

1 xi2
2 · · ·xim

m

)
+ im+1 · αm · wm(xm)

= wm+1

(
xi1

1 xi2
2 · · ·xim

m

)
+ im+1 · wm+1(xm+1)

= wm+1

(
xi1

1 xi2
2 · · ·xim

m x
im+1
m+1

)
by using Lemma 5.7, using that βm · wm(xr) = wm+1(xr), for r = 1, 2, . . . , m, and using
that αm · wm(xm) = wm+1(xm+1) by definition of the weights in Theorem 5.1. �

We are now in a position where we can prove Theorem 5.1 (2).

Proof of Theorem 5.1 (2):

Let I and ≺w be as in Theorem 5.1 and let f ∈ Fq[x1, x2, . . . , xm] be a polynomial
of the form f = xa − f ′(x1, x2, . . . , xm), where Supp(f) ∈ Δ≺w (I) and w(xa) >
wdeg(f ′(x1, x2, . . . , xm)). Furthermore, let G = {f1, f − 2, . . . , fs} be the Gröbner basis
for I, where fr = xαr

r − xβr

r+1 + f ′
r(x1, x2, . . . , xm), for r = 1, 2, . . . , m − 1, and let B(G)

be the binomial part of G.
By observation 1 on page 20 and the construction of polynomials h(S) in Corollary 5.5

it follows that lm(H(S)) is also a leding monomial in the ideal 〈B(G)〉 + 〈xa〉, for
all subsets S ⊆ {2, 3, . . . , m}. Thus the bound in Lemma 5.8 is also a bound on
#Δ≺w (〈B(G)〉 + 〈xa〉) and from Definition 4.1 it then follows that D(xa) � w(xa).
This proves (2) in Theorem 5.1. �

Finally, let us end this chapter by giving an example using the method developed here.

Example 5.9 Let F16 = {0, 1, α, α2, . . . , α14} be a finite field with 16 elements and let
I ⊂ F16[x, y, z] be an ideal as in Theorem 5.1 with Gröbner basis G = {x5−y8−αy, y6−
z7 − α2xyz}. Let w(x) = 56, w(y) = 35, w(z) = 30 and let x ≺lex y ≺lex z. Then
B(G) = {x5 − y8, y6 − z7}.

Let g = x5y7z5 − α4x5y2z5 − x2yz + αz ∈ F16[x, y, z]. Then

H
(
x5y7z5

)
=
{
x5y7z5, Ω(x5y7z5), Ω(Ω(x5y7z5)), Ω(x5y7) · z5

}
=
{
x5y7z5, x10y5, Ω(x10y5), x10z5

}
=
{
x5y7z5, x10y5, x15, x10z5

}
and

T3 = 〈H(x5y7z5)〉 + 〈y8, z7〉,

where H is from Definition 5.6, T3 is from Lemma 5.8 and Ω is from Definition 5.2.
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Then we have

Δ≺w (〈B(G)〉 + 〈g〉) ⊆ Δ≺w (T3) = Δ≺w

(
〈x5y7z5, x10y5, x15, x10z5, y8, z7〉

)
and #Δ≺w (〈B(G)〉 + 〈g〉) � w(x5y7z5) = 5 · 56 + 7 · 35 + 5 · 30 = 675. �
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6. Regarding the use of Buchberger’s
algorithm on toric ideals

In Chapter 5 it was shown how to construct leading monomials in the ideal I given in
Theorem 5.1 without actually constructing S-polynomials and doing polynomial divisions
but using the method in Section 5.1 we can not be sure that we found the actual size of
the footprint of the ideal generated by the binomial part of a Gröbner basis for I and a
polynomial g, Supp(g) ∈ Δ≺ (I).

This chapter is concentrated on the use of Buchberger’s algorithm on a class of ideals
called toric ideals. Here we prove that the method developed in Chapter 5 actually finds
the true size of the footprint, when the ideal generated by the binomial part of a Gröbner
basis for I is a toric ideal, since the S-polynomials omitted in Chapter 5 adds nothing
new when using Buchberger’s algorithm.

6.1. Toric ideals

First we consider an example of what is known as a toric ideal which are usually defined
from a set A = {a1, a2, . . . , am} ∈ Zr . See [35, Chap. 4] for details. Here we only
consider toric ideals defined from a subset of N.

Definition 6.1 Let F be a field and let a set A = {a1, a2, . . . , am} ⊂ N be given. Define
a monomial function w : Mm → N by w(x1) = a1, w(x2) = a2, . . . , w(xm) = am and
w(xi1

1 xi2
2 · · ·xim

m ) =
∑m

j=1 ijw(xj).
Let I ⊂ F[x1, x2, . . . , xm] be the ideal generated by the set of binomials F given by

F = {xi − xj
∣∣ w(xi) = w(xj) for i, j ∈ Nm

0 }.
Then I = 〈F 〉 is called the toric ideal related to A.

We need to have a Gröbner basis for the toric ideal in Definition 6.1 since we are going to
use the property of a Gröbner basis given in Corollary 2.31 in the proof of Proposition 6.9.
We can always find a basis for the toric ideal related to A = {w(x1), w(x2), . . . , w(xm)}
as in Definition 6.1 by using the algorithm given in [14, Chap. I.6] and [35, Chap. 4] and
then expand it to a Gröbner basis but we need a Gröbner basis of a special form.

Lemma 6.2 Let F be a field and let I ∈ F[x1, x2, . . . , xm] be a toric ideal spanned by the
binomials in F in Definition 6.1. Let i = (i1, i2, . . . , im), j = (j1, j2, . . . , jm) ∈ Nm

0 and
define the set B as

B =
{
xi − xj ∈ F

∣∣∣ either ik = 0 or jk = 0 (or both), for k = 1, 2, . . . , m
}

.
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Then there exists a finite subset G = {b1, b2, . . . , bs} ⊂ B which is a Gröbner basis for I.

Proof: That B is a basis for I follows from the observation that any f = xi − xj ∈ F
can be written as f = xδ

(
xi−δ − xj−δ

)
where δ = (δ1, δ2, . . . , δm) ∈ Nm

0 and δk =
min{ik, jk}, for 1 � k � m, then xi−δ − xj−δ ∈ B holds and since F is a basis for I the
set B is a basis for I.

Notice that B contains an infinite number of elements but using Hilbert Basis Theorem
([8, §2.5, Thm. 4]) a finite subset B′ = {b1, b2, . . . , br} ⊂ B generates the ideal 〈B〉.

Since every bi ∈ B′ is of the form bi = xai −xbi , every S-polynomial S(bi, bj), for i �= j,
will either have two monomials of the same weight in it’s support or be zero.

Furthermore, the remainder on division of S(bi, bj) by some bk ∈ B′ again has either
two monomials of the same weight in it’s support or is zero. Thus expanding B′ to be
a Gröbner basis for 〈B〉 will only add polynomials of the form xai − xbi . Thus we have
a Gröbner basis G = {b1, b2, . . . , bs}, where bi = xai − xbi and w(xai) = w(xbi), for all
i = 1, 2, . . . , s. �

6.2. On constructing a Gröbner basis

Lemma 6.3 below is a special case of Lemma 3.4 but here we repeat the proof since we need
both more details in the result and some notation later on in the proof of Proposition 6.9
at the end of this chapter.

Lemma 6.3 Let I be a toric ideal as defined in Definition 6.1 having Gröbner basis
G = {b1, b2, . . . , bs} as in Lemma 6.2. For k = 1, 2, . . . , s, let bk = xαk − xβk and let
lm(bk) = xβk with respect to ≺w as defined in Definition 2.19.

Let g = xi − g′(x1, x2, . . . , xm) be a polynomial in F[x1, x2, . . . , xm] such that
wdeg(g′(x1, x2, . . . , xm)) < w(xi) and Supp(g) ⊂ Δ≺w (I) .

Define the polynomial P(j1,j2,...,jt) recursively as

P(j1) = S(bj1 , g)

for some 1 � j1 � s, and

P(j1,j2,...,jt) = S(bjt , P(j1,j2,...,jt−1)),

for some 1 � jt � s. Then P(j1,j2,...,jt) is of the form

P(j1,j2,...,jt) = xpjt − xqjt
−i · g′(x1, x2, . . . , xm) (6.1)

or on the form
P(j1,j2,...,jt) = −xpjt + xqjt

−i · g′(x1, x2, . . . , xm) (6.2)

for specific pjt
= (pjt,1, pjt,2, . . . , pjt,m), qjt

= (qjt,1, qjt,2, . . . , qjt,m) ∈ Nm
0 depending only

on bj1 , bj2 , . . . , bjt and lm(g).
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Furthermore, wdeg(xqjt
−i · g′(x1, x2, . . . , xm)) < w(xpjt ) holds.

Proof: The lemma is proven by induction in t.
Basis:
When t = 1 the polynomial P(j1) is given by

P(j1) = S(bj1 , g)

=
xγj1

−xβj1

(
xαj1 − xβj1

)
− xγj1

xi

(
xi − g′(x1, x2, . . . , xm)

)
= −xγj1

−βj1
+αj1 + xγj1

−i · g′(x1, x2, . . . , xm),

where γj1 = (γj1,1, γj1,2, . . . , γj1,m) ∈ Nm
0 and γj1,u = max{βj1,u, iu}, for u = 1, 2, . . . , m.

Furthermore, we have

wdeg(xγj1
−i · g′(x1, x2, . . . , xm)) < w(xγj1 ) = w(xγj1

−βj1
+αj1 ),

because w(xβj1 ) = w(xαj1 ) and wdeg(g′(x1, x2, . . . , xm)) < w(xi) by definition of bj1

and g.
Step:
Assume that the lemma holds for t � 1 and

P(j1,j2,...,jt) = xpjt − xqjt
−i · g′(x1, x2, . . . , xm).

Then for jt+1 ∈ {1, 2, . . . , s} we have

P(j1,j2,...,jt+1) = S
(
bjt+1 , P(j1,j2,...,jt)

)
=

x
γjt+1

−x
βjt+1

(
xαjt+1 − x

βjt+1

)
− x

γjt+1

xpjt

(
xpjt − xqjt

−i · g′(x1, x2, . . . , xm)
)

= −x
γjt+1

−βjt+1
+αjt+1 + x

γjt+1
−pjt

+qjt
−i · g′(x1, x2, . . . , xm),

where γjt+1
= (γjt+1,1, γjt+1,2, . . . γjt+1,m) ∈ Nm

0 and γjt+1,u = max{βjt+1,u, pjt,u}, for
u = 1, 2, . . . , m. Furthermore, we have that

wdeg
(
x

γjt+1
−pjt

+qjt
−i · g′(x1, x2, . . . , xm)

)
< w

(
x

γjt+1
)

= w
(
x

γjt+1
−βjt+1

+αjt+1

)
,

because w(xβjt+1 ) = w(xαjt+1 ) and wdeg(xqjt
−i · g′(x1, x2, . . . , xm)) < w(xpjt ) using

the definition of bjt+1 and the induction hypothesis.
The calculations for P(j1,j2,...,jt) = −xpjt + xqjt

−i · g′(x1, x2, . . . , xm) are similar. �

Consider a toric ideal I with Gröbner basis G = {b1, b2, . . . , bs} as in Lemma 6.2 where
bk = xαk − xβk , for k = 1, 2, . . . , s,, and lm(bk) = xβk with respect to ≺w.

Now, given a polynomial g = xi − g′(x1, x2, . . . , xm), where Supp(g) ∈ Δ≺w (I) and
lm(g) = xi, we will prove that the S-polynomials omitted in the method developed in
Chapter 5 add nothing new, when running Buchberger’s algorithm.
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That is: Define polynomials P(j1,j2,...,jt) recursively as

P(j1) = S(bj1 , g)

for some 1 � j1 � s, and

P(j1,j2,...,jt) = S(bjt , P(j1,j2,...,jt−1)),

for some 1 � jt � s. Then the polynomials in G divides S(P(j1,j2,...,ju), P(k1,k2,...,kv)) and
S(P(l1,l2,...,lw), g) for 1 � u, v, w � s.

In other words: The only S-polynomials that will add something new when running
Buchberger’s algorithm are P(j1,j2,...,jt). This is the statement in Proposition 6.9 which
is proven by induction.

The following 5 lemmas ((6.4), (6.5), (6.6), (6.7) and (6.8)) are used to prove the basis
in the proof of Proposition 6.9, since they prove that the S-polynomials

S(S(bj , g), S(bj, g)),
S(S(bj , g), g),
S(S(bj2 , S(bj1 , g)), S(bk2 , S(bk1 , g))),
S(S(bj2 , S(bj1 , g)), g)

and

S(S(bj2 , S(bj1 , g)), S(bk, g))

all reduce to zero modulo G.

Lemma 6.4 Let I be a toric ideal as defined in Definition 6.1 having Gröbner basis
G = {b1, b2, . . . , bs} as in Lemma 6.2. For k = 1, 2, . . . , s, let bk = xαk − xβk and let
lm(bk) = xβk with respect to ≺w as defined in Definition 2.19.

Let g = xi − g′(x1, x2, . . . , xm) be a polynomial in F[x1, x2, . . . , xm] such that
wdeg(g′(x1, x2, . . . , xm)) < w(xi) and Supp(g) ⊂ Δ≺w (I) .

Let P(j1) = S(bj1 , g) and P(k1) = S(bk1 , g). Then the polynomials in G divides
S(P(j1), P(k1)), for all 1 � j1, k1 � s.

Proof: Let γt1 = (γt1,1, γt1,2, . . . , γt1,m) ∈ Nm
0 , where γt1,u = max{βt1,u, iu}, for u =

1, 2, . . . , m and t = j, k. Using this P(t1) = S(bt1 , g) is given by

P(t1) = S(bt1 , g) = −ωt1x
γt1

−βt1
+αt1 + xγt1

−i · g′(x1, x2, . . . , xm), (6.3)

where lt(P(t1)) = −ωt1x
γt1

−βt1
+αt1 , for t = j, k, using Lemma 6.3.
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Let j1 �= k1 (if j1 = k1 then S(P(j1), P(k1)) = 0). Define

P = S(P(j1), P(k1))

=
xδ

−xγj1
−βj1

+αj1

(
−xγj1

−βj1
+αj1 + xγj1

−i · g′(x1, x2, . . . , xm)
)

− xδ

−xγk1
−βk1

+αk1

(
−xγk1

−βk1
+αk1 + xγk1

−i · g′(x1, x2, . . . , xm)
)

= xδ+βk1
−αk1−i · g′(x1, x2, . . . , xm) − xδ+βj1

−αj1−i · g′(x1, x2, . . . , xm)

=
(
xδ+βk1

−αk1−i − xδ+βj1
−αj1−i

)
· g′(x1, x2, . . . , xm) (6.4)

where δ = (δ1, δ2, . . . , δm) ∈ Nm
0 and δu = max{γj1,u−βj1,u +αj1,u, γk1,u−βk1,u +αk1,u},

for 1 � u � m.
Now we have

w
(
xδ+βk1

−αk1−i
)

= w
(
xδ−i

)
= w

(
xδ+βj1

−αj1−i
)

,

because w(xβj1 ) = w(xαj1 ) and w(xβk1 ) = w(xαk1 ) by definition of bj1 and bk1 so the

binomial
(
xδ+βk1

−αk1−i − xδ+βj1
−αj1−i

)
in (6.4) must be in I using Definition 6.1.

Then the polynomials in B must divide S(P(j1), P(k1)) since G is a Gröbner basis for I
using Lemma 6.2 and Corollary 2.31. �

Lemma 6.5 Let I be a toric ideal as defined in Definition 6.1 having Gröbner basis
G = {b1, b2, . . . , bs} as in Lemma 6.2. For k = 1, 2, . . . , s, let bk = xαk − xβk and let
lm(bk) = xβk with respect to ≺w as defined in Definition 2.19.

Let g = xi − g′(x1, x2, . . . , xm) be a polynomial in F[x1, x2, . . . , xm] such that
wdeg(g′(x1, x2, . . . , xm)) < w(xi) and Supp(g) ⊂ Δ≺w (I) .

Let P(j1) = S(bj1 , g). Then the polynomials in G divides S(P(j1), g) for all 1 � j1 � s.

Proof: Let γj1 be defined as in the proof of Lemma 6.4. Then P(j1) is defined as in
(6.3). Let P be defined as

P = S(P(j1), g)

=
xν

−xγj1
−βj1

+αj1

(
−xγj1

−βj1
+αj1 + xγj1

−i · g′(x1, x2, . . . , xm)
)

− xν

xi

(
xi − g′(x1, x2, . . . , xm)

)
=
(
xν−i − xν+βj1

−αj1−i
)
· g′(x1, x2, . . . , xm),

where ν = (ν1, ν2, . . . , νm) ∈ Nm
0 and νu = max{γj1,u−βj1,u+αj1,u, iu} for all 1 � u � m.

Since w(xαj1 ) = w(xβj1 ) the binomial xν−i − xν+βj1
−αj1−i ∈ I using Definition 6.1

and the polynomials in G must divide P using Lemma 6.2 and Corollary 2.31. �
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Lemma 6.6 Let I be a toric ideal as defined in Definition 6.1 having Gröbner basis
G = {b1, b2, . . . , bs} as in Lemma 6.2. For k = 1, 2, . . . , s, let bk = xαk − xβk and let
lm(bk) = xβk with respect to ≺w as defined in Definition 2.19.

Let g = xi − g′(x1, x2, . . . , xm) be a polynomial in F[x1, x2, . . . , xm] such that
wdeg(g′(x1, x2, . . . , xm)) < w(xi) and Supp(g) ⊂ Δ≺w (I) .

Let P(t1) = S(bt1 , g) and P(t1,t2) = S(bt2 , P(t1)), for t = j, k. Then the polynomials in
G divides S(P(j1,j2), P(k1,k2)) for all 1 � j1, j2, k1, k2 � s where j1 �= j2 and k1 �= k2.

Proof: Let γt1 be defined as in the proof of Lemma 6.4 and let P(t1) be defined as in
(6.3) for t = j, k. Define for t1 �= t2

P(t1,t2) = S(bt2 , P(t1))

=
xδt1,t2

−xβt2

(
xαt2 − xβt2

)

− xδt1,t2

−xγt1
−βt1

+αt1

(
−xγt1

−βt1
+αt1 + xγt1

−i · g′(x1, x2, . . . , xm)
)

= xδt1,t2−βt2
+αt2 − xδt1,t2+βt1

−αt1−i · g′(x1, x2, . . . , xm), (6.5)

where δt1,t2 = (δt1,t2,1, δt1,t2,2, . . . , δt1,t2,m) ∈ Nm
0 and δt1,t2,u = max{γt1,u − βt1,u +

αt1,u, βt2,u} for 1 � u � m and t = j, k. Using Lemma 6.3 the monomial xδt1,t2−βt2
+αt2

in (6.5) is the leading monomial of P(t1,t2).
Then for 1 � j1, j2, k1, k2 � s, j1 �= j2 and k1 �= k2 we have

P = S(P(j1,j2), P(k1,k2))

=
xν

xδj1,j2−βj2
+αj2

(
xδj1,j2−βj2

+αj2 − xδj1,j2+βj1
−αj1−i · g′(x1, x2, . . . , xm)

)
− xν

xδk1,k2−βk2
+αk2

(
xδk1,k2−βk2

+αk2 − xδk1,k2+βk1
−αk1−i · g′(x1, x2, . . . , xm)

)
=
(
xν+βk2

−αk2+βk1
−αk1−i − xν+βj2

−αj2+βj1
−αj1−i

)
· g′(x1, x2, . . . , xm), (6.6)

where ν = (ν1, ν2, . . . , νm) ∈ Nm
0 and νu = max{δj1,j2,u − βj2,u + αj2,u, δk1,k2,u − βk2,u +

αk2,u} for u = 1, 2, . . . , m. Since w(xαt1 ) = w(xβt1 ) and w(xαt2 ) = w(xβt2 ) for t = j, k
by definition the binomial in the parenthesis in (6.6) must be in I using Definition 6.1
and thereby P must be divisible by the polynomials in G using Lemma 6.2 and Corol-
lary 2.31. �

Lemma 6.7 Let I be a toric ideal as defined in Definition 6.1 having Gröbner basis
G = {b1, b2, . . . , bs} as in Lemma 6.2. For k = 1, 2, . . . , s, let bk = xαk − xβk and let
lm(bk) = xβk with respect to ≺w as defined in Definition 2.19.

Let g = xi − g′(x1, x2, . . . , xm) be a polynomial in F[x1, x2, . . . , xm] such that
wdeg(g′(x1, x2, . . . , xm)) < w(xi) and Supp(g) ⊂ Δ≺w (I) .
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Let P(j1) = S(bj1 , g) and P(j1,j2) = S(bj2 , P(j1)). Then the polynomials in G divides
S(P(j1,j2), g) for all 1 � j1, j2 � s and j1 �= j2.

Proof: Let δj1,j2 be defined as in the proof of Lemma 6.6 and let P(j1,j2) be defined as
in (6.5). Define

P = S(P(j1,j2), g)

=
xν

xδj1,j2−βj2
+αj2

(
xδj1,j2−βj2

+αj2 − xδj1,j2+βj1
−αj1−i · g′(x1, x2, . . . , xm)

)
− xν

xi

(
xi − g′(x1, x2, . . . , xm)

)
=
(
xν−i − xν+βj2

−αj2+βj1
−αj1−i

)
· g′(x1, x2, . . . , xm), (6.7)

where ν = (ν1, ν2, . . . , νm) ∈ Nm
0 and νu = max{δj1,j2,u−βj2,u +αj2,u, iu} for 1 � u � m.

Since w(xαj1 ) = w(xβj1 ) and w(xαj2 ) = w(xβj2 ) by definition the binomial in the paren-
thesis in (6.7) must be in I using Definition 6.1 and thereby P must be divisible by the
polynomials in G using Lemma 6.2 and Corollary 2.31. �

Lemma 6.8 Let I be a toric ideal as defined in Definition 6.1 having Gröbner basis
G = {b1, b2, . . . , bs} as in Lemma 6.2. For k = 1, 2, . . . , s, let bk = xαk − xβk and let
lm(bk) = xβk with respect to ≺w as defined in Definition 2.19.

Let g = xi − g′(x1, x2, . . . , xm) be a polynomial in F[x1, x2, . . . , xm] such that
wdeg(g′(x1, x2, . . . , xm)) < w(xi) and Supp(g) ⊂ Δ≺w (I) .

Let P(t1) = S(bt1 , g), for t = j, k, and let P(j1,j2) = S(bj2 , P(j1)). Then the polynomials
in G divides S(P(j1,j2), P(k1)) for all 1 � j1, j2, k1 � s and j1 �= j2.

Proof: Let δj1,j2 be defined as in the proof of Lemma 6.6 and let P(j1,j2) be defined as
in (6.5). Furthermore, let γk1

be defined as in the proof of Lemma 6.4 and let P(k1) be
defined as in (6.3). Then

P = S(P(j1,j2), P(k1))

=
xν

xδj1,j2−βj2
+αj2

(
xδj1,j2−βj2

+αj2 − xδj1,j2+βj1
−αj1−i · g′(x1, x2, . . . , xm)

)
− xν

−xγk1
−βk1

+αk1

(
−xγk1

−βk1
+αk1 + xγk1

−i · g′(x1, x2, . . . , xm)
)

=
(
xν+βk1

−αk1−i − xν+βj2
−αj2+βj1

−αj1−i
)
· g′(x1, x2, . . . , xm), (6.8)

where ν = (ν1, ν2, . . . , νm) ∈ Nm
0 and νu = max{δj1,j2,u−βj2,u+αj2,u, γk1,u−βk1,u+αk1,u}

for u = 1, 2, . . . , m. Since w(xαt1 ) = w(xβt1 ), for t = j, k, and w(xαj2 ) = w(xβj2 ) the
binomial in the parenthesis in (6.8) must be in I using Definition 6.1 and thereby P must
be divisible by the polynomials in G using Lemma 6.2 and Corollary 2.31. �

We are now ready to prove Proposition 6.9.
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Proposition 6.9 Let I be a toric ideal as defined in Definition 6.1 having Gröbner basis
G = {b1, b2, . . . , bs} as in Lemma 6.2. For k = 1, 2, . . . , s, let bk = xαk − xβk and let
lm(bk) = xβk with respect to ≺w as defined in Definition 2.19.

Let g = xi − g′(x1, x2, . . . , xm) be a polynomial in F[x1, x2, . . . , xm] such that
wdeg(g′(x1, x2, . . . , xm)) < w(xi) and Supp(g) ⊂ Δ≺w (I) .

Define the polynomial P(j1,j2,...,jt) recursively as

P(j1) = S(bj1 , g)

for some 1 � j1 � s, and

P(j1,j2,...,jt) = S(bjt , P(j1,j2,...,jt−1)),

for some 1 � jt � s. Then the polynomials in G divides S(P(j1,j2,...,ju), P(k1,k2,...,kv)) and
S(P(l1,l2,...,lw), g) for 1 � u, v, w � s.

Proof: Proof by induction in t where 1 � u, v, w � t � s.

Basis:
The cases t = 1 and t = 2 follows from Lemmas 6.4, 6.5, 6.6, 6.7 and 6.8.

Step:
Let 2 < t � s and assume that the theorem holds for all u, v, w where 1 � u, v, w < t.

In order to prove the theorem for 1 � u, v, w � t we have four cases to consider.

Case 1: u = t − 1 and 1 � v < t − 1.
Assume without loss of generality that the polynomials P(j1,j2,...,ju) and P(k1,k2,...,kv)

are given by the expression in (6.1), i.e.

P(j1,j2,...,ju) = xpju − xqju
−i · g′(x1, x2, . . . , xm) (6.9)

and
P(k1,k2,...,kv) = xpkv − xqkv

−i · g′(x1, x2, . . . , xm) (6.10)

with lm(P(j1,j2,...,ju)) = xpju and lm(P(k1,k2,...,kv)) = xpkv using Lemma 6.3.
Furthermore, since u, v < t the induction hypothesis implies that

S
(
P(j1,j2,...,ju), P(k1,k2,...,kv)

)
=

xγju,kv

xpju

(
xpju − xqju

−i · g′(x1, x2, . . . , xm)
)

− xγju,kv

xpkv

(
xpkv − xqkv

−i · g′(x1, x2, . . . , xm)
)

=
(
xγju,kv

−pkv
+qkv

−i − xγju,kv
−pju

+qju
−i
)
· g′(x1, x2, . . . , xm) (6.11)

is divisible by the polynomials in G, where γju,kv ,n = max{pju,n, pkv,n} for n = 1, 2, . . . , m.
Since the polynomial in (6.11) is in I and no monomials in the support of
g′(x1, x2, . . . , xm) have equal weights, Lemma 6.2 implies that

w
(
xγju,kv

−pkv
+qkv

−i
)

= w
(
xγju,kv

−pju
+qju

−i
)
,
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which again implies that

w
(
x−pkv

+qkv

)
= w

(
x−pju

+qju

)
. (6.12)

Now, calculating P(j1,j2,...,ju,ju+1) = P(j1,j2,...,jt) we have

P(j1,j2,...,jt) = S
(
bjt , P(j1,j2,...,ju)

)
=

xδ

−xβjt

(
xαjt − xβjt

)
− xδ

xpju

(
xpju − xqju

−i · g′(x1, x2, . . . , xm)
)

= −xδ−βjt
+αjt + xδ−pju

+qju
−i · g′(x1, x2, . . . , xm), (6.13)

where δn = max{βjt,n, pju,n} for n = 1, 2, . . . , m.
Finally, calculating S

(
P(j1,j2,...,jt), P(k1,k2,...,kv)

)
we have

S
(
P(j1,j2,...,jt), P(k1,k2,...,kv)

)
=

xε

−xδ−βjt
+αjt

(
−xδ−βjt

+αjt + xδ−pju
+qju

−i · g′(x1, x2, . . . , xm)
)

− xε

xpkv

(
xpkv − xqkv

−i · g′(x1, x2, . . . , xm)
)

=
(
xε−pkv

+qkv
−i − xε+βjt

−αjt−pju
+qju

−i
)
· g′(x1, x2, . . . , xm), (6.14)

where εn = max{δn − βjt,n + αjt,n, pkv ,n} for n = 1, 2 . . . , m. Using equation (6.12)
and the definition of bjt we have that the two monomials in the parenthesis in (6.14)
have equal weights, thus S

(
P(j1,j2,...,jt), P(k1,k2,...,kv)

)
∈ I and the polynomials in G must

divide S
(
P(j1,j2,...,jt), P(k1,k2,...,kv)

)
using Lemma 6.2 and Corollary 2.31.

The calculations above would have been similar if we had used polynomials P(j1,j2,...,ju)

or P(k1,k2,...,kv) or both on the form in (6.2). This concludes the proof of Case 1.

Case 2: 1 � u < t − 1 and v = t − 1.
Calculations and arguments in this case are the same as in Case 1 with the roles of u

and v interchanged.

Case 3: u = v = t − 1.
In this case we use the expression in (6.13) for both P(j1,j2,...,jt) and P(k1,k2,...,kt) and

get

S
(
P(j1,j2,...,jt), P(k1,k2,...,kt)

)
=

xε

−xδjt,ju−βjt
+αjt

(
−xδjt,ju−βjt

+αjt + xδjt,ju−pju
+qju

−i · g′(x1, x2, . . . , xm)
)

− xε

−xδkt,kv−βkt
+αkt

(
−xδkt,kv −βkt

+αkt + xδkt,kv−pkv
+qkv

−i · g′(x1, x2, . . . , xm)
)

=
(
xε+βkt

−αkt−pkv
+qkv

−i − xε+βjt
−αjt−pju

+qju
−i
)
· g′(x1, x2, . . . , xm), (6.15)

where εn = max{δjt,ju,n − βjt,n + αjt,n, δkt,kv ,n − βjt,n + αjt,n} for n = 1, 2, . . . , m. Using
(6.12) and the definition of bjt and bkt we have that the two monomials in the parenthesis
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in (6.15) have equal weights, thus S
(
P(j1,j2,...,jt), p(k1,k2,...,kt)

)
∈ I and the polynomials

in G must divide S
(
P(j1,j2,...,jt), P(k1,k2,...,kt)

)
using Lemma 6.2 and Corollary 2.31.

The calculations above would have been similar if we had used polynomials P(j1,j2,...,ju)

or P(k1,k2,...,kv) or both on the form in (6.2). This concludes the proof of Case 3.

Case 4: w = t − 1.
Assume that the theorem holds for w = t − 1. Calculating S

(
P(l1,l2,...,lw), g

)
using the

expression for P(l1,l2,...,lw) given in (6.1) yields

S
(
P(l1,l2,...,lw), g

)
=

xγ

xplw

(
xplw − xqlw

−i · g′(x1, x2, . . . , xm)
)
− xγ

xi

(
xi − g′(x1, x2, . . . , xm)

)
=
(
xγ−i − xγ−plw

+qlw
−i
)
· g′(x1, x2, . . . , xm), (6.16)

where γn = max{plw,n, in} for n = 1, 2, . . . , m. Since the polynomial in (6.16) is in I using
the induction hypothesis and no monomial in the support of g′(x1, x2, . . . , xm) have equal
weights, Lemma 6.2 implies that

w
(
xγ−i

)
= w

(
xγ−plw

+qlw
−i
)

implies that

0 = w
(
x−plw

+qlw

)
. (6.17)

Using P(l1,l2,...,lt) equal to the expression in (6.13) and g = xi − g′(x1, x2, . . . , xm) we
calculate

S
(
P(l1,l2,...,lt), g

)
=

xε

−xδ−βlt
+αlt

(
−xδ−βlt

+αlt + xδ−plw
+qlw

−i · g′(x1, x2, . . . , xm)
)

− xε

xi

(
xi − g′(x1, x2, . . . , xm)

)
=
(
xε−i − xε+βlt

−αlt−plw
+qlw

−i
)
· g′(x1, x2, . . . , xm), (6.18)

where εn = max{δn − βlt,n + αlt,n, in} for n = 1, 2, . . . , m. Using (6.17) and the def-
inition of blt the two monomials in the parenthesis in (6.18) have equal weights, thus
S
(
P(l1,l2,...,lt), g

)
∈ I and the polynomials in G must divide S

(
P(l1,l2,...,lt), g

)
using

Lemma 6.2 and Corollary 2.31.
The calculations above would have been similar if we had used polynomials P(l1,l2,...,lw)

on the form in (6.2). This concludes the proof of Case 4 and the proposition. �
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7. Codes from the Suzuki curve - a case
study

This chapter is a case study on the construction of codes from a Suzuki curve using
Gröbner basis theoretical based methods and the results from [2]. Specifically, we will
construct both improved evaluation codes Ẽ and improved dual codes C̃ in the case of
the Suzuki curve over F8 and over F32.

In [6] the authors analyze the class of one-point codes defined in [19] by determining
the actual dimension of the codes and using the Feng-Rao distance which was formulated
in [23] based on the decoding algorithm proposed in [10]. Furthermore, the authors of
[6] used Magma1 to compute an upper bound and test the codes against this bound.

In this chapter we will reconsider the codes above in a Gröbner basis theoretical setting
using an ideal as suggested in [19] and an order domain as described in Theorem 2.39.

7.1. The Suzuki curve

The short presentation of the Suzuki curve given in this section is based on the description
given in [6, 19, 28].

Let q0 = 2n and q = 22n+1 for some positive integer n. Let Fq be the finite field with
q elements and let Fq be the algebraic closure of Fq. The curve X ⊆ P2(Fq) defined over
Fq by the homogeneous equation

uq0(yq + yuq−1) = xq0 (xq + xuq−1).

The four rational functions on X

fq =
x

u

fq+q0 =
y

u

fq+2q0 = f2q0+1
q + f2q0

q+q0

fq+2q0+1 = fqf
2q0
q+q0

+ f2q0
q+2q0

generate the algebra of all rational functions that are regular on X \ {P∞}, where P∞ is
the point at infinity.

In the affine plane A2(Fq) = P2(Fq)\{z = 0} we have the corresponding inhomogeneous
equation

yq + y = xq0 (xq + x)
1Magma and documentation is available online at: http://magma.maths.usyd.edu.au/magma/
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and the four functions

fq = x

fq+q0 = y

fq+2q0 = f2q0+1
q + f2q0

q+q0
= x2q0+1 + y2q0

fq+2q0+1 = fqf
2q0
q+q0

+ f2q0
q+2q0

= xy2q0 + (x2q0+1 + y2q0)2q0

which we will be using. Furthermore, we will use the Weierstrass semigroup for P∞
given by 〈q, q + q0, q +2q0, q +2q0 +1〉 in the construction of an order domain in the next
section.

7.2. The Gröbner basis theoretical approach to Suzuki
curves

In this section we will be using the semigroup generated by 〈q, q + q0, q +2q0, q +2q0 +1〉
and the ordering < of elements in N0 (properly extended with respect to an added element
−∞ as in Section 2.1) as our well-order when defining an order domain of the form in
Theorem 2.39 and emulating the Suzuki curve in Section 7.1.

When it comes to defining an ideal I to construct our order domain we will have to
capture the relation between the functions fq, fq+q0 , fq+2q0 and fq+2q0+1 in Section 7.1.
This is done by considering an ideal I in Fq[x, y, z, v], where the four variables x, y, z, v
represent the four functions above, and add the two polynomials z + x2q0+1 + y2q0 and
v + xy2q0 + z2q0 to the basis of I.

Thus we get the ideal I given by

I =
〈
xq0(xq + x) − yq − y, z + x2q0+1 + y2q0 , v + xy2q0 + z2q0

〉
⊆ Fq[x, y, z, v]. (7.1)

Furthermore, we define the monomial ordering ≺w as in Definition 2.19 induced by
w(x) = q, w(y) = q + q0, w(z) = q + 2q0, w(v) = q + 2q0 + 1 and x ≺lex y ≺lex z ≺lex v.

The set G = {xq + x + yq0(yq + y), z + x2q0+1 + y2q0 , v + xy2q0 + z2q0} may not be
a Gröbner basis for I with respect to ≺w so for a given Fq we would have to find a
Gröbner basis for I and check that the conditions in Theorem 2.39 hold in order to use
Fq[x, y, z, v]/I as our order domain.

The next section will give two examples of such order domains for q = 8 and q = 32
(the cases n = 1 and n = 2 in Section 7.1) and the minimum distance of evaluation codes
constructed by using the method described in Section 2.2.

7.3. Examples over F8 and F32

Here the two examples of codes considered in [6, 19] will be given using order domains
as in Chapter 2.
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Example 7.1 Here we consider the example studied in [6] over F8, i.e. the case n = 1
such that q0 = 2 and q = 8. Thus from (7.1) we have the ideal

I =
〈
y8 + y + x2(x8 + x), z + x5 + y4, v + xy4 + z4

〉
∈ F8[x, y, z, v].

Furthermore, let w(x) = 8, w(y) = 10, w(z) = 12 and w(v) = 13. Using the monomial
ordering ≺w from Definition 2.19 as described in Section 7.2 when running Buchberger’s
algorithm, we get the reduced Gröbner basis G for I given by

G = {x5 + y4 + z, x3 + z2 + y, xz + y2 + v, x4 + y2z + xy + zv, x2y + v2 + z} (7.2)

which has leading monomials {y4, z2, xz, y2z, v2}. The Gröbner basis in (7.2) is on the
form required in Theorem 2.39 (but not on the form in Theorem 5.1). Furthermore,
it can be shown that the monomials in the footprint of I have different weights, thus
F8[x, y, z, v]/I is an order domain with weight function ρ([f ]) = w(f̄ ).

Moreover, by computer search we find that #V
(
I + 〈x8 − x, y8 − y, z8 − z, v8 − v〉

)
=

64, thus, using the method in Section 2.1 (from [2]), we can construct the improved
evaluation codes Ẽ(δ) and get the parameters listed in Table 7.1

Table 7.1.: Parameters [n, k, d] for the improved Ẽ(δ) from the Suzuki curve over F8.

[64, 1, 64] [64, 13, 39] [64, 26, 25] [64, 42, 12]
[64, 2, 56] [64, 14, 38] [64, 27, 24] [64, 44, 10]
[64, 3, 54] [64, 15, 36] [64, 28, 23] [64, 45, 9]
[64, 4, 52] [64, 16, 35] [64, 29, 22] [64, 49, 8]
[64, 5, 51] [64, 17, 34] [64, 31, 21] [64, 50, 7]
[64, 6, 48] [64, 18, 33] [64, 32, 20] [64, 51, 6]
[64, 7, 46] [64, 19, 32] [64, 33, 19] [64, 53, 5]
[64, 8, 44] [64, 20, 31] [64, 34, 18] [64, 58, 4]
[64, 9, 43] [64, 21, 30] [64, 35, 17] [64, 59, 3]
[64, 10, 42] [64, 22, 29] [64, 37, 16] [64, 63, 2]
[64, 11, 41] [64, 24, 28] [64, 38, 14] [64, 64, 1]
[64, 12, 40] [64, 25, 26] [64, 40, 13]

Note that the codes with parameters [64, 31, 21], [64, 33, 19], [64, 35, 17], [64, 38, 14],
[64, 40, 13], [64, 44, 10] and [64, 45, 9] in Table 7.1 have better parameters than those
reported in [6] but none of these codes are better than the lower bound given in Brouwer’s
tables [5].

The code rates plotted against the relative minimum distances of the codes in Table 7.1
is shown in Figure 7.1.
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Figure 7.1.: Codes with length 64 from the Suzuki curve over F8.

By constructing the dual codes C̃(η) and compare the parameters we find that for every
code Ẽ(δ) there exists a C̃(η) code with similar parameters. This result corresponds to
the result in [19, Pro. 5.1]. In other words: The codes constructed here are an example
of codes not on the form given in [2, Pro. 8] but where the result holds. �

Example 7.2 Here we consider the case n = 2 such that q0 = 4 and q = 32. Thus from
(7.1) we have the ideal

I =
〈
y32 + y + x4(x32 + x), z + x9 + y8, v + xy8 + z8

〉
∈ F32[x, y, z, v].

Furthermore, let w(x) = 32, w(y) = 36, w(z) = 40 and w(v) = 41. Using the monomial
ordering ≺w from Definition 2.19 as described in Section 7.2 when running Buchberger’s
algorithm, we get the reduced Gröbner basis G for I given by

G ={x9 + y8 + z, x5 + z4 + y, xz + y2 + v, x6 + y2z3 + z3v + xy,

x8 + y6z + y4zv + y2zv2 + x3y + zv3, x7 + y4z2 + z2v2 + x2y, x4y + v4 + z}
(7.3)

which has leading monomials {y8, z4, xz, y2z3, y6z, y4z2, v4}. The Gröbner basis in (7.3)
is on the form required in Theorem 2.39 and F32[x, y, z, v]/I is an order domain with
weight function ρ([f ]) = w(f̄ ).
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Again, using computer search we find that

#V
(
I + 〈x32 − x, y32 − y, z32 − z, v32 − v〉

)
= 1024.

Thus, using the method in Section 2.1 (from [2]), we construct the improved evaluation
codes Ẽ(δ) and get the result plotted in Figure 7.2.
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Figure 7.2.: Codes with length 1024 from the Suzuki curve over F32.

Again, by constructing the dual codes C̃(η) and compare the parameters we find that
for every code Ẽ(δ) there exists a C̃(η) code with similar parameters. �
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Department of Mathematical Sciences
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henning@math.aau.dk, olav@math.auc.dk

Abstract

The Feng-Rao bound gives a lower bound on the minimum distance of codes defined
by means of their parity check matrices. From the Feng-Rao bound it is clear how to
improve a large family of codes by leaving out certain rows in their parity check matrices.
In this paper we derive a simple lower bound on the minimum distance of codes defined
by means of their generator matrices. From our bound it is clear how to improve a large
family of codes by adding certain rows to their generator matrices. Actually our result
not only deals with the minimum distance but gives lower bounds on any generalized
Hamming weight. We interpret our methods into the setting of order domain theory. In
this way we fill in an obvious gap in the theory of order domains. The improved codes
from the present paper are not in general equal to the Feng-Rao improved codes but the
constructions are very much related.

Key words: Affine variety code, evaluation code, Feng-Rao bound, footprint, general-
ized Hamming weight, geometric Goppa code, Gröbner basis, minimum distance, order
bound, order domain, well-behaving pair.

8.1. Introduction

In [4] Feng and Rao showed how to estimate the minimum distance of a large class
of algebraically defined codes by considering certain relations between the rows in the
corresponding parity check matrices. This result is known today as the Feng-Rao bound.
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8.1. Introduction

Using the bound Feng and Rao were able to improve a large class of well-known codes
by leaving out certain rows in the corresponding parity check matrices.

To deal with the above mentioned code constructions, Høholdt, van Lint and Pellikaan
in [16] and [15] introduced the concept of an order function acting on what is known
today as an order domain ([13]). Then they reformulated the most important results by
Feng and Rao in this new setting. Their code constructions includes the set of duals of
one-point geometric Goppa codes, the set of Feng-Rao improved such ones, the set of
generalized Reed-Muller codes and the set of Feng-Rao improved such ones (the hyper-
bolic codes). It should be mentioned that independently of Høholdt et al. Miura in [21]
and [23] derived many of the same results. Regarding codes defined by means of their
generator matrices, Høholdt et al. in [15] only considered the one-point geometric Goppa
codes. More precisely, they showed how to prove the Goppa bound without the use of
the Riemann-Roch theorem. One of the nice things about order domains is that they can
be understood without the use of algebraic geometry. More precisely, it was shown in
[21], [22], [24] and [13] how Gröbner basis theory plays a fundamental role in the theory
of order domains.

In [21] and [23] Miura observed that the results by Feng and Rao can be obtained by
using only linear algebra. In particular one can view the Feng-Rao bound as a bound on
the minimum distance of any linear code (with known parity check matrix). Furthermore
it was shown in [23] how to improve the Feng-Rao bound slightly in this general set-up. In
the present paper we will initially take the general point of view on the Feng-Rao bound
from [23]. Later we will translate our findings into the frame work of order domain theory.

What is obviously missing in the above description is a Feng-Rao type bound on the
minimum distance of codes which are not defined on the basis of parity check matrices but
are defined on the basis of generator matrices. This question was treated by Shibuya and
Sakaniwa in [29] where they use the theory of generalized Hamming weights to translate
the Feng-Rao bound for the codes defined by means of parity check matrices into a bound
for the codes defined by means of generator matrices. The bound derived in this way is of
a much more complicated form than the Feng-Rao bound and the problem of improving
the codes by using the information from the bound is not so easy. Furthermore, the proof
of the bound by Shibuya and Sakaniwa is rather complicated.

In this paper we derive a new and very simple bound on the minimum distance of
codes defined by means of their generator matrices. Our bound is of a form very similar
to the Feng-Rao bound and in particular from our bound it is obvious how to improve
the codes. The proof of the new bound is trivial and our result is at least as good
as the result by Shibuya and Sakaniwa. Furthermore our bound not only deals with
the minimum distance but actually gives lower bounds on any generalized Hamming
weights of the considered codes. We show how to deal with the new bounds and the new
code construction from an order domain theoretical point of view. We give some very
concrete results on how to deal with the code construction in the case of affine variety
codes1 defined from order domains and we derive some results concerning the connection
between the Feng-Rao improved codes and the new improved codes. Also we show how to
understand our new bound and code construction from a Gröbner basis theoretical point

1So named in [5]
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of view. For the case of one-point geometric Goppa codes our bound can easily be shown
to be an improvement of the usual bound from algebraic geometry and in many cases we
are able to improve substantial on the one-point geometric Goppa code construction. In
this way we improve the results in [29] where it was shown that their bound is at least
as good as the usual bound from algebraic geometry for the case of one-point geometric
Goppa codes from Cab curves. Our new construction and our new bounds can be viewed
as a generalization of the recent Gröbner basis theoretical descriptions in [11] and [9]
concerning Reed-Muller codes, hyperbolic codes2 and codes from norm-trace curves. For
these codes our bounds are tight.

The paper is organized as follows. In Section 8.2 we are concerned with the general
set-up from [23]. Here we introduce our new bound on any linear code defined by means
of a generator matrix and relate the new bound to the Feng-Rao bound and the bound
by Shibuya and Sakaniwa. In Section 8.3 we describe the relevant concepts from order
domain theory and show how to translate our findings from Section 8.2 into the language
of order domain theory. In Section 8.4 we treat the connection to the theory of one-point
geometric Goppa codes. In Section 8.5 we are concerned with affine variety codes from
order domains. Section 8.5 includes a description of order domains from a Gröbner basis
theoretical point of view. Section 8.6 contains some examples of codes and Section 8.7 is
the conclusion. In Appendix A we deal with the connection between the construction of
the present paper and the recent Gröbner basis theoretically defined constructions from
[11] and [9].

8.2. The new Feng-Rao type bound

We start by introducing some terminology from [23] (the reader not experienced with
Japanese can use [20] as a reference). To ease the comparison with the results in [29] we
will mainly use the notation from there.

Definition 8.1 Let B = b1, b2, . . . , bn be a basis for Fn
q and consider G ⊆ B. We define

the k = #G dimensional code C(B, G) by C(B, G) = Span
Fq

{b | b ∈ G}. We denote the
dual code by C⊥(B, G).

The following definition plays a central role for the bounds on the minimum distances
of the above codes.

Definition 8.2 For u = (u1, u2, . . . , un), v = (v1, v2, . . . , vn) ∈ Fn
q define the component-

wise (or Schur or Hadamard) product u ∗ v = (u1v1, u2v2, . . . , unvn). Let b0 = 0 ∈ Fn
q

and define Ll = Span
Fq

{b0, b1, . . . , bl} , for l = 0, . . . , n, and L−1 = ∅.

We obviously have a chain of spaces {0} = L0 � L1 � · · · � Ln−1 � Ln = Fn
q and

dim(Li) = i holds for i = 0, 1, . . . , n. Next we recall the concept of a well-behaving
ordered pair. The function μ̄ below is well-known whereas the function σ̄ is new.

2Also called Massey-Costello-Justesen codes (see [17] and [18].
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Definition 8.3 Define ρ̄ : Fn
q → {0, 1, . . . , n} by ρ̄(v) = l if v ∈ Ll \ Ll−1. Let I =

{1, 2, . . . , n}. An ordered pair (i, j) ∈ I2 is said to be well-behaving (WB) if ρ̄(bu ∗ bv) <
ρ̄(bi ∗ bj) for all u and v with 1 � u � i, 1 � v � j and (u, v) �= (i, j). An ordered pair
(i, j) ∈ I2 is said to be weakly well-behaving (WWB) if ρ̄(bu ∗ bj) < ρ̄(bi ∗ bj) for u < i
and ρ̄(bi ∗ bv) < ρ̄(bi ∗ bj) for v < j. For {l1, l2, . . . , lt} ⊆ I and {i1, i2, . . . , it} ⊆ I
define3

μ̄(l1, l2, . . . , lt) = #
⋃

s=1,2,...,t

{(i, j) ∈ I2 | ρ̄(bi ∗ bj) = ls and (i, j) is WWB }

σ̄(i1, i2, . . . , it) = #
⋃

s=1,2,...,t

(
{l ∈ I | ρ̄(bis ∗ bj) = l for some bj ∈ B

such that (is, j) is WWB } ∪ {is}
)
.

We now state the celebrated Feng-Rao bound in the general version from [23, p. 1389].

Theorem 8.4 (Feng-Rao) The minimum distance of C⊥(B, G) is at least equal to
min{μ̄(i) | bi ∈ B \ G}.

A lower bound on the generalized Hamming weights of the codes C⊥(B, G) can be
found in [25]. This bound, however, is not nearly as simple as the one we are going to
present for the codes C(B, G). In Definition 8.5 below we give the formal definition from
[31] of the generalized Hamming weights. Recall, that for every v = (v1, v2, . . . , vn) ∈ Fn

q

the set Supp(v) = {i | vi �= 0} is called the support of v and in general for any subset
A ∈ Fn

q the set Supp(A) =
⋃

v∈A Supp(v) is called the support of A.

Definition 8.5 Consider a k dimensional code C. For t = 1, 2, . . . , k the t-th generalized
Hamming weight is

dt(C) = min{#Supp(D) | D is a t dimensional subcode of C}.

We next state the new Feng-Rao type bound on the generalized Hamming weights of
the code C(B, G).

Theorem 8.6 Let G ⊆ B with #G = k be fixed. For t = 1, 2, . . . , k the generalized
Hamming weight dt(C(B, G)) is at least equal to

min{σ̄(a1, a2, . . . , at) | ai �= aj for i �= j and {ba1 , ba2 , . . . , bat} ⊆ G}.
3We note that writing WWB rather than only WB in the definition of μ̄ and σ̄ strengthens the results

to be presented in this paper. This is due to the fact that an ordered pair that is WB is of course
also WWB.
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In particular the minimum distance of C(B, G) is at least equal to

min{σ̄(i) | bi ∈ G} = min{#({l ∈ I | ρ̄(bi ∗ bj) = l for some bj ∈ B

such that (i, j) is WWB } ∪ {i}) | bi ∈ G}.

Proof: Denote G = {bi1 , bi2 , . . . , bik
} where i1 < i2 < · · · < ik holds. Let D ⊆ C(B, G)

be a subspace of dimension t, t � k. Consider basis vectors d1, d2, . . . , dt for D

du =
k∑

s=1

α(u)
s bis , u = 1, 2, . . . , t.

By a standard linear algebra result we may without loss of generality assume that

max{s | α(v)
s �= 0} �= max{s | α(w)

s �= 0}

holds for any v, w with v �= w. As by definition

ρ̄(du) = max{is | α(u)
s �= 0}

holds. The above assumption corresponds to assuming that ρ̄(dv) �= ρ̄(dw), for v �= w.
Let au = ρ̄(du), for u = 1, 2, . . . , t. We observe that if (au, j) is WWB for some j ∈
{1, 2, . . . , n} and ρ̄(bau ∗ bj) = l (equivalent to saying bau ∗ bj ∈ Ll \ Ll−1) then by the
very definition of WWB we have

ρ̄(du ∗ bj) = ρ̄

(
k∑

s=1

α(u)
s (bis ∗ bj)

)

= ρ̄(bau ∗ bj)
= l.

Hence, the set

S =

(
t⋃

u=1

{du ∗ bj | (au, j) is WWB }
)

∪ {d1, d2, . . . , dt} (8.1)

contains at least

#
(( ⋃

u=1,2,...,t

{l ∈ I | ρ̄(bau ∗ bj) = l for some bj ∈ B

such that (au, j) is WWB }
)
∪ {a1, a2, . . . , at}

)
= σ̄(a1, a2, . . . , at)

linearly independent vectors. But the support of S is equal to the support of
{d1, d2, . . . , dt} which in turn is equal to the support of D. Hence, the size of the
support of D is at least σ̄(a1, a2, . . . , at). �
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Remark 8.7 Notice that in [30, 28, 26, 27] Shibuya, Mizutani and Sakaniwa give bounds
on the generalized Hamming weights of the C(B, G)⊥ codes, thus the result in [31, Thm.
3] can be used to translate their findings into lower bounds on the generalized Hamming
weights of the C(B, G) codes. However, this method is rather complicated and requires
that one is able to find all the generalized Hamming weights of the C(B, G)⊥ codes,
which can be computationally hard for large codes. �

It is now obvious how to optimize the choice of G to obtain the best codes with respect
to the above bound. These are the Ẽ(δ) codes below. For use in Section 8.3 we also
define the more naive codes E(s).

Definition 8.8 Let B = {b1, b2, . . . , bn} be a basis for Fn
q . For s = 1, 2, . . . , n and

δ = 0, 1, . . . , n define

E(s) = SpanFq
{b1, b2, . . . , bs}

Ẽ(δ) = SpanFq
{bi | σ̄(i) � δ}

Theorem 8.9 The minimum distance of E(s) is at least equal to min{σ̄(i) | i = 1, 2, . . . , s}.
The minimum distance of Ẽ(δ) is at least equal to δ.

Proof: By Theorem 8.6. �

In Appendix A it is shown that the hyperbolic codes (improved generalized Reed-
Muller codes) and the improved one-point geometric Goppa codes from norm-trace curves
described in [9] are special examples of the codes Ẽ(δ) of the present paper. Also it is
shown that the bounds in Theorem 8.9 are tight for the Reed-Muller codes, the hyperbolic
codes, the one-point geometric Goppa codes from norm-trace curves and for the improved
one-point geometric Goppa codes from norm-trace curves. We conclude this section by
relating the result in Theorem 8.6 to the result by Shibuya and Sakaniwa in [29]. Their
result is as follows.

Theorem 8.10 (Shibuya, Sakaniwa) For given B and G let for i = 1, 2, . . . , n

B′
i = {l ∈ I | ρ̄(bi ∗ bj) = l for some bj ∈ B such that (i, j) is WWB }

and Bi = {ν | bν ∈ B \ G} \ B′
i. Define t(B, G) = max{#Bi | bi ∈ G}. The minimum

distance of C(B, G) is at least n − k + 1 − t(B, G).

Proposition 8.11 The bound on the minimum distance of C(B, G) in Theorem 8.6 is
at least as good as the bound in Theorem 8.10.
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Proof: For i = 1, 2, . . . , n we have

σ̄(i) = #(B′
i ∪ {i}). (8.2)

The set Bi consist of the basis elements outside G that does not contribute to the counting
in (8.2). Hence, the number of basis elements outside G that contribute to the counting
in (8.2) is n−k−#Bi. For i such that bi ∈ G the number of elements in G that contribute
to the counting in (8.2) is at least equal to #{i} = 1. All together n−k+1−#Bi � σ̄(i)
holds for all i such that bi ∈ G. �

8.3. Codes defined from order domains

In the previous section we saw how to estimate the parameters of any linear code. For
the methods to be really practical we will need bases B = {b1, b2, . . . , bn} for Fn

q for
which it is easy to decide if a given ordered pair (i, j) is WB (or WWB) and to calculate
ρ̄(bi ∗ bj). This is where order domain theory comes into action. The presentation of
order domain theory to be given in this paper mostly relies on [13] where the concepts
of an order function and a weight function from [15] are generalized.

Recall, that if Γ is a set and ≺ is a total ordering on Γ then (Γ,≺) is called a well-order
if every non-empty subset of Γ has a smallest element with respect to ≺. Given a well-
order (Γ,≺) we adjoin an element −∞ to Γ to get Γ−∞ = Γ ∪ {−∞}. The ordering ≺
extends to an ordering on Γ−∞ by the rule −∞ ≺ γ for all γ ∈ Γ. Clearly (Γ−∞,≺) is a
well-order. The following definition corresponds to [13, Def. 2.1] (with the little change
that in this paper we require an order function to be surjective).

Definition 8.12 Let (Γ,≺) be a well-order. Let F be a field and let R be an F-algebra
(see [3, p. 36]). A surjective map ρ : R → Γ that satisfies the following five conditions is
called an order function.

(O.0) ρ(f) = −∞ if and only if f = 0
(O.1) ρ(af) = ρ(f) for all non-zero a ∈ F

(O.2) ρ(f + g) 
 max{ρ(f), ρ(g)} and equality holds when ρ(f) ≺ ρ(g)
(O.3) If ρ(f) ≺ ρ(g) and h �= 0, then ρ(fh) ≺ ρ(gh)
(O.4) If f and g are non-zero and ρ(f) = ρ(g), then there exists a non-zero

a ∈ F such that ρ(f − ag) ≺ ρ(g) for all f, g ∈ R.

We call (R, ρ, Γ) an order structure and R an order domain (over F).

The order function being surjective ensures the existence of sets of the form
{fγ | ρ(fγ) = γ}γ∈Γ. From [13, Def. 3.1 and Pro. 3.2] we have

Theorem 8.13 Given an order structure (R, ρ, Γ) then any set B = {fγ | ρ(fγ) = γ}γ∈Γ

constitutes a basis for R as a vector space over F. For any f = cγ1fγ1+cγ2fγ2+· · ·+cγd
fγd
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with cγ1 , cγ2 , . . . , cγd
∈ F \ {0}, ρ(f) = max≺{1, 2, . . . , d} holds. In particular {fλ ∈

B | λ 
 γ} constitutes a basis for Rγ = {f ∈ R | ρ(f) 
 γ} as a vector space over F.

From [13, Def. 3.1 and Pro. 3.3] we have

Definition 8.14 The set {fγ | ρ(fγ) = γ}γ∈Γ in Theorem 8.13 is called a well-behaving
basis (for R).

Besides the trivial case R = F order domains are always of transcendence degree at
least 1. Hence, for non-trivial order domains the well-behaving basis {fγ | ρ(fγ) = γ}γ∈Γ

consists of infinitely many elements. In this paper we will always assume that the order
domain under consideration is non-trivial. The following well-known concept will help us
construct the finite bases B needed in the code constructions from the previous section.

Definition 8.15 Let R be an Fq-algebra. A srjective map ϕ : R → Fn
q is called a mor-

phism of Fq-algebras if ϕ is Fq-linear and ϕ(fg) = ϕ(f) ∗ ϕ(g) for all f, g ∈ R.

In the remaining part of this section an order domain R will always be assumed to be
an order domain over Fq. To derive the finite bases B we will just need the following
definition.

Definition 8.16 Let 0 be the smallest element of Γ and define α(1) = 0. For i =
2, 3, . . . , n define recursively α(i) to be the smallest element in Γ that is greater than
α(1), α(2), . . . , α(i−1) and satisfies ϕ(Rγ) � ϕ(Rα(i)), for all γ ≺ α(i). Write Δ(R, ρ, ϕ)
= {α(1), α(2), . . . , α(n)}.

The following theorem is easily proven.

Theorem 8.17 Let Δ(R, ρ, ϕ) = {α(1), α(2), . . . , α(n)} be as in Definition 8.16. The
set

B = {b1 = ϕ(fα(1)), b2 = ϕ(fα(2)), . . . , bn = ϕ(fα(n))} (8.3)

constitutes a basis for Fn
q as a vector space over Fq. For any c ∈ Fn

q there exists a
unique ordered set {β1, β2, . . . , βn}, βi ∈ Fq such that c = ϕ(

∑n
i=1 βifα(i)). The function

ρ̄ : Fn
q → {0, 1, . . . , n} corresponding to B is given by

ρ̄(c) =

{
0 if c = 0
max{i | βi �= 0} otherwise

In the remaining part of this paper we will always assume that the basis
B = {b1, b2, . . . , bn} is of the form in (8.3). According to our agenda we should now
be concerned with studying which ordered pairs (i, j) ∈ I2 that are well-behaving. The
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following two propositions will give us precisely the information that we need. The re-
sults described in these propositions can be found in [21], [23], [20] and [29] for the case
of the order domain being of transcendence degree 1 or the order domain being equal to
Fq[x1, x2, . . . , xm]. Here we state the results explicit and for all non-trivial order domains.

Proposition 8.18 Let B = {b1, b2, . . . , bn} be the basis in (8.3). If α(i), α(j), α(l) ∈
Δ(R, ρ, ϕ) are such that ρ(fα(i)fα(j)) = α(l) then ρ̄(bi ∗ bj) = l and (i, j) ∈ I2 is WB.

Proof: We first show ρ̄(bi ∗ bj) = l. We have

ρ(fα(i)fα(j)) = α(l)
⇓
fα(i)fα(j) ∈ Rα(l) and fα(i)fα(j) /∈ Rγ for any γ ≺ α(l)

⇓
ϕ(fα(i)fα(j)) ∈ ϕ(Rα(l)) = Ll and ϕ(fα(i)fα(j)) /∈ Lw for any w < l

⇓
ϕ(fα(i)fα(j)) ∈ Ll \ Ll−1

⇓
bi ∗ bj ∈ Ll \ Ll−1

⇓
ρ̄(bi ∗ bj) = l.

Next we show that (i, j) is WB. Let 1 � u � i, 1 � v � j with (u, v) �= (i, j). By condi-
tion (O.3) in Definition 8.12 we have ρ(fα(u)fα(v)) ≺ α(l). But then by Definition 8.15
and Definition 8.16 we have bu ∗ bv = ϕ(fα(u)fα(v)) ∈ ϕ(Rγ) ⊆ Ll−1 for some γ ≺ α(l).
This implies ρ̄(bu ∗ bv) � l − 1 and consequently (α(i), α(j)) is WB. �

Proposition 8.19 Consider α(l) ∈ Δ(R, ρ, ϕ) and assume β1, β2 ∈ Γ satisfies
ρ(fβ1fβ2) = α(l). Then β1, β2 ∈ Δ(R, ρ, ϕ) holds.

Proof: By definition we have fβ1fβ2 ∈ Rα(l) but fβ1fβ2 /∈ Rγ for any γ ≺ α(l). By sym-
metry it is enough to show that β1 ∈ Δ(R, ρ, ϕ). We will assume that this is not the case
and arrive at a contradiction. That is, we will assume that there exists ω ∈ Γ such that
ω ≺ β1 and ϕ(fβ1) ∈ ϕ(Rω). But then there exists g ∈ Rω with ϕ(g) = ϕ(fβ1) implying
that ϕ(gfβ2) = ϕ(fβ1fβ2). By (O.3) in Definition 8.12 and the fact that ρ(g) 
 ω ≺ β1

we have ρ(gfβ2) ≺ ρ(fβ1fβ2). Hence, there exists γ ≺ α(l) such that ϕ(fβ1fβ2) ∈ ϕ(Rγ).
This is not possible according to the definition of α(l). �

We are now in the position that we can give a simple description of the codes C⊥(B, G)
and C(B, G) related to order domains. To this end consider Definition 8.20 and Defini-
tion 8.21 below. Here the N and μ notation is a slightly modification of the notation in
[15, Def. 4.8], whereas the M and σ notation is new.
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Definition 8.20 For λ ∈ Γ define

N(λ) = {(α, β) ∈ Γ2 | ρ(fαfβ) = λ}.

Define μ(λ) = #N(λ) if N(λ) is finite and μ(λ) = ∞ if not. For η ∈ Δ(R, ρ, ϕ) =
{α(1), α(2), . . . , α(n)} define

M(η) = {γ ∈ Δ(R, ρ, ϕ) | ∃β ∈ Δ(R, ρ, ϕ) with ρ(fηfβ) = γ}

and σ(η) = #M(η).

Definition 8.21 Let t � n and {η1, η2, . . . , ηt} ⊆ Δ(R, ρ, ϕ). Define σ(η1, η2, . . . , ηt) =
#(
⋃t

i=1 M(ηi)).

The codes are now defined as follows.

Definition 8.22 Consider a well-behaving basis {fλ | ρ(fλ) = λ}λ∈Γ for an order struc-
ture (R, ρ, Γ) over Fq. Let ϕ be a morphism as in Definition 8.15 and let B = {b1 =
ϕ(fα(1)), b2 = ϕ(fα(2)), . . . , bn = ϕ(fα(n))} as in (8.3). Define

C(λ) = {c ∈ Fn
q | c · ϕ(fγ) = 0 for all γ 
 λ}

= (ϕ(Rλ))⊥

C̃(δ) = {c ∈ Fn
q | c · ϕ(fα(i)) = 0 for all α(i) ∈ Δ(R, ρ, ϕ) with μ(α(i)) < δ}

E(λ) = ϕ(Rλ)

Ẽ(δ) = SpanFq

{
ϕ(fα(i)) | α(i) ∈ Δ(R, ρ, ϕ) and σ(α(i)) � δ

}
.

The result concerning C(λ) and C̃(δ) in the next theorem is from [15]. The result
concerning C(λ) is known as the order bound. The remaining results are new.

Theorem 8.23 The minimum distance of C(λ) and C̃(δ) satisfy

d(C(λ)) � min{μ(η) | λ ≺ η, η ∈ Δ(R, ρ, ϕ)} (8.4)
� min{μ(η) | λ ≺ η} (8.5)

d(C̃(δ)) � δ. (8.6)

The t-th generalized Hamming weight of E(λ) and Ẽ(δ) (t being at most equal to the
dimension of the code) satisfies

dt(E(λ)) � min{σ(η1, η2, . . . , ηt) | {η1, η2, . . . , ηt} ⊆ Δ(R, ρ, ϕ)
ηi �= ηj for i �= j, ηs 
 λ for s = 1, 2, . . . , t} (8.7)

dt(Ẽ(δ)) � min{σ(η1, η2, . . . , ηt) | {η1, η2, . . . , ηt} ⊆ Δ(R, ρ, ϕ)
ηi �= ηj for i �= j, σ(ηs) � δ for s = 1, 2, . . . , t}. (8.8)
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In particular

d(E(λ)) � min{σ(η) | η ∈ Δ(R, ρ, ϕ), η 
 λ} (8.9)

d(Ẽ(δ)) � δ. (8.10)

Proof: Using the notation from Definition 8.3 and Definition 8.20 and the results from
Proposition 8.18 and Proposition 8.19 we verify that μ̄(i) � μ(α(i)). To see that also
σ̄(i) � σ(α(i)) we note that by [13, Pro. 2.5] the following holds. If the smallest element
in Γ is denoted 0 then the elements in R that satisfy ρ(f) = 0 are precisely the elements
in Fq \ {0}. Hence, by condition (O.1) in Definition 8.12 we have ρ(f0fγ) = γ for all
γ ∈ Γ and therefore by Proposition 8.18 and Proposition 8.19 σ̄(i) � σ(α(i)) holds. The
theorem now follows by applying Theorem 8.4 and Theorem 8.6. �

It is obvious that with respect to the above bounds the C̃(δ) construction is an im-
provement to the C(λ) construction and the Ẽ(δ) construction is an improvement to the
E(λ) construction. In Section 8.4 we will recall the well-known fact that every one-point
geometric Goppa code can be described as an E(λ) code related to an order domain of
transcendence degree 1, and we will show by a very easy argument that the bound in
(8.9) is an improvement to the usual bound from algebraic geometry.

We conclude this section by discussing the concept of a weight function. It is well-known
that the order function ρ induces a binary operation on Γ by ρ(f) + ρ(g) = ρ(fg). This
turns Γ into a semigroup called the value semigroup of ρ. The order structure (R, ρ, Γ)
is called finitely generated if the value semigroup is finitely generated. Whenever an
order structure (R, ρ, Γ) is finitely generated then by [13, Cor. 5.7] we may without
loss of generality assume that the order function is a weight function as in the following
definition.

Definition 8.24 Let ≺ be a monomial ordering on Nr
0 and let + be the ordinary +

extended with the rule −∞ + a = a + (−∞) = −∞ + (−∞) = −∞. Let R be an F-
algebra. A weight function on R is an order function ρ : R → Γ ∪ {−∞} ⊆ Nr

0 ∪ {−∞}
such that

(O.5) ρ(fg) = ρ(f) + ρ(g) for all f, g ∈ R.

The calculation of the values of the functions μ and σ becomes much easier whenever
ρ is not just an order function but merely a weight function. We have

N(λ) = {(α, β) ∈ Γ2 | α + β = λ}
M(η) = {γ ∈ Δ(R, ρ, ϕ) | ∃β ∈ Δ(R, ρ, ϕ) with η + β = γ}

= (η + Γ) ∩ Δ(R, ρ, ϕ) (8.11)

where η + Γ means {η + λ | λ ∈ Γ}.
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8.4. Improved one-point geometric Goppa codes

In this section we will see how to construct improved one-point geometric Goppa codes
and we will see how to improve on the Goppa bound. The following example is well-known
(see [15, Ex. 3.8] and [19, Th. 1]).

Example 8.25 Consider a curve X with a single place P−∞ at infinity. Let νP−∞ de-
note the discrete valuation corresponding to the place P−∞. Let R be any subring of the
union of L-spaces corresponding to P−∞. That is, let R ⊆

⋃∞
i=0 L(iP−∞). Then R is an

order domain with a weight function given by ρ(f) = −νP−∞(f). It is well-known that
all weight functions with a numerical value semigroup are of the form described in this
example. �

From Example 8.25 it is clear that the one-point geometric Goppa codes are precisely
the codes E(λ) defined from order structures with a weight function with a numerical
value semigroup. In the same way of course the duals of one-point geometric Goppa codes
are precisely the codes C(λ) defined from order structures with a weight function with a
numerical value semigroup. By [15, Th. 5.24] the bound (8.5) and thereby also (8.4) are
improvements to the Goppa bound for the duals of one-point geometric Goppa codes.
Clearly, the corresponding codes C̃(δ) become improvements to the duals of one-point
geometric Goppa codes.

By using the following lemma from [15, Lem. 5.15] we now give an easy proof that also
the bound (8.9) is an improvement to the Goppa bound for the one-point geometric Goppa
codes. It follows that the codes Ẽ(δ) can be viewed as improved one-point geometric
Goppa codes.

Lemma 8.26 Let Γ be a numerical semigroup with finitely many gaps. Let i ∈ Γ. Then
the number of elements of Γ \ (i + Γ) is equal to i.

Now the Goppa bound for the one-point geometric Goppa code E(λ) says d(E(λ)) �
n − λ. For comparison, by (8.11) the bound (8.9) states

d(E(λ)) � min{#((i + Γ) ∩ Δ(R, ρ, ϕ)) | i ∈ Γ, i � λ}.

By Lemma 8.26 we have

#((i + Γ) ∩ Δ(R, ρ, ϕ)) � n − i

with equality if and only if Γ \ (i + Γ) ⊆ Δ(R, ρ, ϕ). In particular for λ being of a
high value compared to n the just mentioned condition for equality often turns out not
be fulfilled and the new bound will be an improvement to the Goppa bound. We have
proved the last part of the following proposition.

Proposition 8.27 Any one-point geometric Goppa code is of the form E(λ) in Defini-
tion 8.22 and the bound (8.9) is an improvement to the Goppa bound.
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For comparison, Shibuya et al. in [29] only show that their bound (Theorem 8.10)
is an improvement to the Goppa bound in the case of codes defined from Cab curves
and in the case of some codes coming from Garcia and Stichtenoth’s tower in [6]. In
Section 8.6 we shall demonstrate that the new bound (8.9) can be much better than the
Goppa bound and that the new construction Ẽ(δ) can be much better than traditional
one-point geometric Goppa code.

8.5. The Gröbner basis approach

In this section we shall see how to easily construct order domains and related codes by
the use of Gröbner basis theoretical methods. We start by introducing some concepts
from Gröbner basis theory.

Definition 8.28 Denote by M(x1, x2, . . . , xm) the set of monomials in x1, x2, . . . , xm.
Given a monomial ordering ≺ on M(x1, x2, . . . , xm) and an ideal L ⊆ F[x1, x2, . . . , xm]
the footprint4 of L is the set

Δ≺ (L) = {M ∈ M(x1, x2, . . . , xm) | M is not a leading monomial
of any polynomial in L}.

The following well-known proposition (for a reference, see [2, Pro. 4 in Paragraph 5.3])
explains why footprints are interesting.

Proposition 8.29 Let L ⊆ F[x1, x2, . . . , xm] be any ideal, then {M + L | M ∈ Δ≺ (L)}
is a basis for F[x1, x2, . . . , xm]/L as a vectors pace over F.

The first part of the following proposition is a corollary to Proposition 8.29. It is known
as the footprint bound. A proof of the proposition below can be found in [2, §5.3, Pro.
8] and [3, Pro. 2.7].

Proposition 8.30 If Δ≺ (L) is finite then the size of the variety VF(L) is bounded by

#VF(L) � #Δ≺ (L) . (8.12)

If L is a radical ideal and F is algebraically closed then equality holds in (8.12). In par-
ticular equality holds when L ⊆ Fq[x1, x2, . . . , xm] and xq

1−x1, x
q
2−x2, . . . , x

q
m−xm ∈ L.

We will need the following generalization from [13, Def. 9.2] of the usual weighted
degree lexicographic ordering.

4The name “footprint” was suggested by D. Blahut in 1991. The footprint was previously called the
delta-set, the excluded point set and other things (see [14]).
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Definition 8.31 Given weights w(x1), w(x2), . . . , w(xm) ∈ Nr
0 \ {0} let Nr

0 be ordered
by some fixed monomial ordering ≺Nr

0
and let ≺M be a fixed monomial ordering on

M(x1, x2, . . . , xm). The weights extends to a monomial function w : M(x1, x2, . . . , xm)
→ Nr

0 by w(xa1
1 xa2

2 · · ·xam
m ) =

∑m
i=1 aiw(xi). For a monomial M we call w(M) the weight

of M . We define the weighted degree wdeg(F ) of a polynomial F to be the highest weight
(with respect to ≺Nr

0
) that appears as a weight of a monomial in the support of F . Now

the generalized weighted degree ordering ≺w induced by w,≺Nr
0

and ≺M is the monomial
ordering defined as follows. Given M1, M2 ∈ M(x1, x2, . . . , xm) then M1 ≺w M2 if and
only if one of the following two conditions holds:

(1) w(M1) ≺Nr
0

w(M2)

(2) w(M1) = w(M2) and M1 ≺M M2.

The next theorem characterizes all finitely generated order structures. Note that in
particular (R, ρ, Γ) is finitely generated if ρ is a weight function with a numerical value
semigroup. It corresponds to [13, Th. 9.1 and Th. 10.4].

Theorem 8.32 Let I ⊂ F[x1, x2, . . . , xm] be an ideal with Gröbner basis B with respect
to ≺w (see Definition 8.31). Suppose that the elements of the footprint Δ≺w (I) have mu-
tually distinct weights and that every element of B has exactly two monomials of highest
weight (with respect to ≺Nr

0
) in its support. Then R = F[x1, x2, . . . , xm]/I is an order do-

main with a weight function defined as follows. Given a nonzero f ∈ F[x1, x2, . . . , xm]/I
write f = F + I where F ∈ Span

F
{M | M ∈ Δ≺w (I)}. We have ρ(f) = wdeg(F ) and

ρ(0) = −∞.
On the other hand if (R, ρ, Γ) is a finitely generated order structure then after having

embedded Γ into Nr
0 one can up to isomorphism describe R as above. In this way the

original order function on R becomes a weight function (described as above).

Not only have we by the above theorem a simple way of describing order domains
but also by Proposition 8.34 below we have a simple way of actually constructing the
corresponding codes. We will need the following definition.

Definition 8.33 Given an ideal I ⊆ Fq[x1, x2, . . . , xm] write

Iq = I + 〈xq
1 − x1, x

q
2 − x2, . . . , x

q
m − xm〉.

The following result was treated in [21, Sec. 5.4] and [22, p. 147] (both in Japanese)
for the case of w(x1), w(x2), . . . , w(xm) ∈ N0. Here we consider the general case (this
result was included without a proof in the abstract [8]).

Proposition 8.34 Let (R, ρ, Γ) be an order structure described as in Theorem 8.32.
Consider the affine variety VFq (I) = VFq (Iq) = {p1, p2, . . . , pn}. The affine variety
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map ϕ : R → Fn
q given by ϕ(F + I) = (F (p1), F (p2), . . . , F (pn)) is a morphism as in

Definition 8.15. Let Δ(R, ρ, ϕ) = {α(1), α(2), . . . , α(n)} be given as in Definition 8.16.
We have

Δ(R, ρ, ϕ) = {w(M) | M ∈ Δ≺w (Iq)}. (8.13)

Proof: Clearly ϕ is well-defined and satisfies the conditions in Definition 8.15. This
establish the first result.

By Proposition 8.30 the two sets in (8.13) are of the same size. Hence, we will be
through if we can show that α(s) ∈ {w(M) | M ∈ Δ≺w (Iq)} for s = 1, 2, . . . , n. Consider
a fixed α(s) ∈ Δ(R, ρ, Γ) and let f ∈ R be such that ρ(f) = α(s). By the construction in
Theorem 8.32 we can write f = F + I where F =

∑t
i=1 ηiMi where t � 1, where Mi ∈

Δ≺w (I) , ηi ∈ Fq \ {0} for i = 1, 2, . . . , t, where w(Mt) ≺Nr
0

w(Mt−1) ≺Nr
0
· · · ≺Nr

0
w(M1)

and where α(s) = ρ(f) = w(M1). Let B′ be a Gröbner basis for Iq with respect to ≺w.
We now reduce F modulo B′ using the division algorithm ([2, Sec. 2, Par. 3]) and get
a remainder

∑l
i=1 βiNi where Ni ∈ Δ≺w (Iq) , βi ∈ Fq \ {0} for i = 1, 2, . . . , l and where

w(Nl) ≺Nr
0

w(Nl−1 ≺Nr
0
· · · ≺Nr

0
w(N1). We have F −

∑l
i=1 βiNi ∈ Iq and therefore

ϕ(f) = ϕ(F + I) = ϕ

(
l∑

i=1

βiNi + I

)
. (8.14)

Note that as ϕ(f) by the very definition of α(s) is non-zero (8.14) implies that∑l
i=1 βiNi �= 0. This fact and the fact that Δ≺w (Iq) ⊆ Δ≺w (I) implies

ρ

(
l∑

i=1

βiNi + I

)
= w(N1).

Next we observe that by the very nature of the division algorithm and by the definition
of ≺w we have wdeg(F ) 
Nr

0
wdeg(

∑l
i=1 βiNi). This is the same as saying

α(s) 
Nr
0

w(N1). (8.15)

Comparing (8.14) and (8.15) and using the definition of α(s) gives α(s) = w(N1) ∈
{w(M) | M ∈ Δ≺w (Iq)}. �

The following proposition gives some simple conditions under which the codes C̃(δ)
and Ẽ(δ) defined by use of the affine variety map in Proposition 8.34 are of the same
dimension.

Proposition 8.35 Let R be an order domain over Fq described as in Theorem 8.32. Let
VFq (Iq) = {p1, p2, . . . , pn} and consider the evaluation map varphi : R → Fn

q given by
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ϕ(F + I) = (F (p1), F (p2), . . . , F (pn)). Let Δ(R, ρ, ϕ) = {α(1), α(2), . . . , α(n)} be defined
accordingly. If

Δ≺w (Iq) = {xβ1
1 xβ2

2 · · ·xβm
m | β1 � γ1, β2 � γ2, . . . , βm � γm} (8.16)

for some (γ1, γ2, . . . , γm) ∈ Nm
0 . Then for any δ ∈ {1, 2, . . . , n} we have

#{i ∈ {1, 2, . . . , n} | σ(α(i)) = δ} = #{i ∈ {1, 2, . . . , n} | μ(α(i)) = δ}. (8.17)

Proof: Consider α(l) ∈ Δ(R, ρ, ϕ) = {w(M) | M ∈ Δ≺w (Iq)}. By assumption there ex-
ist ω1, ω2, . . . , ωm ∈ N0 with ω1 � γ1, ω2 � γ2, . . . , ωm � γm such that
w(xω1

1 xω2
2 · · ·xωm

m ) = α(l). Also by assumption

w
(
xγ1−ω1

1 xγ2−ω2
2 · · ·xγm−ωm

m

)
∈ Δ(R, ρ, ϕ).

Hence, if we write αmax = w(xγ1
1 xγ2

2 · · ·xγm
m ) then we have α(l) ∈ Δ(R, ρ, ϕ) if and only

if αmax − α(l) ∈ Δ(R, ρ, ϕ). Moreover by the very definition of μ and σ (8.16) implies
that for all α(l) ∈ Δ(R, ρ, ϕ) we have μ(α(l)) = σ(αmax − α(l)). �

Clearly, if R and ϕ are given as in Proposition 8.35 and if (8.16) is satisfied then
the dimensions of the related codes Ẽ(δ) and C̃(δ) will be the same. The next section
includes examples where (8.16) is satisfied but also an example illustrating that if R and
ϕ are given as in Proposition 8.35, but (8.16) is not satisfied then it may happen that
the dimensions of the codes Ẽ(δ) and C̃(δ) are not the same for almost all choices of
δ ∈ {1, 2, . . . , n}. In Appendix A two types of algebraic structures are described where
not only (8.16) is satisfied but actually Ẽ(δ) = C̃(δ) holds for all δ ∈ {1, 2, . . . , n}.

8.6. Examples

In this section we make extensive use of the notation from Definition 8.31, Theorem 8.32
and Proposition 8.34.

Example 8.36 Let I = 〈x5 + y4 + y, y5 + z4 + z〉 ⊆ F16[x, y, z]. Define the weighted
degree lexicographic ordering ≺w on M(x, y, z) as follows. Consider weights w(x) =
16, w(y) = 20, w(z) = 25 ∈ N0. Let ≺N0 be the usual (and unique) monomial ordering
on N0, and let ≺M be the lexicographic ordering on M(x, y, z) given by x ≺M y ≺M z.
Using Theorem 8.32 we get a weight function

ρ : R = F16[x, y, z]/I → 〈16, 20, 25〉 ∪ {−∞}.

By Proposition 8.30 the variety VF16(I16) is of size equal to #Δ≺w (I16) = 256. Let ϕ be
the affine variety map ϕ : R → F256

16 given by

ϕ(f) = (f(p1), f(p2), . . . , f(p256))
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where {p1, p2, . . . , p256} = VF16(I16). As

Δ≺w (I16) = {xaybzc | 0 � a < 16, 0 � b < 4, 0 � c < 4},

the condition in (8.16) of Proposition 8.35 is satisfied and therefore the dimension of C̃(δ)
equals the dimension of Ẽ(δ), for all δ = 1, 2, . . . , 256.

In Figure 8.1 we plot the (estimated) parameters of the codes Ẽ(δ). For the E(λ) codes
we plot the usual Goppa bound (old bound) as well as the improved bound from the
present paper (new bound). �
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E(λ) (Old bound)

E(λ) (New bound)

Ẽ(δ), C̃(δ)

Gilbert-Varshamov

0.4 0.6 0.8 1
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0.6

k
n

d
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Figure 8.1.: Bounds for the Ẽ(δ) and E(λ) codes from I = 〈x5 + y4 + y, y5 + z4 + z〉 ⊆
F16[x, y, z].

Example 8.37 In [12] and [10] the parameters of the codes C̃(δ) coming from repeated
tensor products of the Hermitian order domain were considered. The footprint Δ≺w (Iq)
involved in the construction of the codes C̃(δ) and Ẽ(δ) from the (single) Hermitian
order domain satisfies the condition in (8.16) of Proposition 8.35. It follows immedi-
ately that the footprints involved in the construction of the codes C̃(δ) and Ẽ(δ) from
repeated tensor products of Hermitian order domains also satisfy the condition in (8.16)
of proposition 8.35. Hence, the estimates in [12] of the parameters of the codes C̃(δ) from
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repeated tensor products also holds for the corresponding codes Ẽ(δ). �

Example 8.38 Consider the order domain R = F16[x, y, z, u]/I where I = 〈x5 + y4 +
y, y5 + z4 + z, z5 +u4 +u2〉 (note the term u2). The construction of codes from this order
domain does not satisfy the condition in (8.16) of Proposition 8.35. In Figure 8.2 we plot
the estimated performance of the codes Ẽ(δ) and C̃(δ).

It is clear that for values of k
n smaller than approximately 0.2 the codes Ẽ(δ) are the

best whereas for larger values the codes C̃(δ) are the best. Finally in Figure 8.2 we plot
the usual Goppa bound (old bound) for the E(λ) codes versus the improved bound from
the present paper (new bound). �
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Figure 8.2.: Bounds for the Ẽ(δ), C̃(δ) and E(λ) codes from I = 〈x5 + y4 + y, y5 + z4 +
z, z5 + u4 + u2〉 ⊆ F16[x, y, z, u].
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Example 8.39 In the technical report [7, Ex. 12] it was shown that Fq2 [x, y, z, u]/I
where

I = 〈xq + yzq − yqz − x, uq − zq+1 + αxq − αyqz + βyq+1 + u〉
and where α, β ∈ Fq, is an order domain with a weight function given as follows. Define
weights

w(x) = (q, 1) w(y) = (0, q)
w(z) = (q, 0) w(u) = (q + 1, 0)

Define ≺N2
0

such that (q, q2) ≺N2
0

(q2, q) and such that

(q2, q), (q, q2), (0, q2 + q) ≺N2
0

(q2 + q, 0).

Finally define ≺M such that yzq ≺M xq, zq+1 ≺M uq and apply Theorem 8.32. It was
shown in [7, Ex. 12] that

Δ≺w

(
Iq2

)
= {xaybzcud | a, d < q and b, c < q2}.

This footprint satisfies the condition in (8.16) of Proposition 8.35. Hence, the dimension
of the code Ẽ(δ) equals the dimension of the code C̃(δ) for all choices of δ and the codes
are of length n = (q2)3 = q6.

In Figure 8.3 we plot the estimated performance of the codes Ẽ(δ) and C̃(δ) from the
present example in the case Fq2 = F64. These are of length n = 262144. The hyper-
bolic codes Hyp64(s, 3) and the generalized Reed-Muller codes RM64(s, 3) are of the same
length, but according to Figure 8.3 they do not perform nearly as good as the codes from
the present example. �

8.7. Conclusion

In this paper we have presented the missing evaluation codes from order domain theory
and we have studied various features of these new codes. It remains to derive decoding
algorithms for the new codes. It would be obvious to try to investigate if it is possible
to modify the Guruswami-Sudan algorithm for one-point geometric Goppa codes to deal
with the new improved one-point geometric Goppa codes. In the light of the relatively
simple bound on the generalized Hamming weights for the codes C(B, G) of this paper it
would be obvious to try to derive a simpler bound on the generalized Hamming weights
for the codes C⊥(B, G) than the ones that can be found in the literature.

8.8. Appendix - A pure Gröbner basis theoretical
approach.

In [11] and [9] some concrete improved code constructions were given in the language
of Gröbner basis theory. These code constructions heavily rely on the footprint bound
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RM64(s, 3)

Hyp64(s, 3)
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Figure 8.3.: Performance of the Ẽ(δ) and C̃(δ) codes in the case Fq2 = F64 compared to
the performance of the and hyperbolic codes Hyp64(s, 3) and the generalized
Reed-Muller codes RM64(s, 3) of the same length.

(Proposition 8.30). To establish the connection between the results in [11] and [9] and
the results in the present paper consider the following generalization of the function D
from [11, p. 160] and [9, Def. 3].

Definition 8.40 Assume a description of a finitely generated order domain is given as
in Theorem 8.32. Write

B = {F1(x1, x2, . . . , xm), F2(x1, x2, . . . , xm), . . . , Fs(x1, x2, . . . , xm)}

and let for i = 1, 2, . . . , s, Bi be a difference between the two monomials of highest weight
in Fi. For all M ∈ Δ≺w (Iq = I + 〈xq

1 − x1, x
q
2 − x2, . . . , x

q
m − xm〉) define

D(M) = #(Δ≺w (〈B1, B2, . . . , Bs, M〉) ∪ Δ≺w (Iq)). (8.18)
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By use of Gröbner basis theoretical arguments we can show how to generalize the
results from [11] and [9] to a construction of improved codes from any order domain. The
function D from Definition 8.40 plays a fundamental role in this construction. However,
our construction turns out to be just the code construction Ẽ(δ) from the present paper
by Proposition 8.41 below. More general the following result together with Theorem 8.23
may serve as a guideline for the future work on constructing improved codes by the use
of Gröbner basis theoretical methods.

Proposition 8.41 Let M ∈ Δ≺w (Iq) and ρ(M + I) = λ (that is, w(M) = λ). We have
σ(λ) = n − D(M).

Proof: We first note that {B1, B2, . . . , Bs} is a Gröbner basis for 〈B1, B2, . . . , Bs〉 with
respect to ≺w and that

Δ≺w (〈B1, B2, . . . , Bs〉) = Δ≺w (〈F1, F2, . . . , Fs〉)

holds. The first fact can be shown by considering what takes place in Buchberger’s
algorithm (see [2]) and the last fact is obvious. By the conditions in Theorem 8.32 the
restriction of the map

w : M(x1, x2, . . . , xm) → Γ

to Δ≺w (〈B1, B2, . . . , Bs〉) is a bijective map. The proposition will follow from (8.11) and
Proposition 8.34 if we can show that

w(Δ≺w (〈B1, B2, . . . , Bs, M〉)) = Γ \ (λ + Γ). (8.19)

We first show that the left hand side of (8.19) is contained in the right hand side. We
have

{w(MM ′) | M ′ ∈ Δ≺w (〈B1, B2, . . . , Bs〉)} = λ + Γ
⇓

{w(MM ′ rem {B1, B2, . . . , Bs}) | M ′ ∈ Δ≺w (〈B1, B2, . . . , Bs〉)} = λ + Γ (8.20)

Here, MM ′ rem {B1, B2, . . . , Bs} means the remainder of MM ′ after division with
{B1, B2, . . . , Bs} and the implication follows from the fact w(MM ′) =
w(MM ′ rem {B1, B2, . . . , Bs}). Note that

MM ′ rem {B1, B2, . . . , Bs} ∈ Δ≺w (〈B1, B2, . . . , Bs〉)

and that
MM ′ rem {B1, B2, . . . , Bs} ∈ 〈B1, B2, . . . , Bs, M〉.

In particular

MM ′ rem {B1, B2, . . . , Bs} /∈ Δ≺w (〈B1, B2, . . . , Bs, M〉)
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and we conclude

MM ′ rem {B1, B2, . . . , Bs} ∈ Δ≺w (〈B1, B2, . . . , Bs〉) \ Δ≺w (〈B1, B2, . . . , Bs, M〉) .
(8.21)

Comparing (8.20) and (8.21) we have

λ + Γ ⊆ w(Δ≺w (〈B1, B2, . . . , Bs〉) \ Δ≺w (〈B1, B2, . . . , Bs, M〉))

and the fact that the restriction of w to Δ≺w (〈B1, B2, . . . , Bs〉) is injective implies

w(Δ≺w (〈B1, B2, . . . , Bs, M〉) ⊆ Γ \ (λ + Γ).

Next we prove that the right hand side of (19) is contained in the left hand side.
We start by considering what can happen when we use Buchberger’s algorithm to ex-
tend {B1, B2, . . . , Bs, M} to a Gröbner basis with respect to ≺w. Consider the S-
polynomials (see [2]) S(Bi, M). These polynomials (actually monomials) either reduces
to 0 modulo {B1, B2, . . . , Bs, M} or reduces to a monomial of weight λ + w′, where
w′ ∈ w(M(x1, x2, . . . , xm)) = Γ. The S-polynomial of two monomials in turn is 0.
Hence, by induction every new polynomial adjoined to the basis in a given step of Buch-
berger’s algorithm is a monomial with weight in λ + Γ. It follows that every monomial
N , where N ∈ Δ≺w (〈B1, B2, . . . , Bs〉) \ Δ≺w (〈B1, B2, . . . , Bs, M〉) has weight in λ + Γ.
We conclude w(Δ≺w (〈B1, B2, . . . , Bs, M〉)) ⊇ Γ \ (λ + Γ). �

As already mentioned the function D(M) plays a fundamental role in [11] where the
generalized Reed-Muller codes and the hyperbolic codes (improved generalized Reed-
Muller codes) are studied. The function also plays a fundamental role in [9] where one-
point geometric Goppa codes and improved one-point geometric Goppa codes from norm-
trace curves x(qr−1)/(q−1)−yqr−1−yqr−2−· · ·−y over Fqr are studied (including improved
Hermitian codes). Using Proposition 8.30 the authors of the above mentioned two papers
derive improved code constructions for the considered algebraic structures that by the
use of Proposition 8.41 can be shown to be identical to the improved code constructions
from the present paper. Also bounds similar to (8.9) and (8.10) are described for the
considered algebraic structures. Moreover these bounds are shown to be tight. Hence, our
bounds (8.9) and (8.10) are known to be tight for some relatively large classes of codes.
The code constructions in the two papers satisfy the conditions in Proposition 8.35.
Moreover, it was shown it both papers that actually Ẽ(δ) = C̃(δ) holds for all choices of
δ ∈ {1, 2, . . . , n} for the considered algebraic structures.
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Abstract

Constructing new codes from existing ones by puncturing is in this paper viewed in
the context of order domains R where puncturing can be seen as redefinition of the
evaluation map ϕ : R → Fn

q . The order domains considered here are of the form
R = F[x1, x2, . . . , xm]/I where redefining ϕ can be done by adding one or more poly-
nomials to the basis of the defining ideal I to form a new ideal J in such a way that the
number of points in the variety V(I) is reduced by t to form V(J) and puncturing in t
coordinates is achieved. An explicit construction of such polynomials is given in the case
of codes defined by Norm-Trace curves and examples are given of both evaluation codes
and dual codes. Finally, it is demonstrated that the improvement in minimum distance
can be significant when compared to the lower bound obtained by ordinary puncturing.

Key words: Gröbner basis, Footprint, Evaluation codes, Dual codes, Puncturing, Min-
imum distance, Norm, Trace, Order domain.

9.1. Introduction

Constructing codes from existing ones is not a new idea and over the years several ways
of doing so has been developed. One such construction is by means of puncturing.
Puncturing an (n, M, d) code t, (t < d), times yields an (n − t, M, � d − t) code where
the parameter d − t is a lower bound on the minimum distance [12, p. 28].
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However, it is not clear how to select which t coordinates to erase in an existing code
to get the best result or whether an optimal strategy for making such a selection exists
for a given code and a given value t. The general bound given above is usually not tight
which will be shown by an example.

Here we consider codes from Norm-Trace curves1 which were studied in detail in [7].
Here we use nothing but order domains and Gröbner basis theory for code construction
and the methods developed in [9, 1, 10, 4, 5] for estimating the minimum distances of
the codes.

The notion of an order domain was introduced in [9, 10] to make understanding of a
large class of algebraic geometry codes easier and to give the code construction presented
in [4, 5]2 a simpler foundation. Many of the results in [9, 10, 21] were found independently
by Miura and published in Japanese in [16, 18, 17]3 (See [14] for details).

By [8] every finitely generated order domain can be represented as a factor ring
Fq[x1, x2, . . . , xm]/I, where I ⊂ Fq[x1, x2, . . . , xm] is an ideal of a special form. Us-
ing such an order domain and the usual evaluation map ϕ : Fq[x1, x2, . . . , xm]/I → Fn

q

we define Ẽ codes as a linear subspace of Fn
q spanned by the image of selected elements

from Fq[x1, x2, . . . , xm]/I under ϕ and C̃ codes as the dual of such an image under ϕ

(These are the improved Ẽ codes from [1] and the improved C̃ codes from [9, 5]).
In this setting puncturing a code can be done by reducing the dimension of the cor-

responding factor ring Fq[x1, x2, . . . , xm]/I as a vector space over Fq by adding extra
polynomials to the basis of the defining ideal I to define an new ideal J . This corre-
sponds to redefining the evaluation map by leaving out a number of points from the
variety V (I), since I ⊂ J has the consequence that V (J) ⊂ V (I) [2].

Leaving out t points from the variety V (I) can be done in several ways by adding
different sets of polynomials to the basis of the ideal I to form the ideal J such that
#V (J) = #V (I)−t. The evaluation map ϕ is still a morphism so the methods developed
in [9, 1, 5] enables us to estimate the minimum distances of the codes constructed by
using the variety V (J). This in turn allows us to choose the set of polynomials added
to the basis of I (i.e. choose the ideal J) which has the smallest cost in terms of loss in
minimum distance for a given integer t and a given code rate.

The main result in this paper is that for any positive integer t < d it is possible to
construct a set of polynomials {g1, g2, . . . , gs} such that a code of length n− t is obtained
by using the ideal J = I + 〈g1, g2, . . . , gs〉 and the affine variety V (J). Furthermore, the
proof given here is constructive and examples of such constructions are included.

The paper is organized as follows: In Section 9.2 a short presentation of order domains
is given, Section 9.3 is an introduction to the necessary Gröbner basis theory used to
construct order domains, Section 9.4 presents the construction of codes from Norm-
Trace curves and Section 9.5 gives the new construction which can be seen as punctured
codes from Norm-Trace curves. Section 9.6 contains some examples and Section 9.7 is
the conclusion.

1Norm-Trace curves are a special case of the Cab curves classified by Miura and Kamiya in [19]
2Readers interested in the connection between the theory of order domains and the theory of algebraic

curves, or equivalently the theory of function fields, are recommended to read [9, 21]
3A proof in English of some of the results from [16, 18, 17] can be seen in [13].
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9.2. Order domains and codes

The presentation of order domains given here is based on [1, 8]. For a more complete
introduction to order domains the reader is referred to the literature.

Recall that an F-algebra is a commutative ring with unity that contains F as a unitary
subring (See [9, p. 901]).

Let N0 denote the non-negative integers and let Γ ⊂ N0. Since the relation < on N0 is
a total ordering then every non-empty subset of Γ has a smallest element with respect to
< and (Γ, <) is called a well-order4.

Now, add an element −∞ to Γ such that Γ−∞ = Γ ∪ {−∞} and let −∞ < n for all
n ∈ N0, then (Γ−∞, <) is a well-order. In the remaining part of this article we will only
consider the well-order (Γ−∞, <) defined here.

Definition 9.1 Let (Γ−∞, <) be a well-order, let F be a field and let R be an F-algebra. A
surjective map ρ : R → Γ−∞ that satisfies the following five conditions for all f, g, h ∈ R
is called an order function on R.

1. ρ(f) = −∞ if and only if f = 0.

2. ρ(af) = ρ(f) for all non-zero a ∈ F.

3. ρ(f + g) � max{ρ(f), ρ(g)} and equality holds when ρ(f) �= ρ(g).

4. If ρ(f) < ρ(g) and h �= 0, then ρ(fh) < ρ(gh).

5. If f and g are non-zero and ρ(f) = ρ(g), then there exists a non-zero a ∈ F such
that ρ(f − ag) < ρ(g).

Since + is well-defined on Γ ⊂ N0 we can also give the following definition.

Definition 9.2 Let (Γ−∞, <) be a well-order, let F be a field and let R be an F-algebra.
A weight function on R is an order function ρ on R that also satisfy the condition

6. ρ(fg) = ρ(f) + ρ(g)

where + is the ordinary + on N0 extended with the rule −∞ + γ = −∞ for γ ∈ Γ−∞.

An order structure and an order domain can now be defined.

Definition 9.3 Let F be a field, let R be an F-algebra, ρ an order function and Γ a
well-order. Then (R, ρ, Γ) is called an order structure and R is called an order domain
(over F).

From [8, Def. 3.1 & Pro. 3.2] we have

4A more general discussion of well-orders can be seen in [8].
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Theorem 9.4 Given an order structure (R, ρ, Γ) then any set B = {fγ | ρ(fγ) = γ}γ∈Γ

constitutes a basis for R as a vector space over F. For any f = cγ1fγ1 + · · ·+ cγd
fγd

with
cγ1 , . . . , cγd

∈ Fq \ {0}, ρ(f) = max≺{γ1, . . . , γd} holds. In particular {fλ ∈ B | λ 
 γ}
constitutes a basis for Rγ = {f ∈ R | ρ(f) 
 γ} as a vector space over F.

Definition 9.5 Let R be an Fq-algebra. A map ϕ : R → Fn
q is called a morphism of

Fq-algebras if ϕ is Fq-linear and ϕ(fg) = ϕ(f) ∗ ϕ(g) for all f, g ∈ R, where ∗ denotes
component-wise multiplication.

Only surjective morphisms ϕ will be considered in the remaining part of this article.

Definition 9.6 Given an order domain (R, ρ, Γ) and a surjective morphism ϕ, let 0 be
the smallest element of Γ and define α(1) = 0. For i = 2, 3, . . . , n define recursively
α(i) to be the smallest element in Γ greater than α(1), α(2), . . . , α(i − 1) and satisfying
ϕ(Rγ) � ϕ(Rα(i)), for all γ ≺ α(i). Write Δ(R, ρ, ϕ) = {α(1), α(2), . . . , α(n)}.

From Definition 9.6 we see that the set B = {ϕ(fα(1)), ϕ(fα(2)), . . . , ϕ(fα(n))} consti-
tutes a basis for Fn

q as a vector space over Fq.
The set Δ(R, ρ, ϕ) has the following property from [1, Pro. 3].

Proposition 9.7 Consider α(l) ∈ Δ(R, ρ, ϕ) and assume β1, β2 ∈ Γ satisfies ρ(fβ1fβ2) =
α(l). Then β1, β2 ∈ Δ(R, ρ, ϕ) holds.

As we shall see later one interesting consequence of Proposition 9.7 is that removing
β1 or β2 from the set Δ(R, ρ, ϕ) (removing in a way that will be explained later) forces
us to remove α(l) from the set as well if we want to make sure that ϕ continues to be
a morphism. Later on we will also show the significance of this statement when dealing
with certain ideals.

First, we need the following definition.

Definition 9.8 For α(i) ∈ Δ(R, ρ, ϕ) define

N(α(i)) = {(β1, β2) ∈ (Δ(R, ρ, ϕ))2 | ρ(fβ1fβ2) = α(i)}

and define μ(α(i)) = #N(α(i)).
Furthermore, for α(j) ∈ Δ(R, ρ, ϕ) define

M(α(j)) = {γ ∈ Δ(R, ρ, ϕ) | ∃β ∈ Δ(R, ρ, ϕ) with ρ(fα(j)fβ) = γ}

and define σ(α(j)) = #M(α(j)).

Note that if ρ in Definition 9.8 is a weight function then the two sets N(α(i)) and
M(α(j)) can be defined as

N(α(i)) = {(β1, β2) ∈ (Δ(R, ρ, ϕ))2 | β1 + β2 = α(i)}
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and
M(α(j)) = {γ ∈ Δ(R, ρ, ϕ) | ∃β ∈ Δ(R, ρ, ϕ) with α(j) + β = γ}.

In this case calculating μ(α(i)) and σ(α(j)) involves nothing but the ordinary + from
N0.

Both the evaluation codes and dual codes from an order domain can now be defined.
The codes considered here are the improved codes Ẽ and C̃ from [7, 9, 1, 5].

Definition 9.9 Consider a basis {fγ | ρ(fγ) = λ}λ∈Γ for an order structure (R, ρ, Γ)
over Fq. Let ϕ be a morphism as in Definition 9.5 and let Δ(R, ρ, ϕ) be as in Defini-
tion 9.6 so B = {ϕ(fα(1)), ϕ(fα(2)), . . . , ϕ(fα(n))} constitutes a basis for Fn

q . Define

C̃(η) = {c ∈ Fn
q | c · ϕ(fα(i)) = 0 for all α(i) ∈ Δ(R, ρ, ϕ) with μ(α(i)) < η}

Ẽ(δ) = SpanFq

{
ϕ(fα(i)) | α(i) ∈ Δ(R, ρ, ϕ) and σ(α(i)) � δ

}

The following result concerning C̃(η) is from [9, 5] and the result concerning Ẽ(δ) is
from [1].

Theorem 9.10 The minimum distance of C̃(η) and Ẽ(δ) satisfy d(C̃(η)) � η and
d(Ẽ(δ)) � δ.

Remark 9.11 In [1] a bound on the generalized Hamming weights of the Ẽ(δ) codes is
given and this bound will also apply to the codes constructed in Section 9.5. However,
generalized Hamming weights are beyond the scope of this article. �

We now know (in principle) how to construct the Ẽ and C̃ codes and estimate their
minimum distance using Theorem 9.10 above but we need a practical way of constructing
order domains. This is where Gröbner basis theory will be used as shown in the next
section.

9.3. The Gröbner basis approach to order domains

In this section we give a short introduction to order domains constructed using Gröbner
basis theory (See [21, 8] for a detailed description). First we introduce the necessary
concepts and a few results from Gröbner basis theory.

Let Fq denote a field with q elements and let Mm denote the set of monomials in
Fq[x1, x2, . . . , xm] given by Mm =

{
xα1

1 xα2
2 · · ·xαm

m

∣∣ (α1, α2, . . . , αm) ∈ Nm
0

}
.

Recall that a monomial ordering ≺ on Mm is a relation on Nm
0 satisfying the following

conditions:

1. ≺ is a total ordering on Nm
0 .

2. If α ≺ β and γ ∈ Nm
0 , then α + γ ≺ β + γ.
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3. Every non-empty subset of Nm
0 has a smallest element under ≺ (that is: ≺ is a

well-ordering on Nm
0 ).

Let α = (α1, α2, . . . , αm) and β = (β1, β2, . . . , βm) ∈ Nm
0 , α �= β, and let i, where

1 � i � m, be the smallest index such that αi − βi �= 0 in the vector difference α − β.
Then α is said to be lexicographically smaller than β, denoted α ≺lex β, if αi − βi < 0.
We write xα1

1 xα2
2 · · ·xαm

m ≺lex xβ1
1 xβ2

2 · · ·xβm
m if α ≺lex β.

Given positive integers w(x1), w(x2), . . . , w(xm) ∈ N define a monomial function w :
Mm → N by w(xα1

1 xα2
2 · · ·xαm

m ) =
∑m

i=1 αiw(xi). For a monomial m ∈ Mm we call
w(m) the weight of m.

Remark 9.12 The weights w(x1), w(x2), . . . , w(xm) can be defined as v-tuples from
Nv

0 ∪ {−∞}. See [1] or [8, Sec. 4] for details. In this paper we only consider the case
v = 1 which was studied in detail in [9, 15]. �

Definition 9.13 The weighted degree ordering ≺w induced by w and ≺lex is the mono-
mial ordering defined as follows. Given m1, m2 ∈ Mm then m1 ≺w m2 if one of the
following two conditions hold:

1) w(m1) < w(m2) 2) w(m1) = w(m2) and m1 ≺lex m2.

Given a monomial ordering ≺ on Mm and a polynomial f ∈ Fq[x1, x2, . . . , xm] let
lm(f) denote the leading monomial in the support of f with respect to ≺ and let lt(f)
denote the leading term in f with respect to ≺.

Definition 9.14 Let F be a field and let I ⊂ F[x1, x2, . . . , xm] be an ideal. Given a
monomial ordering ≺ on Mm the set

Δ≺ (I) =
{
m ∈ Mm

∣∣m is not a leading monomial of any f ∈ I
}

is called the footprint of I with respect to ≺.

A Gröbner basis G = {g1, g2, . . . , gt} for an ideal I is a basis for I with the property that
〈lm(g1), lm(g2), . . . , lm(gt)〉 = 〈lm(I)〉, where 〈lm(I)〉 denotes the ideal generated by the
leading monomials of f ∈ I with respect to a given monomial ordering ≺. The footprint of
I can always be found by constructing a Gröbner basis for I using Buchberger’s algorithm
[2, §2.7] since (using Definition 9.14 and the definition of a Gröbner basis) the monomials
in Δ≺ (I) are exactly the monomials in Mm which can’t be divided by any of the leading
monomials in G.

Let I = 〈f1, f2, . . . , fs〉 be an ideal in F[x1, x2, . . . , xm], let V (I) denote the correspond-
ing variety given by V (I) = {p1, p2, . . . , pn} = {p ∈ Fm | f(p) = 0 for all f ∈ I}. The
following theorem from [2, Pro. 8] and [3, Pro. 2.7] is known as the footprint bound.
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Theorem 9.15 Let F be a field and let I ⊂ F[x1, x2, . . . , xm] be an ideal. Then #V (I) �
#Δ (I). Furthermore, if I is a radical ideal and F is algebraically closed then equality
holds.

Given an ideal I ∈ F[x1, x2, . . . , xm] consider the quotient of F[x1, x2, . . . , xm] modulo
I, denoted F[x1, x2, . . . , xm]/I (see [2, §5.2]). Let [f ] denote the equivalence class of a
polynomial f ∈ F[x1, x2, . . . , xm] given by

[f ] = {g ∈ F[x1, x2, . . . , xm] | g ≡ f(mod I)},

where g ≡ f(mod I) (read: g and f are congruent modulo I), if g − f ∈ I. Let f̄ denote
the unique standard representative found as the remainder by dividing f with a Gröbner
basis for I (See [2, Pro. 1, §5.3]).

From [2, Pro. 4, §5.3] we have the following result.

Proposition 9.16 Let I ⊂ Fq[x1, x2, . . . , xm] be an ideal and let ≺ be a monomial or-
dering on Mm. Then the set B = {[m] | m ∈ Δ≺ (I)} is a basis for Fq[x1, x2, . . . , xm]/I
as a vector space over Fq.

Consider the ideal Iq = 〈f1, f2, . . . , fs, x
q
1 − x1, x

q
2 − x2, . . . , x

q
m − xm〉 ⊆

Fq[x1, x2, . . . , xm] and the variety V (Iq) = {p1, p2, . . . , pn}, then the evaluation map
ϕ : Fq[x1, x2, . . . , xm]/Iq → Fn

q given by

ϕ([f ]) = (f̄(p1), f̄(p2), . . . , f̄(pn)) = (f(p1), f(p2), . . . , f(pn))

is well-defined and is an isomorphism [6]. The following well-known corollary of Propo-
sition 9.16 then follows.

Corollary 9.17 Consider an ideal I ⊆ Fq[x1, x2, . . . , xm], let Iq = I + 〈xq
1 − x1, x

q
2 −

x2, . . . , x
q
m−xm〉 and let ≺ be any monomial ordering on Mm. Then the footprint Δ≺ (Iq)

is finite and #V (Iq) = #Δ≺ (Iq) holds.

Our goal in this section is to be able to use the factor ring Fq[x1, x2, . . . , xm]/I as our
order domain in Definition 9.3 but to do so we are required to find an order function on
Fq[x1, x2, . . . , xm]/I. Pellikaan’s factor ring theorem from [21, Thm. 5.11] given below
gives us one way of doing this.

Theorem 9.18 Let I be an ideal in F[x1, x2, . . . , xm] with Gröbner basis B with respect
to ≺w (See Definition 9.13). Suppose that the elements of the footprint of I have mutu-
ally distinct weights and that every element of B has exactly two monomials of highest
weight in its support. Then there exists a weight function ρ on R = F[x1, x2, . . . , xm]/I
with the property that ρ([f ]) = w(f̄ ), for all polynomials f , where [f ] is the coset of f
modulo I and f̄ is the standard representative for [f ].

Note that w(f̄ ) in the theorem above is just the highest weight w(m) of the monomials
m in the support of f̄ , i.e. w(f̄ ) = max{w(m) | m ∈ Supp(f̄)}.
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The consequence of Theorem 9.18 is that we can construct an order domain by defining
an ideal I ∈ F[x1, x2, . . . , xm] with Gröbner basis B, such that the elements in B and
the monomials in Δ≺ (I) satisfy the conditions in the theorem. This gives us the order
structure (R, ρ, Γ) where R = F[x1, x2, . . . , xm]/I, ρ([f ]) = w(f̄ ) and Γ = {w(m) | m ∈
Δ≺ (I)} ⊆ N0. This approach to constructing an order domain is shown in the next
section.

9.4. Codes from Norm-Trace curves

The introduction to codes from Norm-Trace curves given here is based on the description
in [7] where the evaluation codes Ẽ from Definition 9.9 constructed using the order
structure described in this section were studied in detail. Note that from here on the
field Fqr will be playing the role of Fq in Section 9.3. Furthermore, here we adopt the
viewpoint from [11] where Fqr is seen as a vector space over Fq.

First we need the definition of Norm and Trace of an element in Fqr over Fq.

Definition 9.19 For α ∈ Fqr the Norm NFqr /Fq
(α) of α over Fq is defined as NFqr /Fq

(α)
=
∏r−1

j=0 αqj

= α(qr−1)/(q−1). The Trace TrFqr /Fq
(β) of β over Fq is defined as TrFqr /Fq

(β)

=
∑r−1

j=0 βqj

.

Let a = (qr − 1)/(q − 1) and b = qr−1. Let R be the factor ring given by R =
Fqr [x1, x2, . . . , xm]/I, where I = 〈xa−yb−yqr−2−· · ·−y〉 and let ≺ be the monomial order
induced by w(x) = b, w(y) = a and x ≺lex y. Since the polynomial xa−yb−yqr−2−· · ·−y
is a Gröbner basis for I satisfying the condition in Theorem 9.18 by definition, all we
have to do is to check that the monomials in Δ≺w (I) = {xiyj | i, j ∈ N0 and j < b} have
mutually distinct weights in order to use the theorem.

Let xi1yj1 , xi2yj2 ∈ Δ≺w (I) and assume that w(xi1yj1) = w(xi2yj2). This is the same
as i1b + j1a = i2b + j2a ⇔ (i1 − i2)b = (j2 − j1)a but since gcd(a, b) = 1 then (j2 − j1)
must be equal to some integer c times b. Since 0 � j1, j2 < b then c = 0 is the only
option. Hence i1 = i2 and j1 = j2.

Define Γ = {w(m) | m ∈ Δ≺w (I)} and Γ−∞ as in Section 9.2, then the function
w(m) : R → Γ−∞ is a weight function (using Theorem 9.18) on R making (R, w, Γ−∞) an
order structure and R an order domain. In the remaining part of this paper (R, ρ, Γ−∞)
will denote an order structure as described here.

We still need a way of finding the set Δ(R, ρ, ϕ) in Definition 9.6 but the following
proposition which is a more general version of [1, Pro. 7] gives us a way to do so. The
proof given here is a modified version of the one given in [1].

Note that Proposition 9.20 contains [1, Pro. 7] as the special case where J = Iqr =
I + 〈xqr

1 − x1, x
qr

2 − x2, . . . , x
qr

m − xm〉.

Proposition 9.20 Let R = Fqr [x1, x2, . . . , xm]/I be an order domain as in Theorem 9.18,
let J = I + 〈xqr

1 − x1, x
qr

2 − x2, . . . , x
qr

m − xm, g1, g2, . . . , gs〉, where g1, g2, . . . , gs ∈
Fqr [x1, x2, . . . , xm], and consider the affine variety V (J) = {p1, p2, . . . , pn}.
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The map ϕ : R → Fn
qr given by ϕ([f ]) = (f̄(p1), f̄(p2), . . . , f̄(pn)) is a morphism as in

Definition 9.5. Moreover, ϕ is surjective.
Let Δ(R, ρ, ϕ) = {α(1), α(2), . . . , α(n)} be given as in Definition 9.6. We have

Δ(R, ρ, ϕ) = {w(m) | m ∈ Δ≺w (J)}. (9.1)

Proof: Clearly ϕ is well-defined and satisfies the conditions in Definition 9.5 which
establish the first result. The surjectivity of ϕ follows from the comment after Proposi-
tion 9.16.

By Corollary 9.17 the equality #V (J) = #Δ≺w (J) holds and using Definition 9.6 the
two sets in (9.1) must have the same number of elements. Thus if we can show that
α(i) ∈ {w(m) | m ∈ Δ≺w (J)} for all i = 1, 2, . . . , n then we are done. Now, consider a
fixed α(s) ∈ Δ(R, ρ, ϕ) and a class [f ] ∈ R such that ρ([f ]) = α(s) (Note that both f
and f̄ must be non-zero by Definition 9.6).

Furthermore, the standard representative f̄ for [f ] can by definition be written as a
linear combination of monomials in the footprint Δ≺w (I) since f̄ is the unique remainder
of f divided by a Gröbner basis for I. Thus we have

f̄ =
t∑

i=1

aimi

where t � 1, ai ∈ Fqr \ {0}, mi ∈ Δ≺w (I), for 1 � i � t, w(m1) < w(m2) < · · · < w(mt)
and α(s) = ρ([f ]) = wdeg(f̄) = w(mt).

Let B′ be a Gröbner basis for J . By reducing f̄ modulo B′ we get the (unique) remainder
r̄ given by

r̄ =
u∑

i=1

bini

where u � 1, bi ∈ Fqr , ni ∈ Δ≺w (J), for 1 � i � u, and w(n1) < w(n2) < · · · < w(nu).
Because f − f̄ ∈ I, f̄ − r̄ ∈ J and I ⊆ J (which means that V (J) ⊆ V (I) (See [2, §4.2,
Thm. 7])) we have

ϕ(r̄) = ϕ(r̄) + ϕ(f̄ − r̄) = ϕ(r̄ + f̄ − r̄) = ϕ(f̄ ) = ϕ([f ]), (9.2)

since ϕ is a morphism (See Definition 9.5).
Note that ϕ([f ]) in (9.2) by the definition of α(s) is non-zero which implies that r̄ is

non-zero. This fact and the fact that Δ≺w (J) ⊂ Δ≺w (I) implies that ρ([r̄]) = w(nu).
Using the division algorithm and the definition of ≺w we have wdeg(f̄) � wdeg(r̄) (See

[2, §2.3, Thm. 3]) which is the same as saying that

α(s) � w(nu). (9.3)

Comparing (9.2) and (9.3) and using the definition of α(s) in Definition 9.6 gives α(s) =
w(nu) ∈ {w(m) | m ∈ Δ≺w (J)}. Since α(s) was arbitrary we have proved the theorem.
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�

Proposition 9.20 allows us to construct codes using J and to use the technique described
in Section 9.2 to estimate their minimum distance. The remaining part of this paper will
focus on the Ẽ(δ) and C̃(η) codes in Definition 9.9 constructed by evaluating points from
V (J) using selected monomials in Δ≺w (J).

9.5. Puncturing codes from Norm-Trace curves

In this section let I = 〈xa−yb−yqr−2 −· · ·−y〉, let (R, ϕ, Γ−∞) be as in Proposition 9.20
and let Iqr = I + 〈xqr − x, yqr − y〉. The variety V (Iqr ) contains q2r−1 points (α, β) in
F2

qr where NFqr /Fq
(α) = TrFqr /Fq

(β) (See [7]) and the set {ϕ(m) | m ∈ Δ≺w (Iqr )} is a
basis for Fn

qr , where n = q2r−1.
Puncturing a code from a Norm-Trace curve in t coordinates corresponds to redefining

the evaluation map ϕ : Fqr [x1, x2, . . . , xm]/I → Fn
qr by leaving out t points from the

variety V (Iqr ) when evaluating, i.e. ϕ is redefined as:

ϕ([f ]) = (f̄(pi1), f̄(pi2), . . . , f̄(pin−t)),

where {pi1 , pi2 , . . . , pin−t} ⊂ V (Iqr ) . Choosing the t randomly does not necessarily yield
a case where Proposition 9.20 holds, so there may not be a good way to estimate the
minimum distance of the punctured code.

This section shows how to construct a set of polynomials S = {g1, g2, . . . , gs} such
that #V (Iqr + 〈g1, g2, . . . , gs〉) = n − t. For a given t a set S can be constructed in
several different ways using the technique developed here but we can use the tools from
Section 9.2 to estimate the minimum distance of the resulting codes and thereby select
the best possible set S using this estimate.

Furthermore, the construction of g1, g2, . . . , gs given here ensures that we remove noth-
ing from the set {w(m) | m ∈ Δ≺w (Iqr )} except the weights that we are forced to remove
according to Proposition 9.7. In other words: the minimum distance of the resulting codes
is the best possible using Theorem 9.10 when reducing the size of the footprint Δ≺w (Iqr )
by adding g1, g2, . . . , gs to the basis of Iqr (and thereby redefining the map ϕ).

It is well-known that Norm and Trace maps Fqr onto Fq (See [11]). Furthermore, the
Trace maps qr−1 elements from Fqr onto every element in Fq and the Norm maps qr−1

q−1

non-zero elements on every non-zero element in Fq (and only zero is mapped on zero
using Norm). We now define the following two sets for every element in Fq.

Definition 9.21 Let Fq = {γ0, γ1, . . . , γq−1} ⊂ Fqr . Let 0 � i � q − 1 and define
N (q, r, γi) ⊂ Fqr to be the set {α ∈ Fqr | NFqr /Fq

(α) = γi}, where NFqr /Fq
(α) is the

Norm from Definition 9.19.
Furthermore, define T (q, r, γi) to be the set {β ∈ Fqr | TrFqr /Fq

(β) = γi}, where and
TrFqr /Fq

(β) is the Trace from Definition 9.19.

Using the sets in Definition 9.21 we can define the following two orderings of the ele-
ments in Fqr .
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Definition 9.22 Let Fq = {γ0, γ1, . . . , γq−1} ⊂ Fqr , where γ0 = 0, let a = qr−1
q−1 and let

b = qr−1. Let F
(α)
qr = {α0, α1, . . . , αqr−1} be the elements in Fqr ordered such that

N (q, r, γ0) = {α0}
N (q, r, γ1) = {α1, . . . , αa}
N (q, r, γ2) = {αa+1, . . . , α2a}

...
N (q, r, γq−1) = {α(q−2)a+1, . . . , αqr−1}.

Furthermore, let F
(β)
qr = {β0, β1, . . . , βqr−1} be the elements in Fqr ordered such that

T (q, r, γ0) = {β0, . . . , βb−1}
T (q, r, γ1) = {βb, . . . , β2b−1}
T (q, r, γ2) = {β2b, . . . , β3b−1}

...
T (q, r, γq−1) = {β(q−1)b, . . . , βqr−1}.

Now we can construct the polynomials g1(x, y), g2(x, y), . . . , gs(x, y) we need.

Definition 9.23 Let a = qr−1
q−1 ,b = qr−1 and let {(i1, j1), (i2, j2), . . . , (is, js)} be given

such that 0 � i1 < i2 < · · · < is−1 < is < min{i1 + a, qr} and 0 � js < js−1 < · · · < j2 <
j1 < b. Define g1(x, y), g2(x, y), . . . , gs(x, y) as follows.

First define the polynomial g(x) ∈ Fqr [x, y] as

g(x) =
i1−1∏
u=0

(x − αu)

Then for every 1 � k � s define the polynomial gk(x, y) ∈ Fqr [x, y] as

gk(x, y) = g(x)
qr−1∏

u=qr−(ik−i1)

(x − αu)
qr−1∏

v=qr−jk

(y − βv),

where the product over an empty set is defined to be 1.

Remark 9.24 The polynomials in Definition 9.23 have no multiple roots because the
only way multiple roots could occur is if i1 > (q−2)a+1 and qr − (ik − i1) < i1 for some
1 � k � s. But this is not possible since qr − (ik − i1) < i1 ⇔ qr < ik, which contradicts
the condition 0 � i1 < i2 < · · · < is < min{i1 + a, qr} from Definition 9.23. �

Furthermore, we need the following definition from [2, §2.6].
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Definition 9.25 Let F be a field, let f, g ∈ F[x1, x2, . . . , xm] be non-zero polynomials
and let ≺ be a monomial ordering on the monomials in F[x1, x2, . . . , xm]. Let lm(f) =
xα1

1 xα2
2 · · ·xαm

m and let lm(g) = xβ1
1 xβ2

2 · · ·xβm
m , where lm(f) denotes the leading mono-

mial of f with respect to ≺, and define xγ1
1 xγ2

2 · · ·xγm
m where γi = max{αi, βi}, for

1 � i � m. The the S-polynomial of f and g, written S(f, g), is the combination

S(f, g) =
xγ1

1 xγ2
2 · · ·xγm

m

lt(f)
· f − xγ1

1 xγ2
2 · · ·xγm

m

lt(g)
· g,

where lt(f) is the leading term of f with respect to ≺.

The polynomials g1(x, y), g2(x, y), . . . , gs(x, y) in Definition 9.23 have the following
properties.

Proposition 9.26 Let g1(x, y), g2(x, y), . . . , gs(x, y) ∈ Fqr [x, y] be the polynomials from
Definition 9.23 and let ≺w be the monomial ordering in Definition 9.13 where w(x) =
b = qr−1, w(y) = a = qr−1

q−1 and x ≺lex y. Furthermore, let f(x, y) = xa − yb − yqr−2 −
· · · − yq − y. Then the following holds:

1. lm(gk(x, y)) = xikyjk with respect to the monomial ordering ≺w, for all 1 � k � s.

2. #V
(
〈f(x, y), xqr − x, yqr − y, g1(x, y), g2(x, y), . . . , gs(x, y)〉

)
= #Δ≺

(
〈yb, xqr

, xi1yj1 , . . . , xisyjs , xi1+a〉
)

3. The set {f(x, y), xqr−x, yqr−y, g1(x, y), g2(x, y), . . . , gs(x, y), S(f, g1)} is a Gröbner
basis for 〈f(x, y), xqr − x, yqr − y, g1(x, y), . . . , gs(x, y)〉

where S(f, g1) denotes the S-polynomial of f(x, y) and g1(x, y).

Proof: That lm(gk(x, y)) = xikyjk , for 1 � k � s, follows directly from Definition 9.23.
Let J = 〈f(x, y), xqr −x, yqr − y, g1(x, y), g2(x, y), . . . , gs(x, y)〉. Since the S-polynomial

S(f, g1) is in J , we have that

#V (J) � #Δ≺w (J) � #Δ≺w

(
〈yb, xqr

, xi1yj1 , xi2yj2 , . . . , xisyjs , xi1+a〉
)

(9.4)

because the polynomial S(f, g1) has leading monomial xi1+a.
Let λ = min{i1 + a, qr}. From Definition 9.23 we have that 0 � i1 < i2 < · · · < is−1 <

is < λ and 0 � js < js−1 < · · · < j2 < j1 < b.
The number at the right hand side of (9.4) is then equal to

i1b + (i2 − i1)j1 + (i3 − i2)j2 + (i4 − i3)j3 + · · · + (is − is−1)js−1 + (λ − is)js

= i1b +
s∑

u=2

(iu − iu−1)ju−1 + (λ − is)js (9.5)

The remaining part of the theorem is proved by showing that the number of points in
V (J) is equal to the sum in (9.5) and thereby showing that the set {f(x, y), xqr −x, yqr −
y, g1(x, y), g2(x, y), . . . , gs(x, y), S(f, g1)} is a Gröbner basis for J .
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N (q, r, γq−1)
ξ qr − (is − i1) qr − (is−1 − i1) qr − (i3 − i1) qr − (i2 − i1) qr − 1

T (q, r, γq−1)
(q − 1)b qr − j1 qr − j2 qr − js−2 qr − js−1 qr − js qr − 1

Figure 9.1.: A graphical representation of the two sets N (q, r, γq−1) and T (q, r, γq−1) in
the situation from Definition 9.23 where ξ = max{i1 + a, (q − 2)a + 1}.

Define ξ = max{i1, (q − 2)a + 1}. In Figure 9.1 a graphical representation of the set
N (q, r, γq−1) = {α(q−2)a+1, . . . , αqr−1} in F

(α)
qr and T (q, r, γq−1) = {β(q−1)b, . . . , βqr−1}

in F
(β)
qr in the situation from Definition 9.23, for a given set {(i1, j1), (i2, j2), . . . , (is, js)}.

Note that when counting elements in V (J) we have no multiple roots (See Remark 9.24)
and we have to make sure that we only count points (α, β) where NFqr /Fq

(α) = TrFqr /fq(β).
By construction of the polynomials g1(x, y), g2(x, y), . . . , gs(x, y) in Definition 9.23, the

following number of points must be in the set V (J) (For reference see Figure 9.1):

• i1b points (αk, β) where 0 � k < i1, since for every choice of αk ∈ F
(α)
qr there exists b

different elements β ∈ F
(β)
qr such that NFqr /Fq

(αk) = TrFqr /Fq
(β). These points are

all the zeroes of g(x) and thereby zeroes of every polynomial g1(x, y), g2(x, y), . . . ,
gs(x, y).

• (i2 − i1)j1 points (αk, βl) where αk ∈ N (q, r, γq−1), for qr − i2 + i1 � k < qr, and
βl ∈ T (q, r, γq−1), for qr − j1 � l < qr. This is true because every counted αk is a
zero of g2(x, y), . . . , gs(x, y) since i2 < i3 < · · · < is and every counted βl is a zero
of g1(x, y).

• (i3 − i2)j2 points (αk, βl) where αk ∈ N (q, r, γq−1), for qr − (i3 − i1 − (i2 − i1)) =
qr − i3 + i2 � k < qr, and βl ∈ T (q, r, γq−1), for qr − j2 � l < qr. This holds
because these αk’s are all zeroes of g3(x, y), . . . , gs(x, y) because i3 < i4 < · · · < is
and the βl’s are all zeroes of g1(x, y) and g2(x, y) since j1 > j2. Furthermore, the
choice of αk’s ensures that these points haven’t been counted before.

• In general we have (iu − iu−1)ju−1 points (αk, βl) where αk is a zero of gu(x, y),
gu+1(x, y), . . . , gs(x, y) and βl is a zero of g1(x, y), . . . , gu−1(x, y) for every choice of
2 � u < s. The construction in Definition 9.23 ensures that these points are zeroes
of g1(x, y), . . . , gs(x, y), f(x, y) and are all different.

• Finally, we have (qr − (is − i1) − ξ)js points (αk, βl) where every βl is a zero of
g1(x, y), g2(x, y), . . . , gs(x, y) and the αk’s haven’t been counted before. Since ξ =
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max{i1, (q − 2)a + 1} ⇔ ξ + a = max{i1 + a, (q − 1)a + 1} = max{i1 + a, qr} and
λ = min{i1 + a, qr}, then (qr − (is − i1) − ξ)js = (λ − is)js holds.

The number of points in V (J) is then at least i1b+
∑s

u=2(iu − iu−1)ju−1 +(λ− is)js and
equality must hold in (9.4) making the set {f(x, y), xqr − x, yqr − y, g1(x, y), g2(x, y), . . . ,
gs(x, y), S(f, g1)} a Gröbner basis for J. �

Before we move on to our main result an example of the construction of polynomials
in Definition 9.23 is given to make the proof of Proposition 9.26 clear to the reader.

Example 9.27 The example given here is based on the Hermitian curve f(x, y) = x5 −
y4 − y over F16 = {0, 1, ν, ν2, . . . , ν14} where ν is a root of 1 + x3 +x4 over F2, q = 4 and
q2 = 16. Let a = 5, b = 4, w(x) = b, w(y) = a and x ≺lex y.

We have that F4 = {0, 1, ν5, ν10} ⊂ F16.

F
(α)
16 from Definition 9.22 is then

F
(α)
16 = {α0, . . . , α15} = {0, 1, ν3, ν6, ν9, ν12, ν, ν4, ν7, ν10, ν13, ν2, ν5, ν8, ν11, ν14}

where

N (4, 2, 0) = {0} = {α0},
N (4, 2, 1) = {1, ν3, ν6, ν9, ν12} = {α1, . . . , α5},
N (4, 2, ν5) = {ν, ν4, ν7, ν10, ν13} = {α6, . . . , α10},
N (4, 2, ν10) = {ν2, ν5, ν8, ν11, ν14} = {α11, . . . , α15}.

Furthermore, we have

F
(β)
16 = {β0, . . . , β15} = {0, 1, ν5, ν10, ν7, ν11, ν13, ν14, ν, ν3, ν4, ν12, ν2, ν6, ν8, ν9}

where

T (4, 2, 0) = {0, 1, ν5, ν10} = {β0, . . . , β3},
T (4, 2, 1) = {ν7, ν11, ν13, ν14} = {β4, . . . , β7},
T (4, 2, ν5) = {ν, ν3, ν4, ν12} = {β8, . . . , β11},
T (4, 2, ν10) = {ν2, ν6, ν8, ν9} = {β12, . . . , β15}.

Let (i1, j1) = (8, 3) and (i2, j2) = (10, 2). We first define

g(x) =
7∏

u=0

(x − αu) = x(x − 1)(x − ν3)(x − ν6)(x − ν9)(x − ν12)(x − ν)(x − ν4)

as in Definition 9.23 since i1 = 8.
Then define g1(x, y) = g(x)

∏15
v=13(y − βv) = g(x)(y − ν6)(y − ν8)(y − ν9) since j1 = 3.

Finally, define g2(x, y) = g(x)
∏15

u=14(x−αu)
∏15

v=14(y−βv) = g(x)(x−ν11)(x−ν14)(y−
ν8)(y − ν9) since j2 = 2 and i2 − i1 = 2.

The following points are in V
(
〈f(x, y), x16 − x, y16 − y, g1(x, y), g2(x, y)〉

)
:
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• All points of the form (αu, β) where 0 � u < i1 = 8 and NFq2/Fq
(αu) = TrFq2/Fq

(β)
because these points are both zeroes of g(x) and f(x, y) and thereby zeroes of
g1(x, y), g2(x, y) and f(x, y). There are i1 · b = 8 · 4 = 32 of these points since trace
maps b = 4 elements from Fq2 on every element in Fq.

• We then have (i2 − i1)j1 = 2 · 3 = 6 points (αu, βv) where u = 14, 15 and v =
13, 14, 15 since α14 and α15 are zeroes of g2(x, y) and β13, β14 and β15 are zeroes of
g1(x, y).

• Finally, we have the points (αu, βv) where v = 14, 15 and αu ∈ N (4, 2, ν10) for
u �= 14 and u �= 15. These points haven’t been counted before and are zeroes of both
g1(x, y), g2(x, y) and f(x, y) since every βv that is a zero of g2(x, y) is also a zero of
g1(x, y) by construction. We have (a−(i2−i1))j2 = (i1+a−i2)j2 = (8+5−10)·2 = 6
of these points.

We have found at least 32 + 6 + 6 = 44 points in

V
(
〈f(x, y), x16 − x, y16 − y, g1(x, y), g2(x, y)〉

)
which is equal to the size of the footprint of 〈y4, x16, x8y3, x10y2, x13〉. �

Definition 9.28 Let I ⊆ Fqr [x, y] be an ideal, let ≺ be a monomial ordering and let
w(m) denote the weight of a monomial m. Define W (I) = {w(m) | m ∈ Δ (I)} and for
α ∈ W (I) define

M(α) = {γ ∈ W (I) | ∃ β ∈ W (I) such that α + β = γ}.

Now, we would like to prove that by adding polynomials constructed as in Defini-
tion 9.23 to the ideal Iqr we remove exactly the smallest possible set of weights from
W (Iqr ) (smallest in the sense that we remove exactly the weights that we are forced to
remove from the set W (Iqr ) according to Proposition 9.7 and nothing more). This result
is the consequence of Theorem 9.29 below.

Theorem 9.29 Let g1(x, y), g2(x, y), . . . , gs(x, y) ∈ Fqr [x, y] be the polynomials from
Definition 9.23 and let ≺ be the monomial ordering in Definition 9.13 where w(x) =
b = qr−1, w(y) = a = qr−1

q−1 and x ≺lex y. Let f(x, y) = xa − yb − yqr−2 − · · · − yq − y, let
Iqr = 〈f(x, y), xqr − x, yqr − y〉 ⊂ Fqr [x, y] and let

J = Iqr + 〈g1(x, y), g2(x, y), . . . , gs(x, y)〉.

Then the following equality holds:

W (J) = W (Iqr )
∖ s⋃

k=1

M
(
w
(
lm(gk(x, y))

))
. (9.6)
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Proof: Since ρ(m) = w(m) is a weight function (See Definition 9.2) we have that for every
monomial xsyt ∈ Δ (Iqr ), which can be divided by xik yjk , the weight w(xsyt) = sb + ta
must be in the set M(w(gk(x, y))).

Because the set {f(x, y), xqr − x, yqr − y, g1(x, y), . . . , gs(x, y), S(f, g1)} is a Gröbner
basis for J (using Proposition 9.26) we only remove monomials from Δ (Iqr ) which can
be divided by at least one of the monomials xi1yj1 , . . . , xisyjs , xi1+a thereby having the
equality

W (J) = W (Iqr )
∖{

s⋃
k=1

M(w(xik yjk)) ∪ M(w(xi1+a))

}
.

The only thing we need to prove is that M(w(xi1+a)) ⊂ M(w(xi1yj1)) in order to
have the equality in (9.6) and prove the theorem. This can be done by showing that
w(xi1+a) ∈ M(w(xi1yj1)).

We consider the following two cases:

Case 1: j1 = 0
In this case xi1yj1 = xi1 which obviously divides xi1+a so w(xi1+a) ∈ M(w(xi1 )).

Case 2: j1 > 0
We have to find a monomial xsyt ∈ Δ (Iqr ) such that

w(xsyt) + w(xi1yj1) = w(xi1+a)
�
sb + ta + i1b + j1a = (i1 + a)b ⇔ sb + (t + j1)a = ab

which has the solution s = 0, t = b − j1 and since yb−j1 ∈ Δ (Iqr ), we have proved the
theorem. �

9.6. Examples

In this section we give a few examples of codes using the construction described in
Section 9.5 and compare to known codes punctured in t coordinates.

Example 9.30 Here we continue Example 9.27 using the ideal I16 = 〈x5 − y4 − y, x16 −
x, y16 − y〉 ∈ F16[x, y]. Then

W (I16) = {0, 4, 5, 8, 9, 10, 12, 13, . . . , 62, 63, 65, 66, 67, 70, 71, 75}.

Let t = 11 so we want to puncture the Hermitian code at 11 coordinates to create codes
of length 53. In Table 9.1 the first column is the parameters for the original improved
Hermitian codes and the second column is the parameters for the punctured version we
get by using ordinary puncturing 11 times.
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The column labeled “Construction 1” in Table 9.1 is the parameters for the codes
we get by using J

(1)
16 = I16 + 〈g(1)

1 (x, y), g(1)
2 (x, y)〉 where lm(g(1)

1 (x, y)) = x11y2 and
lm(g(1)

2 (x, y)) = x15y. So

W (J (1)
16 ) = W (I16) \ {M(54) ∪ M(65)}

= {0, 4, 5, 8, 9, 10, 12, 13, . . . , 52, 53, 55, 56, 57, 60, 61}.

The column labeled “Construction 2” is the parameters for the codes we get by using
J

(2)
16 = I16 + 〈g(2)

1 (x, y), g(2)
2 (x, y)〉 where lm(g(2)

1 (x, y)) = x13y and lm(g(2)
2 (x, y)) = x14.

We have

W (J (2)
16 ) = W (I16) \ {M(56) ∪ M(57)}

= {0, 4, 5, 8, 9, 10, 12, 13, . . . , 52, 53, 54, 55, 58, 59, 63}.

For dimensions 38, 40, 41, 42, 43, 44, 45, 46, 49 and 51 one or both of the two construc-
tions are better than the bound obtained by ordinary puncturing. Also note that none of
the two constructions are the best choice for every dimension since using construction 1
we get a [53, 38, 11] code while using construction 2 we get a [53, 38, 10] code. But using
construction 2 gives a [53, 40, 9] code and a [53, 47, 4] code while construction 1 gives a
[53, 39, 9] code and a [53, 46, 4].

Table 9.1.: Parameters for the improved Hermitian codes Ẽ(δ), improved Hermitian codes
punctured at 11 coordinates and estimated parameters for construction 1 and
2 with length 53.

Improved Punctured improved
Hermitian codes (Ẽ(δ)) Hermitian codes (Ẽ(δ)) Construction 1 Construction 2

[64, 1, 64] [53, 1, 53] [53, 1, 53] [53, 1, 53]
[64, 2, 60] [53, 2, 49] [53, 2, 49] [53, 2, 49]
[64, 3, 59] [53, 3, 48] [53, 3, 48] [53, 3, 48]
[64, 4, 56] [53, 4, 45] [53, 4, 45] [53, 4, 45]
[64, 5, 55] [53, 5, 44] [53, 5, 44] [53, 5, 44]
[64, 6, 54] [53, 6, 43] [53, 6, 43] [53, 6, 43]
[64, 7, 52] [53, 7, 41] [53, 7, 41] [53, 7, 41]
[64, 8, 51] [53, 8, 40] [53, 8, 40] [53, 8, 40]

...
...

...
...

[64, 35, 24] [53, 35, 13] [53, 35, 13] [53, 35, 13]
[64, 36, 23] [53, 36, 12] [53, 36, 12] [53, 36, 12]
[64, 37, 22] [53, 37, 11] - [53, 37, 11]
[64, 38, 21] [53, 38, 10] [53, 38, 11] [53, 38, 10]
[64, 39, 20] [53, 39, 9] [53, 39, 9] -
[64, 40, 19] [53, 40, 8] - [53, 40, 9]

continued on the next page
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Improved Punctured improved
Hermitian codes (Ẽ) Hermitian codes (Ẽ) Construction 1 Construction 2

[64, 41, 18] [53, 41, 7] [53, 41, 8] [53, 41, 8]
[64, 42, 17] [53, 42, 6] - -
[64, 43, 16] [53, 43, 5] [53, 43, 7] -
[64, 44, 15] [53, 44, 4] - [53, 44, 6]
[64, 45, 14] [53, 45, 3] [53, 45, 5] [53, 45, 5]
[64, 46, 13] [53, 46, 2] [53, 46, 4] -

- - - [53, 47, 4]
[64, 48, 12] [53, 48, 1] - -
[64, 49, 10] [53, 49, 1] [53, 49, 3] [53, 49, 3]
[64, 51, 9] [53, 51, 1] [53, 51, 2] [53, 51, 2]
[64, 53, 8] [53, 53, 1] [53, 53, 1] [53, 53, 1]

Furthermore, notice that the parameters in Table 9.1 can be calculated without actually
constructing any polynomials but by using Theorem 9.29, the code construction Ẽ in
Definition 9.9 and the bound on the minimum distance given in Theorem 9.10. We
could construct the generator matrices by using Definition 9.23 to construct g1(x, y)
and g2(x, y), find the 53 common zeros in V (J16) and use the evaluation map ϕ on the
monomials selected in Definition 9.9 to construct the rows in the generator matrix for
Ẽ(δ) for any given δ = 1, 2, . . . , 53.

We could have constructed codes with length 53 in several other ways than the two
shown here but the two used here are the best choices. The remaining 10 possibilities
are:

W (J16) = W (I16) \ {M(55) ∪ M(62)}
W (J16) = W (I16) \ {M(56) ∪ M(59)}
W (J16) = W (I16) \ {M(57) ∪ M(58)}
W (J16) = W (I16) \ {M(57) ∪ M(59)}
W (J16) = W (I16) \ {M(56) ∪ M(62) ∪ M(63)}
W (J16) = W (I16) \ {M(57) ∪ M(60) ∪ M(63)}
W (J16) = W (I16) \ {M(58) ∪ M(59) ∪ M(60)}
W (J16) = W (I16) \ {M(58) ∪ M(59) ∪ M(61)}
W (J16) = W (I16) \ {M(58) ∪ M(60) ∪ M(61)}
W (J16) = W (I16) \ {M(59) ∪ M(60) ∪ M(61) ∪ M(62)}

�

Example 9.31 In this example we use the same ideal, I16, and the two constructions
given in Example 9.30 but this time we construct the C̃ codes from Definition 9.9 using
construction 1 and 2 from Example 9.30 instead. Note that the Hermitian codes C̃(η)

115



9. Paper II - “On Puncturing of Codes from Norm-Trace Curves”

(and the ordinary puncturing of these) have the same parameters as the Hermitian Ẽ(δ)
codes in Example 9.30 (see [1, Prop. 8]) but when using the new construction given here
the resulting Ẽ and C̃ no longer have the same parameters. The results are given in
Table 9.2.

Notice that for dimensions 1, 2, . . . , 6 construction 1 and 2 are sometimes actually do-
ing worse than ordinary puncturing but for dimensions 37, 40, 42, 44, 45, 48, 50 and 52
constructions 1 and 2 are equally good and both better than ordinary puncturing.

Again, the parameters in Table 9.2 can be calculated without actually constructing any
polynomials but we could construct the rows in the parity check matrix for C̃(η) for any
given η = 1, 2, . . . , 53.

Table 9.2.: Parameters for the improved Hermitian codes C̃(η), the improved Hermitian
codes punctured at 11 coordinates and estimated parameters for construction
1 and 2 with length 53.

Improved Punctured improved
Hermitian codes (C̃(η)) Hermitian codes (C̃(η)) Construction 1 Construction 2

[64, 1, 64] [53, 1, 53] [53, 1, 50] [53, 1, 52]
[64, 2, 60] [53, 2, 49] [53, 2, 49] [53, 2, 48]
[64, 3, 59] [53, 3, 48] [53, 3, 46] [53, 3, 47]
[64, 4, 56] [53, 4, 45] [53, 4, 45] [53, 4, 44]
[64, 5, 55] [53, 5, 44] [53, 5, 44] [53, 5, 43]
[64, 6, 54] [53, 6, 43] [53, 6, 42] [53, 6, 42]
[64, 7, 52] [53, 7, 41] [53, 7, 41] [53, 7, 41]
[64, 8, 51] [53, 8, 40] [53, 8, 40] [53, 8, 40]

...
...

...
...

[64, 35, 24] [53, 35, 13] [53, 35, 13] [53, 35, 13]
[64, 36, 23] [53, 36, 12] - -
[64, 37, 22] [53, 37, 11] [53, 37, 12] [53, 37, 12]
[64, 38, 21] [53, 38, 10] [53, 38, 10] [53, 38, 10]
[64, 39, 20] [53, 39, 9] - -
[64, 40, 19] [53, 40, 8] [53, 40, 9] [53, 40, 9]
[64, 41, 18] [53, 41, 7] - -
[64, 42, 17] [53, 42, 6] [53, 42, 8] [53, 42, 8]
[64, 43, 16] [53, 43, 5] - -
[64, 44, 15] [53, 44, 4] [53, 44, 6] [53, 44, 6]
[64, 45, 14] [53, 45, 3] [53, 45, 5] [53, 45, 5]
[64, 46, 13] [53, 46, 2] - -

- - - -
[64, 48, 12] [53, 48, 1] [53, 48, 4] [53, 48, 4]
[64, 49, 10] [53, 49, 1] - -

- - [53, 50, 3] [53, 50, 3]
continued on the next page
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Improved Punctured improved
Hermitian codes (C̃(η)) Hermitian codes (C̃(η)) Construction 1 Construction 2

[64, 51, 9] [53, 51, 1] - -
- - [53, 52, 2] [53, 52, 2]

[64, 53, 8] [53, 53, 1] [53, 53, 1] [53, 53, 1]

Furthermore, we could also have constructed codes with length 53 in several other ways
than the two shown here. The remaining 10 possibilities are the same as in Example 9.30.

�

Remark 9.32 Notice that the function μ(η) from Definition 9.8 and the bound in
Theorem 9.10 underestimates the minimum distance of the dimension 1 C̃(η) codes in
construction 1 and 2 in Example 9.31. This suggests that Theorem 9.10 doesn’t give
the true minimum distance of C̃ codes from an ideal not having a footprint meeting the
condition in [1, Prop. 8]. Thus the conjecture in the conclusion of [20] doesn’t hold for
general codes such as those studied here. �

Example 9.33 In this final example let q = 2 and r = 6 over F64 such that

I64 = 〈x63 − y32 − y16 − y8 − y4 − y2 − y, x64 − x, y64 − y〉.

The resulting codes have length q2r−1 = 211 = 2048.
Let t = 64, w(x) = 32, w(y) = 63, x ≺lex y and lm(g1(x, y)) = x62 such that

J64 = I64 + 〈g1(x, y)〉 and W (J64) = W (I64) \ M(1984). The codes constructed from
Fq[x1, x2, . . . , xm]/J64 have length 1984 and a comparison with the ordinary puncturing
of the codes from Norm-Trace curves of length 2048 can be seen in Figure 9.2.

Notice that for rates about 0.9 the difference between the two codes is the biggest.
Parameters for a few codes with approximately this rate are given in Table 9.3.

Table 9.3.: Parameters for some Ẽ codes from Norm-Trace curves, Ẽ codes punctured at
64 coordinates and the new construction for rates about 0.9.

Ẽ(δ) codes from Punctured Ẽ(δ) codes
Norm-Trace curves from Norm-Trace curves New construction

[2048, 1791, 69] [1984, 1791, 5] -
- - [1984, 1792, 52]

[2048, 1794, 68] [1984, 1794, 4] -
- - [1984, 1795, 51]

[2048, 1799, 66] [1984, 1799, 2] -
- - [1984, 1800, 50]

[2048, 1801, 65] [1984, 1801, 1] -
- - [1984, 1802, 49]
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New construction

Punctured codes from Norm-Trace curve
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Punctured codes from Norm-Trace curve over F64, n − t = 1984

d
n−t

Figure 9.2.: Code rates k
n−t plotted with relative minimum distance d

n−t for ordinarily
punctured codes from Norm-Trace curves and codes from the new construc-
tion, both of length n − t = 1984.

�

9.7. Conclusion

In this paper it was demonstrated that the bound on the minimum distance of codes
punctured in t coordinates can be substantially improved in the case of codes from Norm-
Trace curves by adding polynomials to the ideal used to construct the order domain.
Furthermore, a specific construction of such polynomials is given.

In cases where the puncturing in t coordinates can be constructed using several choices
of polynomials, no single choice is the best possible for all code rates as demonstrated in
Example 9.30. Furthermore, Example 9.31 shows a case where the order bound clearly
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doesn’t give the true minimum distance when constructing the improved dual codes C̃
with extra polynomials added to the ideal.
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