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Abstract

In the future, many decisions will either be fully automated or supported by autonomous
system. Consequently, it is of high importance that we understand how to integrate hu-
man preferences.

This dissertation dives into complex decision environments which we define as de-
cision problems with an underlying large-scale NP-hard multi-objective optimization
problem with uncertainty stemming from the stochastic environment or fuzzy prefer-
ence knowledge of decision makers, all while the computation has to be performed in
near-real time. The last charateristic leaves it infeasible to introduce a decision maker
in operation, and automated approaches to solve and introduce preferences is therefore
investigated. The dissertation approaches this through the investigation of two dif-
ferent problems domains, namely; the Satellite Image Acquisition Scheduling Problem
(SIASP) and the Unmanned Aerial Vehicle Routing Problem (UAVRP) with emphasis
on the search and rescue domain.

The dissertation is based on the foundations of operations research, but is essentially
a multidisciplinary research field within decision theory, mathematics, computer science,
economics, and psychology. This manuscript consists of an extended summary of the
six research papers produced through the PhD work, denoted from Paper A - Paper F.

In Paper A, an exploration of regular evaluation methodology is introduced, in-
vestigating the application of MCDM approaches to manage the multi-objectivity and
uncertainty in the SIASP. Different problem formulations are proposed, search heuristics
are designed, discussed, and tested, and preference articulation schemes are evaluated
based on the customizability, robustness, intuition, and explainability. In Paper B, the
bi-objective optimization environment of UAV-based path finding is investigated in the
context of smart cities. Here, we present the A priori decision framework to significantly
decrease the complexity, but also showcase the complexity of identifying a proper prefer-
ence structure, as a a weight setting through scalarization and the WSA is very scenario
dependent, and with inexperienced decision makers therefore can seem completely arbi-
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trary. In Paper C, results from different pre-processing configurations are investigated,
concluding that the pre-processing has a significant effect on the performance of solution
approaches for the SIASP. In Paper D, the UAVRP is investigated through an a priori
preference integration framework assuming the corresponding score of visiting a node to
emulate the importance that decision makers assign it. The research is focused on the
design of a heuristic based approach and comparing the promising results with exact
solvers. In Paper E, the implications from a decision maker standpoint are highlighted,
which in case of the satellite operator are promising. Moreover, an extended sensitivity
analysis is conducted to evaluate the preference space, which additionally lays the foun-
dation for a significance test framework, that can be used to tune the decision maker
defined preference structure. In Paper F, the decision stages of the SIASP is investi-
gated in greater detail, leading to an analysis of the collaborative decision-making effects
obtained from pricing schemes and preference structures of the satellite operation. An
autonomous decision-making scheme is presented based on VIKOR and Shannon en-
tropy to automatically suggest settings of pricing and preference structures.

In short the entire dissertation delves into the research field of a priori preference
integration frameworks in order to further the transition towards autonomous decision
making in complex decision environments. A discussion on pairwise and setwise pref-
erence articulation methods is also undertaken to further showcase the shortcomings of
regular a priori frameworks. With this, attainable features and fitting decision frame-
works are proposed, in order to consequently lay a roadmap towards the ultimate goal
of a setwise preference articulation method.



Resumé

Dansk Titel: multi-kriterie beslutningsmodeller i komplekse beslutingsmiljøer

I fremtiden vil mange beslutninger enten være fuldt automatiserede eller understøt-
tet af autonome systemer. Derfor er det af stor betydning, at vi forstår, hvordan man
integrerer menneskelige præferencer.

Denne afhandling dykker ned i komplekse beslutningsmiljøer, som omfatter beslut-
ningsproblemer med underliggende storskala NP-hårde fler-objektiv optimeringsprob-
lemer med usikkerhed stammende fra det stokastiske problemmiljø eller fuzzy præfer-
encekendskab hos beslutningstageren, samtidig med at beregningen skal udføres i nær-
real tid. Den sidste karakteristik gør det umuligt at have en beslutningstager i drift,
og derfor undersøges automatiserede tilgange til at løse og introducere præferencer.
Afhandlingen arbejder med to forskellige problemområder, navnligt Satellite Image Ac-
quisition Scheduling Problem (SIASP) og Unmanned Aerial Vehicle Routing Problem
(UAVRP) med fokus på den første del af søgning- og redningsområdet.

Afhandlingen er baseret på viden produceret inden for forskningsfeltet operations-
analyse, men er i sin essens et tværfagligt forskningsfelt inden for beslutningsteori,
matematik, datalogi og psykologi. Dette manuskript er en udvidet sammenfatning af
de seks forskningsartikler, der er produceret gennem ph.d.-arbejdet, betegnet fra Paper
A til Paper F.

I Paper A introduceres en regelmæssig evalueringsmetodologi, hvor anvendelsen
af MCDM-tilgange til at håndtere flerobjektivitet og usikkerhed i SIASP undersøges.
Forskellige problemformuleringer foreslås, søgeheuristikker designes, diskuteres og testes,
og præferenceartikulationsskemaer evalueres ud fra tilpasningsdygtighed, robusthed, in-
tuition og forklarlighed. I Paper B undersøges den biobjektive optimeringsmiljø for
UAV-baseret ruteplanlægning i smarte byer. Her identificerer vi a priori beslutningsram-
men for at reducere kompleksiteten markant, men vi viser også kompleksiteten ved
at identificere en passende præferencestruktur, da vægtsætning gennem skalarisering
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og WSA er meget scenarieafhængig og kan virke helt arbitrært for uerfarne beslut-
ningstagere. I Paper C undersøges resultaterne fra forskellige konfigurationer af pre-
processing til SIASP, hvor det konkluderes, at forbehandlingen har en betydelig effekt
på præstationen af løsningsmetoder til SIASP. I Paper D undersøges UAVRP igen gen-
nem en a priori præferenceintegrationsramme, hvor den tilsvarende score for at besøge
en knudepunkt anvendes til at efterligne den vigtighed, som beslutningstagere tillægger
det. Forskningen fokuserer mere på designet af en heuristikbaseret tilgang og sammen-
ligning af lovende resultater med nøjagtige løsere. I Paper E fremhæves implikation-
erne fra et beslutningstagervinkel, hvilket i tilfælde af satellitoperatøren virker lovende.
Der udføres desuden en udvidet følsomhedsanalyse for at evaluere præferenceområdet,
hvilket yderligere lægger grundlaget for en signifikansprøvningsramme, der kan bruges
til at finjustere den af beslutningstageren definerede præferencestruktur. I Paper F un-
dersøges beslutningsstadierne i SIASP i større detaljer, hvilket fører til en analyse af de
effekter, der opnås fra prissætningsordninger og præferencestrukturer for satellitdriften.
Der præsenteres en autonom beslutningsproces baseret på VIKOR og Shannon-entropi
til automatisk at foreslå indstillinger for prissætning og præferencestrukturer.

Kort sagt dykker hele afhandlingen ned i forskningsfeltet for a priori præferenceinte-
grationsrammer for at fremme overgangen til autonom beslutningstagning i komplekse
beslutningsmiljøer. Der foretages også en diskussion om metoder til parvis og sætvis
præferenceartikulation for at yderligere vise begrænsningerne ved regelmæssige a priori
rammer. Med disse funktioner og passende beslutningsrammer foreslås der en vejled-
ning mod målet om en sætvis præferenceartikulationsmetode.



Contents

CV iii

Abstract v

Resumé vii

Thesis Details xiii

Preface and acknowledgements xv

Abbreviations xvii

I Dissertation 1

1 Introduction 3
1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1 Practical Perspective . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Theoretical Perspective . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Philosophical Perspective . . . . . . . . . . . . . . . . . . . . . . 8

2 Research Gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4 Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5 Structure of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . 14

5.1 Publications and Submissions during the PhD Study . . . . . . . 15
6 Research-related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

6.1 Abroad Research Stays and other Research Projects . . . . . . . 18

2 Background and State-of-the-Art 21
1 Background of Problem Domains . . . . . . . . . . . . . . . . . . . . . . 21

1.1 Satellite Image Acquisition Scheduling Problem . . . . . . . . . . 21

ix



x Contents

1.2 The UAV Routing Problem . . . . . . . . . . . . . . . . . . . . . 26
1.3 Characteristic comparison of problems . . . . . . . . . . . . . . . 30

2 MCDM and State-of-the-Art . . . . . . . . . . . . . . . . . . . . . . . . 30
2.1 Problem Typology . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2 Place of Articulation . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3 Preference Elicitation . . . . . . . . . . . . . . . . . . . . . . . . 37
2.4 A Priori Preference Articulation Methods . . . . . . . . . . . . . 39

3 Bridging the Gap: Solution Approaches for Complex Decision Envi-
ronments 43
1 Decision Framework for Complex Decision Environments . . . . . . . . . 44

1.1 The A Priori Decision Framework . . . . . . . . . . . . . . . . . 44
2 Implementing the Evaluation Methodology into the Decision Framework 46
3 Integrating Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4 Rethinking Preference Integration . . . . . . . . . . . . . . . . . . . . . 49

4.1 Amount of Articulation . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 Modelling Features for Setwise Preference Articulation . . . . . . 52
4.3 Roadmap towards Setwise Preference Articulation . . . . . . . . 55

4 Conclusion and Future Work 57

Bibliography 61
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Appendix 70
S-1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

S-1.1 Conference and workshop participation . . . . . . . . . . . . . . 70
S-1.2 Teaching and supervision . . . . . . . . . . . . . . . . . . . . . . 70
S-1.3 Examination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
S-1.4 Course work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

II Papers 73
1 Appended Papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

A Multi criteria decision making for the multi-satellite image acqui-
sition scheduling problem . . . . . . . . . . . . . . . . . . . . . . 75

B UAVs Path Planning under a Bi-Objective Optimization Frame-
work for Smart Cities . . . . . . . . . . . . . . . . . . . . . . . . 75

C An improved pre-processing method for cyber physical systems -
as illustrated in the earth observation satellite scheduling . . . . 75

D A GRASP-Based Approach for Planning UAV-Assisted Search
and Rescue Missions . . . . . . . . . . . . . . . . . . . . . . . . . 75



Contents xi

E Towards an autonomous system for the satellite image acquisi-
tion scheduling problem through multi-criteria decision-making
and the extended longest path algorithm . . . . . . . . . . . . . . 75

F Determining the pricing strategy for different preference struc-
tures for the earth observation satellite scheduling problem through
simulation and VIKOR . . . . . . . . . . . . . . . . . . . . . . . 75



xii Contents



Thesis Details

Thesis Title: Multi-criteria decision-making in complex decision environments
Ph.D. Student: Alex Elkjær Vasegaard
Supervisors: Assoc. Prof. Peter Nielsen, Aalborg University

Ass. Prof. Subrata Saha, Aalborg University

The core of the dissertation comprises the following papers.

[A] Vasegaard, A. E., Picard, M., Hennart, F., Nielsen, P., & Saha, S. (2020), “Multi
criteria decision making for the multi-satellite image acquisition scheduling prob-
lem”, Sensors, 20(5), 1242.

[B] Saha, S., Vasegaard, A. E., Nielsen, I., Hapka, A., & Budzisz, H. (2021), “UAVs
Path Planning under a Bi-Objective Optimization Framework for Smart Cities”,
Electronics, , 10(10), 1193.

[E] Vasegaard, A. E., Picard, M., Nielsen, P., & Saha, S. (2023), “Towards an au-
tonomous system for the satellite image acquisition scheduling problem through
multi-criteria decision-making and the extended longest path algorithm” Working
paper - not submitted yet

[F] Vasegaard, A. E., Moon, I., Nielsen, P., & Saha, S. (2022), “Determining the
pricing strategy for different preference structures for the earth observation satel-
lite scheduling problem through simulation and VIKOR” Flexible Services and
Manufacturing Journal, 1-29.

In addition to the main papers, the following publications have also been made.

[C] Elkjaer Vasegaard, A., & Nielsen, P. (2021, March), “An improved pre-processing
method for cyber physical systems-as illustrated in the earth observation satellite
scheduling”, 5th International Conference on Robotics, Control and Automation,
pp. 102-106.

xiii



xiv Thesis Details

[D] Pedersen, C. B., Nielsen, K. G., Rosenkrands, K., Vasegaard, A. E., Nielsen, P.,
& El Yafrani, M. (2022), A GRASP-Based Approach for Planning UAV-Assisted
Search and Rescue Missions, Sensors, 22(1), 275.

This dissertation has been submitted for evaluation as a partial fulfillment of the require-
ments for the PhD degree. It is based on the scientific papers submitted or published,
as listed above. The extended summary of the thesis incorporates elements from these
papers, either directly or indirectly. In the assessment process, co-author statements
have been provided to the evaluation committee and are accessible at the Faculty.



Acknowledgements

None of this research would have been possible if it had not been for the giants before
me laying the foundation for the decision making methods in use and under research
at this moment. As our world becomes increasingly complex and interconnected, the
ability to make informed and effective decisions has never been more critical. It is my
hope that this dissertation will not only contribute to the existing body of knowledge
but also inspire others to explore the fascinating realm of decision making and its pro-
found impact on individuals, organizations, and society as a whole.

Thank you to my parents, Solvej and Søren, my siblings, Marc and Claire, my girlfriend,
Sophia, and the rest of my family for accompanying me throughout the ups and downs,
supporting and motivating me to do better, and for being an ever present reminder on
what life is all about.

Thank you to the grant "Rejselegat for matematikere" for giving me the opportunity
to go on the most extraordinary journey of my life. I have a new look on life because of it.

Thank you to Prof. Ilkyeong Moon from the industrial engineering department at SNU
for showing me a new level of professionalism to strive for. Thank you to Prof. Rose
and the Simulation and model building group at UniBwM. The philosophical talks and
comments on my work has been extremely valuable. Thank you to Dr. Amila Thibbo-
tuwawa and Dr. Niles Perera and the Supply chain operations group at UOM for your
sincerity and most of all for showcasing me how to be a young researcher. Thank you to
Prof. Pellerin and the team from the department of Mathematical and Industrial En-
gineering at Polytechnique Montreal. Your curiosity and creativity in research is truly
inspiring.

Thank you to the operations research group at Aalborg university for your insights into
research but also for being not just co-workers but friends. And a Special thanks to
my PhD co-supervisor, Subrata Saha, your ideas have helped me improve my way of
understanding research but also of understanding life. Thank you to My PhD supervisor

xv



xvi Preface

Peter Nielsen for giving me critical insights into how the research world works and for
truly leading by example - having you as a mentor has been of the highest importance
to my professional development.

I would also like to thank the academic and administrative staff at (especially) Aalborg
university, but also Seoul National University, Universität der Bundeswehr Munich,
University of Moratuwa, and Polytechnique Montreal for their assistance and support
throughout my PhD journey. Their dedication and hard work have been crucial in en-
suring that I had the resources and support I needed to complete this research.

Lastly, thank you to my friends all around the world for exploring the world with me.
With friends like you, the world is nothing but a piece-of-cake.

Alex Elkjær Vasegaard
Aalborg University, June 29, 2023



Abbreviations

MCDM - Multi-Criteria Decision Making
SIASP - Satellite Image Acquisition Scheduling Problem
UAV - Unmanned Arieal Vehicle
VRP - Vehicle Routing Problem
UAVRP - Unmanned Arieal Vehicle Routing Problem
SAR - Search And Rescue
AI - Artificial Intelligence
DSS - Decision Support System
WSA - Weight Space Analysis
DM - Decision Maker

xvii



xviii Abbreviations



Part I

Dissertation

1





Chapter 1

Introduction

Autonomous systems already carry the weight of the world, and with the current outlook
on the capability trends of labour automation (e.g., robotics, NLP) [54], data collection
(e.g., sensors on automated systems) [8], connectivity (e.g., 6G, space-based communi-
cation), computing (both for local and cloud solutions) and general decision making, the
weight is only getting heavier, and it is getting heavier fast. The increased automation
seen in the manufacturing settings of the industrial revolutions is set to spill over into all
lines of work [115]. The next frontier of automation covers all of human capability, most
recently seen with the development of AlphaTensor and AlphaDev that moved into the
territory of algorithm design for matrix multiplication and sorting, which is a field of
research only thought to belong the fiercest of creative mathematical humans [28, 68].
Consequently, the transition of problems otherwise considered human-only property has
to be conducted in a safe and ethical way [66].

Simultaneously, certain problems are not necessarily well-prepared for the regime of
machine learning approaches, as trustworthiness and robustness reigns supreme. Espe-
cially, if the Decision Maker (DM) or group of DMs does not know or understand their
preferences or the intricacies of the solution space particularly well and correspondingly
needs a great deal of support to make a decision. Of these problems, the two that are
investigated in this PhD dissertation are the Satellite Image Acquisition Scheduling and
Unmanned Aerial Vehicle Routing Problem (SIASP and UAVRP, respectively) as these
have similar characteristics and the knowledge gained from tackling them will be widely
applicable.

With New Space, the recent change in the global space ecosystem, the private sector
has entered the space race. Most notably seen with SpaceX developing reusable boosters
that has decreased the price of payload-to-orbit and thereby increased the access to space
for a lot of companies developing their own satellite systems [81, 140]. Simultaneously,
the use of space-based systems in agriculture, communication, maritime and urban
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4 Chapter 1. Introduction

surveillance, search and rescue missions, environmental monitoring, climate change,
military intelligence, traffic monitoring, business and finance has seen an explosion in
interest and usage. Consequently, the problem of scheduling satellites is of high interest
to both business and academic communities [140].

As competition in the access to space increases, so does the competition for devel-
oping more efficient satellite systems. Especially for the larger EOS systems like that
of the Airbus D&S-owned PLEIADES or SPOT. The ability to acquire more data in
greater detail with higher quality to the right customers in due time is of apparent
necessity for their continued success [88, 97, 126]. Fig. 1.1 illustrates the complexity
and scale of identifying the best satellite schedule, capturing the highest number of high
quality images, while considering criteria of varying nature (e.g., emergency, customer
type, cloud coverage, sun elevation, depointing angle, and profits). Simultaneously, as
communication between in-orbit objects and ground stations is only feasible for certain
periods, updating the satellite schedule based on new information is not always possible.
Consequently, you want to have information that is as new as possible when developing
a schedule. This means, either to re-schedule just prior to execution with no degrees of
flexibility on the deadline or to place the decision making onboard instead of on-ground.
Ultimately, this comes with the challenge of local optimality rather than global optimal
plans, and whether the onboard intelligence has the trust of the satellite operation.

Fig. 1.1: A map representation of a SIASP scenario generated with the EOSpython framework briefly
presented in Paper E

Equal to the revolution of New Space, the promised land of the Unmanned Aerial
Vehicle (UAV) platform and the accompanying technology of its payload features faster
delivery and pick-up in all levels of the supply chain for goods and services. Everything
from improving the efficiency of supply chains within a factory environment [111], ac-
quiring agricultural intelligence to increase efficiency of crop production [106], different
search-and-rescue environments [36], to overcoming geographical pitfalls in vaccine de-
livery [37] are on the table. However, especially for use cases differing from logistics,
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the objectives and preferences of the DM start to fuzzify, as maximising the utility of
the assets become of higher priority than minimizing the total distance travelled. This
implies the need to evaluate the trade-off between visiting and omitting certain nodes
of interest in ones graph, and quantifying the importance of different acquisitions.

Multi-criteria decision making (MCDM) is a field of research that deals with evalua-
tion and design problems influenced by multiple criteria or objectives - with conflicting
characteristics s.a. profits, quality, and sustainability. As future problems become in-
creasingly more complex, it is important that we optimize for the correct balanced set
of objectives to avoid everything from harmful bias and inconceivable costs to issues
concerning transparency, reliability, and trust. The biggest example of today is the
flawed focus on short term profits, that has caused the world to spiral towards a climate
catastrophe.

This dissertation focuses on two decision problems residing in the Complex Decision
Environments of remote sensing, which in the context of this dissertation are character-
ized by the following properties:

1. Large-scale optimization problem: for practical reasons, the problem scenarios are
always characterized by a large number of variables and constraints, which make
them computationally intensive and time-consuming. Large-scale optimization
problems arise in various domains, such as engineering, finance, logistics, and
transportation, and they require a mixture of advanced and novel optimization
algorithms and high-performance computing resources [21, 79, 138].

2. Complexity of NP-hardness: NP-hardness refers to the computational complexity
of a problem that belongs to the class of problems known as NP (nondeterministic
polynomial time) problems. An NP-hard problem is one for which there is no
known algorithm that can solve it in polynomial time [93]. Examples of NP-hard
problems include the traveling salesman problem, the knapsack problem, and the
graph coloring problem.

3. Multi-objectivity (if not many-objectivity): Multi-objective optimization problems
involve optimizing two or more conflicting objectives simultaneously. The goal is to
find either find a single solution accommodating the preferences of the DM or a set
of non-dominated solutions [108, 124]. Many-objective optimization problems in-
volve optimizing many objectives simultaneously [19]. Multi-objective and many-
objective optimization problems are common in real-world applications, such as
engineering design, financial portfolio optimization, and supply chain manage-
ment [69]. The preferences of the DM determine how the different objectives are
compared. In a safety-critical environment, certain objectives are of much higher
priority than others [78].

4. Near real-time computation requirements: This characteristic refer to the need to
solve a problem within a specified time constraint [42]. Near real-time applica-
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tions require fast and efficient algorithms that can deliver results within minutes,
seconds, or even milliseconds. Examples of near to real-time applications include
autonomous vehicles, robotics, and financial trading systems.

5. Uncertainty from either the environment or the DM :
In the environment imposed domain, the uncertainty refers to the stochastic be-
haviour that may or may not follow a known probability distribution [116]. In gen-
eral, this stems from unknown or indescribable factors that influence the decision-
making process. These factors may include changes in market conditions, fluctu-
ations in demand, or unexpected disruptions in supply chains.
In the domain of the DM, the uncertainty refers to the inherent limitations and
biases of the DM, that can affect the optimization problem [58]. These limitations
can include incomplete information, incompetence, cognitive biases, and personal
preferences that may not align with the stakeholder preferences in terms of defining
optimality [20]. Generally, this entails dealing with knowledge that is fuzzy and
considering it as such, rather than enforcing through a crisp framework [47].

Combined, these properties make it very unlikely that the solution approach will
yield an optimal solution, as some trade-offs have to be made on the basis of optimality,
feasibility, robustness and explainability. A set of attractive features beside optimal-
ity for the obtained solution is robustness and explainability. Not necessarily seen as
conflicting, but as complementing traits.

1 Motivation

1.1 Practical Perspective
We are at the dawn of the cybernetic era, pushing towards software 2.0, and leaving in-
creasingly more humans redundant in different applications of the OODA loop (Observe,
Orient, Decide, Act) [86]. Increased computational capabilities and the ever-increasing
amount of available data [102] allows for the inclusion of beneficial information to the
decision process. However, this additional information dramatically increases the com-
plexity of the decision environments, and it is therefore important that the developed
methods increase the transparency of the decision process. Accuracy and interpretability
have for a long time been contrasting features of one’s model, but the success of ensem-
ble methods (XGboost with all its variants, random forrest), neural networks (MLPs,
RNNs), and kernel based methods (support vector machines) in this accelerated world
have re-sparked the hunt for interpretability [12, 39, 72, 84, 104]. Not only in the rela-
tionship between the feature space and solution space, but also in its connection to the
preference space. However, for certain automated processes, solution search methods
with a lack of transparency are not feasible alternatives due to the high variation in
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problem scenarios and the need for trust in the system [15]. This includes the so-called
black-box methods of deep neural networks, but in general methods where explainability
is a function of the size of the model. As an example, decision trees are generally very
explainable, but larger decision trees, and extended versions of these like the popular
XGboost method, are too complicated to deem explainable [18]. Consequently, these
methods are not feasible for these situations, especially, when the act of allowing the
DM to impose their preferences is of high importance.

To point in a direction with the practical perspective, a question for the complex
decision environments is therefore: Why are the correct preferences often omitted in
the design of solution approaches to large-scale NP-hard optimization problem with near
real-time computation requirements?

1.2 Theoretical Perspective
For an automated decision-making scheme to be successful, we have five entities that
we want to overlap as much as possible. see illustration in Fig. 1.2. Here an overlap
signifies the level of control and understanding, that one entity has over the other. The
corresponding entities are the DM, the preference structure, the problem formulation,
the final solution, and the solution characteristics. The functionality of an overlap
are signified by the processes of preference elicitation, preference articulation, solution
search, and a simulation or testing phase. Note, the order with which these processes
take place is not fixed.

Fig. 1.2: Holistic illustration of an automated decision-making procedure with focus on the relationship
between the DM, the final solution, and the solution characteristics. Note, the left to right ordering does
not imply any ordering, as the solution search also can be performed before or during the preference
elicitation. The ordering depends on the design of the system (see section 2.2 on place of articulation).

Today, a great deal of decisions can be represented mathematically as optimiza-
tion problems, but due to the scale and available computing power, multiple objec-
tive/criteria aspects are often neglected or omitted, leaving a sub-optimal solution to be
produced that ultimately does not fit to the preference structure of the DM. However,
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since Daniel Kahneman won the 2002 Nobel prize in economics for his work on be-
havioural economics, the notion of human behaviour has gained traction, and research
communities have moved towards integrating human factors into decision-making prob-
lems [49]. This all with the goal of improving explainability, flexibility, robustness, and
transparency of the decision environments, but also to alleviate bias and integrate the
inherent incompetence, indifference, and uncertainty of the DM. An example for the
push in this direction, is the newly defined terminology of Industry 5.0, which seeks to
reintegrate humans and sustainable human values into industry [77].

Despite the push to integrate the correct preference structures [46, 64, 133], when
dealing with large-scale NP-hard problems in time constrained environments the com-
parison of different solutions on the obtained Pareto front is of high likelihood to not lay
on the actual Pareto front [63, 119], and consequently the additional computing power
spent to identify additional solutions could have been used more effectively. Addition-
ally, in real-time computation requirement environments, the act of allowing a DM to
evaluate a Pareto front is often completely infeasible. Especially, if the Pareto front is
generated in a many-objective environment where practically every feasible solution can
be Pareto optimal.

A general theoretical question for the complex decision environments is therefore:
Which problem formulation scheme and solution approaches are applicable to integrate
the preferences of the DM in a large-scale NP-hard stochastic multi-objective optimiza-
tion problem with real time computation requirements?

1.3 Philosophical Perspective
In the future every decision will be automatable, and it will have to be an active choice
for humans to participate, contribute, finetune, alter or oversee decision processes. Con-
sequently, it is imperative that we understand how human preferences can be articulated,
integrated, and taught.

In order for the autonomous system to properly make or suggest solutions that fit
our preferences, the underlying problem needs to integrate multiple objectives and/or
criteria that properly reflect the real-world scenario. Any single objective/criteria rep-
resentation of the real world is nothing but a naive reflection of the truth. Nevertheless,
some naive reflections can be very useful, but in general, the more complex a prob-
lem gets, the more naive a single objective representation is. Even in the event that
only profit is to be considered, the actual objective would be long-term profit, which is
extremely difficult to quantify as quality, customer satisfaction, company image, even
employee satisfaction and climate impact has a great impact on the long-term profits of
the company. Surely, considering these other criteria has a negative impact on short-
term profits, and the important thing is therefore to assert the correct balance between
the different objectives and/or criteria. After all, humanity is playing a (seemingly)
infinite game where the objective is to ensure participation rather than to win [14].
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Rather than playing within the constraints of the game, we are playing with the actual
constraints.

Furthermore, as a philosophical remark to the motivation of this PhD dissertation,
the works of Mercier et al. [73] showcase that the origin and real use of reason is a
social ability, rather than an ability that allows us to obtain better decisions. As a
consequence, reason and thereby decision-making tools are moreso utilized to better
reason for the decision that we make towards others [123]. Before complex decision-
making tools are easily available, it is therefore very understandable that decisions
explained by simple and very transparent reasoning like metrics such as profit, will be
accepted as the best one. Therefore, due to the increased amount of available data and
with the development of more intuitive decision-making tools, it is very plausible that
a direct consequence is improved sustainability, improved employee happiness, health,
and customer satisfaction. Simply put, a direct consequence of the improved decision-
making methods is, that bad decisions more clearly will stand out as what they are -
bad decisions.

We humans have the power to destroy all life on earth within a couple of hours, and
we have had that since the invention of the atomic bomb. Einstein famously said that
"The release of atomic power has changed everything except our way of thinking...".
Before we transition completely to the cybernetic era, it is important that we either
change the way we think or develop tools that improve our thinking. I hope this work
contributes to the latter.

2 Research Gaps
The research gaps are identified based on the two representative problem domains; the
SIASP and the UAVRP, where the majority of work is done within the SIASP.

The following research gaps and corresponding research objectives are identified:

1. Some problems, which are fundamental MCDM problems, are not considered as
such in the literature and business due to the added complexity. One goal is there-
fore to present efficient and robust methods that efficiently integrate and analyse
the multi objectivity of the problem in order to benefit from the added flexibility
that this yields. The SIASP is a great example as most papers on the matter focus
on the scheduling sub-problem, and in turn seek to optimize e.g., expected number
of images, expected profit, or average cloud cover without considering the collec-
tive multitude of objectives existing within the satellite operation [9, 42, 91, 120].
How can this be integrated in a manner that does not significantly in-
crease the complexity of the solution approach?
Additionally, the MCDM problems with implicitly known alternatives will only
to a very low degree allow the DM to incorporate their preferences, and often
through a very rigid weight setting scheme [42, 67]. How can this be extended
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such that operators can incorporate their preference structure more
precisely and take advantage of the system flexibility?

2. The same problems often neglect the fuzzy and stochastic nature of the decision
environment, examples on these uncertain conditions in the SIASP are:

• Uncertainty in cloud coverage information – directly impacts the quality and
therefore quantity of acquired data.

• Uncertainty imposed by the incompetence of the DM when defining the pref-
erence structure.

• Uncertainty in terms of the accuracy of the imposed preference structure.
• Uncertainty in long term effects of the different preference structures. The

realization and understanding that the ultimate objective is changing in re-
lation to time and/or decision environment.

How can uncertainty be incorporated in the solution approaches with-
out increasing the complexity of the decision environments greatly?

3. The current plethora of MCDM methods developed for the evaluation problems
focus on problems where alternatives have to be selected, ranked, or sorted [2,
56, 131]. However, there does not exist a method for choosing between differ-
ent subsets of alternatives that incorporate the true preference of the DM. For
complex decision environments, the matter of understanding the different alterna-
tives sometimes extend the selection, ranking, and sorting goal of regular MCDM
approaches. This could be in the process of selecting the best subset of image ac-
quisitions available. Recent work by J. Figueira et al. [30] suggest to make strides
towards the set wise selection problem with their ELECTRE-score method, but
when incorporating preferences they are only implementing the preferences on the
single element level.

3 Research Questions
From the research gaps, the corresponding research questions are:

RQ1 Which decision-making framework is applicable to integrate the multi-objectivity of
complex optimization problems without a significant increase on the computational
load of the solution approach?

RQ2 How can the approaches from the evaluation methodology be converted to accom-
pany and mitigate explainability and transparency issues in design problems, while
allowing for a customizable integration of the preference structure?
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RQ3 How can the different types of uncertainty be integrated in the solution approach?

RQ4 How can setwise preference information be elicited, integrated, and utilized?

The goal with these questions is, besides addressing the identified gaps, to develop
novel solution methodologies for integrating multi-criteria decision making in complex
decision environments, as well as contribute to both MCDM literature and the literature
on the different problems. The focus and coverage of the research questions in terms of
an automated decision-making procedure can be seen in Fig. 1.3. Additionally, RQ1 is
specifically answered in detail in Section 1, RQ2 in Section 2, and RQ3 in 3. The last
research questions is answered with a discussion and a proposed roadmap in Section 4.

Fig. 1.3: Holistic illustration of an automated decision-making procedure with focus on the relation-
ship between the DM and the computed solutions. The corresponding coverage of the posed research
questions posed in Section 3 can also be seen illustrated.

Holistically, this means the DMs will occupy the role of customers in the system.
This PhD study focuses on the preference articulation in the automated decision-making
procedure, but will also cover the phases of solution search and simulation, while the
preference elicitation is only briefly described.

4 Research Methodology
Validating the results of the devised solution approaches is in some ways trivial when the
objective is clear, as the procedure of modelling the problem (See Fig. 1.4) in order to
obtain a real-world solution are comparable with other real-world solutions a posterior.
Following a scientific research method rigorously will lead to robust results, and not
doing so will consequently show in the results. However, for the sake of repeatability and
later re-applicability, the utilization and description of the used research methodology is
crucial. Especially, as the devised methods at a later point is expected to either directly
or indirectly be used to generate applicable knowledge for the industry.

Knowledge creation relies heavily on the presupposed assumptions of that knowledge
about the world. Often these are referred to as the ultimate presuppositions, which serve
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Fig. 1.4: Illustration of the conceptual background when modelling a real world problem and the
three phases of interpretation, solution search, and sensitivity analysis. The figure is adapted from M.
Inuiguchi et al. (2002) [47] and based on the cyclical nature of creating knowledge with the analytical
view in Arbnor et al [5].

as the foundation in determining how facts are realized, interpreted and aggregated [5].
If a "worldview", P, is challenged, the supporting arguments, Q and R, are now not
just supporting but the new bearing arguments, and to upheld these, new supporting
arguments, S, T, U, and V, have to be posed. Consequently, a person who presupposes
that reason is the ultimate test for truth, must at some point base even the simplest of
arguments on a set of axioms, that may or may not presuppose the actual truth [25].

Theorists of science, have developed a large suite of "conceptual languages", that
relates the ultimate presuppositions with the area of study. The chosen "language" rep-
resents the research methodology, that enables knowledge creation to rest on a bedrock
of presuppositions on which other research also rests. The paradigm is that common
set of assumptions and orientations which a research community shares - and with the
paradigm, specialization flourishes [57]. The progression of a research community can
be identified based on the state of the paradigm. Either multiple different "worldviews"
exist situating the research field in a pre-paradigmatic period, a single agreed upon
paradigm can be identified classifying it as a normal science, or an anomaly has been
identified that cannot be explained with the current set of presuppositions throwing the
state of the science into chaos, called the revolutionary science period. Later, due to a
new paradigm being identified that explains the anomaly, the science is yet again in a
state of normal science. Until a new anomaly is identified or a broader, more inclusive
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model is identified [57].

The Analytical View

In Arbnor et al [5], three methodological views are presented, namely the analytical
view, the systems view, and the actors view. The crux of their differentiation happens
at the posed ultimate presuppositions, where the analytical view sees the information of
the whole as factive and equal to the summed information of its parts. Here information
can be both objective and subjective, and lastly the parts are explained through verified
judgements [5]. In the analytical view, the research methodology utilize and investigate
cause-effect relations (as an ideal), logical models, and pose representative cases. As a
critique to the analytical view, both the systems view and the actors view state that
the whole is not equal to the sum of its parts. Many other theories have appeared as a
critique to the analytic view, e.g., the actor-network theory.

In Fig. 1.4, the analytical view on knowledge creation is in full effect. From the
empirical and real world, the theories are induced. With these theories, (fuzzy and
eventually) crisp models are designed and formulated. Based on the models and theory,
we deduce a solution or make a prediction about the real-world, which then is verified
and compared through real-world experimentation. Note the connection to Fig. 1.2,
where phases 1 and 2 in Fig. 1.4 correspond to the design of the problem formulation
and solution search.

Assuming the state of the optimization research community being in its normal
science period, this PhD dissertation utilizes the standing paradigm and hereunder re-
search method by the analytical view. Combining results from the standing theoretic
contributions from multi-objective research community and the expert knowledge gen-
erated on the designated problem domains to infer and deduce new solution methods.
To deduce results from existing theory, we develop the scheme presented in figure 1.5.
This is a personal work paradigm designed to suit the research topics, but it is heavily
inspired by the mixed research method [141], perspectives on the scientific method [122],
and the Rapid Application Development method [71]

In stage 1 for each problem domain, a focused literature study is conducted to
explore the utilized problem formulations, solutions approaches with the edge of uti-
lized MCDM methods, and furthermore to investigate specifics and peculiarities to the
problem. In stage 2, the problem specific information is identified for the problem en-
vironment, e.g., relevant criteria, operational constraints, and objectives to consider.
Additionally, the stochastic and uncertain elements or conditions to account for in the
decision environment is identified.

In stage 3, we collaboratively design and implement the solution search algorithms
and the MCDM algorithm.

The natural next step in stage 4 is to develop a scenario generator or a simulation
tool that generate problem scenarios. That is, to generate simulated real world data to
which the solution approaches can be compared and validated experimentally. For the
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Fig. 1.5: Overview of the adapted research methodology with the different stages. The colors present
a combined view of the different levels of workload and novelty required to execute the different stages.

SIASP, that is, cloud coverage, which leads to develop either a cloud forecast generator
or to retrieve real-time forecasts of the location of customer requests, and to utilize
those forecasts. Moreover, the uncertainty induced by the DM due to both incompe-
tence and their literal uncertainty towards the actual preferences is investigated. Note
the applicability of the scenario generator highly depends on the inputs from industry
experts. This development procedure coincides with the development of evaluation met-
rics. Likely they can be implemented directly from the literature study as the results
can serve as a means of comparison with other research results. Hereafter, we implement
the solution approach and the scenario generator in stage 5.

In stage 6, solution approaches are then experimentally verified through a thorough
simulation phase, and those results are then discussed to present proposals that can
fill the the identified literature gaps in stage 7. Note the dissemination in stage 7
will again activate the first stage in order to do a second focused literature study that
thoroughly puts the proposed results into context. Consequently, the developed research
methodology is an iterative process.

5 Structure of the Dissertation
The PhD dissertation consists of two distinct parts; the actual dissertation and the
collection of papers. Additionally, the dissertation is split into three chapters; the
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remainder of Chapter 1 briefly presents the publications and work done through the PhD
period. Chapter 2 explains the practical and theoretical background for the problem
domains and the field of MCDM. Chapter 3 functions as a comprehensive summary and
discussion of the developed methods and lessons learnt with a road map for future work
sketched out.

5.1 Publications and Submissions during the PhD Study

Table 1.1: Overview of the papers

Paper A: Multi-criteria decision making for the multi-satellite image acquisition
scheduling problem

Summary: With this paper we investigate the effect and explainability of dif-
ferent scoring methods for the SIASP, namely TOPSIS, ELECTRE-III, and WSA.
Along developing a simple scenario generator, we formulate the problem as a binary
programming problem and deploy the large-scale exact GLPK algorithm to obtain
a solution. We find the solution approach to do great on small problem scenarios,
but struggle when the scenarios get larger. We found the ELECTRE-III approach
to show high levels of customizability and allowed the DM to discriminate between
customer priorities in an intuitive direct way, which the common weight articulation
methods did not. The research objectives are to:

• showcase the applicability of evaluation methodologies as scoring approach (a
priori) in satellite scheduling problem

• introduce ELECTRE-III, TOPSIS, and compare with the naïve weight setting

• showcase the direct vs indirect preference structure articulation

Reference: Vasegaard, A. E., Picard, M., Hennart, F., Nielsen, P., & Saha,
S. (2020). Multi criteria decision making for the multi-satellite image acquisition
scheduling problem. Sensors, 20(5), 1242.

Paper B: UAVs Path Planning under a Bi-Objective Optimization Framework for
Smart Cities

Continued on next page
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Table 1.1 – continued from previous page
Summary: In this paper we showcase a framework for the integration of multiple
objectives in UAV path finding problem. Along with investigating the issues of doing
so through regular weight setting approaches. We also devise a 2-stage VNS approach
to combat the high complexity issues of the path finding approach, where a scenario
almost randomly can be too complex for other approaches to solve. The research
objectives are:

• Investigate the issue of multi-objective formulation in path finding problem only
indirect preferences

• Investigate the scenario size effect on solution approach: Exact vs devised heuris-
tic (VNS)

Reference: Saha, S., Vasegaard, A. E., Nielsen, I., Hapka, A., & Budzisz, H. (2021).
UAVs Path Planning under a Bi-Objective Optimization Framework for Smart Cities.
Electronics, 10(10), 1193.

Paper C: An improved pre-processing method for cyber physical systems-as illus-
trated in the earth observation satellite scheduling

Summary: This conference paper showcases some of the learnings and possible
improvements found when dealing with the pre-processing method of the SIASP. One
takeaway is the seemingly free improvements on running time. We also investigate
the effects of modifications made in the pre-processing on small reformulations of
problem.
Reference: Elkjaer Vasegaard, A., & Nielsen, P. (2021, March). An improved pre-
processing method for cyber physical systems-as illustrated in the earth observation
satellite scheduling: Pre-processing method for cyber physical systems. In 2021 the
5th International Conference on Robotics, Control and Automation (pp. 102-106).

Paper D: A GRASP-Based Approach for Planning UAV-Assisted Search and Rescue
Missions

Summary: In this paper the UAV path finding problem is investigated in the setting
of the UAV-assisted Search and Rescue problem (SAR). The paper walks through the
later part of the design process of a fully-autonomous decision system, where the
hotspots are simulated on a real-world map, a network is inferred and simplified to
combat the complexity, and a grasp-based heuristic is developed and deployed to yield
feasible routes. The system is compared to an exact approach and analysed through
experimentation for different problem settings.

Continued on next page
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Table 1.1 – continued from previous page
Reference: Pedersen, C. B., Nielsen, K. G., Rosenkrands, K., Vasegaard, A. E.,
Nielsen, P., & El Yafrani, M. (2022). A GRASP-Based Approach for Planning UAV-
Assisted Search and Rescue Missions. Sensors, 22(1), 275.

Paper E: Towards an autonomous system for the satellite image acquisition schedul-
ing problem through multi-criteria decision-making and the extended longest path
algorithm
Summary: This paper is a direct extension to the identified problems found in
Paper A. We reformulate the problem into a DAG in order to decrease the complexity
of large-scale problem scenarios, and develop the greedy algorithm ELPA that takes
advantage of the satellite network knowledge. We further continue the analysis of
the ELECTRE-III scoring approach and present two decision support tools in the
heatmaps and the significance tests to support decisions on changes. The research
objectives are:

• Reformulation of SIASP as a DAG with interdependent and allowed nodes, and
introduce the ELPA method

• Performance analysis of ELPA vs exact approach (GLPK)

• Weight space analysis and hypothesis test as decision support tool for the DMs
to accompany ELECTRE-III

Reference: Vasegaard, A. E., Picard, M., Nielsen, P., & Saha, S. (2023). To-
wards an autonomous system for the satellite image acquisition scheduling problem
through multi-criteria decision-making and the extended longest path algorithm. Not
submitted

Paper F: Determining the pricing strategy for different preference structures for the
earth observation satellite scheduling problem through simulation and VIKOR

Continued on next page
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Table 1.1 – continued from previous page
Summary: With this paper we extend the analysis of the SIASP to cover the
collaborative decision making that is feasible with the MCDM framework. An in-
depth analysis of the stakeholders and DMs in the SIASP and the market tendencies
are used to reason why the pricing strategies are soon to see a change. We deploy the
VIKOR method and the Shannon entropy weight elicitation method to automatically
retrieve the best compromise solution in terms of a pricing strategy and preference
structure. The results indicate significant benefits of collaborative decision-making
strategies when devising the decision process. Mainly to:

• Investigate dependencies in decision process of SIASP, i.e. integrating pricing
strategy decisions on the schedule decisions

• Automatic preference structure selection through VIKOR and Shannon’s en-
tropy weight elicitation method

Reference: Vasegaard, A. E., Moon, I., Nielsen, P., & Saha, S. (2022). Determin-
ing the pricing strategy for different preference structures for the earth observation
satellite scheduling problem through simulation and VIKOR. Flexible Services and
Manufacturing Journal, 1-29.

The overall connections between the appended papers can be seen in Fig. 1.6,
where three different subgroups have been showcased; namely main contributing papers,
and supporting papers for the two problem domains. Note research questions 1-3 are
investigated in all four papers of the main contribution, while research question 4 is
answered in the dissertation. However, RQ1 is especially investigated in Papers A and
B, RQ2 is investigated in all of the main papers, while RQ3 especially is investigated in
Paper E and F.

6 Research-related Work
This section showcases all the work I have done in relation to the PhD. In the appendix
in Section S-1, one can find a more detailed overview of conferences and workshop
participation, teachings, supervisions, and examinations, as well as PhD related course
work.

6.1 Abroad Research Stays and other Research Projects
The research has been conducted in collaboration with Airbus Defence & Space, Seoul
National University (SNU), and Universität der Bundeswehr Munich (UniBWM), Uni-
versity of Morotuwa (UoM), and Polytechnique Montreal.



6. Research-related Work 19

Fig. 1.6: Overview of the contributions and their connections to the research questions shown

At the industrial engineering department at Seoul National University under Prof
Ilkyeong Moon the focus was on diving deeper into the decision structure of the SIASP,
while initializing future collaborations on the drone applications. Under Prof Rose at
the the Simulation and model building group at the computer science department of
UniBwM, the focus was specifically on mission planning. At the Supply chain operations
group of UOM the collaboration with Dr. Amila Thibbotuwawa and Dr. Niles Perera
was focused on drone applications and on completing a literature study on the SIASP.
With Prof. Pellerin and the team from the department of Mathematical and Industrial
Engineering at Polytechnique Montreal the research work was focused on UAV deploy-
ment in the context of Search-and-rescue setting with real-world historic data from the
tornado environment of Oklahoma.

The results of these collaborations is that there is a paper under preparation with
Sean Grogan and the research group from Polytechnique Montreal on exactly prioritized
UAV routing under tornado Search and rescue mission planning. Similarly there is a
systematic literature review paper under preperation with Buddhi Weerasinghe and the
research group from UoM. Finally, further papers are in preparation in collaborations
with the research group from SNU and UniBwM on UAV deployment.
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Chapter 2

Background and
State-of-the-Art

In this chapter we unfold the practical and theoretical background of the investigated
problem domains in Section 1 and thereafter the landscape of MCDM in Section 2 with
a special emphasis on the applicable solution approaches.

1 Background of Problem Domains
As mentioned in the introduction, the following two problem domains both have high
degree of membership to each of the identified characteristics that define a complex
decision environment. The following explanations on the two problem domains will take
the perspective of why they have a certain membership to each of the characteristics,
and how the literature have dealt with it, separately.

1.1 Satellite Image Acquisition Scheduling Problem
The satellite image acquisition scheduling problem has been mathematically formulated
as an optimization problem for decades. Bensana et al. [9] were likely the first to
formulate the problem as a linear programming problem. Since, a great deal of exten-
sions have seen the light of day with knapsack problem formulations [120], maximum
clique problem formulations [67], exact and inexact solution approaches [61, 121], single
to multi-objective formulations [11, 108], and different specifications of the real-world
problem in constellation to single satellite [48], hyper-agile to non-agile [61], single-user
to multi-user platform [11].

21
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Large-scale Optimization Problem

The problem scenarios are usually of very large scale characteristic. Beside the high
number of reasons for increased customer demand, the business case of sending high-
resolution imaging satellites to orbit do not function without having a large set of
customers to service. Otherwise, pseudo-satellites or other aerial platforms provide a
great alternative. The benefit of orbiting image satellites come exactly in the form of
their ability to acquire high quality images, to acquire large amounts of data, fast, and
with high revisit frequency [4].

The SIASP has evolved from considering EOS with no degree of maneuverability to
the realm of hyper-agile EOS [126]. The natural consequence of this is that a larger
pool of requests can be reached as an acceptable depointing angle usually lies around 15-
20 degrees unless otherwise specified. Another consequence is the inter-request agility,
meaning a multi-strip request can be managed by the same satellite in the same orbit.

Moreover, as satellite projects are long term investments, companies will usually
manage a larger fleet of heterogeneous satellites. This diversity of imaging payloads
roaming on the satellites means the satellites can cover multiple different visual bands
and therefore depending on which objective the imaging request has, serve multiple
different types of customers. In the scheduling procedure, the satellite fit for the task will
complete it - and the set of capable satellites are with this setup usually overlapping [4].

Complexity of NP-hardness

The generalized version of the problem is of NP-hardness complexity with certain spec-
ifications shown to be NP-complete. In the knapsack problem formulation, a big reason
for the scaling of the problem is the interdependencies between the decision variables and
the number of decision variables scale indirectly with the number of satellites, number
of requests, and time resolution of the satellite path. Similarly, this interdependency is
the main reason in the maximum clique problem formulation. Here it is however easy to
visualize its scaling by the explosion of added edges as graphs in the EOS case usually is
dense. That is, close to the maximum number of edges. See figure 2.1 for an illustration
of different scenario sizes.

Fig. 2.1: The graph density showcased for the maximum clique problem of the SIASP for the three
scenarios: 2 requests, 7 requests, and 15 requests, all with a time granularity of 9 seconds.
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Multi-objectivity

The SIASP is fundamentally a many-objective optimization problem, that often is sim-
plified to only consider a select few set of objectives [9, 79, 119]. Commercial satellites
have only one long term objective in profit. However, as discussed in Paper E, the quan-
tification of what long term profit entails is a difficult problem, and this means generally,
that one classifies the total set of objectives into three different sets that focus on each
of their aspects:

The political agenda: It prioritizes customer types in order to align with the company
and stakeholder’s policy. These are the immediate qualitative and quantitative effects
that would decrease the likelihood of a satisfied customer [119].

The qualitative agenda: This deals with all the qualitative criteria that is connected
to acquiring an EOS image. E.g., Sun elevation, depointing angle, and cloud coverage
[116, 119, 125]. Perhaps, images above a certain quality is good enough, but in a
competitive market having a comparably better quality is always of preference [129].

The operational agenda: This conveys the changing value of attempts relative to
the remaining time until expiration of requests, the uncertainty of cloud coverage, and
the multi-strip or stereo request completion [108]. Ultimately, it portrays the utility of
completing certain request through time.

There is a general overlap between all of these aspect, and they all have to be
weighted by the DM. E.g., the acquisition of a high number of images will naturally
effect the quality of images, and a decreased quality can mean a loss of future customers.
The EOS operator may desire to service as many customers as possible, but still want
to ensure to service the highest priority customers. However, what if the acquisition of
a high priority customer early in the process means a complete loss of a lower priority
customer that has been waiting for their image for an extended period?

This is also where the critical dilemmas of the decision environment comes into play.
Simultaneously, the priority of emergency requests have to be made with care, especially
if multiple emergency requests are conflicting. Naturally emergency organizations will
present their requests through a specialized platform, but ensure that the intricate
priority is ethical is very difficult.

In Fig. 2.2, the entirety of the relevant criteria is showcased. The figure also illus-
trates the importance between criteria, and, if multiple objectives were to be considered,
where to aggregate criteria to reach a certain total of objectives. Note, there are five
different categories; weather, quality (satellite perspective), operational (effect on to-
tal schedule and future schedules), emergency, and customer related. The DM can
ultimately analyse and quantify the trade-offs by evaluating different settings of the
criteria.
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Fig. 2.2: A hierarchical representation of the criteria affecting the operational decisions of the EOS

Near real-time Computation Requirements

The real-time requirements of the scheduling stem from the utilized information. When
weather conditions influence the decision-making process, inclusion of newer information
leads to less uncertainty [116]. Additionally, it often happens that new customer requests
will be added at the very last minute (e.g., emergency request), and consequentially,
the intricacies of the customer pool makes it likely that the new optimal schedule is
completely different than the one for the previous pool. A phenomena, that in evaluation
problems without the consideration of the satellite network, is known as the rank reversal
problem [127].

In continuation to the previous multi-objectivity characteristic, three different deci-
sion frameworks can be shown in Fig. 2.3. The left one represent a multi-level decision-
making structure where certain data are considered first. The benefits of this decision-
making scheme is that the scores are easy to compute, implement, and correspondingly
to understand. However, with this it is required to construct a pre-defined axiom with
which one can evaluate the image attempt and corresponding data against. The elici-
tation procedure for these axioms can be very difficult, biased, and as the axioms are
defined for each objective independently, the collaborative effect can easily be missed.

In the middle in Fig. 2.3, the multi-level decision-making scheme is omitted and
all data for the request is considered simultaneously. However, it is still necessary to
build some pre-defined set of axioms to evaluate ones image attempts up against as the
information considered to produce a score is assumed independent from the intricacies
of the other requests.

The right side in Fig. 2.3, shows a representation of the complete opposite decision
scheme. Here all data for all image attempts is considered simultaneously to produce
a score. It is here not necessary to utilize a pre-defined set of axioms, despite it being
possible. The benefits are that all information can be considered to produce the correct
score that represents the relative importance of the image attempts.

For certain preference structures the dependency in decision procedures are of zero
importance, and consequentially, the most optimal decision-making framework could be
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the multi-level scheme (left), while for others it may not be so.

Fig. 2.3: The different modes of aggregating data into a score that represents the importance of the
request and consequentially the image attempt. The decision-making process is either multiple inde-
pendent processes (left), one process that considers all data for the single request dependent (middle),
or one large decision-making procedure that simultaneously considers all intricacies of requests and
satellite network (right).

For a complex decision environment of this character it is natural to consider data-
based modelling schemes. However, due to the many-objective nature of the problem,
these are rarely utilized due to transparency issues in defining preferences and the cor-
relations in the data [72]. Otherwise, data based modelling is more used in the case of
hyper-parameter tuning [65].

Lastly, the evolution of satellite agility and resolution means that the payload is
used with as little downtime as possible, correspondingly designed to fit the demand.
As demand increases, so does the need for real-time computation.

Uncertainty

The criteria in Fig. 2.2 have multiple different types of uncertainty; stochastic uncer-
tainty in weather and satellite positioning, and the uncertainty of fuzziness in asserting
the correct preference structure related to e.g., customer priority.

The literature has mainly focused on externally imposed uncertainty stemming from
cloud coverage. Naturally, this is because of the stochastic element of which probability
distributions are known. Consequentially, stochastic modelling frameworks have been
proposed [116, 125, 126].

Recently, preference based approaches have been developed to incorporate exactly
the uncertainty of decision-makers both from an a priori stand point [42, 136] and a
posterior evolutionary algorithms or local search approaches [62, 108].

A system-based uncertainty can in the a posterior approach be seen as inherently
considered. However, in the event that a decision-maker is introduced in the operational
loop, the system will first of all be greatly delayed by the DM, and secondly the benefit
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of evaluating the Pareto front and produced set of solutions is not given due to the
complexity and scale of the evaluation. Rather than evaluating operational decisions
for each schedule, deeper analysis is, therefore, required in order to fine-tune an a priori
preference structure by the DM for decisions of more strategic character. This naturally
requires a great deal of trust by explainability and transparency in the system.

1.2 The UAV Routing Problem
The Vehicle Routing Problem (VRP) and the Traveling Salesman Problem (TSP) are
two well-known combinatorial optimization problems that involve finding optimal routes
[22, 34, 100]. The TSP, initially formulated in the 19th century, involves finding a Hamil-
tonian cycle with minimum distance in a complete graph, where each city represents a
node, and the edges denote the distances between cities [60]. The VRP can be viewed as
an extension of the TSP where additional constraints and complexities are introduced.
Instead of a single agent, the VRP addresses multiple (potentially hetrogenous) vehicles,
each with the ability to serve multiple customers [22]. The goal is to determine opti-
mal routes for each vehicle, considering constraints such as vehicle capacity limitations,
customer demands, time windows, and potentially other factors like real-time updates
or multiple depots [34, 51, 100, 111]. The objective is to minimize the total distance
traveled and/or other cost metrics while satisfying the given constraints.

Multiple different formal versions of the VRP has since been defined, e.g., VRP with
profit maximization, which as opposed to the traditional VRP is posed as a maximiza-
tion problem not required to visit all customers, but seek out the route that in total
aggregated the most profit. The most investigated version of this variant of the VRP is
refered to as the (team) orienteering problem [38, 87, 107].

The UAVRP is a recent addition to the problem domain and considers the added
flexibility of a UAV operating in 3D space, while adding a new set of constraints to
ensure safe operation [110, 111]. The ease of use, flexibility of the platform, and value
it brings have consequently lead to a multitude of interesting problem domains being
investigated for the UAVRP, e.g., the search and rescue scenario of Aalborg harbour
(see Fig. 2.4).

Fig. 2.4: Three instances of the evolution of a probability map generated for a lost object at the
harbour of Aalborg.
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Large-scale Optimization Problem

The VRP becomes a large-scale problem when dealing with UAVs due to several factors.
UAVs can navigate through three-dimensional airspace and reach remote or inaccessible
locations. This flexibility allows for a vast number of potential routes, increasing the
solution space dramatically [83, 93].

UAV operations are especially affected by the dynamic and uncertain environment.
Factors such as changing weather conditions, a non-linear speed-dependent fuel-consumption,
different airspace restrictions due to safety concerns, and real-time traffic congestion re-
quire adaptability and dynamic decision-making [6, 111]. Incorporating these dynamic
factors into the modelling of the UAVRP introduces additional complexity and compu-
tational requirements [41].

The number of UAVs used in a given application can vary significantly, ranging
from a single UAV to multiple large fleets [111]. As the number of vehicles increase,
the combinatorial nature of the VRP leads to an exponential growth in the potential
solution space.

Additionally, as UAVs often require communication and coordination among them-
selves, ground stations, and other elements in the system, modes of sharing information,
synchronizing movements, and avoiding conflicts adds additional complexity to the de-
sign phase of the solution approach [44, 95, 113].

Complexity of NP-hardness

The NP-hardness of the VRP has been extensively studied and proven in the literature
[34, 111].

The formulation of the VRP consists of the subtour elimination constraint, which
ensure that only one connected route is generated, as opposed to multiple non-connected
routes [38]. There are two well-known formulations of the subtour elimination constraint,
namely the DSF and MTZ [21, 75], to which there are no clear selection of which to
choose for ones specific problem scenario and corresponding solution approach. This
is because, the DFJ version creates an exponential number of constraints depending
on the number of customers (one for all possible sets of customers), while the MTZ
creates a polynomial number of constraints (one for each pair of customers), but the
DFJ adds zero new decision variables while MTZ adds an entire new set. Consequently,
the most suitable formulation stem from a collaborative effort of designing a fitting
solution approach to the size of the problem scenario of interest that then again can
manage the complexity of the problem formulation that is chosen [27, 87, 139].

Multi-objectivity

While the traditional formulation of VRP seeks to minimize a single objective, such as
total distance traveled or total time, real-world VRP scenarios often involve multiple
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competing objectives [6, 41, 43].
The total duration of an plan is often dependent on multiple factors beside the total

length of the route, e.g., the number of turns a route has to complete or the wind
direction [40, 112]. Consequently, the shortest path is not always of highest priority.

In VRP, there is a trade-off between minimizing costs, such as fuel consumption
or vehicle operating expenses, and maximizing service quality, which includes factors
like customer satisfaction, on-time deliveries, or minimizing waiting times [3, 105, 113].
These objectives often conflict with each other, as reducing costs may result in longer
routes or increased delivery times. The goal is to find a balance that optimizes both
cost efficiency and service quality.

With growing concerns about environmental sustainability, reducing the carbon foot-
print and minimizing emissions have become important objectives in the VRP [109]. Bal-
ancing the reduction of vehicle miles traveled to lower emissions with meeting customer
demands and optimizing other operational objectives is a multi-objective optimization
challenge. It involves finding routes that minimize fuel consumption or emissions while
still maintaining operational efficiency and service levels.

In certain VRP applications, risk management is considered as a critical objective
[1, 59, 96, 130]. This includes minimizing the risk of disruptions or failures, ensuring
robustness against uncertainties such as traffic congestion, adverse weather conditions,
or vehicle breakdowns [34, 111]. Optimizing routes to minimize exposure to risk factors
while considering other objectives, such as cost or service quality, introduces a multi-
objective optimization dimension to VRP. Note, if a certain level of risk should be
avoided, it is enforced as a constraint rather than an objective.

Fig. 2.5: A hierarchical setup of the criteria involved with a tornado Search and rescue scenario for
the UAVRP. The blue indicate

In search and rescue settings, the application of the UAVRP introduces unique multi-
objectivity considerations [10, 41, 50, 82, 93]. ultimately, one wants to locate the missing
person as fast as possible and alive. This means balancing criteria, such as the impor-
tance of visiting different high probability areas, vs. visiting fatality-prone areas, all
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while considering the environment dynamics effect on the target location and whether
ensuring not to miss a target (by outside-in search strategies) is more important than
locating the target fast (by inside-out search strategies).

Additionally, in more specific land-based search and rescue problems like that of
tornado emergency planning, one also has to consider different policies [35, 36]. E.g.,
the importance of infrastructure on the overall mission, the importance of ensuring the
hospital and school areas, taking information from telephone calls into account and
separating the information depending on tornado sighting or damage sightings due to
the characteristics of the tornado. See Fig. 2.5 for an overview of the considered criteria
in a tornado search and rescue scenario.

Lastly, if a UAV has a higher altitude, the size of the area it can survey is higher,
which consequently allows the mission of locating the target to be completed faster.
However, the quality of the data gathered will also decrease with the altitude, as one
has a higher risk of missing the target during a flyover [7, 26, 85]. Consequently, the
altitude is highly dependent on the sensor and identification system quality and the
corresponding environment that one searches in, and in order to maximise the ultimate
goal of locating the missing target as fast as possible alive, one has to identify the
optimal trade-off.

Near real-time Computation Requirements

In many VRP applications, the demands or service requests are dynamic and time-
sensitive. For example, in delivery or emergency response scenarios, new service requests
can arrive or change dynamically, requiring quick adjustments to the UAVs’ routes. To
ensure efficient and timely service, the UAVs’ routes need to be computed or updated
in near-real time to incorporate new demands and deliver the required services within
the specified time windows.

UAV operations are subject to various uncertainties, such as changing weather con-
ditions, traffic congestion, or unexpected events. These uncertainties can impact the
feasibility and efficiency of planned routes. By performing near-real-time computa-
tions, UAVs can adapt to the dynamic environment, consider the latest information,
and recompute routes accordingly. This allows for more robust and responsive decision-
making, ensuring that UAVs can navigate safely and efficiently despite the changing
conditions.

Uncertainty

Demand uncertainty refers to the unpredictability or variability of service requests or
deliveries. In the UAVRP, the demand for services or deliveries can change dynamically,
with new requests arriving or existing requests being modified or canceled.

Environmental uncertainty includes factors such as weather conditions, airspace re-
strictions, or other external factors that can impact UAV operations [110]. Weather
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conditions like wind, fog, or storms can affect the UAV’s flight performance (including
travel time and energy consumption), safety, and overall efficiency.

Traffic uncertainty relates to the unpredictability of ground traffic conditions that
can affect UAV operations, particularly in urban or congested areas. Traffic congestion,
road closures, or accidents can impact the UAV’s ability to navigate efficiently or meet
service time windows. Incorporating traffic uncertainty into UAV VRP involves utilizing
real-time traffic data or predictive modeling to estimate travel times and optimize routes
accordingly.

Operational uncertainty encompasses various operational factors that can affect
UAVRP, such as equipment failure, limited resources (e.g., battery life or payload ca-
pacity), or unexpected events during missions. UAVs may experience technical issues,
component failures, or unexpected changes in operational conditions, requiring adjust-
ments in route planning, resource allocation, or contingency strategies.

1.3 Characteristic comparison of problems
In Table 2.1, one can see the comparison of the two problems in terms of the identified
characteristics. In conclusion, the two decision environments are affected in a very
similar manner. Especially, when considering the in-operation decision environment.

Problems SIASP UAVRP
Scale Higly dependent on the design param-

eters such as time resolution, schedule
horizon, number of satellites, satellite
agility, and number of customer requests

Highly dependent on the resolution of the
map and corresponding number of avail-
able waypoints, available distance, num-
ber of vehicles, and vehicle agility

Complexity NP-hard NP-hard
Multi-
objectivity

Many-objective Multi-objective, but for search and rescue
settings it is a many-objective optimiza-
tion problem

Computation Near-real time, but with the ability to
reschedule pre-computed solutions

Near-real time

Uncertainty In operation, we see the environment
imposed stochastics due to weather,
decision-maker imposed uncertainty due
to the complexity and fuzzy nature of the
decision environment, and otherwise un-
expected events.

In operation, it is the same, except for
the induced uncertainty regarding vehicle
agility.

Table 2.1: Characteristic similarities in the underlying optimization problem

2 MCDM and State-of-the-Art
In the realm of decision-making, the quest for an "optimal solution" is no more chal-
lenging than in MCDM, as exactly "optimality" is in question [70, 114]. Traditional
approaches struggle to handle multiple conflicting objectives, leaving decision-makers
with the daunting task of balancing trade-offs among various criteria. The concept
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of the Pareto front and non-dominance emerges as a powerful feature to navigate the
intricate landscapes and aid in achieving informed and well-considered decisions.

The Pareto front, named after Vilfredo Pareto, an Italian economist, refers to a
fundamental principle in MCDM that seeks to identify the best compromise solution(s)
among conflicting objectives [117]. It represents a set of solutions where no alternative
can improve upon one criterion without compromising another. That is, so-called non-
dominated solutions. According to the Karush-Kuhn-Tucker conditions [70], the Pareto
optimal set of an m-objective optimization problem is an (m−1)-dimensional piecewise
continuous manifold. The ultimate goal is to identify a solution on that Pareto front that
fits the preferences of the DM. By visualizing the trade-offs between conflicting objectives
[46], the Pareto front provides decision-makers with invaluable insights into the available
options and enables them to make informed choices based on their preferences and
priorities.

The UAVRP and SIASP are interesting MCDM deployment opportunities to the
MCDM community due to the complexity of the decision environment and the potential
benefit for effective decision-making. Both problems involve multiple criteria and com-
plicated trade-offs, making them suitable for exploring MCDM techniques, but certain
characteristica of the problem domains could also inspire new insights to the existing lit-
erature. E.g. the non-linear nature to certain criteria settings in the SIASP (request age
to quality) or the non-compensatory nature of the UAVRP in a SAR setting [36, 119].

In traditional optimization problems, decision-makers typically aim to optimize a
single objective, seeking the best possible solution within a defined set of constraints
[124]. However, in many real-world scenarios, decision-making involves numerous, often
conflicting, objectives that must be simultaneously considered - setting the stage for
multi-objective optimization [79, 132].

Many-objective optimization extends the concept of multi-objective optimization to
scenarios with a larger number of objectives, typically three or more [62]. Again, the
fundamental goal is to generate a set of solutions (i.e. the Pareto front) that represents
the trade-offs between conflicting objectives.

Decision-makers face the daunting task of comprehending and effectively navigating
this high-dimensional manifold to identify meaningful trade-offs and make informed de-
cisions. To tackle many-objective optimization problems, various specialized algorithms
and techniques have been developed. These approaches aim to explore and approxi-
mate the Pareto front efficiently while maintaining a good balance between convergence
and diversity in the solution set [62]. Evolutionary algorithms, such as the Elitist Non-
dominated Sorting Genetic Algorithm (NSGA-II) and the Strength Pareto Evolutionary
Algorithm (SPEA2), are commonly used to address multi-objective optimization prob-
lems by combining selection, crossover, and mutation operators to evolve a population
of candidate solutions [19, 23].

However, the intrinsic behaviour of volume and surface area in higher dimensions
of convex shapes (assuming the feasible solution space to be bounded by one) leads
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Fig. 2.6: Ratio of Non-dominated solutions randomly generated (observations) on the MaF1 bench-
mark problem [19].

to issues in evaluating many-objective optimization problems, as close to any solution
evaluated in a high dimensional objective space will be non-dominated [101]. This is
verified in Fig. 2.6, as it showcases the ratio of non-dominated solutions for different
number of randomly generated solutions when evaluated on the objective function of
the MaF1 benchmark problem with a different number of "activated" objectives [19].
In the extreme case with 30000 generated solutions (observations) and 35 objectives,
approximately 80 % or around 24000 of the solutions are non-dominated. Consequently,
when integrating the DM(’s preferences) in these problems, it is necessary to do some
(if not all) before the search (a priori).

2.1 Problem Typology
MCDM theory distinguishes between problems where alternatives or solutions are given
either explicitly or implicitly, namely evaluation problems and design problems, respec-
tively. In the works of S. L. Gebre et al (2021) [32] another taxonomy is given separating
the problem domains between the characteristic of solution space being either discrete
and continuous.

Evaluation Problems

For an evaluation problem, a set of explicitly given alternatives are present, i.e., A =
{a1, a2, . . . , an−1, an}, where n is the number of alternatives. Here, a set of criteria is
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Fig. 2.7: Taxonomy of MCDM problems

then given for the alternatives to be evaluated against, i.e. C = {c1, c2, . . . , cm where
m is the number of criteria. Usually, an evaluation matrix or performance matrix P
is then given where the element Pij yields the performance of alternative i for the jth
criteria [45, 90].

The goal in evaluation problems can vary from selecting one alternative, to ranking
all, or sorting them all based on predefined metrics. The method with which the set of
alternatives are evaluated highly depends on the school of thought, and on the internal
properties of the criteria. E.g., whether the performance of criteria are qualitative or
quantitative or whether the performance data are specified by nominal, ordinal, interval
or ratio scales [70]. But most importantly it depends on how the preferences of DM are
incorporated for each criteria, e.g., for crisp or fuzzy data, whether they incorporate
indifference, veto capabilities, or whether there are workload requirements for the DM,
e.g., in terms of a representative model of preferences are to be defined rather than
pairwise comparisons [16].

Some prominent examples are the french school of outranking, value or utility theory,
distance to ideal point methods, and the structural approaches like analytical hierarchi-
cal process (AHP) or analytical network process (ANP) [16, 45, 80, 89]. See Fig. 2.7
for an overview of different solution methods.
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Design Problems

For design problems, a set of objectives F (x) = {f1(x), f2(x), . . . , fm(x)} and a set of
constraints on the solution space are defined that implicitly yields a feasible region Q
for solutions to roam within [92]. In general, the number of solutions is either infinite
or much larger than for the case of evaluation problems. The goal of the problem is
to either maximise or minimize the defined objectives over the feasible region on the
solution space.

Max f1(x), f2(x), . . . , fm(x)
s.t.

x ∈ Q

Note, Q not only defines hard cut-off lines for each element in the solution, but it could
also require the solution x to be e.g., binary or integer. Also, F can possibly consist of
only a single objective.

In the case of multi-objective optimization and many-objective optimization prob-
lems the goal changes somewhat, as solutions can dominate each other with respect to
different objectives. In this case the aim is to identify the Pareto front, which repre-
sents non-dominated or Pareto optimal solutions. Pareto optimal solutions are defined
as solutions, where no improvement with respect to one objective is feasible unless a
sacrifice is made in other objectives [13, 70]. Consequently, search algorithms need to
take both solution diversity and solution performance into account.

Solutions for design problems can be represented through (variants of) the objective
(or criteria) space and the solution space (for small dimensionality problems of x).

One can utilize a range of approaches to manage the multiple objective aspect of the
problem. Some of the prominent examples are lexicographic approaches like goal pro-
gramming, scalarization approaches that essentially collapse the multi-objective aspect
before the search procedure, or general a priori approaches [17, 42, 94]. See Fig. 2.7 for
an overview of different solution methods.

Remarks on the Typology

The focus of design problems are on the search methodology, while the actual integration
of preferences often is provided in the end or completely neglected. This means, that
solutions are not necessarily emulating the actual preference, or that it at least require
a great deal of modification and tuning post the search procedure. In the case, where
preference integration is considered, it is used as a secondary procedure to the Pareto
front searching approach. E.g. in the work of Q. Yao (2019) where the NSGA-II
algorithm is used to identify a pareto front whereafter a suite of evaluation methods are
used to select a single solution from that Pareto front [137].

As alternatives are provided explicitly for evaluation problems, the main focus lies in
capturing the preference structure of DM as correctly as possible, and then integrating
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it with as much transparency and explainability as possible. Lately, fuzzy extensions to
otherwise asserted methods are appearing to incorporate the uncertain nature of DM
preferences [109, 133]. Moreover, as showcased in the study of Gallistel et al. [31], the
perception of uncertainty also varies greatly between decision-makers and consequently,
the quantification through fuzzy extensions are of high interest.

Some design problems are, because of their complexity and scale, essentially multi-
stage evaluation problems, where one iteratively seeks to rank current solutions based
on accommodating the preference structure of the DM. Hence instead of ranking based
on biased fitting functions, it would be beneficial to utilize some of the knowledge from
evaluation problems [62, 69].

Similarly, integrating the characteristics for both human preference structures and
general uncertainty would be of considerable value.

2.2 Place of Articulation
It is important to highlight the place of articulation when characterizing the problem.
Articulation is a term borrowed from linguistics and phonetics. In the case of decision
making, it deals with preference integration. For the design problem, A posterior ap-
proaches which build the Pareto front, only for the DM to afterwards make a decision
on a solution that fit their preferences best have already been mentioned. Generally,
one distinguishes between a priori, a posterior, and interactive approaches [13, 69, 124].

A Priori

For a priori approaches in design problems, the multi-objectivity is collapsed or aggre-
gated through some approach prior to the search procedure begins [94]. A drawback
of this, is the system induced uncertainty attached to complex optimization problems
where problem scenarios can have different effect on how objectives are optimized. An-
other drawback is the lack of feedback on the solution space, as one basically allows
a predefined setting to determine the final solution. Because of these, any a priori
approach requires heavy sensitivity analysis.

For evaluation problems, this means a model of the preference structure is defined
prior to the DM observing/analysing the alternatives. E.g. TOPSIS can be seen as an
a priori evaluation method, as the DM prior to observing the set of solutions can elicit
their preferences.

However, for extremely complex and large scale problems, the a priori method is
often the only possible method to integrate preferences, as searching for Pareto fronts
and integrating the DM to evaluate it is too time consuming. For example, if a firetruck
requires a route to a burning building that minimises time till destination, as far as
possible minimises the number of larger bumps, or time spent around school areas, etc.
then waiting 5 minutes for a search heuristic to build a Pareto front and for the driver
to evaluate all the different trade-offs regarding the different possible objectives is not
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feasible [53]. In the example, the a priori integration of preferences is needed, and
therefore a simplistic formulation of preferences is often implemented.

A Posterior

The a posterior approaches are the most frequently mentioned multi-objective optimiza-
tion method, where a Pareto front is searched for [13, 23]. The method highly depends
on the representation of solutions.

The most popular representation is by far the criterion/objective space representa-
tion. Here solutions are computed and mapped with respect to the performance for the
different objectives, while the best performing and most diverse solutions are iteratively
improved. In the case of many-objective optimization problems, visualization methods,
like scatter plot matrix, bubble chart method, parallel coordinates or 3D-RadVis, can
be utilized [46].

Another representation is the solution space, where (if the dimensionality of the
solution is sufficiently small) it is possible to reflect the performance. Often, one has
more than three dimensions on the solution space, and in that case it becomes an issue
of a higher dimensionality objective space representation.

In the case of a preference space representation, an example is to define some abstract
importance on the different objectives through some weight distribution. Hereafter, an
array of settings are tested and the resulting solutions and mapped on the preference
space. The DM can then investigate the computed solutions and determine which
weight setting that fits best [19, 46]. More generally, the parameters of the method with
which objectives are collapsed can be used to investigate the flexibility and robustness
of the method. Again, visualising this can become quite difficult, but often heatplots
are utilized.

A general drawback of the a posterior approach is the demand for computation
time to conduct the search, as well as analysis after to impose preferences and select
a decision. However, integrating preferences becomes more precise as they are acted
directly on the solution.

There are to the best of my knowledge, no evaluation methods that can be viewed
as a posterior.

Interactive

The interactive approaches interactively integrate preferences by relying on the con-
tinuously monitoring of and change of direction from the DM. The queries exchanged
between the system and the DM is dependent on which method to use. According
to [135] the taxonomy of the interactive MO methods has four design factors:

1. Interaction Pattern: whether the interaction is during a run or after.
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2. Preference information: Expectation (reference point method), comparison of ob-
jectives (through weights, trade-offs, classification of objectives, etc.), or compar-
ison of solutions (pairwise comparison, classification of solution, or selection of
preferred one)

3. Preference model: value function, dominance relation, outranking relation, deci-
sion rules

4. Search engine: Mathematical programming technique or non-mathematical pro-
gramming technique

In the case of evaluation problems, the interactive approaches require the DM to
directly evaluate preferences against alternatives, e.g., through the pairwise comparisons
in AHP.

2.3 Preference Elicitation
Preference elicitation is the process with which information about the preferences is
acquired from the DMs, while the preference structure is how this information is mod-
elled [55, 124]. Note preference structure and preference model is interchanged through-
out the literature. Again, the preference modelling is highly dependent on the place
of articulation, and the elicitation strategy and preference structure is often very con-
nected.

Note, here one must distinguish between direct and abstract preferences, as the
DM either yield preference information with which a ratio and specific information
can be asserted or some abstractly defined preference understanding through weights
[6, 76, 98]. Quite distinctly, the abstract preference setting requires a substantial amount
of understanding of the system to not be defined in an arbitrary and incorrect manner.

Preference Relations and Implicit Preferences

Preference relations between alternatives are often utilized as an elicitation method for
obtaining preferences, e.g., for the AHP which asserts numeric values corresponding to
the preference between pairs of alternatives [16]. In Table 2.2 the asserted preferences
can be seen. Often a set of alternatives will then be compared in the following manner:
a1 >> a4 ≈ a5 > a2 >> a3, showcasing a strong preference for alternative a1 over the
others. Methods of implicit preferences can then be utilized to extract a model that will
rank similar alternatives in the same manner. In some sense emulating or automating
value extraction from an initial preference ordering.

In general comparison terminology, the preferences are essentially an ordering on
the set of solutions, the specific ordering can be based on different type of scales, either
nominal, ordinal, interval, or ratio scales [98, 103, 114, 134]. Nominal refers to a sorting
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of the solution into different categories with no specific preference to either of the differ-
ent categories, basically only an ordering based on naming. The ordinal scale refers to
an ordering based on both name and quantity into predefined categories. Consequently,
the difference between two categories means that one solution is regarded higher for
some objective than solutions categorised to another category. However, one does not
know anything about the ratio with which categories differ [55, 64]. With interval and
ratio orderings the difference between different instances on the predefined scale can be
quantified [16, 29, 30, 55]. That is, a given difference in one region will equal the same
difference in another region of the scale. An example is the temperature scale, where a
difference of 20 degrees means the same in all regions of the scale. Consequently, one
can add more detailed information to the ordering of different instances. The difference
in interval and ratio is that the later implements an actual zero to the scale, which refer
to the complete absence of the measured or compared quantity.

Relation much more more equally not less much less do not care
meaning important important important important important important or know
Symbol � � ≈ ¬ ≺ � #

Table 2.2: Ordinal preference relations between alternatives, as per H. Wang et al. (2017) [124]

These methods have been presented without taking into account the decision envi-
ronments, which can vary greatly between the approach of a single DM or a group of
DMs. Here it would be reasonable to refer to groupwise decision-making methods of
consensus methods, voting based, or Delphi’s method [76]. Additionally for preference
relations, the ratio with witch one is preferred over other alternatives can be very hard
to elicit, and as a consequence the Simos’ procedure has been developed [29]. Here
"playing cards" are added in the ranking to showcase an approximate ratio difference
between alternatives.

Amount of Articulation

Finally, the amount of articulation, which also is a term borrowed from phonetics and
linguistics, is a very important topic to cover when determining which preference model
to utilize.

It varies greatly how much work is required to compute a preference structure and
for some problems it is not feasible to do a complete pairwise comparison [16]. For this
reason, design problems with infinite solutions are not evaluated through these. So once
again, this is highly dependent on the choice of method.

In general, we split between exemplifying ones preference structure implicitly, yield-
ing pairwise comparisons, or defining a model that emulate the preference structure. Ad-
ditionally, hybrid versions can be posed, as e.g., the ELECTRE framework, despite en-
forcing pairwise comparisons, does it through a representative preference model [30, 89].
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For small problem scenarios, it can be feasible to do pairwise comparisons, while it
does not make sense to define a complete outranking model with all threshold values
[16, 90]. Similarly, for large scale problems, pairwise comparisons are not feasible at all,
as of why developing a representative model is preferred.

2.4 A Priori Preference Articulation Methods
As mentioned in H. Wang et al. (2017) [124], we distinguish between the modelling of
preferences through weights, goals, utility functions, outranking relations, and reference
vectors. See Table 2.3 for a overview of the ability accompanying the different preference
articulation methods.

Transformation type Preference articulation method(s)
Transforms the multi-objective framework of the problem Weights, Goals, Outranking methods,

and the utility function
Guides the search phase by a priori asserted preference to
certain solutions

Outranking methods and the reference
points

Table 2.3: The transformation type of the preference articulation methods

Scalarization

As previously mentioned, scalarization is a common approach in multi-objective decision-
making. It involves assigning weights to each objective or criterion, allowing the decision-
maker to express their relative importance. These weights can be represented as a set,
denoted as w = w1, w2, . . . , wm, where wi represents the weight assigned to the ith
objective or criterion.

By employing scalarization, the multi-objective problem can be transformed into a
single-objective framework using various aggregation methods. Two popular methods
are the weighted normalized sum and the Chebyshev approach [33, 74]. In the weighted
normalized sum, the individual objectives are combined according to their weights,
resulting in a single aggregated objective that represents the overall performance of a
solution. The Chebyshev approach, on the other hand, considers the worst deviation
among the objectives and aims to minimize this deviation, effectively addressing the
most critical objective.

The advantages of scalarization methods lie in their simplicity and ease of use.
Decision-makers can assign weights to reflect their preferences and priorities, providing
a straightforward approach to tackling multi-objective problems. However, a limitation
of scalarization is the challenge of determining appropriate weights, especially in sce-
narios with significant variations. The abstract nature of weight settings may lack clear
justification, potentially introducing subjectivity and arbitrariness [52, 128].
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Goals

For multi-objective optimization problems, goals are extensively used as preference in-
tegration. Here soft constraints are defined with some objective threshold value desired
to be met [13, 17]. Goal programming is perhaps one of the most popular multi-
objective optimization methods, where this is implemented through a conversion of
multi-objectivity into a single-objective programming model or through a lexicographic
approach, that iteratively goes through objectives, and adds the former reached goal
as a soft constraint. Ultimately, goal programming convert the maximisation of utility
gained from each objective to a minimization of distance to the predefined goals of the
set of objectives.

Goals are rather easy to define, but penalties on the other hand are extraordinarily
hard to define [70]. Another drawback is the possibility of deriving Pareto-inefficient
solutions [133]. Additionally, a large variety of human preferences are hard to adhere to
through goal programming, most notably indifference.

Utility Function

In the field of Multi Attribute Utility Theory (MAUT), the goal is to develop a utility
model that infers the utility of solutions rather than the preference [70, 103]. Often this
is done by ranking a subset of solutions, in order for some method to infer a underlying
model, e.g., through the additive value function.

The findings from economic theories like prospect theory are sought to be con-
solidated in MAUT, meaning the resulting model mimics real-world behaviour. The
complexity of the model is however extremely difficult to administer as utility functions
often neglect certain aspects of the preferences [70]. Ultimately, the same difficulties are
observed in MAUT.

Outranking

Outranking methods are designed to establish relationships between alternatives by com-
paring their attributes. In this context, an alternative A is said to outrank alternative
B if, after considering all available information, a majority of the attributes indicate
that A is at least as good as B (concordance condition), while the opposition from
the other attributes, known as the minority, is not excessively strong (non-discordance
condition) [89, 90].

Outranking models introduce three threshold parameters: indifference q, preference
p, and veto thresholds v. These thresholds enable decision-makers to define the level
of tolerance for indifference, preference, and strong opposition. The veto threshold
allows the minority attributes to exert a powerful opposition, effectively vetoing the
preference of one alternative over another [20]. The ELECTRE framework, provides
two indexes identifying the credibility in the outranking of alternative A over B, namely
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the concorrdance and discordance index. For the concordance, the following relations
are posed:

(A is strongly preferred to B in criteria i) ⇔ gi(A)− gi(B) > p

(A is weakly preferred to B in criteria i) ⇔ p ≥ gi(A)− gi(B) > q

(A is indifferent to B in criteria i) ⇔ q ≥ |gi(A)− gi(B)|

Outranking models are typically human-oriented, providing a high degree of cus-
tomization. They are non-compensatory, meaning that an alternative cannot compen-
sate for poor performance in one attribute by excelling in another. These models also
have fuzzy extensions, allowing for the integration of uncertainty in problem input and
decision-makers’ specific incompetence or uncertainty [20, 99].

By incorporating outranking methods, decision-makers can capture nuanced rela-
tionships between alternatives and accommodate individual preferences and uncertain-
ties. The flexibility and adaptability of outranking models make them valuable tools
for MCDM, enabling decision-makers to address complex and diverse decision scenarios
effectively [55].

Reference Point

Reference points or vectors play a crucial role in guiding the search phase of multi-
objective optimization problems by providing an expectation or benchmark for the ob-
jectives. In many-objective optimization problems, where a multitude of non-dominated
solutions can exist, the reference point method becomes particularly valuable in steering
the search towards desirable regions of the solution space [132, 138].

The reference point method allows decision-makers to define reference points in either
the objective space or the preference/weight space. These reference points serve as
targets or aspirations for the optimization algorithm, guiding it to search for solutions
that approximate or improve upon these benchmarks. In the objective space, reference
points represent specific values or ranges that decision-makers aim to achieve for each
objective. By setting reference points in the objective space, decision-makers can a priori
guide the search towards solutions that align with their desired objectives [24, 62].

Alternatively, reference points can be defined in the preference or weight space. In
this approach, decision-makers assign weights or preferences to each objective, indicating
their relative importance or priority. These weights guide the search algorithm to explore
solutions that optimize the objectives according to the defined preferences.

Reference points and weights are essentially two sides of the same coin, as they pro-
vide a means to express decision-makers’ expectations and preferences. While reference
points manifest in the objective space, indicating desired values for objectives, weights
reflect the priorities assigned to each objective in the preference or weight space [24].
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Chapter 3

Bridging the Gap: Solution
Approaches for Complex
Decision Environments

In a holistic manner, the solution approach for a complex decision environment covers
the pre-processing, the computation of a solution, and the integration of the DM(s). Due
to the time-constrained environment of deploying a solution, it is therefore important
to look at all three components. In the conference Paper C, an investigation of the
pre-processing and its effect on the overall performance was conducted. The paper
documented the incremental improvements conducted through the work on the SIASP,
but similar improvements are expected to be made in general for cyber-physical systems.

When designing a solution approach for a problem residing in the sphere of com-
plex decision environment, trade-offs between the pre-processing, the computation of
a solution, and the integration of the DM(s) have to be made. In the operational en-
vironments where the SIASP and the UAVRP are addressed, the computation of the
solution approach took up most of the time, and consequently, leaving time for the DM
to evaluate trade-offs on the Pareto front was deemed infeasible in practice [119]. This
chapter investigates exactly decision frameworks that implement the preferences of the
DM outside of the operation of the solution approach.

43
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1 Decision Framework for Complex Decision Envi-
ronments

A decision framework can be understood as a structured and systematic approach that
guides the process of making decisions. It provides a conceptual framework and set
of principles to organize, analyze, and evaluate available the information and options,
facilitating the decision-making process. A decision framework typically includes com-
ponents such as problem identification, goal setting, criteria development, alternative
generation and evaluation, and decision implementation. It helps decision-makers clar-
ify objectives, consider relevant factors and constraints, assess trade-offs, and ultimately
arrive at a well-reasoned and informed decision. The framework serves as a roadmap,
ensuring that decision-making follows a logical and transparent path, reducing biases
and increasing consistency. It provides a structured approach to handle complexity,
uncertainties, and conflicting objectives, enabling decision-makers to navigate complex
decision environments more effectively and achieve optimal outcomes.

In Paper B [91], the bi-objective decision framework of minimizing deployment time
and maximizing coverage is seen implemented through a linear scalarization approach.
Despite the ease of implementation, a consequence of this framework is the difficulty
of assigning weights of importance, where a seemingly arbitrary weight configuration
will leave the UAVs to not investigate the grid at all due to the objective in minimizing
deployment time being too significant.

Consequently, a natural solution to this problem is to completely avoid the multi-
objective framework by only considering a single objective and implementing the other
objectives through hard constraints as e.g., deployment time. This is done in Paper
D [83], where the objective is to produce a set of routes that maximise the aggregated
relative importance of the visited nodes in a SAR environment. Again, the relative
importance of nodes is assumed calculated based on expert knowledge which brings
us back to the main question of how to properly determine a decision framework for
aggregating the objectives.

In Paper A, E, and F [118, 119], it is seen how the expertise of the DM is pushed
into the modelling of the scenario generator. Here, all the considerations of the problem
environment from different customer types, imaging types, satellite position and request
location, to pricing scheme, is modelled. The different scenarios that the DM can expect
to experience is tested with the different preference structures, which consequently allows
the DM to determine a preference structure with the knowledge of expected outcomes.

1.1 The A Priori Decision Framework
In the realm of complex decision environments, where optimization problems involve
multiple objectives and intricate trade-offs, selecting an appropriate decision-making
framework becomes crucial. One key consideration is the integration of multi-objectivity
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in a manner that allows for near-real time computation and implementation of the so-
lution. Here, having a DM evaluate a set of solutions through e.g., a Pareto front is
simply infeasible in deployed operations. Consequently, the a priori preference integra-
tion frameworks emerge as a fitting solution to address this challenge.

A priori preference integration frameworks incorporate decision-makers’ preferences
and priorities before engaging in the optimization process. These frameworks aim to
integrate multi-objectivity by explicitly considering decision-makers’ preferences and
guiding the search for optimal solutions accordingly.

The A priori preference integration method has been investigated through the ap-
pended papers A, B, E, and F [91, 118, 119]:

1. The work in Paper A [119] investigate three different transformation methods
from the multi-objective framework to the single-objective framework. The differ-
ent preference articulation methods are: TOPSIS, ELECTRE-III and the WSA
method. From discussions with satellite operators, we identified the high value
of customizability, interpretability, and explainability. As the individual perfor-
mance results from the three frameworks are comparable, the control in terms of
how preferences can be implemented was a deciding factor. The ELECTRE-III
showed itself to be the most suitable method, especially when the decision-maker
wanted to discriminate between different customer types, and basically enforce a
hard hierarchical structure.

2. In the subsequent Paper E, we sought to build a decision support system allowing
the DM to understand the consequences of the operationally implemented a priori
preference structure. One can see this as an informed finetuning procedure through
the analysis of performance heatmaps (signifying the estimated Pareto front) and
a hypothesis tests that represent significant changes.

3. The work of Paper F [118], extended the analysis to employ an automated selec-
tion mechanism in the setting of collaborative decisions of pricing scheme and a
preference structure of the satellite operation. A selection of different preference
structures were implemented for the a priori decision framework combined with a
selection of different pricing schemes. The solution approach utilized the distance
to ideal method VIKOR and the Shannon information entropy method to elicit
preferences.

4. In the UAVRP work of S. Saha et al. (2021) [91], a bi-objective optimization
framework were defined and solved through linear scalarization. As mentioned
previously, we investigated the difficulties of assigning the correct weights of im-
portance.

By involving decision-makers upfront, the a priori preference integration framework
alleviate the computational burden that can arise from extensive iterations and com-
putations required by other approaches. Especially, as the investigated problems are
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large-scale and NP-hard, one can always come closer to optimality, and the additional
computing power spent on implementing a posterior approaches and building Pareto
fronts could have been utilized to build an overall better solution. Essentially, the
trade-off lies in integrating the correct preference structure or obtaining the best solu-
tion.

A priori preference integration in a multi-objective setting presents inherent chal-
lenges due to the complexity and conflicting nature of multiple objectives. One difficulty
arises from the need to accurately capture decision-makers’ preferences. Assigning ap-
propriate weights or priorities to each objective can be a complex task, as it requires
understanding the relative importance of objectives and the trade-offs between them.
Decision-makers may struggle to determine precise and consistent weights, particularly
when facing conflicting objectives or when the importance of objectives varies across
different decision scenarios. Additionally, a priori preference integration may encounter
difficulties in cases where decision-makers’ preferences are uncertain or subject to change
over time. Furthermore, the potential for cognitive biases and inconsistencies in express-
ing preferences can further complicate the integration process.

2 Implementing the Evaluation Methodology into the
Decision Framework

In the a priori preference integration frameworks, the integration and tuning of prefer-
ences play a crucial role in achieving effective long-term decision-making. However, as
showcased in Paper B, it is very difficult for the DM to assign weights of importance to
different objectives due to the indirect and abstract nature of the decision framework.
This issue is repeating it self in all methods of articulation for a priori articulation (See
the MCDM taxonomy in Fig. 2.7). Therefore, it is natural to investigate evaluation
methodology for solution approaches with a more clear preference articulation. That
is, methods that encourage decision-makers to explicitly articulate their preferences
directly in a non-abstract manner.

Several strategies can be employed to facilitate the integration and fine-tuning of
preferences within these frameworks:

1. Elicitation Techniques: Various techniques can be used to elicit the DM’s prefer-
ences, such as interviews, surveys, interactive sessions or by simply just gathering
information on the behaviour of the DM in certain scenarios. These techniques
aim to extract information about the relative importance of objectives, trade-offs,
and any constraints or preferences that decision-makers may have. Elicitation
techniques should be designed carefully to encourage accurate and consistent ex-
pression of preferences. In the work on the SIASP, the method was validated based
on the internal objective function of the satellite operation in Airbus D&S. That
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internal objective function was derived years back based on extraction from oper-
ational experts. It has however not been updated in any timely manner and they
were consequently very positive over the intuition behind the proposed method.
However, due to confidentiality issues the results cannot be directly included.
An iterative processes that involve feedback and learning loops can enhance the
integration and tuning of preferences. Decision-makers review and refine their
preferences based on the outcomes generated by the framework. This iterative
approach proposed in Paper E exactly allows decision-makers to progressively
refine their understanding of the problem, make adjustments to their preferences,
and converge towards more informed and consistent preference structures.

2. Pairwise Comparisons: Pairwise comparison methods allow decision-makers to
assess the relative importance of objectives and criteria with respect to the differ-
ent image attempts. By systematically comparing each objective against others,
decision-makers assign direct numerical values representing their explicit prefer-
ence or priority of one objective compared to another. These pairwise comparisons
provide a structured approach to quantify and integrate preferences. This is ex-
actly the foundation for the work in Paper E and F [118].

3. Sensitivity Analysis: Sensitivity analysis enables decision-makers to explore the
impact of varying preferences on the final outcomes. By systematically adjusting
the assigned weights or preferences and observing the resulting changes in the
solution space, decision-makers can gain insights into the sensitivity of the deci-
sion to different preference settings. This analysis aids in fine-tuning preferences
to align with decision-makers’ aspirations and values and it is exactly what the
heatplots and significance test in Paper E proposes.

4. Visualization and Decision Support Tools: Interactive decision support tools and
visualizations can facilitate the integration and tuning of preferences. These tools
provide decision-makers with a visual representation of the objectives, alternatives,
and associated preferences, allowing them to gain a better understanding of the
trade-offs and relationships. The work of E is a step towards such an iterative
decision support tool. However, a much more detailed and novel scheme with
relevant information and actions is needed. See Fig. 3.1 for a proposal towards
such a method in the SIASP.

With the tuning and verification scheme presented in Fig. 3.1, the DM of the satellite
operation will be able to both operate and verify the automatically generated satellite
schedules. The operator will be able to modify the schedule based on two different
evaluations; one on the level of the entire schedule and one on the individual request
level. The modifications done by the operator should be collected for later tuning.
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Fig. 3.1: A verification framework with two distinct interaction and evaluation procedures for the
satellite operator to take control.

3 Integrating Uncertainty
Uncertainty is an inherent aspect of most real-world decision problems. It arises due to
various factors, such as incomplete information, variability in data, and unpredictability
of future events. In the SIASP, the main uncertain element stems from two sources; the
stochastic element of the cloud coverage which upon acquisition deems certain imaging
attempts invalid, and the fuzzy nature of the decision framework, where the DM is
uncertain of the correct preference structure either because of incompetence or due to
the complexity of the decision environment.

Often utilized solution approaches that deal with the stochastic element in the SIASP
is that of stochastic programming formulation, dynamic modelling, or bayesian opti-
mization frameworks. However, in the context of the complex decision environment
with the characteristics of it being a large-scale NP-hard many-objective optimization
problem with near real-time computation requirement, the added complexity of solving
it through stochastic modelling methods and evaluating the uncertainty a posterior is
deemed infeasible. Consequently, the uncertainty must be addressed a priori, which
likewise means investigating which models yielded the better framework for doing so.

In Paper A [119], the three methods tested, TOPSIS, ELECTRE-III, WSA dealt
with the stochasticity through a simple scoring procedure. Simply yielding a score
that reflected the image attempts performance on all the objectives in an aggregated
manner. That is, one objective being the corresponding standard deviation assigned to
the predicted cloud cover estimate.

This approach was also utilized in Paper E [118], where doing so showcased signs
of Braess’ paradox in the sensitivity analysis. Here increasing the importance of cloud
coverage led to a sudden increase in average cloud coverage, as it consequently decreased
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the relative importance of other objectives such as the uncertainty related to the cloud
coverage forecasts.

The linear approach of WSA and TOPSIS treats the uncertainty objective as any
regular objective and it is therefore very difficult to link it with the performance of the
cloud cover objective, as they should be compared together. The outranking approach
of ELECTRE-III does however implement a non-linear evaluation methodology through
the veto, preference, and indifference threshold variables. Correspondingly, it is possible
to state that differences between image attempts with a certain cloud coverage is so
significant that one never want to acquire this over another image.

In the work of Paper F, the decision framework is extended to also consider the effect
of pricing and preference structure, as these decisions collaboratively decide the final
schedule. We focus on a set of different pricing segmentation schemes and a correspond-
ing set of different preference structures. The uncertainty then lies in the complexity
of the collaborative decision framework, as the pricing of satellite images precedes the
high combinatorial complexity in the scheduling, as well as the multitude of evaluation
criteria associated with customers’ image requests. Similarly, any changes in pricing
will inevitably impact the final schedule due to the intricate scheduling procedure and
the preferences reflected in the scoring, making it challenging to fully comprehend and
navigate the decision framework. The proposed solution approach of Paper F [118] uti-
lizes VIKOR and Shannon entropy to automatically propose a combination of pricing
and preference structure.

4 Rethinking Preference Integration
This section dives into setwise preference articulation and proposes a framework for a
method that can elicit and articulate this characteristic in order to have alternatives or
solutions evaluated based on ratio scales. Humans have a hard time to directly infer
preferences based on a ratio scale, as the preference often is based on a the dependence of
other factors. In satellite scheduling this hardship can refer to the articulated preference
with an acquisition of a stereo image, where the acquisition of both image attempts
to complete the stereo request is of high preference, while only the acquisition of a
single image in the stereo request is of very little importance. With setwise preference
articulation, one can in a more detailed manner elicit the overall ordering of preference
on the image attempts.

Setwise preferences refer to a preference ordering of a set of items as a whole, while
pairwise preferences refer to a preference ordering of pairs of items. For example, in
pairwise preferences, a person might rank three items (A, B, C, and D) as A > B, B > C,
C > D, which by assuming transitivity on aggregate leads to the preference ordering of
A > B > C > D, indicating that they prefer A the most, B the second most, C the third
most, and D the least. In setwise preferences, a person might compare the pairs of items
(A, B), (A, C), (B, C), etc. and indicate which of each pair they prefer. This allows for
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a more detailed understanding of a DM’s preferences, as they may have different levels
of preference for different sets of items, than they have for them individually.

As an example, to continue the stereo imaging case of the satellite scheduling prob-
lem. If (A,B) represent a stereo image pair with the highest priority, and otherwise the
two other image attempts (C,D) have a higher preference, then with the ability to at
maximum capture two images from the entire set, the ordering is as follows:

(A, B) > (C, D) > (B, C) ∨ (B, D) ∨ (A, C) ∨ (A, D) (3.1)

This ordering is incompatible to the individual preference ordering, as the setwise or-
dering adds an "invisible bonus" in the preference of the combined acquisition of both
image A and B. No mapping of preferences U(.) on a ratio scale of the individual items
A, B, C, and D, will lead to the above setwise ordering. That is, the setwise prefer-
ence ordering cannot necessarily be directly inferred from orderings obtained from the
individual level. Here U() can also be refered to as the utility function known from
economics, decision science, and multi-attribute utility theory [64].

This claim can be seen as the aggregation of individual preferences in Eq. (3.1) leads
to ambiguities. Here U(A, B) 6= U(A) + U(B) as:

(A, B) > (C, D) > (B, C)∨(B, D) ∨ (A, C) ∨ (A, D) (3.2)
⇓

U(A, B) > U(C, D) > U(B, C)∨U(B, D) ∨ U(A, C) ∨ U(A, D) (3.3)
⇓

U(A) + U(B) > U(C) + U(D) >U(B) + U(C) (3.4)
U(A) + U(B) > U(C) + U(D) >U(B) + U(D)
U(A) + U(B) > U(C) + U(D) >U(A) + U(C)
U(A) + U(B) > U(C) + U(D) >U(A) + U(D)

⇓
U(A) + U(B)− U(C)− U(D) > 0 >U(B) + U(C)− U(C)− U(D) (3.5)
U(A) + U(B)− U(C)− U(D) > 0 >U(B) + U(D)− U(C)− U(D)
U(A) + U(B)− U(C)− U(D) > 0 >U(A) + U(C)− U(C)− U(D)
U(A) + U(B)− U(C)− U(D) > 0 >U(A) + U(D)− U(C)− U(D)

where the last inequation leads to U(D) > U(B), U(D) > U(A), U(C) > U(B), and
U(C) > U(A), which then means the first inequeation does not hold. Again this means,
the setwise scoring introduces a new level of preference to consider. Consequently,
U(A, B) = U(A) + U(B) + U(A ∧ B), where U(A ∧ B) refers to the aforementioned
"bonus" preference. Another way of stating this, is that preference mappings are build
on the assumption of independece between all attributes of the preferences [124].



4. Rethinking Preference Integration 51

Another example is the ability to retrieve a more precise ordering based on setwise
preference information. If A > (B, C) and B > C, we not only know that A > B > C,
but also that from a ratio scale standpoint the difference with which A is preferred over
B must be larger than the difference with which B is preferred over C, as the aggregate
individual preference of both B and C expressed on a ratio scale is smaller than the
preference of A expressed on the same scale.

A last example, is the difficulty of determining whether two high priority areas should
be of higher priority than that of 10 lower priority areas. Essentially, allowing for a cross
set level preference articulation.

The SIASP and UAVRP are essentially set selection problems, where we up until
now have assumed the preference of each set to be equal to the aggregated individual
preference of each image attempt or reached waypoint. Based on the above example, this
is shown not to be the case, and it is therefore of high interest to identify a method with
which setwise preferences can be elicited, articulated, and implemented. Ultimately, the
setwise preference articulation for binary optimization problems, like that of the SIASP
and UAVRP, can be implemented through the global solution evaluation, U(.) on the
set of alternatives in ones solution X ∈ {x1, x2, . . . , xN}. This can be described by the
following telescoping sum:

U(X) =
N∑

i=1
(uixi +

N∑
j=1

(uijxixj +
N∑

k=1
(uijkxixjxk + . . .

N∑
s=1

(uijk...sxixjxk . . . xs)) . . .)

(3.6)

Where ui is the preference as a ratio score assigned to the ith element of the binary
solution space, and uij is the joint preference assigned to the acquisition of the ith and
jth element of the binary solution space. If the preference space is symmetric, meaning
uij = uji then order of acquisition in the solution space is irrelevant, which means
U(xi, xj) = ui + uj + uij + uji == ui + uj + 2uij . Consequently, the telescoping sum
can be simplified dramatically as the number of different sets to consider in the different
summations vary. That is, we do not sum from 1 up to N (See next section 4.1).

Note, the framework only consider the preferences of a single agreed upon preference
structure. That is, we do not have to infer preferences of multiple DMs, as this opens up
a new set of issues. See Arrow’s impossibility theorem for one of these issues in terms
of avoiding that no single DM can "dictate" the groups preference structure.

4.1 Amount of Articulation
In terms of the actual elicitation, the amount or work required by the DM is heavily
affecting the success of the method. with N items, the setwise ordering can be elicitated
based on a high number of feasible sets. There exist one large set consisting of all
elements, then N sets consisting of all elements except for one, and then C(N, 2) =
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N !
2!(N−2)! , which continues until only one element sets are counted. The behaviour can
be described through this function:

Number of feasible sets with N elements :=
N∑

r=0

N !
r!(N − r)! (3.7)

On aggregate the behaviour sees a doubling plus one per increase in N , which leaves
the number of sets to evaluate infeasibly large. Consequently, we need the proposed
method to be of a representative mode. That is, a representative model should be
extracted on which the actual performance of items can be evaluated and compared.
Note, the performance should be evaluated based on the membership to all sets as in
Eq. (3.6).

4.2 Modelling Features for Setwise Preference Articulation
The following discusses features for a method and the corresponding solution of a setwise
preference articulation framework. Note, the section is not the exhaustive list of features.

Transitivity

Human nature is many times a paradox for logical and rational assumptions. It can be
seen in the raven paradox that questions what type of information logically yields more
information than before. And it can be seen in the Simpson’s paradox where ungrouped
and grouped data are telling different stories.

Transitivity is a logic statement to incorporate in models [124]. But the notion that
an orange is preferred to an apple, an apple over a banana, and therefore an orange must
also be preferred over the banana does not make much sense when people often buy all
three fruits. Clearly, the preference on the single item level is often overshadowed when
considering preferences on the set level. However, transitivity is a necessary statement
in decision frameworks, because it helps maintain the logical coherence of preferences.
If transitivity is violated, it can lead to inconsistencies or paradoxes in decision-making,
and creating the risk of cyclic preference orders that defies logical reasoning.

Transitivity is therefore necessary when evaluating on the same level of set evalua-
tions. That is, for sets of a certain size, all sets with that size, must follow the assumption
of transitivity. At a first glance, the preference mapping on the single-element level seem
to violate the transitivity of cross-level comparisons, and it is therefore an open question
whether the framework should be transitive. A similar function to that of Eq. (3.6)
could possibly be utilized.

Incomparability

Incomparability refers to situations where alternatives cannot be definitively ranked or
compared against each other due to various reasons, such as conflicting criteria, lack
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of information, or subjective preferences. In the context of defining a decision frame-
work, incomparability acknowledges the existence of cases where it is not possible or
meaningful to establish a strict preference order among alternatives. Incorporating in-
comparability in a decision framework is essential because it recognizes the limitations of
decision-making and allows for more realistic and flexible assessments. In the literature,
it is also often referred to as commensurability.

In practice, decision frameworks handle incomparability in different ways. One ap-
proach is to introduce partial or weak preference relations, where alternatives are ranked
or compared based on certain criteria, but incomparability is explicitly acknowledged
for others. This approach allows decision-makers to express their preferences in a more
nuanced and flexible manner. Another approach is to use preference modeling tech-
niques that allow for fuzzy or linguistic representations of preferences. Fuzzy logic and
linguistic variables provide a way to capture and represent imprecise or uncertain pref-
erences, accommodating incomparability in decision-making. Decision frameworks that
utilize fuzzy logic or linguistic variables enable decision-makers to express degrees of
preference or uncertainty, providing a more comprehensive representation of their pref-
erences. Based on the findings in the Papers A and E the later approach seems very
appealing [119].

Monotonicity

In the context of a decision framework, monotonicity refers to the property that in-
creasing the performance or value of an alternative on a criterion should not decrease
its overall desirability or ranking. It implies that improving an alternative’s perfor-
mance on a criterion should always lead to a better overall evaluation. In economic
utility theory this is referred to as the "more is always better" assumption.

To have monotonicity in the decision environment means, a higher evaluation in the
pairwise comparison matrix may not result in a lower score compared to before the
increase. Non-monotonic models does allow for this change.

In Paper E, the issue of monotonicity was seen unfolding through the Braess’ para-
dox, where a higher importance to cloud coverage above a certain threshold led to an
overall decrease in the performance of said objective. This stems from the neglect of
other relevant objectives, namely the corresponding uncertainty. Due to the difficulty
in understanding when the non-monotonic behaviour initiates for different scenarios
and different regions. Consequently, to ensure integrity and reliance on the preference
articulation framework, monotonicity is a high-ranking trait.

Non-compensability

Non-compensatory refers to the idea that the performance on one criterion cannot com-
pensate for a poor performance on another criterion. It implies that certain criteria or
attributes are considered essential or non-negotiable, and a low performance on any of
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these criteria would lead to the rejection or elimination of an alternative, regardless of
its performance on other criteria. Incorporating non-compensatory decision-making in
a decision framework involves setting specific thresholds or requirements for each cri-
terion, beyond which an alternative is deemed unacceptable or infeasible. This can be
done by establishing minimum standards or cutoff values for each criterion, indicating
the minimum acceptable level of performance [20].

Non-compensatory decision-making is particularly relevant in situations where cer-
tain criteria are considered critical or have higher priority than others. It allows decision-
makers to prioritize specific attributes or requirements and ensure that they are met
before considering other criteria. This approach is commonly used when dealing with
safety-related considerations, legal requirements, or other non-negotiable factors.

However, it can introduce additional complexity to the decision framework as it re-
stricts the flexibility of trade-offs between criteria. It may lead to a more conservative or
stringent evaluation, potentially reducing the number of feasible alternatives. However,
this trade-off is necessary to maintain the integrity and validity of the decision-making
process, particularly when dealing with essential or non-negotiable criteria.

In the context of complex decision environments, the ability to impose non-compensability
is of high relevance as discriminating between different image requests due to emergency
traits is vital.

Rank reversal

Rank reversal refers to a phenomenon where the relative rankings or preferences of
alternatives change when additional alternatives are introduced or when the evaluation
is based on different subsets of criteria. It occurs when the rankings of alternatives (or
preference structure) are not stable and can vary depending on the specific context or
set of criteria considered [64]. Rank reversal is an important consideration in decision
frameworks as it highlights the sensitivity of the decision-making process to the specific
set of alternatives or criteria being evaluated. It implies that the relative superiority or
inferiority of alternatives can change, leading to different rankings or preferences based
on the particular context or subset of criteria under consideration.

One approach to manage rank reversal is through sensitivity analysis, where the sta-
bility and robustness of the rankings are examined under different scenarios or variations
in criteria weights. Sensitivity analysis helps identify situations where rank reversal oc-
curs and provides insights into the factors driving the variations in preferences. By
understanding the causes and implications of rank reversal, decision-makers can make
more informed and reliable decisions. Consequently, the decision framework needs to
allow for extensive sensitivity analysis, which e.g., in the context of a fuzzy preference
structure can be done with the aid of systems like stochastic multi-attribute analysis,
which inspired the analysis in Paper E.
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4.3 Roadmap towards Setwise Preference Articulation
Developing a setwise preference articulation framework involves several steps to design
a robust and effective decision-making mechanism. The following is a roadmap that
outlines the key stages in the development process addressing the challenges identified
above in a structured manner.

1. Review preference elicitation techniques:

• Investigate existing methods for eliciting preferences from decision-makers,
including pairwise and setwise approaches. Additionally investigate the pos-
sibility for efficient sampling methods in preference elicitation.

• Identify strengths and limitations of different techniques in capturing complex
preferences, and consider their ability to allow for both incomparability and
non-compensability.

2. Develop mathematical models for setwise preference articulation:

• Establish mathematical frameworks to represent and manipulate setwise pref-
erences, considering properties such as transitivity, incomparability, and mono-
tonicity.

• Explore techniques from decision theory and optimization to incorporate set-
wise preferences into the solution search process.

• Create smaller benchmark problems for the model to be showcased and
tested.

3. Investigate the place of articulation’s effect on the ability to incorporate setwise
preference:

• Explore methods for integrating a priori preference information into the so-
lution approach.

• Develop approaches to incorporate a posteriori preference articulation during
the optimization process to adapt to evolving decision-maker preferences.

4. Propose mechanisms that fine-tune preferences and the solution characteristics
through testing and simulation:

• Use testing and simulation techniques to refine the solution approach and its
parameters.

• Conduct sensitivity analyses to understand the impact of different preference
settings on the solution outcomes.

• Evaluate the sensitivity of the solution and preferences regarding incompa-
rability, monotonicity, and rank reversal.
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5. Implement a setwise preference articulation framework:

• Develop software tools and/or algorithms that enable efficient elicitation and
integration of setwise preferences.

• Ensure usability and accessibility of the framework for both researchers and
practitioners.

6. Validate the effectiveness of the framework:

• Conduct case studies and experiments to evaluate the performance of the
setwise preference articulation framework.

• Compare the results against existing approaches and assess the framework’s
ability to capture complex decision-maker preferences.

7. Bridge the gap between research and practice:

• Provide practical guidelines and best practices for implementing the setwise
preference articulation framework.

• Collaborate with industry partners to apply the framework in real-world
decision-making scenarios and gather practical insights.

8. Foster collaboration and knowledge sharing for further refinement:

• Facilitate collaboration between researchers, practitioners, and decision-makers
to share insights and expertise.

• Organize workshops, conferences, or forums to promote discussions on setwise
preference articulation and its application in optimization problems.

• Gather feedback from users and stakeholders to identify areas for improve-
ment.

• Incorporate new developments in preference elicitation, solution search, and
evaluation techniques into the framework.

It is important to note that this roadmap provides general guidelines, and the spe-
cific steps and considerations may vary depending on the complexity of the decision
problem and the context in which the setwise preference articulation framework is be-
ing developed. Flexibility and adaptability in the development process are crucial to
accommodate the unique requirements and challenges specific to the decision domain.



Chapter 4

Conclusion and Future Work

Conclusion
In the design of solution approaches for large-scale NP-hard multi-objective optimization
problems with near real-time computation requirements, the correct preferences are
often omitted due to several reasons. The main reason is the fact that the complexity is
already high in obtaining a solution, and consequently obtaining a solution that is near
optimal and also near the correctly defined optimal setting is difficult. Consequently,
complexity, robustness, and explainability are the driving forces behind the omittance.

Addressing the first research question (RQ1), the applicable decision-making frame-
work for integrating the multi-objectivity of complex optimization problems without a
significant increase in computational load is the a priori preference integration frame-
work. This framework allows DMs to express their preferences by assigning weights
to each objective or criterion outside of the operation of the system. Correspondingly,
allowing for tactical tuning of the employed preference structure. It is however very
difficult to elicit and integrate the correct preference setting, and correpsondingly it is
of high importance to identify a scalarization method that is applicable, robust, and
intuitive for the DMs. Versions of the weighted sum approach is despite their ease of
use, very difficult to trust due to the abstract nature of the indirect preference artic-
ulation framework. The ELECTRE framework seems to yield an intuitive and robust
platform for integrating preferences as the it has the ability to impose indifference, pref-
erence, and to discriminate between attempts. Moreover, does it provide a practical
and computationally efficient way to integrate multi-objectivity for complex decision
environments.

To tackle the second research question (RQ2), the approaches from the evaluation
methodology can be adapted to address explainability and transparency issues in design
problems. By incorporating customizable integration of the preference structure, DMs
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can have better visibility and understanding of how their preferences are considered in
the solution approach. This customization allows DMs to align the solution with their
specific requirements and helps mitigate transparency concerns. It is however important
to understand the scales with which the different evaluation approaches compare alter-
natives, as they do not necessarily fit towards ratio-scaled use cases as those of design
problems in complex decision environment.

The third research question (RQ3) revolves around integrating different types of un-
certainty in the solution approach. Uncertainty arising from sources such as a stochastic
environments or a fuzzy preference knowledge can be integrated a priori through the
framework of ELECTRE-III, as different modes of stochasticity can be assigned a prefer-
ence, while uncertain preferences can be expressed as such through the fuzzy outranking
relation. It is important to notice, that the a priori framework does not concern the
ability for futher decision cycles in operation, and consequently a comparison between
longer planning horizons with outdated information and shorter planning horizons with
newer information are the way one deals with aligning preferences to the corresponding
stochastic environment. Further work is required to study efficient methods of stochastic
modelling.

Finally, addressing the fourth research question (RQ4) regarding the elicitation, inte-
gration, and utilization of setwise preference information, an outcome of this dissertation
is the revelation that setwise preference articulation methods indeed will alleviate a lot
of issues regarding the correct preference setting. These methods allow DMs to express
their preferences over sets of alternatives rather than assigning a single preference to
the indivudual solution. Setwise preference information should be obtained through
techniques like pairwise comparisons, ranking, or direct elicitation. By incorporating
setwise preferences, the solution approach can provide more nuanced and comprehen-
sive decision-making support in complex optimization problems. These methods are
however rather cumbersome to produce and a roadmap towards defining an applicable
framework is seen presented in Section 4.3. The roadmap indicates how the different
aspects of the model can be implemented and how it can be tested and tuned. The
implications of setwise preference are significant, but still a large challenge stands as a
direct implementation of the corresponding score into standing solution methodology
is not directly feasible. Firstly, due to the scale of the setwise preference space and
the work required to elicit a fitting preference structure. Secondly, due to the bonus
preference ocquirng when setwise preferences are considered as opposed to when only
the single solutions are compared with each other.

Future Work
Ultimately, there are two different lanes to consider regarding the future work. The first
one is the direct extensions of the work done throughout the PhD, while the second are
all the spin-out projects that for different reasons are of interest to pursue. Firstly, the
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direct extensions:

• Follow the roadmap. One proposal to such a method is to synthesize results from
multiple different solutions generated based on varying levels of a priori setwise ar-
ticulation, and then adjust the preference structure based on orthogonal sampling
approaches to accommodate the large scale of the preference space in a setwise
preference framework. With this approach, one would approximate the setwise
preferences without considerable load on both the computation and elicitation
procedures.

• Conduct a computational performance comparison study, which directly approxi-
mates the final results obtained from a posterior articulation methods with a priori
articulation methods, and finally evaluating the computational savings in doing
so.

Secondly, the spin-out projects are more related to either the specific problem do-
mains or the specific solution approach than a combination of both:

• look for related problem domains that could fall under the domain of complex
decision environment to apply solution approaches. During my research stays, I
have initiated work on the UAVRP for search and rescue in the usecase of tornados
in Oklahoma, where the prioritization on how to use the search platforms depend
on a large number of criteria. E.g., School areas, critical infrastructure, phone
calls of tornado sightings or directly observation of damage. See Fig. 2.5 for a
snippet of the work.

• Conduct a deeper study of the trade-off with allowing search and Rescue UAV
platforms to monitor in different altitudes throughout a mission. This requires a
deeper analysis of the sensor resolution and capabilities and the risk of missing
targets at different altitudes.

• Use the EOSpython scenario generator framework to test different satellite speci-
fications and provide insights into the value-addition moving towards hyper-agile
platforms. This could lay the foundation for the design of future high-resolution
satellite systems as the collective capability of the platforms in correspondence to
their agility could be evaluated.

• For automatic preference articulation, a deeper (locus) exploration on the use
of Shannon’s information entropy to determine preference settings is required.
Additionally, a comparative analysis of this approach to others is of high interest.

• Initiate discussions on the need for a measure that describes the amount of articu-
lation required for different comparison methods. This would consequently mean
a mapping between different problem domains and a fitting solution approach
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design regarding the place of articulation could be made. Moreover, it could be
used to identify problems where the setwise preference articulation could bring
the most value.
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S-1.1 Conference and workshop participation
• ICRCA 2021: the 5th International Conference on Robotics, Control and Automa-

tion (Seoul, South Korea)

• Workshop and seminar for knowledge dissemination at University of Peradeniya
2022

• ISSC 2022: Interplanetary small satellite conference (San luis obituary, California)

• Toulouse 2022 space event

• Aalborg Robotics Challenge 2023

S-1.2 Teaching and supervision
I have lectured on the course Production management where I undertook the lecture
"Forecasting and inventory modelling" for the sports science 9th semester 2020. I have
also led two lectures in the course "Combinatorial Optimization Problems and Solutions
for Autonomous Systems" on multi-objective optimization and multi-criteria decision
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making for the mathematics-economics 8th semester students 2023. Moreover, I held
a workshop in that course on the NSGA-II algorithm. I have also undertaken a single
lecture on "Characteristics of Remote sensing - Optical and radar imagery" in the course
"Remote sensing image analysis (ID7.6)" in the Assets+ programme co-funded by the
erasmus+ programme of the European Union.

I have supervised / am supervising the following math-econ master groups:

• Churn prediction in telecom industry (10.sem, 2020) (Telenor). The group utilized
their master thesis to investigate and apply neural network and extreme gradient
boosting classification methods for detecting unsatisfied customers.

• Storage optimization (7.sem, 2019) (Grundfos). The group devised zoning strategy
to combat high complexity issues of larger problems instances.

• Demand forecasting (7.sem, 2020) (Grundfos).

• Data warehouse architecture (9.sem, 2020) (Telenor)

• Demand forecasting (10.sem) (Grundfos, 2021). Hierarchical time series analysis
to infer information throughout the dependencies in predicting demand.

• Path planning for the UAV-assisted Search and Rescue mission (8.sem, 2021). The
group investigated different network reduction methods and solution approaches
to test their applicability to real world scenarios.

• Inventory management through path planning (7.sem, 2022) (Grundfos)

• Inventory management through Reinforcement learning (7.sem, 2022) (Grundfos)

• Introducing water temperature in path planning for the UAV-assisted Search and
Rescue mission (9.sem, 2022).

• Garbage collection with IoT sensors (8. sem, 2023)

• Garbage collection with uncertain loads (8. sem, 2023)

• Garbage collection through CVRP and heuristics (8. sem, 2023)

• Forecasting of sales and inventory modelling of industry lubricants in expanding
markets (10.sem, 2023).
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Besides the above groups where I have participated as an examinator in the exam, I
have participated in the following exams (and re-exams if necessary):

• Member of the Panel of Examiners of Research Degree Candidate - U.D.D.M. Da-
hanayaka from University of Moratuwa 2022 - Model the Vehicle Routing Problem
to Optimize Freight Logistics Multiple Echelon Network

• Math-Econ 9th semester group fall 2022

• Linear Algebra (approx. 60 students) GBE 2 spring senester 2022

• Calculus (approx. 60 students) GBE 1 fall senester 2022

• Optimization and programming course (prepared written exam questions) - GBE
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S-1.4 Course work

Courses ECTS
Introduction to the PhD Study (Engineering/Tech), Spring 3 (2020) 0,5
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Academic Information Searching, Publishing and Management, Fall 2 (2020) 2,0
AI for the People (2020) 2,0
Applying the Danish Code of Conduct for Research Integrity to your Research 4 (2020) 1,0
Aspects of Advanced Analytics (2020) 2,0
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Optimal Control (2020) 4,0
Project Management and Interpersonal Skills, Fall (2020) 2,0
Introduction to Stochastic Programming (2021) 5,0
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AI for defence 0,5
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Total 32
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A Multi criteria decision making for the multi-satellite image
acquisition scheduling problem

B UAVs Path Planning under a Bi-Objective Optimization Frame-
work for Smart Cities

C An improved pre-processing method for cyber physical sys-
tems - as illustrated in the earth observation satellite schedul-
ing

D A GRASP-Based Approach for Planning UAV-Assisted Search
and Rescue Missions

E Towards an autonomous system for the satellite image ac-
quisition scheduling problem through multi-criteria decision-
making and the extended longest path algorithm

F Determining the pricing strategy for different preference struc-
tures for the earth observation satellite scheduling problem
through simulation and VIKOR
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SUMMARY

ISSN (online): 2446-1636
ISBN (online): 978-87-7573-677-5

In the future, many decisions will either be fully automated or supported by 
autonomous system. Consequently, it is of high importance that we under-
stand how to integrate human preferences correctly.

This dissertation dives into the research field of multi-criteria decision mak-
ing and investigates the satellite image acquisition scheduling problem and 
the unmanned aerial vehicle routing problem to further the research on a 
priori preference integration frameworks. The work will aid in the transition 
towards autonomous decision making in complex decision environments. 
A discussion on the future of pairwise and setwise preference articulation 
methods is also undertaken.

“Simply put, a direct consequence of the improved decision-making meth-
ods is, that bad decisions more clearly will stand out as what they are – bad 
decisions.”
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