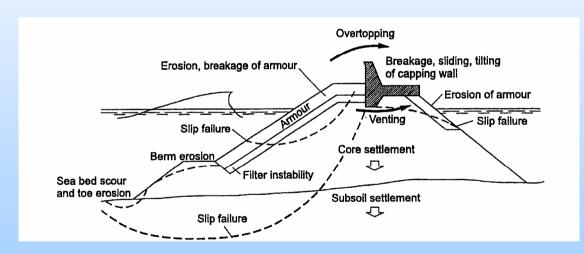
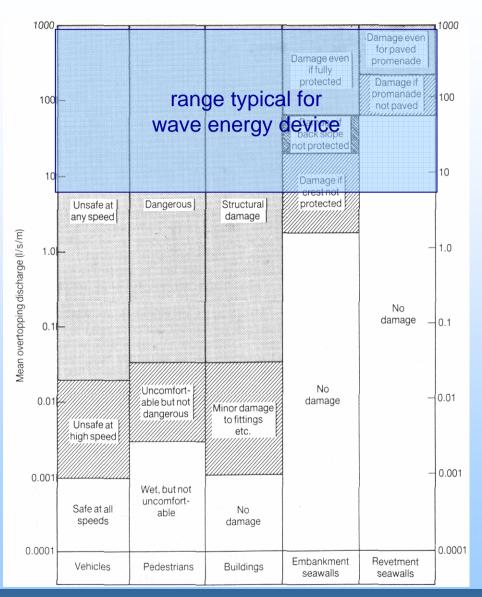


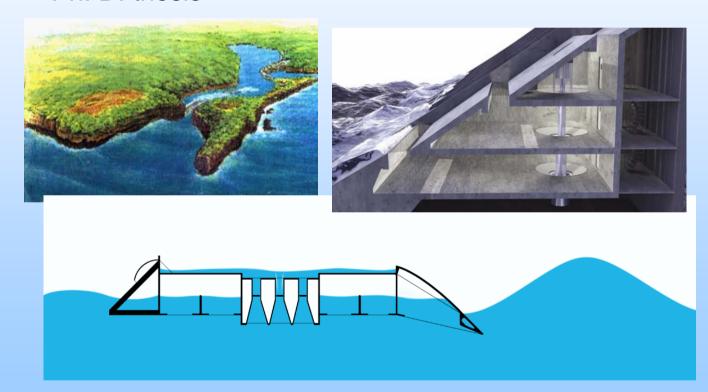
Optimization of wave overtopping of slopes


Jens Peter Kofoed

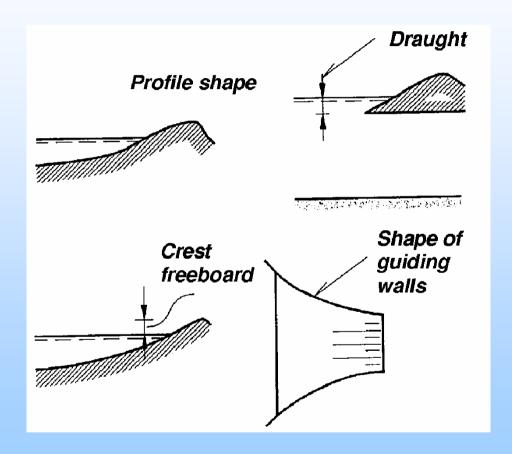
Hydraulics and Coastal Engineering Laboratory
Department of Civil Engineering
Aalborg University, Denmark

Wave overtopping


- Coastal engineering
 - e.g. Van der Meer and Janssen (1995)


Overtopping discharge levels

Wave overtopping


- Utilization of wave energy
 - Ph. D. thesis

Overtopping of single level reservoirs

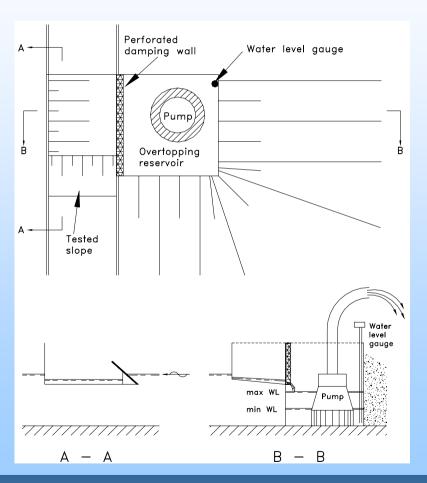
- Linear slopes
- Modifications of the slope profile
- Modifications of the side walls of the slope

Tested geometries

- 28 slope geometries tested
 - 13 linear slopes (variables: slope angle α = 20° 60°, crest freeboard R_c/d = 0.04 0.30 and draft d_r/d = 0.20 1.00)
 - 10 modifications of slope profile (variables: horizontal plate at the toe of the slope, convex and concave slopes with varying layouts)
 - 5 modifications of slope side-walls (linear and curved converging side walls $w_c/w_{dr} = 0.368 0.848$)

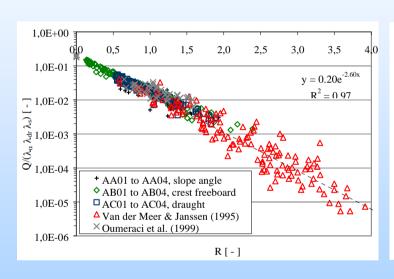
Wave conditions

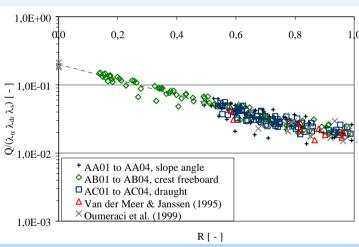
- 2-D irregular waves
- JONSWAP, $\gamma = 3.3$
- *H_s* varied from 0.50 to 8.00 m
- T_p varied from 4 to 14 s
- Resulting in s_p from 1.1 to 8.9 %
- And ξ_{p0} as given in the table


		H_s [m]								
T_p [s]		0.5	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0
	$s_p [\%]$	2.0	4.0	6.0						
4	$\xi_{p0}, \alpha = 20^{\circ}$	2.6	1.8	1.3						
	$\xi_{p0}, \alpha = 30^{\circ}$	4.1	2.9	2.0						
	$\xi_{p0}, \alpha = 40^{\circ}$	5.9	4.2	3.0						
	$\xi_{p0}, \alpha = 50^{\circ}$	8.4	6.0	4.2						
	$\xi_{p0}, \alpha = 60^{\circ}$	12.2	8.7	6.1						
	$s_p [\%]$	0.9	1.8	3.6	5.4	7.2	8.9			
6	$\xi_{p0}, \alpha = 20^{\circ}$	3.9	2.7	1.9	1.6	1.4	1.2			
	$\xi_{p0}, \alpha = 30^{\circ}$	6.1	4.3	3.1	2.5	2.2	1.9			
	$\xi_{p0}, \alpha = 40^{\circ}$	8.9	6.3	4.5	3.6	3.1	2.8			
	$\xi_{p0}, \alpha = 50^{\circ}$	12.6	8.9	6.3	5.2	4.5	4.0			
	$\xi_{p0}, \alpha = 60^{\circ}$	18.4	13.0	9.2	7.5	6.5	5.8			
	s_p [%]		1.1	2.1	3.2	4.3	5.4	6.4	7.5	8.6
8	$\xi_{p0}, \alpha = 20^{\circ}$		3.6	2.6	2.1	1.8	1.6	1.5	1.4	1.3
	$\xi_{p0}, \alpha = 30^{\circ}$		5.8	4.1	3.3	2.9	2.6	2.4	2.2	2.0
	$\xi_{p0}, \alpha = 40^{\circ}$		8.4	5.9	4.8	4.2	3.8	3.4	3.2	3.0
	$\xi_{p0}, \alpha = 50^{\circ}$		11.9	8.4	6.9	6.0	5.3	4.9	4.5	4.2
	$\xi_{p0}, \alpha=60^\circ$		17.3	12.2	10.0	8.7	7.7	7.1	6.5	6.1
	s_p [%]			1.5	2.3	3.1	3.8	4.6	5.4	6.1
10	$\xi_{p0}, \alpha = 20^{\circ}$			3.2	2.6	2.3	2.0	1.9	1.7	1.6
	$\xi_{p0}, \alpha = 30^{\circ}$			5.1	4.2	3.6	3.2	2.9	2.7	2.6
	$\xi_{p0}, \alpha = 40^{\circ}$			7.4	6.1	5.2	4.7	4.3	4.0	3.7
	$\xi_{p0}, \alpha = 50^{\circ}$			10.5	8.6	7.4	6.7	6.1	5.6	5.3
	$\xi_{p0}, \alpha = 60^{\circ}$			15.3	12.5	10.8	9.7	8.8	8.2	7.7
1.0	s_p [%]			1.2	1.8	2.4	3.0	3.6	4.2	4.8
12	$\xi_{p0}, \alpha = 20^{\circ}$			3.9	3.2	2.7	2.4	2.2	2.1	1.9
	$\xi_{p0}, \alpha = 30^{\circ}$			6.1	5.0	4.3	3.9	3.5	3.3	3.1
	$\xi_{p0}, \alpha = 40^{\circ}$			8.9	7.3	6.3	5.6	5.1	4.8	4.5
	$\xi_{p0}, \alpha = 50^{\circ}$			12.6	10.3	8.9	8.0	7.3	6.8	6.3
	$\xi_{p0}, \alpha = 60^{\circ}$			18.4	15.0	13.0	11.6	10.6	9.8	9.2
14	$s_p [\%]$				1.5 3.7	2.0 3.2	2.5	3.0	3.5	4.0
14	$\xi_{p0}, \alpha = 20^{\circ}$				5.8	5.1	$\frac{2.8}{4.5}$	$\frac{2.6}{4.1}$	$\frac{2.4}{3.8}$	2.3 3.6
	$\xi_{p0}, \alpha = 30^{\circ}$ $\xi_{p0}, \alpha = 40^{\circ}$				3.8 8.5	7.3	6.6	6.0	5.6	5.2
	$\xi_{p0}, \alpha = 40^{\circ}$ $\xi_{p0}, \alpha = 50^{\circ}$				12.0	10.4	9.3	8.5	7.9	7.4
	$\xi_{p0}, \alpha = 50^{\circ}$ $\xi_{p0}, \alpha = 60^{\circ}$				17.5	15.2	13.6	12.4	11.5	10.7
	$\zeta p0, \alpha = 00^{\circ}$				11.0	10.2	19.0	12.4	11.0	10.7

Model test setup

 Physical model tests carried out in wave basin, length scale 1:50




Single level reservoirs

- A study of wave overtopping using geometries and wave conditions not or only partly covered by results from the literature has been performed
 - Low relative crest freeboards
 - Limited draft
 - Various modifications on slope and side wall geometry
- Based on the model test results from this study a new overtopping expression (based on Van der Meer & Janssen [1995]) for non-breaking waves ($\xi_{p0} > 2$) has been proposed

Single level reservoirs

Overtopping expression

Wave overtopping for sloping structures, non-breaking waves ($\xi_{p0} > 2$):

$$\frac{q}{\lambda_{\alpha}\lambda_{d_r}\lambda_s\lambda_m\sqrt{gH_s}} = 0.2e^{-2.6\frac{R}{H_s}\frac{1}{\gamma_r\gamma_b\gamma_h\gamma_\beta}}$$

$$\lambda_{\alpha} = \cos^{3}(\alpha - 30^{\circ})$$

$$\lambda_{s} = \begin{cases} 0.4\sin(\frac{2\pi}{3}R) + 0.6 & \text{for } R < 0.75 \\ 1 & \text{for } R \ge 0.75 \end{cases}$$

$$\lambda_{d_r} = 1 - 0.4 \frac{\sinh\left(2k_p d\left(1 - \frac{d_r}{d}\right)\right) + 2k_p d\left(1 - \frac{d_r}{d}\right)}{\sinh\left(2k_p d\right) + 2k_p d} \lambda_m \text{ as given in tabel}$$

Optimizing for energy capture

Hydraulic power in overtopping

Optimal crest freeboard

Optimal hydraulic power

$$\frac{q}{\sqrt{gH_s}} = Ae^{-B\frac{R_c}{H_s}}$$

$$P = qR_c g\rho_w$$

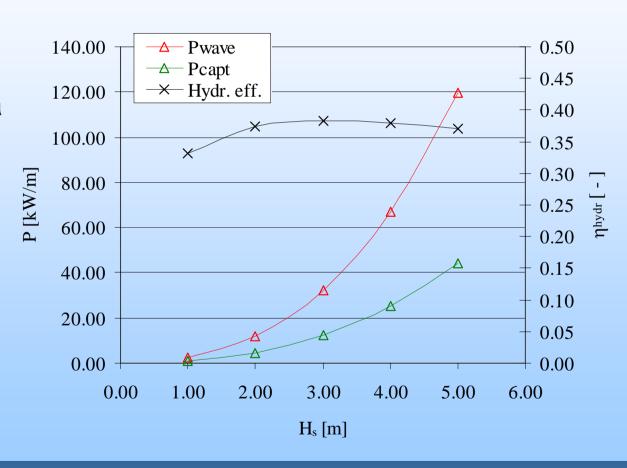
$$= \sqrt{gH_s^3} Ae^{-B\frac{R_c}{H_s}} R_c g\rho_w$$

$$R_{c,opt} = \frac{H_s}{B}$$

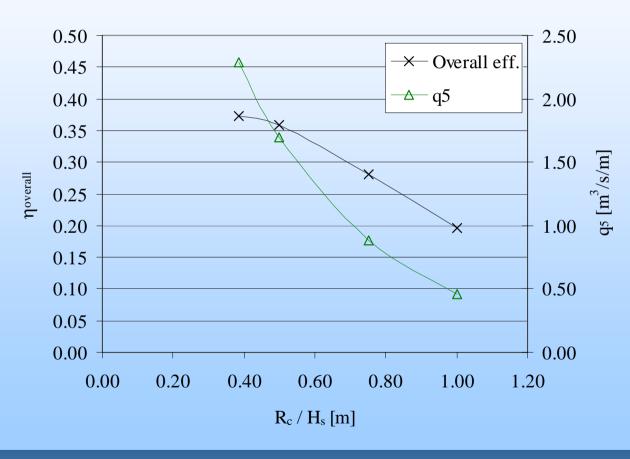
$$\bigcup$$

$$P_{opt} = e^{-1} \rho_w \frac{A}{B} \sqrt{g^3 H_s^5}$$

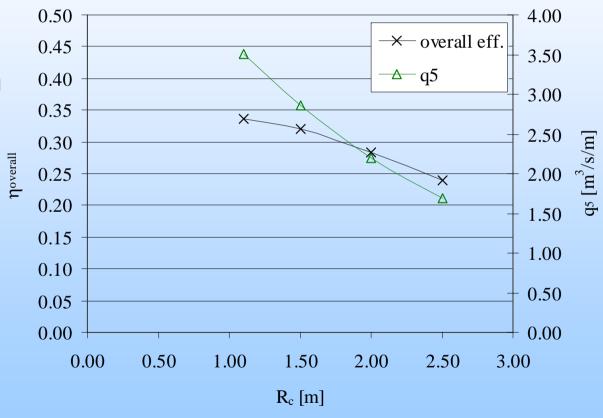
H_s [m]	T_p [s]	P_{occur} [%]	$P_{wave} [kW/m]$
1.0	5.6	46.8	2.4
2.0	7.0	22.6	11.9
3.0	8.4	10.8	32.2
4.0	9.8	5.1	66.7
5.0	11.2	2.4	119.1


Overall hydraulic efficiency
$$\eta_{overall} = \frac{\sum_{m=1}^{5} P^{m} P_{occur}^{m}}{\sum_{m=1}^{5} P_{wave}^{m} P_{occur}^{m}}$$

Crest freeboard adjusted to optimal in all sea conditions


$$\frac{R_{c,opt}}{H_s} = \frac{1}{B} = 0.385$$

$$\eta_{\text{overall}} = 37.3 \%$$
 $q_5 = 2.29 \text{ m}^3/\text{s/m}$



- R_c adjusted to sea conditions
- Increase in R_c/H_s
 ratio reduce max.
 flow rate (turbine demand), but
 also overall
 efficiency

- R_c fixed
- Optimal $R_c = 1.1 \text{ m}$ $\eta_{\text{overall}} = 33.4 \%$ $q_5 = 3.51 \text{ m}^3/\text{s/m}$
- Increase in R_c
 reduce max. flow
 rate (turbine
 demand), but also
 overall efficiency

Important aspects

- Max. overtopping rates => turbine demand
- Area of reservoir
- Difference between crest freeboard and reservoir water level
- Turbine control strategy
- Turbine characteristics
- Tidal variations (fixed structures)
-

Thank you for your attention!