

Investigation of indoor climate in a naturally ventilated building

Indoor Air 2008

Tine S. Larsen
Assistant professor
Department of Civil Engineering
Aalborg University
tsl@civil.aau.dk

Introduction to the Office Building

- Five-storied office building.
- The ground floor is mechanically ventilated.
- Second to fifth floors are naturally ventilated.
- All windows have a manually and an automatically controlled part.
- Each floor is divided into 14 zones controlled by an automatic control system which measures temperature (all zones) and CO₂ (four zones at each floor).

Zone 43	Zone 44 Zone 45	Zone 46
Zone 42		
Zone 41	3. etage	Zone 47
Zone 40	Zone 38 Zone 37	20 Zone 33
Zone 39		one 35 Zone 34

Questionnaire

Aim

- To obtain a general evaluation of the indoor climate in the building
- To find critical zones in the building

Result

Overall results were good

Problems

- Insufficient use of solar shadings in offices facing south and west
- Draught in zones with high internal heat gains
- Internal noise

Long-term measurements

Hours with t > 26°C

Aim

• To evaluate the air quality and thermal conditions in the building during a year (by holding it up against recommendations from Danish regulations)

Results

- Average of 52 hours > 26°C
- Average of 8 hours > 27°C
- CO₂-level always below 1000 ppm

Hours with t > 27°C

Short-term measurements

- Measurement were made one week during summer, winter and spring
- Two zones were found from the questionnaire
- The following were investigated In the zones:
 - Thermal comfort (room temperature, draught, internal heat load, solar shading)
 - Air quality (indicated by CO₂) & relative humidity
 - Local air change rates

In the building:

 Ventilation capacity (infiltration, air change rate during service hours, air distribution between floors)

The zones

A

3 windows towards west

3 workplaces

Int. heat load = 16 W/m^2

B

2 windows towards east

2 windows towards south

6 workplaces

Int. heat load = 34 W/m^2

Results - short-term measurements

- Zone A
 - Thermal comfort all year round
 - High air change rates due to high internal heat gains and solar gains
- Zone B
 - Thermal comfort all year round but close to the upper limit
 - Problems with draught
 - Internal heat load = 34 W/m²

Results - short-term measurements

- The entire building
 - Average air change rate 3h⁻¹ to 5h⁻¹
 - Good indoor air quality in the building
 - Low temperature gradient (0.2°C/m) and CO₂ gradient up through the building
 - Low air change rates in the closed building 0.1h⁻¹ to 0.2h⁻¹

Conclusions

- Good thermal comfort and excellent perceived indoor air quality can be obtained in a building with open plan offices ventilated by natural ventilation by window openings in the façade
- Integration of the ventilation strategy at an early stage in the building design is important
- Simple guidance for the users is important to obtain an optimum use of e.g. solar shadings and manual opening of the windows

