

Load Extrapolation during Operation for Wind Turbines

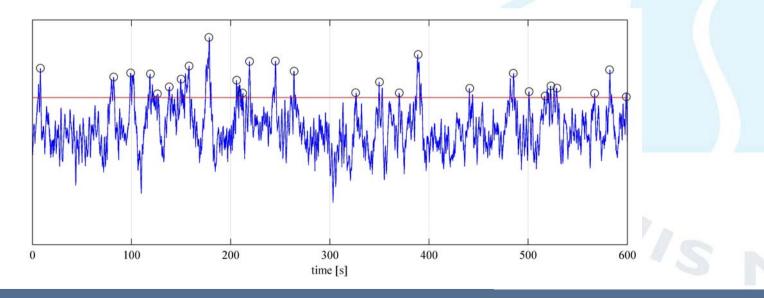
Authors:

Henrik Stensgaard Toft, Aalborg University John Dalsgaard Sørensen, Aalborg University / Risø-DTU

Introduction

Load on wind turbines during operation is among others dependent on:

- Mean wind speed.
- Turbulence intensity.
- Type and settings of the control system.


According to IEC 61400-1 3.edition 2005 the characteristic load is determined by statistical extrapolation of the response.

Extraction of Local Extremes

Local extremes are extracted by the Peak-Over-Threshold method.

- Threshold Mean plus a number of standard deviations.
- Independent extremes Time separation.
- Individual 10 min time series are independent.

Method for Load Extrapolation

Response is assumed Weibull distributed for local extremes:

$$F_{local}\left(l \mid T, U\right) = 1 - \exp\left(-\left(\frac{l-\gamma}{\beta}\right)^{\alpha}\right)$$

Statistical uncertainty in distribution parameters included.

Long-term distribution of the extremes for all wind speeds:

$$F_{long-term}\left(l \mid T\right) = \int_{U_{in}}^{U_{out}} F_{local}\left(l \mid T, U\right)^{n(U)} f_{U}\left(U\right) dU$$

Characteristic value for response with a 50 year return period:

$$F_{long-term}(L_c | T) = 1 - 3.8 \cdot 10^{-7}$$

Flap Bending Moment – Simulation Time

- Limited number of simulations gives a large statistical uncertainty.
- Normally 6 10 min. simulations are performed at each wind speed.

Simulations	Without statistical uncertainty	With statistical uncertainty	Statistical uncertainty
5	1.114	1.450	30.2 %
10	1.000	1.114	11.4 %
25	1.000	1.045	4.5 %
100	0.914	0.923	1.0 %

Flap Bending Moment – Threshold Value

- Decrease in characteristic response with higher threshold values.
- The statistical uncertainty increases with higher threshold values because the number of extremes are reduced.

Threshold	Without statistical uncertainty	With statistical uncertainty	Statistical uncertainty
1.4	1.000	1.045	4.5 %
2.0	0.920	0.996	8.2 %
2.5	0.773	0.845	9.3 %

Flap Bending Moment – Separation Time

- Small change in characteristic response for small variations of separation time.
- The statistical uncertainty increases with longer separation time because the number of extremes are reduced.

Separation time	Without statistical uncertainty	With statistical uncertainty	Statistical uncertainty
5 sec.	1.017	1.053	3.5 %
10 sec.	1.000	1.045	4.5 %
15 sec.	1.002	1.057	5.4 %
30 sec.	0.923	0.992	7.5 %

Load Extrapolation during Operation for Wind Turbines

Authors:

Henrik Stensgaard Toft, Aalborg University John Dalsgaard Sørensen, Aalborg University / Risø-DTU