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Preface 

This book has been prepared for the course on Computational Dynamics given at the 8th 
semester at the structural engineering program in civil engineering at Aalborg University. The 
course presumes undergraduate knowledge oflinear algebra and ordinary differential equations, 
as well as a basic graduate course in structural dynamics. Some of these prerequisites have been 
reviewed in an introductory chapter. The author wants to thank Jesper W. Larsen, Ph.D., and 
Ph.D. student Kristian Holm-J0rgensen for help with the preparation of figures and illustrations 
throughout the text. 

Answers to all exercises given at the end of each chapter can be downloaded from the home 
page of the course at the address: www.civil.auc.dk/i5/engelsk/dyn/index/htm 

Aalborg University, June 2005 
S0ren R.K. Nielsen 

The present 2nd edition of my textbook on computational dynamic is in substance unchanged 
in comparison to the 1st edition. Only discovered typing errors and some fonnulations have 
been corrected. 

Aalborg University, March 2007 
S0ren R.K. Nielsen 

- 5-



6 Contents 



CHAPTER 1 
INTRODUCTION 

In this chapter the basic results in structural dynamics and linear algebra have been reviewed. 

In Section 2.1 the relevant initial and eigenvalue problems in structural dynamics are formu­
lated. The initial value problems form the background for the numerical integration algorithms 
described in Chapter 2, whereas the related undamped generalized eigenvalue problem consti­
tute the generic problem for the numerical eigenvalue solvers described in Chapters 3-7. Formal 
solutions to various formulations of the initial value problem are indicated, and their shortcom­
ings in practical applications are emphasized. 

In Section 2.2 the semi-analytical solution approaches to the basic initial value problem of a 
multi degrees-of-freedom system in terms of expansion in various modal bases are presented. 
The application of these methods in relation to various reduction schemes, where typically 
merely the low-frequency modes are required, has been outlined. 

1.1 Fundamentals of Linear Structural Dynamics 

The basic equation of motion for forced vibrations of a linear viscous damped n degree-of­
freedom system reads 1 

x (to) = xo x(to) = xo 

t >to } (1- 1) 
Mx(t) + Cx(t) + Kx(t) = f (t) 

x(t) is the vector of displacements from the static equ ilibrium state, x(t) is the velocity vector, 
.X( t) is the acceleration vector, and f( t) is the dynamic load vector. x 0 and x0 denote the initial 
value vectors for the displacement and velocity, respectively. K , M and C indicate the stiffness 
matrix, mass matrix and damping matrices, all of the dimension n x n. For any vector a =I= 0 
these fulfil! the followingpositive definite and symmet1y properties 

aTKa > 0 

aTMa > 0 

ar ea > 0 

(1 -2) 

1S.R.K. N ielsen: Structural Dynamics, Vol. 1. Linear Structural Dynamics, 4th Ed .. Aalborg tekniske Univer­
sitetsforlag, 2004. 

-7 -



8 Chapter 1 -INTRODUCTION 

If the structural system is not supported against stiff-body motions, the stiffness matrix is merely 
positive semide.finite, so aTKa;::: 0. Correspondingly, if some degrees of freedom are not carry­
ing kinetic energy (pseudo degrees of freedom with zero mass or zero mass moment of inertia), 
the mass matrix is merely positive semidefinite, so aTMa ;::: 0. The positive definite property 
of the damping matrix is a formal statement of the physical property that any non-zero velocity 
of the system should be related with energy dissipation. However, C needs not fulfil! any sym­
metry properties, although energy dissipation is confined to the symmetric part of the matrix. 
So-called aerodynamic damping loads are external dynamic loads proportional to the structural 
velocity, i.e. f(t) = - Cax(t). If the aerodynamic damping matrix Ca is absorbed in the total 
damping matrix C, no definite property can be stated. 

The solution of the initial value problem (1-1) can be written in the fo llowing way1 

x(t) = ( h(t- T)f(T)dT + a0(t- to)xo + a1(t- to)xo 
}to 

a0 (t) = h(t)C + h(t)M 

a1(t) = h(t)M 

(1- 3) 

h(t) is the impulse response matrix. Fom1ally, this matrix is obtained as a solution to the initial 
value problem 

Mh(t) + Ch(t) ~ Kh(t) =I <5(t) } 

h(0- ) = 0 ' h(0- ) = 0 

I is the unit matrix of the dimension n x n, and o ( t) is Dirac 's delta function. 

The frequency response matrix H ( iw) related to the system ( 1-1) is given as 

(1-4) 

(1 -5) 

where i = H is the complex unit. The impulse response matrix is related to the frequency 
response matrix in tenns of the Fourier tramform 

h(t) = - H(iw)ciwtdt 1 j oo 
27T - ()() 

(1 - 6) 

The convolution quadrature in (1-3) is relative easily evaluated numerically. Hence, the solution 
of ( 1-1) is available, if the impulse response matrix h( t) is known. In turn, then x n components 
of this matrix can be calculated by the Fourier transforms (1-6). Although these transforms may 
be evaluated numerically, the necessary calculation efforts become excessive even for a moder­
ate number of degrees of freedom n . Hence, more direct analytical or numerical approaches are 
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mandatory. 

Undamped eigenvibrations (C = 0, f (t) = 0) are obtained as linear independent solutions to 
the homogeneous matrix differential equation 

Mx(t) + Kx(t) = o (1- 7) 

Solutions are searched for on the form 

(1- 8) 

Insertion of ( 1-8) into ( 1-7) provides the following homogeneous system of linear equations for 
the determination of the amplitude q, (j) and the unknown constant wj 

(1- 9) 

( 1-9) is a so-called generalized eigenvalue problem (GEVP). If M = I , the eigenvalue problem 
is referred to as a special eigenvalue problem (SEVP). 

The necessary condition for non-trivial solutions (i.e. q,UJ i= 0) is that the determinant of the 
coeffi c ient matrix is different from zero. This lead to the characteristic equation 

P(A) = dC't (K- AM) = 0 (1- 10) 

P (A) indicates the characteristic polynomial. This may be expanded as 

(1 - 11) 

The constants a0 , a 1, ... , a11 are known as the invariants of the GEVP. This designation stems 
from the fact that the characteristic polynomial ( 1-11) is invariant under any rotation of the co­
ordinate sys tem. Obviously, a0 = ( - 1 )11 det (M ), and an = det(K ). The n th order equation 
(l -10) determines n solutions, A1. A2 , . .. , An. 

Assume that either M or K are pos itive definite. Then, all eigenvalues Aj are non-negative real, 
which may be ordered in ascending magnitude as follows1 

(1 - 12) 

An = oc, if d ct (!\I) = 0. Similarly, A1 = 0, if dct (K ) = 0. The eigenva!ues are denotes as 
simple, if A1 < A2 < · · · < A,~- ! < An· The undamped circular eigenfrequencies are related to 
the eigenvalues as follows 
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(1- 13) 

The corresponding solutions for the amplitude functions, ~ (l ) , . .. , ~(n), are denoted the un­
damped eigenmodes of the system, which are real as well. 

The eigenvalue problems (1-9) can be assembled into following matrix formulation 

1~:1 ~2 ~:.] K [ ~(1) ~(2) ... ~(n)] = M [ ~(1) ~(2) ... ~(n)] 

0 0 An 

K~ = M~A (1-14) 

where 

).1 0 

i.l 
0 ).2 

A = 

0 0 

(1-15) 

and ~ is the so-called modal matrix of dimension n x n, defined as 

~ = [ ~( 1 ) ~(2) ... ~(n)] (1-16) 

If the eigenvalues are simple, the eigenmodes fulfi 11 the following orthogonality properties1 

i#.i 
i=.i 

i#.i 
z = J 

where Mi denotes the modal mass. 

The orthogonality properties ( 1-1 7) can be assembled in the following matrix equation 

0 
..... JJ 

(1- 17) 

(1-18) 

(1 - 19) 
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where 

m = ~~~ ~2 ~I 
0 0 Mn 

(1- 20) 

The corresponding grouping of the orthogonality properties ( 1-18) reads 

(1- 21) 

where 

(1- 22) 

0 

If the eigenvalues are all simple, the eigenmodes become linear independent, which means that 
the inverse q, - l exists. 

In the following it is generally assumed that the eigenmodes are normalized to unit modal mass, 
so m = I. For the special eigenvalue problem, where M = I, it then follows from ( 1-19) that 

(1- 23) 

A matrix fulfilling (1-23) is known as orthonormal or unitary, and specifies a rotation of the 
coordinate system. All column and row vectors have the length 1, and are mutually orthogonal. 
It follows from ( 1-19) and ( 1-21) that in case of simple eigenvalues a so-called similarity trans­
formation exists, defined by the modal matrix <P, that reduce the mass and stiffness matrices to 
a diagonal form. In case of multiple eigenvalues the problem becomes considerable more com ­
plicated. For the standard eigenvalue problem with multiple eigenvalues it can be shown that 
the stiffness matrix merely reduces to the so-called Jordan normal form under the considered 
similarity transfmmation, given as follows 

ll 
0 0 

k2 0 
k = (l - 24) 

0 k rn 

where m :::; n denotes the number of different eigenvalues, and ki signifies the so-called Jordan 
boxes, which are block matrices of the form 
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) •• 0 (1- 25) 

Assume that the mass matrix is non-singular so M - 1 exists. Then, the equations of motion 
(1-1) may be reformulated in the following state vector form of coupled 1st order differential 
equations2 

z(t) = Az(t) + F (t) 

z(to) = zo 

z(t) denotes the state vector. The corresponding homogeneous differential system reads 

z(t) = Az(t) 

The solution of (1-26) becomes2 

(1- 26) 

(1-28) 

(1-29) 

The n x n matrix c A t is denoted the matrix exponential function. This forms a fundamental 
matrix to ( 1-28), i.e. the columns of cAt form 2n linearly independent solutions to (1-28). 
Actually, cAt is the fundamental matrix fulfi !ling the matrix initial value problem 

!!:_cA t = A rAI. 
dt 
cA·O = I 

(1- 30) 

where I denotes a 2n x 2n unit matrix . Now, ( c A 1r 1 = e-At as shown in Box 1. 1. Using 
this relation for t = t0 , ( 1-29) is seen to fulfi I the initial value of (1 -26). Since conventional 
differentiation rules also applies to matrix products, the fulfi lment of the differential equation 

2D.G. Zill and M.R. Cullen: Differential Equations with Boundary-Value Problems, 6th Ed Brooks/Cole, 
2005. 
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in ( 1-26) follows from differentiation of the right hand side of ( 1-29), and application of (1-30), 
Le . 

.!!_z(t) =.!!_eAt (e- Ato z0 + t e- MF(r)dr) + eAt(o + e-AtF(t)) = 
dt dt l to 

AeAt ( e- Atozo+ 1
0

te- ArF(r)dr) + IF(t) = Az(t)+F(t) (1- 31) 

The solution to (1-30) can be represented by the following infinite series of matrix products 

At t2 2 t3 3 
e = I + tA + -A + -A + · · · 

2! 3! 
(1- 32) 

where A 2 = AA, A 3 = AAA etc. (1-32) is seen to fulfi I the initial value eA·O = I. The 
fulfilment of the matrix differential equation (1-30) follows from termwise differentiation of 
the right-hand side of ( 1-32) 

d At t 2 t
2 

3 ( t
2 

2 ) At -c = 0 + A+ - A +-A + · · · = 0 +A I+ tA +-A + · · · = Ac 
dt 1! 2! 2! 

(1- 33) 

The right-hand side of (1-32) converges for arbitrary values oft as the number of terms in­
creases beyond limits on the right-hand side. Hence, eAt can in principle be calculated using 
this representation. However, for large values oft the convergence is very slow. In ( 1-29) the 
fundamental matrix eAt is needed for arbitrary positive and negative values of t. Hence, the 
use of ( 1-32) as an algorithm for cAt in the solution ( 1-29) becomes increasingly computational 
expensive as the integration time interval is increased. In Box 1.1 an analytical solution for cAt 
has been indicated, which to some extent circumvents this problem. However, this approach 
requires that all eigenvectors and eigenvalues of A are available. 

Damped eigenvibrations are obtained as linear independent solutions to the homogeneous dif­
ferential equation (1-28). Analog to ( 1-8) solutions are searched for on the form 

(1- 34) 

Insertion of (1-34) into (1-28) provides the following special eigenvalue problem of the dimen­
sion 2n for the determination of the damped eigenmodes w Ul and the damped eigenvalues Aj 

(1 - 35) 

Since A is not symmetric, Aj and l]! (j) are generally complex. Upon complex conjugation of 
(1-35), it is seen that if (A, lJ! ) denotes an eigen-pair (solution) to ( 1-35), then ()., •, "IJI •) is also an 
eigen-pair, where* denotes complex conjugation. For lightly damped structures all eigenvalues 
are complex. In this case only n eigen-pairs (Aj, -q, Ul), j = 1, 2, ... , n need to be considered, 
where no eigen-pair is a complex conjugate of another in the set. 



14 Chapter 1 - INTRODUCTION 

Let the first n components of w <J) be assembled in the n -dimensional sub-vector q,(J) . Then, 
from (1-27) and (1-34) it follows that 

Consequently, the damped eigenmodes must have the structure 

-w<J) = [ q,U)·] 
>- .q,(J) 

J 

Hence, merely the first n components of w (j) need to be determined. 

(1- 36) 

(1 - 37) 

The eigenvalue problems (1-35) can be assembled into the following matrix formulation, cf. 
( 1-14 )-( 1-16) 

A [w(tl w('l ... w('nl] ~ [w(tl w('l ... W('"l] [l 
A'W = 'WAA 

where 

"Ill = [ w (l) "1!1 (2) ... w (2nl] 

(1- 38) 

(1-39) 

(1-40) 

The following representation of A in terms of the damped eigenmodes and eigenvalues follows 
from (1-38) 

(1-4 1) 

Assume that another 2n x 2n matrix B has the same eigenvectors w Ul as A , whereas the 
eigenvalues as stored in the diagonal matrix A B are different. Then, similar to ( 1-41 ), B has the 
representation 

(1-42) 

The matrix product of A and B becomes 

(1-43) 
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Since AA and A 8 are diagonal matrices, matrix multiplication of these is commutative, i.e. 
AAAB = A 8 AA. Then, (1-43) may be written 

(1-44) 

Consequently, if two matrices have the same eigenvectors, matrix multiplication of two matri­
ces is commutative. Identical eigenvectors of two matrices can also be shown to constitute the 
necessary condition (the "only if' requirement) for commutative matrix multiplication. 

The so-called adjoin! eigenvalue problem to (1-35) reads 

(1-45) 

Hence, (vi, w~i)) denotes the eigenvalue and eigenvector to the transposed matrix A T. In Box 
1.2 it is shown that the eigenvalues of the basic eigenvalue problem and the adjoint eigenvalue 
problem are identical, i.e. vj = Aj . Further, it is shown that the eigenvectors 'lf (J) and w~> 
fulfill the orthogonality properties 

i=/=j 
(1-46) 

~ = J 

i=/=j 
(1-47) 

~ =J 

where mi is denoted the complex modal mass. Without any restriction this may be chosen 
as mj = 1. Then, the orthogonality conditions (l-46) and (1-47) may be assembled into the 
following matrix relation 

(1-48) 

(1-49) 

where 

(1- 50) 

From ( 1-48) follows that 

(l- 51) 

Hence, the eigenvectors w~i) of the adjoint eigenvalue problem (the column vectors in Wa) 
normalized to unit modal mass are determined as the row vectors of w -l. The eigenvectors 
w (i) of the direct eigenvalue problem may be arbitrarily nom1alized. Of course, if (.Ai, w~i)) is 

an eigen-solution to the ad joint eigenvalue problem, so is the complex conjugate (.A; , 'l' ~il* ) . 
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Box 1.1: Matrix exponential function 

Multiple application of (1-41) provides for k = 1, 2, .. . 

A 2 =AA = \IIAA\11- 1 \IIAA\11 - 1 = \IIA~\11 -1 

A 3 = AA2 = \IIAA\11-1 'l!A~w - 1 = \IIA~w-1 

Chapter 1 -INTRODUCTION 

(1 - 52) 

A~+1 is a product of diagonal matrices, and then becomes a diagonal matrix itself. The 
diagonal elements become >-{+1

, where Ak is the corresponding diagonal element in A A. 
Consider the matrix exponential function, cf. (1-32) 

A t t2 2 t3 3 
eA =l + tAA+IAA+IAA + ··· 

2. 3. 
(1-53) 

Since all addends on the right-hand side of (1-53) are diagonal matrices, it follows that 
also eAAt becomes diagonal with the diagonal elements 

(1- 54) 

where the Maclaurin series for the exponential function has been used in the last state­
ment. Then, from (1-32), (1-52) and (1-53) follows 

(1- 55) 

For arbitrary positive or negative t 1 and t2 it then follows that 

(1 - 56) 

(l-5 6) represents the fundamental multiplication rule of matrix exponential functions. 
Especially for t 1 = t and t 2 = -t we have 

(1 - 57) 

Further, 

A - n = A - 1 - ··A - 1 = wA:;t w - 1 n = 1, 2, . .. (1 - 58) 

(1 -58) is proved by insertion of(l-52) and (1-58) into the identity A 11 A -n =I. As seen, 
eAt and A -n have identical eigenvectors. Then, from (1-44) it follows that 

n = 1, 2, ... (1 - 59) 
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Box 1.2: Proof of orthogonality properties of eigenvectors and adjoint eigenvectors 

(1-35) is pre-multiplied with l)!~i)T' and (1-45) is pre-multiplied with l)! (j)T, lead­
ing to the identities 

The last statement follows from transposing the previous one. Withdrawal of ( 1-61) from 
( 1-60) provides 

(1- 62) 

Fori= j, (1-62) can only be fulfilled for vi= >.i, since l]! ~i)T l)! (i) =I= 0. 

Next, presume simple eigenvalues, so Ai =I= Aj. Then, for i =I= j, (1-62) can only be 
fulfilled, ifw~i)T ']!(j) = 0, corresponding to (1-46). 

Since the right-hand side of (1-60) is zero for i =I= j, this must also hold true for the left­
hand side, i.e. W~i)T Aw(j) = 0 fori =/= j. Then for i = j , (1-60) provides the result 
'l! ~i) TA w (i) = >.im i, which completes the proof of (1-47). 

Example 1.1: Equations of motion of linear viscous damped 2DOF system 

Fig. 1-1 Equation of motion of linear viscous damped 2DOF system. 

17 

The two-degree-of-freedom system shown on Fig. 1-1 consists of the masses m 1 and m 2 connected with linear 
elastic springs with the spring constants k1. k2 , k3 , and linear viscous damper elements >Yith the damper constants 
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c1, c2, c3. The displacement of the masses from the static equilibrium state are denoted as x 1(t) and x2(t). The 
velocities Xi (t) and accelerations xi(t) are considered positive in the same direction as the displacements xi(t) 
and the external forces fi(t). The masses are cut free from the springs and dampers in the deformed state, and 
the damper- and spring forces are applied as equivalent external forces. Next, Newton's 2nd law of motion is 
formulated for each of the masses leading to 

m1x1 = -k1x1 + k2(x2- x1)- c1x1 + c2(x2 - x1) + fi(t) } 

m2x2 = - k3x2- k2(x2 - x1)- C3X2 - c2(:i:2- £1) + h(t) 

(1-63) may be formulated as the following matrix differential equations 

Mx(t) + Cx(t) + Kx(t) = f (t) t >to 

x(t) = [x1 (t)] 
X2(t) 

M= [m1 0] 
0 m2 

f (t) = [!I(t)] 
h(t) 

( 1-63) 

(1- 64) 

For each of the masses an initial displacement xi(t0 ) = Xi,O from the static equilibrium state and an initial velocity 
.i;i(t0 ) = xi,o are specified. These are assembled into the following initial value vectors 

[xl o] xo = x(to) = ' 
X2,0 

. . (t ) [x1 o] xo =x o= .· 
X2,0 

(1-65) 

The presented system wi ll be further analyzed in various numerical examples throughout the book. 

Example 1.2: Discretized equations of motion of a vibrating string 

.,.,. t::.l "' ... 

F ~ CD G) (]) ED ® ~ F .. 
T f 1u;x, t) l l 

. 
l .. 

' ~ 
ul 1L2 Uj Uj+l Un-2 Un-1 

t---- x 

Fig. 1-2 Discretization of ibrating string. 

Fig. 1-2 shows a vibrating string with the pre-stress force F, and the mass per unit length J.l. The string has been 
divided into n identical elements, each of the length /:,.l. Hence, the total length of the string is l = n /:,. l. The 
displacement u(x, t) of the string at the position x and time t in the transverse direction is given by the wave 
equation with homogeneous boundary conditions1 

EPu 8 2u 
J.L /Jt2 - F /Jx2 = 0 

u(O, t) = u(l, t) = 0 

x EjO,IJ } 
(1- 66) 
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where x is measured from the left support point. The spatial differential operator in ( 1-66) is discretized by means 
of a central difference operator,2 i.e. 

i=1, .. . ,n- 1 (1- 67) 

where u;(t) = u(x;, t) , x; = iCil. Further, let u;(t) = ~u(x;, t). The boundary conditions imply that u0(t) = 
un(t) = 0. Then, the discretized wave equation may be represented by the matrix differential equation 

Mx(t) + Kx(t) = o ( l- 68) 

u1(t) 1 0 0 0 0 2 -1 0 0 0 
u2(t) 0 1 0 0 0 -1 2 - 1 0 0 
U3(t ) 0 0 1 0 0 F 0 -1 2 0 0 

x(t) = , M= J.L , K = Cil2 

Un- 2(t) 0 0 0 1 0 0 0 0 2 - 1 

Un - !(t) 0 0 0 0 1 0 0 0 - 1 2 

( l- 69) 

Alternatively, the wave equation may be discretized by means of a fin ite element approach. Assuming linear inter­
polation between the nodal values stored in the vector x(t), and us ing the same interpolation for the displacement 
field and the variational field ( Galerkin variation), the fo llowing mass- and stiffness matrices are obtained 

4 1 0 0 0 2 - 1 0 0 0 

1 4 1 0 0 - 1 2 - 1 0 0 

M= J.LCil 0 1 4 0 0 F 0 - 1 2 0 0 

6 , K = !J.l (1-70) 

0 0 0 4 1 0 0 0 2 - 1 

0 0 0 1 4 0 0 0 - 1 2 

( 1-70) represents the so-called consistent mass matrix, for which the same interpolation algorithm is used for dis­
cretizing the kinetic and the potential energy. 1 By contrast the diagonal mass matrix in ( 1-69) is referred to as a 
lumped mass matrix. As seen the central difference operator and Galerkin variation with piecewise linear inter­
polation leads to the same stiffness matrix. The presented system will be further ana lyzed in various numerical 
examples in what fo llows. 

The calculated eigenvalues based on the system matrices ( 1-69) and ( 1-70) are shown in Fig. 1-3 as a function of 
the number of elements n . The solutions based on the lumped mass matrix ( 1-69) and the consistent mass ( 1-70) 
are shown with dotted and dashed signature, respectively. T he numerical so lutions have been given relative to the 
analytical solutions 

Wj ,a = jrr~ , j = 1, ... , 4 (1-71) 

As seen, the consistent mass matrix provides upper-bounds in accordance with the Rayleigh-Ritz principle de­
scribed in Section 4.2. By contrast the lumped mass matrix provides lower bounds, when used in combination 
with the consistent stiffness matrix. There is no forma l proof of th is property, which merely is an empi rical obser­
vation fu lfilled in many dynamica l problems. The indicated observation immediately suggest that an improvement 
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of the numerical solutions may be obtained by using a linear combination of the consistent and the lumped mass 
matrix. Typically, the mean value is used leading to the mass matrix 

4 1 0 0 0 1 0 0 0 0 10 1 0 0 0 

1 4 1 0 0 0 1 0 0 0 1 10 1 0 0 

M = ~pt:,.l 0 1 4 0 0 1 0 0 1 0 0 p/::,.l 0 1 10 0 0 

2 6 +2p/::,.l 12 

0 0 0 4 1 0 0 0 1 0 0 0 0 10 1 
0 0 0 1 4 0 0 0 0 1 0 0 0 1 10 

(1 - 72) 

( 1-72) is solved with the consistent stiffness matrix ( 1-70). The results are showed with a dashed-dotted signature 
on Fig. 1-3. As expected the results show a significant improvement. A theoretical argument for using the mean 
value of the consistent and lumped mass matrices for the combined mass matrix has been given by Krenk.3 
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Fig. 1-3 Undamped eigenvibrations of string. Analytical solution. Consistent mass matrix. .. .. 
Lumped mass matrix. -.-. : Combined mass matrix. 

3S. Krenk: Diwersion-corrected explicit integration of the wave equation. Computer Methods in Applied 
Mechanics and Engineering, 191, pp. 975-987,200 I. 
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Example 1.3: Verification of eigensolutions 

Given the following mass- and stiffness matrices 

M=[~ k] K = [ 5 -2] 
- 2 2 

(1 - 73) 

Verify that the eigensolutions with modal masses normalized to 1 are given by 

A = [w~ 0 ] [2 0 ] 
0 w~ 0 12 

(1-74) 

Based on the proposed eigensolutions the following calculations are perfom1ed, cf. (1-14) 

K<l> = [ 5 -2] [! t] [2 6] 
- 2 2 1 -2 t - ¥ 

(1- 75) 

M <I> A= [~ ~] [! t] [2 0] = [; 
0 5 1 - 2 0 12 5 - ~J 5 

This proofs the validity of the proposed eigensolutions. The orthonom1ality fo llows from the following calcula­
tions, cf. (1-19) and (1-21) 

q,TM<I> = [! ~] T [~ ~] [! ~] [1 0] 
1 -2 0 5 1 -2 0 1 

(1-76) 

q,TK<I> = [1 ~]T [ 5 -2] [ ~ l] [2 ~ -~ - 2 2 ~ -~ = 0 

Example 1.4: M- and K-orthogonal vectors 

Given the following mass- and stiffness matrices 

[

l 0 0] 
M= ~ 1 0 

0 0 ~ 
K = [ -~ -~ -~] 

0 - 1 2 

( 1- 77) 

Additionally, the fo llowing vectors are considered 

( 1- 78) 

From ( 1-78) the following matrix is formed 

(1 - 79) 



22 Chapter 1 -INTRODUCTION 

We may then perform the following calculations, cf. ( 1-19) and ( 1-21) 

(1-80) shows that the vectors v 1 and v 2 are mutual orthogonal with weights M and K , and that both have been 
normalized to unit modal mass. As will be shown in Example 1.5 neither v 1 nor v2 are e igenmodes, and the eigen­
values are different from 2.5858 and 5.4142. However, if three linear independent vectors are mutual orthogonal 
weighted with the three-dimensional matrices M and K , they wi ll be eigenmodes to the system. 

Example 1.5: Analytical calculation of eigensolutions 

The mass- and stiffness matrices defined in Example 1.4 are considered again. Now, an analytical so lution of the 
eigenmodes and eigenvalues is wanted. 

The generalized eigenvalue problem ( 1-9) becomes 

[
2-1). -1 0 l [<I>(j)l [0] - ~ 

1 

4->.i - 1 <I>~Jl = 0 
0 -1 2- 1>. <I>(J) 0 

2 J 3 

(1-81) 

The characteristic equation ( 1-1 0) becomes 

( [

2 - .!.). . - 1 

P(>.) = det -~ 
1 

4 - >.i 
0 - 1 

{

2 ' j = 1 
>.i = 4 , j = 2 

6 ' j = 3 

{1-82) 

Initia lly, the e igenmodes are normalized by setting an arbi trary component to I. Here we shal l choose <I>~j) = 1. 

The remaining components <P ~il and <P~il are then determined from any two of the three equations ( 1-8 1 ). The 
first and the second equations are chosen, corresponding to 

(j) [ 2 j [:~J)l = ::~~~::: 
<I>~j) 1 J 

[
2 - ~ >.i - 1 ] [<I>iil] = [0] =? 

- 1 4 - >. <P(J) 1 
J 2 

( 1-83) 

The modal matrix with eigenmodes normalized as indicated in ( 1-83) is denoted as \1>. This becomes 
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(1- 84) 

The modal masses become, cf. ( 1-19) 

(1- 85) 

q, (l) denotes the 1st eigenmode normalized to unit modal mass. This is related to .j,(l) in the fo llowing way 

q, (l) = _l_.j,(l) = _l_l~l 
,[M; ,j2 

1 

The other modes are treated in the same manner, which results in the following eigensolutions 

~]=[~: ~] 
w~ 0 0 6 

[

.j2 

<I> = [ q,( l) q,(2) q,(3)] = 1 
.j2 
2 

-~ -~] 
1 .j2 

2 

Example 1.6: Undamped and damped eigenvibrations of 2DOF system 

Fig. 1- 4 Eigenvibrations of2DOF system. 

(1- 86) 

(1 -87) 

The system in Example 1.1 is considered again with the structural parameters defined in Fig. 1-3. T he mass­
damping and stiffness matrices become, cf. ( 1-64) 

M= [1 0] k .. 0 2 g . 
c = [ 5 -2] kg ' 

- 2 3 s 
K = [ :iOO -200] N 

-200 500 m 

The eigensolutions with modal masses normalized to I become 

A = [wr 0] = [131.39 0 ] 8 _ 2 , 

0 wi 0 418.61 
<I> = [q, (l) q, (2)] = [0.64262 0. 76618] 

0.54177 - 0.45440 

(1-88) 

(1-89) 
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The matrix A defined by (1-27) becomes 

0 0 1 0 

[ 0 -MI-le] = 
0 0 0 1 

A -
- M- 1K -300 200 - 5.0 2.0 

(1-90) 

100 - 250 1.0 - 1.5 

The eigem a1ues and eigenfunctions become 

[

>.1 0 0 

A = 0 >-z 0 
A 0 0 A3 

0 0 0 
(1-91) 

- 0.7763 + 11.480i 0 0 0 

0 -2.4737 + 20.231i 0 0 

0 0 - 0.7763 - 11.480i 0 

0 0 0 - 2.4737 - 20.231i 

[ "''" ~(2) ~(1) ' .,,,,.] 
w = [w(ll w<2J -w <sJ -.v<4l] = 

>.2~<2l >-i ~(1)' >-2 ~ (2)' = >.1 ~ ( 1 ) 

1.1693 - 0.1414i - 1.6846 - 0.3657i 1.1693 + 0.1414i - 1.6846 + 0.3657i (1-92) 

1 1 1 1 

0.7153 + 13.534i 11.565 - 33.177i 0. 7153 - 13.534i 11.565- 33.177i 

-0.7763 + 11..180i - 2.4737 + 20.231i -0.7763 - 11.480i - 2.4737 - 20.231i 

As seen from ( 1-92) the second component of the sub-vectors ~(1 ) and ~{2) has been normalized to one. Hence, 
the entire modal matrix with 16 components is defined by merely 4 entities, namely the the fi rst component of the 
sub-vectors ~(1 ) and q>(2 l and the eigenvalues >.1 and >.2. 

The eigenvectors of the adjoint eigem alue problem fol lows from ( 1-51) and (1-92) 

0.1723- 0.0430i -0.1723 + 0.0388i 

0.3007 + 0.04lli 0.1993- 0.0592i 

-0.0004- 0.0154i 0.0004 + 0.0087i 

0.0025 - 0.0260i - 0.0025 - 0.0098i 

0.1723 + 0.0430·i - 0.1723 - 0.0388i1 
0.3007 - 0.04lli 0.1993 + 0.0592i 

-0.0004 + 0.0154i 0.0004 - 0.0087i 

0.0025 + 0.0260i - 0.0025 + 0.0098i 

(1-93) 

As seen w~3l and w~3l become the complex conjugates of w~1 l and w~2l, cf. remarks subsequent to ( 1-51 ). 
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1.2 Solution of Initial Value Problem by Modal Decom­
position Techniques 

Assume that undamped eigenmodes <J>(i) in addition to the orthogonality properties (1 -17) and 
(1-18) also are orthogonal weighted with the damping matrix, i.e. 

i:fj 

i=j 
(1- 94) 

( i denotes the modal damping ratio. In practice ( 1-94) is fulfilled, if the structure is lightly 
damped and the eigenfrequencies are well separated.1 The orthogonality properties may be 
assembled into the following matrix relation similar to (1-19) and (1-21) 

(1- 95) 

where 

0 ~ .. LJ (1- 96) 

The undamped eigemnodes are linear independent and may be used as a basis in the n-dimensional 
vector space. Hence, the displacement vector x (t) may be written as 

n 

x(t) = L <I>(j)qj(t) = <I>q(t) , (1 - 97) 
j=l 

where q1 (t), ... , qn(t) represent the undamped modal coordinates, i.e. the coordinates in the 
vector basis formed by the undamped eigenmodes <p(ll, .. . , <p (n ). Insertion of (1-95) into (l-
1), followed by a pre-multiplication with <J>T and use of (1-19), (1-21), (1-94), provides the 
following matrix differential equation for the modal coordinates 

mq(t) + cq(t) + kq(t) = F (t) , t > t0 } 

q(to) = lf? - 1xo , q (to) = <I> - 1:Xo 

where 

(1-98) 
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(1- 99) 

F 1 (t) , ... , F11 (t) are denoted the modal loads. Since m, c and k are diagonal matrices the 
component differential equations related to (1-98) decouple completely. This is caused by the 
orthogonality condition (1 -94) for which reason this relation is referred to as the decoupling 
condition. The differential equation for the kth modal coordinate reads 

k = 1, ... , n (1-1 00) 

Hence, the decoup1ing condition reduces the integration of a linear n degrees-of-freedom sys­
tem to the integration of n single-degree-of-freedom oscillators. 

Typically, the dynamic response is carried by lowest modes in the expansion ( 1-97). Assume 
that the modal response above the first n1 « n may be disregarded. Then ( 1-97) reduces to 

fll 

x(t) ~ L q, (j) qj (t) = if>1q1(t) 
j=l 

(1 - 101) 

where if>1 is a reduced modal matrix of dimension n x n1, and q1(t) is a sub-vector of modal 
coord inates defined as 

q l ( t) = I ::~:; I 
q,l! (t) 

(1 - 1 02) 

(I-I 0 I) completely ignores the intl uence of the higher modes. Although the dynamic response 
of these modes are ignorable, they may still influence the low-frequency components via a 
quasistatic response component. A consistent correction taken this effect into consideration 
reads1 

(1 -103) 

(1 -103) may be represented in tenns of the following equivalent matrix formulation 

(1- 1 04) 
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where 

[wf:, 0 0 

wiM2 0 
kl = . (1-1 05) 

0 0 w~~Mnt 

Both (1-101) and (1-103) requires knowledge ofthe first n1 eigen-pairs (wJ, q,Ul) . The corre­
sponding modal coordinates are determined from the first n 1 equations in (1-100). 
Correspondingly, the 2n eigenvectors q,Ul, j = 1, ... , 2n of the matrix A form a vector basis 
in the 2n-dimensional vector space. Then, the state vector z(t) admits the representation 

2n 
z( t) = L wUlqj (t) = 'I!q(t) (1 -106) 

j=l 

where 

(1- 107) 

q1(t), .. . , q2n(t) represent the damped modal coordinates, i.e. the coordinates in the vector 
basis made up of the damped eigenmodes w(ll, ... 'If (2nl. Insertion of (1-1 06) into (1-26), 
followed by pre-multiplication of wr and use of ( 1-48), ( 1-49), the following matrix differential 
differential equations for the damped modal coordinates is obtained 

q(t) = A Aq(t) + G(t) 

q(to) = W- 1zo = w; Zo 

where 

t >to} 
(1-1 08) 

(1-1 09) 

In the initial value statement of ( 1-1 06) the relation (1-51) between the ad joint and direct modal 
matrices has been used. Gj (t) = w~)TF(t) denotes the .jth damped modal load. 
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(1-1 08) indicates 2n decoupled complex 1st order differential equations. The differential equa­
tion for the jth modal coordinate reads 

j = 1, ... , 2n (1-110) 

Since, (Aj+n, \{l~+n)) = (A j, \{!~)·) for n = 1, ... , n, it follows that Gj+n(t) = Gj(t), and 
in turn that qJ+n(t) = qj(t) . Hence, merely the first n differential equations (1-110) need to be 
integrated. Then, ( 1-104) may be written 

(1-11 1) 

As is the case for expansion in undamped modal coordinates the response is primarily carried 
by the lowest n 1 modes leading to the following reduced form of (1-111) 

(1-112) 

where 

ql ( t) I 
q2(t) 

qn1:(t) 

(1- 113) 

(1-101), (l-103) and (1-112) describes the dynamic system with less coordinates than the orig­
inal fommlation (l-1). For this reason such formulations are referred to as system reduction 
schemes. A system reduction scheme with due consideration to the quasi-static response may 
also be fommlated as a correction to (1-112).1 

1.3 Conclusions 

On condition that the convolution integral is evaluated numerically an analytical solution to 
the initial value problem (1-1) is provided by the result (1-3). Since this solution relies on the 
Fourier transform of the frequency matrix (1-6) for the impulse response matrix, the approach 
becomes computational prohibitive for a large number of degrees of freedom. Alternatively, 
if the initial value problem is refommlated in the state vector form (1-26) the analytical solu­
tion ( 1-29) is obtained. This solution relies on the fundamental matrix in terms of the matrix 
exponential function for the corresponding homogeneous differential system (1-28). The ma­
trix exponential function may be calculated analytically as indicated by ( 1-55), but the solution 
requires all eigen-solutions to the system matrix A. Again, the calculation of these becomes 
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prohibited for large systems. Hence, both analytical or semi-analytical solution approaches are 
out of the question for large degree-of-freedom systems. 

The state vector formulation (1-26) directly admits the application of vectorial generaliza­
tions of standard ordinary differential equation solvers such as the Euler method, the extended 
Euler method, the various Runge-Kutta algorithms or the Adams-Bashforth!Adams-Moulton 
algorithm.2 As is the case for all conditional stable algorithms the numerical stability of these 
schemes is determined by the length of the time step in proportion to the eigenperiod of highest 
mode of the system. Hence, in order to insure stability for large scale systems excessive small 
time steps becomes necessary, which means that the high accuracy of some of these algorithms 
cannot be utilized. Consequently, there is a need for numerical matrix differential solvers for 
which the length of the time step is determined from accuracy rather than stability. These al­
gorithms predict stable although inaccurate responses for the highest modes. Instead, the time 
step is adjusted to predict accurate results for the lowest modes, which carry the global response 
of the structure. The devise of such algorithms will be the subject of Chapter 2. 

System reduction schemes such as (1-101), (1-103) and (1-112) require a limited number of 
low-frequency eigen-pairs to be know. Since, the high frequency components have been filtered 
out the numerical integration of the modal coordinate differential equations ( 1-100) and (1-11 0) 
may be performed by standard ordinary differential solvers or by modification of the methods 
devised in Chapter 2. Hence, the primary obstacle in using these methods is the determination 
of the low frequency eigen-pairs. This problem will be the subject of the Chapters 3-7 of the 
book. Moreover, only solutions to the GEVP ( 1-9) will be considered, i.e. the involved system 
matrices are assumed to be symmetric and non-negative definite. 
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1.4 Exercises 

1.1 Given the following mass- and stiffness matrices 

ll 0 0] 
M= 0 2 0 

0 0 l 
2 

K ~ H -~ ~] 
(a.) Calculate the eigenvalues and eigenmodes normalized to unit modal mass. 

(b.) Determine two vectors that are M -orthonormal without being eigenmodes. 

1.2 The eigensolutions with eigenmodes normalized to unit modal mass of a 2-dimensional 
generalized eigenvalue probem are given as 

A = [.A1 0 l = [1 0] 
0 ).2 0 4 

(a.) Calculate M and K. 

1.3 Write a MATLAB program, which solves the undamped generalized eigenvalue problem 
for the vibrating string problem considered in Example 1.2 for both the finite difference and 
the finite element discretized eq uations of motion. The circular eigenfrequencies should 
be presented in ascending order of magnitude, and the related eigenmodes should be nor­
malized to unit modal mass. 

(a.) Use the program to evaluate the 4 lowest circular eigenfrequencies of the string as a 
function of the number of elements n for both discretization methods, and compare 
the numerical results with the analytical solution ( 1-71 ). 

(b.) Based on the obtained results suggest a mass matrix, which will do better. 

1.4 Write a MATLAB program, which solves the undamped and damped generalized eigen­
value problems considered in Example 1.6. 



CHAPTER 2 
NUMERICAL INTEGRATION OF 

EQUATIONS OF MOTION 

This chapter deals with the numerical time integration in the finite interval [t0 , t0 + T] of the 
initial value problem (1-1). The solution is searched for. The idea of the numerical integration 
scheme is to determine the solution of (1-1) approximately at the discrete instants of time t i = 

t0 + j flt , j = 1, 2, ... , n, where flt = T jn. To facilitate notations the fo llowing symbols are 
introduced 

Xj = x(tj) x·-x(t) J- J fj = f(tj ) j = 0, 1, ... , n (2- 1) 

Singlestep algorithms in numerical time integration in structural dynamics determines the dis­
placement vector Xj+ 1, the velocity vector Xj+l and the acceleration vector xj +l at the new 
time tj+l , on condition of knowledge of Xj, Xj , Xj at the previous instant of time, as well as 
the load vectors fj and fj+l at the ends of the considered sub-interval [tj, ti+ll· In multistep 
algorithms the solution at the time t j +l also depends on one or more solutions prior to the time 
tj. Additionally, distinction will be made between singlevalue algorithms , which solves solely 
for the displacement vector Xj, and multivalue algorithms, where the solu tion is obtained for a 
state vector encompassing the displacement vector x i , the velocity vector xj , and in some cases 
even the acceleration vector Xj. Generally, singlevalued algorithms require less computational 
efforts than multi valued algorithms. Classical algorithms in numerical analysis such as the vec­
tor generalization of the Runge-Kutta methods 1 may be used for the solution of (1-l ). However, 
given that large scale structural models contain very high frequency components, these schemes 
may become numerical unstable unless extremely small time steps are used. For this reason the 
devise of useful algorithms in structural dynamics is governed by different objectives than in 
numerical analysis, as will be further explained below. 

Newmark algorithms2 treated in Section 2.1 are probably the most widely used algorithms in 
structural dynamics for solving (1-1). The derived singlestep multivalue formulation of the 
methods serves as a generic example for specification of accuracy, s tability, and numerical 

1D.G. Zill and M.R. Cullen: Differential Equations with Boundmy-Value Problems, 6th Ed. Brooks/Cole, 
2005. 

2N.M. Newmark: A Method ofComputation.for Structural Dynamics. J.Eng.Mech. , ASCE, 85(EM3), 1959, 
67-94. 

-31-
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damping in time integration. 

High frequency modes of the spatially discretized equations ( 1-1) does not represent the be­
havior of the underlying physical problem very well. The corresponding modal components 
merely behave as numerical noise at the top of the displacement response carried by the lower 
frequency modes. However, the kinetic energy of these modes, which increases proportional 
with the squared frequency, may be sign ifi cant. For this reason it is desirable to fi lter these 
components out of the response. In numerical time integrators in structural dynamics this is 
achieved by the introduction of numerical (artificial) damping, which are affecting merely the 
high frequency modes. However, it turns out that numerical damping cannot be introduced 
in the Newmark algorithms without compromising the accuracy of the response of the lower 
modes. Several suggestions to remedy this problem have been suggested. Here, we shall con­
sider the so-called generalized alpha algorithm suggested by Chung and Hulbert, 3 which seems 
to be the most favorable single step single valued algorithm for this purpose. The ou tline of the 
text relies primarily on the monographs ofHughes 4•5 and Krenk.6 

2.1 Newmark Algorithm 

The Newmark family consists of the following equations 

j = 1 , ... , n 

x j+l = x j + x j D.t + ( (~ - P )xj + p x j+l }~}.t2 

x i+l = xi + ( (1 - rl) x j + 1 X:Hl) .6.t 

(2- 2) 

(2- 3) 

(2-4) 

(2-2) indicates the differential equation at the time tHl> which is required to be fu lfi lled for the 
new solution for Xj+l, Xj+l , Xj+l· (2-3) and (2-4) are approximate Taylor expansions, which 
have been derived in Box 2.2. The parameters /3 and 1 detennines the numerical stabi lity and 
accuracy of the algorithms. The Newmark family contains several wellknown numerical al­
gorithms as special cases. Examples are the central difference algorithm treated in Examples 
2.2 and (2-6), which corresponds to (8, 1) = (0 , ~ ),the Crank-Nicolson algorithm treated in 
Example 2.3 , which corresponds to ((J, r) = (~, ~ ) , and the Fax-Goodwin algorithm, where 
((3, ~,) = ({2, ~) . 

3 J. Chung and G.M. Hulbert: A time Integration Algorithm for Structural Dynamics with Improved Numerical 
Dissipation: The Generalized n Method. Journal of Applied Mechanics, 60 , 1993, 37 1-375 . 

4 T.J.R. Hughes: The Finite Element Method. Linear Static and Dynamic Finite Element Analysis. Printice-Hall, 
Inc., 1987. 

5T.J.R. Hughes: Analysis of Transient Algorithms with Particular Reference to Stability Behavior. Chapter 
2 in Computational Methods for Transient Analysis. Vol. I in Computational Methods in Mechanics, Eds. T. 
Belytschko and T.J.R. Hughes, North-Holland, 1983 . 

(•s. Krenk: Dynamic Analysis of Structures. Numerical Time Integration. Lecture Notes, Department of Me­
chanical Engineering, Technical University of Denmark , 2005. 
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There are several implementations of the methods. The most useful is the following single step 
single value implementation. At first, define the following predictors 

- . " ( 1 !3) " 2 .. Xj+l = Xj + Xj ut + 2 - ut Xj 

xJ+l = xi+ (1 - -y)6txj 

(2- 5) 

(2- 6) 

(2-5) and (2-6) specify predictions (preliminary solutions) for Xj+l and Xj+l based on the infor­
mation available at the time tj . The idea of the algorithm is to insert (2-3) and (2-4) into (2-2). 
Given that the solution is required to fulfill the equations of motion at the time tj+1, and using 
(2-5) and (2-6), the following equations are obtained for the new acceleration vector in terms of 
known solution quantities from the previous time and the load vector fj +l 

(2- 7) 

Next, based on the solution for Xj+l obtained from (2 - 7), corrected (new) solutions for :XH 1 

and Xj+l may be obtained from (2-3) and (2-4). These may be written as 

Xj+l = Xj+l + {36t2 Xj+l 

Xj+l = xi+l + ~it:,t xi+l 

(2-8) 

(2- 9) 

To start the algorithm the acceleration x0 at the time t0 is needed. This is obtained from the 
equation of motion 

MX.o = fo - C:Xo - Kxo (2- 1 0) 

The algorithm has been summarized in Box 2.1. In stability and accuracy analysis a singlestep 
multivalue formulation for the state vector made up of the displacement and velocity vectors 
is preferred. In order to derived this, eqs. (2-3) and (2-4) are multiplied with M. Next, the 
accelerations are eliminated by means of the differential equations at the times ti and t j+l, 
leading to 

Mxi+l = Mxi + M 6txj + 

((~ - .e) (fj - Cxj - Kxj) + f3 (fJ+l- Cx1+l - Kxj +l) )t;,t2 
Mxj+l = Mxj + 

( (1 -1) (fi - Cxj - Kxj) + ~, (fj+l - Cxj+l - KxH 1)) 6t 

[
M+ 66t

2
K i)6t

2
C l [xi+l] -

-y6t K M + --y6t C x j+l 

[
M- 0 - f3) 6t2K 6tM - ( ~ - /3 ) 6t2 Cl 

- (1 - 1·)6t K M - (1 - ~, )6t C 
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(2-11) 

where 

Z j [~;] 
f> = [M + /l..'>t"K 

~~t K 

(2- 12) 

f> denotes the so-called amplification matrix. The bar indicates that this is an approximation to 
the exact amplification matrix, which has has been derived in Example 2.1. 

Box 2.1: Newmark algorithm 

Given the initial displacement vector x0 and the initial velocity vector x0 at the time t0 . 

Calculate the initial acceleration vector x0 from 

M:Xo = fo - C:Xo - Kxo 

Repeat the following items for j = 0, 1, .. . , n 

1. Calculate predictors for the new displacement and velocity vectors 

- · \ ( 1 (3 ) A 2 " 
Xj+ l = X j + Xj u.t + 2 - u.t Xj 

x j+l = xj + (1 -~)~t xj 

2. Calculate new acceleration vector from 

(M +~~ ~tC + {3~t2K) XJ+l = fj+l - C x J+l - K xj+l 

3. Calculate new displacement and velocity vectors 

X j+ l = X j+l + d~t2 X j+l 

x j+l = x j+l + ~~ ~t x J+1 
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Box 2.2: Derivation of (2-3) and (2-4) 

Based on conventional integration theory the following identities may be formulated 

(2-13) 

Integration by parts of the first relation provides 

(2- 14) 

The indicated derivation is due to Krenk.6 (2-14) may be interpreted as a truncated Taylor 
expansion, where the integrals represent the remainder. Correspondingly, the 2nd equa­
tion in (2-13) is written as 

(2- 15) 

Next, the integrals in (2-14) and (2-15) are represented by the following linear combina­
tions of the value of the acceleration vector at the end of the integration interval 

(2-16) 

It is seen that the result in (2-16) becomes correct in case of constant acceleration, where 
:X( T) = Xj = Xj +l· In any case the values of r3 and A( reflect the actual variation of the 
acceleration during the interval. If :X( T) is assumed to be constant and equal to the mean 
of the end-point values, one obtains (fJ, rf ) = ( ~ , 4 ), whereas a linear variation between 
the end-point values provides ({3 , r) = (i, 4). 
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The modal expansion ( 1-97) defines a one-to-one transformation from the physical to the modal 
coordinates. Hence, the time integration may equally well be performed on the differential equa­
tions for the modal coordinate equations. It follows that the synthesized motion (1-97) becomes 
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numerical unstable, if the integration of just one of the modal coordinates render into instabil­
ity. Similarly, the accuracy of the synthesized motion is determined by the accuracy of those 
modal coordinates, which are retained in the truncated modal expansion ( 1-10 1 ). On condition 
of the modal decoupling condition (1-94) the time integration of the modal coordinates is re­
duced to the integration of n decoupled single-degrees-of-freedom systems. Since the stability 
and accuracy analysis of a SDOF system can be performed analytically, the important role of 
the modal decomposition assumption in the stability and accuracy analysis of numerical time 
integrators becomes clear. In this respect let q(t) denote an arbitrary of the n modal coordinates, 
and(, w and F(t ) the corresponding modal damping ratio, undamped circular eigenfrequency 
and modal load. On condition that the eigenmodes have been normalized to unit modal mass, 
the differential equation of the said modal coordinate reads 

ij(t) + 2(wq(t) + w2q(t) = F(t) (2- 17) 

The corresponding Newmark integration of (2-17) is given by (2-11), using M = [1], C = 

[2(w] , K = [w2
] and f (t) = [F(t)] in (2-12), resulting in the system matrices 

IS = [1 + (3/::, t2w2 
/W2/::, t 

2(pwb.t2] - l [1- (~- f3 )w2
/::,t

2 6.t- (~- f3) 2(wb.t2] 
1 + 2(/w/::,.t - (1 -1)w26..t 1 - (1 -!)2(w/::,.t 

= [ ~:: ~::] 

where 

Dn = 
1 + 2/(K + ((3- ~)11:2 + (2(3 -1)(11:3 

1 + 2')(11: + f3~~:2 
1 + (2-y - 1)(1r. + 2(2(J- ! )(2

K.
2 

6
t 

1 + 2~,( f\. + f3 t\,2 

(2-18) 

(2- 19) 
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(2- 20) 

K, = wt,t (2-21) 

Example 2.1: Exact singlestep multivalue method 

Assume that the initial time in the analytical solution ( 1-29) is chosen as the time ti = j t:.t . Then, the initial value 
is changed into z(tJ) = Zj, and the solution is modified to 

z(t) = eA(t-tJ) ( Zj +lit e - A (T - tJ ) F( T)JT) (2- 22) 

Next, (2-22) is considered at the following time tJ+ 1 = t1 + ,::.t, which leads to following integration a lgorithm 

where 

Zj = [:~] 

E 1 = eA.."l.t (J+' e- A(T- tJ)F(T)clT ~ eAC.t ( (1- a)e- A·Op1 + ae- A"'1F1+1) .C:..t = 
.ftj 

( (1 - a)e-A
61

Fj + aFJ+ l )t:.t 

(2- 23) 

(2- 24) 

(2- 25) 

(2- 26) 

In (2-26) the integral has been evaluated by a generalized trapezo idal rule defined by the parameter a E [0, 1] in 
terms of a weighted average ofthe values e-A-o p J and e-Ac.tp J+l at the ends of the integration interval [t1, tn+1]. 

D denotes the exact amplification matrix. Correspondingly, the evolutionary equation (2-23) determines the exact 
solution for the state vector to the accuracy of the approximation (2-26) for the load vector. 

The matrix exponential functions entering (2-25) and (2-26) are given by, cf. (1-55) 

8A6t = WeA"6t q, - l } 

e - AC.t = We - A"l:.tW - 1 
(2- 27) 
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The modal matrix w contains the eigenmodes of the matrix D , which are identical to the eigenmodes of the matrix 
A . The diagonal matrix eAAC.t stores the eigenvalues >..v,j = e>.A,; C.t of D in the main diagonal. ,\A,j denotes the 
corresponding eigenvalue of A , which may be written in the form 7 

(2- 28) 

Wj and (j defines the equivalent undamped circular eigenfrequency and damping ratio in case of damped of damped 
eigenvibration in the j th mode. These definitions correspond to the conventional definition of these quantities in 
case of the modal decoupling condition ( 1-94).7 From (2-28) follows, that the modal damping ratio is related to 
the magnitude of the eigenYalues ofD as 

1>-v,jl = e -<iwi C.t =} 

In 1>-v,jl 
(j = - w ·C::.t (2- 29) 

J 

The damped circular eigenfrequency wd,J is related to the eigenvalues of the amplification matrix as follows 

(2- 30) 

where Bv,j denotes the argument of >..v,j . 

Example 2.2: Displacement difference equation form of the Newmark algorithm 

In this example an implementation of the New mark algorithms will be derived, where the solution for the unknown 
displacement vector Xj+I at the time ti+1 is determined as a function of the previous known displacement vectors 
Xj and Xj - I . as well as the load vectors fi+1, fj and fj-I · At first, (2-2) is formulated at the times ti+1, tj and 
tj - 1 as follows 

M~i+l + ~:icH1 + KxH1 : fj+l } 

Mxj + Cxj + K x j - fj 

M:X:j-1 + C:icj-1 + K Xj - 1 = fj-1 

(2-3 1) 

The first equation in (2-29) is multi pi ied with f3C::.t2, the 2nd equation is multip lied with ( ~ - 2(3 + 1') L'-.t2 , and the 
third equation is multiplied with ( ~ + 1J - 1) C::.t2 . Finally, the resulting equations are added, leading to 

.t.t2M [rixi+1 - 2f-Jxj + f-Jxj - 1 + G +,) :X:j + G -1') Xj - 1) + 

t::.t
2c [rJxj+l - 2/"~xi + fJxj-1 + G + 1) x.j + G-~') Xj-1) + 

~t2K [ [Jxj+l - 2f1Xj + {-JXj - 1 + (~ + 1) Xj + (~ - ')') Xj-1] 

(3 ::::,. t2 fj+1 + G-2(3 + ')') ~t2 fj + G + p- -~) .c-.e fj - 1 

Next, (2-3) and (2-4) are formulated at the time ti+1 and ti as fo llows 

(2-32) 

7S.R.K. Nielsen: Structural Dynamics, Vol. 1. Linear Structural Dynamics, 4th Ed. Aa lborg tekniske Univer­
sitetsforlag, 2004. 
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xJ+1 = xj + t:.tx.j + (~- f3 ) ~::.ex.j + (3t:.t2 x1+1 } 

Xj = Xj-1 + !::.t Xj-1 + ( ~ - (3) !::.t2 Xj-1 + (3!::.t2 Xj 

~j+l = ~j + (1 - 1 )t:.t xj .~ 1 t:.txJ+1 .. } 

Xj = Xj-1 + (1 - -y)f:::.tXj-1 + ryf::.txj 

Withdrawal of the last equations in (2-33) and (2-34) from the the first equations provides the identities 
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(2- 33) 

(2- 34) 

(3!::.t2 
( :XJ+1 - 2xi + xj-1) = xi+l - 2xJ + xj - 1- t:.t(x1 - x.1- 1) - ~t:.t2 (x i - xj_ 1) (2- 35) 

r l::.t ( x1+1 - 2:Xj + Xj-1) = x1+1 - 2X.j + Xj-1 - ut(x1 - Xj - 1) (2-36) 

Next,(~+ r )!::.t2xj + (~ - r)!::.t2xj - 1 is added on both sides of(2-35), and the last equation (2-34) is used on 
the resulting right hand side, which provides 

" 2 (!3.. 2(3 .. (3.. ) ( 1 ) .\ 2 .. ( 1 ) .~ 2 .. ut Xj+1 - . Xj + Xj- 1 + 2 + ~1 ut Xj + 2 - 1 ut Xj-1 = 

2 "t ( . . ) 1 " t2 (.. .. ) ( 1 ) " 2 .. ( 1 ) " 2 .. Xj+l - Xj + Xj - 1 - u Xj - Xj-1 - 2u Xj - Xj- 1 + 2 +I ut Xj + 2 - ~( ut Xj-1 = 

(2-37) 

(2-36) is solved for the velocity terms on the right hand side, and the resulting equation is multiplied with (3!::.t2 . 
Next, ( ~ + 1 )!::.t2x1 + ( t - 1 )!::.t2xj- l is added on both sides of the equation, resulting in 

t:.t2 (.d*J+l - 2/Jxj + f3x j - l) + ( ~ + 1 ) ut2 
x.J + ( ~ - 1) t:.t2 x.j -1 = 

t h ::,.t
3 

( xj+l - 2x.j + x1-1) + f1t:.t
3 
(x1 - x.j -1 ) + G + ~) ~::.e x.j + G -,) t:.t2 *j-1 = 

~1 t:.t ( XJ+t - 2xj + xj - 1) - 1 !::.t2 
( x.J - x.J- 1) + (,e- ~~) t:.t3 (xJ - :XJ- t)+ 

(~+'Y) ::,.t
2
xj+ (~ -~) !::.t2 x i _1 ='Yt:.t(x1+1 - 2xJ + xJ _1) + t:.t(x i - Xj-1) (2-38) 

The 3rd line in (2-38) follows from the 2nd line by eliminating the term f3r!::.t3(xj+1 - 2:Xj + Xj-1) by means of 
(2-35). The final result is based on the following identity, which is obtained by a multiplication of the last equation 
in (2-33) with .:.t, and the last equation in (2-34) with ~!::.t2 , fo llowing by a withdrawal of the resulting equations 

(2-39) 

(2-37) and (2-38) are inserted into (2-32). After grouping terms with common multipliers x J+1, Xj, Xj-1 the 
following final result is obtained 

[M + ~l !::.t c + jJ..j,t
2 K ] Xj+1 - [ 2M- (1 - 2') ) !::.t c- 0 -2!) +I') !::.t

2 K ] Xj + 

[M - (I -,)t:.tc + G +rJ -~)t:.t2 Kjxj- l = 

i1!::.t2 fj+ l + (~ - 2ji + ")') !::.t2 fj + (~ + ,! - ~~) !::.t2 fj-1 (2- 40) 
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(2-40) represents the so-called displacement difference equation form ofthe Newmark algorithm, which constitutes 
a multistep singlevalue formulation of the method. At the calculation of x1 the previous solution x 0 is given as 
one of the initial value vectors, whereas x _ 1 is unknown. Hence, the algorithm has a starting problem. Instead, x 1 

is calculated by the standard implementation given in Box 2.1, before the algorithm (2-40) is used for j ~ 1. 

Next, consider the special case of (J = 0 and "' = ~ · Then, (2-40) reduces to 

(2-4 1) 

Consider the central difference1 approximations to the acceleration and the velocity vectors 

X · ~ X j+l - X j-1 
J - 26.t (2-42) 

(2-4 1) is obtained, if the fin ite difference approximations (2-42) are inserted into the middlemost equation of (2-
31 ). Hence, the central difference solution to ( 1- 1) constitutes a special case of the Newmark family corresponding 
to the parameters ((J, /') = (0, ~ ) . 

The central difference algorithm is only conditional stable. However, if M and C are diagonal it provides an 
explicit solution for x i+1 , which makes it highly economical. In cases where the time step is controlled by 
accuracy rather than stability, which is often the case in many wave propagation problems, the central difference 
algorithm is widely used. 

Example 2.3: Crank-Nicolson algorithm 

For ((J, r ) = ( ~ , ! ), eqs. (2-11), (2- 12) may be written 

[
M+ ~6.t2K 

!!.ltK 

[
M - ~ 6.t2K 
-!~t K 

(2-43) 

The 2nd equation in (2-43) is multiplied with !6t, and is withdraw from the 1st equation, resulting in 

[!::K ~!~~~c] [:;:J = [- !~tK M!-~~:c] [:;] + [!~t !~t] [fif~J (2-44) 

The Crank-Nicolson algorithm is singlestep multivalue method, where the ampl ification matrix in (2- 11) is given 
as 

D = D } 1D 2 

D 1 and D 2 are related to the system matrix A given by ( 1-27) as follows 

D - I - ~ 6.tA- [ I -!~t i ] - [M-1 0 ] 1 
- 2 - !6.tM-1K I + ! L:.tM- 1C - 0 M - 1 

(2-45) 

(2-46) 

! ~tM ] 
M- !~t C 

(2-47) 
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A systematic derivation of the Crank-Nicolson algorithm along with other high-accuracy methods will be given in 
Example 2.4. 

Insertion of (2-46) and (2-47) into (2-45) provides 

:D 
= [!~K -~6tM r1 

[M-
1 

M+ !6tC 0 
0 rl [M- 1 

M- 1 0 M
0
-1J [ -!~tK 16t M ] 

M
2

-!6tC 

= [!~K -16tM M rl [ M~ !.6tC -~.6tK 
1.6tM ] 

M
2

- ~6t C (2-48) 

The amplification (2-48) is identical to the one obtained from (2-44). From this is concluded that the Crank­
Nicolson algorithm constitutes a special case of the Newmark family corresponding to the parameters (p, 7) = 
( i , ~). As mentioned in Box 2.2 this parameter combination is obtained in case of a constant variation of the 
acceleration during the interval [ti, ti+1 ] given by x(t) = 4(xi + Xj+1 ) . 

2.1 .1 Numerical Accuracy 

The N ewmark algorithm (2-11 ), (2-12) provides an approximate solution Zj of the state vector. 
By contrast the exact solution Zj is given by (2-23), (2-25). Assume that the load vectors E j in 
(2-1 1) and (2-23) are identical, and the algorithms are started with the same state vector Zj at 
the time tj· Then, the deviation between the exact solution zi+1 and the Newmark solution ZJ+1 

at the succeeding time ti+l is given by 

(2-49) 

The error vector e, which is denoted the local truncation error, determines the error during a 
single time step. The error is caused by the deviation D - D of the amplification matrices, 
which in turn is a function of the magnitude of the time step 6.t. Hence, it may be assumed that 
the local truncation error has the fonn 

(2- 50) 

where k is a positive real number. The real concern is not on the error during a single time step, 
but rather on the accumulated errors during all the previous time steps. For this quantity the 
global truncation error is introduced as 

(2- 51) 

On condition that the load vectors are the same in the two algorithms, and that the local trunca­
tion error has the form (2-50), it can be shown that the global truncation error has the form1 

(2- 52) 
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A numerical time integrator with a global truncation error of the form (2-52) is denoted a kth 
order method. Since the local truncation error of the 4th order Runge-Kutta algorithm is of the 
order of magnitude 0 ( .6.t5 ) this is a 4th order method, as indicated by the naming. 

The amplification matrices (2-12) and (2-25) have the spectral representation, cf. (1-41) 

(2-53) 

(2-54) 

lJ! and ~ are complex matrices storing the eigenvectors of D and f> column-wise, and An and 
An are diagonal matrices with the corresponding eigenvalues in the main diagonal. As shown 
in (1-55) the eigenvectors of D are identical to the eigenvectors of the matrix A given by (1 -
27). Hence, the columns in ~ may be considered approximations the eigenvectors of A. The 
eigenvalue matrices ofD and A are related as, cf. (1-55) 

(2- 55) 

Correspondingly, the eigenvalue matrix off> may be written as 

(2-56) 

where the diagonal matrix AA may be considered an approximation to A A. Let 5-n be an 
arbitrary eigenvalue to D. Then, the corresponding component in the main diagonal of AA is 
given as 

)_A = ln 5-n 
~t 

In accordance with (2-28), 5-A can be written on the form 

(2- 57) 

(2- 58) 

:;:; and ( are approximations to the undamped circular eigenfrequency w and damping ratio ( of 
the corresponding mode. Analog to (2-29) and (2-30), ( and wc1 are related to the corresponding 
eigenvalue 5-n of the amplification matrix as follows 

- ln i>-n i 
( =- wflt (2-59) 

(2- 60) 
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where Bn denotes the argument of >.n, as follows from the polar representation >.n = 1>-nleiOo. 
Especially, ~ = 'IJf for (/3, ~1 ) = (t, ~). This follows, because the Newmark algorithm in this 
case is identical to the Crank-Nicolson algorithm as shown in Example 2.3. Further, in Example 
2.4 below it is shown that the eigenvectors of the amplification matrix of the Crank-Nicolson 
algorithm is identical to those of the matrix A. Hence, for (/3, 1) = ( t, ~) the inaccuracy of the 
Newmark algorithm is entirely caused by the difference between the eigenvalue matrices An 
and An. In all other cases the deviation of the modal matrices 'IJf and ~ will also influence the 
local and global truncation errors. 

In any case it is of interest to analyze the accuracy of the eigenvalues >.n. These are com­
pletely defined by the damping ratio (2-59) and the damped circular eigenfrequency (2-60) in 
the considered mode. If (is larger than the exact modal damping ratio (as given by (2-29), the 
Newmark algorithm introduces artificial so-called numerical damping in the considered eigen­
mode. Since the numerical damping may be negative, it may overrule the structural modal 
damping, rendering ( < 0. This implies that the numerical solution for the said mode becomes 
numerical unstable. Similarly, if wd deviates from wd the corresponding damped eigenperiods 
will deviate accordingly. This effect is referred to as period errors. The effect of period errors 
is that the Newmark algorithm predicts damped eigenvibrations in the considered mode with ei­
ther a too long or a too short period compared to the exact damped eigenvibration. It should be 
noticed that numerical damping and period errors are only of importance for the low frequency 
modes, which determines the total response. By contrast, numerical instability in merely one 
mode will affect the stability of the global response. Stability of the Newmark algorithm is 
treated in the following Subsection 2.1.2. Numerical damping and period errors are treated in 
Subsection 2.1.3 . 

2.1.2 Numerical Stability 

Numerical stability indicates the capability of the algorithm to dissipate a given disturbance. In 
order to analyze this property the algorithm (2-11) is considered in the homogeneous case E1 = 
0, corresponding to eigenvibrations from the initial value z0 . Using the spectral representation 
(2-54) for the amplification matrix, the fo llowing sequence of solutions are obtained, cf. (1-52) 

= Dzo 

= Dz1 

= f>z2 

- - - - 1 
= 'l'An w zo 

-- - - 1 ----1 --z--1 
= wAnw WAn W zo = WAnW zo 

- ---1- -2--1 --3--1 
= WAnW wA0 w zo = wA0 w zo (2- 61) 

_A~+1 is a diagonal matrix with the components ).~+1 in the main diagon'!_l, where 5-n is the 
corresponding eigenvalue off>. From the polar representation >.n = 1>-v lcioo follows 

(2- 62) 
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Hence, ~~+l will grow beyond limits as j ---+ oo, if ~D > 1. Consequently, the condition for 
stable eigenvibrations in the said mode may be formulated as 

(2-63) 

Stability of the nwnerical algorithm (2-11) requires that (2-63) is fulfilled for all complex 
modes. As follows from (2-59) the stability criteria may alternatively be indicated in terms 
of the modal damping ratio as 

(2- 64) 

If ( < 1, it follows from (2-58) that ~D is complex. In this case motion is oscillatory, cor­
responding to undercritical damped vibrations. Alternatively, if ( > 1, ~D becomes real. In 
this case the motion is non-oscillatory, corresponding to overcritical damped vibrations.7 If the 
algorithm is related with positive numerical damping in the considered mode, the numerical 
calculated modal response may appear as overcritical damped, although the exact solution is 
undercritical damped. 

A numerical integration algorithm, which is stable in all modes for an arbitrary length of the 
time step !::..t is denoted unconditional stable. If stability in just a single mode requires that the 
time step must be kept below a certain critical magnitude in order to fulfil! (2-63), the a lgo­
rithm is referred to as conditional stable. Depending on the parameters ({3, ~f) , the Newmark 
algorithm may be unstable, conditional stable or unconditional stable. Generally, the magnitude 
of the time step should be determined by accuracy requirements. Hence, conditional stable al­
gorithms should be avoided in cases where the time step is determined by stability requirements. 

In case of modal decoupling the stability analysis of the total algorithm is reduced to a stability 
of a sequence of decoupled SDOF oscillators for each mode as given by (2-1 7). The corre­
sponding Newmark algorithm is given by (2-18), (2-19). We will analyze this system in the 
undamped case corresponding to the modal damping ratio ( = 0. It should be noted that sta­
bility conditions specified for the undamped case are always conservative, i.e. the introduction 
of structural damping enhance the numerical stability. Then, the amplification matrix may be 
written as 

(2- 65) 

The characteristic equation of (2-65) becomes, cf. (l-11) 

(2- 66) 

where the invariants a 1 and a2, specifying the trace and the determinant off>, may be written 
on the form 
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(2- 67) 

(2- 68) 

where 

(2-69) 

The final formulations for the invariants, which is due to Krenk,6 shows that these depend on 
"' = w6.t and {3 through a single positive parameter e. Next, the solutions of (2-66) may be 
written as 

1 ( 1) 2 

4 '+ 2 ~4-e (2- 70) 

The eigenvalues are real, corresponding to overcritical damped eigenvibrations, for 

1 1 t1 2 

( )

2 

4 ~, + 2 ~-~ > O 

2 1 
I>---

~ 2 
(2-71) 

In case of real eigenvalues, it follows from (2-70) that A.n,2 is numerical larger than AD,l· Then, 
instability occurs for An,z = - 1, from which the following stability condition is derived 

1 ( 1) 2 - 1 :::; 1 - 2 ~~ + 2 E, - 1 ( 1) 2 

- "~ +- ~4- e 
4 2 

2 
I < e (2- 72) 

If 1 < ~ - 4, the eigenvalues become complex conjugated, corresponding to undercritical 
damped eigenvibrations. In this case 

>. } 1 ( 1) 1 ( 1) 2 

>-~:~ = 1 - 2 ~, + 2 e ± i ~2 - 4 ~, + 2 ~4 (2- 73) 
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Let 5-n denote the eigenvalue with positive imaginary part, i.e. 5-n = 5.n,1 . The modulus and 
argument of >.D become 

(2- 74) 

( ve -1. (r + 1.) 
2 ~4 ) 1 

0 D = arctan 1 _ ~ 4h + ~) e = ~ - 96 ( 12~, 
2 

- 36r + 11) e + 0 (e) = 

"'- ( 9
1
6 ( 121

2
- 36~y + 11) + ~/3) "'3 + 0(K.

5
) (2- 75) 

Additionally, in (2-75) low order Taylor expansions in~ and "' have been indicated for BD. The 
last expansion fo llows from the first using the auxi liary expansion E = rv- ~/3"'3 + ·· ·, which 
follows from (2-69). Stability of oscillatory eigenvibrations requires that I .An I < 1. As seen 
from (2-74) th is implies that 

1 
~· > -/ - 2 (2- 76) 

E, and hence the time step ~t, is not entering (2-76). Hence, th is ineq uality must be fulfilled for 
arbitrary large time steps. By contrast, (2-72) can always be fu lfi lied by choosing ~ sufficiently 
small. Using (2-69), the inequality (2-72) may be reformulated as 

(2- 77) 

(2-77) is fu lfi lied for arbitrary rv, if 1 ~ 2/3. Combining this result with (2-76), it is seen that 
the Newmark algorithm is unconditional stable, if the parameters (3 and 1' fulfil I 

1 - < "V < 2~ 2 - I - f.' (2- 78) 

If 1 > 2.8 1\ 1 2 !, the algorithm is merely conditional stable. The critical value of the time 
step follows from (2-77) 

(2- 79) 
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The stability conditions of the Newmark algorithm, and the conditions for undercritical and crit­
ical damped eigenvibrations, have been summarized in Box 2-3. Additionally, these conditions 
have been illustrated in Fig. 2-1. The limit curve between undercritical and overcritical damped 
oscillations is shown with a dashed signature. 

Box 2.3: Stability conditions ofNewmark algorithm and qualitative behaviour of 
eigenvibrations 

Unconditional stability: 

Conditional stability: 

Undercritical damped eigenvibrations: 

Overcritical damped eigenvibrations: 

In the undamped case the eigenvalues of the system matrix A becomes AA = iw, cf. (2-28), 
which means that the corresponding eigenvalues of the exact amplification matrix is given as 
AD = ci" ~ 1 + iK- !K.2 - it11-3 + 0 (1" 1). Then, in case of oscillatory eigenvibrations the 
eigenvalue AD as given by (2-73) may be represented by the following Taylor expansion 
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- 1 ( 1) 1 ( 1)
2 

AD = 1 + i~ - 2 '}' + 2 e - iB I+ 2 ~3 + 0 (e) = 

. 1 12.1 1 1 3 4 

( ) ( ( )
2 ) 1 +u" - 2 1 +2 "'-~ 8 1 +2 +2(3 "'+O("-)= 

( ) ( ( )
2 ) 1 1 2 1 1 1 13 4 

AD - - I - - "- - i - I + - + -6 - - "- + 0 ( "- ) 
2 2 8 2 2 ' 6 

(2- 80) 

It follows that the error is of the order of magnitude 0(1'-2 ) , if 1 > ~, and of the order of 
magnitude 0 (1'-3), if ~1 = ~· In the latter case (2-75) and (2-80) become 

- ( 1 1 ) 3 ( 5) BD = "' + 24 - 2.6 "' + 0 "' (2- 81) 

- . ( 1 1 f) 3 0( 4) AD = AD+~ 24 - 2{3 "' + "' (2- 82) 

Additionally if (3 = 1
1
2, (2-81) and (2-82) reduce toeD = "'+ 0(1'-5

) and '5-D = AD + 0 (1'-4 ) . 

The Newmark algorithm with ((3 , 1) = ( f2 , ~) is known as the Fox-Goodwin algorithm. As 
follows from (2-79) this algorithm is conditional stable with the critical time step given by 

w6.t = J6 (2- 83) 

It should be noticed that the error on the eigen alue as indicated in (2-80) only contributes partly 
to the local truncation error (2-49). Additional errors are introduced by the difference between 
the eigenmodes ~and w of the approximate and exact multiplication matrices. 

w in (2-79) indicates the undamped circular eigenfrequency for an arbitrary mode. Hence, in 
case of conditional stable algorithms the critical time step insuring stability is determined by 
largest undamped circular eigenfrequency w71 of the system. For systems with many degrees of 
freedom w11 may be very large, and the critical time step correspondingly small . Since, the time 
step primarily should be detem1ined by the accuracy of the low frequency modes, which carry 
the dynamic response, and not by the stability of the high frequency modes, which merely are 
results of the spatial discretization with no physical relevance, only unconditional stable algo­
rithms should be used in such cases. 

Example 2.4: High accuracy unconditional stable algorithms 

The considered algorithms are based on the following factori zation of the exact amplification matrix (2-25) 

A ' t A 61 A"' '· ( A 61 )-1 A Al I D = e "" = e 2 e 2 = e- 2 e 2 =D) D 2 (2- 84) 
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where A is the system matrix given by (1-27). Additionally, (1-57) has been used with t = -~t . From (1-53) 
follows 

-A At 1 1 2 2 1 3 3 1 4 4 } D 1 =e T = l --.6.tA+-tit A --tit A +-tit A +· ·· 
2 8 48 384 

A i:H 1 1 2 2 1 3 3 1 4 4 D2 =e > = l +-fltA +-flt A + -tit A +-tit A+ .. . 
2 8 48 384 

(2-85) 

Truncation of the expansions (2-85) with the same number of terms provides the following approximate multipli­
cation matrices 

D = (r - ~!itA) -
1 (r +~!itA) 

(2-86) 

Below, the numerical algorithms following from the approximate multiplication matrices in (2-86) are referred 
to as the I st, the 2nd, the 3rd and the 4th approximation. From ( 1-55) fo llows, that the matrices D 1 and D 2 
alternatively may be given as 

(2-87) 

where W is the modal matrix containing the eigenvectors of D 1 and Dz stored column-wise. As follows from 
Box 1.1, this matrix is identical to the modal matrix of the system matrix A . A v, and A v 2 are diagonal matrices, 
storing the eigenvalues of D 1 and D 2 in the main diagonal. These are given as, cf. (1-53) 

(2-88) 

where A A is a diagonal matrix storing the eigenvalues of A. From (2-66) and (2-87) follow that the approx imate 
amplification matrices may be written as 

(2-89) 

The eigenvcctors of the approximate amplification matrices are identical to those of the exact ampli fication matrix. 
see (2-27). For this reason the local and global truncation errors are entirely related to the eigenvalues 5.0 . In order 
to analyze these errors consider a certain mode with the eigenva lue >.A· Further, structural damping is ignored, in 
which case >.r~ = iw. Then, the related eigenvalues of the approximate amplification matrices in (2-86) may be 
written on the form 
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- 1 + i!~ . 1 3 
AD = --- = AD - t-1), + · · · 

1 - i!"' 12 

(2-90) 

where ,., = wt::.t and AD = f'i" . The modulus of the eigenvalue of the I st approximation is determined from from 

1 ·1 1 ·1 
- 2 - - + 22"- - 2 2~ IAol = Ao ·Ab= - -.1- · --.1- = 1 

1 - ~2~ 1 + t2K. 
(2-91) 

Similarly, it is shown that also the eigenvalues of the other approximations in (2-90) have the modulus 1>-ol = 1 
for arbitrary value of~- Consequently, all the approximate multiplication matrices in (2-86) result in unconditional 
stable numerical algorithms. A drawback of the algorithms is that the high frequency modes wi ll not be dissipated. 
Further, as seen from (2-90) the 1st and 2nd approximations both have local truncation erro rs 0(,.3 ), whereas 
the 3rd and 4th approximations have local truncation errors 0(~>5 ). Due to the simpler amplification matrices, 
the algorithms based on the I st and 3rd approximations should generally be preferred. The I st approximation is 
recognized as the amplification matrix of the Crank-Nicolson algorithm given by (2-45), (2-46), (2-47). Hence, 
this method, which is identica l to the Newmark a lgorithm with (/J,1) = (i , !), has the local truncation errors 
- -f2~3 + .. . in agreement with (2-82). 

Example 2.5: Upper bound for largest eigenfrequency 

r El,EA,p, 

Fig. 2-2 Bernoulli-Euler beam element with constant section. 

For conditional stable algorithms an upper bound of the largest undamped circular eigenfrequency is needed in 
order to specify a stable time step via (2-79). it can be shown that w11 is bounded by the maximum circular 
frequency of the individual elements. 4•5 Consider a plane Bernoulli-Euler element of the length l with constant 
mass per unit length J.l., bending stiffness El and axia l sti ffness AE, see Fig. 2-2. Then, the stiffness matrix and 
the consistent mass matrix of the element becomes7 

AE 0 0 AE 0 0 I -~ 

0 pEI --p- 6E1 
""('" 0 - 12-ff 6£1 

""('" 

0 6E1 4ET 0 6£1 2EI 
k = rr I -p I (2- 92) AE 0 0 AE 0 0 -~ I 

0 - 12fl- 6 El - ""('" 0 12fl- 5ET - rr 
0 5EI 

""('" 
2£1 

l 0 6£1 -rr 4 El 
I 
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140 0 0 70 0 0 
0 156 221 0 54 -1 31 

fJ,l 0 22l 4[2 0 131 - 3[2 
(2- 93) m= 420 70 0 0 140 0 0 

0 54 13l 0 156 -22l 

0 -13l -3[2 0 - 22l 412 

The generalized eigenvalue problem ( 1-9) with the stiffness matrix (2-92) and the mass matrix (2-93) has the 
following eigenvalues 

0 
' 

j = 1 
0 

' 
j = 2 

0 
' 

j = 3 
AJ = 12AE j=4 

(2- 94) 
/)1'1" ' 

720El 
p. /4 ' 

j=5 
8400 E l 

p.l4 ' 
j=6 

The first three eigenvalues are equal to zero, because the system is unsupported and has three independent stifl 
body motions. If all the beam elements in the structure are identical an upper bound for the undamped circular 
eigenfrequency then becomes 

w, ~ max ( J12~~' 84oo:z:) (2- 95) 

In case of different beam elements the right hand side of (2-95) must be calculated for all element types, and the 

largest of these represent the true upper bound for the structure. 

2.1.3 Period Errors and Numerical Damping 

In case of zero structural damping the following expansion of the undamped circular eigenfre­
quency of a certain mode as predicted by the Newmark algorithm follows from (2-60), (2-75) 

(2- 96) 

The corresponding period of undamped eigenvibrations is 

(2- 97) 

where T = 2
r. denotes the exact undamped eigenperiod. As illustrated in Example 2.6 the 

w 

numerical detennined eigenvibrations will deviate more and more from the analytical solutions, 
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if the underlying eigenperiods f' and T are different. As a measure of the deviations of the 
periods the relative period error is defined as 

- = -- = - 12~?- 361 + 11 + - !3 K;
2 + 0(K:4

) D.T T - T ( 1 ( ) 1 ) 
T T 96 2 

(2- 98) 

Let 1 = ~. Then, (2-98) implies that f' < T for f3 < 1
1
2 , and f' > T for f3 > 1

1
2 • Especially, 

f' = T + 0(K:4) for the Fox-Goodwin algorithm, where f3 = 1
1
2 . 

0.95 

0.9 

13:DI 
0.85 

0.8 

0.7;0-2 10_, 10° 10' 10' 
/'i, 

Fig. 2-3 Variation of I .AD I as a function of K. = wt:..t. a= 0.09, ,3 = i · 

As mentioned in the introduction to this chapter high frequency modes does not reflect the phys­
ical reality. Apparently this seems of less importance, since these modes seldom influence the 
displacement solution. However, since the velocity and acceleration increase with the frequency 
for a given displacement amplitude, the high frequency modes may carry a substantial fi ctitious 
kinetic energy, which may be transferred to the low frequency modes via possible linear viscous 
coupling terms. For this reason high frequency modes should be dissipated by the numerical 
algorithm without affecting the accuracy of the low frequency modes. This may be obtained by 
choosing 1 = rx + ~, where (Y is a small positive number, in which case (2-74) attains the form 

(2- 99) 

(2 -99) has been illustrated in Fig. 2-3. Of special interest is the limit value I :X.D loo approached 
by (2-99) in the high frequency range. From (2-69) follows that e ----+ h' as /'i, and hence w 
passes to infin ity for fixed ~t. Hence, 

(2- 100) 

Insertion of 1 = a + ~ into (2-80) provides 
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(2- 101) 

As seen the introduction of numerical damping reduces the local truncation error from 0 ( I'C3) to 
0(K2

) . This means that the accuracy of the Newmark algorithm in this case is comparable with 
the those of the forward and backward Euler schemes.1 

From (2-59), (2-69), (2-74) and (2-99) follow that the damping parameter a is related to the 
modal damping as follows 

(2- 102) 

As seen ( is approximately proportional with a and /'C. For ~t = 2
1
0 and a = 0.1 the numerical 

modal damping ratio becomes ( ::: 0.0157. This is comparable to the structural modal damp­
ing, typically of the order of magnitude ( ::: 0.01. Hence, the algorithm will overestimate the 
damping properties of the system. In case of resonance under harmonic excitations, where the 
response is proportional to the inverse of the damping ratio, or in case of stochastic excitations, 
where the response is proportional to the inverse of the square root of the damping ratio, the 
structural response will be underestimated correspondingly. It follows, that numerical damping 
cannot be introduced in the Newmark algorithm without using significantly smaller time steps 
than suggested by the accuracy requirements for the corresponding algorithm with a = 0. Con­
sequently, there is a need of an algorithm, where ( = 0 (K2), rather than ( = O(K,). 

Example 2.6: Newmark solution for a SDOF oscillator 

-0.6 

-0.8 

-1 

I ! 

V 
0 

t jT 

!~\ 
/,I \\ \ 
4~ I ~~ I 

"j' I' I I 

I 

.'•, 
\t 11 11 I 

'·. I I ' 
\t I f' I ' 
\\I ,. I 

\
' /',1 
1 -

4 

Fig. 2-4 Newmark algorithm, (/3, /) = (i , 4). Damped eigenvibrations ofSDOF oscillator. w = 1, ( = 0.01, 
(q0 , q0 ) = (1, 0). Analytical solution: - , ~t = 0.05: - --, ~~ = 0. 10: -.-.-, ~~ = 0.20: ...... 

Fig. 2-4 shows the numerical results for eigenvibrations of a SDOF oscillator with w = 1 and ( = 0.1 obtained 
by the Newmark algorithm with the parameters (6, 7 ) = (L ~),and with the time steps~: = 0.05, 0. 10, 0. 20. 
Since, 1 = ~ the algorithm is not related with numerical damping. Correspondingly, the numerical solutions are 
diss ipated in the same rate as the analytical solution. Since, f3 = i all numerical solutions are related with period 
elongation, which increases proportional with t:.t2 as indicated by (2-98). 
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2.2 Generalized Alpha Algorithm 

The problem with the Newmark algorithm that numerical damping of the high frequency modes 
can only be treated at the cost of accuracy of the low frequency modes was soon recognized. 
One attempt to cure this problem is the socalled collocation methods, first proposed by Wilson. 8 

Wilson's algorithm, known as thee-method, is a modification of the Newmark algorithm with 
linear varyingacceleration, where the equations of motion are fulfi lied at the time tj+e, () > 1, 
rather than at the time tj+l· Later the method was generalized by Hilber et al.9 to allow for 
other variations of the acceleration via the introduction of an extra parameter. 

Hilber et al. 10 also proposed the socalled a method as a solution to the problem. Instead of 
introducing the exact damping forces, stiffness forces and external forces in the equation of 
motion at the time t1+1, a weighted sum of these forces at the times t1 and tH1 is introduced as 
follows 

(2-103) 

where a1 is an interpolation parameter fulfilling a1 E [0, 1]. Based on the same way ofthinking, 
Wood et al. 11 suggested an alternative a-method, where the damping forces, stiffness forces and 
external forces are left unchanged in the equation of motion at the time tj+l• whereas the inertial 
forces are specified as a weighted sum of these forces at the times t1 and tj+l 

(2-104) 

Again the interpolation parameter fulfills am E [0, 1]. The generalization of the indicated 
a -methods, where the inertial forces, and the damping, stiffness and external forces, are inter­
polated with different interpolation parameters, was suggested by Chung and Hulbert.3 In this 
case the equations of motion for the solution at the time t1+1 read 

umMXj + (1- (Ym)Mxj+l + fYJ ( Cxj + Kx1 - f1) + 

(1-a1)(cx1+1+ KxHI-fj+l) =0 )=1, ... ,n (2- 105) 

The equations of the generalized a -method consist of (2-1 05), along with the Newmark equa­
tions (2-3) and (2-4). Hence, the generalized a-method contains the parameters /1, / , nm and 
a!· As for the other mentioned methods, the generalized a -method has a local truncation error 

8E.L. Wilson: A Computer Program for the Dynamic Stress Analysis of Underground Structures. SESM Report 
No- 68-1, Division ofStructura1 Engineering and Structural Mechanics, University o f Califirnia, Berkeley, 1968. 

9H.H. Hilber and T.J.R. Hughes and R.L. Tay1or: Collocation, Dissipation and "Overshoot"jor Time Integra­
tion Schemes in Structural Dynamics. Earthquake Engineering and Structural Dynamics, 6, 1978, 99-118. 

10H.H . Hilber, T.J.R. Hughes and R.L. Taylor: Improved Numerical Dissipation for Time fntegration in Struc­
tural Dynamics. Earthquake Engineering and Structural Dynamics, 5, 1977, 283-292. 

11 W.L. Wood, M. Bossak and O.C. Zienkiewicz: An Alpha Modification of Newmarks Method. International 
Journal for Numerical Methods in Engineering, 15, 1981 , 1562-1566. 
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0 (K.3) , resulting in a numerical damping ratio ( = O(K;2) . At optimal tuning of the parame­
ters of the method, Chung and Hulbert demonstrated that the numerical damping ratio and the 
relative period error are smaller than those of the competing methods. General for all the men­
tioned algorithms is that the equations of motion is not fulfilled at the time ti. For this reason 
the singlestep multi value formulation of the algorithms requires a state vector of dimension 3n, 
encompassing the displacement vector, the velocity vector and the acceleration vector. 

At first the singlestep singlevalue formulation of the generalized a-algorithm is indicated. Simi­
lar to the derivation of the New mark algorithm, the idea is to eliminate xi+l and xi+l in (2-1 05) 
by means of (2-3) and (2-4), in order to obtain an equation for the acceleration Xj+l· This results 
m 

( (1- am) M + (1- a1)(1 ~tC + ,6flt2K) )xJ+l = 

affi + (1- aJ)fJ+l - amMxi- Cxi - Kxi -

(1 - af )(1 - 1) fltC:Xj - (1 - af )K ( fl t Xj + ( ~ - /:1) ~t2 Xj) = 

( (1 - am) M + (1 - o 1) (!lltC + {1flt2K) )xi+ 

a1fi + (1 - a1 ) fJ+l- Mxi- Cxj - Kxi-

(1- a1) ( fltCxi + K( fl tx i + ~tle xi)) :::;. 

:XH 1 = xi+ :M-1 [ affi + (1- af ) fJ+l - Mxi - Cxi- Kxi ­

(1 - a1) ( fltcxj + K ( fl tx j + ~6e xj)) J 

where M is the socalled dynamic mass matrix defined as 

(2- 106) 

(2- 1 07) 

To start the algorithm the acceleration x0 at the time t0 is needed, which is calculated from 
(2-10). The algorithm has been summarized in Box 2.4. The main problem left is a procedure 
for the optimal selection of the parameters 6, / , am and a1 to insure unconditional numerical 
stability and desirable damping of high frequency modes. This problem is addressed in the fol­
lowing section. 

The singlestep multivalue fonn ulation for the state vector made up of the displacement, velocity 
and acceleration vectors follows from (2-3), (2-4) and (2-105) 
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(2- 108) 

where 

Z j l~:l 
f(l-LK rr 0 -{36.t2I I ~ti (~ - 6)L>t' l] 

IS I - ,f::.ti 0 I (1 - 1 )6.ti 
(1 - et1)C (1 - etm)M -et!K - et1C - etmM 

l(l -~J)K rr (1-aj] 
0 - 86.t2I 0 

[f:J E j = I -~,f::.ti 0 

(1- et1)C (1 - Ctm)M Ctj i 
(2- 109) 

The corresponding singlestep multivalue implementation of the SDOF system (2-17) follows 
by specialization of (2-1 08) and (2-1 09) 

0 
1 

(1 - CtJ )2(w 
(2- 110) 
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Box 2.4: Generalized alpha algorithm 

Given the initial displacement vector x 0 and the initial velocity vector x0 at the time t0 . 

Perform the following initial calculations 

1. Calculate the initial acceleration vector x0 from 

x0 = M-1 
( fo - CX:o - Kxo) 

2. Calculate dynamic mass matrix M from 

M= (1- am)M + (1- af) (/6tC + pllt2K) 

Repeat the following items for j = 0, 1, ... , n 

1. Calculate new acceleration vector from 

xi+l = xi+ .M:-1 
[ a1fi + (1 - a1 )fi+1 - Mxi- Cxi- Kxi-

(1- a1) ( b.tCxi + K ( 6txi + ~6t2 xi))] 
2. Calculate new displacement and velocity vectors from 

xj+1 = x j + x j ut + ( ( ~ - [3) xj + (3 xj+1) llt2 

X:H 1 = xi+ ( (1- /' )xi+ /' XJ+I )t.t 

57 

2.2.1 Numerical Stability and Selection of Parameters of the Gen­
eralized Alpha Algorithm 

The special eigenvalue problem for the amplification matrix Din (2-110) is reformulated into 
the fo llowing generalized eigenvalue problem 

- 1 -D 1 Dzw = Ani w 
Dzw = 5.nDI w (2- 111) 

For the undamped case, ( = 0, the characteristic equation follows from ( 1-1 0) and (2-11 0) 
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= 

I- >-n 6.t (~- !3 + !3>-n )6.t2 

det 0 1- >-n (1- ! +r>-n)6.t 

- ( O:J +(I -a! )5.n )w2 0 -am- (I- am)5.n 

- (am+ (I - am)5.n) ( 1 - 5.n) 
2 

- (aJ+(1 -o:J)>-n)(1 -!+!'5.n-( I -5.n)(t-!3+!3>-n))K:2 = 0 (2-112) 

Being of the 3rd order, the characteristic equation (2-112) has one real and two complex conju­
gated solutions. We are merely interested in unconditional stable numerical algorithms, which 
implies that all three eigenvalues must fulfi 11 I 5.n I ::; 1 for arbitrary value of ro,. The parameters 
for which this is fulfilled can be shown to be3'6 

I 
- < 'V < 2/3 2 - I -

1 
a <­m- 2 

1 
a!<­- 2 

(2- 113) 

The inequalities in the 1st line are identical to the corresponding conditions (2-78) for uncon­
ditional stability of the Newmark algorithm. The 1st and last inequality implies the condition 
a f 2 am. The high frequency limit of the eigenvalues as K: --> oo may be obtained by dividing 
(2-112) with 11:2 , and perfom1ing the limit passing. The result becomes 

(a!+ (1 - a! )5.n) ( 1 - "( + 1>-n- (1- >-n) G-,3 + !3>-n)) = 0 

The solutions of (2-114) are 

AD= 

' + ~ - 2/3 + J (I· + ~ )2 - 4{3 

2{3 

~, + ~ _ 2.3 _ v,-(l----~-)2---4-/3 

Otj 

1 - C¥.J 

2/3 

j = 1 

j = 2 

j = 3 

(2- 114) 

(2- 1 15) 

We shall choose t3 in a way that the eigenvibrations corresponding to j = 1 and j = 2 become 
critical damped in the high frequency limit. In this case the square root of the 1st and 2nd 
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eigenvalues vanish, and the roots of the characteristic equation coalesce into a double root. The 
condition for this is 

1 ( 1 )2 /3 = 4 ~~ + 2 (2- 116) 

For all finite "' < oo the eigenvalues become complex, corresponding to oscillatory eigenvi­
brations. As seen from (2-69) and (2-70), the relation (2-116) is identical to the condition for 
critical damped eigenvibrations for the Newmark method. Insertion of (2-116) into (2-115) 
provides the following expression for the eigenvalues at critical dampning 

- I + ~ - 2/3 I - ~ 
AD= - = --

2/3 ~, + ~ 

Next, 1 is selected at the stability limit, cf. (2-113) 

1 
I = - + a f - Clm 

2 

Then, (2-11 7) becomes 

\ _ G: f - G:rn - 1 
AD-

af - am+ 1 

(2-1 17) 

(2- 118) 

(2-119) 

The modulus of the eigenvalue (2-119) is denoted as I >-Dioo· Finally, the modulus of the 3rd 
eigenvalue in (2-115) is chosen to be equal i>-Dioo, which means that all three eigenvalues have 
identical modulus in the high frequency limit. Then, a 1 and O'rn may be expressed in terms of 
the I >-v loo as follows 

(2-120) 

This completes the selection of the parameters of the generalized a -a lgorithm. At first, the 
modulus of the eigenvalues of the multiplication matrix in the high frequency limit is chosen 
so 1>-Di oo ~ 1. Values 1>-v loo < 1 introduces numerical damping of the high frequency compo­
nents, whereas I >-v loo = 1 conserve the mechanical energy of the eigenvibrations as measured 
by eigenvibrations. Next, a f and G:rn are detennined from (2-120) . Finally, 1 is calculated 
from (2-118), and f} from (2-116). The resulting algorithm will be unconditional s table. The 
procedure of the parameter selection has been summarized in Box 2.5. 
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Box 2.5: Selection of parameters of the generalized alpha algorithm 

1. Select modulus of the high frequency limit of the eigenvalues of the multiplication 
matrix 1S given by (2-11 0, so 

1:\oloo ~ 1 

2. Calculate parameters a1 and am from 

1:\oloo 2j:\o loo- 1 
Ctj = 1>-oloo + 1 Ctm = 1>-o loo + 1 

3. Calculate parameter 'Y from 
1 

1 =- +af- Ctm 
2 

4. Calculate parameter {3 from 

1 ( 1 )2 !3= 4 1 + 2 

0.95 

0.9 

0.85 

0 .8 

O.?;o'-=_,----1~0°----1~0,-------'10. 

K 

Fig . 2-5 Variation of i.Xni as a function of " = w6t. -: Generalized n-algorithm, i.Xni"" = 0.8. 
-- -: Newmark algorithm, a= 0.09, p = :} . 

It turns out that the complex eigenvalues have the largest modulus. Fig. 2-5 shows the variation 
of the modulus of these eigenvalues as a function of K. Additionally, the corresponding result 
for the Newmark algorithm calibrated to the same hi gh frequency limit has been shown with a 
dashed signature. As seen the numerical damping of the low frequency modes is much smaller 
for the generalized a -algorithm than for the comparable Newmark algorithm. 
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Fig . 2-6 Numerical damping ratio as a function of K = wb.t. -: Generalized a-algorithm, 13-v loo = 0.8. 
-- -: Newmark algorithm, a = 0.09, .'3 = i-6 
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This observation has been further illustrated in Fig. 2-6, which shows the variation of the nu­
merical damping ratio, as calculated by (2-59) . For the Newmark method an asymptotic linear 
variation with "' is obtained as predicted by (2-1 02), whereas the variation for the generalized 
c~-method is quadratic. 

Example 2.7: Generalized alpha solution for a SDOF oscillator 

0.5 1.5 2.5 3.5 4.5 

t /T 
Fig. 2-7 Generalized r¥-algorithm, 13-vl = 0.8. Damped eigenvibrations of SDOF osci llator. w = 1, ( = 0.01, 
(q0 , q0 ) = (1, 0). Analytical solution:-, ~~ = 0.05: -- -, ~~ = 0.10: -.-.-, ~~ = 0.20: ... .. . 

Fig. 2-7 shows the numerical results for eigenvibrations of the same SDOF oscillator as considered in Example 
2.6, obtained by the generalized a -algorithm with IAvl = 0.8, and with the time steps ~t = 0.05, 0 .10 , 0.20. 
Since the numerical damping of the generalized a -algorithm is very small , the numerical solutions are dissipated 
in the same rate as the ana lytical solution. As seen the numerical solutions are related with period e longation, 
which are approximately of the same magnitude as for the Newmark algorithm as shown on Fig. 2-4, and hence 
increases proportional with D.t2

. 
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2.3 Exercises 

2.1 Consider the damped eigenvibrations of the two-degrees-of-freedom system defined in Ex­
ample 1.6 subjected to the initial values 

x 1(0) = 0.01 m , x2(0) = ±t(O) = ±2(0) = 0 

(a.) Write a MATLAB program, which perform Newmark integration. 

(b.) Perform and compare the calculation for (/3 , 1) = (0.25, 0.50), ((3, 1) = (0.25, 0.25) 
with the time steps C:.t = Tt/10 and ~t = Tt/100, where T1 denotes the fundamental 
undamped eigenperiod. 

2.2 Consider the same problem as in Exercise 2.1 . 

(a.) Write a MATLAB program, which perform generalized alpha integration. 

(b.) Perfonn and compare the calculation for l~ool = 0.8 , l ~oo l = 1.0 with the time steps 
C:.t = Tt/10 and 6 t = Tt/100, where T1 denotes the fundamental undamped eigen­
period. 



CHAPTER 3 
LINEAR EIGENVALUE PROBLEMS 

In this chapter the generalized eigenvalue problem ( 1-9), and the related characteristic polyno­
mial will be further analyzed. At first in Section 3.1, the Gauss factorization of the coefficient 
matrix of the generalized eigenvalue problem is treated. This factorization plays an important 
role in several iterative numerical eigenvalue solvers based on the characteristic polynomial. 
Furthermore, the factorization provides a simple way for calculating a sequence of characteris­
tic polynomials known as the Sturm sequence, which makes it possible to formulate upper and 
lower bounds of the eigenvalues of the problem. These bounds are contained in the so-called 
eigenva/ue separation principle treated in Section 3.2. Various iterative schemes for solving the 
indicated generalized eigenvalue problem require that the stiffness matrix is non-singular. For 
structures, which admit stiff-body motions, it then becomes necessary to perform a so-called 
shift, where an art ificial non-singular stiffness matrix is introduced. The eigenvectors of the 
shifted system are identical to those of the original problem, whereas the eigenvalues of the 
two systems deviate with the specified shift parameter. Shifting of a generalized eigenvalue 
problem is treated in Section 3.3. Some iterative eigensolvers presume a special eigenvalue 
problem corresponding to M = I in (1-9). In this case an introductory transfonnation from 
the anticipated generalized eigenvalue problem into an equivalent special eigenvalue problem 
becomes necessary. This can be achieved in several ways. In Section 3.4 a so-called similarity 
transformation has been used, which preserves the symmetry of the transformed stiffness ma­
trix. A similarity transfonnation leave the eigenvalues unaffected, whereas the eigenvectors are 
changed in a known manner. 

3.1 Gauss Factorization of Characteristic Polynomials 

Since the coefficient matrix of the generalized eigenvalue problem K - >-M is symmetric, it 
may be Gauss factorized on the form 

K ->-M=LDLT (3- 1) 

where L is a lower triangular matrix with units in the main diagonal, and D is a diagonal matrix, 
given as 

- 63-
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1 

b 1 

L = l3I h2 1 (3- 2) 

lni ln2 ln3 1 

D ~ 11 
0 

d 22 

0 Il (3- 3) 

The details of the Gauss factorization of an symmetric matrix has been given in Box. 3 .1. Since, 
det(L) = dct(LT) = 1, the following representation of the characteristic polynomial ( 1-1 0) is 
obtained 

P(A) = dct (LDLT) = dct (L) dct (D) det (LT)= det (D) = dud22 · · · dnn (3-4) 

At the same time ( 1-1 1) can be written on the form 

(3 5) 

Despite the striking similarity between (3-4) and (3-5), dii is very different from the correspond­
ing factor (A - Ai) in (3 -5), as demonstrated in Example 3.2 below. 

Let A be monotonously increased in the interval [0, oo[. From (1-10) follows that P(O) 
an = dct(K) ~ 0. Since all factors in (3-5) have negative sign for A E] O. A1 [, it follows that 
P(A) > 0 throughout this interval. As A passes AI from below, the factor (A - A1) changes its 
sign from negative to positive, while the other factors remain negative. This means that the sign 
of P(A) changes from positive to negative at the passage of A1. Then, a similar sign change 
must occur in (3-4). For A < A1 all the diagonal elements d11 , d22 , . .. , dnn are positive. As 
A passes AI, exactly one of these factors (not necessarily d11 ) changes its sign from positive 
to negative, while the other factors remain positive. The sign of the characteristic polynomial 
remain negative for A E]A1 , A2 [. As A passes A2 from below, the factor (A - A2 ) in the same 
way changes its sign from negative to positive, making the characteristic polynomial positive in 
the interval A E] A2 , A3 [. A similar sign change occurs in (3-4), meaning that an additional diag­
onal elemen t has changed its sign from positive to negative. Hence, for A E]l-2 , A3 [ exactly two 
of the diagonal elements d 11 , d22 , . . . , d, n are negative. Proceeding in th is manner, it is seen 
that if A is placed somewhere in the interval ]Am. Am+d, exactly m diagonal elements among 
d11 , d22 , . .. , dmt are negative. This observation is contained in the following theorem. 
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Theorem 3.1: Let D be the diagonal matrix in the Gauss factorization of the coefficient matrix 
K - .>..M of a generalized eigenvalue problem, and A is an arbitrary parameter. Then, the num­
ber of negative components in the main diagonal of D is equal to the number of eigenvalues of 
the generalized eigenvalue problem, which are smaller than the parameter A entering the factor­
ization. 

The theorem can be used to formulate bounds for any of the eigenvalues as demonstrated below 
in Example 3.3. Actually, one can calculate say the j th eigenvalue Aj with arbitrary accuracy. 
The method is simply to make an initial sequence of calculations of the characteristic polyno­
mial P (A ) as a function of A by (3-4), until j components in the main diagonal ofD are negative. 
Next, one can perform additional calculations to reduce the interval, where the j th sign change 
takes place. This procedure for calculation of eigenvalues is known as the telescope method. 

Box 3.1: Gauss factorization of symmetric matrix 

Gauss factorization reduces a symmetric matrix K of dimension n x n to an upper trian­
gular matrix S in a sequence of n - 1 matrix multiplications. After the first ( i- 1) matrix 
multiplications the following matrix is considered 

i = 2, ... ,n (3-6) 

where K (l ) = K. Sequentially, the indicated matrix multiplications produce zeros below 
the main diagonal of the columns j = 1, . .. , i - 1. Then, pre-multiplication of K (i) with 
Li 1 will produce zeroes below the main diagonal of the ith column without affecting the 
zeroes in the previous columns. Li 1 is a lower triangular matrix with units in the principal 
diagonal, and where only the i th column is non-zero, given as 

1 

0 1 

L :-1 = 0 0 1 
(3- 7) t 0 0 0 1 

0 0 0 - l i+l ,i 1 

0 0 0 -l,.,i 0 1 
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The components lj,i entering the i th column are given as 

K(i) 

l ),t 

j,i = K (i) 
, ,t 

j=i + 1,ooo,n (3- 8) 

where Kj~} denotes the component in the jth row and ith column of K (i) 0 By insertion it 
is proved that the inverse of (3 -7) is given as 

1 
0 1 

Li= 
0 0 1 

(3- 9) 
0 0 0 1 

0 0 0 li+l,i 1 

0 0 0 ln,i 0 1 

Then, K (n) obtained after the (n - 1 )th multiplication with L;,:~ 1 , has zeroes in all the first 
( n- 1) columns below the main diagonal, corresponding to an upper triangular matrix So 
Hence 

L - 1 L - 1 L - 1K S 
n-1 n - 2 ° 

0 0 

1 = 

K = LS (3- 1 0) 

Since, L defined by (3-1 0) is the product of lower triangular matrices with I in the main 
diagonal, it becomes a matrix with the same structure as indicated by (3-2)0 

Because K is symmetric, S must have the structure 

(3-11) 

where D is a diagonal matrix, given by (3-3)0 This proofs the validity of the factorization 
(3-1 )o 
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Example 3.1: Gauss factorization of a three-dimensional matrix 

Given the symmetric matrix 

K = K (l) = - 4 6 
[ 

5 - 4 

L - 1 -
1 -

1 - 4 

[ ~ ~ ~] -i 0 1 

From this fo llows that 

-:] 

L = [-o.! ~ ~1] 0.2 - 1.1429 

-3.~] 
5.8 

K ('l ~ Li ' K<' l ~ S ~ [~ ~: -3.~] 
2.1429 

L (
2

) = L 1L2 = L = [-o.! 
0.2 

~ ~1] 
- 1.1429 

D = [~0 2o.~ ~ l 
2.1429 

67 

(3- 12) 

(3- 13) 

(3- 14) 

(3- 15) 

Example 3.2: Gauss factorization of a three-dimensional generalized eigenvalue problem 

Of course for a given value of).. the matrix K - XM may be factorized according to the method expla ined in 
Box 3.1 . However, for smaller p roblems explici t expressions may be derived, as demonstrated in the following. 
Given the mass- and sti ffness matrices defined in Example 1.4, the components ofL and D are calculated from the 
following identities, cf. ( 1-79), (3- 1) 

[,~, 0 

~ l [":' 0 

d~J [~ 
l21 "'] [ du 

dub d,l, l 
l dn 1 la2 dlll21 d22 + dll l~l clu l21la1 + d22l32 

la1 la2 l 0 0 0 1 du l31 dlll21l31 + d22l32 d33 + dul~1 + d22l~2 

[2 - l> - 1 
0 ] - 1 4 - ).. - 1 (3- 16) 

0 - 1 2 - 4).. 
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Equating the corresponding components on the left and right hand sides, provides the following equations for the 
determination of the unknown quantities 

1 1 
d11 =2-

2
>.=-2(>. -4) 

2 
dul21 = - 1 =? l21 = >. _ 

4 
1 4 

dzz + dul~1 = 4 - >. =? dz2 = 4- >. +- (>.- 4) 2 = 
2 (>. - 4) 

>.2 - 8>. + 14 

>.-4 

>.-4 
dul21l31 + d22h2 = d22b = -1 =? l32 = >.2 _ 8>. + 

14 
2 2 1 

d33 + dul31 + d22l32 = d33 - l32 = 2- 2>- =? 

1 .>.-4 
d33 = 2 - 2 + ).2 - 8.>. + 14 

1 .>.3 - 12.>.2 + 44.>.- 48 

2 >.2 - 8>. + 14 

1 (>.- 2) (>.- 4) (.>.- 6) 
2 >.2 - 8.>. + 14 

Then, the following expression for the characteristic equation is obtained, in agreement with ( 1-80) 

(3- 17) 

P(.>.) = dudz2d33 = - -
2
1 

(>.-4) ( .>.
2

- S>. + 14
) ( -

1 (>. - 2
)(>.-

4)(>.- 6
)) = -~(.>.-2 ) (.>. - 4) (.>. - 6) 

>. - 4 2 >.2 - 8>. + 14 4 
(3-1 8) 

Example 3.3: Bounds on eigenvalues 

In this example bounds on the eigenvalues of the GEVP in Example 1.4 is constructed from the number o f negative 
components in the diagonal of the matrix D, using Theorem 3.1. 

For >. = 1 one gets: 

[ 

;! -1 0] 
K - >.M = -~ 3 -1 

0 - 1 ~ 

=? l [
3 2 0 
0 I 

1 0 ~ -f] (3- 19) 

The components of the matrices L and D may be calcu lated by the formulas indicated in (3-17). As seen 
du = ~ > 0, d22 = ~ > 0, d33 = f% > 0. Hence, all three diagonal components are positive, from which 
it is concluded that >. 1 > .>. = 1. 

For>.= 8 one gets: 

K - >.M= [=~ =! -~] =? LDLT = [4 ; l [-~ -~ 1~] [
1 ~ ~11] 0 - 1 -2 0 1 1 0 0 - 7 

(3- 20) 

As seen du = - 2 < 0, d22 = - ~ < 0, d33 = -V < 0. Hence, all three diagonal components are negati\e, from 
which it is concluded that >.3 < >. = 8. 

For >. = 5 one gets: 
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[

_ .!. -1 0] 
K - >.M = - ~ - 1 - 1 

0 -1 -~ 
1 l [-~ ~ ~] [1 ~ -~] 

- 1 1 0 0 -2 1 

(3-21) 

As seen d11 = - ~ < 0, dzz = 1 > 0, d33 = - ~ < 0. Hence, two diagonal components are negative and one is 
positive, from which it is concluded that >.2 < >. = 5 < >.3. 

For >. = 3 one gets: 

-1 0] 
1 - 1 

-1 ~ 

-~ ~] [1 -~ ~] 
0 ~ 1 

2 

(3- 22) 

As seen d11 = ~ > 0, dzz = -1 < 0, d33 = ~ < 0. Hence, two diagonal components are positive and one is 
negative, from which it is concluded that >. 1 < >. = 3 < >.2 . 

In conclusion the following bounds preva il 

1 < >.1 < 3 } 
3 < >-z < 5 

5 < >.3 < 8 

3.2 Eigenvalue Separation Principle 

(3- 23) 

The matrices M (m) and K (m) of dimension (n- m) x (n- m) are obtained from M and K , 

if the last m rows and columns are omitted in these matrices. Then, consider the sequence of 
related characteristic polynomials of the order (n- m) 

m= 0, 1, ... ,n -1 (3-24) 

where M<0l = M , K (o) = K , >.<0> =,\ and P <0l(>.) = P(>.). The eigenvalues corresponding to 

J\I (m ) and K (m) are denoted as >-im), ,\~m), ... , >.;;~~t· 

Now, for any m = 0, 1, ... , n - 1 it can be proved that the roots of p(m+l) (>.(m+Il) = 0 are 

separating the roots of p (m) (,\(m) ) = 0, i.e. 

O < A(m) < A(m+l ) < A(m) < A(m+l) < ... < A (m) < A(m+l) < ,\{m) < 00 - 1 - 1 - 2 - 2 - - H-m-1 - n-m- 1 - n - rn. - (3- 25) 

A formal proof of (3-25) has been given by Bathe. 1 The sequence of polynomials p(m) (>.)with 
roots fulfilling the property (3-25), is denoted a Sturm sequence. (3 -25) is illustrated in Exam­
ple 3.4. 

1K.-J. Bathe: Finite Element Procedures. Printice Hall , Jnc., 1996. 
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Next, consider the Gauss factorization (3-1). Omitting the last m rows and columns in M and 
K is tantamount to omitting the last m rows and columns in L and D. Then 

du d22 · · · dn-m,n-m (3- 26) 

where 

1 (3- 27) 

ln-rn,l ln-m,2 ln-m,3 1 

(3- 28) 

0 

The bounding property explained in Theorem 3.1 for the case m = 0 can then easily be gener­
alized. Let .A (m) = f.J-, and perform a Gauss factorization on the matrix K (m) - f.J,M(m) . Then 

the number of eigenvalues, >-t) < JL, will be equal to number of negative diagonal components 
du, ... , dn-m,n-m in the matrix D. 

The number of negative elements in main diagonal of the matrix D in the Gauss factorization of 
K -.AM = LDLr , and hence the number of e igenvalues smaller than .A, can then be retrieved 
from the signs of the sequence P (0l(.A), p(ll(.A), ... , p (n-l )(.A) as seen in the following way. 

Introduce p (n)(.A) as an arbitrary positive quantity. Since p(n-l)(.A) = du, it follows that the 
sequence p (n)( .A) , p(n- l)(.A) has the sign sequence sign(P(n)(.A)), sign(P(n-l)( .A) ) = +, - ,if 

d11 < 0, and the sign sequence +,+, if d11 > 0. du < 0 indicates that at least one eigenvalue 
is smaller than .A, in which case one sign change, namely from + to -, has occuJTed in the 
indicated sign sequence. 

Next, p (n- 2l(.A) = d11d22 is considered. du < 0 1\ d22 < 0 indicates that two eigenvalues 
are smaller than .A. This in turns implies that p (n-l)(.A) has a negative sign, and p(n-2l( .A) 
has a positive sign. Then, one additional sign change has occurred in the sequence of sign 
of the characteristic polynomials sign(P ("l(.A)) , s ign(P(n-l)(.A)), s ign (P{n-2l(.A))=+, -, +. If 
d22 > 0, then p(n-l) (/\) and p(n- 2)(.>-) have the same sign, and no additional sign change is 
recorded in the sequence of signs of the characteristic polynomials. 
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Proceeding in this way it is seen that the number of sign changes in the sequence of signs 
sign(P (n)(A)), sign(P(n-l)(A)), ... , sign(P (0)(A)) determines the total number of eigenvalues 
smaller than A. This property of the sequence of characteristic polynomials is known as a Sturm 
sequence check. In Example 3.5 it is illustrated, how the sign of the components dn, d22 , d33 

for the case n = 3 can be retrieved from the sequence of signs of the Sturm sequence. 

Example 3.4: Bounds on eigenvalues by eigenvalue separation principle 

For the mass- and stiffness matrices defined in Example 1.4, the matrices M <1l and K (1l become 

K (ll = [ 2 - 1] 
- 1 4 

The characteristic equation ( 1- 1 0) becomes 

([
2-lA(l) -1 ]) 

det 2 1 
( l ) = 0 

- 1 4 - \ 

The matrices M (2l and K (2l become 

M (2) = [~] 

The relation (3-25) becomes 

{
Ail)= 4- J2 = 2.59 

A~1 l = 4 + J2 = 5.41 

{ 

0 < A1 < 2.59 

2.59 :S A2 :S 5.41 

5.41 :S A3 :S oo 

The exact solutions are A1 = 2, A2 = 4, and A3 = 6, cf. Example 1.4. 

(3- 29) 

(3-30) 

(3- 31) 

(3-32) 

Example 3.5: Sturm sequences and correspondence to sign of components in D-matrix 

Consider a generalized eigem alue of order n = 3. For a given va lue of A, the Sturm sequence p (3l (A) , p (2l(A), 
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p(l) (.A), p(o) (.A ) is calculated. Below are shown the 8 possible s ign sequences of the Sturm sequence. 

{ ++++ +++ p (O)(A) > 0 => d33 > 0 
pCll (.A) > 0 => d22 > 0 

+++-
++ p (O)(>,) < 0 => d33 < 0 

p(2l(.>,) > 0 => du > 0 
{ ++- + ++- p(O)(,A ) > 0 => d33 < 0 

p (l l(.A) < 0 => d22 < 0 
++--

+ p (O)(>,) < 0 => d33 > 0 
p (3)(.>,) > 0 (3- 33) 

{ +-++ +-+ p (O)(>,) > 0 => d33 > 0 
p (ll(.>,) > 0 => d22 < 0 

+-+-
+- p (O) (>, ) < 0 => d33 < 0 

p (2)(>,) < 0 => du < 0 

{ +--+ +-- p (O)(.A)>O => d33 < 0 
p <ll (.A) < 0 => d22 > 0 +---

p (O)(,A) < 0 => d33 > 0 

With an arbitrary positive value for p <3l(.A) the first curly bracket indicate how the sign of d11 is retrieved from 
the possible signs of P <2l (.A). The sign sequences ++ and +- have been indicated atop of p(2J (.A). At the 
next level the s ign of p(ll (.A) in combination to the previous sign sequence makes it possible to retrieve the 
sign of d22 . Finally, at the 3rd level the sign of the characteristic polynomial p(O) (.A) in combination to the 
previous sign sequence makes it possible to retrieve the sign of d33 . As an example, the sequence of signs 
sign(P<3l (.A)) ,sign (P<2l (.A)),sign(P<1l (.A)) ,sign(P<0l( .A))=+- +- are obtained for the specific sign combi­
nation cln < 0, d22 < 0 and d33 < 0. Moreover, there are three sign changes in the indicated sign sequence 
+ - +-, and corresponding ly all three components d11 , d22 and d33 are negative. The reader is encouraged to 
verify, that the number of sign changes in the sequence of signs at the lowest level in (3-33) always is equal to the 
number of negative components in the specific combination of d11 , d22 and d33 producing this sequence of signs . 

Example 3.6: Physical interpretation of the eigenvalue separation principle 

a) 

~ f' (]) F CD ~ 'it -l) @ 

~ F . 
f uj ~u1 ~Uj+l ~ Un-2 lvn-1 ~u2 u(x, t ) 

,..'< b:.l 
~-

X 

b) 

Fig. 3- 1 Vibrating string. a) Defi nition of elements and degrees of ti·eedom. b) Undamped eigenmodes. 
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The vibrating string problem in Example 1.2 is considered again. The eigenvibrations of the discretized string is 
given by (1 -68) with M (0) =M and K (o) = K given by (1-69) or (1 -70). 

Next, consider the system defined by the matrices M (l) and K (l ) of dimension (n - 2) x (n - 2), where the 
last row and column are omitted in M (O) and K (O). Physically, this corresponds to constraining the displacement 
Un- l (t) = 0, as indicated by the additional support in Fig. 1.3b. The corresponding eigenmodes ofthe continuous 
system have been shown with a dashed signature. As seen in Fig. I .3b the wave-lengths related to the circular 

eigenfrequencies wi0
), wi1l, w~o) and w~1l decreases in the indicated order. Hence, the following ordering of these 

eigenfrequencies prevails 

(3- 34) 

Since .A;m) = ( wjml) 2, the corresponding ordering of the eigenvalues become 

(3-35) 

which corresponds to (3-25). 

3.3 Shift 

Occasionally, a shift on the stiffness matrix may be used to enhance the speed of calculation 
of the considered GEVP. In order to explain this the eigenvalue problem ( 1-9) is written in the 
following way 

(3- 36) 

Obviously, we have withdrawn and added the quantity pM inside the bracket, where p is a 
suitable real number, which will not affect neither the eigenvalues Aj , nor the eigenvectors cp (1l . 

(3-36) is rearranged on the form 

(3- 37) 

where 

K = K - pM /1-J = AJ- P (3-38) 

Hence, instead of the original generalized eigenvalue problem defined by the matrices (K, M), 
the system with the matrices (K, M) is considered in the shifted system, where K is calcu lated 
as indicated in (3-38). The two systems have identical eigenvectors. However, the eigenvalues 
of the shifted system become (A1 - p), (A2 - p) , . .. , (An- p), where A1, A2 , ... , An denote the 
eigenvalues of the original system. 
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For non-supported systems (e.g. ships and aeroplanes) a stiffbody motion q, =! 0 exists, which 
fulfills 

Kq, = 0 (3- 39) 

(3-39) shows that,\ = 0 is an eigenvalue for such systems. Correspondingly, det(K) = 0 for 
systems, which possesses a stiffbody motion. However, some numerical algorithms presume 
that det(K) =! 0. In such cases a preliminary shift on the stiffness matrix must be performed, 
because det (K - pM) =! 0, if det(K ) = 0. 

Example 3.7: Shift on stiffness matrix 

Given the mass- and stiffness matrices 

M = [2 1] K = [ 3 -3] 
1 2 , -3 3 

The characteristic equation (6-6) becomes 

det ( [ 3 - 2A - 3 - A] ) = 0 =? 
- 3 - A 3 - 2A 

A1 = 0, since det(K) = 0. 

Next, a shift on the stiffness matrix with p = - 2 is performed, which provides 

:K = [ 3 -3] + 2 [2 1] = [ 7 -1] 
- 3 3 1 2 - 1 7 

Now, the characteristic equation becomes 

( [7-2p -1- p] ) det = 0 
- 1 - p 7 - 2p { 

Jll = 2 

J1·2 = ~ 

(3-40) 

(3-41) 

(3-42) 

(3-43) 
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3.4 Transformation of GEVP to SEVP 

Some eigenvalue solvers are written for the special eigenvalue problem. Hence, their use pre­
sumes an initial transformation of the generalized eigenvalue problem ( 1-9). Of course, this 
may be performed, simply by a pre-multiplication of (1-9) with M - 1

. However, then the result­
ing system matrix M - 1 K is no longer symmetric. In this section a similarity transformation is 
indicated, which preserves the symmetry of the system matrix. 

Since, M = MT it can be factorized on the form 

M= SST (3-44) 

The generalized eigenvalue problem (1-9) may then be written in the form 

K(srr1sTq>Ul = AjSSTq>Ul => 

s-1 K (s- 1 f sr <J?Ul = Aj sr q>(j) (3-45) 

where the identity (srr1 
= (s -1)T has been used. (1-9) can then be formulated in tenus of 

the following standard EVP 

(3-46) 

where 

(3-47) 

(3-48) 

(3-47) defines a similarity transformation with the transformation matri x s- I, which diagonal­
ize the mass matrix. Similarity transformations is further explained in Chapter 6. Obviously, 
K = .KT. As seen from (3-46) the eigenvalues >.1 , ... , A11 are identical for the original and 
the transfonned eigenvalue problem, whereas the eigenvectors <I> Ul and ~(j) are related by the 
transformation (3-48). 

The determination of a matrix S fulfi ll ing (3-44) is not unique. Actually, infinite many solutions 
to this problem exist. Below, two approaches have been given. In both cases it is assumed that 
M = MT is positive definite. 
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Generally, Choleski decomposition is considered the most effective way of solving the problem. 
In this case a lower triangular matrix S is determined, so (3-44) is fulfilled . Obviously, S is 
related to the Gauss factorization as follows 

[T 
0 

1 1 yid; 
S = LD 2 D 2= 

0 ll (3-49) 

The diagonal matrix D! does only exist, if the components dii of the matrix D are all positive. 
This is indeed the case, if M is pos itive definite. Although, S may be calculated from (3-49), 
there exists a faster and more direct algorithm for the detennination of this quantity. 

Alternatively, a so-called spectral decomposition of M may be used. The basis of this method 
is the following SEVP for M 

(3- 50) 

PJ and v Ul denotes the jth eigenvalue and eigenvector of M. Both are real, since M is symmet­
ric. The eigenvalue problems (3-50) can be assembled into the matrix formulation, cf. (1-14) 

MJ..L = VR (3- 51) 

/11 0 

II 0 ,,,2 
V = [v (l) v (2) · · · v (n)J J..L = (3-52) 

0 0 

The eigenvectors are normalized to magnitude 1, i.e. v(i) T v Ul = 6iJ . Then, the modal matrix 
V fulfills, cf. (1-23) 

v -1 = VT (3- 53) 

From (3-51) and (3-53) the following representation of M is obtained 

(3- 54) 

Finally, from (3 -44) and (3-54) the following solution forS is obtained 
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[T 
0 

1 1 VJi2 S = VJ.t2 J.L2 = 

0 JJ (3- 55) 

The drawback of the spectral approach is that an initial SEVP must be solved, before the trans­
formed eigenvalue problem (3-46) can be analyzed. Hence, the method requires the solution of 
two SEVP of the same dimension. 

Box 3.2: Choleski decomposition of symmetric positive definite matrix 

Choleski decomposition factorizes a symmetric positive definite matrix M into the matrix 
product of a lower triangular matrix S and its transpose, as follows 

M = ssr ::::} 

[

mu m 21 

m 21 m 22 

mnl mn2 

0 

[ 

2 
Sn 

s21s11 

s,.1 s u 

(3-56) 

Equating the components of the fi nal matrix product with the component on and below 
the main diagonal of M, equations can be formulated for the detenninations of S;j, which 
are solved sequentially. First s11 = y'rnll is calculated. Next, s;1 , i = 2, . .. , n are 

determined from s;1 = mil/s11 . Next, s 22 = J m 22 .- s~1 is calculated, and s ;2 , i = 
3, ... , n can be determined from s;2 = (m2; - s;1s 21 )/s22 . Next, the 3th column can be 
calculated and so forth. The general algorithm for calculating the components s;j in the 
jth column reads 

sJ· = J mJ·J· - s 2 . 1 - ... - s21 J J,)- J j = 1, ... , n 
(3- 57) 

i =j + l , ... ,n 
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3.5 Exercises 

3.1 Given the same mass- and stiffness matrices as in Exercise 1.1 . 

(a.) Show that the eigenvalue separation principle is valid for the considered example. 

3.2 Given the following mass- and stiffness matrices 

M= [~ ~] K = [ 6 -1] 
- 1 4 

(a.) Calculate the eigenvalues and eigenmodes normalized to unit modal mass. 
(b.) Perform a shift p = 3 on K and calculate the eigenvalues and eigenmodes of the new 

problem. 

3.3 Given a symmetric matrix K. 

(a.) Write a MATLAB program, which determines the matrices L and D of a Gauss fac­
torization as well as the matrix (S- 1 )r, where S is a lower triangular matrix fulfilling 
ssr = K . 

3.4 Given a symmetric positive definite matrix K. 

(a.) Write a MATLAB program, which performs Choleski decomposition. 



CHAPTER 4 
APPROXIMATE SOLUTION METHODS 

This chapter deals with various approximate solution methods for solving the generalized eigen­
value problem. 

Section 4.1 consider the application of static condensation or Guyan reduction. 1 The idea of 
the method is to reduce the magnitude of the generalized eigenvalue problem from n to n 1 « n 
degrees of freedom. Next, the reduced system is solved exact. In principle no approximation is 
related to the procedure. 

Section 4.2 deals with the application of Rayleigh-Ritz analysis. Similar to static condensation 
this is a kind of system reduction procedure. As shown the method can be given a formu lation 
identical to static condensation. However, exact results are no longer obtained. 

Section 4.3 deals with the bounding of the error related to a certain approximate eigenvalue. 

4.1 Static Condensation 

The basic assumption of static condensation is that inertia is confined to the first n 1 degrees of 
freedom, whereas inertia effects are ignored for the remaining n 2 = n - n 1 degrees of freedom. 
The approximation of the method stems from the ignorance of these inertial couplings. This 
corresponds to the fo llowing partitioning of the mass and stiffness matrices 

(4- 1) 

M 11 and K 11 are sub-matrices of dimension n 1 x n 1, K 12 = K§1 is a sub-matrix of dimension 
n 1 x n 2 , and K 22 is of the dimension ·n2 x n 2 . The eigenvalue prob lems for the first n 1 and 
the last n 2 eigenvectors can be assembled in the following partitioned matrix fommlations, cf. 
(l -14) 

1 S.R.K. N ielsen: Structural Dynamics, Vol. 1. Linear Structural Dynamics, 4th Ed. Aalborg tekniske Univer­
sitetsforlag, 2004. 

-79 -
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K12] [~11] [M11 0] [~11] A1 
K22 ~21 0 0 ~21 

(4- 2) 

[~12] [Mu 0] [~12] A 2 
~22 0 0 ~22 

where A 1 and A 2 are diagonal matrices of the dimension n 1 x n 1 and n2 x n 2 

[AI 
0 

n 
An , + 1 0 

JJ 
A1 ~ r >.2 0 An , + 2 

A 2 = (4- 3) 

0 . . . 0 0 ... 

~~J) and ~~Jl denote sub-vectors encompassing the first n 1 and the last n 2 components of the 
jth eigenmode ~(j) . Then, the matrices ~11 , ~ 12 , ~21 and ~22 entering ( 4-2) are defined as 

rt.. _ [rt.. (ll rt.. (2) ... rt.. (ni) ] 
'*"11 - '*"1 '*"1 '*"1 > 

rt.. _ [rt.. (n, +1) rt.. (TH+2) rt.. (n)] } '*" 12 - '*" 1 '*" 1 .. . '*" 1 

rt.. _ ["" (n, + 1) rt.. (n J+2) rt..(n)] 
'*"22 - '*"2 '*" 2 ... '*"2 

(4-4) 
;F. _ [rt.. (1) rt.. (2) rt..(n i)] 
'*" 21 - '*"2 '*"2 . .. '*"2 ' 

At first the solution for the first n 1 eigenmodes is considered. From the lower lower half of the 
first matrix equation in (4-2) follows 

From the corresponding upper half of the said matrix equation, and ( 4-5), follows 

where 

(4-7) 



4.1 Static Condensation 81 

( 4-6) is a generalized eigenvalue problem of reduced dimension n1, which is solved for ( A 1 , <J111). 

Next, the remaining components of the first n 1 eigenmodes are calculated from (4-5). The 
modal masses become 

(4- 8) 

Hence, the total eigenmodes will be normalized to unit modal mass with respect to M, if the 
sub-vectors <Jl 11 are normalized to unit modal mass with respect to M 11 . 

Next, the solution for the last n 2 eigenmodes are considered. From the last matrix equation in 
( 4-2) follows 

(4- 9) 

Obviously, (4-9) is fulfilled for A21 = 0 A <Jl 12 = 0. A21 = 0 implies that all n 2 eigenvalues 
are equal to infinity. Hence, the following eigensolutions are obtained 

[::::] [,;:,] ( 4-1 0) 

The matrix <Jl 22 is undetermined. Any matrix with linear independent column vectors will do. 
Then, this quadratic matrix may simply be chosen as an n 2 x n2 unit matrix 

<Jl 22 = I (4- 11) 

The modal masses become 

(4- 12) 

Generally, if the ith row and the i th column in M are equal to zero, then <pT = [0, ... , 0, 1, 0, ... , 0] 
is an eigenvector with the eigenvalue A = oc. The modal mass is 0. 

In praxis the calculation ofKn is solved by means of an initial Choleski decomposition ofK22, 

cf. Box 3.2 
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K Ssr K2-21 -- (s- 1)rs - 1 22 = {::} (4- 13) 

where both Sand s-1 are lower triangular matrices. Then, K11 is determined from 

- T K n = K n- R R (4- 14) 

where the n2 x n 2 matrix R is obtained as solution to the matrix equation 

(4- 15) 

In principle ( 4-15) represent n 2 linear equations with n2 right-hand sides . Given that S is a 
lower triangular matrix, this is relatively easily solved. 

Finally, it should be noticed that the static condensation approach is only of value if n 1 « n . 

Example 4.1: Static condensation 

Given the following mass- and stiffness matrices 

0 0 0 

~1 r-: 
- 1 0 0 

M = 
0 2 0 2 -1 0 

K = (4-16) 
0 0 0 0 - 1 2 -1 

0 0 0 0 0 -1 1 

The rows and columns are interchanged the mass and stiffness matrices, so the following eigenvalue problems are 
obtained 

2 0 - 1 - 1 2 0 0 0 

:J 0 1 - 1 0 [ Wul 0 1 0 0 
[ Wu l ["' - 1 - 1 2 0 

<P21 
0 0 0 0 

<P21 0 
- 1 0 0 2 0 0 0 0 

(4- 17) 

2 0 - 1 -1 2 0 0 0 

:.] 
0 1 - 1 0 [w"] = 

0 1 0 0 [w"] ["' - 1 - 1 2 0 
<P22 

0 0 0 0 
<P2~ 0 

- 1 0 0 2 0 0 0 0 

A formal procedure for obtaining the mass and stiffness matrices in (4-17) by means of a similarity transformation 
has been demonstrated in Example 6.1. Then, 

(4- 18) 
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From ( 4-7) follows 

- -1 2 0 -1 -1 2 0 - 1 -1 1 _l 
[ ] [ ] [ ] 

-1 [ ] [ ] K u = K n- K12K22 K 21 = O 1 - _ 1 O O 2 _ 1 O - ~ i (4-19) 

The reduced eigenvalue problem (4-6) becomes 

[ 1 -1] [2 0] 
-
221 q,ll = 0 1 q,u A 1 

-~ 
(4-20) 

The eigensolutions with eigenrnodes normalized to modal mass I become 

A 1 = [ ~1 0] [l _ v'2 l: il] q,ll = [ 4 4] = 2 4 
>.2 0 2 4 

(4-21) 

From (4-5) follows 

[ rl [ -1] [ ~ 1] [l + v'2 _ l + il] 2 0 - 1 
q,21 = - 0 2 - 1 

4 4 4 4 
0 il 1 l 

2 4 - 4 
(4-22) 

From ( 4- I 0) and ( 4-1 I) follows 

q, 12 = [~ ~] (4-23) 

After interchanging the degrees of freedom back to the original order (the I stand 2nd components of q, 11 and q, 12 
are placed as the 2nd and 4th component of q,{Jl, the 1st and 2nd components of q, 21 and q, 22 are p laced as the 
3rd and I st component q,Ul, the fo llowing eigensolution is obtained 

>.1 0 0 

jJ 
r!_rl 0 0 0 2 4 

A = 
0 >.2 0 0 l + v'2 0 0 2 4 
0 0 >.3 0 0 00 0 

0 0 0 0 0 0 00 

l 
(4-24) 

l 0 1 4 -~ 

q, = [ q, (1) q,(2) q,(3) q,(4)] = 
1 1 0 0 2 -2 

l + v'2 1 v'2 1 0 4 4 - 4+4 
il 
2 

v'2 
2 0 0 
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4.2 Rayleigh-Ritz Analysis 

Consider the generalized eigenvalue problem (1-9). If M is positive definite, so v TM v > 0 for 
any v f= 0, the so-called Rayleigh quotient may be defined as 

(4- 25) 

It can be proved that p (v ) fulfills the bounding, see Box 4.1 

(4- 26) 

where A1 and An denote the smallest and the largest eigenvalues of the generalized eigenvalue 
problem. 

Especially, if v = q, (l) , where q, (l) has been normalized to unit modal mass, it follows that 
q,(l lTMq,(l) = 1 and q, (llTKq, (l) = A1, see (4-34) and (4-35) below. Then, p(v) = A1. This 
property is contained in the so-called Rayleigh 's principle 

A1 = min p(v) 
vER" 

(4- 27) 

Next, assume that vis M-orthogonal to q, (ll, so q,(l)TMv = 0. Then, the following bounding 
of the Rayleigh quotient may be proved, see Box 4.1 

(4- 28) 

Correspondingly, A2 may be evaluated by the following extension of the Rayleigh principle, 
where the M-orthogonality of the test vector v to the first eigenmode q,(ll has been included as 
a restriction 

{ 

min p(v) 
vER'' 

A2 = 
q,( l)TMv = 0 

The corresponding optimal vector will be v = <I>(2l. 

(4- 29) 

Generally, if v is M-orthogonal to the first m - 1 eigenmodes q, (ll, <I> (2l , . .. , q, (m- l), so 
q,(j)TMv = 0 , j = 1, . .. , m - 1, the following bounding of the Rayleigh quotient may 
be proved, see Box 4.1 

(4-30) 



4.2 Rayleigh-Ritz Analysis 85 

Correspondingly, Am may be evaluated by the following extension of the Rayleigh variational 
principle, where restriction of M-orthogonal of the test vector v to the eigenmodes q,Ul 
0 , j = 1, ... , m - 1 are included 

{ 

min p(v) 
vERn 

Am= 
q, UlTMv = 0 j = 1, ... , m - 1 

(4- 31) 

The corresponding optimal vector will be v = q,(m). 

The Rayleigh quotient may be used to calculate an upper bound for the lowest eigenvalue .A1 . 

The quality of the estimate depends on the choice of v . The better the qualitative and quantita­
tive resemblance of v to the shape of the lowest eigenmode, the sharper will be the calculated 
upper bound. 

Box 4.1: Proof of boundings of the Rayleigh quotient 

Given the linear independent eigenmodes, normalized to unit modal mass 
q,(l) , q, (z) , ... , q, (n). Using the eigenmodes as a vector basis, any n-dimensional 
vector may be written as 

(4- 32) 

Insertion of(4-32) into (4-25) provides 

(4- 33) 

where the orthonormality conditions of the eigenmodes have been used in the last state­
ment, i.e . 

.p l•l r M wul = { ~ , 

q, (i)TKq, (jl = { 0 ' 
.Ai 

i# j 

~=J 

i#j 

Z=J 

(4-34) 

(4- 35) 
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Given the following ordering of the eigenvalues 

(4- 36) 

it follows directly from (4-33) that 

(4- 37) 

which proves the bounding (4-26). 

(4-32) is pre-multiplied with q,UlTM. Then, use of(4-34) provides the following expres­
sion for the jth modal coordinate 

( 4- 3 8) 

Hence, if vis M-orthogonal to q, Ul, j = 1, ... , m- 1 it follows that q1 = q2 = · · · = 
qm- l = 0. In this case (4-33) attains the form 

(4-39) 

Proceeding as in (4-37) it then follows that 

(4-40) 

which proves the bounding ( 4-30). 

In the so-called Ritz analysis m linearly independent base vectors, w (l>, ... , w (w) , are defined, 
which span an m -dimensional subspace Vrn ~ 11,1• Often the base vectors are detennined as 
the static deflections from m linearly independent load vectors f1, . .. , fm. This is preferred, be­
cause it often is simpler to specify static load, which will produce displacements qualitatively in 
agreement with the eigenmodes to be detennined by the analysis. The Ritz-basis is determined 
from the equilibrium equation 
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(4-41) 

(4-42) 

Then, any vector v E V m can be written on the form 

V ~ q, w(l) + q,w<' l + +qm .r,(ml ~ [w(l) w<'l w<ml] l:~J ~ Wq ' q ~ [f] 
(4-43) 

The idea in Ritz analysis is to insert (4-43) into the Rayleigh quotient (4-25), and determine 
the modal coordinates q1 , q2 , ... , qm, which minimizes this quantity. Hence, the following re­
formulation of the Rayleigh quotient is considered 

(4-44) 

where 

- T -M = w Mw = [!VIiJl 
- T -K = w Kw = [Kij] 

(4-45) 

rVI and K are denoted as the projected mass- and stiffness matrices on the subspace spanned by 
the Ritz basis w. 

The approximation to >- 1 then fol lows from (4-27) 

(4-46) 

Generally, p1 is larger than >-1 in agreement with (4-26). Only for q,(l ) E ~~~~ will modal coor­
dinates q, .. . , qm exist, so q, (ll = q1 w (ll + · · · + qm w (m), wi th the implication that p1 = >-1. 

The necessary condition for a minimum is that 
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i = 1, ... ,m 

(4-47) 

8(T-) 8 m m - m-Now, 8q; q Kq = 8q; ~i=l ~k=l qi K ikqk = 2 ~k=l K ikqk. where the symmetry property, 

Kik = Kki CK = K:T), has been applied. Similarly, 8~; ( qTMq) = 2 ~;;=l Mikqk. Then, the 
minimum condition ( 4-4 7) reduces to 

m m 

(4-48) 
j=l j=l 

From ( 4-48) follows that p1 is determined as the lowest eigenvalue to the following generalized 
eigenvalue problem of dimension m 

Kq - pMq = o (4-49) 

(4-49) has m eigensolutions (pi , q (il), i = 1, . . . , m . Pi becomes an approximation to the ith 
eigenvalue >.i. The corresponding approximation to the i th eigenmode is calculated from 

~(i) = q .w (l) + ... + q .w (m) = 'l!q(i) 
l,t Tn,t i= 1, ... ,m (4- 50) 

where q1,i, ... , q1m ,i denote the components of q (i) . 

The relations (4-50) can be assembled into the matrix equation 

(4- 51) 

<f, = [ <f, (l ) <f, (2) ... <J> (m)J (4- 52) 

We shall assume that the eigenvectors q (i) are normalized to unit modal mass with respect to 
the projected mass matrix, i.e. the following orthonorrnality properties are fulfi lied 

i-::j;j 
( 4- 53) 

~ = J 
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i=/=j 

i=j 

Then, the modal mass of the eigenmodes ~ become 

89 

(4- 54) 

(4-55) 

Hence, the approximate eigenmodes ~(i) will be normalized to unit modal mass, if this is the 
case for the eigenvectors q (i) with respect to the projected mass matrix. ~ forms an alternative 
Ritz-basis in vm, which in addition is M-orthonormal. Similarly, the approximate eigenmodes 
are K-orthogonal as follows 

(4- 56) 

where R is m -dimensional diagonal matrix with the eigenvalues p1 , ... , Pm in the main diago­
nal. 

Obviously, the Rayleigh quotient approach corresponds to m = 1. Hence, Ritz analysis is 
merely a multi-dimensional generalization, for which reason the name Rayleigh-Ritz analysis 
has been coined for the method. 

As a generalization to ( 4-26) the following boundings can be proved2 

(4- 57) 

2K.-J. Bathe: Finite Element Procedures. Printice Hall , Inc., 1996. 
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Box 4.2: Rayleigh-Ritz algorithm 

1. Estimate m linearly independent static load vectors f1 , ... , fm, assembled column­
wise in then x m matrix f = [f1 f2 · · · fm]· 

2. Calculate the Ritz basis from 'lt = K - 1f , '11 = [ wC1l w (ll ... w CmlJ. 

3 . Calculate projected mass and stiffness matrices in the m-dimensional subspace 
spanned by the Ritz basis: M= wTMw , K = wTKw. 

4. Solve the generalized eigenvalue problem of dimension m: KQ = MQR. 

5 . Determine approximations to the lowest m eigenvector from the transformation ~ = 
'l!Q , ~ = [ cj> ( l ) ~ (2) .. . ~(m)] . The corresponding approximate eigenvalues are 
contained in the main diagonal of R. 

Returning to the static condensation problem in Section 4.1 , let us define a Ritz basis of the 
dimension m = n 1 as 

(4- 58) 

where I is a unit matrix of dimension n 1 x n1 . Given the structure of the mass and stiffness 
matrices in ( 4-1 ), we may then e\'aluate the following projected matrices 

- T M = 'lt 1 1\tl\]J 1 = = M n (4- 59) 

(4- 60) 

Hence, (4-49) reduce to the generalized eigenvalue problem (4-6), with Q = <P 11 , and R = A 1 . 

Consequently, static condensation may be interpreted as merely a Rayleigh-Ritz analysis with 
the Ritz basis (4-58). 

The following identity may be proved by insertion 

(4- 61) 
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Then, we may construct an alternative Ritz basis from ( 4-41) with the static load given as the 
right hand side of ( 4-61 ), i.e. 

(4- 62) 

Hence, the base vectors in 'IJ! 2 is a linear combination of the base vectors in 'I]! 1. Then, 'I]! 1 and 
'IJ!2 span the same subspace Vn1, for which reason both bases will determine the same eigenval­
ues and eigenvectors. 

The projected mass and stiffness matrices become 

M- .T.TM·T· K- -1 ,T.TM·T· K- -1 K- - l M K- -1 
= ~ 2 ~2= n ~ 1 ~ 1 n = n n n (4- 63) 

(4- 64) 

Then, the modal matrices Q 1 and Q2, obtained as solutions to ( 4-49) for the respective Ritz 
bases, are seen to be related as 

- -1 Q1 = K n Q2 

(4-65) fo llows from~= 'IJ! lQ l = w2Q 2. 

Example 4.2: Rayleigh-Ritz analysis 

Given the fo llowing mass- and stiffness matrices 

[
l 0 0] 

M= ~ 1 0 

0 0 k 
K = [-~ -~ -~] 

0 - 1 2 

which have the exact eigensolutions, cf. Example 1.5 

A two dimensional Rayleigh-Ritz analysis is performed, where the static load vectors are estimated as 

(4- 65) 

(4-66) 

(4- 67) 

(4- 68) 



92 Chapter 4- APPROXIMATE SOLUTION METHODS 

The Ritz basis becomes 

'li = [ 
2 -1 0] -

1 

[1 0] 1 [7 1] -1 4 -1 0 0 = 12 2 2 
0 - 1 2 0 1 1 7 

The projected mass and stiffness matrices become 

:M _ _ 1_ [29 11] - 144 11 29 K: = ~ [7 1] 12 1 7 
The eigensolutions with modal masses nonnalized to I become 

R= [P1 0] = [2.4 0] 
0 P2 0 4 

The solutions for the eigenvectors become 

(4-69) 

(4-70) 

(4- 71) 

(4-72) 

As seen from (4-71) and (4-72) p2 = 4 and 1><2 ) are calculated exactly, cf. (4-67). This is so, because <J>(2 ) is 
placed in the subspace spanned by the selected Ritz basis as seen from the expansion 

(4-73) 

Next, a new analysis is performed, where the static load vectors are estimated as 

(4-74) 

The Ritz basis becomes 

'li= [ 
2 -1 0] -

1 

[1 0] 1 [5 1] 
-~ - ~ -~ ~ ~ 6 ~ ~ 

(4- 75) 

The projected mass and stiffness matrices become 
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M= 2_ [41 13] 
36 13 5 

K=~[7 2] , 3 2 1 

The eigensolutions with modal masses normalized to I become 

R = [PI 0 ] = [2 0] 
0 P2 0 6 

The solutions for the eigenvectors become 

[5 1] [../2 M] [,;; ~ = [~(!) ~ (2)] = ~ 4 2 ~ - ~ = ,;; 
5 1 2 2 fl 

2 
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(4-76) 

(4- 77) 

(4-78) 

In this case (p1 , 4>(J l) = (.>-1, <J> (ll) and (p2, ~(2l ) = (.>-3, <J> (3l). This is so, because <J> (I) and <J> (3l are placed 
in the sub-space spanned by the selected Ritz basis. 

4.3 Error Analysis 

Given a certain approximation to the jth eigen-pair (5.j, <J?Ul), the error vector is defined as 

(4-79) 

Presuming that the eigenvectors have been nonnalized to unit modal mass, it follows from (l -
19) and (l-21) that 

(4- 80) 

Insertion of ( 4-80) into ( 4-79) provides 

cj = (<J? - 1)T(A- ),ji) <J? - l(j?{j) => 

<]? Ul = <]? (A- >.ji) -l <PT Cj (4- 81) 

We shall use the Euclidean vector norm II · IIE and the Hilbert matrix nom1 1l · IIH in the following. 
For a definition of these quantities, see Box 4.3. The mentioned norms are compatible, so 
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The last statement of(4-82) follows from the defining properties ofmatrix norms, see Box 4.3. 

(A- >.j I) is a diagonal matrix. Then, (A - >.j I) - 1 is also a diagonal matrix with the components 
( Ak - >.j) - l, k = 1, ... , n in the main diagonal. The eigenvalues of a diagonal matrix is equal 
to the components in the main diagonal. Since, the Hilbert norm of a symmetric matrix is equal 
to the numerical largest eigenvalue, it follows that 

II(A- \ I)-111 = max ( 1 ) = _ 1 ~ 
H k=1 , ... ,n i>..k - Aj l min i>..k- Ajl 

k=1, ... ,n 

(4- 83) 

The Hilbert norms of q, and q,T are identical as stated in Box 4.3. Further, it can be shown that, 
see Box 4.4 

(4- 84) 

where ~J,1 is the lowest eigenvalue of M. 

Then, (4-82), (4-83) and (4-84) provides the following bounding of the calculated eigenvalue 
).,i 

(4- 85) 

( 4-85) is only of value, if ~J, 1 can be calculated relatively easily. This is the case for the special 
eigenvalue problem, where M = I , which means that ~J, 1 = · · · = IJ,n = 1, so (4-85) reduces to 

(4- 86) 
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Box 4.3: Vector and matrix norms 

A vector norm is a real number llvl l associated to any n-dimensional vector v, which 
fulfills the following conditions 

1. llvll > 0 for v =/= 0 and II OII = 0. 

2. JJ cv JJ = Jcl· llvll for any complex or real number c. 

3. ll u + v JI :::; Jj u JI + Jl v ll (triangle inequality). 

The most common vector norms are 

( 
n ) 1/ p 

1. p-norm (p E]O, oo[): JlviJP = ~ JviJP · 

n 

2. One norm (p = 1): llvi11 = I: l1•il · 
i=1 

3. Two norm (p = 2, Euclidean norm): 1ivJJ2 = Jvj = c~ jvi J2) 
112

. 

4. Infinity norm (p = oo): Jl v lloo = _max Jvil · 
t=l , ... ,n 

where vi denotes the components ofv. Given 

v ~ Hl 
Jj v jj1/2 = 

Jjvjj1 = 

JJv JJ2 = 

llv JJoo = 

( -11 + J3 + h) 2 = 17.19 

(1 + 3 + 2) = 6 

(12 + 32 + 22
)

112 
= 3.74 

max(l , 3, 2) = 3 

(4- 87) 

A matrix norm is a real number JI AJJ associated to any n x n matrix A, which fulfil Is the 
following conditions 

1. II A II > 0 for A =/= 0 and IJ OII = 0. 

2. JjcAJI = Jcl ·!JA il for any complex or real number c. 

3. II A + B JI :::; JJ A JJ + JI B II (triangle inequality). 

4. II AB IJ :::; JJA IIIJ B JI. 

95 
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The most common matrix norms are 

n 

1. One norm: IIAII1 = max L iaijl· 
J=l, .. . ,n i=l 

n 

2 . Infinity norm: IIAIIoo = _max L laijl· 
•=l, .. . ,n j = l 

3. Euclideannorm: II AIIE= (~ j~atj)
112

. 

4. Hilbert norm (spectral norm): IIAIIH = C!!i~:n .\) 112
, where Ai is the i th eigen­

value of AAT identical to the eigenvalues of A T A, so IIAIIH = IIATIIH· 

a ij denotes the components of A. Notice, if A = A T the eigenvalues of AAT = A 2 

becomes equal to the square of the eigenvalues of A. Given 

A = [2 -5] :::::} AA T = [29 11] :::::} 3 -1 11 10 

II AIIl = 
IIAIIoo = 
IIAIIE= 

IIAIIH= 

max(2 + 3, 5 + 1) = 6 

max(2 + 5, 3 + 1) = 7 

( 4 + 25 + 9 + 1) 
112 

= 6.24 

J1
2
3 

(3 + -15) = 5.83 

(4- 88) 

A matrix norm 11 · llm is said to be compatible to a given vector nonn 11 · llv , if 

IIAvllv ~ IIAIIm · llvllv ( 4- 89) 

It can be shown that the Hilbert matrix nom1 is compatible to the Euclidean vector norm, 
that the one matrix nom1 is compatible to the one vector nonn, and that the infin ity matrix 
norm is compatib le to the infinity vector norm. However, the Euclidean matrix norm is 
not compatible to the Euclidean vector nonn. 



4.3 Error Analysis 

Box 4.4: Hilbert norm of modal matrix 

Presuming that the columns of the modal matrix have been normalized to unit modal 
mass, so m= I, it follows from (1-19) that 

(4-90) 

From the definition of the Hilbert norm in Box 4.3 and (4-90) follows that 11 <P 117-I becomes 
equal to the maximum eigenvalue of M - 1. If p,1 , p,2 , .. . , ~Ln denote the eigenvalues 
of M in ascending order, then the eigenvalues in ascending order of M- 1 become 
...l.., ... , l, l, so the maximum eigenvalue ofM- 1 is equal to ...l... This proves (4-84). 
Jln 112 Il l Ill 

Example 4.3: Bound on calculated eigenvalue 

Given the mass- and stiffness matrices for the following special eigenvalue problem 

97 

M= 0 1 0 [
1 0 0] 

K = [- ~ -~ -~] (4- 91) 

0 0 1 0 -1 3 

The eigensolutions with modal masses normalized to 1 are given as 

A = [~1 ~2 ~ l = [~ ~ ~] 
0 0 A3 0 0 4 

(4-92) 

Assume that the following approximate solution, (~2 , <t> <2>), has been calculated to the 2nd eigen-pair (>.2 , q, (Z)) 

[ 
1.0] f,(Z) = 0.2 

-1.0 

(4- 93) 

Then, the error vector becomes, cf. ( 4-79) 

1.0] [ - 0.30] 0.2 = - 0.22 
1.0 -0.10 

le:2 1 = 0.3852 (4-94) 

Since, M = I we may use the simplified result (4-86) , which provides 

- 0.3852 
l>.2 - >.2l ::; 1.

4283 
= 0.26971 ( 4- 95) 

Actually, l>.2 - ~2 l = 0.1. 
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4.4 Exercises 

4.1 Given the following mass- and stiffness matrices 

K = [-~ -~ -~] 
0 - 1 2 

(a.) Perform a static condensation by the conventional procedure based on (4-5), (4-6), 
and nex t by a Rayleigh-Ritz analysis with the Ritz basis given by ( 4-62). 

4.2 Given the following mass- and stiffness matrices 

K = [-~ -~ -~] 
0 - 1 2 

(a.) Calculate approximate eigenvalues and eigenrnodes by a Rayleigh-Ritz analysis us­
ing the following Ritz basis 

W = [Witl WI
2
l[ = [: - :] 

4.3 Consider the mass- and stiffness matrices in Exercise 4.2, and let 

(a.) Calculate the vector ~(l) = K - 1Mv, and next 5. 1 = p(~(ll), as approximate solu­
tions to the lowest eigenmode and eigenvalue. 

(b.) Establish the error bound for the obtained approximation to the lowest eigenvalue. 



CHAPTER 5 
VECTOR ITERATION METHODS 

5.1 Introduction 

In structural dynamics only a small number n 1 of the lowest eigen-pairs, ( .A1 , ~(1) ) , ( .A2 , <P(2)) , 

... , ( An
1

, ~ (nt) ), where n 1 << n, are of structural significance. Hence, there is a need for meth­
ods, which concentrate on the determination of the low-order modes. This is the underlying 
motivation for most of the methods described in the following chapters. 

It should be noticed that if Aj is known, then q, U) can be determined from the linear, homoge­
neous equations, cf. ( 1-9) 

(5- 1) 

If Aj is an eigenvalue, the coefficient matrix K - .A1M is singular. Then, ~(j ) can be determined 
within a common factor by solving a linear system of n - 1 equations as illustrated in Example 
1.5. 

On the other hand, if q, Ul is known, the eigenvalue .A1 can be determined from the Rayleigh 
quotient, cf. ( 4-25) 

~(j)TK~(j) 

Aj = ~(jJ TM<PUl (5- 2) 

Since, the eigenvalues are detennined as solutions to the characteristic equation ( 1-l 0), which 
can only be solved analytically for n ~ 4, all solution methods for practical problems relies 
implicitly or explicitly on iterative numerical schemes. 

Iterative numerical so lution methods may be classified in the following categories 

Vector iteration methods operate directly on the generalized eigenvalue problem (5-1), so that 
a certain eigenvalue and associated eigenmode are detem1ined iteratively with increasing accu­
racy. Vector iteration methods are considered both in Chapters 5 and 7. 

- 99 -
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Similarity transformation methods transform the generalized eigenvalue problem via a sequence 
of similarity transformations, so the transformed mass and stiffness matrices eventually attain a 
diagonal form. These methods are considered in Chapter 6. 

Characteristic polynomial iteration methods operates directly or indirectly on the characteristic 
equation (1-1 0). These methods are dealt with in Section 7 .4. 

5.2 Inverse and Forward Vector Iteration 

The principle in inverse vector iteration may be explained in the following way. Given a start 
vector, q,0. Based on the generalized eigenvalue problem (5-1), one may then calculate a new 
vector q, 1 as follows 

(5-3) 

where 

(5-4) 

Clearly, if q,o = q,CJ) is an eigenmode, then q, 1 = 1 q,0 . If not so, we may consider q, 1 
J 

as another, and hopefully better approximation to the eigenmode. Next, based on q, 1 we may 
proceed to calculate a still better approximation q,2 from 

(5-5) 

This proceed may be continued until the convergence criteria P k+l 

sufficient accuracy. 
= 1 q,k is fulfilled with 

J 

The inverse vector iteration algorithm may then be summarized as follows 

Box 5.1: Inverse vector iteration algorithm 

Given start vector q,0 , which needs not be normalized to unit modal mass. Repeat the 
following items fork = 0, 1, ... 

1. Calculate ~k+l = A<Pk. 

2. Normalize solution vector to unit modal mass, so q,[+1 M([> k+l = 1: 
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Obviously, the algorithm requires that the stiffuess matrix is non-singular, so the inverse K - 1 

exists. By contrast the mass matrix needs not be non-singular as is the case in Example 5.1 be­
low. After convergence the lowest eigenvalue is most accurately calculated from the Rayleigh 
quotient (4-25). 

In case the lowest eigenvalue is simple, i.e. that >. 1 < >.2 , the inverse iteration algorithm con­
verges towards the lowest eigenpair (>.1, q>(ll) . The solution vector obtained after the kth itera­
tion step, q> k, is an n-dimensional vector, which may be expanded in the basis formed by the n 
undamped eigenmodes as follows 

[

Q1 ,k 

Q2,k 
q k = . 

Qr:,k 

(5- 6) 

The components of the vector qk denote the modal coordinates of the vector q>" · The expansion 
(5 -6) should be considered as formal, since the base vectors <Jl (1), <1) (2) , ... , q> (n) are unknown. 
Actually, the whole analysis deals with the determination of these quantities. Similarly, the 
expansion for ~k+l reads 

(5-7) 

where qk+1 denotes a vector of modal coordinates of~ k + l· Insertion of (5-6) and (5-7) into the 
iteration algorithm provides 

(5- 8) 

where the orthogonality properties (1-19) and (1-21) have been used, and the eigenmodes are 
assumed to be normalized to unit modal mass. The diagonal matrix A is given by ( 1-15). As 
k ~ oo convergence implies that A}Cik+l = q k = 'lJ (i) , where 'lJ Ul s ignifies the eigenmode in 
the modal space. This means that 
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ll11 0 

llli-1 0 
q,(j) = wi 1 (5- 9) 

\IIi+l 0 

Wn 0 

The j th component of q, (J) is equal to 1, and the remaining components are zero. 

Let the start vector be given as q 0 = [1, ... , 1]T. Then, the following sequence of results may 
be calculated from (5-8) 

1 0 0 1 1 
~ ~ 

0 l... 0 1 1 

A - 1 >.2 ,\2 
q l = q o = = 

0 0 1 1 1 
>.,. An 

1 0 0 l... 1 
A;" A! >:f 
0 l... 0 l... 1 

A - 1 A2 A2 ~ q 2 = q1 = =? . .. =? (5- 10) 

0 0 .. 1 1 1 
>., >. , ).~ 

1 0 0 
1 1 1 A! ~ >:f 

0 1 0 1 1 
1 (~)k A - 1 ,\2 A~ - 1 ),~ 

qk = q k-1 = = )..k 
1 

0 0 1 1 1 (~)" >., ),~-! ~ >.,. 

If ).1 < ).2 :::: · · · ~ An it follows from (5-10) that 
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lim A~qk = ~~] = w (I) 
k-->oo • 

0 

(5- 11) 

Hence, the algorithm converge to \fi(I) in the modal space. The corresponding convergence to 
q,(I) then takes place in the physical space. 

As seen from (5-11), JqkJ ~ 0 if AI > 1, and JqkJ ~ oo if AI < 1. This is the rationale behind 
the normalization to unit modal mass of the iteration vector, performed at each iteration step in 
the algorithm in Box 5 .1. 

The relative error of the iteration vector after the kth iteration step is defined from 

(5- 12) 

From (5-12) follows, that the relative error at large values of k has the magnitude c:I,k ~ (~)k. 
Based on the asymptotic behavior of the relative error, the convergence rate is defined from 

(5- 13) 

The last statement of ( 5-13) presumes that the eigenvalue A2 is simple, i.e. that A2 < \~. It 
follows from (5-12) that the smaller is the fraction ~ the faster will the convergence to the first 
eigenmode be. Hence, the convergence rate as defi ned by (5 -1 3) should be small (despite lin­
guistic logics suggests the opposite). An vector iteration scheme, where the convergence rate is 
proportional to ~~ is said to have Linear convergence. Hence, inverse vector iteration has linear 
convergence. 

The Rayleigh quotient based on q,,_, = q,qk becomes 

(5-14) 
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The relative error of the Rayleigh quotient after the kth iteration step is defined from 

From (5-10) follows that 

1 
T 

~ 
1 

~ 

1 0 >1: 0 

1 
T 

1 

~ ~ 
1 1 

T -qkqk - ~ A~ 

1 1 
>:[ >:;f 

Then, (5-15) may be written as 

(). )2k-1 ( ). ) 
).: 1 - ).: + ... 

0 

0 

1 

~ 
1 
A~ 

1 
>:;f 

(5- 15) 

(5- 16) 

(5-17) 

where the dots denote ten11S, which converge to zero as k ~ oo. (5 - 17) shows that the relative 

error of the Rayleigh quotient at large values of k has the magnitude c2,~~: ~ ( ~) 2k -
1

. Hence, 
the relative error on the components of the eigenmode at a certain iteration step, as measured 
by c1,b is sign ificantly larger than the relat ive error on the e igenvalue estimate, as determined 
by the Rayleigh quotient. 

The convergence rate of the Rayleigh quotient is defi ned from 
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l . E2,k+l l' >.2 - >.2 ... (~)2k+l(l ~ + ) = (>..x:) 2 

r 2 = 1m -- = 1m --"::........,;:;--:;-----'-''----
k-.oo C2,k k-<oo (~)2k-1 (1- ~ + ... ) 

(5- 18) 

Hence, the Rayleigh quotient has quadratic convergence in inverse vector iteration. 

Example 5.1: Inverse vector iteration 

Consider the general ized eigenvalue problem defined by the mass and stiffness matrices in Example 4.1. Calculate 
the lowest eigenvalue and eigenvector by inverse vector iteration using the inverse iteration algorithm described in 
Box 5. 1 with the sta1i vector 

(5-1 9) 

The matrix A becomes, cf. (5-5), (4-16) 

2 - 1 0 

A= 
-1 2 - 1 

0 - 1 2 

0 0 - 1 

-~ -· ~ H lj = [~ ! Hj 
1 0001 0404 

(5-20) 

At the I st and 2nd iteration step the fo llowing calculations are performed 

0 2 0 

~] ;] !] 
~~= 

0 4 0 - T -
= =? <I> 1 M<I>1 = 136 

0 4 0 

0 4 0 
(5-21) 

[3] [025725] <I> - _1_ 6 - 0.51450 
1 

- v'l36 7 - 0.60025 

8 0.68599 

0 2 0 1 0 25725] 17150] 
~2= 

0 4 0 2 0.51450 3.4300 
~IM~2 = 46.!J88 =? 

0 4 0 3 0.60025 4.1160 

0 4 0 4 0.68599 4.8020 
(5-22) 

r 17150

1 

0 25126] 
<I> - 1 3.4300 0.50252 

2 
- J46.588 4 .1160 0.60302 

4.R020 0.70353 
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The Rayleigh quotient based on <1> 2 provides the following estimate for A1 , cf. (4-25) 

T 

0251261 2 - 1 0 01 [0251261 0.50252 - 1 2 - 1 0 0.50252 

0.60302 0 - 1 2 - 1 0.60302 

p(<I>z) = 
0.70353 0 0 - 1 1 0.70353 

r025126n0 
= 0.1464646 (5- 23) 

0 0 0 [0.25126 
0.50252 0 2 0 0 0.50252 

0.60302 0 0 0 0 0.60302 

0.70353 0 0 0 1 0.70353 

The exact solutions are given as, cf. (4-24) 

1 0.25000 4 

1 J2 1 0.50000 
AI = 2 - 4 = 0.1464466 q;{l) = 2 (5- 24) 

l + .,(2 0.60355 4 4 
.,(2 

0.70711 2 

The relative errors, c1 and c2 , on the calculation of the eigenvalue and the 1st component of q>{l) becomes 

= I<I>z- q>{lll = 0.00458 = 4.22 _10_3 } 
Cl ,Z I<J> {l) l 1.0848 

: _ p( <l>2) - Al _ 0. 1464646- 0.1464466 _ . _4 
~ 2 '2 - AI - 0.1464466 - 1.23 10 

(5- 25) 

As seen the relative error on the components of the eigenmode is sign ificantly larger than the error on the Rayleigh 
quotient. 

The generalized eigenvalue problem (1 -9) may be reformulated on the form 

\]1 (1) = -\ l MK - l iJ! (l l ~ 

K - 1 \]1 (1) = -\1 K - l MK- 11J! (1l 

From (5-26) the fo llowing Ray leigh quotient may be defined 

VT K - 1 V 

p(v ) = v T K - 1l\.1K-1 v 

(5-26) 

(5- 27) 

If v = \]1 (1) = Mci> (l ) then (5-4) provides the limit -\1 . An inverse vector iteration procedure 
based on the formulation (5-26), (5-27) has been indicated in Box 5.2. The lowest eigenmode 
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~ (1) can only be retrieved after convergence, if M-1 exists. 

Box 5.2: Alternative inverse vector iteration algorithm 

Given start vector lJ!0 . Repeat the following items fork = 0, 1, . . . 

1. Calculate v k+1 = K - 1w k· 

2. Calculate 'lj! k+l = Mvk+1· 

3. Calculate the Rayleigh quotient (5-29) for the test vector 1J! k by 

4. Normalize the new solution vector, so w r+l K- 1MK- 1 wk+1 = 1 

5. After convergence the lowest eigenmode at the same iteration step is calculated from 
~k+1 = M - 1w k+1 · 

Example 5.2: Alternative inverse vector iteration 

Consider the general ized eigenvalue problem defi ned by the mass and stiffness matrices in Example 1.5 . Calculate 
the lowest eigenvalue and eigenvector by inverse vector iteration using the alternative inverse vector iteration 
algo ri thm in Box 5.2 with the start vector 

(5- 28) 

The inverse stiffness matrix becomes, cf. ( 1-77) 

[ l- 1 [ 2 - 1 0 1 7 
K - 1 = -1 4 - 1 = 

12 
2 

0 - 1 2 1 

2 1] 
4 2 
2 7 

(5- 29) 

At the l st and 2nd iteration steps the fol lowing calculations are performed 
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v, ~ 1~ [: 
1 

- 1 2 [' w1 = 6 ~ 

2 
4 
2 

0 
1 

0 

84 
=- = 2.0488 

41 

w1 = = 8 = o.6247 .j, 1 1 [5] [0.3904] 

~ 12 ·/fi 5 0.3904 

1 [7 2 1] [0.3904] [0.3644] 
v2 = 

12 
2 4 2 0.6247 = 0.3384 
1 2 7 0.3904 0.3644 

41 
36 

[
4 0 0] [0.3644] [0.1822] .j,-2 = 0 1 0 0.3384 = 0.3384 
0 0 ! 0.3644 0.1822 

[ l T [ l 0.3644 0.1822 
, vi .j,-2 = 0.3384 0.33~4 = 0.2473 

0.3644 0.1822 

[ l T [ l T 'lJ l 0.3644 0.3904 
p(w1) = :~.j,- 1 = 0.2473 0.3384 0.6247 = 2.0055 

2 2 
0.3644 0.3904 

.j,2 1 [0.1822] [0.3664] 
w 2 = cr;:r;- = ~ 0.3384 = 0.6805 

y v 2 '1' 2 v0.2473 0.1822 0.3664 

The lowest eigenvector at the end of the 2nd iteration step becomes 

[
4 0 0] -

1 

[0.3664] [0.7328] 
q,2 = M - 1

w 2 = o 1 o 0.6805 = 0.6805 

0 0 ~ 0.3664 0.7328 

The exact solutions are given as, cf. ( 1-87) 

q, (l ) = [~] = [~:~~~ ~] 
1- 0.7071 

(5-30) 

(5-31) 

(5- 32) 

(5- 33) 

As for the simple formulation of the inverse vector iteration algorithm the convergence towards the exact eigen­
value takes place as a monotonously decreasing sequence of upper values, p('110 ) , p( w 1 ), .... 
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The principle in forward vector iteration may also be explained based on the eigenvalue problem 
(5-1). Given a start vector, <1> 0 , a new vector <1> 1 may be calculated as follows 

(5-34) 

where 

(5-35) 

Clearly, if <1> 0 = <J>Ul is an eigenrnode, then <1> 1 = Aj<l>0 . If not so, a new and better approxi­
mation <1> 2 may be calculated based on <1> 1 as follows 

(5-36) 

The process may be continued until converge is obtained. The forward vector iteration algo­
rithm may be summarized as follows 

Box 5.3: Forward vector iteration algorithm 

Given start vector <1>0 , which needs not be normalized to unit modal mass. Repeat the 
following items fork = 0, 1, ... 

1. Calculate ~k+1 = B<I>k. 

2. Normalize solution vector to unit modal mass, so <1>[+ 1 M<I>k+l = 1 

Obviously, the algorithm requires that the mass matrix is non-singular, so the inverse M - 1 

exists. By contrast the stiffness matrix needs not be non-singular. After convergence the eigen­
value is calculated from the Rayleigh quotient. 

In case the largest eigenvalue is simple, i.e. that An_1 < An, the forward iteration algorithm 
converges towards the largest eigenpair (An, <J>{n)). The convergence rate of the eigenmode 
estimate is linear, and the convergence rate of the Rayleigh quotient is quadratic in the fraction 
.>.,,'_1

. A proof of this has been given in Section 5.3. 
A n 
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Example 5.3: Forward vector iteration 

Consider the generalized eigenvalue problem defined by the mass and stiffness matrices in Example 1.4. Calculate 
the largest eigenvalue and eigenvector by forward vector iteration using the forward vector iteration algorithm in 
Box 5.3 with the start vector 

(5-37) 

The matrix B becomes, cf. (5-35), ( l -77) 

[ 

~ 0 0] - J [ 2 -1 0] [ 4 - 2 0] 
B = 0 1 0 - 1 4 - 1 - 1 4 -1 

0 0 ~ 0 - 1 2 0 - 2 4 

(5- 38) 

At the I stand 2nd iteration step the fo llowing calculations are performed 

(5- 39) 

1 [ 4] [ 1.3333] 
<I> l = j9 - ~ = -0.~333 

(5-40) 

1 [ 6.0000] [ 1.1921] 
<I>2 = ~ - 2.6667 = - 0.5298 

V 
25

·
333 

0.6667 0.1325 

The Rayleigh quotient based on <I>2 becomes 

[ n 1.1921 2 -1 0] [ LI921] 
- 0.5298 - 1 4 - 1 - 0.5298 

0.1325 0 - 1 2 0.1325 
f?(<l>2) = 

[ 119'T [j 
= 5.404 

0 0 l [ 11921] - 0.5298 0 1 0 - 0.5298 
0.1325 0 0 ~ 0.1325 

(5-41) 

The results fo r the iteration vector and the Rayleigh quotient in the succeeding iteration steps become 
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[ 10622] 
<!>3= - 0.6276 , p( ci>3) = 5.697 

0.2897 

[ 09584] 
<!>4 = - 0.6726 , p( <!>4) = 5.855 (5-42) 

0.4204 

[ 08811] 
<!>5 = - 0.6923 , p( ci>5) = 5.933 

0.5149 

The exact solutions becomes, cf. (6-54) 

[ 4] [ 0.7071] 
cJ> (3 ) = -~ = - 0.7071 

-!.! 0.7071 

(5-43) 

The relative slow convergence of the algorithm to the exact solution is because the fraction ~ = t is relatively 
high. Theoretically the relative errors of the Rayleigh quotient after 5 iterations should be of the magnitude, cf. 
(5-17) 

E2,5 ~ (~/
5

- l (1- ~) = 0.0087 (5-44) 

Actually, the error is slightly larger, namely 

6 - 5.933 
c 2 ,5 = 

6 
= 0.0112 (5-45) 

5.3 Shift in Vector Iteration 

Shift on the stiffness matrix in the eigenvalue problem (5-1) as indicated by (3-36)-(3-38) may 
be appropriate both in relation to inverse and forward vector iteration, ei ther in order to obtain 
convergence to other eigen-pairs than (,A.1, q,(l)) or (>.11 , q, (nl), or to improve the convergence 
rate of the iteration process. 

Let K = K - pM. denote a shift on the stiffness matrix as indicated by (3-38). The vector 
iteration is next perfom1ed on the shifted eigenvalue problem (3-3 7). The algorithms in Box 5. 1 
and 5.3 remain unchanged, if the matrices A and B in (5 -6) and (5-35) are redefined as follows 

(5-46) 
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(5-47) 

The Rayleigh quotient estimate of the eigenvalue Aj after the kth iteration step becomes 

T ~ 

- <PkKcl>k 
Aj = p(cl>k) + p = <PkMcl>k + p (5-48) 

In the modal space the inverse vector iteration with shift on the stiffness matrix can be written 
as, cf. (5-8) 

cl>T ( K - pM) cl> <ik+l = cl>TM cl> qk ::::} 

(A- pi )<ik+ 1 = q~.; (5-49) 

(5-49) is identical to (5-8), if Aj is replaced with Aj - p. With the same start vector q0 

[1, ... , 1 JT as in (5-1 0), the solution vector after the kth iteration step becomes, cf. (5-I 0) 

q~.; = 

1 
(>.1-p)k 

1 
(>.j - 1-p)k 

1 
(>.rp)k 

1 
(>.j+I-P)k 

1 
(>.,-p)k 

1 
(>.j- p)k 

where thejth eigenvaluefu lfills 

[>.j- pf = . min [>.i- pf 
l=l, ... ,n 

It then follows from (5-50) that 

0 

0 
lim (>.j- p)kqk = 1 = w (j) 
k~oo 

0 

0 

e·rP)k 
>.1 -p 

(~)k 
Aj - 1-P 

1 (5- 50) 

(~)k 
Aj+I-P 

( 
>.j -p ) k 
>.,-{, 

(5- 51) 

(5-52) 
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Hence, for a value of p fulfilling (5-51) the algorithm converge to 'lf0 ) in the modal space. In 
physical space the algorithm then converge to <t> U) . The convergence rate of the eigenrnode 
becomes, cf. (5-1 3) 

(5- 53) 

Then, the corresponding convergence rate of the Rayleigh quotient is given as r 2 = ri. 

a) 
0 A1 Aj- 1 Aj P \+1 An- 1 An 

b) 
0 p A1 Aj-1 Aj AJ+1 An-1 An 

c) A 
0 A1 Aj- 1 Aj Aj+l An-1 An P 

Fig. 5-1 Optimal position of shift parameter at inverse vector iterat ion. a) Convergence towards Aj . b) Conver-
gence towards A1 . c) Convergence towards An. 

In case inverse vector iteration towards the .ith eigenmode is attempted, the shift parameter 
should be place in the vicinity of Aj as shown on Fig. 5.1 a in order to obtain a small con­
vergence rate. It should be emphasized that any inverse vector iteration with shift shou ld be 
accompanied with a Sturm sequence check to insure that the calculated eigenvalue is indeed the 
Aj. 

At inverse vector iteration towards the lowest eigenmode the convergence rate r 1 = I A1 -

PI / IA2 - Pi should be minimized. Hence, p should be placed close to but below A1. as shown 
on Fig. 5. lb. 

At inverse vector iteration towards the highest eigenmode the convergence rate r 1 = IA,1_ 1 -

Pi / IAn -Pi should be minimized. Hence, p should be placed close to but above A11 , as shown 
on Fig. 5.lc. 

In case of forward iteration with shift, (5-49) provides the solution after k iterations 
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(Aj- t - p)k 

qk = (AJ - p)k = (AJ- p)k 

(AJ+t - p)k 

where the jth eigenvalue fulfil Is 

iAJ- Pi = _max iAi - Pi 
t=l , ... ,n 

Chapter 5- VECTOR ITERATION METHODS 

( >.1 -P) k 
>.3-p 

1 (5- 54) 

(
>.;+I -p)k 

Aj-P 

(5- 55) 

Clearly, (5-55) has the solutions Aj = At or Aj = An· The former occurs, if p is closest to A11, 

and the latter if pis closest to At. Then, it follows from (5-54) that 

j = l , n (5- 56) 

For a value of p fu lfilling (5-55) the algorithm converge to w U) in the modal space, or to <l) (J) 

in the physical space. Forward iteration with shift always converge to either the lowest or the 
highest eigenmode depending on the magnitude of the shift parameter. The convergence rate of 
the iteration vector becomes 

(5-57) 

Shift in forward vector iteration is not as useful as in inverse vector iteration, because the optimal 
choice of the shift parameter is more difficult to specify. At forward vector iteration towards the 
highest eigenmode the optimal shift parameter is typically placed somewhere in the middle of 
the eigenvalue spectrum. Especially for p = 0, (5-57) becomes 

(5- 58) 

as stated in Section 5.2 on forward iteration without shift. 
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Example 5.4: Forward vector iteration with shift 

The problem in Example 5.3 is considered again. However, now a shift with p = 3 is performed on the stiffness 
matrix. 

The matrix K becomes, cf. (3-38), ( 1-77) 

[ 

2 - 1 0] [l 0 0] :K = - 1 4 - 1 -3 ~ 1 o 
0 - 1 2 0 0 ~ 

(5- 59) 

The matrix B becomes, cf. (5-47), (1-77) 

[

1 l-l [ 1 l - 0 0 - -1 0 
B = ~ 1 0 -~ 1 -1 

0 0 ! 0 -1 ~ 
[-~ - ~ -~] 

0 - 2 1 

(5-60) 

At the I stand 2nd iteration step the following calculations are performed 

(5-61) 

pl = ~ [-~] v1.5 
0 

[ 

0.8165] 
- 0.8165 

0 

~2 = [- ~ -~ -~] 
0 - 2 1 [ 

0.8165] [ 2.449r)l 
-0.816!) = - 1.6330 

0 1.6330 
(5- 62) 

1 [ 2.4495] [ 0.9258] 
p 2 = -/7 - 1.6330 = - 0.6172 

1.6330 0.6172 

The Rayleigh quotient estimate of >.3 based on P 2 becomes, cf. (5-48) 

[ n· -1 0 l [ 0 9258] 0.925R 2 
-0.6172 -1 1 -; -0.6172 

A3 = p( P2 ) + 3 = 
0.6172 0 -1 2 0.6172 

[ 09208n j 
+ 3 = 2.9048 + 3 = !1.9048 (5-63) 

0 0] [ 09258] 
-0.6172 0 1 0 -0.6172 

0.6172 0 0 ~ 0.6172 

The results for the iteration vector and the eigenvalue estimate in the succeeding iteration steps become 
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[ 

0.7318] 
ip3 = - 0.7318 

0.6273 

, ),3 = 5.9891 

(5- 64) [ 

0. 7331] 
ip4 = - 0.6982 

0.6982 

, 5.3 = 5.9988 

[ 

0.7100] 
'Ps = - 0.7100 

0.6983 

, 5.3 = 5.9999 

The results in (5-64) should be compared to those in (5-42). As seen the convergence of the shifted problem is 
much faster. 

5.4 Inverse Vector Iteration with Rayleigh Quotient Shift 

As demonstrated in Section 5.3 the convergence properties of inverse vector towards the lowest 
mode are improved if a shift on the stiffness matrix is performed with a shift parameter fulfilling 
p ~ >.1 . The idea in the present section is to update the shift parameter at each iteration step with 
the most recent estimate of the lowest eigenvalue. Assume, that an estimate of the eigenvalue 
:\1 is known after the kth iteration step. Then, a shift with the parameter Pk = :\1 is perfom1ed, 
so a new un-nom1alized eigenmode estimate is calculated at the ( k + 1 )th i teralion step from 

cl!k+1 = (K - PkM) -lM~k (5- 65) 

where cl> k is the nom1alized estimate of the eigenmode after the kth iteration step. 

A new estimate of the eigenvalue, and hence the shift parameter, then follows from (5-48) 

- T ( ) -~k+1 K- PkM ~k+1 
Pk+ l = ~T M~ +Pk 

k+l k+l 

(5- 66) 

The convergence towards (>-1, ~(1l) is not safe, since the fi rst shift determined by p1 may cause 
convergence towards other eigen-pairs, especially if the first and second eigenvalue are close. 
For this reason the first couples of iteration steps are often performed without shift. When the 
convergence towards the first eigen-pair takes place, the convergence rate of the Rayleigh quo­
tient estimate of the eigenvalue will be cubic, i.e. r 2 = ( i; )3

. Additionally, the length of the 
converge process is very much dependent on the start vector, as demonstrated in the succeeding 
Example 5.5. Even though the convergence may be fast it should be realized that the process 
requires inversion of the matrix K - PkM at each iteration step, which may be expensive for 
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large systems. 

Box 5.4: Algorithm for inverse vector iteration with Rayleigh quotient shift 

Given start vector <1>0, which needs not be normalized to unit modal mass, and set the 
initial shift to p0 = 0. Repeat the following items fork = 0, 1, .. . 

1. Calculate <l?k+l = ( K - PkM) -
1
M<I>k · 

2. Calculate new shift parameter (new estimate on the eigenvalue) from the Rayleigh 
quotient estimate based on <I? k+l by 

(estimate on >-1) 

3. Normalize the new solution vector to unit modal mass 

Example 5.5: Inverse vector iteration with Rayleigh quotient shift 

Consider the general ized eigenvalue problem defined by the mass and stiffness matrices in Example 1.4. Calculate 
the lowest eigenvalue and eigenvector by inverse vector iteration with Rayleigh quotient shift with the start vector 

(5-67) 

At the I stand 2nd iteration step the following calculations are performed 
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-~ -~]- 0. [~ ~ ~] = [-~ -~ -~] 
- 1 2 0 0 t 0 - 1 2 

- 1 0] -l [! 0 0] 
4 - 1 ~ 1 0 

- 1 2 0 0 t [
1] [0.2917] 0 = 0.0833 
0 0.0417 

-r -
'l>1 Mil>1 = 0.05035 

[ 

T [ 
1 0.2917 2 

P1 = 0.05035 0.0833] - 1 
-1 0] 

4 - 1 
[

0.2917] 
0.0833 + 0 = 2.8966 

0.0417 0 -1 2 

1 [0 .2917] [1.2999] 
ipl = 0.0833 = 0.3714 

Jo.o5035 0.0417 0.1857 

[ 

2 - 1 

K = - 1 4 

0 - 1 

0] [! 0 - 1 - 2.8966 . ~ 1 

2 0 0 

0.0417 

0] [ 0.5517 -1.0000 0.0000] 
0 = -1.0000 1.1034 - 1.0000 
t 0.0000 - 1.0000 0.5517 

[ 

0.5517 
~2 = -1.0000 

0.0000 

-1.0000 0.0000] - l [~ 0 0] [1. 2999] [-0.0567] 
1.1034 - 1.0000 0 1 0 0.3714 = - 0.6812 

- 1.0000 0.5517 0 0 ~ 0.1857 - 1.0664 

[ ] 

T [ 
1 - 0.0567 0.5517 - 1.0000 

(!2 = 1.0342 - 0.6812 -1.0000 1.1034 
- 1.0664 0.0000 - 1.0000 

0.0000] [ - 0.0567] 
- 1.0000 - 0.6812 + 2.8966 = 2.5206 

0.5517 - 1.0664 

1 [ - 0.0567] [- 0.0557] 
il>2 = J 1.

0342 
-0.6812 = - 0.6698 
-1.066-1 - 1.0186 

The results fo r the iteration vector and the eigenvalue estimate in the succeeding iteration steps become 

il>3 = [~:~~~~] , P3 = 2.0793 
0.5049 

[

- 0.6985] 
ip4 = - 0.7073 

- 0. 71!)2 
, P4 = 2.0001 

(5-68) 

(5-69) 

(5- 70) 

Despite the shifts the convergence is very slow during the I st and 2nd iteration step. Not until the 3rd and 4th step 
a fast speed-up of the convergence takes place. This is due to the poor guess of the start vector. 
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5.5 Vector Iteration with Gram-Schmidt Orthogonaliza­
tion 

Inverse vector iteration or forward vector iteration with Gram-Schmidt orthogonalization is 
used, when other eigen-pairs than (.>- 1, q,(ll) or (>-n, q,(nl) are wanted. 

Assume, that the eigenmodes q,(l), <P(2l, ... , q,(m), m < n, have been determined. Next, the 
eigenmode q,(m+l) is wanted using inverse vector iteration by means of the algorithm in Box 
5.1. In order to prevent the algorithm to converge toward q,(I ) a cleansing of the vector <P k+ 1 
for information about the first m eigenmodes is performed by a so-called Gram-Schmidt or­
thogonalization . In this respect the following modified iteration vector iteration algorithm is 
considered 

m 

~k+l = <I>k+l- L Cj <P(j) (5- 71) 
j=l 

Inspired by the variational problem (4-31), where the test vector vis ch?sen to be M-orthogonal 
to the previous determined eigenmodes, the modified iteration vector <P k+l is chosen to be M ­
orthogonal on q,(l), <P<2l, .. . , q,(m), i.e. 

i = l, ... ,m (5- 72) 

(5-71) is premultiplied with q, (i) T M. Assuming that the calculated eigenmodes have been 
normalized to unit modal mass, it follows from (1-17), (5-71 ) and (5-72) that the expansion 
coefficients c1 , c2 , ... , Cm are detem1ined from 

m 

o = q,(i)Tl'vr<I>k+ l- :2.:: cj q, (i)TM<Pul = q,(i)TM<I>k+l - Ci =? 

j=l 

(i) T -
Ci = <P M<Pk+l (5- 73) 

After insertion of the calculated expansion coefficients into (5-71), ~k+l is considered as the 
estimate to q,(m+l) at the (k + l)th iteration step. The convergence takes place with the linear 
convergence rate r 1 = ""'+1

• 
Am+ 2 

In principle the orthogonalization process need only to be performed after the first iteration 
step, since all succeeding iteration vectors then will be orthogonal to the subspace spanned by 
cp (l), <P <2l, ... , q, (m) . However, round-off errors inevitable introduce infonnation about the first 
eigenmode. ObYiously, the use of thi s so-called vector deflation method becomes increasingly 
cumbersome as m increases. 

A similar orthogonalization process can be performed in relation to forward vector iteration to 
ensure convergence to eigenmodes somewhat lower than the highest. 
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Box 5.5: Algorithm for inverse vector iteration with Gram-Schmidt orthogonalization 

Given start vector <1>0 , which needs not be normalized to unit modal mass. Repeat the 
following items fork= 0, 1, ... 

2. Orthogonalize iteration vector to previous calculated eigenmodes q>Ul, j = 1, ... , m 

m 

ci>k+l = ~k+l - I:: Cj q> Ul 
j=l 

3. Nonnalize the orthogonalized iteration vector to unit modal mass 

Example 5.6: Inverse and forward vector iteration with Gram-Schmidt orthogonalization 

Given the fo llowing mass- and stiffness matrices 

2 0 0 0] 
M= 0 2 0 0 

0 0 1 0 
0 0 0 1 

K = [-~ -: -~ ~] 
~ -~ - ~ -: (5-74) 

Further, assume that the lowest and highest eigenmodes have been determined by inverse and forward vector 
iteration 

[

0.31263] 
<I> (l) = 0.49548 

0.47912 

0.28979 

<I> (4) = 
- 0.10756 

0.25563 
- 0.72825 

0.56197 

(5-75) 

Calculate <I> <2l by inverse vector iteration with deflation, and <J> (3) by forward vector iteration with deflation. In 
both cases the following start vector is used 

(5- 76) 

The matrices A and B become 
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[

2.4 3.2 1.4 

A = K _1M = 3.2 5.2 2.4 
2.8 4.8 2.6 

1.6 2.8 1.6 

0.8] 1.4 
1.6 
1.2 

[ 

2.5 - 2.0 0.5 

B = M _1K = - 2.0 3.0 - 2.0 
1.0 -4.0 6.0 
0.0 1.0 - 4.0 

0.0] 0.5 
- 4.0 

5.0 
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(5-77) 

At the 1st iteration step in the inverse iteration p rocess towards <J> (Z) the fo llowing calculations are performed 

~]= 
[

2.4 3.2 1.4 0.8] [1] [ 7.8 
3.2 5.2 2.4 1.4 1 = 11.2 
2.8 4.8 2.6 1.6 1 11.8 
1.6 2.8 1.6 1.2 1 7.2 

cl>l= 
[ 

7.8] 0.31263] [ 0.075951 
11.2 - 24.7067 0.49548 = - 0.04158 
11.8 0.47912 - 0.03740 
7.2 0.28979 0.04016 

<I> - 1 - 0.04158 - -0.30989 

[ 

0.07595] [ 0.56599] 

1 
- J0.01801 - 0.03740 - -0.27871 

0.04016 0.29927 

The results for the iteration Yector in the succeeding iteration steps become 

<l> z = 

<l>3= 

[ 061639] - 0.14318 
- 0.42383 

-0.13960 

[ 053<12 
0.02582 

-0.48439 
- 0.43985 

0.44527 
0.12443 

- 0.48944 

-0.57702 

The process converged with the indicated digit after 13 iterations. 

(5-78) 

(5- 79) 
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At the 1st iteration step in the forward iteration process towards <J> (3) the following calculations are performed 

[ 25 
- 2.0 0.5 

- - 2.0 3.0 -2.0 
<1>1= 

- 4.0 6.0 1.0 
0.0 1.0 -4.0 

0.0 [1] [ 1.0 0.5 1 -0.5 
-4.0 1 -1.0 

5.0 1 2.0 

[ 

l.OJ r- 0.10756J 
<I> = ~ - c <J>(4) = -0.5 - 1.38144 0.2556:-l 

1 1 4 
-1.0 - 0.72825 

2.0 0.56197 

[ 

1.14859 [ 0.48573] 
<I> - 1 -0.85314 - - 0.36079 

1 
- )5.59161 0.00604 - 0.00256 

1.22367 0.51748 

1.14859] 
- 0.85314 

0.00604 
1.22367 

The results for the iteration vector in the succeeding iteration steps become 

<l>g= 

0.44542] 
-0 .41392 
-0.02891 

0.50962 

0.44063] 
- 0.41617 
- 0.02534 

0 .51445 

0.43867] 
-0.41674 
-0.02322 

0.51696 

The process converged with the indicated digit after 9 iterations. 

(5- 80) 

(5- 81) 

Based on the Rayleigh quotient estimates of the obtained eigenmodes the following eigenvalues may be calculated, 
cf. (5-2) 

>.t 0 0 0 0.09654 0 0 0 

0 >.2 0 0 0 1.39147 0 0 
(5- 82) A = 

0 0 >.3 0 0 0 4.37355 0 

0 0 >.4 0 0 0 10.6384 
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5.6 Exercises 

5.1 Given the following mass- and stiffness matrices 

K = [-~ -~ -~] 
0 - 1 2 

(a.) Perform two inverse iterations, and then calculate an approximation to >. 1. 

(b.) Perform two forward iterations, and then calculate an approximation to >.3 . 

5.2 Given the fo llowing mass- and stiffness matrices 

5.3 

[

l 0 0] 
M = ~ 1 0 

0 0 l 
2 

K = [-~ -~ -~] 
0 - 1 2 

The eigenmodes q>(l ) are q> (J) are known to be, cf. (1-87) 

(a.) Calculate <P<2l by means ofGram-Schmidt orthogonalization, and calculate all eigen­
values. 

Given the following mass- and stiffness matrices 

.:.t 1 0 0 0 2 - 1 0 0 0 
1 4 1 0 0 -1 2 -1 0 0 

M = 0 1 4 1 0 K = 0 - 1 2 -1 0 
0 0 1 4 1 0 0 -1 2 - 1 

0 0 0 1 4 0 0 0 - 1 2 

(a.) Write a MATLAB program, which calculates the lowest three eigenvalues and eigen-
modes of the related generalized eigenvalue problem by means of inverse vector iter-
ation with Gram-Schmidt ortogonalization. 
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CHAPTER 6 
SIMILARITY TRANSFORMATION 

METHODS 

6.1 Introduction 

Iterative similarity transformation methods are based on a sequence of similarity transforma­
tions of the original generalized eigenvalue problem in order to reduce this to a simpler form. 
The general form of a simi larity transformation is defined by the following coordinate transfor­
mation of the eigenmodes 

q,(i) = P'lt (i) (6- 1) 

where Pis the transformation matrix, and ~(j ) and \}i (i) signify the old and the new coordinates 
of the eigenmode. Then, the eigenvalue problem (1-9) may be written 

Kcp(i) = >.iM<JlUl 

KPw(il = >.1MPw (i l 

:KwUl = >,i i\{'lt (i) 
(6-2) 

The eigenvalues Aj are unchanged under a similarity transformation, whereas the eigenmodes 
are related by (6-1). In the iteration process the transformation matrix P is detem1ined, so this 
matrix converge toward the modal matrix <P = [ q, (l) <Jl (2) · · · q, (nl] . Hence, after convergence of 
the iteration process the eigenmodes are stored column-wise in P = <P. On condition that the 
eigenmodes have been normalized to unit modal mass it then follows from (1 - 19) and (1-21) 
that K = p TKP = A, and M = p TMP = I , so the transformed stiffness and mass matrices 
become diagonal at convergence, and the eigenvalues are stored in the main diagonal of K. By 
contrast to vector iteration methods similarity transformation methods determine all eigen-pairs 
( \ . ""'(j) ) . - 1 
/\.7' '*' ' J - ' .. . ' n . 

The general format of the similarity iteration algorithm has been summarized in Box 6. 1. 

- 125-
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Box 6.1: Iterative similarity transformation algorithm 

Let M 0 =M, K0 = K and q)0 = I. Repeat the following items fork = 0, 1, ... 

1. Calculate appropriate transformation matrix P k at the kth iteration step. 

2. Calculate updated transformation matrix and transformed mass and stiffness matrices 

q>k+l = q>kpk M k+l = PfM~cP~c K k+l = PfK~cP~c 

After convergence: 

m=Moo 

Orthonormal transformation matrices fulfil!, cf. (1-23) 

P - 1 _ p T 
k - k (6-3) 

For transformation methods operating on the generalized eigenvalue problem, such as the gen­
eral Jacobi iteration method considered in Section 6.2, the transformation matrices P k are not 
ortbonom1al, in which case 1\II ~c and K~c converge towards the diagonal matrices m and k as 
given by (1-20) and (1-22). Then, PfP k =I= I, and an original SEVP will change into a GEVP 
during the iteration process. The eigenvalue matrix A and the normalized modal matrix q? are 
retrieved as indicated in Box 6.1, where m-~ denotes a diagonal matrix with the components 
1/ .jMj in the main diagonal. 

Some similarity transformation algorithms are devised for the special eigenvalue problem, as 
is the case for the special Jacobi iteration method in Section 6.1, and the Householder-QR 
iteration method in Section 6.3. Hence, application of these methods require an initial similarity 
transformation from a GEVP to a SEVP as explained in Section 3.4. This may be achieved by 
specifying the transfom1ation matrix of the transfonnation k = 0 in Box 6. 1 as, cf. (3-48) 

(6--4) 

where S fulfi lis (3-44). Then, M 1 = I. If the succeeding similarity transformation matrices are 
orthononnal, then all transformed mass matrices become identity matrices as seen by induction 
from M k+l = P[IVI~cPk· = P[IP~c =I. Moreover, q? k+I is orthonom1al at each iteration step, 
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Finally, it should be noticed that after convergence the sequence of eigenvalues in the main diag­
onal of A and the eigenmodes in q, is not ordered in ascending magnitude of the corresponding 
eigenvalues as indicated in Box 6.1, where the set of indices (j1 , )2, .. . , Jn) denotes an arbitrary 
permutation of the numbers (1, 2, .. . , n). 

Example 6.1: Interchange of rows and columns in GEVP by means of a similarity transformation 

Interchange of rows and columns in a matrix may be performed by a similarity transformation. Assume, that the 
if the ith row and column are to be interchanged with the jth row and colums. Then the similarity transformation 
matrix is given as 

i j 
1 0 0 0 0 

0 1 0 0 0 

0 0 0 1 0 (6-5) P= 

0 0 1 0 0 J 

0 0 0 0 1 

The rule is that ones are placed at the positions (i , j) and (j, i) of P. Consider the generalized eigenvalue problem 
defined by ( 4-16). It is easi ly verified that p -l = p T, so the transformation matrix is orthonormal, cf. (3-4). The 
intention is to interchange the lst row and column with the 2nd row and column, and next the new 2nd row and 
column with the 4th row and column. This is achieved by two similarity transformations with the transformation 
matrices P 1 and P 2 , given the following combined transformation matrix obtained as a product of tweo matrices 
of the type (6-5) 

0 1 0 

~1 
l 0 0 0 0 0 0 l 

P=P 1P2= 
1 0 0 0 0 0 1 1 0 0 0 

(6-6) 
0 0 1 0 0 1 0 0 0 1 0 

0 0 0 0 1 0 0 0 0 0 

The transformed stiffness and mass matrices become 

l; 
T 

[i ~1 ~1 
0 0 1 0 0 0 0 0 0 2 0 0 

:r\1 = 
0 0 0 0 2 0 0 0 0 0 1 0 = 
0 1 0 0 0 0 0 0 1 0 0 0 

1 0 0 0 0 0 1 1 0 0 0 0 
(6-7) 

0 0 0 

~r 
2 - 1 0 

-f1 
0 0 0 

~1 
2 0 - 1 

-t1 K= 1 0 0 -1 2 - 1 1 0 0 0 1 - 1 
0 0 1 0 - 1 2 0 0 1 -1 -1 2 

0 0 0 0 - 1 0 0 - 1 0 0 

In the formulation (6-1 the solutions for the eigenmodes in the transformed system as given by (4-21)- (4-23) may 
be written as 
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1 1 0 0 2 -2 
V2 V2 0 0 

W= 2 2 
(6-8) 

l + .::.:::1 _ l + V2 1 0 4 4 4 4 
1 1 0 1 4 - 4 

The corresponding eigenmodes of the original system is obtained from, cf. ( 6-1) 

1 1 0 0 1 1 0 1 0 0 0 1 2 -2 4 -4 

1 0 0 0 .::.:::1 .::.:::1 0 0 I I 0 0 
<I> = Pw = 2 2 2 - 2 

(6-9) 
0 0 1 0 l + .::.:::1 _ l + V2 1 0 l + V2 _l + V2 1 0 4 4 4 4 4 4 4 4 
0 1 0 0 1 I 0 1 .::.:::1 .::.:::1 0 0 4 - 4 2 2 

6.2 Special Jacobi Iteration 

The special Jacobi iteration algorithm operates on the special eigenvalue problem, so M = I 
at the outset. The idea is to ensure during the kth transformation that the off-diagonal compo-
nent Kij,k, entering the ith and jth row and column of K k, becomes zero after the similari ty 
transformation. The transformation matrix is given as 

i J 
1 0 0 0 0 0 0 
0 1 0 0 0 0 0 

0 0 cos (J 0 - sin (J 0 0 i 

Pk= 
0 0 0 1 0 0 0 (6-10) 

0 0 sine 0 cos (J 0 0 J 

0 0 0 0 0 1 0 

0 0 0 0 0 0 1 

Basically, (6-1 0) is a identity matrix, where only the components P i i, P i j , P ji and P jj are differ­
ing. Obviously, (6-10) is orthonormal. The components ofthe updated similarity transformation 
matrix q,k+l = q,kpk and the transformed stiffness matrix K k+1 = P[K kPk become 

{ 

<I>ti,k+ l = <I>ti ,k cos e + <I>tj ,k sin (J ' 

cJ> lj,k+ l = cJ>tj ,k cos B - cJ>t i .k sin B 

l = 1, ... ,n 

l = 1, ... ,n 
(6-11) 
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K ii,k+l = K ii,k cos2 
() + Kjj,k sin2 

() + 2Kij,k cos() sin() 

K · k+l = K · · k cos2 
() + K · k sin 2 

() - 2K · · k cos 8 sin () JJ, JJ, tt, t), 

Kij,k+l = (Kjj,k- Kii ,k) cos ()sin()+ Kij,k( cos2 8- sin2 e) 
Kli,k+l = Kil,k+l = Kli,k cos 8 + Ktj,k sin() l =/:. i, j 

K li,k+l = Kjt,k+l = Ktj ,k cos 8 - K ti,k sin 8 l =/:. i, j 

129 

(6- 12) 

The remaining components of <I> k+l and Kk+l are identical to those of <I> k and Kk. Hence, only 
the ith and jth row and column of K k are affected by the transformation. 

Box 6.2: Special Jacobi iteration algorithm 

Let M 0 = I, K 0 = K and <1>0 = I. Repeat the following items for the sweeps m = 
1, 2, ... 

1. Specify omission criteria C:m in the mth sweep. 

2. Check, if the component K ij,k in the i th row and j th column ofKk fulfills the criteria 

3. If the criteria is fulfilled , then skip to the next component in the sweep. Else perform 
the following calculations 

(a.) Calculate the transformation angle () from ( 6-13 ), and then the transformation 
matrix P k as given by ( 6-1 0). 

(b.) Calculate the components of the updated similarity transformation matrix 
<I>k+1 = <I> k p k. and the transformed stiffness matrix K k+l = P I KkP k from 
(6-11) and (6-12). Notice that k after the mth sweep is of the magnitude 
~ (n - l )n · m. 

After convergence: 

0 I. I 
Next, the angle(} is determined, so the off-diagonal component K ij,k+l becomes equal to zero 
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1 . 
K ··k+l = -- (K· ·k - K ··k) sm2e + K ··kcos2e = 0 ::::? tJ, 2 tt, JJ, tJ, 

{ 

1 ( 2Ki· k ) e = - arctan J , 
2 K··k - K··k tt, JJ, 

e = '!!. 
4 

K ·· k _;_ K · · k tt, -r JJ, 
(6- 13) 

Notice, that even though Kij,k+l = 0 after the transformation, a subsequent transformation 
involving either the ith or jth row or column may reintroduce a non-zero value at this position. 
Optimally, Kij,k should be selected as the numerically largest off-diagonal component in Kk. 
However, in practice the iteration process is often performed in so-called sweeps, where all 
H n - 1 )n components above the main diagonal in turn are selected as the critical element to 
become zero after the transformation. In this case the method is combined with a criteria for 
omission of the similarity transformation, in case the component is numerically small. The 
transformation is omitted, if 

(6- 14) 

where C:m is the omission value in the mth sweep. 

Finally, it should be noticed that if K0 has a banded structure, so non-zero components are 
grouped in a band around the main diagonal, the banded structure is not preserved during the 
transformation process as seen from Example 6.1, where the initial matrix K 0 is on a three di­
agonal form, whereas the transformed matrix K 1 is full, see (6-16) below. 

The special Jacobi iteration algorithm can be summarized as indicated in Box 6.2. 

Example 6.2: Special Jacobi iteration 

Given a special eigenvalue problem with the stiffness matrix 

K = K o = [ -~ -~ -~] 
0 -1 2 

(6-15) 
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In the 1st sweep the fo llowing calculations are performed for (i, j) = (1, 2) : 

1 c · (-1) ) { cosB = 0.9239 e = 2 a rctan ~ = 0.3927 => 
sin IJ = 0.3827 

[0.9239 - 0.3827 

~] P o = 0.3~27 0.9239 

0 

- 0.3827 0 
'~> 1 = 'l>oPo = 0.3827 0.9239 K 1 = P 6KoPo = 4.4142 - 0.9239 

[0.9239 
0 0 ~] [ 1~858 

-0.3827 - 0.9239 

-0382~] 
2 

Next, the calculations are performed for (i, j) = (1, 3) : 

1 ( 2 . ( - 0.3827)) 
IJ = 2 arctan 1.

5858 
_ 2 = 0.5374 

[

0.8591 0 - 0.5119] 
p 1 = 0 1 0 

0.5119 0 0.8591 

- 0.3827 
0.9238 

0 

- 0.4729] 
- 0.1959 

0.8591 

{
cosB = 0.8591 
sin 0 = 0.5119 

[ 

1.3578 
, K2 = P f K 1P1 = -0.4729 

0 

Finally, to end the I st sweep the calculations arc performed for ('i , j) = (2, 3) : 

1 ( 2 . (-0.7937) ) 
fJ = 2 arctan 4.4142 - 2.2280 = - 0.3140 

0 0 l 0.9511 0.3089 
- 0.3089 0.9511 

[

0. 7937 - 0.2179 
'1>3 = '~>2P2 = 0.3287 0.9392 

0.5119 -0.26:13 

- 0.5680] 
0.0991 

0.8171 

{
cos B = 0.9511 
sin fJ = - 0.3089 

[ 

1.3578 
, K3 = PfK2P 2 = - 0.4498 

-0.1461 

- 0.4729 
4.4142 

- 0.7937 

- 0.4498 
4.6720 

0 

(6- 16) 

-0.~937] 
2.2280 

(6- 17) 

-0.~461] 
1.9703 

(6-18) 

<1> 3 and K 3 represents the estimates of the modal matrix <I> and A after the 1st sweep. As seen the I<12,1 = 0, 
whereas K12,2 = - 0.4729. This is in agreement with the statement above, that off-diagonal components set to 
zero in one iteration, may attain non-zero va lues in a later iteration. Comparison of Ko to K 3 shows that the 
numerica l maximum off-diagonal component has decreased from I - 11 = 1 to I - 0.44981 after the 1st sweep. 
Hence, the algorithm is converging. 

At the end of the 2nd and 3rd sweep the fo llowing estimates are obtained for the modal matrix and the e igenvalues 
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[0.6276 - 0.3258 -0 7071] [1.2680 0.0039 -0~000] 
<1>6= 0.4607 0.8876 0.0000 K 6 = 0.0039 4.7320 

0.6276 - 0.3258 0.7071 -0.0000 0 2.0000 
(6-19) 

[0.6280 -0.3251 -0.7071] [ 1.2679 - 0.0000 -0~000] 
<l>g = 0.4597 0.8881 0.0000 ' K g= - 0.0000 4.7321 

0.6280 - 0.3251 0.7071 - 0.0000 0 2.0000 

As seen the eigenmodes are stored column-wise in cl> according to the permutation (j1 , j 2 , j 3 ) = 
(1 ,3, 2). 

6.3 General Jacobi Iteration 

The general Jacobi iteration method operates on the generalized eigenvalue problem, i.e. M =I= 
I. The idea of the transformation is to ensure that during the kth transformation the off-diagonal 
component Mij,k and K ij,k , entering the ith and j th row and column of M~,; and K k, simultane­
ous become zero after the similarity transformation. 

r
- sin 0] 

, cos fJ ~ 

Xj [·~] [cos 0] 
I -... -- ~ / :;m fJ 

: ··- [1] 
'· n I 

--.-----~----~------~ xi 
' I 

' / 

Fig. 6-1 Projection of i th and j th column vectors of similarity transformation matrix in the (:r:i, Xj )-plane. 

The transformation matrix is given as 
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1 0 
0 1 

0 0 
0 0 

P"' = 

0 0 
0 0 

0 0 

~ 

0 0 
0 0 

1 0 
0 1 

Q 0 

0 0 

0 0 

j 
0 0 
0 0 

/3 0 
0 0 

1 0 
0 1 

0 0 

0 
0 

0 i 

0 

0 J 

0 

1 
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(6- 20) 

Because we have to specify requirements for both M ij,k+l and K ij,k+l, we need two free para­
meters a and /3 in the transformation matrix, where only the angle() appears in (6-10). As a 
consequence (6-20) is not orthonormal. Actually, the ith and jth column vectors neither have 
the length 1 nor are mutual orthogonal, by contrast to the corresponding vectors in ( 6-1 0), see 
Fig. 6-1. The components of the updated similarity transfonnation matrix <P k+l = <P kp k 

and the transformed mass and stiffness matrices, Mk+l = PIMkPk and K k+l = PIKkPk , 

become 

{ 

<l>ti ,k+l = <l>ti,k + Q <I>lj,k 

<l>tj,k+l = <l>tj,k + /3 <l>ti,k 

l = 1, ... , n 

l = 1, ... ,n 

M ;i,k+J = M;i ,k + a 2 
M ij,k + 2 aM;j,k 

Mii .k+l = Mii ,k + /32 
Mii,k + 2/3M;j,k 

JV!ij,k+l = /3M;i,k + a:Vfjj,k + Mij ,k (1 + afJ) 

}vfu ,k+l = M it,k+I = M li,k + a llftj.k l =!= i, j 

M lj,k+l = M jt,k+l = M tj,k + ;3M li ,k l =/= i, j 

K ;i,k+l = K ii,k + a 2 
Kjj,k + 2cd (ij,k 

K jj,k+l = K jj,k + !P K ii,k + 2/-J K ij,k 

K ij,k+l = fj K ii,k + rl' K jj,k + K ;j,k ( 1 + nf-J) 

K li,k+ l = K il,k+l = K ti,k + a Ktj ,k l =/= i, j 

K tj,k:+l = K j t,k+l = K lJ,k + ,3 K t;,k l =/= i, j 

(6- 21) 

(6- 22) 

(6- 23) 

The remaining components of <Pk+l• Mk+l and K k+l are identical to those of <I>k, M k and K k . 

Hence, only the i th and the j th row and columns of K k and M k are affected by the transfom1a-
tion. 
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Next, the parameters a and p are determined, so the off-diagonal components Mij ,k+l and 
K ij,k+l become equal to zero 

M;;,k+t: (3M;;,, + aM;;,k +M;;,,(! + a.B) -~ 0 } 

Kij,k+l - p Kii,k + aKjj,k + Kij,k ( 1 + af3) - 0 

The solution of (6-24) becomes, see Box 6.3 

n. = 
Kii,k Mij ,k - Niii ,kKij,k 

Kjj,kMij,k - M jj,kKij,k 

a 
(3 =--a 

b 

1 
{1 = --

a 

(6- 24) 

(6-25) 
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Box 6.3: Proof of equation (6-25) 

From (6-19) follows 

(6- 26) 

Elimination of 6 in the 1st equation in (6-24) by means of (6-26) provides the following 
quadratic equation in a 

M ·· k(K··kM ·· k- M ··kK ··k ) a 2 - JVJ. .k(KkM ··k - M ··kK ·· k) a-~1. JJ, t), JJ, t}, tJ, tt, JJ, tt , JJ , 

M··k(K ·kM··k - M··kK·k) = 0 'tJ, tt , t], tt, tJ, (6- 27) 

If K ii,kMJJ,k = M ii,kKjj,k the coeffi c ient in front of a cancels. Then, in combination to 
(6-26) the following solutions are obtained for a and /3 

a= ± 
Kii,kMij,k - Mii ,kK ij,k 

K jj,kMij,k - Mjj,kKij,k 

1 
(J = --

a 
(6- 28) 

If Kii,kMjj,k ¥= M ii,kK jj,k solutions of the quadratic equation for a in combination to 
(6-26) provides 

a 
f3 =--a 

b 
(6- 29) 

where a and bare as given in (6-25). Both sign combinations in (6-28) and (6-29) will do. 

The transformations are perfom1ed in sweeps as for the special Jacobi method. In this case the 
criteria for omitting a transfom1ation during the m th sweep may be formulated as 

(6- 30) 

where cm is the omission value in the m th sweep. 

The general Jacobi iteration algorithm can be summarized as indicated in Box 6.4. 
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Box 6.4: General Jacobi iteration algorithm 

Let M 0 = M, K 0 = K and 11?0 = I. Repeat the following items for the sweeps m = 
1, 2, ... 

1. Specify omission criteria cm in the mth sweep. 

2. Check, if the components Mij ,k and K ij,k in the ith row and jth column of M k Kk 

fulfill the criteria 

3. If the criteria is fulfilled, then skip to the next component in the sweep. Else perform 
the following calculations 

(a.) Calculate the parameters a and f3 as given by (6-29), and then the transforma­
tion matrix Pk as given by (6-20). 

(b.) Calculate the components of the updated similarity transformation matrix 
IJ?k+l = <P kPk, and the transformed mass and stiffness matrices l\1k+I = 
Pf M kPk and K k+l = P f KkPk from (6-21), (6-22) and (6-23). Notice that k 
after the m th sweep is of the magnitude ~ ( n - 1 )n · m. 

After convergence: 

m = M 00 

Example 6.3: General Jacobi iteration 

Given a generalized eigenvalue prob lem with the mass and stiffness matrices 

[

0.5 

M = M o = 0~5 
0.5 0 l 
1 0.5 

0.5 1 
, K = Ko= [-~ -~ -~] 

0 - 1 2 

(6-3 1) 
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In the I st sweep the fo llowing calculations are performed for ( i, j) = (1, 2) : 

{

a = 2 · 0.5-0.5·(-1) 
4·0.5 -1 ·(-1) 

1 
/3 = - 0.7071 

[ 

1 - 1.041142 001] 
P o = 0.7g71 

= 0.7071 

= -1.4142 

0 
0.5858 

0.5 

0.3536] 
0.5 

1 

Next, the calculations are performed for ( i, j) = (1, 3) : 

(NB: Kn,oM22,o = K22,oM11,0) 

-1.4142 0] 
1 0 
0 1 

[ 

2.05858 
, K 1 = P6KoPo = 

-0.7071 

2 . 0.3536 - 1. ( -0.7071) 
a= 2.5858 · 1 - 1.7071 · 2 

2.5858.0.3536 - 1.7071· ( -0.7071) 
b = 2.5858. 1 - 1.7071 . 2 

= - 1.7071} 

= -2.5607 
{
a= 0.9664 

(3 = -0.6443 

0 
10.8284 

-1 

p l = [ ~ 001 -0.~1443] 
0.9664 

-1.4142 -0.6443] 
1 -0.4556 

0 1 

l
r 3.3243 0.4832 

M2 = P fM1 P1 = 0.4832 0.5858 

0 0.5 

0 l r 3.0869 
0.5 , K 2 = P [ K 1P 1 = l - 0.9664 

1.2530 0 

-0.9664 

10.8284 

- 1 

Finally, to end the I st sweep the calculations are performed for (i, j) = (2, 3) : 

3.9844. 0.5 - 1.2530 . ( - 1) 
a = -10-=-.-=-82""'8,...,4- · -1--=. 2,.,.,5-=-3o=--- --=o,...,. 5-::8,--578 .:..._. 3-=-.~98:-4-:-:4 

10.8284 .0.5-0.5858. ( -1) 
b = 10.8284 . 1.2530- 0.5858. 3.9844 

0 0 l 1 0.2543 

- 0.4702 1 

= 0.2889} 

= 0.5341 
{
a= -0.4702 

,3 = 0.2543 

- 1.1113 - 1.0039] 
1.2142 - 0.2012 

-0.4702 1 

137 

- 0.7071] 
- 1 

2 

(6-32) 

0 ] - 1 

3.9814 

(6- 33) 

0.-1832 0.1229] [ 3.0R69 - 0.9664 - 0.2458] 
0.3926 0 , K 3 = P f K 2P 2 = - 0.9664 12.6498 0 

0 1.5452 -0.2~58 0 .u 761 

(6-34) 

At the end of the 2nd and 3rd sweep the following estimates are obtained for the modal matrix and the transformed 
mass and stiffness matrices 
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[

0.7494 - 1.2825 - 1.0742] 
{1>6 = 0.8195 1.0999 -0.2865 

1.0376 -0.6084 0.9213 

[ 

3.4931 

M s = - 0.0024 
0.0000 

- 0.0024 0.0000] 
0.3225 0 

0 1.5517 

[

0.7501 - 1.2820 - 1.0742] 
{l>g = 0.8189 1.1005 -0.2865 

1.0379 - 0.6076 0.9213 

[ 

3.4932 -0.0000 0.0000] 
M g = - 0.0000 0.3225 0 

0.0000 0 1.5517 

[ 

3.0336 

, K s = 0.0048 
- 0.0000 

[ 

3.0336 
K g = 0.0000 

-0.0000 

0.0048 

13.029 

0 

-0 .~000] 
4.2464 

0.0000 -0.0000] 
13.029 0 

0 4.2464 

(6- 35) 

Presuming that the process has converged after the 3rd sweep the eigenvalues and nom1alized eigenmodes are next 
retrieved by the following calculations, cf. Box. 6.4 

[ 3.4932 - 0.0000 
0 0~00 l _, [05350 0 

o8L] 
m = M g = -0.0000 0.3225 m 2 = 0 1.7608 => 

0.0000 0 1.5517 0 0 

[A' 
0 

0 l [ 0 8684 
0.0000 -0.0000] 

A = ~ ,\3 0 = M 9 1K g = 0.0000 40.395 - 0.0000 (6-36) 

0 ,\2 -0.0000 -0.0000 2.7365 

[0.4013 -2.2573 -0.8623] 
{{> = [{l> ( l ) {1> (3) {1><2>] = <I>om- ~ = 0.4381 1.9378 - 0.2300 

0.5553 - 1.0698 0.7396 

The reader should verify that the solution matrices within the indicated accuracy fulfil! <J?TM <P = 
I and <I>TK <I> = A . 

6.4 Householder Reduction 

The Householder reduction method operates on the special eigenvalue problem . Hence, a pre­
liminary similarity transformation of a GEVP to a SEVP must be perfonned as explained in 
Section 3.4. 

The Householder method reduces a symmetric matrix K 1 to three diagonal form by totally n - 2 
consecutive similarity transformations. After the (n- 2)th transformation the stiffness matrix 
has the form 
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a1 .81 0 0 0 

(31 a2 P2 0 0 

Kn-1 = 
0 (32 a3 0 0 

(6- 37) 

0 0 0 an.-1 Pn-1 
0 0 0 f3n- 1 an 

During the reduction process the numbers a 1 , ... , an and .31 , ... , f3n- 1, as well as the sequence 
of transformation matrices P 1 , ... , P n-2 are determined. Since all transformation matrices be­
come orthonormal all transformed mass matrices remain unit matrices. 

After completing the Householder reduction process the special eigenvalue problem with the 
three diagonal matrix K n_1 must be solved by some kind of iteration method, which preserves 
the three diagonal structure of the reduced system matrix, and benefits from this reduced struc­
ture in order to improve the calculation time. As mentioned in Section 6.2 this requirement 
rules out the special Jacobi iteration method. Since, the inverse of a three diagonal matrix is 
full, inverse vector iteration with Gram-Schmidt orthogonalization must also be avoided. Of the 
methods discussed hitherto only forward vector iteration with Gram-Schmidt orthogonalization 
meets the requirement. As wee shall see the requirements are also met by the QR iteration 
method to be discussed in Section 6.5. Finally, an initial Householder reduction is favorable in 
relation to characteristic polynomial iteration methods discussed in Section 7.4. 

The transformation matrix during the kth similarity transformation is given as follows 

(6- 38) 

w~,; denotes a unit column vector to be determined below. Hence, w f w k = 1. 

Obviously, Pk is symmetric, i.e. Pk = Pf. Moreover, Pk is orthonormal as seen from the 
following derivation 

PkP[ = (I - 2wkwr) (I - 2w~,;wf) = 

I - 2wkw[ - 2wkw[ + 4(w[ w k)wkw [ = I =? 

P[ = P z1 (6- 39) 

As mentioned, this means that the mass matrix remains an identity matrix during the House­
holder similarity transformations, because this is ensured in the initial transformation from a 
GEVP to a SEVP, as explained in the remarks subsequent to (6-4). 
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Fig. 6-2 Geometrical interpretation of the Householder transformation. 

Consider a given column vector x. Then, 

(6-40) 

Notice that wr X is a scalar. The transformed vector, p k X , may be interpreted as a reflection of 
x in the line l, which is orthogonal to the vector w k and placed in the plane spanned by x and 
wk as illustrated in Fig. 6-2. 

At the kth transformation the applied unit vector w k is taken on the following form 

0 

} k rows 0 [:J } n- k rows 

where 

Then, the transfonnation matrix may be written on the following matrix form 

P k = 

k n - k 
column~ 
~ 

[
'lu-A: 

0 

column~ 
~ 

0 l } k l'0Wi3 

P ~.; } n - k rows 

where Ik denotes a unit matrix of dimension (n- k) x (n - k). 

(6-41) 

(6-42) 

(6-43) 
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In order to determine the sub-vector wk defining the transformation matrix, the stiffness matrix 
before the kth similarity transformation is considered, at which stage the stiffness matrix has 
been reduced to three diagonal form down to and including the (k - l)th row and column. 
Hence, the stiffness matrix has the structure 

n- k 
columns 

k ~ 

a1 !31 0 0 0 0 

!31 a2 !32 0 0 0 

0 !32 a 3 0 0 0 
(6---44) 

K k = 0 0 0 ak-1 Pk-1 0 

0 0 0 f3k- l Kkk kk k 

0 0 0 0 kT 
k Kk } n - k rows 

kk is a row vector of the dimension ( n - k), and K k is a symmetric matrix of the dimension 
(n- k) x (n- k) defined as 

(6---45) 

[

Kk+1k+l }(k+1k+2 

- }(k+2k+1 }(k+2k+2 
K k= . . . . . . 

J(nk+1 K nk+2 

(6---46) 

Then, with the transfom1ation matrix given by (6-43) the stiffness matrix after the kth transfer-
mation becomes 

n-k 
columns 

k ~ 

0.1 (Jl 0 0 0 0 

fh 0'2 /32 0 0 0 

0 !32 a3 0 0 0 

K k+l = P [ K kP k = 0 0 0 ak-1 3k-l 0 

0 0 0 .t3k-1 Kkk kkf \ k 

0 0 0 0 - r T 
P k k k 

- T - -
P k K kP k } n- k rows 

(6---4 7) 
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where 

(6-48) 

(6-49) 

(6- 50) 

Since, kk is a row vector and wk is a column vector, kkwk is a scalar. Similarly, wf Rkwk 
becomes a scalar. 

If the kth row and column in (6-45) should be on a three-diagonal form, it is required that 

(6- 51) 

where ek is a unit column vector of dimension ( n - k). The transformation matrix is symmetric, 
so Pfkf = F\kr. Moreover, Pkkf is a reflection of th e vector kf in the line l as depicted in 
Fig. 6-2, and hence has the length jkrJ. Hence, it follows that ;Jk should be selected as 

(6- 52) 

Then it follows from (6-49) that 

k[- 2(kkwk)wk = ±ikkiek =* 

wk = a(kf =f lkkjek) (6-53) 

where it is noticed that 2(kkwk) is a scalar, which may be absorbed in the coefficient a. a ts 
detennined so the vector wk is of unit length. 
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Box 6.5: Householder reduction algorithm 

Transform the GEVP to a SEVP by the similarity transformation matrix P = (s-1{, 

where S is a solution to l.VI = ssr, and define the initial transformation and stiffness 
matrices as 

Next, repeat the following items fork = 1, . . . , n- 2 

1. Calculate the similarity transformation matrix P k at the kth similarity transformation 
by (6-43), (6-55). 

2. Calculate updated transformation and stiffness matrices from (6-47), (6-57) 

<Pk+1 = <PkPk K k+l = P[ K kPk 

After completion of the reduction process the following standard eigenvalue problem is 
solved by some iteration method 

K n-1V = VA 

A is the diagonal eigenvalue matrix of the original GEVP, and V is the orthonormal 
eigenvector matrix of the three diagonal matrix K n_ 1. Then, the eigenmodes normalized 
to unit modal mass of the original GEVP are retrieved from the matrix product 

Both sign combinations in (6-52) and (6-53) will do. However, in order to prevent numerical 
problems of the algorithm in the case, where k~.: c:::: K~.; l.:+l e~,; the following choice of sign in the 
solutions for /3~.: and wk should be preferred 

kf + sign (Ku+l)ikk je~,; 
w~.: = I kf + sign(Kkk+t) ikkiek I 

(6- 54) 

(6- 55) 

The updated transformation matrix before the kth transformation is partitioned as follows 

k 
columns 

,-"'-., 

[

<I> 11 

<I> ~.; = 

<1> 21 

n-k 
columns 

,-"'-., 

q> 12] } k rovvs 

q> 22 } n- k rows 

(6- 56) 
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With the transformation matrix as given by (6-43) the transformation matrix after the k th trans­
formation becomes 

k n- k 
columns columns 
~ ~ 

[
<.P 11 <.P12-J\ l } k rows 

~k+l = -
~21 <_p22P k } 11 - k rows 

(6- 57) 

Finally, it should be noticed that alternative algorithms for reduction to three diagonal form have 
been indicated by Givens 1 and Lanczos.2 

Example 6.4: Householder reduction 

Given a generalized eigenvalue problem with the mass and stiffness matrices given by (5-74). The similarity 
transformation matrix transforming from a GEVP to a SEVP becomes 

v'2 0 00] 0 v'2 0 0 
0 0 1 0 
0 0 0 1 

=> (6-58) 

Then, the stiffness matrix and updated transformation matrix before the lst Householder similarity transformation 
becomes, cf. (3-47), (3-48) 

../2 0 0 

~] 
5 - 4 1 0 ../2 0 0 

~] 
2 2 

K 1 = s-1K (S - 1)T = 0 fl 0 - 4 6 -4 1 0 fl 0 2 2 => 
0 0 1 1 -4 6 -4 0 0 1 
0 0 0 0 1 -4 5 0 0 0 

5 - 2 ../2 

4] 2 2 

K 1= 
-2 3 - 2v'2 
../2 -2v'2 6 - 4 2 

0 ../2 - 4 5 2 

(6-59) 

../2 0 0 0 2 
0 fl 0 0 

<Pl= 2 

0 0 0 
0 0 0 

At the Householder transformation k = 1 one has 

(6-60) 

1W. Givens: Numerical Computation of' the Characteristic Values of a Real Symmetric Matrix. Oak Ridge 
Na ti onal Laboratory, ORNL- 1574, 1954. 

2C. Lanczos: An Iterative Method for the Solution oft he Eigenvalue Problem ofLinear Differential and Integral 
Operators. Journal of Research of the National Bureau of Standards, 45(4), 1950, 255-282. 
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Then, cf. (6-43), (6-54) and (6-55) 

. 3,/2 3,/2 
(31 = - s1gn( - 2)-

2
- = -

2
- = 2.1213 

( [-2] J2 [1]) [-2- M] w1 =a 1 +sign( -2) 
3 

2 
2 ~ =a t 2 

[

- 0.9828 0.3333 0] 
P 1 = f 1 - 2w1wf = 0.3333 0.9428 o 

0 0 1 

The stiffness matrix and updated transformation matrix after the Householder transmission k = 1 becomes 

r

2.5000 

K _ p TK p _ 2.1213 
2- 1 1 1 - 0 

0 

2.1213 0 
5.1111 3.1427 
3.1427 3.8889 

- 2.0000 -3.5355 

-2.~000] 
- 3.5355 

5.000 

0 0 0] 
- 0.6667 0.2357 0 

0.3333 0.9428 0 
0 0 1 

where the transformed matrices are calculated by means of (6-47) and (6-57), respectively. 

At the Householder transformation/.; = 2 the following calculations are performed 

{ 

Cl'2 = !) .1111 

k2 = [3.1427 - 2.0000] 

/32 = -sign(3 .1427) · 3.7251 = -3.7251 

w2 =a ( [ 
3

·
1427

] + sign(3.1427) · 3.7251 [
1
]) =a [ 

6
·
8678

] 
- 2.0000 0 - 2.0000 

w = [ 0.9601] 2 
- 0.2796 

P = 1 _ 2w v..·r = [-0.8436 0.53.69] 
2 2 2 2 0.5369 0.8436 

The stiffness matrix and updated transformation ma trix after the Householder transmission k = 2 becomes 

145 

(6-6 1) 

(6- 62) 

(6- 63) 

(6-64) 
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2.5000 
2.1213 

K3 = PfK2P2 = 
0 

0 

2.1213 0 

5.1111 - 3.7251 
- 3.7251 7.4120 

-0.0000 2.0005 

0 0 

-0.~000] 
2.0005 
1.4769 

0 

- 0.6667 -0.1988 0.1265 
0.3333 - 0.7954 0.5062 

0 0.5369 0.8436 

(6-65) 

The reader should verify that the solution matrices within the indicated accuracy fulfil! <t>fM <P3 I and 

<Pf K<I>3 = K 3. 

6.5 QR Iteration 

As is the case for the Householder reduction method QR-iteration operates on the standard 
eigenvalue problem, so an initial similarity transformation of the GEVP to a SEVP is presumed. 

Let Kl = s- 1 K (s-l) T denote the stiffness matrix after the initial similarity transformation, 
where s is a solution to M = ssT, cf. (3 -44), (3-47). 

QR iteration is based on the following property that any non-singular matrix K can be factorized 
on the following form 

K = QR (6-66) 

where Q is an orthonormalmatrix, and R is an upper triangular matrix . Hence, Q and R have 
the form 

Q = [ Q 1 Q2 ... q,.] qr C}j = 6kj (6- 67) 

Tu 7'12 7'13 7'14 T'1n 

0 7'22 7'23 7'24 T'2n 

0 0 r33 7'3..1 T3n 
R = 

0 0 0 T44 T4n 

0 0 0 0 Tnn 

where Jij denotes Kronecker 's delta. It should be noticed that the factorization (6-66) holds 
even for non-symmetric matrices. The orthonormality of Q, which implies that Q - 1 = QT, is 
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essential to the method. 

Based on K 1 a sequence of transformed stiffness matrices Kk are next constructed with the QR 
factors Qk and Rk according to the algorithm 

(6- 69) 

Hence, Kk+1 is obtained by a similarity transformation with the transformation matrix Q k. The 
transformation is reduced to an evaluation of RkQk due to the orthonormality property of Qk. 
For the same reason all transformed mass matrices remain unit matrices. 

Now, it can be proved that 

An 0 

II 0 An-1 
K oo = Roo = A = 

0 0 

<I>oo = <[> = [<I> (n) <[> (n-1) .. . <[> (1) ] (6- 70) 

Q k converge to a unit matrix, as a consequence of K oo = R 00 • 

As seen, at convergence the eigen-pairs are ordered in descending order of the eigenvalues. 
Moreover, the algorithm converges faster to the lowest eigenmode than to the largest, as is the 
case for subspace iteration as describes in Section 7.3, a method which has some resemblance 
to QR iteration. The rate of convergence seems to be rather comparable to that of subspace iter­
ation. These properties have been illustrated in Example 6 .5 below. The proof of convergence 
and the associated determination of the convergence rate is rather tedious and involved, and will 
be omitted here. 
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Box 6.6: Proof of equation (6-61) 

Let k 1 k 2 , ... , kn denote the column vectors of the matrix K , i.e. 

(6- 71) 

Since K is non-singular, k 1 k2 , ... , kn are linearly independent, and hence form a vector 
basis. A new orthonormal vector basis q 1 q2 · · · qn linearly dependent on k 1 k 2 , . .. , k n 
may then be constructed by a process, which resembles the Gram-Schmidt orthogonaliza­
tion described in Section 5.5. (6-66) is identical to the following relations 

k 1 =rnq 1 

k2 = r12q1 + r22q2 

j 

kj = r1jql + r2jq2 + · · · + rjj~ = .'2..:= rkjqk 

n 

k n = 2..:= r knq k 

k=l 

k=l 

(6- 72) 

(6-72) is solved sequentially downwards using the properties of orthononn ality of~· 
From the 1st equation follows by scalar multiplication with q1 

1 
=> ql = - k l 

7'11 
(6- 73) 

Now, q 1 and r 11 are known. Scalar multiplication of the 2nd equation with q 1, and use of 
the orthogonality property qf q 2 = 0, provides 

(6- 74) 

At the detem1ination of ~, 1 < j ~ n, the mutually ortonormal basis vectors 
q1, q 2, ... , qj _1 have already been determined. Scalar multiplication of the jth equation 
with q,., k = 1, 2, ... , j - 1, and use of the orthogonality property qf qj = 0, provides 

j -1 

Tkj = q[ kj => 1'jj = k j - 2..:= 1'kjqk (6- 75) 
k=l 

Hence a solution fulfilling all requirements has been obtained for the components Tkj of 
Rand the column vectors ~ of Q, which proves the validity of the factorization (6-66). 
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Box 6. 7: QR iteration algorithm 

Transform the GEVP to a SEVP by the similarity transformation matrix P = (S- 1 f, 
where S is a solution to M = ssr, and define the initial transformation and stiffness 
matrices as 

K 1 = s - 1K(s - 1{ 

Repeat the following items fork = 1, 2, ... 

1. Perform a QR factorization of the stiffness matrix before the kth similarity transfor­
mation 

Kk = QkRk 

2. Calculate updated transformation and stiffness matrices by a similarity transforma­
tion with the orthonormal transformation matrix Qk 

<I>k+l = <I>kQk Kk+l = QIKkQk = RkQk 

After convergence: 

0 

0 

The general QR iteration algorithm can be summarized as indicated in Box 6.7. 

Usually, the QR algorithm becomes computational expensive when applied to large full ma­
trices, due to the time consuming orthogonalization process involved in the QR factorization. 
However, ifKk is on the three diagonal form (6-37), it can be shown that matrices R k and Q k 
have the form 

7'11 7'12 7'13 0 0 0 

0 7'22 7'23 7'24 0 0 
0 0 7'33 7'34 7'35 0 

R k = 0 0 0 r44 7'45 0 (6- 76) 

0 0 0 0 Tss 0 

0 0 0 0 0 Tnn 
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Qu Q12 Q13 Q14 Q15 Qln 

Q21 Q22 Q23 Q24 Q25 Q2n 

0 Q32 Q33 Q34 Q35 Q3n 

Qk= 0 0 Q42 Q44 Q45 Q4n (6- 77) 
0 0 0 Q54 Q55 Q5n 

0 0 0 0 0 Qnn 

Hence, R k becomes an upper three diagonal matrix with only 3n - 3 nontrivial coefficients rik 

versus 1n(n + 1) for a full matrix K k. Similarly, Q k contains zeros below the first lower 
diagonal. As a consequence of the indicated structure of R k and Q k, the matrix product 
K k+l = R kQk will again be a symmetric three diagonal matrix. Hence, this property is pre­
served for the transformed stiffness matrices during the iteration process. This motivates the 
application of QR iteration in combination to an initial Householder reduction of the initial 
generalized eigenvalue problem to three diagonal fonn, which is known as the HOQR method. 

Example 6.5: HOQR iteration 

QR iteration is performed on the stiffness matrix of Example 6.3, which has been reduced to three diagonal form 
by Householder reduction. Hence, the initial stiffness matrix and updated transformation matrix reads, cf. (6-65) 

r·ooo 2.1213 0 

-0~001 
0.7071 0 0 

0 1~651 K , ~ 2.1~13 5.1111 -3.7251 
~ ~ = 

0 - 0.6667 -0.1988 

- 3.7251 7.4120 2.0005 0 0.3333 -0.7954 0.5062 

-0.0000 2.0005 1.4769 0 0 0.5369 0.8436 

(6- 78) 

At the determination of q 1 and r·11 in the I st QR iteration the following calculations are performed, cf. (6-73) 

2.5000 

2.1312 
k l = 

0 

0 

, r-n = 

2.5000 
2.1312 

0 
0 

[

2.5000 

1 2.1312 
q l = 3.2787 ~ 

[

0. 76251 
0.6470 

0 

0 

= 3.2787 

q 2 and r-12 , r·22 are determined from the following calculations, cf. (6-74) 

(6-79) 



6.5 QR Iteration 

[ 

2.1213 
5.1111 

- 3.7251 

0 

2.1213 

r12 = 

5·1111 - 4.9244. 
- 3.7251 

0 

[

0.7625 T 

0.6470 

0 
0 

2.1213] 
5•1111 = 4.9244 

- 3.7251 

0 

0.7625] "T0 
= 4.5001 

0.6470 1 ( [ ~:~~~~ - 4.9244 . 
q

2 
= 4.5001 -3.~251 

0.7625] J 
0 
0 

- 0.3630 

0.4278 
- 0.8278 

0 

q3 and r 13, r 23, r 33 are determined from the following calculations, cf. (6-75) 

k, = -~::~:] , r13=qfk3=-2.4101 , r23=qik3 =-7.7292 

2.0005 

q3 = -
1
- (k3 + 2.410lql + 7.7292q2) = 

2.6959 

-0.3590 
0.4231 
0.3761 
0.7421 

Finally, q 4 and r-14, r-24 , r34 , r-44 are determined from the following calculations, cf. (6-75) 

0 

0 
k4 = 

2.0005 
1.4769 

0.3974 

1 ( ) - 0.4684 q4 = -~ k4 - Oq1 + 1.6560q2 - 1.8483q3 = 
0.1571 - 0.4163 

0.6703 

151 

(6-80) 

(6-81) 

(6- 82) 
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Then, at the end of the I st iteration the following matrices are obtained 

0.7625 - 0.3630 - 0.3590 0.3974 

Q 1= 
0.6470 0.4278 0.4231 - 0.4684 

0 -0.8278 0.3761 -0.4163 

0 0 0.7421 0.6703 

3.2787 4.9244 -2.4101 

. 1~5601 R1= 
0 4.5001 -7.7292 

0 0 2.6959 1.8483 

0 0 0 0.1571 

(6- 83) 

r 0.5392 -0.2567 -0.2539 0.2810 

<I>2 = <I>1 Q1 = 
- 0.4313 -0.1206 -0.2629 0.4799 

0.2157 0.8010 0.2175 0.5143 

0 - 0.4444 0.8280 0.3420 

r56860 2.9115 0 

Olq K _ R Q _ 2.9115 8.3232 - 2.2317 
2- 1 1- 0 - 2.2317 2.3854 

0 0 0.1166 0.1053 

As seen the matrices R 1 and Q 1 have the structure (6-76) and (6-77). Additionally, K 2 has the same three diagonal 
structure as K 1. The corresponding matrices after the 2nd and 3rd iteration become 

0.8901 - 0.4279 -0.1566 0.0117 

Q2= 
0.4558 0.8356 0.3058 - 0.0229 

0 -0.3445 0.9362 - 0.0702 

0 0 0.0748 0.9972 

6.3881 6.3850 - 1.0171 

-0~4021 R2 = 
0 6.4780 - 2.6866 

0 0 1.5595 0.1170 

0 0 0 0.0968 

(6-84) 

0.3629 -0.3577 -0.3795 031031 
<1?3 = <I>2Q2 = 

- 0.4389 0.1744 - 0.1796 0.4947 
0.5570 0.5021 0.4533 0.4818 

- 0.2026 - 0.6566 0.6648 0.2931 

8.5962 2.9525 0 0 

K 3 = R2Q2 = 
2.9525 6.3386 - 0.5372 0 

0 -0.5372 1.4687 0 .0072 

0 0 0 .0072 0.0966 
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0.9458 - 0.3230 -0.0345 0.0002 

Q3 = 
0.3248 0.9404 0.1003 -0.0005 

0 - 0.1061 0.9943 -0.0051 

0 0 0.0051 1.0000 

9.0891 4 .8514 - 0.1745 0 

R3 = 
0 5.0643 - 0.6610 - 0.0008 

0 0 1.4065 0.0077 

0 0 0 0.0965 

(6-85) 

r 02270 -0.4134 -0.4242 0.3125 

q,4 = q,3 Q3 = 
- 0.3584 0.3248 - 0. 1434 0.4954 

0.6899 0.2442 0.4844 0.4793 
- 0.4049 -0.6226 0.6036 0.2900 

10.172 1.6451 0 0 

K4 = R3Q3 = 
1.6451 4.8328 -0.1492 0 

0 -0.1492 1.3986 0.0005 

0 0 0.0005 0.0965 

As seen from R 3 and K 4 the terms in the main diagonal have already after the 3rd iteration grouped in descending 
magnitude, corresponding to the ordering of the eigenvalues at convergence indicated in Box 6.7. Moreover, for 
both matrices convergence to the lowest eigenvalue ,\ 1 = 0.0965 has occurred, illustrating the fact that the QR 
algorithm converge faster to the lowest eigenmode than to the highest. 

The matrices after the 14th iteration become 

['0000 -0.0000 -0.0000 0.0000 

Q l4 = 
0.0000 1.0000 0.0000 - 0.0000 

0 -0.0000 1.0000 -0.0000 

0 0 0.0051 1.0000 

[10638 0.0003 - 0.0000 0 

R _ 0.0000 4.3735 - 0.0000 - 0.0008 
14 - 0 0 1.3915 0.0077 

0 0 0 0 .0965 

(6-86) 

0.1076 -0.4387 -0.4453 031261 
q,15 = q, l4Q l4 = 

- 0.2556 0.4167 - 0.1244 0.4955 

0.7283 0.0232 0.4894 0. 1791 

- 0.5620 - 0.5170 0.5770 0.2898 

10.638 0.0001 0 

ooq K 15 = R 14Q14 = 
0.0001 4.3735 -0.0000 

0 - 0.0000 1.3915 
0 0 0.0000 0.0965 
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Presuming that convergence has occurred after the 14th iteration the following solutions are obtained for the eigen­
va lues and eigenmodes of the original general eigenvalue problem 

[1' 
0 0 

]J 
[10.638 0 0 

OL] A = 
A3 0 

= K 15 = 
0 4.3735 0 

0 >-z 0 0 1.3915 

0 0 0 0 0 

(6-87) 
0.1076 - 0.4387 -0.4453 031261 

~ = [~ (4 ) ~(3) ~(2) ~(ll] = ~15 = 
- 0.2556 0.4167 -0.1244 0.4955 

0.7283 0.0232 0.4894 0.4791 
- 0.5620 - 0.5170 0.5770 0.2898 

The reader should verify that the solution matrices within the indicated accuracy fulfil! ~TM ~ = I and ~TK ~ = 
A , where M and K are the mass and stiffness matrices given by (5-74). (6-87) agrees with the results (5-75), (5-

79), (5-81) and (5-82) in Example 5.6. 
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6.6 Exercises 

6.1 Given a symmetric matrix K in a special eigenvalue problem. 

(a.) Write a MATLAB program, which performs special Jacobi iteration. 

6.2 Given the symmetric matrices M and K. 

(a.) Write a MATLAB program, which performs general Jacobi iteration. 

6.3 Given the following mass- and stiffness matrices defined in Exercise 4.2. 

(a.) Perform an initial transformation to a special eigenvalue problem, and calculate the 
eigenvalues and eigenvectors by means of standard Jacobi iteration. 

(b.) Calculate the eigenvalues and normalized eigenvectors by means of general Jacobi 
iteration operating on the original general eigenvalue problem. 

6.4 Given the symmetric matrices M and K of dimension n 2: 3. 

(a.) Write a MATLAB program, which performs a Householder reduction to three diago­
nal form. 

6.5 Given the symmetric matrices l\II and K. 

(a.) Write a MATLAB program, which perfon11S QR iteration. 

6.6 Consider the mass- and stiffness matrices defined in Exercise 4.2 after the transformation 
to the special eigenvalue problem as performed in Exercise 6.3. 

(a.) Calculate the eigenvalues and normalized eigenvectors by means of QR iteration. 
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CHAPTER 7 
SOLUTION OF LARGE EIGENVALUE 

PROBLEMS 

7.1 Introduction 

In civil engineering large numerical models with n = 105 - 107 degrees of freedom have be­
come common practise along with the development of computer technology. However, most 
natural and man made loads such as wind, waves, earthquakes and traffic have spectral contents 
in the low frequency range. As a consequence only a relatively small number n 1 « n of the 
lowest structural modes will contribute to the global structural dynamic response. In this chap­
ter methods will be discussed, which have been devised with this specific fact in mind. 

Sections 7.2 and 7.3 deals with simultaneous inverse vector iteration and socalled subspace 
iteration, respectively. In both cases a sequence of subspaces are defined, each of which are 
spanned by a specific system of basis vectors. The idea is that these subspaces at the end of the 
iteration process contains the n 1 lowest eigenmodes ~{1) , ~(2), ... , ~("!) of the general eigen­
value problem (l -9). These eigenvalue problems may be assembled on the following matrix 
form, cf. (l-14), (1-15), (1-16) 

K [ii'(J l q;('l ... q;("•lj ~ M[ii'(Jl q;('l ... q;("d] [l :' 
Kef> = M<I>A 

0 

0 

(7-l) 

(7- 2) 

By contrast to the formulation in Chapter 6 the modal matrix <I> is no longer quadratic, but has 
the dimension n x n 1, defined as 

- 157 -
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(7-3) 

Fig. 7-1 Principle of subspace iteration. 

The principle of iterating through a sequence of subspaces has been illustrated in Fig. 7-1. V0 

denotes a start subspace, which is spanned by the start basis <!> 0 = [ <!> ~1 ) <!> ~2) J. The iteration 

process passes through a sequence of sub spaces vl) v2' .. . ' where vk is spanned by the basis 

<I> k = [<I> k1 
J <I> ~2) J . At convergence, <I> 00 = [ <I>~ <I> ~;,l J = [<I> ( 1 l <I> (2) J is spanning the limiting 

subspace V00 containing the eigenmodes searched for. 

Simultaneous inverse vector iteration is a generalization of the inverse vector iteration and in­
verse vector iteration with deflation described in Sections 5.2 and 5.5. The start vector basis 
converges towards a basis made up of the wanted eigenmodes as shown in Fig. 7-1. 

The subspace iteration method and socalled subspace iteration described in Section 7.2 is in 
principle a sequence of Rayleigh-Ritz analyses, where the Ritz base vectors are forced to con­
verge to each of the eigenmodes. Consequently, if the start basis contains the n 1 eigenmodes 
the subspace iteration converge in a single step as described in Section 7 .2, which is generally 
not the case for simultaneous inverse vector iteration. Being based on a convergence of a se­
quence of vector bases both methods are in fact subspace iteration methods, although this name 
has been coined solely for the latter method. A more infom1ative name for this method would 
probably be Rayleigh-Ritz iteration. 

Section 7.4 deals with characteristic polynomial iteration methods, which operates on the char­
acteristic equation (1- l 0) . These methods form an alternative to inverse or forward vector it­
eration with deflation in case some specific eigenmode different from the smallest or largest is 
searched for. To be numerical effective these methods require that the generalized eigenvalue 
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problem has been reduced to a standard eigenvalue problem on three diagonal form, such as the 
Householder reduction described in Section 6.4. Polynomial methods may be based either on 
the numerical iteration of the characteristic polynomial directly, or based on a Sturm sequence 
iteration. Even in the first mentioned case a Sturm sequence check should be performed after 
the calculation to verify that the calculated n 1 eigenrnodes are indeed the lowest. 

It should be noticed that some problems in structural dynamics, such as acoustic transmission 
and noise emission, are governed by high frequency structural response. Additional to the nu­
merical problems in calculating these modes, lack of accuracy of the underlying mechanical 
models in the high-frequency range adds to the problems in using modal analysis in such high 
frequency cases. 

7.2 Simultaneous Inverse Vector Iteration 

Let q,o = [ q,b1
) q,~2) · · · q,bnl)] denote n 1 arbitrary linearly independent vectors, which span 

an n 1 dimensional start subspace. Next, the algorithm for simultaneous inverse vector iteration 
takes place according to the algorithm 

k = 0, 1, ... (7-4) 

where A = K - 1 M, cf. (5-4). (7-4) is identical to the inverse vector iteration algorithm de­
scribed by (5-4). The only difference is that now n 1 vectors are simultaneous iterated. 

At convergence the iterated base vectors obtained from (7-4) will span an n 1-dimensional sub­
space containing the n 1 lowest eigenmodes. However, due to the inherent properties of the 
inverse \'ector iteration algorithm all the iterated base vectors tend to become mutually parallel, 
and parallel to the lowest eigenmode q, (l) . Hence, the vector basis becomes more and more ill 
conditioned. For the case shown on Fig. 7 - I this means that the subspace Vk will converge to 
the limit plane V=, but the iterated base vectors q, ~l) and q, 12

) become more and more parallel. 
In order to prevent this the method is combined with a Gram-Schmidt orthogonalization pro­
cedure. Similar to the QR factorization procedure described in Box 6.6 the iterated basis ~k+l 
can be written on the following factorized form 

(7- 5) 

where q, k+l is an M-orthonormal basis in the iterated subspace, and R k+l is an upper triangular 
matrix. Hence, q, k+l and R 1.:+1 have the properties 

;F. [;F. (1) ;F. (2) ;F. (n!)J 
':l!' k+l = ':l!' k+l ':l!' k+l ... ':l!'k+l 

;F,. (i)TM;F,.(j) _ · 
':1!' 1.:+1 ':1!'1.:+1 - Oij (7- 6) 
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rn r12 r13 r1n1 

0 r 22 r23 r2n] 

R k+l = 0 0 r33 r3nl (7- 7) 

0 0 0 rnlnl 

The M-orthononnal base vectors<!> k+l = [ <1>~~1 <1>~~ 1 · · · <!> ~~{ J spanning the iterated subspace 

Vk+l• as well as the components of the triangular matrix R k+l• are determined sequentially 
in much the same way as the determination of the matrices Q and R in the QR factorization 
described by (6-66)- (6-69). At first, it is noticed that (7-5) is identical to the following relations 

j 
ji..(j) - ,T,.(l) .T.. (2) ,T,. (j) - ~ ,T,. (i) 
'±"k+l - rlj'±"k+l + r2j '±"k+1 + · · · + Tjj '±"k+l - L__. rij '±"k+l 

(7- 8) 

i= l 

(7-8) is solved sequentially downwards using the M-orthonormality of the already detennined 
base vectors <!> ~L . The details of the derivation has been given in Box 7 .1. 

After convergence the eigenvalues are obtained from the Rayleigh quotients evaluated with the 
calculated eigenvectors, cf. ( 4-25). Since each of the n 1 eigenmodes have been normalized to 
unit modal mass the quotients become 

j = 1, . .. , n1 (7- 9) 

The Rayleigh quotients in (7 -9) may be assembled in the following matrix equation 

(7-1 0) 

where 

(7- 11) 
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The upper triangular matrix R k+t converges towards the diagonal matrix A-t. Although the 
Rayleigh quotients (7 -1 0) provides more accurate estimates, the eigenvalues may then as an 
alternative be retrieved from 

A = R- 1 
00 (7-12) 

(7-1 2) fo llows from the following relations fulfilled at convergence 

K~oo = M<I>oo ::::} 

K <I> ooR oo = M<I>oo ::::} 

K<I>oc = M<I>00R~1 (7- 13) 
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Box 7.1: M-orthonormalization ofiterated basis 

Evaluating the modal mass on both sides of the 1st equation of ( 1 0-8) provides 

r11 = 11 ~~~1ll q,(l) = _2_~(1) 
lc+l r k+l 

11 
(7-14) 

where the norm 11 ~~~1 1 1 represents the square root of the modal mass of ~~~1 defined as 

1 

1 1 ~ (1) 11- (~( l)TM~(l) ) 2 (7- 15) lc+1 - lc+1 lc+l 

Now, <P~l 1 and r 11 are known. Scalar pre-multiplication of the 2nd equation 

with <P ~~J'M, and use of the orthonorrnality properties <P ~~[M<P~~1 = 0 and 

<Pi~J'M<Pi~1 = 1, provides 

;F,. (l)TM.T..(2) -II .T.. (2) .. ;F,.(l) 11 r12 = '*"k+1 '*"k+1 ::::} r22 - '*"k+1 - 712'*"k+1 

(7-16) 

At the determination of<Pn 1, 1 < j ~ n 1, the mutually ortonormal basis vectors 
;F,. (ll ..:F.. (2) ..:F..(i- l) h I d b d . d S I I . I' . f h '±"k+l> '*"k+l l ... 1 '*"1c+1 ave a rea y een etermme . ea ar pre-mu tlp 1cat10n o t e 
j th equation with <I> kif[ M , i = 11 21 ••• 1 j - 1, and use of the orthogonality property 

0)T Ul . <Pk+l M<Pk+l = 0 provtdes 

j-1 
. _ (i)T - (j) iF, (j) "" . ..:F.. (i} 

rij - <Pk+l M<Pk+l ::::} rjj = '*"1.-+1- 0 1ii '*" k+l 

i = l 

(7- 17) 

It is characteristic for simultaneous inverse vector method in contrast to the subspace iteration 
method described in Section 7 .3, that eigenmodes which at one level of the iteration process 
is contained in the iterated subspace, may move out of the iterated subspace at later levels as 
illustrated in Example 7. 1. 
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Box 7.2: Simultaneous inverse vector iter~tion algorithm 

Given the nrdimensional start vector basis ~0 = [ ~~l) ~~2) · · · ~~n!)] . The base vectors 

must be linearly independent, but need not be normalized to unit modal mass. Repeat the 
following items for k = 0, 1, ... 

1. Perfonn simultaneous inverse vector iteration: 

2. Perform Gram-Schmidt orthogonalization to obtain a new M-orthonormal iterated 
vector basis ~k+l as explained by (7-14)- (7-17) corresponding to the factorization: 

After convergence has been achieved the eigenvalues and eigenmodes normalized to unit 
modal mass are obtained from: 

A ~ [I 
0 

A~J ..\2 = ~TK~oo = R - 1 <P = [ cp (l) ~(2) ... cp (ni)] = <P oo 
00 00 

0 

As for all kind of inverse vector iteration methods the convergence rate of the iteration vector is 
linear in the quantity 

(7- 18) 

Correspondingly, the Rayleigh quotients (7-9) have quadratic convergence rate r 2 = r?. 

The simultaneous inverse vector iteration algorithm always converge towards the lowest n 1 

eigenmodes. Hence, no Sturm sequence check is needed to ensure that these modes have in­
deed been calculated. Further, the rate of convergence seems to be comparable for all modes 
contained in the subspace, as demonstrated in Example 7.1 below. 

The simultaneous inverse vector iteration algorithm may be summarized as indicated in Box 
7.2. 
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Example 7.1: Simultaneous inverse vector iteration 

Consider the generalized eigenvalue problem defined in Example 1.4. Calculate the two lowest eigenmodes and 
corresponding eigenvalues by simultaneous inverse vector iteration with the start vector basis 

The matrix A becomes, cf. (6-44) 

[ l-1 [ 2 -1 0 l 
A = K- 1M= -1 4 - 1 ~ 

0 -1 2 0 

0 0] 
1 0 
0 l 

2 

Then, the 1st iterated vector basis becomes, cf. (7-4) 

[

0.2917 0.1667 
\l> 1 = [\l>~1) \l>i2l] = A<I>o = 0.0833 0.3333 

0.0417 0.1667 

[

0.2917 

= 0.0833 
0.0417 

0.1667 

0.3333 
0.1667 

0.0417] 
0.0833 
0.2917 

0.0417] [0 2] [0.2500 0. 7500] 
0.0833 1 1 = 0.5000 0.5000 
0.2917 2 0 0.7500 0.2500 

(7- 19) 

(7- 20) 

(7- 21) 

At the determination of <.t>i 1) and r-11 in the I st vector iteration the following calculations are performed, cf. (7-1 4) 

[

0.2500] 
\l>i1

) = 0.5000 

0.7500 
([ ]

T [1 0.2500 2 
, T11 = 11\l>il)ll = 0.5000 0 

0 7500 0 

0 0] 
1 0 
0 l 

2 J 

~ 
0.2500 

[
0.5000] = 0.7500 
0.7500 

(7- 22) 

1 [0.2500] [0.3333] 
<.t>il) = 0.7500 0.5000 = 0.6667 

0.7500 1.0000 

<.t>i2 ) and T12 , r-22 are determined from the following calculations, cf. (7-16) 

[

0.7500] 
\l>i2) = 0.5000 

0.2500 [ l T [ 1 0.3333 2 

, T12 = 0.6667 0 
1.0000 0 

0 0] [0.7500] 
1 0 0.5000 = 0.5833 

0 ~ 0.2500 

[

0. 7500] [0 .3333] 
1"22 = 0.5000 - 0.5833. 0.6667 = 0.4714 

0.2500 1.0000 

(7- 23) 

1 ( [0. 7500] [0.3333] ) 
<I> i

2
) = 0.4714 0.5000 - 0.5833 . 0.6667 

0.2500 1.0000 [ 

1.1785] 
0.2357 

- 0.7071 
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Then, at the end of the I st iteration the following matrices are obtained 

R 1 = [ 0.7~00 0.5833] 
0.4714 

[0.3333 1.1785] 
(7- 24) 

~l?t = 0 .6667 0.2357 

1.0000 - 0.7071 

The reader should verify that <I> 1R 1 = <1>1. The corresponding matrices after the 2nd and 3rd iteration become 

R2 = [ 0.4;87 0.1231] 
0.2611 

[0.5222 1.1078] 
(7- 25) 

<I>2 = 0.6963 0.1231 

0.8704 -0.8616 

R a = [0.4~43 0 .0650] 
0.2529 

[ 0.6163 1.0583] 
(7- 26) 

<I>3 = 0. 7043 0.0623 

0.7924 -0.9339 

Convergence of the eigenmodes with the indicated number of digits were achieved after 14 iterations, where 

R _ [0.5000 
14 - 0 

0.0000] 
0.2500 

[ 0.7071 1.0000 l (7- 27) 

<I>14 = 0.7071 0.0000 

0.7071 - 1.0000 

Presuming that convergence has occurred after the 14th iteration the following eigenvalues are obtained from 
(7-1 0) and (7-12) 

A = [ >-1 0] = q,T K <I> = R - 1 = [ 2.0000 - 0.0000] 
0 ).2 

14 14 
oc -0.0000 4.0000 

[

0.7071 1.0000] 
<I> = [ q> (1) <I> (2)] = <I>14 = 0.7071 0.0000 

0.7071 -1.0000 

(7-28) 
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>.3 = 6, see (1-87). Then, the convergence rate of the iteration vectors becomes r 1 = max ( ~~, f,-) = max (~, t) = 

~'cf. (7-17). This is a relatively large number, which is displayed in the rather slow convergence of the iterative 
process. The convergence towards <f> (l) and <f>(2 ) occurred within the same iteration step. This suggests that the 
convergence rate is uniform to all considered modes in the subspace. 

Further it is noted that 

.,,,~~m ~ m + ~ r~l ~ ~ · l" + ~ ·l'' 

.,,, {~l : r:J + ~ m ~ - ~ ·l'' + ~ ·l'' 

(7-29) 

Hence, the 1st and 2nd eigenmode are originally in the subspace spanned by the basis <I> 0 . As seen during the 
iteration process these eigenmodes are moving out of the iterated subspace. 

7.3 Subspace Iteration 

As is the case for the simultaneous inverse vector iteration algorithm the subs pace iteration algo­

rithm presumes that a start subspace V0 , spanned by the vector basis ci>0 = [ q, ~l) (f>~2) . .. q, ~nl) J, 
has been defined. 

At the kth iteration step of the iteration process a vector basis cl>k = [ cl> ~1 ) <Jl ~2) · · · <Jl t'l)], 
which spans the iterated subspace Vk> has been obtained. Based on this a simultaneous inverse 
vector iteration is performed 

k = 0, 1, ... (7- 30) 

where A = K - 1 M, cf. (5-4). Next, a Rayleigh-Ritz analysis is performed using ~k+l as a 
Ritz basis, in order to obtain approximate solutions to the lowest n 1 eigenmodes and eigenval­
ues. This requires the solution of the following reduced generalized eigenvalue problem of the 
dimension n 1, cf. (1-14), (4-49) 

k = 0, 1, . . . (7-3 1) 

Mk+l and K k+l denote the mass and stiffness matrices projected on the subspace Vk+l, cf. 
(4-45) 
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~k+l = ~;+'M_ii>k+l} 
K k+l = <I>k+lK<J?k+t 

(7- 32) 

Q k+1 = [ q~~1 q~~1 · · · q~~{ J of the dimension n 1 x n1 contains the eigenvectors of the eigen­

value problem (7 -31 ). In what follows the eigenvectors q~il 1 are assumed to normalized to unit 
modal mass with respect to the projected mass matrix, i.e. 

(i ) T - (j) { O ' 
q k+l l\llk+l q k+l = 

1 ' 

(7- 33) 
?.=J 

R k+l is a diagonal matrix containing the corresponding eigenvalues of (7 -30) in the main diag­
onal 

[
fJl,~+l 

R k+t = . 

0 

0 

p,.IJ (7- 34) 
P2,k+t 

0 

The eigenvalues P],k+ 1 , j = 1, . .. , n1 indicates the estimate of the eigenvalues after the kth 
iteration. These are all upperbounds to the conesponding eigenvalues of the full problem, cf. 
(4-57). 

At the end of the kth iteration step a new estimate of the lowest n 1 eigenvectors are determined 
from, cf. (4-51) 

(7- 35) 

If the column vectors in Q k+l have been normalized to unit modal mass with respect to Mk+l, 
the M-orthogonal column vectors of <J? k+l will automatically be normalized to unit modal mass 
with respect to M, cf. (4-55). 

Next, the calculations in (7-30)- (7-35) are repeated with the new estimate of the normalized 
eigenmodes <J? k+ I · 

At convergence of the subs pace iteration algorithm the lowest n1 eigenvectors and eigenvalues 
are retrieved from 

~ I = R :o = ± Qoo (7- 36) 

,\ ,.1 



168 Chapter 7- SOLUTION OF LARGE EIGENVALUE PROBLEMS 

At convergence, Q oo can be shown to be a diagonal matrix, where the numerical value of the 
components are equal to the eigenvalue of the original problem as indicated in (7-36). 

It should be realized that subspace iteration involves iteration at two levels. Primary, a global 
simultaneous inverse vector iteration loop as defined by the index k is performed. Inside this 
loop a secondary iteration process is performed at the solution of the eigenvalue problem (7 -31 ). 
Usually, the latter problem is solved iteratively by means of a general Jacobi iteration algorithm 
as described in Section 6.3. Because the applied similarity transformations in the general Jacobi 

algorithm are not orthonormal, the eigenvectors q~l are not normalized to unit modal mass at 
convergence. Hence, in order to fulfi 11 the requirements (7 -33) this normalization should be 
performed after convergence. Further, the eigenvalues will not be ordered in ascending order of 
magnitude as presumed in (7-36), cf. Box 6.4. 

The convergence rate for the components in the kth eigenmode and the kth eigenvalue, r 1,k and 
r2,k, are defined as 

k = 1, ... , n 1 (7- 37) 

Hence, convergence is achieved at first for the lowest mode and latest for mode k = n 1, as 
has been demonstrated in Example 7.2 below. This represents a marked difference from simul­
taneous inverse vector iteration, where as mentioned the convergence rate seems to be almost 
identical for all modes contained in the subspace. A rule of thumb says that approximately l 0 
subspace iterations are needed to obtain a so lution for the components of <f> (l ) with 6 correct 
digits. 
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Box 7.3: Subspace iteration algorithm 

Given the n 1-dimensional start vector basis <1> 0 = [ <1>~1 ) <1>~2) · · · <I>~nl)J. The base vectors 
must be linearly independent, but the base vectors need not be normalized to unit modal 
mass. Repeat the following items fork = 0, 1, ... 

1. Perform simultaneous inverse vector iteration: 

2. Calculate projected mass and stiffness matrices: 

3. Solve the generalized eigenvalue problem of dimension n 1 by means of a general 
Jacobi iteration algorithm with the eigenvectors Q k+l nonnalized to unit modal mass 
at exit: 

K k+ l Q k+l = M k+l Q k+l R k+l 

4. Calculate new solution to eigenvectors: 

<I>k+l = <I>k+l Q k+l 

After convergence has been achieved the eigenvalues and eigenmodes nonnalized to unit 
modal mass are obtained from: 

Finally, a Sturm sequence check should be performed to ensure that the lowest n1 eigen­
pairs have been calculated. 

In order to speed up the iteration process towards the n 1 modes actually wanted, the dimension 
of the iterated subspace is sometimes increased to n 2 > n 1 . Then, the convergence rate of the 
iteration vector the highest mode of interest decreases to 

(7- 38) 

In case of an adverse choice of the start basis vector <P 0 it may happen that one of the eigen-
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modes searched for, <[>U), j = 1, . .. , n 1, is M-orthogonal to start subspace, i.e. 

k = 1, 2, ... , n1 (7- 39) 

In this case the subspace iteration algorithm converges towards the eigenmodes ([>C1l , .. . , <[> U- 1) , 

<[>U+I), ... , <[>(n 1 l, <[>(n 1 +1). In principle a similar problem occurs in simultaneous inverse vector 
iteration, although round-off errors normally eliminates this possibility. 

Singular to subspace iteration is that eigenmodes contained in the initial basis ([>0 remain in 
later iterated bases. Hence, if <[>Ul, j = n 1 + 1, ... , n is contained in <1:> 0, this mode will be 
among the calculated modes. 

In both cases we are left with the problem to decide whether the calculated n 1 eigenmodes 
are the lowest n1 modes of the full system. For this reason a subspace iteration should always 
be followed by a Sturm sequence check. This is performed in the following way. Let 11 be a 
number slightly larger than the largest calculated eigenvalue Pn1 ,00 , and perform the following 
Gauss factorization of the matrix K - JtM 

(7-40) 

where L and D are given by (3-2), (3 -3). The number of eigenvalue less than JL is equal 
to the number of negative elements in the diagonal of the diagonal matrix D, cf. Section 
3.1. Hence, the analysis should show exactly n1 negative elements in D . Alternatively, the 
same infonnation may be withdrawn from the number of sign changes in the sign sequence 
sign (P(n) (JL)), sign ( p(n-l ) (JL)), ... , sign ( p(O) (JL)), where p(n-1) (JL ), . .. , p (o) (Jt) denotes the 

Sturm sequence of characteristic polynomials, and p(n) (JL) is a dummy positive component in 
the sequence, cf. Section 3 .2. 

The marked difference between the subspace iteration algorithm and the simultaneous inverse 
vector iteration algorithm is that the orthonormalization process to prevent ill-conditioning of 
the iterated vector base in the former case is perfom1ed by an eigenvector approach related to 
the Rayleigh-Ritz analysis, whereas a Gram-Schmidt orthogonalization procedure is used in the 
latter case. There are no marked difference in the rate of convergence of the two algorithms. 

Example 7.2: Subspace iteration 

The generali zed eigenvalue problem defined in Example 6.2 is considered again. Using the same initial s tart basis 
(7-19) as in Example 7 .l , the problem is solved in this example by means of subspace iteration. 

At the lst iteration step (k = 0) the simultaneous inverse vector iteration produces the vector basis <h, which is 
unchanged given by (7-21 ). 

Based on <1? 1 the following projected mass and stiffness matrices are calculated, cf. (4-45), (7-2 1 ), (7-32) 
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[ l T [1 0.2500 0.7500 2 
M1 = ~fM~1 = 0.5000 0.5000 o 

0.7500 0.2500 0 

0 0] [0.2500 0. 7500] [ ] 
1 0 0.5000 0.5000 = 0•

5625 
0.4375 

0 t 0.7500 0.2500 0.4375 0•5625 

[

0.2500 0.7500] T [ 2 -1 
K l = ~fK~l = 0.5000 0.5000 - 1 4 

0.7500 0.2500 0 -1 

0] [0.2500 0.7500] [1.2500 0.7500] 
- 1 0.5000 0.5000 = 

2 0.7500 0.2500 °•7500 
1.

2500 

(7-41) 

The corresponding eigenvalue problem (7-31) becomes 

[
1.2500 0. 7500] [ (1) (2)] = [0.5625 0.4375] [qi1) qi2)] [P1,1 0 ] =? 
0.7500 1.2500 q 1 q 1 0.4375 0.5625 0 P2.1 

R = [2 0] = [.>..1 0] 1 
0 4 0 ,\z 

(7-42) 

The estimate of the lowest eigenvectors after the 1st iteration becomes, cf. (7-35) 

[

0.2500 0. 7500] [.il 
iJ? l = ~1 Ql = 0.5000 0.5000 Jz 

0. 7500 0.2500 2 

(7-43) 

(7-42) and (7-43) indicate the exact eigenvalues and eigenmodes, cf. (1-87). Hence, convergence is obta ined in just 
a s ingl e iteration. This is so because the start subspace ~~J, spanned by the vector basis iJ? 0 contains the eigenmodes 
q,(l ) and iJ? (2) as shown by (7-29). This property is singular to the subspace iteration algorithm compared to the 
simultaneous inverse vector iteration technique. 

Next, let us perform the same calculations using the start basis 

The simultaneous inverse vector iteration (7-30) provides, cf. (7-20) 

[

0.2917 0.1667 0.0417][1 - 1] [0.7500 
~1 = Ail>a = 0.0833 0.3333 0.0833 2 2 = 1.0000 

0.0417 0.1667 0.2917 3 - 3 1.2500 

The projected mass and stiffness matrices become 

-0.0833] 
0.3333 

- 0.5833 

(7-44) 

(7-45) 
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[

0.7500 

M1 = 1.0000 
1.2500 

]T[ l [ l -0.0833 ~ 0 0 0.7500 -0.0833 

0.3333 0 1 0 1.0000 0.3333 = [-~·0625 -
0

·
0625

] 
-0.5833 0 0 ~ 1.2500 -0.5833 '

0625 0
'
2847 

[

0.7500 

:Kl = 1.0000 
1.2500 

- 0.0833 2 - 1 0 0.7500 - 0.0833 
0.3333 - 1 4 -1 1.0000 0.3333 = 

4
·
2500 

]T[ l [ l 
-0.5833 0 -1 2 1.2500 - 0.5833 [ - 0·

2500 

The solution of the corresponding generalized eigenvalue problem (7-31) becomes 

R = [2.0534 0 ] 
1 

0 5.5656 
Q = [-0.6982 -0.0254] 

, 
1 

-0.0851 - 1.8784 

The estimate of the lowest eigenmode after the l st iteration becomes, cf. (7-35) 

-0.2500] 
1.5833 

- [0. 7500 - 0.0833] [- 0.6982 - 0.0254] [-0.5165 
q,l = q,l Q l = 1.0000 0.3333 - 0.0851 - 1.8784 = - 0.7265 

1.2500 - 0.5833 - 0.8231 

0.1375] 
-0.6516 

1.0640 

Correspondingly, after the 2nd, 7th and 14th iteration steps the following matrices are calculated 

R 2 = [2.0
0
118 0 ] 

5.2263 
Q = [- 2.0171 0.1513] 

' 
2 

- 0.0887 - 5.3145 

[

0.6195 
q,2 = 0.7241 

0.7535 

0.0821] 
0.5686 

- 1.1604 

R = [2.0000 0 ] 
7 

0 4.0533 

[

-0. 7067 - 0.8711] 
q, 7 = - 0.7074 - 0. 1155 

- 0.7069 1.1020 

R [2.0000 0 ] 
14 = 0 4.0002 

[

0.7071 

q,l4 = 0.7071 
0.7071 

0.9931] 
0.0068 

- 1.0068 

Q = [- 2.0000 0.0011] 
7 

- 0.0007 - 4.0661 

[
- 2.0000 0.0000] 

: Q14 = - 0.0000 - 1.0002 

(7-46) 

(7-47) 

(7-48) 

(7-49) 

(7- 50) 

(7- 51) 
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As seen the subspace iteration process determines the 1st eigenvalue and eigenvector after 7 iteration, whereas the 
2nd eigenvector has not yet been calculated with the sufficiently accuracy even after 14 iterations. By contrast 
the simultaneous inverse vector iteration managed to achieve convergence for this quantity after 14 iterations, see 
(7-27). 

The 2nd calculated eigenvalue becomes P2,14 = 4.0002. Then, let J-L = 4.05 and perform a Gauss factorization of 
the matrix K - 4.05M , i.e. 

[

- 0.0250 
K - 4.05M = -1.0000 

0.0000 

0 

1 
-0.0250 

-1.0000 0.0000] 
-0.0500 - 1.0000 = 
-1.0000 - 0.0250 

0 

39.950 
0 

0 l [1 40 0 l 0 0 1 -0.0250 
- 0.0500 0 0 1 

(7-52) 

It fo llows that two components in the main diagonal of D are negative, from which is concluded that two eigen­
values are smaller than J-L = 4.05 . In turn this means that the two eigensolutions obtained by (7-47) are indeed the 
lowest two eigensolutions of the original system. 

Finally, consider the start vector basis 

(7-53) 

Now, 

[n· 0 

~l Hl 
12 1 2 

q, (J)TM<P~lJ = \2- ~ ~ 1 =0 

0 
(7-54) 

~O)TM~~'> ~ ~ [:n: 0 

~] Hl ~o 1 

0 

It follows that the lowest eigenmode q, (l l is M-orthogonal to the selected sta rt vector bas is. Hence, it should be 
expected that the algorithm converges towards <P<2l and <P<3l. Moreover, in the present three dimensiona l case a 
sta rt subspace, which is M-orthogonal to q, <ll, must contain <P<2l and <P <3l . Actually, cf. ( J -87) 

(7-55) 
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Hence, convergence towards <p(2) and <p (3) should take place in a single iteration step. Actually, after the I st 
subspace iteration the following matrices are calculated 

R = [4 0] 1 
0 6 

Q = [ - 2.0000 
1 

- 2.0000 
-2.1213] 
- 2.1213 

[ 1.0000 - 0.7071] 
(7-56) 

cp2 = 0.0000 0.7071 

- 1.0000 -0.7071 

The 2nd calculated eigenvalue becomes P2,1 = 6. In order to check whether P2,1 = >.2 or P2,1 = >.3 we choose 
p, = 6.05, and perform a Gauss factorization of the matrix K - 6.05M, i.e. 

[

-1.0250 

K - 6.05M = -1.0000 

0.0000 

-1.0000 0.0000] 
-2.0500 - 1.0000 = 
- 1.0000 - 1.0250 

LDLT = [0.9~56 ~ ~] [- 1.~250 - 1.~744 
0 0.9308 1 0 0 

0 l [1 0.9756 0 l 
0 0 1 0.9308 

- 0.0942 0 0 1 

(7-57) 

It fo llows that three components in the main diagonal ofD are negative, from which is concluded that the largest of 

the two calculated eigenvalues must be equal to the largest eigenvalue of the original system, i.e. p2 ,1 = >.3 . Still , 

we do not know whether p 1,1 = >.1 or p1,1 = >.2. In order to investigate this another calculation is performed with 

p. = 4.05. The Gauss factorization of the matrix K - 4.05M has already been performed as indicated by (7-52). 

Since th is result shows that two eigenvalues exist, which are smaller than I' = 4.05, p1,1 = 4 must be the largest 

of these, and hence the 2nd eigenvalue of the original system. 

7.4 Characteristic Polynomial Iteration 

In this section it is assumed that the stiffness and mass matrices have been reduced to a three 
diagonal form through a series of similarity transformations as explained in Section 6.4, corre­
sponding to, cf. (6-32) 

(Yl /11 0 0 0 

(31 a2 ,32 0 0 

K = 
0 32 a3 0 0 

(7- 58) 

0 0 0 Un- 1 f3n- 1 
0 0 0 fJn- 1 n,. 
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1'1 51 0 0 0 

51 /'2 52 0 0 
0 52 ' )'3 0 0 

M = (7-59) 

0 0 0 l'n- 1 5n-1 

0 0 0 5n-1 /'n 

The Helmholz reduction in Section 6.4 results in M = I. The slightly more general case, 
where M is three diagonal has been assumed in what follows . In principle polynomial iteration 
methods works equally well on fully populated stiffness and mass matrices. However, the com­
putational efforts become too extensive to make them competitive in this case. 

Now, the characteristic equation of the generalized eigenvalue problem can be written in the 
following form, cf. (1-10) 

P()..) = p(o)( ).. ) = det ( K - )..M) = 

a 1 - A/ 1 fJ1 - Ach 0 0 0 
!31 - )..61 a2 - A/'2 !32 - A62 0 0 

dct 
0 (32 - )..62 a3 - A~, 3 0 0 

0 0 0 Ltn-1 - Af'n - 1 f3n-1 - AOn-1 
0 0 0 f3n - 1 - AOn- 1 Ltn - Af'n 

( ) 
(1) ( - ) 2 (2) ( ) an - A')n . p (A) - Pn- 1 - AOn- 1 . p A (7- 60) 

The last statement in (7-60) is obtained by expanding the determinant after the components in 
the last row. p (l ) (A) and ? (2) (A ) denote the characteristic polynomials obtained by omitting 
the last row and column, and the last two rows and columns in the matrix K - AM, respec­
tively, cf. (3-26). The validity of the result (7-60) has been demonstrated for a 4-dimensional 
case in Example 7.3. In turn, p(l) (A) may be expressed in terms of ? (2) (A) and ? (3) (A) by a 
similar express ion. Actually, the complete Sturm sequence of characteristic polynomials may 
be calculated recursively from the algorithm 



176 Chapter 7- SOLUTION OF LARGE EIGENVALUE PROBLEMS 

p (n- l)( >.) = (al- A/1) } 

pCn-2)( >.) = (a1- >.~11)(a2 - A/2) - (f31- >.81)
2 

p(n- ml(>.) = (am - Aim) · p<n-m+ll(>.)- (/3m-1- >-8m-1)
2 

· p <n- m+2l(>.), m= 3, 4, ... , n 

(7-61) 

The effectiveness of characteristic polynomial iteration methods for matrices on three diagonal 
form relies on the result (7-61). 

Assume that the jth eigensolution (>.j , <t> Ul) is wanted. At first one needs to determine two 
figures Jlo and JL.1 fulfilling Aj-1 < JLo < Aj < fl·l < Aj+l· This is done based on the sequence of 
signs sign (P<r~l(J-L)) ,sign(PCn-l )(J-L)), ... ,sign(P(ll(J-L)),sign(P C0l(J-L)), in which the number 
of sign changes indicates the total number of eigenvalues smaller than J-L, and where p (n) (J.L) is 
a dummy positive figure, cf. Section 3.2. 
Below, on Fig. 7-2 are marked two points f..Lk - 1 and f..Lk on the >.-axis in the vicinity of the 
eigenvalue searched for, which is >.1 in the illustrated case. The values of the characteristic 
polynomial in these points, P(J-Lk- 1 ) and P(J-Lk), may easily be calculated by means of (7-61) 
(notice that P(J-L) = p(D)(J-L)). The line through the points (J-Lk- 1,P(J-Lk - 1)) and (J-Lk,P(J-Lk)) 
has the equation 

(7- 62) 

P(>.) 

Fig. 7-2 Secant iteration of characteristic equation towards .>-1 . 

The I ine defined by (7 -62) intersects the >.-axis at the point f-Lk+1. It is clear that this point will be 
closer to Aj than both f..Lk-l and f-Lk· The intersection point of the line with the >.-axis is obtained 
as the solution to the equation y(>.) = y(J-Lk+ 1) = 0, which is given as 

P (J-Lk) ( ) 
l'·k+1 = l'·k - P( ) P ( ) ftk - l'·k-1 

J-l k - f.lk- 1 
(7- 63) 

Next, the itera tion index is raised to k + 1, and a new intersection point f-Lk+2 is obtained. The 
sequence J.Lo. J-L1, J-L2, . . . converges relatively fast to the eigenvalue >.1 as demonstrated below in 
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Example 7 .4. 

Box 7.4: Characteristic polynomial iteration algorithm 

In order to calculate the jth eigenvalue Aj and the jth eigenvector q,Ul the following items 
are performed 

1. Based on the sequence of signs sign(P(nl(tL)),sign(P(n-ll(tL)), ... , sign(P(ll(tL)), 

sign ( p(O) (f.L)) of the Sturm sequence of characteristic polynomials determine two 
figures fto and tt1 fulfilling the inequalities: 

Aj- 1 < f.Lo < Aj < f.L1 < \+1 

2. Perform secant iteration in search for Aj = Moo according to the algorithm: 

_ P(JLk) ( ) 
f.Lk+ l - ILk - P(fl·k)-P(p.k - d ILk - /Lk-1 

3. Determine the unnormalized eigenmode <]?(j) from the algorithm (7-65). 

4. Normalize the eigenmode to unit modal mass: 

q,Ul = .f>(il 
.jq,(j) Tl\H>(i) 

Alternatively, the eigenvalue Aj may be determined by means of Stunn sequence check, where 
the interval ]f.Lo, ,ud is increasingly narrowed around the eigenvalue Aj by bisection of the pre­
vious interval. This algorithm, which is merely telescope method described in Section 6.2, will 
generally converge much slower than the secant iteration algorithm. 

Finally, the components [ <Dlj), q:,~l, .. . , <:D~[l J of the eigenmode q,Ul are detennined as non­

trivial solutions to the linear equations 

(K - A.jl\1)<PUl = 0 ==? 

n 1 - Aj'/1 (-JI - Aj (5] 0 0 0 q:, (j) 
1 0 

.61 - A.jol a:2- A..7r2 /32- A..7o2 0 0 <I> (j) 
2 0 

0 !32 - A.jo2 a3- AJI'3 0 0 <l> (j ) 
3 0 

= 

0 0 0 frn - 1 - Aj"Yn- 1 fJn - 1 - Aj6n-l 
(j) (j) 

n-1 0 
0 0 0 l ]n- 1 - AjJn-1 an - Aj~(n <I> (j) 

n 0 
(7-64) 
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Let ~(j) = [ <l>~j), <I>¥), .. . , <!>~)] denote the eigenmode with components arbitrarily normalized. 

Setting <l> ~j) = 1 the equations (7-64) may be solved recursively from above by the following 
algorithm 

(7- 65) 

m=4, ... ,n 

Hence, the determination of the components of the vector ~(j) is almost free. Obvious, the 
indicated algorithm breaks down, if any of the denominators f3m-l - >.16m-l = 0. This means 
that the algorithm should be extended with alternatives to deal with such exceptions. 

Finally, the eigenmode ~(j) should be nonnalized to unit modal mass as follows 

(7- 66) 

Example 7.3: Evaluation of determinant 

The determinant of the following matrix on a three diagonal form of the dimension 4 x 4 is wanted 

(7-67) 

Expansion of the determinant after the components in the 4th row provides 

2 ( [n1 - {33 · det 
!h 

(7-68) 

(7-68) has the same recursive structure as described by (7-60). 
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Example 7.4: Characteristic polynomial iteration 

The general ized eigenvalue problem defined in Example 1.4 is considered again. Calculate the 3rd eigenvalue by 
secant iteration on the characteristic polynomial, and next determine the corresponding eigenvector. 

At first a calculation with J.1 = 2.5 is performed, which produces the following results 

[ 

0.7500 - 1.0000 0.0000] 
K - 2.5M = - 1.0000 1.5000 - 1.0000 

0.0000 - 1.0000 0.7500 

{ 

p (S)(2.5) = 1 ' 

p (2)(2.5) = 0.7500 

p (ll(2.5) = 0.7500 ·1.5000 - (-1? = 0.1250 

p (0)(2.5) = 0.7500.0.1250 - ( - 1)2
. 0.7500 = - 0.6563 

sign(P <3l(2.5)) = + 
sign(P (2l(2.5)) = + 
sign(P <1l(2.5)) = + 
sign(P <0l(2.5)) = -

(7- 69) 

Hence, the sign sequence of the Sturm sequence becomes +++-. One sign change occurs in this sequence from 
which is concluded that the lowest eigenvalue A1 is smaller than JL = 2.5. 

Next, a calculation with 11. = 5.5 is performed, which provided the results 

[

-0.7500 - 1.0000 0.0000] 
K - 5.5M = -1.0000 - 1.5000 - 1.0000 

0.0000 - 1.0000 -0.7500 

{ 

p (S)(5.5) = 1 ' 

p <2l(5.5) = - 0.7500 

p (ll(5.5) = (- 0.7500) . ( - 1.5000)- (-1)2 = 0.1250 

p (0)(5.5) = ( - 0.7500) . 0.1250- (- 1)2
. (-0.7!500) = 0.6!563 

sign (P<3>(5.5)) = + 
sig11(P <2>(5.5)) =­

sign (P (l)(5.5)) = + 
sign(P<0l(5.5)) = + 

(7- 70) 

Now, the sign sequence of the Sturm sequence becomes+-++, in which two sign changes occur, from which is 
concluded that the lowest two eigenvalues A1 and A2 are both smaller than J.1 = 5.5. 

Finally a calculation with J.1 = 6.5 is performed, which provided the results 

[

- 1.2f\OO -1.0000 0.0000] 
K - 6.5M = - 1.0000 - 2.5000 - 1.0000 

0.0000 - 1.0000 - 1.2500 

{ 

p (J)(6.5) = 1 ' 

p <2
) (6.5) = - 1.2500 

p (ll(6.5) = ( - 1.2500) · ( - 2.5000)- ( - 1? = 2.12f\O 

p (O) (6.5) = ( -1.2500) · 2.1250- ( - 1)2 
· ( - 1.2500) = -1.4063 

sigil(P<3 >(6.5)) = + 
sign(P (2 J(6.5)) =­

sign(P(ll(6.5)) = + 
sign(P <0 J(6.5)) =-

(7- 71) 

In this case the sign sequence of the Sturm sequence becomes+ - +- ,corresponding to three sign changes. 
Hence, it is concluded that all three eigenvalues A1, A2 and A3 are smaller than tt = 6.5. 
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From the Sturm sequence checks it is concluded that >.2 < 5.5 < >.3 < 6.5. Then, we may use the following start 
values, J.1.0 = 5.5 and J.Lt = 6.5, in the secant iteration algorithm. Moreover P (5.5) = p<0l(5.5) = 0.6563 and 
P(6.5) = p(Ol(6.5) = -1.4063, cf. (7-70) and (7-71). Then, from (7-61) it follows for k = 1 

( - 1.4063) 
J.L2 = 6.5 - ( - 1.4063) - 0.6563 (6.5 - 5.5) = 5.8182 (7-72) 

Next, P(J.L2) = P(5.8182) = 0.3156 is calculated by means of the algorithm (7-61 ), and a new value J.L3 can be 
obtained from 

0.3156 
J.L3 = 5.8182- 0.3156 - ( -1.4063) (5.8182 - 6.5) = 5.9431 

During the next 5 iterations the following results were obtained 

/-L4 = 6.00900500472288 

J.L5 = 5.99960498912941 
J.l6 = 5.99999734553262 
~L7 = 6.00000000078659 
J.LB = 6.00000000000000 

As seen the convergence of the secant iteration algorithm is very fast. 

The linear equation (7-64) attains the form 

(K- 6.0000M ) <i> <3l = 0 =* 

- 1 - 2 - 1 ~~3) = 0 
[
-1 -1 oll-<1><

3

>] [o] 
0 - 1 -1 <I>~3) 0 

Setting <1?~3) = 1 the algorithm (7-65) now provides 

<1>(3)= _(-1)·1= -1 } [ l 2 ( - 1) 1 
=} <l>(3) = - 11 

~~3) =- (-1) ·1 - (-2) . (-1) = 1 
(-1) (-1) 

Normalization to un it modal mass provides, cf. ( 1-87) 

(7- 73) 

(7-74) 

(7-75) 

(7-76) 

(7-77) 
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7.5 Exercises 

7.1 Given the following mass- and stiffness matrices defined in Exercise 4.2. 

(a.) Calculate the two lowest eigenmodes and corresponding eigenvalues by simultaneous 
inverse vector iteration with the start vector basis 

7.2 Given the symmetric matrices M and K of dimension n. 

(a.) Write a MATLAB program, which for given start basis performs simultaneous inverse 
vector iteration for the determination of the lowest n1 eigenmodes and eigenvalues. 

7.3 Consider the general eigenvalue problem in Exercise 4.2. 

(a.) Calculate the two lowest eigenmodes and corresponding eigenvalues by subspace it­
eration using the same start basis as in Exercise 7 .1. 

7.4 Given the symmetric matrices M and K of dimension n. 

(a.) Write a MATLAB program , which for given start basis performs subspace iteration 
for the detennination of the lowest n 1 eigenmodes and eigenvalues. 

7.5 Consider the general eigenvalue problem in Exercise 4 .2. 

(a.) Calculate the 3rd eigenmode and eigenvalue by Sturm sequence iteration (telescope 
method). 

7.6 Given th e symmetric matrices M and K of dimension non three diagonal form. 

(a.) Write a MATLAB program, which performs Sturm sequence check and secant iter­
ation iteration for the detem1ination of the j th eigenvalue, and next determines the 
corresponding eigenvector. 
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APPENDIX A 
Solutions to Exercises 

A.1 Exercise 1.1 

Given the following mass- and stiffness matrices 

M~[~~~] ' K ~H -~ ~] 
1. Calculate the eigenvalues and eigenmodes normalized to unit modal mass. 

2. Dete1mine two vectors that are M-orthonormal, but are not eigenmodes. 

SOLUTIONS: 

Question 1: 

The generalized eigenvalue problem ( l-9) becomes 

[

2- Aj 

- 1 

0 

- 1 

2 - 2>-.j 

0 

(I) 

(2) 

Upon evaluating the determinant of the coefficient matrix after the 3rd row, the characteristic equation 
( l-1 0) becomes 

( [

2- >.· 

P(A) ~ p(O)(,>,) ~ dct ~1 J 

- 1 

2- 2>-.j 

0 

( 3- ~Aj) ( (2- >.1) ( 2- 2>.1) - (- 1) 2
) = ( 3 - ~>.1 ) ( 3- 6>.1 + 2>.;) = 0 ==? 

{ 

H3- /3) , J = 1 

Aj = H3 + /3) ' j = 2 

6 ' j = 3 

- 185-

(3) 
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The largest eigenvalue ..\3 = 6 is obtained when the l st factor in (3) is equal to 0, whereas the two lowest 
solutions corresponds vanishing of the 2nd factor. 

Because the 3rd eigenmode is decoupled from the lst and 2nd the solution method is slightly different in 
this case. As seen be inspection the solutions have the form 

1>(j) = [ cp~j)l cp(j) 
2 

0 

j = 1,2 

(4) 

The lst and 2nd components of the 1st and 2nd eigenmodes, <P ~j) and cl>~) are determined from the two 

first equations in (2). We choose to set cl>~j) = 1, and determine <I>~) from the 1st equations. Notice that 

we may as well have determined <I>~) from the 2nd equation. Then 

The modal masses become 

(j) { ~ (1 + v'3) ) cp2 = 
HI - v'3) ) 

1 

2 

j = 1 

j= 2 

.i = 1 

j= 2 

(5) 

(6) 

(7) 

q. (l) denotes the 1st eigenmode normalized to unit modal mass. This is related to 1>(1) in the following 
way 

1 1 [ 
1 l [0.4597] q. (l) = --1> (l) = 1. (1 + v'3) = 0.6280 

..;M; )3 + v'3 2 
0 0 

(8) 

The other modes are treated in the same manner, which results in the following eigensolutions 



A.1 Exercise 1.1 187 

r,l 0 

~J rw ~ v'3) 
0 

~] A = ~ >.2 H3+v3) 

0 0 
(9) 

r0.4597 0.8881 

L4u 4? = [ <P(l) <P (2) <P (3)] = 0.6~80 - 0.3251 

0 

Question 2: 

Consider the vectors 

(10) 

Upon insertion the following relations are seen to be valid 

( 11) 

Hence, v 1 and v2 are mutually M-orthonormal. However, 

( 12) 

Hence, neither v 1 nor v2 are eigenmodes. 
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A.2 Exercise 1.2 

The eigensolutions with eigenmodes normalized to unit modal mass of a 2-dimensional generalized 
eigenvalue problem are given as 

A = [), 1 0 l = [1 0] 
0 >.2 0 4 [

v'2 v'2] q, = [q,(l) q,(2)] = 2 2 
~ -~ 
2 2 

(1) 

1 . Calculate M and K. 

SOLUTIONS: 

Question 1: 

From (1 -19) and (1-20) follows 

(2) 

(3) 

Since it is known that the eigenmodes have been normalized to unit modal mass it follows from (1-20) 
and (1-22) that 

m=I , k=A (4) 

The inverse of the modal matrix becomes 

q,- 1 = [~ ~l-1 = [~ 1] 
2 - 2 2 - 2 

(5) 

Of course, (5) can be obtained by direct calculation. Alternatively, the result may be obtained from the 
following arguments. Notice that q, is mthonormal, so q, -l = q,T, cf. (1-23). Additionally, the modal 
matrix is symmetric, i.e. q, = q,T, from which the indicated result follows. 

Insertion of(4) and (5) into (1) and (2) provides 

[v> v>n 0] [ ~ ~] = [~ ~] M= f 
- \~ ~ 1 v'2 v'2 

2 - 2 
(6) 

[v'2 ~n~ ol [~ ~] = [ 2.5 -1.5] 
K= f -~ 0 4 ~ -¥ - 1.5 2.5 2 2 

(7) 

Actually, since M = I, the considered eigenvalue problem is of the special type, cf. the remarks subse­
quent to (1-9). 
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A.3 Exercise 3.1 

Given the following mass- and stiffness matrices 

r
1 0 0] 

M = 0 2 0 
0 0 l 2 

1. Show that the eigenvalue separation principle is valid for the considered example. 

SOLUTIONS: 

Question 1: 

The eigenvalues >.j0), which have been calculated in Exercise 1.1, are 

{ 

H3- J3) , j = 1 

Aj = H3 + J3) ' j = 2 

6 ' j = 3 

Correspondingly, the e igenvalues >.Y) and >.j1l are calculated from 

( [
2 - >. <

1
l - 1 l) p (ll(>.(ll) = dct j = 

-1 2 - 2>.(1 ) 
J 

( (2 - >.;l)) (2 - 2>-._;ll)- ( -1) 2
) = (3 - 6>.;1

)) + 2(>.j1
))

2
) = 0 :::} 
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(1) 

(2) 

).. (1 ) = { ~(3- v'3) , .i = 1 (3) 
J ~ ( 3 + J3) ' .i = 2 

(4) 

Then, (3-25) attains the following forms for m = 0 and m = 1 

0 < )..(0) < )..(1) < )..(0) < )..(1) < ).. (0) < 00 :::} 
- 1 - 1 - 2 - 2 - 3 .-

1 1 1 1 0 < - (3 - /3) < - (3 - /3) < - (3 + J3) < - (1 + J3) < 6 < 00 -2 - 2 - 2 - 2 - - (5) 

0 < )..(1) < )..(2) < )..(1) < 00 :::} 
-1 - 1 - 2 -

(6) 

Hence, (3-25) holds for the considered example. >.~0) = >.~1 ) and >.~0) = >.~1 ) , because of the decoupling 
of the 3rd eigenmode from the 1st and 2nd eigenmode. 
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A.4 Exercise 3.2 

Given the following mass- and stiffness matrices 

M = [2 0] K = [ 6 -1] 
0 0 ' - 1 4 

(1) 

1. Calculate the eigenvalues and eigenmodes normalized to unit modal mass. 

2. Perform a shift p = 3 on K and calculate the eigenvalues and eigenmodes of the new problem. 

SOLUTIONS: 

Question 1: 

The generalized eigenvalue problem (1-9) is written on the form 

[2 0] [~(j)l 1 [ 6 -1] [~(j)l 
0 0 ~~) = Aj - 1 4 <I>~j ) j = 1, 2 (2) 

Obviously, (2) has the solution 

(3) 

Hence, >.2 = oo is an eigenvalue. This is so because the mass matrix is singular, and has zeroes in the 
last row and column. Since, the modal mass 1112 related to eigenmode <p(2) is zero, this mode cannot be 
normalized in the usual manner. In Section 4.1 the problem of infinite eigenvalues will be thorough ly 

dealt with. 

The other eigensolution may be obtained by the standard approach. Then, the eigenvalue problem (2) is 
written on the form 

[
6- 2)..1 

- 1 
-1] [<I>i

1

)] = [0] 
4 ~(1) 0 

2 

The characteristic equation ( 1-1 1) becomes 

( [
6 - 2)..1 

cl et 
- 1 

-1]) 2 4 = 4(6 - 2>.1) - ( - 1) = 23 - 8)..1 = 0 

We choose to set <I>P l = 1, and determine <I>~1 ) from the 1st equations. Then 

( ) 
( 1) 6 - 2)..1 . 1 - <1>2 = 0 <""' (1) - ~ :1.'2 -

4 

(4) 

(5) 

(6) 
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The modal mass becomes 

Then, the eigenmode normalized to unit modal mass ~(1) becomes 

~(1) = _1_~(1) = _1_ [1] = [0.7071] 
,;M} ../2 ~ 0.1768 

Hence, the following eigensolutions have been obtained 

Question 2: 

(3-38) attains the fonn 

~ = [~(1) ~(2)] = [0. 7071 0] 
0.1768 1 

K = K _ 3M = [ 6 -1] -3 [2 0] [ 0 -1] 
- 1 4 0 0 -1 4 

The eigenvalue problem (3-37) becomes 

( [ 0 - 1] [2 0]) [<I>~
1

) ] [0] - 1 4 - Aj 0 0 <P~1 ) = 0 
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(7) 

(8) 

(9) 

( 10) 

(11) 

For the same reason as in question 1, >.2 = oo is still an eigenvalue with the eigenmode given by (3). 
The characteristic equation for the I st eigenvalue becomes, cf. ( 5) 

dct ( [-~~ 1 -~] ) =4(-2>.1)-(- 1) 2 =-1-8>. 1 =0 =? >.1 =-~ (=
2
8
3
-3)(12) 

Let <PP)= 1, and determine <P~1) from the l st equations of(ll) 

( ) 
(I) - 2>.1 . 1 - <I>2 = 0 <I> (1) - ~ 

2 -
4 

(13) 

which is identical to (6). Hence ~{l) is unaffected by the shift as expected, cf. the comments following 
(3-38). The eigensolutions are unchanged as given by (9), save that )'1 = -~ . 



192 Chapter A- Solutions to Exercises 

A.5 Exercise 3.4: Theory 

Gauss Elimination 

Given a symmetric matrix K of the dimension n x n with the components Kij = Kji· Consider the 
static equilibrium equation 

Kx= f :::} 

Ku K12 K13 Ktn Xt h 
K21 K22 K23 K2n x2 h 
K31 K32 K33 K3n X3 h (1) 

K nl Kn2 K,t3 Knn Xn Jn 

In order to have a one at the 1st element of the main diagonal of the coefficient matrix the 1st equation is 
divided with Ku resulting in 

1 K (lJ 
12 

K(l) 
13 

K(t) 
ln Xt JP) 

K21 K22 K23 K2n X2 h 
K31 K32 K33 K3n X3 h (2) 

Knl Kn2 Kn3 Knn Xn Jn 

where 

Kill = KtJ j ~ 2, .. . ,n } 
J Ku 

/1) - _h_ 
1 -

Ku 

(3) 

In turn, the 1st equation of (2) is multiplied with Kit, i = 2, ... , n, and the resulting equation is 
withdrawn from the i th equation. This will produce a zero in the i th row of the 1st column, corresponding 
to the following system of equations 

1 K(l) K(t) K(l l 
JP) 12 13 ln Xt 

0 K(l) K(ll K (l l 
X2 JJ ll 22 23 2n 

0 K (l) (1) 
32 K33 

/{.(1) 
:Jn :r3 

J(1) 
3 (4) 

0 K(l) (1) (1) :rn /1) 
Kn3 f{nn n 

n2 

where 

(1) (1) ·i = 2, .. . ,n .i = 2, .. . , n 

} KiJ = K iJ- K i1 K 1J ) 

(5) 
(1) (1) i = 2, ... ,n fi = Ji - K n J1 
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Next, the 2nd equation is divided with KW, so the coefficient in the 2nd component in the main diagonal 

becomes equal to 1. In turn, the resulting 2nd equation is multiplied with Kg), i = 3, . .. , n, and the 
resulting equation is withdrawn from the ith equation. This will produce zeros in the ith row of the 2nd 
column below the main diagonal, corresponding to the system of equations 

0 0 

where 

(1) 
K (2)- K2j 

2j - K(1) 
22 

(1) /2) - h._ 
2 - K (1) 

22 

K(1) 
1n X1 ~~1) 

K(2) 
2n X2 ~~2) 

K(2) 
3n X3 JJ2) (6) 

K(2) 
nn Xn !!.2) 

j = 3, ... ,n 

(7) 

i = 3, ... ,n j = 3, ... ,n 

i = 3, ... ,n 

The process of producing ones in the main diagonal, and zeros below the main diagonal is continued for 
all n columns resulting in the following system of linear equations 

1 K(l ) 
12 

K (l) 
13 

. .. K (l) 
1n X1 f(l) 

. 1 

0 1 K(2) 
23 

.. . K(2) 
2n X2 .f~2) 

0 0 1 (3) 
K 3n :r:3 JJ3) (8) 

0 0 0 1 :r;n f(n) 
11 

Next, (1) are solved simultaneous with n righthand sides, where the loads form the columns in a unit 
matrix. Then solution vectors X = [x1 x2 X3 · · · x 71 ] are organized in the matrix equation, i.e. 

KX=I ::::;. 

Kn K12 K13 Kln xn X12 X13 Xln 1 0 0 .. . 0 

!{21 J(22 K23 K2n :r21 :r22 :c23 X2n 0 1 0 0 

K31 ]{32 K33 K3n X31 X32 X33 X3n = 0 0 1 0 (9) 

Knl K ,.2 K,.3 I<nn Xn l Xn2 Xn3 :Cnn 0 0 0 1 
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Following the steps (2)-(8), simultaneous Gauss elimination of the coefficient matrix and then righthand 
sides provides the following equivalent matrix equation 

1 K(1) 
12 

K(1) 
13 

K(1) 
1n xn X12 X13 X1n 

1 (1) 
11 0 0 0 

0 1 K(2) 
23 

K(2) 
2n X21 X22 X23 X2n 

/2) 
21 

l2) 
22 0 0 

0 0 1 K(3) 
3n X31 X32 X33 X3n = /3) 

31 
/3) 

32 
/3) 

33 0 

0 0 0 1 Xn1 Xn2 Xn3 Xnn ln) 
nl 

ln) 
n2 

/n) 
n3 

f(n) 
nn 

As indicated the identity matrix on the righthand side is transformed into a lower triangular matrix ~~O) 

In the program the triangulation of the matrix K and the calculation of the matrix F is performed in a 
matrix A of the dimension n x 2n, which at the entry of the triangulation loop has the form 

A = (KI) (11) 

At exit from the triangulation loop the matrix A stores the triangulized stiffness at the position originally 
occupied by K , and the matrix F at the position occupied by the unit matrix. 

Calculation of L, D and (s- 1 )T 
Using the Gauss factorization ofthe stiffness matrix (9) may be written, cf. (3-1) 

(12) 

Upon comparison of (I 0) and (12) it becomes clear that LT is stored as the coefficient matrix in (I 0), 
whereas the righthand sides store the matrix F = n-1 L -l. Since, L - 1 is a lower triangular matrix with 
ones in the main diagonal, the main diagonal must contain the main diagonal of D - 1 . Hence, 

ll) 1 0 0 0 
0 0 0 -;m 11 ·11 

/2) 0 1 0 0 0 0 0 JW 22 22 

D - 1 = 0 0 
(3) 

0 =} D = 0 0 1 0 133 !'3) 
33 

(13) 

0 0 0 ln) 
0 0 0 1 nn 

f,~':,) 

Finally, cf. (3-49) 

I 
S = LD2 =} s- 1 = D-~ L - 1 = D ~D- 1L - t = D ~F (14) 

The matrices D and (S- 1)T are retrieved from the righthand sides of(IO) as stored in the matrix F 
according to the indicated relations at the end of the program. 
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The eigensolutions with eigenmodes normalized to modal mass 1 with respect to M n becomes 

A = [>-1 0 l = [0.7325 0 l 1 
0 .>-2 0 9.1008 

«Pn = «P «P = [ 
(1) (2)] [0.5320 1.3103] 
1 1 

0.3892 - 0.9212 
(5) 

From ( 4-5) follows 

«P 21 = [«P~1) «P~2)] = - [6r1 [o -1) [
0

.
5320 

1.
3103

] = [o.o649 -0.1535] 
0.3892 - 0.9212 

(6) 

From (4-10) and (4-11) follows 

(7) 

After interchanging the degrees of freedom back to the original order (the 1st components of «P11 and 
«P12 are placed as the 3rd component of cp (J), and the components of «P21 and «P22 are placed as the lst 
component «P (j), the following eigensolution is obtained 

[

.>-1 0 0] [0.7325 0 0 ] 
A = 0 >-2 0 = 0 9.1008 0 

0 0 .>-3 0 0 oo 

[

0.0649 - 0.1535 1] 
cp = [ cp (l) cp (2) cp (3)] = 0.3892 -0.9212 0 

0.5320 1.3103 0 

(8) 

Next, the same problem is solved by means of Rayleigh-Ritz analysis. The Ritz basis is constructed from 
( 4-62) 

[

0.5750 0.1500] 
0.1500 0.3000 

0.0250 0.0500 

The projected mass and stiffness matrices become, cf. (4-63), (4-64) 

(9) 
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[

0.5750 

M = o.15oo 

0.0250 

[

0.5750 

:K = 0.1500 

0.0250 

0.1500l T r1 1 0

1 
l0.5750 0.1500l 

0.3000 1 2 0 0.1500 0.3000 = [0.548125 0.371250] 
0.371250 0.292500 

0.0500 0 0 0 0.0250 0.0500 

0.1500l T r 2 - 1 0

1 
0.3000 - 1 4 - 1 

0.0500 ° -1 6 [

0.5750 0.1500] 
0.1500 0.3000 = [0.5750 0.1500] 

0.1500 0.3000 
0.0250 0.0500 
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(10) 

The eigensolutions to the eigenvalue problem defined by M and K with modal masses normalized to 1 
with respect to M become, cf. Box. 4.2 

R = [P1 0] = [0.7325 0 l 
0 P2 0 9.1008 

Q = [ (1) (2) ] = [0.6748 3.5418] 
q q 0.9599 - 4.8415 

The solutions for the eigenvectors become, cf. (4-51) 

[

0.5750 0.1500] 
~ = [~(1) ~(2) ] = 0.1500 0.3000 [0.6748 

0.9599 
0.0250 0.0500 

l [0.5320 1.3103] 3
'
5418 = 0.3892 -0.9212 

- 4.8415 
0.0649 - 0.1535 

(11) 

(12) 

As seen the eigenvalues ( 11) are identical to the lowest two eigenvalues from the static condensation 
procedure (8). The two lowest eigenmodes in (8) are retrieved from (12) upon interchanging the 1st and 
3rd components in the latter. 

A. 7 Exercise 4.2 

Given the following mass- and stiffness matrices 

K = r- ~ -~ -~1 
0 -1 2 

(1) 

1. Calculate approximate eigenvalues and eigenmodes by Rayleigh-Ritz analysis using the following 
Ritz basis 
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SOLUTIONS: 

Question 1: 

The projected mass and stiffness matrices become, cf. (4-45) 

M ~ r: -:r r~ ~ :1 r: -:1 ~ [~ ~] 
(2) 

K ~ [: -:r H ~ ~ -~ l [ -: l ~ [: 1: l 
The eigensolutions to the eigenvalue problem defined by M and K with modal masses normalized to 1 
with respect to rVI become, cf. Box. 4.2 

R = [Pl 0 l = [1.0459 0 l 
0 P2 0 5.3541 

Q = [ (1) (2)] = [-0.3864 0.0269] 
q q 0.0887 - 0.5849 

The solutions for the eigenvectors become, cf. ( 4-5 J) 

r 1 1] ~ = r~ ( l ) ~ (2) J = l1 _ 1 [ - 0.3864 0.0269] 
0.0887 - 0.5849 

1 1 

The exact eigensolutions can be shown to be 

gLJ [

-A1 0 0 l [0. 7245 0 
A = 0 -A2 0 = 0 2.9652 

0 0 A3 0 0 

[

- 0.2976 - 0.5580] 
- 0.4751 0.6118 

-0.2976 -0.5580 

[

- 0.0853 
~ = [ q, ( l ) q, (2) ~ (3) ] = - 0.3884 

- 0.5251 

- 0.6981 

- 0.0486 

0.1997 

- 0.0458] 
0.5778 

- 0.8149 

(3) 

(4) 

(5) 

As seen p1 and P2 are upperbounds to the exact eigcnvalues Al and -A2, and P2 is smalle r than A3, cf. 
( 4-57). The estimates of the eigenmodes are not usefu l. Not even the signs of the components of ~(2) 
are correctly represented. These poor results are obtained because the chosen Ritz basis is far away from 
the bas is spanned by q, (l) and q, (2) . 
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A.B Exercise 4.3 

Consider the mass- and stiffness matrices in Exercise 4.2, and let 

(I) 

1. Calculate the vector <i>(1) = K - 1Mv, and next >.1 = p(<J>{ll), as approximate solutions to the 
lowest eigenmode and eigenvalue. 

2. Establish the error bound for the obtained approximation to the lowest eigenvalue. 

SOLUTIONS: 

Question 1: 

From the given formula we calculate 

<J>{l) = r - ~ -! -~l-1 r~ ~ ~l r~J = 
0 - 1 2 0 1 1 1 [

0.55] 
1.30 

1.65 

(2) 

The Rayleigh quotient based on <J>{l ) becomes, cf. ( 4-25) 

[05T l 6 

- 1 0 l [ 0 55] 1.30 -1 4 -1 1.30 

>.1 = p(<J>{ll) = 
1.65 0 -1 2 1.65 

r0 55n2 
= 0 .7547 (3) 

0 0] [055] 
1.30 0 2 1 1.30 

1.65 0 1 1 1.65 

The obtained un-normalized eigenmode <J> (l) resembles ~(1 ) much better than the corresponding ap­
proximation for <J> (ll indicated in eq. (4) of Exercise 7.2. As a consequence the obtained eigenvalue 5.1 
is a much better approximation to the exact eigenvalue )q = 0.7245 given in eq. (5) of Exercise 4.2, 
than the approximation p1 = 1.0459 obtained by the Rayleigh-Ritz analysis. The indicated formula for 
obtaining <J> {l) represents the 1st iteration step in the socalled inverse vector iteration algorithm described 

in Section 5.2 
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Question 2: 

From (2) follows that 

(4) 

The error vector becomes, cf. ( 4-79) 

€1 = ( [-~ -~ -~] - 0.7547. 
0 - 1 2 [~ ~ ~] ) [~:~~] 

0 1 1 1.65 
[ 

1.1698] 
-0.2075 

- 0.2264 

lc:1 1 = 1.2095 (5) 

The lowest eigenvalue of M can be shown to be 

f.Ll = 0.3820 (6) 

Then, from (4-85) the following bound is obtained 

I 
, , I 1 1. 2095 _ 

2 4 /ll - /11 < 0.3820. 2.1714 - '171 (7) 

Actually, l.>.1- >-11 = 10.7245 - 0.75471 = 0.0302. Hence, the bounding method provides a rather crude 
upperbound in the present case. 

A.9 Exercise 5.1 
Given the fo llowing mass- and stiffness matrices defined in Exercise 4.2. 

1. Perform two inverse iterations, and then calculate an approximation to .>.1. 

2. Perform two forward iterations, and then calculate an approximation to .>.3 . 

SOLUTIONS: 

Question 1: 

The calculations are performed with the stati vector 
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The matrix A becomes, cf. (5-4) 

A = r-~ -~ -~l -1 r~ ~ ~l 
0 -1 2 0 1 1 

[~:~~~ ~:~~~ ~:~~~] 
0.050 0.875 0.725 

At the 1st and 2nd iteration steps the following calculations are performed, cf. Box 5.1 

[

0.350 
{[>1 = 0.100 

0.050 

0.125 0.075] [1] [0.55] 
0.750 0.450 1 = 1.30 

0.875 0.725 1 1.65 

1 [0.55] [0.16585] 

<pl = J10.9975 ~:~~ = ~:!~~~~ 

[

0.350 0.125 0.075] [0.16585] 
<f>z = 0.100 0. 750 0.450 0.39201 

0.050 0.875 0.725 0.49755 

1 [0.14436] 
<1>2 = ~ 0.53449 

V 1.8812 
0.71202 

[

0.10526] 
0.38970 

0.51914 

- r -
<1> 1 M<f>1 = 10.9975 

[

0.14436] 
0.53449 

0.71202 
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(1) 

(2) 

(3) 

(4) 

Since, <f>2 has been normalized to unit modal mass, so <~>IM <f>2 = 1, an approximation is obtained from 
the following Rayleigh fraction, cf. ( 4-25) 

[ l 
T 

0.10526 6 -1 

),1 = <r>fK <f>2 = 0.38970 [-1 4 
0.51914 0 - 1 

0] [0.10526] -1 0.38970 = 0.72629 

2 0.51914 

(5) 

The exact solution is >.1 = 0. 72446. 
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Question 2: 

The calculations are performed with the start vector given by ( 1 ). 

The matrix B becomes, cf. (5-35) 

l

2 0 0] -l l6 - 1 0] l3.0 
B = 0 2 1 - 1 4 -1 - 1.0 

0 1 1 0 -1 2 1.0 

- 0.5 

5.0 

- 6.0 

0.0] 
- 3.0 

5.0 

At the 1st and 2nd iteration steps the following calculations are performed, cf. Box 5.3 

c]?l = - 1.0 5.0 - 3.0 1 1.0 

l

3.0 -0.5 0.0] l1J l2.5] -r -<I>1 M<I>1 = 14.5 

1.0 - 6.0 5.0 1 0.0 

1 l 2.5] l0.65653] 
<I> l = VI4.5 1.0 = 0.26261 

0.0 0.00000 

l3.0 
c]?2 = -1.0 

1.0 

-0.5 0.0] l0.65653] ll.83829] 
5.0 -3.0 0.26261 = 0.65653 

- 6.0 5.0 0.00000 - 0.91915 

l

l.83829] l 0.68232] 
<I>l = ,j 

1 
0.65653 = 0.24369 

7.25862 
-0.91915 - 0.34116 

-r -<I>1 M<I>1 = 7.25862 

(6) 

(7) 

(8) 

Again, <I>2 has been normalized to unit modal mass, so <I>f M <I>2 = 1, an approximation is obtained 
from the following Rayleigh fraction 

l 

0.68232] T l6 -1 
>-3 = <I>rK<I>2 = o.24369 - 1 4 

-0.34116 0 - 1 

0] l 0.68232] - 1 0.24369 = 3.09739 

2 -0.34116 

(9) 

The exact solution is .\3 = 9.31036. The poor result is obtained because <I>2 is a rather bad approximation 
to <,p (3 ) . 
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A.1 0 Exercise 5.2 

Given the following mass- and stiffness matrices 

K = [- ~ -~ - ~] 
0 - 1 2 

(1) 

The eigenmodes <f> (l) are <f> (3) are known to be, cf. (1-87) 

(2) 

1. Calculate <f>(2) by means of Gram-Schmidt orthogonalization, and calculate all eigenvalues. 

SOLUTIONS: 

Question 1: 

<f> (2) may be determined either by using inverse iteration with deflation with <f>{I) , or by forward iteration 
and deflation with <f> (3) . Here an alternative strategy is used based on the knowledge of both <f> (l) and 
<f> (3) . Consider an arbitrary vector 

(3) 

Since, <f>{l), <f> (2) and q. (3) form a vector basis, we may write 

(4) 

In order to determine the expansion coefficient Cj, (4) is premultiplied with <f>{j)TM , and the M­

othonormality of the eigenmodes are used, i.e. that <f> (i)TM<f>{j) = OiJ· For .i = 1, 3 the following 
results are obtained 



204 Chapter A- Solutions to Exercises 

[$f[~ 
0 

~J [~J 1 - 7-/2 j=1 --4-

Cj = .p(j)TMx = 
0 

r-in~ 
(5) 

0 

~J m 
1 = -/2 j=3 - 4 

0 

Then, from (3), (4) and (5) follows 

7.;2 

r 
.;2

1 
r -/2

1 
l-O 5

1 $ + '7 -$ ~~j 4 

c§ = [-~:~] T [~ ~ ~] [-~:~] = 0.25 =;. 

0.5 0 0 ~ 0.5 

[

-0.51 [-1] 
p(2) ~ 015 . ~~J ~ (6) 

The indicated method only works because the dimension of the problem is three, and two eigenmodes 
are known in advance. Hence, the modal matrix becomes, cf. ( 1-87) 

(7) 

Given that all eigenmodes have been normalized to unit modal mass the eigenvalues may be calculated 
from the Rayleigh quotient, cf. (1-21), (4-25) 

(8) 

Generally, if n - 1 eigenmodes to a general eigenvalue problem is known the remaining eigenmode can 
lways be determined solely from the M-orthonormality conditions. 
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A.11 Exercise 6.3 

Given the mass- and stiffness matrices defined in Exercise 4.2. 

1. Perform an initial transformation to a special eigenvalue problem, and calculate the eigenvalues and 
eigenvectors by means of standard J acobi iteration. 

2. Calculate the eigenvalues and normalized eigenvectors by means of general Jacobi iteration oper­
ating on the original general eigenvalue problem. 

SOLUTIONS: 

Question 1: 

Initially, a Choleski decomposition of the mass matrix is performed, cf. (3-44). As indicated by the 
algorithm in Box 3.2 the following calculations are performed 

811 = rmu= 12 
m21 0 

821 = -- =- = 0 
811 V2 

m31 0 
831 = --=- = 0 

8u V2 

822 = J m22 - 8~ 1 = J2=(i2 = 12 (!) 

1 1 v'2 
832 = - (m32 - 831 · 821) = -(1 - 0 · 0) = -

822 V2 2 

833 = J m 33 - 8~2 - 8~1 = J 1 - ( V:) 2 

- 02 = V: 

Hence, the matrices Sand s- 1 become 

[v2 0 ~] S = 0 V2 => 
-12 0 2 

lfl 0 

11 s-' ~ ~ ,Q (2) 
2 

-12 -2 

The initial value of the updated similarity transformation matrix and the stiffness matrix becomes, cf. 
(3-48), (6-4) 
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[ ~ 0 0 l ~o = (s-lf = ~ ~ -~ 
0 0 .j2 

K o = :K = s-1K(s- 1f = 
-1 0 -0.5 

[! 
0 0 H 6 01[~ 0] r 30 051 ../2 0 - 1 4 - 1 0 .fl _ .fl = - 0.5 2.0 - 3.0 2 2 2 

_.fl 
2 

.j2 0 -1 2 0 0 .j2 0.5 -3.0 

ln the lst sweep the following calculations are performed for (i,j) = (1, 2) : 

() = ~ arctan (
2

. ( - 0.5~) = - 0.3927 => 
2 3.0 - 2. {

cos e = o.9239 

sine = - 0.3827 

r 0.9239 0.3827 

~1 P o = - 0.3827 0.9239 

0 0 

r 0.6533 0.2706 

-0 ~0711 ~1 = ~oPo = -0.2706 0.6533 

0 0 1.4142 

r
3.20071 0 

K t = P 6K oP o = 1.7929 
1.6070 -2.5803 

1.60701 
- 2.5803 

8.0000 

Next, the calculations are performed for (i, .i) = (1, 3) : 

1 ( 2 . 1.6070 ) e = 2 arctan 3.2071 - 8.0000 = - 0.2958 => 

r 
0.9566 0 0.29151 

p l = 0 1 0 

- 0.2915 0 0.9566 

r 
0.6249 0.2706 

~2 = ~lpl = - 0.0527 0.6533 
- 0.4122 0 

0. 19041 
- 0.7553 

1.3528 

0.7521 

1.7929 

- 2.4682 
-2.~6821 

8.4906 

{
cos e = 0.9566 

sine = -0.2915 

8.0 

(3) 

(4) 

(5) 
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Finally, to end the 1st sweep the calculations are performed for ( i, j) = (2, 3) : 

1 ( 2 . ( -2.4682) ) e = 2 arctan 1.7929- 8.4906 = 0.3176 

0 0 l 0.9500 -0.3123 

0.3123 0.9500 

[ 

0.6249 0.3165 

~3 = ~2p2 = - 0.0527 0.3848 

- 0.4122 0.4224 

0.0964] 
-0.9215 

1.2852 

0.7145 - 0.2349] 
0.9816 0 

0 9.3019 

{
cos B = 0.9500 

sin B = 0.3123 
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(6) 

At the end of the 2nd and 3rd sweep the following estimates are obtained for the modal matrix and the 
eigenvalues 

[ 0.6980 0.0862 0.0729] [2.9652 0.0028 00~00 l 
~6 = 0.0481 0.3885 -0.9202 K 6= 0.0028 0.7245 

- 0.2004 0.5249 1.2978 0.0000 0 9.3104 
(7) 

[ 0.6981 0.0853 0.0729] [2.9652 0.0000 00~00 l 
<P!J= 0.0486 0.3884 -0.9202 K !J = 0.0000 0.7245 

- 0.1997 0.5251 1.2978 0.0000 0 9.3104 

As seen the eigenmodes are stored column-wise in~ according to the permutation (.j1 , _h, .73) = (2, 1, 3), 
cf. Box 6.2 . 

Question 2: 

The following initializations are introduced, cf. Box 6.4 

[2~ o~ o~l l\lo = l\.1 = K 0 = K = [- ~ -~ -~] 
0 - 1 2 

(8) 
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In the l st sweep the following calculations are performed for ( i, j) = (1, 2) : 

a = 
4·0 - 2·(- 1) ~ 05} 6·2 - 2·4 { a= - 0.4142 
6·0 - 2·(- 1) 

=> 
b = = 0.5 

j3 = 0.4142 
6·2 - 2·4 

P o ~ l-0~142 
0.4142 

~] 'li1 ~ <l>oP o ~ l-0.~142 0.4142 

~] 1 1 

0 0 

[2.3431 0 -Ot2] M1 = P 6MoPo = 0 2.3431 
- 0.4142 1 

r .5147 0 0.4142] 
K 1 = P6KoPo = 0 4.2010 -1 

0.4142 - 1 2 

Next, the calculations are performed for (i,j) = (1 , 3) : 

2 . ( - 0.4142) - 1 . 0.4142 
a = 7.5147 · 1 - 2.3431 · 2 

7.5147 . ( - 0.4142) - 2.3431 . 0.4142 
b = 7.5147 . 1 - 2.3431 . 2 

= - 0.4393 } {~ = 1.0023 

= -1.4437 => j3 = - 0.3050 

l 1 
0 -0~050 l pl = 0 1 

1.0023 0 

[2.5174 
M 2 = P f M1P1 = 1.0023 

0 

l-0~142 , q>2 = <I>1P1 = 
1.0023 

1.0023 

LLJ 2.3431 

1 

- 1.0023 

4.2010 
-1 

0 l -1 

2.4465 

0.4142 -0.3050 l 
1 0.1263 
0 1 

(9) 

(I 0) 
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Finally, to end the 1st sweep the calculations are performed for ( i, j) = (2, 3) : 

2.4465 ·1-1.4707. (-1) 
a = ...,...4.-20-=-1-=-o-. -l.-:-4=-:70::-=7-:----=-2.-=-34-:-:0-=7..:.._· -=-2.--0.44--:-6=5 

4.2010 . 1 - 2.3431 . ( - 1) 
b = 4.2010 . 1.4707 - 2.3431 . 2.4465 

8.7838 } 

= 14.6745 

=> {a= - 1.2369 
j} = 0.7404 

1 0.7404 , <!>3 = <I>2P2 = 
0 0 j 

[
- 0.:142 

- 1.2369 1 

1.0023 0.7421] 
2.1193 0 

0 4.2357 

- 1.0023 

10.4174 

0 

-0.~421] 
3.2684 

1.0023 

0.7915 

0.8437 

- 1.2369 

0.0016] 
0.8667 

1 
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(11) 

At the end of the 2nd and 3rd sweep the following estimates are obtained for the modal matrix and the 
transformed mass and stiffness matrices 

[ 1.6779 -0.0129 0.1846 j 
q,6 = 0.0350 1.3400 0.8282 

-0.3741 -1.9075 1.1188 

[ 5.7469 0.1959 -0~118] [ 17.0856 - 0.1959 
0 0~ 18 j 

Mr;= 0. 1959 2.1179 K r; = - 0. 1959 19.6067 

- 0.0118 0 4.5448 0.0118 0 3.2925 

(12) 

[ 1.6780 -0.1060 0.1819 j 
<l>g= 0.1169 1.3379 0.8281 

- 0.4801 - 1.8869 1.1195 

[5.7769 0.0000 00~00] [ 17.1296 - 0.0000 - 0 ~000 j 
Mg = 0.0000 2.1139 ' Kg = - 0.0000 19.6810 

0.0000 0 4.5448 -0.0000 0 3.2925 

Presuming that the process has converged after the Jrd sweep the eigenvalues and normalized eigerunodes 
are next retrieved by the following calculations, cf. Box. 6.4 
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[

5.7769 0.0000 0.000001 1 [0.4~161 0 
m = M g = 0.0000 2.1139 m -2 = 0.6878 

0.0000 0 4.5448 0 aLl 
0 01 [2.9652 - 0.0000 - 0.00001 

>.3 0 = M;J1K9 = - 0.0000 9.3104 0.0000 

0 >.1 -0.0000 0.0000 0. 7245 

(13) 

l 0.6981 - 0.0729 0.08531 
.p = [<P(2) .p(3) .p(ll] = .P9m- ~ = 0.0486 0.9202 0.3884 

- 0.1997 - 1.2978 0.5251 

The solutions (13) are identical to those obtained in (8) for the special Jacobi iteration algorithm. In the 
present case the eigenrnodes are stored column-wise in <I> according to the permutation (j1 , j 2 , j 3) = 
(2, 3 , 1 ), cf. Box 6.4. The convergence rates of the special nd the general Jacobi iteration algorithm 
seems to be rather alike. 

A.12 Exercise 6.6 

Given the mass- and stiffness matrices defined in Exercise 4.2. 

1. Calculate the eigenvalues and normalized eigenvectors by means of QR iteration. 

SOLUTIONS: 

Question 1: 

At first , as indicated in Box 6.7 an initial similari ty trans formation of the indicated general eigenvalue 
problem into a special eigenvalue problem is perfonned with the similarity transformation matrix P = 

(s - 1) T' where s is a solution to M = ssT. ln cases is determined from an Choleski decomposition of 
the mass matrix the initial updated transformation and stiffness matrices have been calculated in Exercise 
6.3, eq. (4). The result becomes 

l~ 0 -1] if> I ~ (s - If ~ ~ v'2 
2 
0 J2 

K1 = s - 1K (s - 1f = (I) 

l! 0 0 ][6 - 1 oll~ 0 

-~] [30 
- 0.5 

051 :fj 0 - 1 4 - 1 0 vl2 = - 0.5 2.0 - 3.0 2 2 
'2 J2 0 - 1 2 0 0 0.5 -3.0 8.0 _ti 

2 
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As seen the original three diagonal structure of K is destroyed by the similarity. This may be reestab­
lished by means of a Householder transformation as described in Section 6.4. However, this will be 
omitted here, so the QR-iteration is performed on the full matrix K 1. 

At the detennination of q 1 and ru in the lst QR iteration the following calculations are performed, cf. 
(6-72) 

[ 

3.0] 
k l = - 0.5 

0.5 
[ 

3.0] 
ru = - 0.5 = 3.0822 

0.5 
(2) 

1 [ 3.0] 
q l = 3.0822 - 0. 5 

0.5 
[ 

0.9733] 
- 0 .1622 

0.1622 

q2 and r 12, r22 are determined from the following calculations, cf. (6-73) 

[ 

0.9733

1 
T r -0.5

1 
r12 = - 0.1622 2.0 = - 1.2978 

0.1622 - 3.0 

[

- 0.5] [ 0.9733] 
T22 = 2.0 + 1.2978 · - 0.1622 = 3.4009 

- 3.0 0 .1622 

(3) 

( [

-0.5] [ 0 .9733]) 
q2 = 3.4~09 2.0 + 1.2978. - 0.1622 

- 3.0 0.1622 
[ 

0.2244] 
0.5262 

-0.8202 

q 3 and r 13 , rn, r33 are determined from the fo llowing calculations, cf. (6-74) 

[ 

0.5] 
k 3 = - 3.0 

8.0 

1"13 = qf k 3 = 2.2111 , T23 = qr k3 = - 8.0282 

1"33 = lk 3 - 2.27llql + 8.0282q21 = 1.9080 (4) 

1 [0.0477] 
q 3 = 1.9080 ( k 3 - 2.2711ql + 8.0282q2) = 0.8348 

0.5486 
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Then, at the end of the 1st iteration the following matrices are obtained 

r 0.9733 0.2244 00477] 
Q l = -0.1622 0.5662 0.8348 

0.1622 - 0.8202 0.5486 
=> 

r3.0822 -1.2978 2.2711] 
R1 = 0 3.4009 - 8.0282 

0 0 1.9080 

(5) 

r 06~2 0.1587 0.0337] 
q,2 = q, l Ql = -0.2294 0.9521 0.2024 

0.2294 - 1.1600 0.7758 

r 3.5789 -1.8540 0.3095] 
K 2 = R1 Q1 = - 1.8540 8.3744 - 1.5650 

0.3095 - 1.5650 1.0466 

The corresponding matrices after the 2nd and 3rd iteration become 

r 0~53 0.4648 0.01!5] 
Q 2 = - 0.4586 0.8689 0.1861 

0.0766 -0.1700 0.9825 

r4.0425 - 5.6020 !.0719] 
R 2 = 0 6.6809 - 1.3940 

0 0 0.7405 

(6) 

[ 0.5391 0.4521 0.0706] 
q,J = q,2Q2 = - 0.6243 0.6862 0.3734 

0.7945 -1.0332 0.5489 

[ 6.2303 - 3.1708 0.0567] 
K 3 = R 2Q 2 = -3.1708 6.0422 -0.1259 

0.0567 -0.1259 0.7275 
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[ 0.8912 0.4536 0.0021 j 
Q3 = -0.4536 0.8610 0.0219 

0.0081 -0.0205 0.9998 

[ 6.9910 -5.5673 0.1135 j 
R 3= 0 3.9475 - 0.1014 

0 0 0.7274 

(7) 

[ 0.2760 0.6459 0.0816 j 
<1>4 = <P3Q3 = -0.8645 0.3206 0.3871 

1.1811 -0.5714 0.5277 

[ 8.5763 - 1.7913 0.0059 j 
K4 = R 3Q 3 = -1.7913 3.5192 -0.0148 

0.0059 -0.0148 0.7245 

As seen from R3 and K4 the terms in the main diagonal have already after the 3rd iteration grouped 
in descending magnitude, corresponding to the ordering of the eigenvalues at convergence indicated in 
Box 6.7. Moreover, for both matrices convergence to the lowest eigenvalue >.1 = 0.7245 has occurred, 
illustrating the fact that the QR algorithm converge faster to the lowest eigenmode than to the highest. 

The matrices after the 14th iteration become 

[ 

1.0000 0.0000 0.0000] 
Q 14 = - 0.0000 1.0000 0.0000 

0.0000 -0.0000 1.0000 

[

9.3104 

R 14 = 0 

0 

- 0.0000 0. 0000] 
2.9652 -0.0000 

0 0.7245 

(8) 

[ 0.0729 0.6981 0.0853 j 
<1>15 = <Pl4 Ql4 = -0.9202 0.0486 0.3884 

1.2978 - 0.1997 0.5251 

[ 9.3104 - 0.0000 o.oOoo j 
K 15 = R 14 Q l4 = -0.0000 2.9652 - 0.0000 

0.0000 -0.0000 0.7245 



214 Chapter A- Solutions to Exercises 

Presuming that convergence has occurred after the 14th iteration the following solutions are obtained for 
the eigenYalues and eigenrnodes of the original general eigenvalue problem 

01 [ 9.3104 -0.0000 0.00001 
0 = K1s = - 0.0000 2.9652 - 0.0000 

>-1 0.0000 -0.0000 0.7245 

[ 

0.0729 
~ = [ ~ (3) ~(2) ~(ll] = ~15 = - 0.9202 

1.2978 

0.6981 

0.0486 
- 0.1997 

0.0853] 
0.3884 
0.5251 

(9) 

The solution (9) agrees with the corresponding solutions for the special and general Jacobi iteration 
algorithms obtained in Exercise 6.3, eq. (8) and (14), respectively. 

A.13 Exercise 7.1 

Given the mass- and stiffness matrices defined in Exercise 4.2. 

1. Calculate the two lowest eigenrnodes and corresponding eigenvalues by simultaneous inverse vec­
tor iteration with the start vector basis 

SOLUTIONS: 

Question 1: 

The matrix A becomes, cf. (5-4) 

H 
-1 

-f[~ 
0 

:] 
[0350 

0.125 
0 0751 

A = K - 11\1 = 4 2 = 0.100 0.750 0.450 (I) 

-1 1 0.050 0.875 0.725 

Then, the lst iterated vector basis becomes, cf. (5-4) 

[0350 0.125 0075] [: _J 
[ 0 550 0 275] 

~ 1 = [~~l) ~~2)) = A~o = 0.100 0.750 0.450 = 1.300 -0.350 (2) 

0.050 0.875 0. 725 1.650 -0.675 
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At the determination of cp i1) and r 11 in the 1st vector iteration the following calculations are performed, 
cf. (7-14) 

~ ~1 r~:~~~1 ) l ~ 3.3162 

1 1 1.650 
(3) 

[

0.5501 ( [0.5501 T [2 <~>il ) = 1.3oo , ru = II<~>P ) I I = 1.300 o 

1.650 1.650 0 

1 [0.5501 [0.16591 
cpil) = 3.3162 1.300 = 0.3920 

1.650 0.4976 

cpi2) and r12, r22 are determined from the following calculations, cf. (7-16) 

r 1 
T r 0.1659 2 

, r12 = 0.3920 0 

0.4976 0 

0 0

1 

r 0.275

1 

2 1 - 0.350 = - 0.9578 

1 1 - 0.675 

r 

0.2751 [0. 16591 
r22 = - 0.350 + 0.9578 · 0.3920 = 0.6380 

- 0.675 0.4976 

(4) 

( r 
0.275

1 

r0.1659

1

) r 0.6800

1 

cpi
2

) = 0.6~80 -0.350 + 0.9578 . 0.3920 = 0.0399 
L - 0.675 0.4976 - 0.3111 

Then, at the end of the I st iteration the following matrices are obtained 

R 1 = [3.3~62 - 0.9578] 
0.6380 

[ 0 1659 0.68001 
(5) 

cpl = 0.3920 0.0399 
0.4976 -0.3111 

The reader should verify that cp1R 1 = <!>1. The corresponding matrices after the 2nd and 3rd iteration 

become 

R
2 

= [1.3
0
716 -0.1507] 

0.3392 

[

0.1053 
cp2 = 0.3897 

0.5191 

0.69441 
0.0492 

- 0.2311 

(6) 
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R, ~ [13~98 - 0.0371] 
0.3374 

[00902 0.6972] 
(7) 

~3 = 0.3888 0.0496 

0.5237 -0.2086 

Convergence of the eigenmodes with the indicated number of digits were achieved after 9 iterations, 
where 

R 14 = [ 1.3~03 -0.0000 l 
0.3372 

[0.0853 0.6981] (8) 

~9 = 0.3884 0.0486 

0.5251 - 0.1997 

Presuming that convergence has occurred after the 9th iteration the following eigenvalues are obtained 
from (7-10) and (7-12) 

A = [>-
0
1 0 l = ~TK~ = R -1 = [0.7245 0.0000] 

>.2 
9 9 

oo 0.0000 2.9652 

[

0.0853 0.6981] 
~ = [ ~ (1) ~(2)] = ~!) = 0.3884 0.0486 

0.5251 - 0.1997 

(9) 

The solution (9) agrees with the corresponding solutions obtained in Exercises 6.2 and 6.6. 
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A.14 Exercise 7.3 

Given the mass- and stiffness matrices defined in Exercise 4.2. 

1. Calculate the two lowest eigenmodes and corresponding eigenvalues by subspace iteration with the 
start vector basis 

SOLUTION: 

Question 1: 

The matrix A becomes, cf. (5-4) 

A = K -
1
M= [-~ -~ -~] -

1 

[~ ~ ~1 = 
0 -1 2 0 1 1 

Then, the 1st iterated vector basis becomes, cf. (7-4) 

[

0.350 

0.100 

0.050 

0.125 

0.750 

0.875 

0.075] 
0.450 

0.725 

[

0.350 0.125 0.075] 
~1 = [~~1 ) ~ ~2) ] = A<I>o = 0.100 0.750 0.450 

0.050 0.875 0.725 
[

1 1] [0.550 0.275] 
1 0 = 1.300 - 0.350 

1 -1 1.650 - 0.675 

(1) 

(2) 

In order to perform the Rayleigh-Ritz analysis in the 1st subspace iteration the following projected mass 
and stiffness matrices are calculated based on ~1 , cf. ( 4-59), ( 4-60), (7-32) 

[ ] T [ l [ l 0.550 0.275 2 0 0 0.550 0.275 
- - T - 10 998 

M 1 = <I>1 M<I> t = 1.300 - 0.350 0 2 1 1.300 - 0.350 = [_3 .~763 
1.650 - 0.675 0 1 1 1.650 -0.675 

- 3.1763] 
1.3244 

]

T 
0.550 0.275 6 - 1 0 

K 1 = <J?f K <l>t = [1.300 -0.350 [ - 1 4 - 1] 
1.650 - 0.675 0 - 1 2 

The corresponding eigenvalue problem (7-31) becomes 

Kt Q t = Mt Q1R1 =? 

[

0.550 0.275] [ 
1.300 - 0.350 = 

8
'
300 

-1.850 
1.650 -0.675 

[ 
8.300 - 1.850] [ (1) (2)] = [ 10.998 - 3.1763] [ (1) (2)] [P1,1 0 l =? 

- 1.850 1.575 q 1 q 1 -3.1763 1.3244 q 1 q 1 0 P2.I 

R = [0.7246 0 l 1 
0 2.9752 

Q l = [- 0.2471 -0.4845] 
0.1813 - 1.5569 

- 1.850] 
1.575 

(3) 

(4) 
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The estimate of the lowest eigenvectors after the 1st iteration becomes, cf. (7-35) 

[

0.550 0.275] [ l [- 0.0861 -0.6947] - - 0.2471 - 0.4845 
il>l = il>l Ql = 1.300 - 0.350 = - 0.3848 -0.0850 

0.1813 - 1.5569 
1.650 - 0.675 - 0.5302 0.2514 

Correspondingly, after the 2nd and 9th iteration steps the following matrices are calculated 

Rz = [ 0.7~45 2.9~62] 
[ 0.0854 0.6972] 

il>z = 0.3881 0.0603 

0.5255 -0.2162 

R = [0.7245 0 l 
D 0 2.9652 

[

- 0.0853 -0.6981] 
il>g = - 0.3884 -0.0486 

- 0.5251 0.1997 

Q = [ - 0.7245 -0.0013] 
2 

0.0004 -2.9673 

Q = [- 0.7245 - 0.0000] 
9 

0.0000 - 2.9652 

The subspace iteration process converged with the indicated accuracy after 8 iterations. 

(5) 

(6) 

(7) 

Finally, it should be checked that the calculated eigenvalues are indeed the lowest two by a Sturm se­
quence or Gauss factorization check. The 2nd calculated eigenvalue becomes P2,D = 2.9652. Then, let 
p, = 3.1 and perform a Gauss factorization of the matrix K - 3.1M, i.e. 

[

- 0.2 

K - 3.1M = -1.~ 

-1.0 
-2.2 

-4.1 
-4 . ~] 
-1.1 

~ ~] [-~.2 2~8 
- 1.4643 1 0 0 

0 l [1 5 0 l 0 0 1 - 1.4643 

- 7.1036 0 0 1 

(8) 

It follows that two components in the main diagonal of D are negative, from which is concluded that two 
eigenvalues are smaller than J-t = 3.1. In turn this means that the two eigensolutions obtained by (8) are 
indeed the lowest two eigensolutions of the original system. 

The solution (8) agrees with the corresponding solutions obtained in Exercises 6.3, 6.6 and 7. I. 
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A.15 Exercise 7.5 

Given the mass- and stiffness matrices defined in Exercise 4.2. 

1. Calculate the 3rd eigenrnode and eigenvalue by Sturm sequence iteration (telescope method). 

SOLUTION: 

Question 1: 

At first a calculation with f.L = 2.5 is performed, which produces the following results 

[ 

1.0 - 1.0 0.0] 
K- 2.5M = -1.0 - 1.0 - 3.5 

0.0 - 3.5 -0.5 

l 
~(3)(2.5) = 1 ' 

~(2)(2.5) = 1.0 

~{1)(2.5) = 1.0 ° (-1.0) - ( - 1.0)2 = - 2.0 

~(0)(2.5) = - 0.5 ° (-2.0) - (- 3.5)2 
0 (1.0) = - 11.25 

sign(~(3l(2.5)) = + 

sign(~(2l(2.5)) = + 

sign(P{ll(2.5)) = -

sign(P(0l (2.5)) =-

219 

(I) 

Hence, the sign sequence ofthe Sturm sequence becomes++ --. corresponding to the number of sign 
changes n 5 ;g11 = 1 in the sequence. One eigenvalue is smaller than Jl = 2.5. 

Similar calculations are performed for Jl. = 3.5, 4.5, ... , 9.5 

Jl = 3.5: Sign sequence = + - + + =;. nsign = 2 
{L = 4.5: Sign sequence = + - + + =;. nsign = 2 

f.L = 5.5 : Sign sequence = + - + + =;. nsign = 2 
f.L = 6.5: Sign sequence = + - + + =;. nsign = 2 (2) 

f.L = 7.5: Sign sequence = + - + + =;. n sign = 2 
Jl = 8.5 : Sign sequc'ncC' = + - + + =;. nsign = 2 

Jl = 9.5 : Sign sequence = + - + - =;. nsign = 3 

From this is concluded that the 3rd eigenvalue is placed somewhere in the interval 8.5 < >.3 < 9. 5. 

Next, similar calculations are performed for JL = 8.6, 8.7, ... , 9.4 
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J..L= 8.6: Sign sequence = + - + + ::::} nsign = 2 

J..L= 8.7: Sign sequence = + - + + ::::} nsign = 2 

J..L = 8.8: Sign sequence = + - + + ::::} nsign = 2 

J..L = 8.9: Sign sequence = + - + + ::::} nsign = 2 

J..L = 9.0: Sign sequence = + - + + ::::} n sign = 2 (3) 

J.l· = 9.1: Sign sequence = + - + + ::::} n sign = 2 

J..L = 9.2: Sign sequence = + - + + ::::} nsign = 2 

J..L= 9.3: Sign sequence = + - + + ::::} nsign = 2 

J..L = 9.4: Sign sequence = + - + - ::::} nsign = 3 

From this is concluded that the 3rd eigenvalue is confined to the interval 9.3 < >.3 < 9.4. 

Next, calculations are performed for J..L = 9.31, 9.32, ... , 9.39 

J..L = 9.31: Sign sequence = + - + + ::::} nsign = 2 

J..L = 9.32: Sign sequence = + - + - ::::} nsign = 3 

If,= 9.33: Sign sequence = + - + - ::::} nsign = 3 

J..L = 9.34: Sign sequence = + - + - ::::} nsign = 3 

J..L = 9.35: Sign sequence = + - + - ::::} nsign = 3 (4) 

J..L = 9.36: Sign sequence = + - + - ::::} nsign = 3 

J..L = 9.37: Sign sequence = + - + - ::::} nsign = 3 

1'· = 9.38: Sign sequence = + - + - ::::} nsign = 3 

J..L = 9.39: Sign sequence=+-+ - ::::} nsign = 3 

From this is concl uded that the 3rd eigenvalue is confined to the interval 9.31 < >.3 < 9.32. 

Proceeding in this manner, it may be shown after totally 52 Sturm sequence calculations that the 3rd 
eigenvalue is confined to the interval 9.31036 < >.3 < 9.31037. Each extra digit requires 9 calculations. 

Setting >.3 c::= 9 .310365, the linear equation (7-64) attains the form 

( K - 9.310365M ) ci> <3 l = 0 :::;. 

[

- 12.6207 

- 1 

0 

-1 0] 
- 14.6207 -10.3104 

-10.3104 -7.3104 

Setting <r>Pl = 1 the algorithm (7-65) now pro\'ides 

<1>(3) - ( - 12.6207) ' 1 = - 12.6207 } 
2 - - ( -1) 

<1>(3)- - -,----('--- --'1)_ . 1 - ( - 14.6207) . ( - 12.6207) = 1 
J ( - 10.3104) ( - 10.3104) 

(5) 

cl> (J) = [-12.620~] 
17.7800 

(6) 
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Normalization to unit modal mass provides 

[ 

0.0729] 
cf> (3) = -0.9202 

1.2978 

(7) 

The eigenvalue A3 ~ 9.310365 and the corresponding eigenmode cf>(3) as given by (7) agree with the 
corresponding results obtained in Exercises 6.3 and 6.6. 



S0ren R.K. Nielsen - Structural Dynamics, Vol. 9 - Computational Dynamics, 2nd edition DCE Lecture Note No. 13 


	1
	2
	3

