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Preface

This book has been prepared for the course on Computational Dynamics given at the 8th
semester at the structural engineering program in civil engineering at Aalborg University. The
course presumes undergraduate knowledge of linear algebra and ordinary differential equations,
as well as a basic graduate course in structural dynamics. Some of these prerequisites have been
reviewed in an introductory chapter. The author wants to thank Jesper W. Larsen, Ph.D., and
Ph.D. student Kristian Holm-Jergensen for help with the preparation of figures and illustrations
throughout the text.

Answers to all exercises given at the end of each chapter can be downloaded from the home
page of the course at the address: www.civil.auc.dk/i5/engelsk/dyn/index/htm

Aalborg University, June 2005
Seren R K. Nielsen

The present 2nd edition of my textbook on computational dynamic is in substance unchanged
in comparison to the Ist edition. Only discovered typing errors and some formulations have
been corrected.

Aalborg University, March 2007
Seren R.K. Nielsen
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CHAPTER 1
INTRODUCTION

In this chapter the basic results in structural dynamics and linear algebra have been reviewed.

In Section 2.1 the relevant initial and eigenvalue problems in structural dynamics are formu-
lated. The initial value problems form the background for the numerical integration algorithms
described in Chapter 2, whereas the related undamped generalized eigenvalue problem consti-
tute the generic problem for the numerical eigenvalue solvers described in Chapters 3-7. Formal
solutions to various formulations of the initial value problem are indicated, and their shortcom-
ings in practical applications are emphasized.

In Section 2.2 the semi-analytical solution approaches to the basic initial value problem of a
multi degrees-of-freedom system in terms of expansion in various modal bases are presented.
The application of these methods in relation to various reduction schemes, where typically
merely the low-frequency modes are required, has been outlined.

1.1 Fundamentals of Linear Structural Dynamics

The basic equation of motion for forced vibrations of a linear viscous damped n degree-of-
freedom system reads’

(1-1)

x(to) =%0 , X(to) = %o

Mx(t) + Cx(t) + Kx(t) = f(t) , t>tg }

x(t) is the vector of displacements from the static equilibrium state, x(¢) is the velocity vector,
X(t) is the acceleration vector, and (t) is the dynamic load vector. xy and X, denote the initial
value vectors for the displacement and velocity, respectively. K, M and C indicate the stiffness
matrix, mass matrix and damping matrices, all of the dimension n x n. For any vector a # 0
these fulfill the following positive definite and symmetry properties

a’lKa>0 , K=K
a’Ma>0 , M=M7? (1-2)

a’Ca> 0

'S.R.K. Nielsen: Structural Dynamics, Vol. 1. Linear Structural Dynamics, 4th Ed.. Aalborg tekniske Univer-
sitetsforlag, 2004.

= s
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If the structural system 1s not supported against stiff-body motions, the stiffness matrix is merely
positive semidefinite, so a” Ka > 0. Correspondingly, if some degrees of freedom are not carry-
ing kinetic energy (pseudo degrees of freedom with zero mass or zero mass moment of inertia),
the mass matrix is merely positive semidefinite, so a” Ma > 0. The positive definite property
of the damping matrix is a formal statement of the physical property that any non-zero velocity
of the system should be related with energy dissipation. However, C needs not fulfill any sym-
metry properties, although energy dissipation is confined to the symmetric part of the matrix.
So-called aerodynamic damping loads are external dynamic loads proportional to the structural
velocity, i.e. f(t) = —C,x(t). If the aerodynamic damping matrix C, is absorbed in the total
damping matrix C, no definite property can be stated.

The solution of the initial value problem (1-1) can be written in the following way'

X(f) = lth(t - T)f(’i')d’.r = a()(t — t[])X[') -+ al(t - tn)}-{()

ap(t) = h(t)C + h(t)M (1-3)

ap (t) = h(t)M

h(t) is the impulse response matrix . Formally, this matrix is obtained as a solution to the initial
value problem

Mh(t) + Ch(t) + Kh(t) = 14(t)
. (1-4)
h(07)=0 , h(07)=0
1 is the unit matrix of the dimension . x n, and 6(¢) is Dirac’s delta function.
The frequency response matrix H(iw) related to the system (1-1) is given as
.|
H(iw) = ((M)ZM + (iw)C + K) (1-5)

where 7 = /—1 is the complex unit. The impulse response matrix is related to the frequency
response matrix in terms of the Fourier transform

h(t) = % /_ ~ H(iw)etat (1-6)

The convolution quadrature in (1-3) is relative easily evaluated numerically. Hence, the solution
of (1-1) is available, if the impulse response matrix h(¢) is known. In turn, the n x n components
of this matrix can be calculated by the Fourier transforms (1-6). Although these transforms may
be evaluated numerically, the necessary calculation efforts become excessive even for a moder-
ate number of degrees of freedom n. Hence, more direct analytical or numerical approaches are
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mandatory.
Undamped eigenvibrations (C = 0, £(t) = 0) are obtained as linear independent solutions to
the homogeneous matrix differential equation

Mx(t) + Kx(t) =0 (1-7)

Solutions are searched for on the form

x(t) = ®Wgiwst (1-8)

Insertion of (1-8) into (1-7) provides the following homogeneous system of linear equations for
the determination of the amplitude &) and the unknown constant w;

(K - ,\J-M)@U) =0 , MN=u? (1-9)

(1-9) is a so-called generalized eigenvalue problem (GEVP). If M = 1, the eigenvalue problem
is referred to as a special eigenvalue problem (SEVP).

The necessary condition for non-trivial solutions (i.e. ®) #£ 0) is that the determinant of the
coefficient matrix is different from zero. This lead to the characteristic equation

P()) = det (K = AM) =1 (1-10)

P(}) indicates the characteristic polynomial. This may be expanded as

P()\) =6£-o)\"+ﬂ:1/\n_l+"'+an,—1}\+a'n (1_11)

The constants ag, a1, ..., a, are known as the invariants of the GEVP. This designation stems
from the fact that the characteristic polynomial (1-11) is invariant under any rotation of the co-
ordinate system. Obviously, ag = (—1)" det(M), and a,, = det(K). The nth order equation
(1-10) determines n solutions, A;. Aa, ..., A,

Assume that either M or K are positive definite. Then, all eigenvalues )\; are non-negative real,
which may be ordered in ascending magnitude as follows!

0SS Ehafi € (1-12)

A = ¢, if det(M) = 0. Similarly, A\; = 0, if det(K) = 0. The eigenvalues are denotes as
simple, if \y < Ay < -+ < A,y < A,,. The undamped circular eigenfrequencies are related to
the eigenvalues as follows
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wi = /X (1-13)

The corresponding solutions for the amplitude functions, ®™),... &™) are denoted the un-
damped eigenmodes of the system, which are real as well.

The eigenvalue problems (1-9) can be assembled into following matrix formulation

X 0 se: O
K [8® 8@ ... 3" = M [31) %) ... 3] ooy e W) -
D B e Xy
K® =M®A (1-14)
where
A O 0
0 XA --- 0
A= TP (1-15)
0 0 - A
and @ is the so-called modal matrix of dimension n x n, defined as
r [q)(l) 2 ... (I)(ﬂ)] (1-16)

If the eigenvalues are simple, the eigenmodes fulfill the following orthogonality properties*

SOTNBY) — {8{ ) jii (1-17)
sTgeN =) 0 1F] (1-18)
u)?ﬁ’ji y ?:j'

where M; denotes the modal mass.

The orthogonality properties (1-17) can be assembled in the following matrix equation

(@0 3.0 M [aW 3@ ... 5] = 0 My -~ 0 .
0 O ane Sy

STMP =m (1-19)
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where
My, O -« D
0 My --- 0

m=|_ (1-20)
0 0 - M,

The corresponding grouping of the orthogonality properties (1-18) reads

PTK® =k (1-21)
where
WM, 0 - 0
0 My .- 0
R (1-22
0 0 wiMn

If the eigenvalues are all simple, the eigenmodes become linear independent, which means that
the inverse ®~! exists.

In the following it is generally assumed that the eigenmodes are normalized to unit modal mass,
so m = 1. For the special eigenvalue problem, where M = 1, it then follows from (1-19) that

-l = d7 (1-23)

A matrix fulfilling (1-23) is known as orthonormal or unitary, and specifies a rotation of the
coordinate system. All column and row vectors have the length 1, and are mutually orthogonal.
It follows from (1-19) and (1-21) that in case of simple eigenvalues a so-called similarity trans-
formation exists, defined by the modal matrix @, that reduce the mass and stiffness matrices to
a diagonal form. In case of multiple eigenvalues the problem becomes considerable more com-
plicated. For the standard eigenvalue problem with multiple eigenvalues it can be shown that
the stiffness matrix merely reduces to the so-called Jordan normal form under the considered
similarity transformation, given as follows

kk 0 -+ 0
k= | . (1-24)
0 0 kT}’l.

where m < n denotes the number of different eigenvalues, and k; signifies the so-called Jordan
boxes, which are block matrices of the form
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p (1-25)

Assume that the mass matrix is non-singular so M ™! exists. Then, the equations of motion
(1-1) may be reformulated in the following state vector form of coupled 1st order differential
equations’

#t)=Az({t)+F@t) , t>tg } (56
z(to) = Zo

o x(t) %o _ 0 I _ 0 ¥y
a(t) = L((t)] PR LJ y = [—M-lK _m-ic| T = {Mif(t)] S

z(t) denotes the state vector. The corresponding homogeneous differential system reads

z(t) = Az(t) (1-28)

The solution of (1-26) becomes?

z(t) = M (c“’“” zo + /'C_ATF(T)G:T) (1-29)

to

The n x n matrix ¢?* is denoted the matrix exponential function. This forms a fundamental
matrix to (1-28), i.e. the columns of ¢** form 2n linearly independent solutions to (1-28).
Actually, eA? is the fundamental matrix fulfilling the matrix initial value problem

d
ECM =Ae? |, t>0

A-U:I

(1-30)

where I denotes a 2n x 2n unit matrix. Now, (¢Af) ™" = ¢~Af ag shown in Box 1.1. Using
this relation for ¢t = #5, (1-29) is seen to fulfil the initial value of (1-26). Since conventional
differentiation rules also applies to matrix products, the fulfilment of the differential equation

ID.G. Zill and M.R. Cullen: Differential Equations with Boundary-Value Problems, 6th Ed. Brooks/Cole,
2005.
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in (1-26) follows from differentiation of the right hand side of (1-29), and application of (1-30),
ie.

d d .
—z(t) = —eht (e'At‘Jz +/ e AF(7 d‘?‘) + e [0+ e AR (1)) =
OR o+ | eME() ( ()

t
Aeht (eAt“ Zp + f eATF(T)dT) +1IF(t) = Az(t) + F(t) (1-31)

to

The solution to (1-30) can be represented by the following infinite series of matrix products

t* 3
eAt___I_!_tA+§A2+§A3+_.. (1-32)

where A? = AA, A® = AAA etc. (1-32) is seen to fulfil the initial value eA? = I. The
fulfilment of the matrix differential equation (1-30) follows from termwise differentiation of
the right-hand side of (1-32)

2 3
%o“ =0+A+%A2+%A3+—~= 0+A(I+tA+%A2+---> = AeMt  (1-33)
The right-hand side of (1-32) converges for arbitrary values of ¢ as the number of terms in-
creases beyond limits on the right-hand side. Hence, eA? can in principle be calculated using
this representation. However, for large values of ¢ the convergence is very slow. In (1-29) the
fundamental matrix eA* is needed for arbitrary positive and negative values of ¢. Hence, the
use of (1-32) as an algorithm for ¢! in the solution (1-29) becomes increasingly computational
expensive as the integration time interval is increased. In Box 1.1 an analytical solution for cA¢
has been indicated, which to some extent circumvents this problem. However, this approach
requires that all eigenvectors and eigenvalues of A are available.

Damped eigenvibrations are obtained as linear independent solutions to the homogeneous dif-
ferential equation (1-28). Analog to (1-8) solutions are searched for on the form

z(t) = Wit (1-34)

Insertion of (1-34) into (1-28) provides the following special eigenvalue problem of the dimen-
sion 2n for the determination of the damped eigenmodes ') and the damped eigenvalues \;

(A = )\J-I)\Ii{j) —0 (1-35)

Since A is not symmetric, A; and ¥ are generally complex. Upon complex conjugation of
(1-35), it is seen that if (A, ¥) denotes an eigen-pair (solution) to (1-35), then (A*, ¥*) is also an
eigen-pair, where * denotes complex conjugation. For lightly damped structures all eigenvalues
are complex. In this case only n eigen-pairs (J;, W), 5 =1,2, ... 7 need to be considered,
where no eigen-pair is a complex conjugate of another in the set.
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Let the first n components of ¥) be assembled in the n-dimensional sub-vector ®). Then,
from (1-27) and (1-34) it follows that

x(t) = ®UeMt = x(t) = N;@Y)eM! (1-36)

Consequently, the damped eigenmodes must have the structure

Hl7)

) —
i A;®0)

(1-37)

Hence, merely the first n components of W) need to be determined.

The eigenvalue problems (1-35) can be assembled into the following matrix formulation, cf.
(1-14)-(1-16)

AL 0 -+ 0
A[E0 g ge)] = [g0 g@ . ge] |0 A D
0 0 - o
AU = WA, (1-38)
where
A0 0
= O /\‘2 0 (1-39)
2 I
¥ = [0 ¢ g )

The following representation of A in terms of the damped eigenmodes and eigenvalues follows
from (1-38)

A=UA,T! (1-41)
Assume that another 2n x 2n matrix B has the same eigenvectors W) as A, whereas the

eigenvalues as stored in the diagonal matrix A g are different. Then, similar to (1-41), B has the
representation

B=UApT! (1-42)
The matrix product of A and B becomes

AB = WA, P WART ™! = WA AP ! (1-43)
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Since A4 and Ap are diagonal matrices, matrix multiplication of these is commutative, i.e.
AsAp = ApA 4. Then, (1-43) may be written

AB = UAZA, 01 = GART 1WA, T = BA (1-44)

Consequently, if two matrices have the same eigenvectors, matrix multiplication of two matri-
ces is commutative. Identical eigenvectors of two matrices can also be shown to constitute the
necessary condition (the “only if” requirement) for commutative matrix multiplication.

The so-called adjoint eigenvalue problem to (1-35) reads
(AT e u,;I)\IJff) -0 (1-45)

Hence, (4, \Ilff}) denotes the eigenvalue and eigenvector to the transposed matrix AT. In Box
1.2 it is shown that the eigenvalues of the basic eigenvalue problem and the adjoint eigenvalue
problem are identical, i.e. v; = A;. Further, it is shown that the eigenvectors W) and o
fulfill the orthogonality properties

‘I'Q”T‘I’”)={Tg_ , 27:; (1-46)
\Ilg”TAq:(fJ:{kZT * zij (1-47)

where m; is denoted the complex modal mass. Without any restriction this may be chosen
as m; = 1. Then, the orthogonality conditions (1-46) and (1-47) may be assembled into the
following matrix relation

e =1 (1-48)

CTAD = A, (1-49)
where

T, = [0 0D ... g (1-50)

From (1-48) follows that
v, = (e (1-51)

Hence, the eigenvectors T of the adjoint eigenvalue problem (the column vectors in W,)
normalized to unit modal mass are determined as the row vectors of ¥~1. The eigenvectors
W) of the direct eigenvalue problem may be arbitrarily normalized. Of course, if ();, \I'Ef)) is

an eigen-solution to the adjoint eigenvalue problem, so is the complex conjugate (A!, \Ilﬁf')*).
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Box 1.1: Matrix exponential function

Multiple application of (1-41) provides for k = 1,2, . ..

A?=AA =TUAT T TA,T! = DAL

A= AA? =TAL U T PALT ! = TAS O]
(1-52)

AT = AAT = DAL BT OA B = DA @]

Ai;fl is a product of diagonal matrices, and then becomes a diagonal matrix itself. The
diagonal elements become )\“,1_“, where )\ is the corresponding diagonal element in A 4.
Consider the matrix exponential function, cf. (1-32)

tQ

t3
Q!Ai + A%+ (1-53)

Mt =T+ tAs + 3

Since all addends on the right-hand side of (1-53) are diagonal matrices, it follows that
also e®4? becomes diagonal with the diagonal elements

£ t?

L4 the g+ ghi oo = e (1-54)
where the Maclaurin series for the exponential function has been used in the last state-
ment. Then, from (1-32), (1-52) and (1-53) follows
t3

tiZ
JAL 2

K2 s -)\Irl — Pt (1-55)
For arbitrary positive or negative t; and ¢, it then follows that

eAlloAig - lI]eAAil\Il—l quAAtZ\II—l - WCAAT.—_LCAAT.Q\I‘,fl - ‘IIGAA(t1+t2)‘IJ—1 =

pAlt1+2) (1-56)

(1-56) represents the fundamental multiplication rule of matrix exponential functions.
Especially for {; = ¢ and {3 = —t we have

eMle Al = A0 T o A ((:’“’)71 (1-57)
Further,
A=A AT = TATT , n=1,2,. .. (1-58)

(1-58) is proved by insertion of (1-52) and (1-58) into the identity A" A" = I. As seen,
e and A" have identical eigenvectors. Then, from (1-44) it follows that

ATAt = MAT =19, ... (1-59)
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Box 1.2: Proof of orthogonality properties of eigenvectors and adjoint eigenvectors

(1-35) is pre-multiplied with W7, and (1-45) is pre-multiplied with W7, lead-
ing to the identities

TOTAPY) = ), O Tg0) (1-60)
\If(j)TAT‘I'S) = yiq;(j)T@‘_(:) =
‘I,S-)TAlI,(j) = yilIlgi)T\IJ(j) (1-61)

The last statement follows from transposing the previous one. Withdrawal of (1-61) from
(1-60) provides

(A — ) EOTEO =0 (1-62)
For i = j, (1-62) can only be fulfilled for v; = \;, since U/ T @@ £

Next, presume simple eigenvalues, so A; # A;. Then, for i # 7, (1-62) can only be
fulfilled, if ¥ = 0, corresponding to (1-46).

Since the right-hand side of (1-60) is zero for i # j, this must also hold true for the left-
hand side, i.e. TITATU) = 0 for i # j. Then for i = j, (1-60) provides the result
wPT AW = \;m;, which completes the proof of (1-47).

Example 1.1: Equations of motion of linear viscous damped 2DOF system

b3 fa
3 k1 ko = ks
—— AW —— ——AAA— A
my g 3
= m= =
= L U=
QL Pty 2 s
! =2
fi I2
k121 ky(2e — 21) 3y
my ma
ey cy(tg — 1) C3Lo
TPT7S7 s

Fig. 1-1 Equation of motion of linear viscous damped 2DOF system.

The two-degree-of-freedom system shown on Fig. 1-1 consists of the masses m; and s connected with linear
elastic springs with the spring constants &, kg, &3, and linear viscous damper elements with the damper constants
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¢1, ¢g, ca. The displacement of the masses from the static equilibrium state are denoted as z;(t) and z2(t). The
velocities ;(t) and accelerations &;(t) are considered positive in the same direction as the displacements z;(t)
and the external forces f;(t). The masses are cut free from the springs and dampers in the deformed state, and
the damper- and spring forces are applied as equivalent external forces. Next, Newton’s 2nd law of motion is
formulated for each of the masses leading to

m]_.’.'Ll'l = —klscl + kg(.’llz — 551) —¢1® + ¢ (232 —= .Ll) + f] (f) (1 63)
Mals = —kawa — ka(z2 — 1) — e — ez — &1) + fa(t)
(1-63) may be formulated as the following matrix differential equations

Mx(t) + Cx(t) + Kx(t) =f(t) , t>tp W

z1(t) fi(t)

= 3 f(t) =

Lm(t)] “ [fz(t) (1-64)
M= |™ 0 . e 1+ co —ey L B k1 + ko —ko

0 ma —C3 ¢y +c3 —ko ko + ka

For each of the masses an initial displacement z;(tg) = ;¢ from the static equilibrium state and an initial velocity
&;(tg) = &; o are specified. These are assembled into the following initial value vectors

X = x(tg) = [‘”1‘“} , %o =x%(ty) = Fl‘o] (1-65)

T2,0 da.0

The presented system will be further analyzed in various numerical examples throughout the book.

Example 1.2: Discretized equations of motion of a vibrating string

Al
F l (D @ @ h—-1) (n F
-t T % x I- ') ) ') -
'ul L“L? hi(«”v, t) "“*J hl’j-\-l {Umfz Un—1
4 L ¥
—u

Fig. 1-2 Discretization of vibrating string.

Fig. 1-2 shows a vibrating string with the pre-stress force F', and the mass per unit length . The string has been
divided into n identical elements, each of the length Al. Hence, the total length of the string is | = nAl. The
displacement w(z,t) of the string at the position x: and time ¢ in the transverse direction is given by the wave
equation with homogeneous boundary conditions®

9%y 8u
ugm —Fgm =0 , =€l (1-66)

uw(0,t) = u(l,t) =0
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where x is measured from the left support point. The spatial differential operator in (1-66) is discretized by means
of a central difference operator,? ie.

Pu(wi,t) = F

3 Oz? Al?

2

(i1 —2u;+uiq) , t=1,...,m—1 (1-67)

where u;(t) = u(zi,t), =; = iAl Further, let il;(t) = ;Ju(w;,t). The boundary conditions imply that ug(t) =
un (t) = 0. Then, the discretized wave equation may be represented by the matrix differential equation

Mx(t) + Kx(t) = 0 (1-68)
[ wy(t) 1 0 0 --- 0 0" 2 -1 0 --- 0 0]
ua(t) 010 « 00 =4 B =t e G0
us(t) 001 - 00 Flo-1 2 .. 0 o
x(t) = . TM=p|, . ;K:@ . .
[Un—1(t)] 0 0 0 --- 0 1] | § & § ~ -3 g
(1-69)

Alternatively, the wave equation may be discretized by means of a finite element approach. Assuming linear inter-
polation between the nodal values stored in the vector x(t), and using the same interpolation for the displacement
field and the variational field ( Galerkin variation), the following mass- and stiffness matrices are obtained

(4 1 0 0 0] [ & < W weee 0 @

1 4 1 0 0 = B = 0 0

phAt |0 T 4 <= G D F|l 0O -1 2 .. 0 0
M="—r K= — L

000 -+ 41 o 0 0 -+ 2 -1

0 0 0 --- 1 4] Lo 0 0 --- -1 |

(1-70) represents the so-called consistent imass matrix, for which the same interpolation algorithm is used for dis-
cretizing the kinetic and the potential energy.! By contrast the diagonal mass matrix in (1-69) is referred to as a
lumped mass matrix. As seen the central difference operator and Galerkin variation with piecewise linear inter-
polation leads to the same stiffness matrix. The presented system will be further analyzed in various numerical
examples in what follows.

The calculated eigenvalues based on the system matrices (1-69) and (1-70) are shown in Fig. 1-3 as a function of
the number of elements 7. The solutions based on the lumped mass matrix (1-69) and the consistent mass (1-70)
are shown with dotted and dashed signature, respectively. The numerical solutions have been given relative to the
analytical solutions

; ¥ ;
Wia =JM[ J=100,4 (1-71)

As seen, the consistent mass matrix provides upper-bounds in accordance with the Rayleigh-Ritz principle de-
scribed in Section 4.2. By contrast the lumped mass matrix provides lower bounds, when used in combination
with the consistent stiffness matrix. There is no formal proof of this property, which merely is an empirical obser-
vation fulfilled in many dynamical problems. The indicated observation immediately suggest that an improvement
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of the numerical solutions may be obtained by using a linear combination of the consistent and the lumped mass

matrix. Typically, the mean value is used leading to the mass matrix

4 1 0 0] 1
141 0 0 0
1uAl |01 4 0 1
aan o (EERPIE M
00 0 41 0
0 0 0 4] 0

10 1 0 0 0]

1 10 1 0 0
pAL|0 1 10 -~ 0 0
0 0 0 10 1

L0 0 0 .- 1 10]
(1-72)

(1-72) is solved with the consistent stiffness matrix (1-70). The results are showed with a dashed-dotted signature
on Fig. 1-3. As expected the results show a significant improvement. A theoretical argument for using the mean
value of the consistent and lumped mass matrices for the combined mass matrix has been given by Krenk.?

1.02
1.06
\
1.01} A 1.04;
N
g = s 1.02 -
J B = e
=2 1 = 31 =
— o™
3 y 3 0.8
0.99 0.96} -
0.94}
0.98 - : : - :
5 10 15 20 25 30 10 15 20 25 30
n n
\ 1.2
1-1 \
N
~ 1:1
g S s Feag
] B =~ s T
31 = e 3 - e
0 — =
g 3
0.95¢ | 0.9}
0.9} . g
i 0.8}
0.85 : : : : ‘
5 10 15 20 25 30 10 15 20 25 30
) n
Fig. 1-3 Undamped eigenvibrations of string. —: Analytical solution. - - - : Consistent mass matrix. .... :
Lumped mass matrix. -.-. : Combined mass matrix.

3S. Krenk: Dispersion-corrected explicit integration of the wave equation. Computer Methods in Applied
Mechanics and Engineering, 191, pp. 975-987, 2001.
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Example 1.3: Verification of eigensolutions

Given the following mass- and stiffness matrices

5 =
IS 0-m
0 = -2 2
Verify that the eigensolutions with modal masses normalized to 1 are given by
2 4 2
% = %0 02 _ 2 0 Y - {q,(l) @(2)} — |= 5 (1-74)
0 ws 0 12 L =2

Based on the proposed eigensolutions the following calculations are performed, cf. (1-14)

4 2
ke~ | 5 2|3 F_|2 ¢
-2 2/ |1 -2 2 -
(1-75)
3 4 2
Maa< |3 O|[F E[|2 0|_|2 &
$111 -2[ |0 12 z _#

This proofs the validity of the proposed eigensolutions. The orthonormality follows from the following calcula-
tions, cf. (1-19) and (1-21)

x
PTMP = % % % 0 % % - 1o
1 -2{ [0 %||1 -2 0 1
(1-76)
s 2]7T & 4 2
@TK§= 5 5 9] -2 5 5 - 2 0
1 =2 -2 2| |1 -2 0 12
Example 1.4: M- and K-orthogonal vectors
Given the following mass- and stiffness matrices
5 00 2 -1 0
M= |0 0 , K=]-1 4 -1 (1-77)
00 3 0 -1 2
Additionally, the following vectors are considered
1 1
= A = |—ald (1-78)
0 0
From (1-78) the following matrix is formed
1 1
. — 2 2
V = [Vl Vz] = \/T 7\’7 (]_79)
0 0
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We may then perform the following calculations, cf. (1-19) and (1-21)

T
L1 1001 1 o
e = —
0 0 00 2/ L0 0O
(1-80)
&
1 1 2 -1 0 1
- ‘ 7 ? 0 54142
0 0 0 -1 2]Lo 0

(1-80) shows that the vectors v, and v, are mutual orthogonal with weights M and K, and that both have been
normalized to unit modal mass. As will be shown in Example 1.5 neither v; nor v are eigenmodes, and the eigen-
values are different from 2.5858 and 5.4142. However, if three linear independent vectors are mutual orthogonal
weighted with the three-dimensional matrices M and K, they will be eigenmodes to the system.

Example 1.5: Analytical calculation of eigensolutions

The mass- and stiffness matrices defined in Example 1.4 are considered again. Now, an analytical solution of the
eigenmodes and eigenvalues is wanted.

The generalized eigenvalue problem (1-9) becomes

2-4) -1 0 ol 0
=) =y =] 3| = |o (1-81)
0 =1 2=1ix] ol 0

The characteristic equation (1-10) becomes

2-1) -1 0
P(A) = det =1 4-) =1 -
0 -1 2-1)

2 j=
Ai=4q4 , j=2 (1-82)
6

Initially, the eigenmodes are normalized by setting an arbitrary component to 1. Here we shall choose @éj) =1
The remaining components @ﬁ” and @;ﬂ are then determined from any two of the three equations (1-81). The
first and the second equations are chosen. corresponding to

(J) 2
9_1y. _1 1 [a@ 0 @y Ta—8x,+A2
277 1. = = (b“j _ Y ([_83)
- — X ) 2 T4—8A;+ A2
14— |85 1 2 :
q,SJ) 1

The modal matrix with eigenmodes normalized as indicated in (1-83) is denoted as &. This becomes
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1 -1 1
=11 0 -1 (1-84)
I A

The modal masses become, cf. (1-19)

2 0 0
m=3"M&= 1[0 1 0 (1-85)
00 2

& (1) denotes the 1st eigenmode normalized to unit modal mass. This is related to ®(1) in the following way

1
1 [ 1
H1) = _ &) — 1-86
VM V2 1 : ;

The other modes are treated in the same manner, which results in the following eigensolutions

wi 0 0 2 0 0 2 o1 o
A=|0 w? 0|=1|[0 4 0f , @:[{:qu(?)@@)]: S (1-87)
0 0 w2 [oo0 6 2

Example 1.6: Undamped and damped eigenvibrations of 2DOF system

.. 100 N/m 200 N/m 300 N/m
W e T e[ 2
3kgls 7777727 2kgls 7rrr7  lkgls
=T =22

Fig. 1-4 Eigenvibrations of 2DOF system.

The system in Example 1.1 is considered again with the structural parameters defined in Fig. 1-3. The mass-
damping and stiffness matrices become, cf. (1-64)

o
m

(1-88)

. ¥ ==
M= |l O . co| B 2|k g | 300 200
0 2 -2 3| s -200 500

The eigensolutions with modal masses normalized to 1 become

2 ¢
Ao e 0} _ [131.39 0 ]5_2 e [q,m@(z,] _ [0.64262 0.76618} (i56)

0 wk 0 418.61 0.54177 —0.45440
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The matrix A defined by (1-27) becomes

0
0 I 0
A = =
~-M~IK -M~IC —300
100
The eigenvalues and eigenfunctions become
A 0 0 0
e 0 X 0 0]_
0 0 A O
0 0 0 M
—0.7763 + 11.480% 0
0 —2.4737+20.2311
0 0
0 0
B
o= [ g@ §® \11(4)] =
A

1.1693 — 0.1414z
1

0.7153 + 13.534¢
—0.7763 + 11.480¢

—1.6846 — 0.36571
1

11.565 — 33.177¢
—2.4737 + 20.231¢

—250

1

0.7153 — 13.5341
—0.7763 — 11.480:

1 0
0 1
(1-90)
-50 2.0
1.0 -1.5
(1-91)
0 0
0 0
~0.7763 — 11.480¢ 0
0 —2.4737 — 20.2314
H(2) H” H2)"
A®3) et A () B
1.1693 + 0.1414i —1.6846 + 0.36571 (1-92)

1

11.565 — 33.177¢
—2.4737 — 20.2314

As seen from (1-92) the second component of the sub-vectors (1) and ®(?) has been normalized to one. Hence,
the entire modal matrix with 16 components is defined by merely 4 entities, namely the the first component of the
sub-vectors (1) and &) and the eigenvalues A, and Ay.

The eigenvectors of the adjoint eigenvalue problem follows from (1-51) and (1-92)

vo= () = [BP 2P 9P ) = (B0 8P B e =

0.1723 — 0.0430:
0.3007 + 0.0411:
—0.0004 — 0.0154:
0.0025 — 0.0260:

—0.1723 + 0.0388:
0.1993 — 0.0592:
0.0004 + 0.00877

—0.0025 — 0.0098:

0.1723 + 0.0430:
0.3007 — 0.0411:
—0.0004 + 0.01544
0.0025 + 0.0260¢

—0.1723 — 0.0388i
0.1993 4 0.0592:
0.0004 — 0.00874

—0.0025 + 0.0098:

(1-93)

As seen \I’f,a) and \I"({g) become the complex conjugates of \I-'fl“ and \Ilff), cf. remarks subsequent to (1-51).
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1.2 Solution of Initial Value Problem by Modal Decom-
position Techniques

Assume that undamped eigenmodes @) in addition to the orthogonality properties (1-17) and
(1-18) also are orthogonal weighted with the damping matrix, i.e.

eOTCPp) — 0 ¥ 7é3' (1-94)
2w, =]

(; denotes the modal damping ratio. In practice (1-94) is fulfilled, if the structure is lightly
damped and the eigenfrequencies are well separated.! The orthogonality properties may be
assembled into the following matrix relation similar to (1-19) and (1-21)

dTC® =c (1-95)
where
2w1C1M1 0 HiHA 0
0 2 My --- 0
i e (1-96)
0 U = anunn

The undamped eigenmodes are linear independent and may be used as a basis in the n-dimensional
vector space. Hence, the displacement vector x(¢) may be written as

§ a(t)
x(t) = 3 80 (0) = 3a(t) , q(t) = |2 (1-97)
=1 :
J dn(t)
where q,(t), ..., q,(t) represent the undamped modal coordinates, i.e. the coordinates in the
vector basis formed by the undamped eigenmodes ®*), ..., & Insertion of (1-95) into (1-

1), followed by a pre-multiplication with ®7 and use of (1-19), (1-21), (1-94), provides the
following matrix differential equation for the modal coordinates

q(t) +cq(t) +kq(t) =F() , t>t
mq(t) + cq(t) + kq(t) = F(t) "} (1-98)
0

alte) =87 'xp , qlty) =d 'x

where
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Fi(t)

F(t) = ®7f(t) = Fzz(t) (1-99)
Fu(t)

Fi(t), ..., F,(t) are denoted the modal loads. Since m, c and k are diagonal matrices the

component differential equations related to (1-98) decouple completely. This is caused by the
orthogonality condition (1-94) for which reason this relation is referred to as the decoupling
condition. The differential equation for the kth modal coordinate reads

M (G (8) + 2Gendn() + wfau(t)) = Filt) , k=1,...,n (1-100)

Hence, the decoupling condition reduces the integration of a linear n degrees-of-freedom sys-
tem to the integration of 7 single-degree-of-freedom oscillators.

Typically, the dynamic response is carried by lowest modes in the expansion (1-97). Assume
that the modal response above the first n; < n may be disregarded. Then (1-97) reduces to

Th]

x(t) = > dWg;(t) = @104 () (1-101)

J=1

where @, is a reduced modal matrix of dimension n x ny, and q; (¢) is a sub-vector of modal
coordinates defined as

q(t)

q2(t)

P, = [V @ ... M | qyt) = (1-102)

Gy (1)

(1-101) completely ignores the influence of the higher modes. Although the dynamic response
of these modes are ignorable, they may still influence the low-frequency components via a
quasistatic response component. A consistent correction taken this effect into consideration
reads’

] ] n1 1 ! Foos
x(t) = Y ®Wg;(t) + (Kl -3 QMQ(J)@U”) £(t) (1-103)
j=1 by

j=1

(1-103) may be represented in terms of the following equivalent matrix formulation

x(t) ~ ®yqu(t) + (K-l — B, k! @lT)f(t) (1-104)
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where
w2 M, 0 . 0
0 w%Mg e 0
k, = : : . ; (1-105)
0 0 e w,ﬁle

Both (1-101) and (1-103) requires knowledge of the first n; eigen-pairs (w3, &)Y, The corre-
sponding modal coordinates are determined from the first n; equations in (1-100).
Correspondingly, the 2n eigenvectors ) j = 1, ..., 2n of the matrix A form a vector basis
in the 2n-dimensional vector space. Then, the state vector z(¢) admits the representation

2n
2(t) = > WOq(t) = Tq(t) (1-106)
J=1
where
q1(t)
14
att) = | 2 (1-107)
q2n(t)
q1(t), ..., qon(t) represent the damped modal coordinates, i.e. the coordinates in the vector

basis made up of the damped eigenmodes W), . ¥ Insertion of (1-106) into (1-26),
followed by pre-multiplication of W1 and use of (1-48), (1-49), the following matrix differential
differential equations for the damped modal coordinates is obtained

q(t) = Asq(t) + G() , t>t
(1-108)
Q(tg) = lI’_IZO = \IJZ:Z()
where
G (1)
G(t) = UTF(t) = G‘z__(t) (1-109)
GE?z(t)

In the initial value statement of (1-106) the relation (1-51) between the adjoint and direct modal
matrices has been used. G;(t) = WTF(t) denotes the jth damped modal load.
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(1-108) indicates 2n decoupled complex 1st order differential equations. The differential equa-
tion for the jth modal coordinate reads

g(t) = g () +G;(t) . J=1,...,2n (1-110)

Since, (Ajsn, \Iléjm)) = (,\_;.,1];&7')*) forn =1, ..., n, it follows that Gj,(t) = G;(t), and
in turn that g;.,,(¢) = g;(t). Hence, merely the first n differential equations (1-110) need to be
integrated. Then, (1-104) may be written

z(t) = 2Re (Z \I:U)gj(t)) (11115

J=1

As is the case for expansion in undamped modal coordinates the response is primarily carried
by the lowest n; modes leading to the following reduced form of (1-111)

z(t) ~ 2Re (Zl ¥q; (t)) (1-112)

g=1
where
q:(t)
t
U, = [\I;(l) o . .111(”1)} . qu(t) = QQF ) (1-113)
Gn, (t)

(1-101), (1-103) and (1-112) describes the dynamic system with less coordinates than the orig-
inal formulation (i-1). For this reason such formulations are referred to as system reduction
schemes. A system reduction scheme with due consideration to the quasi-static response may
also be formulated as a correction to (1-112).!

1.3 Conclusions

On condition that the convolution integral is evaluated numerically an analytical solution to
the initial value problem (1-1) is provided by the result (1-3). Since this solution relies on the
Fourier transform of the frequency matrix (1-6) for the impulse response matrix, the approach
becomes computational prohibitive for a large number of degrees of freedom. Alternatively,
if the initial value problem is reformulated in the state vector form (1-26) the analytical solu-
tion (1-29) is obtained. This solution relies on the fundamental matrix in terms of the matrix
exponential function for the corresponding homogeneous differential system (1-28). The ma-
trix exponential function may be calculated analytically as indicated by (1-55), but the solution
requires all eigen-solutions to the system matrix A. Again, the calculation of these becomes
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prohibited for large systems. Hence, both analytical or semi-analytical solution approaches are
out of the question for large degree-of-freedom systems.

The state vector formulation (1-26) directly admits the application of vectorial generaliza-
tions of standard ordinary differential equation solvers such as the Euler method, the extended
Euler method, the various Runge-Kutta algorithms or the Adams-Bashforth/Adams-Moulton
algorithm.? As is the case for all conditional stable algorithms the numerical stability of these
schemes is determined by the length of the time step in proportion to the eigenperiod of highest
mode of the system. Hence, in order to insure stability for large scale systems excessive small
time steps becomes necessary, which means that the high accuracy of some of these algorithms
cannot be utilized. Consequently, there is a need for numerical matrix differential solvers for
which the length of the time step is determined from accuracy rather than stability. These al-
gorithms predict stable although inaccurate responses for the highest modes. Instead, the time
step is adjusted to predict accurate results for the lowest modes, which carry the global response
of the structure. The devise of such algorithms will be the subject of Chapter 2.

System reduction schemes such as (1-101), (1-103) and (1-112) require a limited number of
low-frequency eigen-pairs to be know. Since, the high frequency components have been filtered
out the numerical integration of the modal coordinate differential equations (1-100) and (1-110)
may be performed by standard ordinary differential solvers or by modification of the methods
devised in Chapter 2. Hence, the primary obstacle in using these methods is the determination
of the low frequency eigen-pairs. This problem will be the subject of the Chapters 3-7 of the
book. Moreover, only solutions to the GEVP (1-9) will be considered, i.e. the involved system
matrices are assumed to be symmetric and non-negative definite.
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1.4 Exercises

1.1 Given the following mass- and stiffness matrices

100 2 -1 0
M=1020 , K=[-1 20
00 3 0 0 3

(a.) Calculate the eigenvalues and eigenmodes normalized to unit modal mass.
(b.) Determine two vectors that are M-orthonormal without being eigenmodes.

1.2 The eigensolutions with eigenmodes normalized to unit modal mass of a 2-dimensional

generalized eigenvalue probem are given as

M0 1o
0 M| |04

(a.) Calculate M and K.

A= . D= [(I)(U <I)(2)] =

V2
2
_V2

NER

2

1.3 Write a MATLAB program, which solves the undamped generalized eigenvalue problem
for the vibrating string problem considered in Example 1.2 for both the finite difference and
the finite element discretized equations of motion. The circular eigenfrequencies should
be presented in ascending order of magnitude, and the related eigenmodes should be nor-

malized to unit modal mass.

(a.) Use the program to evaluate the 4 lowest circular eigenfrequencies of the string as a
function of the number of elements n for both discretization methods, and compare
the numerical results with the analytical solution (1-71).

(b.) Based on the obtained results suggest a mass matrix, which will do better.

1.4 Write a MATLAB program, which solves the undamped and damped generalized eigen-

value problems considered in Example 1.6.




CHAPTER 2
NUMERICAL INTEGRATION OF
EQUATIONS OF MOTION

This chapter deals with the numerical time integration in the finite interval [¢g, g + 77| of the
initial value problem (1-1). The solution is searched for . The idea of the numerical integration
scheme is to determine the solution of (1-1) approximately at the discrete instants of time ¢; =

to+jAL, 7=1,2, ..., n,where At = T/n. To facilitate notations the following symbols are
introduced
X; = X(fj) " }.{j = X(tj) y XJ = X(tj.) y f;.' = f(t;,) y _j' = 0, 1, i oy T (2-—1)

Singlestep algorithms in numerical time integration in structural dynamics determines the dis-
placement vector x;,, the velocity vector x;,, and the acceleration vector X;;; at the new
time ¢,,1, on condition of knowledge of x;, x;, X; at the previous instant of time, as well as
the load vectors f; and f;,; at the ends of the considered sub-interval [t;,¢;41]. In multistep
algorithms the solution at the time ¢, also depends on one or more solutions prior to the time
t;. Additionally, distinction will be made between singlevalue algorithms, which solves solely
for the displacement vector x;, and multivalue algorithms, where the solution is obtained for a
state vector encompassing the displacement vector x;, the velocity vector x;, and in some cases
even the acceleration vector x;. Generally, singlevalued algorithms require less computational
efforts than multivalued algorithms. Classical algorithms in numerical analysis such as the vec-
tor generalization of the Runge-Kutta methods' may be used for the solution of (1-1). However,
given that large scale structural models contain very high frequency components, these schemes
may become numerical unstable unless extremely small time steps are used. For this reason the
devise of useful algorithms in structural dynamics is governed by different objectives than in
numerical analysis, as will be further explained below.

Newmark algorithms® treated in Section 2.1 are probably the most widely used algorithms in
structural dynamics for solving (1-1). The derived singlestep multivalue formulation of the
methods serves as a generic example for specification of accuracy, stability, and numerical

'D.G. Zill and M.R. Cullen: Differential Equations with Boundary-Value Problems, 6th Ed. Brooks/Cole,
2005.

IN.M. Newmark: A4 Method of Computation for Structural Dynamics. ].Eng.Mech., ASCE, 85(EM3), 1959,
67-94.

o B e
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damping in time integration.

High frequency modes of the spatially discretized equations (1-1) does not represent the be-
havior of the underlying physical problem very well. The corresponding modal components
merely behave as numerical noise at the top of the displacement response carried by the lower
frequency modes. However, the kinetic energy of these modes, which increases proportional
with the squared frequency, may be significant. For this reason it is desirable to filter these
components out of the response. In numerical time integrators in structural dynamics this is
achieved by the introduction of numerical (artificial) damping, which are affecting merely the
high frequency modes. However, it turns out that numerical damping cannot be introduced
in the Newmark algorithms without compromising the accuracy of the response of the lower
modes. Several suggestions to remedy this problem have been suggested. Here, we shall con-
sider the so-called generalized alpha algorithm suggested by Chung and Hulbert,? which seems
to be the most favorable single step single valued algorithm for this purpose. The outline of the
text relies primarily on the monographs of Hughes *° and Krenk.®

2.1 Newmark Algorithm

The Newmark family consists of the following equations

M0 + O+ Kxp =64, j=1,...,n (2-2)
. L e s .

Xjp1 = Xj + X5 At + (5 = J)Xj + ﬁXj+1 At (2-3)

X1 =% + ((1 — ’J’))"(j &= "y)"(j+1)/_\t (2-4)

(2-2) indicates the differential equation at the time ,,, which is required to be fulfilled for the
new solution for X;;1, X;41, Xj4+1. (2-3) and (2-4) are approximate Taylor expansions, which
have been derived in Box 2.2. The parameters /7 and -y determines the numerical stability and
accuracy of the algorithms. The Newmark family contains several wellknown numerical al-
gorithms as special cases. Examples are the central difference algorithm treated in Examples
2.2 and (2-6), which corresponds to (8,7) = (0, 3), the Crank-Nicolson algorithm treated in

Example 2.3, which corresponds to (4,v) = (},3), and the Fox-Goodwin algorithm, where

(ﬁ:"r) e (Tlia %)

*1. Chung and G.M. Hulbert: 4 time Integration Algorithm for Structural Dynamics with Improved Numerical
Dissipation: The Generalized «« Method. Journal of Applied Mechanics, 60, 1993, 371-375.

“T.J.R. Hughes: The Finite Element Method. Linear Static and Dynamic Finite Element Analysis. Printice-Hall,
Inc., 1987.

ST.JR. Hughes: Analysis of Transient Algorithms with Particular Reference to Stability Behavior. Chapter
2 in Computational Methods for Transient Analysis. Vol 1 in Computational Methods in Mechanics, Eds. T.
Belytschko and T.J.R. Hughes, North-Holland, 1983.

¢S. Krenk: Dynamic Analysis of Structures. Numerical Time Integration. Lecture Notes, Department of Me-
chanical Engineering, Technical University of Denmark, 2005.
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There are several implementations of the methods. The most useful is the following single step
single value implementation. At first, define the following predictors

. 1 .
ij-i—l =X; =+ X At + (5 = )3) /_\tz X (2—5)
X =%+ (1-7)At% (2-6)

(2-5) and (2-6) specify predictions (preliminary solutions) for x; 1 and ;1 based on the infor-
mation available at the time ¢;. The idea of the algorithm is to insert (2-3) and (2-4) into (2-2).
Given that the solution is required to fulfill the equations of motion at the time t;,;, and using
(2-5) and (2-6), the following equations are obtained for the new acceleration vector in terms of
known solution quantities from the previous time and the load vector f;;;

(M + yALC + ,aAtﬂK)in = £ — Ckjp1 — KR : -7

Next, based on the solution for X, obtained from (2 — 7), corrected (new) solutions for X;,1
and x;,; may be obtained from (2-3) and (2-4). These may be written as

Xj41 = Ryq1 + BAL %5 (2-8)
Xj1 = Xj41 + YA K 2-9)

To start the algorithm the acceleration X at the time ¢y is needed. This is obtained from the
equation of motion

M';C(] = fg == CX() = KXO (2*10)

The algorithm has been summarized in Box 2.1. In stability and accuracy analysis a singlestep
multivalue formulation for the state vector made up of the displacement and velocity vectors
is preferred. In order to derived this, egs. (2-3) and (2-4) are multiplied with M. Next, the
accelerations are eliminated by means of the differential equations at the times t; and £,44,
leading to

RIXj.i_l = M'Xj =4 M A?‘JXJ +

1 : :
((2 - 8) (fj — CXJ‘ — KXj) + 8 (fj-i—l - CXj-H - KX;,_H))A?EZ
M = Mx; +

((1 = oy = Oy = Kiats ) oy (Ba — Oy — KXJ+1)) At

M + BAPK  BALC Xit1| _
VALK M+ yALC| %4

M- (L - B)AK AtM — (L - g)AC| |x; (3-0)At" gag*) | £ |
—(1 - 1)ALK M — (1 —9)AtC | |% (1—=7y)At At | |fn
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where
x .
#]
b [M+saeK
B vYAtK
o _ |M+BAPK
¢ ¥ At K

BARC ]

M +AtC
BAC ]
M + yAt CJ

(2-11)

(M — (- B)APK AtM — (4 — B)ArC >
~(1-9y)AtK M- (1-y)AtC
(3 - B)AL2 pAE| |
(1-7At AL |fn J
2-12)

D denotes the so-called amplification matrix. The bar indicates that this is an approximation to
the exact amplification matrix, which has has been derived in Example 2.1.

Box 2.1: Newmark algorithm

M}“CO = f() - CXU Y KX[]

== 2 .
Xjp1 = Xjp1 + BAL X1

X1 = Xjp1 + 74X 4

Repeat the following items for j = 0,1, ...,

Given the initial displacement vector %, and the initial velocity vector %, at the time £p.
Calculate the initial acceleration vector xp from

T

1. Calculate predictors for the new displacement and velocity vectors

1
}_Cj+1 =X +5(j At + (5 = ﬁ)Atgﬁj

2. Calculate new acceleration vector from

(M +4ALC + [J’NQK)%H = fjr1 — Cxjp1 — KXjn

3. Calculate new displacement and velocity vectors
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Box 2.2: Derivation of (2-3) and (2-4)

Based on conventional integration theory the following identities may be formulated

x(ti1) = x(t;) + ] " kr)dr

t;

tit1 (2-13)
$ ij
Integration by parts of the first relation provides
. tit1 ti+1 .
x(tj41) = x(t;) = {(tﬂl - T)X(T)]t +/ (tjs1 — T)%(T)dT =
3 t;
ti+1
X1 = X5 + At Xy, +/ (tj41 — 7)%(7)dr (2-14)
¢

7

The indicated derivation is due to Krenk.® (2-14) may be interpreted as a truncated Taylor
expansion, where the integrals represent the remainder. Correspondingly, the 2nd equa-
tion in (2-13) is written as

i1
X1 = Xy +/ X(7)dT (2-15)
tj
Next, the integrals in (2-14) and (2-15) are represented by the following linear combina-
tions of the value of the acceleration vector at the end of the integration interval

ti+1 1
[ = tosar = (5 - 8) a8 + 588 5
t
. (2-16)
/ k(r)dr = (1 — 7)) At%k; + YAt 4
t

J

It is seen that the result in (2-16) becomes correct in case of constant acceleration, where
X(7) = %; = X;41. In any case the values of 3 and ~ reflect the actual variation of the
acceleration during the interval. If X(7) is assumed to be constant and equal to the mean
of the end-point values, one obtains (4, ~) = (4, 5), whereas a linear variation between

the end-point values provides (3,7) = (£, 3).

The modal expansion (1-97) defines a one-to-one transformation from the physical to the modal
coordinates. Hence, the time integration may equally well be performed on the differential equa-
tions for the modal coordinate equations. It follows that the synthesized motion (1-97) becomes
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numerical unstable, if the integration of just one of the modal coordinates render into instabil-
ity. Similarly, the accuracy of the synthesized motion is determined by the accuracy of those
modal coordinates, which are retained in the truncated modal expansion (1-101). On condition
of the modal decoupling condition (1-94) the time integration of the modal coordinates is re-
duced to the integration of n decoupled single-degrees-of-freedom systems. Since the stability
and accuracy analysis of a SDOF system can be performed analytically, the important role of
the modal decomposition assumption in the stability and accuracy analysis of numerical time
integrators becomes clear. In this respect let ¢(¢) denote an arbitrary of the n modal coordinates,
and (, w and F(t) the corresponding modal damping ratio, undamped circular eigenfrequency
and modal load. On condition that the eigenmodes have been normalized to unit modal mass,
the differential equation of the said modal coordinate reads

§(t) + 20wq(t) + w?q(t) = F(t) (2-17)

The corresponding Newmark integration of (2-17) is given by (2-11), using M = [1], C =
[2¢w], K = [w?] and f(¢) = [F(t)] in (2-12), resulting in the system matrices

Zj = (%’j

4

. -1
B — |1+ BAPW?  2(FwAt? 1— (3 - B)w?A? At — (1 - f)2(wAt?

Yt At 14+ 2¢ywAt —(1 — y)w?At 1—(1—")2CwAt
_|[Pu D

| D21 Dy

- -1
g _ |1HAAPW? 2(0wAL (3 —B)At? BAL?| | F;

Tl qwPAt 1420qwAt (1—7)AL  ~vAt | [Fip
_|Bu Ew| | F
_Ezl Exn| [Fin )
(2-18)
where
1+ 29Ck + (B — 3)K% + (28 — 7)¢w? 1
Dll = )
14+ 2vCk + Bk
== A — ~ 2 ,’2
py= 2E& 13;“; i% — N py
TR IR
' (2-19)

1+ %(QH —7)K? K2

14 29Cr+ K2 At
14203 — 1)¢r+ (8- )2 — (28— 7)C2
14 2vCk + K2 )

D?l =

Dy =
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6 - % “f (Qﬁ_ﬁif)g"{‘ AtQ
1+ 2vCk + B2
p

By = Fatd
12 1+ 2vCk + BK2

EH:_

1— 4328 - e
B = 173 VE A
1+ 2v¢k + PK?
y
- A
En= 17 2vCk + (K2 : )
K = wAt 2-21)

Example 2.1: Exact singlestep multivalue method

Assume that the initial time in the analytical solution (1-29) is chosen as the time t; = jAt. Then, the initial value
is changed into z(#;) = z;. and the solution is modified to

b
Z(i) e eA(tftJ') (Zj +/ eA(TtJ)F(T)U!’T) ., I> t] (2-22)

tj

Next, (2-22) is considered at the following time t;.; = £; + At, which leads to following integration algorithm

tit1
Zj41 = e (zj + [ e’“””F(r)dv) =Dz; +E; (2-23)
ity
where
z; = [’.‘J} (2-24)
X
D = 22! (2-25)
it
E; =™t / e~ AT P(r)dr eAAt((l — a)e_A'UFJ- + Cre—AALF_.HI) A =
5 ij
((1 —a)eAltE, 4 aFj_,_l)/_\t (2-26)

In (2-26) the integral has been evaluated by a generalized trapezoidal rule defined by the parameter o € [0,1] in
terms of a weighted average of the values e™4OF; and e "A2!F,, ; at the ends of the integration interval [t t,41].
D denotes the exact amplification matrix. Correspondingly, the evolutionary equation (2-23) determines the exact
solution for the state vector to the accuracy of the approximation (2-26) for the load vector,

The matrix exponential functions entering (2-25) and (2-26) are given by, cf. (1-55)

(2-27)

eAAf e ‘I‘BAAAf‘ijl
e—AAi — \pe_A‘dAt‘I’_l
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The modal matrix ¥ contains the eigenmodes of the matrix D, which are identical to the eigenmodes of the matrix
A. The diagonal matrix e*42¢ stores the eigenvalues Ap ; = e*4.2t of D in the main diagonal. 4 ; denotes the
corresponding eigenvalue of A, which may be written in the form’

Mag=wi =G +iy1-¢2) (2-28)

w; and ¢; defines the equivalent undamped circular eigenfrequency and damping ratio in case of damped of damped
eigenvibration in the jth mode. These definitions correspond to the conventional definition of these quantities in
case of the modal decoupling condition (1-94).7 From (2-28) follows, that the modal damping ratio is related to
the magnitude of the eigenvalues of D as

A =e st =
_ InlAp,
b= (2-29)

The damped circular eigenfrequency wq,; is related to the eigenvalues of the amplification matrix as follows

1 il ) Biryn
waj=wj\[1- (2 =Im[Aay] = Im[lndp,] = EIm[tn (Ppale®4)] = 2 (2-30)

where 6 ; denotes the argument of Ap ;.

Example 2.2: Displacement difference equation form of the Newmark algorithm

In this example an implementation of the Newmark algorithms will be derived, where the solution for the unknown
displacement vector x4 at the time ¢4 is determined as a function of the previous known displacement vectors
x; and x;_1, as well as the load vectors f;,, f; and f;_;. At first, (2-2) is formulated at the times t;,, ¢; and
t;_1 as follows

Mij+l + C)'CI-H_l + KXj+1 = .J'-H
I\IIXJ + CXJ + KXj = fj (2-31)
Mix;_1 + C)'(jfl + Kxj_1 = fj,]

The first equation in (2-29) is multiplied with 3A¢?, the 2nd equation is multiplied with (} — 24+ ) At?, and the
third equation is multiplied with (% + 3 — ) At®. Finally, the resulting equations are added, leading to

| " = 1 5 1 _—
At*M ,(ix‘;.‘.i_l - 2ﬁxj + ﬁXj__] i (E + ’7) X; + (-é = ’y) Kt |

[ 1 1 . i
.’_\tEC ;’jXJ+] e 2_.’"1‘}'(_:,' + f.b'{j_] + (§ +";) XJ + (6 = ’)‘) Xjfl +

[ 1 |
.ﬁth l‘jxj.‘..l — Q'H){j + ﬁXj,l -+ (5 +’}> X -+ (5 — "() Xj-1| =

1 1
GAt? Tipl + (5 - 20+ ’y) At? £+ ('2- + 43— "f) At? fi4 (2-32)

Next, (2-3) and (2-4) are formulated at the time ¢;1; and £; as follows

’S.R.K. Nielsen: Structural Dynamics, Vol. I. Linear Structural Dynamics, 4th Ed. Aalborg tekniske Univer-
sitetsforlag, 2004.
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1L
Xjp1 = X5 + Atf(j e (E - ,13) At? }"(j =+ ﬁAﬁz j'lcj-l—l

1 (2-33)
xX; =xj1+AI%; 1+ (5 —ﬂ) Afzﬁj_l +,13;ﬁt2 Xy
X EEgLrd (1 - "f’).ﬁti'{j_l + yALX;
Withdrawal of the last equations in (2-33) and (2-34) from the the first equations provides the identities
,dAtQ (Xj.lr.l = 2Xj + Xjfl) =Xj41 — QXj + Xi—1— At(XJ = Xj_]_) = §At2 (xj = Xj—l) (2*35)
vAt (ij+1 — 2% + ij—l) = Xjp1 — 2% + K51 — At — K1) (2-36)

Next, (% + 7)At%%; + (5 — v)At?%;_1 is added on both sides of (2-35), and the last equation (2-34) is used on
the resulting right hand side, which provides

2 s .. N 1 9 1 N
At? (ﬁxjH — 26%; + ﬁxj_l) + (5 + n,) At? % + (5 = »,) A%y =
; ' 1 oo o 1 2. 1 B
xijij +Xj,1_ﬁxt(Xj“Xj71)—§At (Xj*Xj_l)+ §+’y At X; + 5* v | AL Xj—1 =
X1 — 2Xj + Xj-1 (2'37)
(2-36) is solved for the velocity terms on the right hand side, and the resulting equation is multiplied with At

Next, (3 +7)At?%; + (3 — 7y)At?%;_, is added on both sides of the equation, resulting in

1 1
Af? (,-dxm — 2/3%; + ﬁ)‘(j,l) + (5 +ﬂ At x; + (5 - ')) At? ky 1=
: W = A

/

Gyadd (Xj+1 - 2X; +X;,‘ﬁl) + BAE (%; — %;-1) + (5 +'}) Atk + (5 — ﬂ,) At R o=

. . 1 T
“fAf(XjJrJ —-2x;+ Xjfl) = ’)‘Af2 (Xj —Xj,]) + (;3 — 5”;).3?3(}{]‘ —Xj_1)+
1 5. 1 .
(5 + ")’) Atz Xj + (5 - ’)) Atg xj—l S ’}’Af(}(j+1 == 2Xj -+ X—j—l) + At(xJ == Xjfl) (2*38)

The 3rd line in (2-38) follows from the 2nd line by eliminating the term GyAL3 (%41 — 2%; + X;-1) by means of
(2-35). The final result is based on the following identity. which is obtained by a multiplication of the last equation
in (2-33) with A¢, and the last equation in (2-34) with %Af?, following by a withdrawal of the resulting equations

'

1 ; 1
(,6 — i")Atj()‘éj = kj_1) = Af(Xj =% Xj_l) — EAfz (XJ +3'Cj_1) (2—39)

(2-37) and (2-38) are inserted into (2-32). After grouping terms with common multipliers x;.1, x;, x;_1 the
following final result is obtained

, 1
[M AL C 4 BAE K} K ~ {21\1 ~ (1~ Iy YAEC — (5 —9f 4 ’)-) AtzK] e

{Mf (1-9)AtC+ (%

+ 3‘3 — '“Jn’) Atz K} Xj—.l —

1 1
BA 1 + (5 = ~,-> At f; + (5 + = ~,) At £ (2-40)
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(2-40) represents the so-called displacement difference equation form of the Newmark algorithm, which constitutes
a multistep singlevalue formulation of the method. At the calculation of x; the previous solution xg is given as
one of the initial value vectors, whereas x_; is unknown. Hence, the algorithm has a starting problem. Instead, x;
is calculated by the standard implementation given in Box 2.1, before the algorithm (2-40) is used for 7 > 1.

Next, consider the special case of 3 =0 and 4 = % Then, (2-40) reduces to

M+ %Atc}xﬁl - [oM - a2 K]x; + [M - %At Clx;-1 = AL, (2-41)

Consider the central difference! approximations to the acceleration and the velocity vectors

i Xj+1 — 2Xj —|—Xj_1 i, o X1 — Xj-1
= At? T T oA
(2-41) is obtained, if the finite difference approximations (2-42) are inserted into the middlemost equation of (2-

31). Hence, the central difference solution to (1-1) constitutes a special case of the Newmark family corresponding
to the parameters (3,7) = (0, 3).

(2-42)

The central difference algorithm is only conditional stable. However, if M and C are diagonal it provides an
explicit solution for x;41, which makes it highly economical. In cases where the time step is controlled by
accuracy rather than stability, which is often the case in many wave propagation problems, the central difference
algorithm is widely used.

Example 2.3: Crank-Nicolson algorithm

For (4,7) = (4, 3), egs. (2-11), (2-12) may be written

IAtK M+ iAtC

Xj+1

[M+ IAPK  lagc } [xﬁl} _

X3
X

M - IAPK AtM - 1A£2C
—3AtK M - 1AtC

A8 1AL
1 1
1At LAt

& (2-43)
fj+1

The 2nd equation in (2-43) is multiplied with %!_\t, and is withdraw from the 1st equation, resulting in

M —-3AtM | || _ | M 1AtM X[, |0 0 f; (2-44)
ALK M4 ALC| %54 -1AtK M- 1AtC| |%; 1At JAt] £

The Crank-Nicolson algorithm is singlestep multivalue method, where the amplification matrix in (2-11) is given
as

D=nriD; (2-45)
D, and D, are related to the system matrix A given by (1-27) as follows
- A-1 1
D]=I—1AtA: : | At _ M 0 M sAtM (2-46)
2 IAtMTIK I+ 1AtM-IC 0 M| |i1AtK M+ iatC

M 1AM
-1AtK M- 1AtC
(2-47)

1
Dz—“»-l-l-;AfA:

I LAY _ M o
—1AtM-IK I-iatMTic| | 0 M
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A systematic derivation of the Crank-Nicolson algorithm along with other high-accuracy methods will be given in
Example 2.4.

Insertion of (2-46) and (2-47) into (2-45) provides

M -3AtM
ALK M+ 1ALC

Ch

=1 -1
M-t 0 1% R M 1AtM
0 M-! 0 M |[-iAtK M-1AtC

| M LAtM

M -lAtM
2-48
[ -1AtK M- JAtC )

TAtK M+ IAtC

The amplification (2-48) is identical to the one obtained from (2-44). From this is concluded that the Crank-
Nicolson algorithm constitutes a special case of the Newmark family corresponding to the parameters (3,v) =

(%,3). As mentioned in Box 2.2 this parameter combination is obtained in case of a constant variation of the

acceleration during the interval [t;,;,1] given by X(t) = 1 (%; + %j41).

2.1.1 Numerical Accuracy

The Newmark algorithm (2-11), (2-12) provides an approximate solution z; of the state vector.
By contrast the exact solution z; is given by (2-23), (2-25). Assume that the load vectors E; in
(2-11) and (2-23) are identical, and the algorithms are started with the same state vector z; at
the time ¢;. Then, the deviation between the exact solution z;,, and the Newmark solution z;
at the succeeding time ¢, is given by

€ =124 — Ej+1 = (D = D)Zj (2—49)

The error vector e, which is denoted the /ocal truncation error, determines the error during a
single time step. The error is caused by the deviation D — D of the amplification matrices,
which in turn is a function of the magnitude of the time step At¢. Hence, it may be assumed that
the local truncation error has the form

e = O(At*H) (2-50)
where k is a positive real number. The real concern is not on the error during a single time step,
but rather on the accumulated errors during all the previous time steps. For this quantity the
global truncation error is introduced as

E = Zj41 — ij—i-l (2“‘51)
On condition that the load vectors are the same in the two algorithms, and that the local trunca-

tion error has the form (2-50), it can be shown that the global truncation error has the form!

E = O(AtY) (2-52)
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A numerical time integrator with a global truncation error of the form (2-52) is denoted a kth
order method. Since the local truncation error of the 4th order Runge-Kutta algorithm is of the
order of magnitude O(A¢°) this is a 4th order method, as indicated by the naming.

The amplification matrices (2-12) and (2-25) have the spectral representation, cf. (1-41)

D=9A,T? (2-53)

D=0A,T! (2-54)

W and W are complex matrices storing the eigenvectors of D and D column-wise, and A p and
A p are diagonal matrices with the corresponding eigenvalues in the main diagonal. As shown
in (1-55) the eigenvectors of D are identical to the eigenvectors of the matrix A given by (1-
27). Hence, the columns in ¥ may be considered approximations the eigenvectors of A. The
eigenvalue matrices of D and A are related as, cf. (1-55)

Ap = ehatt (2-55)

Correspondingly, the eigenvalue matrix of D may be written as

Ap = ghadt (2-56)

where the diagonal matrix A4 may be considered an approximation to A4. Let Ap be an
arbitrary eigenvalue to D. Then, the corresponding component in the main diagonal of A 4 is
given as

InAp
At

In accordance with (2-28), A4 can be written on the form

Z\_1=w(—§+z’\/1—§2) (2-58)

& and ( are approximations to the undamped circular eigenfrequency w and damping ratio ¢ of
the corresponding mode. Analog to (2-29) and (2-30), ¢ and W, are related to the corresponding
eigenvalue Ap of the amplification matrix as follows

g = (2-57)

In |Ap|
WAt

i i
@d=m/1—g2:£ (2-60)

(== (2-59)
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where 0 denotes the argument of Ap, as follows from the polar representation Xp = |5\ ple?r.
Especially, ¥ = ¥ for (8,7) = (3, 3). This follows, because the Newmark algorithm in this
case is identical to the Crank-Nicolson algorithm as shown in Example 2.3. Further, in Example
2.4 below it is shown that the eigenvectors of the amplification matrix of the Crank-Nicolson
algorithm is identical to those of the matrix A. Hence, for (3,7) = (1, ;) the inaccuracy of the
Newmark algorithm is entirely caused by the difference between the eigenvalue matrices Ap
and Ap. In all other cases the deviation of the modal matrices ¥ and ¥ will also influence the
local and global truncation errors.

In any case it is of interest to analyze the accuracy of the eigenvalues A\p. These are com-
pletely defined by the damping ratio (2-59) and the damped circular eigenfrequency (2-60) in
the considered mode. If  is larger than the exact modal damping ratio ¢ as given by (2-29), the
Newmark algorithm introduces artificial so-called numerical damping in the considered eigen-
mode. Since the numerical damping may be negative, it may overrule the structural modal
damping, rendering < 0. This implies that the numerical solution for the said mode becomes
numerical unstable. Similarly, if @4 deviates from w, the corresponding damped eigenperiods
will deviate accordingly. This effect is referred to as period errors. The effect of period errors
is that the Newmark algorithm predicts damped eigenvibrations in the considered mode with ei-
ther a too long or a too short period compared to the exact damped eigenvibration. It should be
noticed that numerical damping and period errors are only of importance for the low frequency
modes, which determines the total response. By contrast, numerical instability in merely one
mode will affect the stability of the global response. Stability of the Newmark algorithm is
treated in the following Subsection 2.1.2. Numerical damping and period errors are treated in
Subsection 2.1.3.

2.1.2 Numerical Stability

Numerical stability indicates the capability of the algorithm to dissipate a given disturbance. In
order to analyze this property the algorithm (2-11) is considered in the homogeneous case E; =
0, corresponding to eigenvibrations from the initial value z,. Using the spectral representation
(2-54) for the amplification matrix, the following sequence of solutions are obtained, cf. (1-52)

Al — DZO = ‘i’j\.D‘i’ Zgy
z;, =Dz, =UA U ' WAL 'z, = VAL g
Zy = DZQ = ‘i’j_X vl @A?)‘i_lZO = @K%\i"lzn \ (2-61)

zj41 = Dzjyy = PAp T WAL Tz = WAL 071y |

AJ' '+ s a diagonal matrix with the components AH’] in the main diagonal, where Ap is the
corresponding eigenvalue of D. From the polar representation Ap = |Ap ¢ follows

j\jiD-!-i |/\ }?'fl 23+1)B (2762)
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Hence, 5\3; b will grow beyond limits as j — oo, if Ap > 1. Consequently, the condition for

stable eigenvibrations in the said mode may be formulated as

|IAp| <1 (2-63)

Stability of the numerical algorithm (2-11) requires that (2-63) is fulfilled for all complex
modes. As follows from (2-59) the stability criteria may alternatively be indicated in terms
of the modal damping ratio as

(>0 (2-64)

If { < 1, it follows from (2-58) that A\p is complex. In this case motion is oscillatory, cor-
responding to undercritical damped vibrations. Alternatively, if { > 1, Ap becomes real. In
this case the motion is non-oscillatory, corresponding to overcritical damped vibrations.” If the
algorithm is related with positive numerical damping in the considered mode, the numerical
calculated modal response may appear as overcritical damped, although the exact solution is
undercritical damped.

A numerical integration algorithm, which is stable in all modes for an arbitrary length of the
time step At is denoted unconditional stable. If stability in just a single mode requires that the
time step must be kept below a certain critical magnitude in order to fulfill (2-63), the algo-
rithm is referred to as conditional stable. Depending on the parameters (/. +), the Newmark
algorithm may be unstable, conditional stable or unconditional stable. Generally, the magnitude
of the time step should be determined by accuracy requirements. Hence, conditional stable al-
gorithms should be avoided in cases where the time step is determined by stability requirements.

In case of modal decoupling the stability analysis of the total algorithm is reduced to a stability
of a sequence of decoupled SDOF oscillators for each mode as given by (2-17). The corre-
sponding Newmark algorithm is given by (2-18), (2-19). We will analyze this system in the
undamped case corresponding to the modal damping ratio ( = 0. It should be noted that sta-
bility conditions specified for the undamped case are always conservative, i.e. the introduction
of structural damping enhance the numerical stability. Then, the amplification matrix may be
written as

. 1 1+ (8 — 3)x? At
D= 2 ; 2-65
1+ OBk? —(1+%(2,ﬁ—’))ﬁ2)3—1 1+ (38— 7)K? ( )
The characteristic equation of (2-65) becomes, cf. (1-11)
A —aAp+az=0 (2-66)

where the invariants a; and ay, specifying the trace and the determinant of D, may be written
on the form
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oy — LY 2
g = tr(f)) _ 2 -+ (Zf_i_ ﬁJﬁz 2)5 =B ("r o %) 52 (2*67)
. 1V.:2 o A%
syl [ = 2 OF = +(f)f3:2’;2(ﬁ i 1L (’y - %) £ (268
where
2 K? L
&= 1+ k2 =5

The final formulations for the invariants, which is due to Krenk,® shows that these depend on
k = wAt and /3 through a single positive parameter £2. Next, the solutions of (2-66) may be
written as

doal o TF AN e, LY TV
im}_l_i(,w)g r2(1+) e 2-10)

The eigenvalues are real, corresponding to overcritical damped eigenvibrations, for

- . 2&" - =
4%’ 3 ¢
& 2.1 (2-71
L ~71)
In case of real eigenvalues, it follows from (2-70) that Ap » is numerical larger than Ap ;. Then,
instability occurs for Ap» = —1, from which the following stability condition is derived
{ & Lot oot N q ) +1254 £ =
= ALRETA 4 ! 9 -
2
G a2 (2-72)

If v < % - % the eigenvalues become complex conjugated, corresponding to undercritical
damped eigenvibrations. In this case

doal g (e DNagifa L1
;D‘z}fl—i(,-f—Q)é :I:z\/g2 4(;+2) £ (2-73)

]
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Let Ap denote the eigenvalue with positive imaginary part, 1.e. Ap = j\D, 1. The modulus and
argument of Ap become

2 2
lipl=\/(1—§(~r+§)52) re-g(1+3) £4=\/1~(n-§)§2 -74)

: Ve -1+ I 1 _
— — — — 12"2— 3 9 —
fp = arctan - % (ﬂ} +%) e £ 96( v — 36y + 11)§ -5—0(6 )
= —1—(12 2 _ 36y 4+ 11) + 24 ) &° + O(x°) (2-75)
o6\ 7 ! 2 '

Additionally, in (2-75) low order Taylor expansions in £ and s have been indicated for . The
last expansion follows from the first using the auxiliary expansion £ = k — %Bng + - -+, which
follows from (2-69). Stability of oscillatory eigenvibrations requires that |Ap| < 1. As seen
from (2-74) this implies that

i =

(2-76)

b | =

¢, and hence the time step At, is not entering (2-76). Hence, this inequality must be fulfilled for
arbitrary large time steps. By contrast, (2-72) can always be fulfilled by choosing & sufficiently
small. Using (2-69), the inequality (2-72) may be reformulated as

(v —28)K* < 2 (2-77)

(2-77) is fulfilled for arbitrary &, if v < 2. Combining this result with (2-76), it is seen that
the Newmark algorithm is unconditional stable, if the parameters J and ~ fulfill

<7<28 2-78)

B =

Ify>20A 92> %, the algorithm is merely conditional stable. The critical value of the time

step follows from (2-77)

2
n:w&tﬁ,/’)_gd (2-79)
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Fig. 2—1 Stability diagram of Newmark algorithms.®

The stability conditions of the Newmark algorithm, and the conditions for undercritical and crit-
ical damped eigenvibrations, have been summarized in Box 2-3. Additionally, these conditions
have been illustrated in Fig. 2-1. The limit curve between undercritical and overcritical damped
oscillations is shown with a dashed signature.

Box 2.3: Stability conditions of Newmark algorithm and qualitative behaviour of
eigenvibrations

Unconditional stability: % <y <28

Conditional stability: 15y A MLt
ndercritical damped eigenvibrations: v < 2 — % R L—

U p g ! £ ) 3 E /1+ﬁu,-'_2At2

Overcritical damped eigenvibrations: %—% oy R —Eg

In the undamped case the eigenvalues of the system matrix A becomes A4 = iw, cf. (2-28),
which means that the corresponding eigenvalues of the exact amplification matrix is given as
Ap = ¢ = 1+ ik — 3x% —igr® + O(x"). Then, in case of oscillatory eigenvibrations the
eigenvalue Ap as given by (2-73) may be represented by the following Taylor expansion
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< 1 1 1 1% °
1 il 1 %2 9
1+iﬁ*2(?+2)ﬁ2*i(g(?+§) +§ﬂ)ﬁs+0(ﬂ4)=

1 1% o 71 6 S T & .
)\D—2<72)n 2(8(7-1-2) +§,@—6)n +O(H.) (2-80)

It follows that the error is of the order of magnitude O(x?), if 7 > 3, and of the order of
magnitude O(x?), if 7 = 1. In the latter case (2-75) and (2-80) become

5 1 1\ 5
Op = K+ (24~ 2,8) K2+ O(x%) (2-81)

N . _1___1/ 3 4 9
/\D—)\D-i—z(M 2d)m+0(.’€) (2-82)

Additionally if # = L, (2-81) and (2-82) reduce to fp = x + O(x°) and A\p = Ap + O(k*).

12°

The Newmark algorithm with (3,7) = (35, 3) is known as the Fox-Goodwin algorithm. As

follows from (2-79) this algorithm is conditional stable with the critical time step given by

wAt = V6 (2-83)

It should be noticed that the error on the eigenvalue as indicated in (2-80) only contributes partly
to the local truncation error (2-49). Additional errors are introduced by the difference between
the eigenmodes ¥ and W of the approximate and exact multiplication matrices.

w in (2-79) indicates the undamped circular eigenfrequency for an arbitrary mode. Hence, in
case of conditional stable algorithms the critical time step insuring stability is determined by
largest undamped circular eigenfrequency w,, of the system. For systems with many degrees of
freedom w,, may be very large, and the critical time step correspondingly small. Since, the time
step primarily should be determined by the accuracy of the low frequency modes, which carry
the dynamic response, and not by the stability of the high frequency modes, which merely are
results of the spatial discretization with no physical relevance, only unconditional stable algo-
rithms should be used in such cases.

Example 2.4: High accuracy unconditional stable algorithms

The considered algorithms are based on the following factorization of the exact amplification matrix (2-25)

D =ehdt = eA¥erS = (4% A ¥ = DI'D; (2-84)
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where A is the system matrix given by (1-27). Additionally, (1-57) has been used with ¢ = —92—‘. From (1-53)
follows

D= A% =1~ %AtA + Lazaz — Lapas + RN dei v

8 48 384 (2-85)
A% T4 IALA + SALRA? £ SAPAS 4 L AfA®
D;=e =1+ 3 + e i P 334 i

Truncation of the expansions (2-85) with the same number of terms provides the following approximate multipli-
cation matrices

D=(1 1AtA b I+1AtA
- 2 2

_ 1 i 1 1
D= (1 = ﬁAtA + éAtZAZ) (1 + EAtA + gmzA?)

5 1 ! 1 el 1 I (2-86)
=T ZAtA &= “A2A2Z _ = A43A3 = da2a2, 1 A.3,3
D (I SAUA + ZAPA? - TAL A) (I+2AtA+8AtA +48AtA)
D= I—EAtA+lAtzAz—iAt3A3+iAt4A4 _1.
G 8 48 384

1 ; (PO | 1
T SABAL SAFPAZ 4 S ABAT L GaAl
(+2 + 5 +48fA+384AtA

Vs

Below, the numerical algorithms following from the approximate multiplication matrices in (2-86) are referred
to as the Ist, the 2nd, the 3rd and the 4th approximation. From (1-55) follows, that the matrices D; and D,
alternatively may be given as

(2-87)

Dy = ‘I‘ADI‘IJ—]
D; = ‘I’ADE‘I’—I

where ¥ is the modal matrix containing the eigenvectors of D; and D> stored column-wise. As follows from

Box 1.1, this matrix is identical to the modal matrix of the system matrix A. Ap, and A, are diagonal matrices,
storing the eigenvalues of D; and Dg in the main diagonal. These are given as, cf. (1-53)

1 1 1 1

Ap, =1 = SAtA4 + cAAYL — —ABAS + —A#AL 4+ ..
1 2 A+ 8 A48 at 384 A+ (2-88)
1 1 1 1
= ZALA _AZ 2 — A43A3 L 44 4

where A 4 is a diagonal matrix storing the eigenvalues of A.. From (2-66) and (2-87) follow that the approximate
amplification matrices may be written as

D=%Ap¥~' , Ap=A5Ap, (2-89)

The eigenvectors of the approximate amplification matrices are identical to those of the exact amplification matrix,
see (2-27). For this reason the local and global truncation errors are entirely related to the eigenvalues Ap. In order
to analyze these errors consider a certain mode with the eigenvalue A 4. Further, structural damping is ignored, in
which case Ay = iw. Then, the related eigenvalues of the approximate amplification matrices in (2-86) may be
written on the form
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- l+ife LN )
PET L P TR
. 14dig — 1x2 1
dp=—=2—38 " =dp4i—kd+...
B l—i%ﬁ,—%ﬁz & 24
(2-90)

= = I—K

Pl cids-Levidad P 180
il L. 2 Ltk 1 4
;D:].-f-igh—gh. —iggk’ + 35k =)\D-—ii.ﬁ5—|—---
1-— Z%ﬁ - énz +i4—]'8-h:3 + ﬁﬂl‘i 1920

/

where x = wAt and Ap = e**. The modulus of the eigenvalue of the 1st approximation is determined from from

1+ize 1—ids
1—igr l+ids

|;\D|2=5\D-5\b= — (2-91)

Similarly, it is shown that also the eigenvalues of the other approximations in (2-90) have the modulus |Ap| = 1
for arbitrary value of . Consequently, all the approximate multiplication matrices in (2-86) result in unconditional
stable numerical algorithms. A drawback of the algorithms is that the high frequency modes will not be dissipated.
Further, as seen from (2-90) the 1st and 2nd approximations both have local truncation errors O(x?), whereas
the 3rd and 4th approximations have local truncation errors O(x®). Due to the simpler amplification matrices,
the algorithms based on the 1st and 3rd approximations should generally be preferred. The 1st approximation is
recognized as the amplification matrix of the Crank-Nicolson algorithm given by (2-45), (2-46), (2-47). Hence,

this method, which is identical to the Newmark algorithm with (f3,9) = (}, ), has the local truncation errors
—5x% + - - in agreement with (2-82).
Example 2.5: Upper bound for largest eigenfrequency
L1 Y /'ELEA:#‘ Iy
5 ‘-
" I3 . Tg
2 Ty

Fig. 2-2 Bernoulli-Euler beam element with constant section.

For conditional stable algorithms an upper bound of the largest undamped circular eigenfrequency is needed in
order to specify a stable time step via (2-79). It can be shown that w,, is bounded by the maximum circular
frequency of the individual elements.®® Consider a plane Bernoulli-Euler element of the length [ with constant
mass per unit length z, bending stiffness ET and axial stiffness AE, see Fig. 2-2. Then, the stiffness matrix and
the consistent mass matrix of the element becomes’

| AE 0 0 —4E 0 0]
0 128 6& 0 —128  ¢6Zf
k= 0 6H 4E 0 -65 2 (2-92)
AR 0 0 4E 0 0
0 -128L &l 0 1280 —g&
| 0 6B 2 0 6% 4EL]
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140 0 0 70 0 0
0 156 220 0 54 131
_oub |0 220 42 0 13 -3
© 420 | 70 0 0 140 0 0
0 54 131 0 156 —22
0 -13 -3 0 -220 4

(2-93)

The generalized eigenvalue problem (1-9) with the stiffness matrix (2-92) and the mass matrix (2-93) has the
following eigenvalues

0 . j=1
0 =2
0 . =3

XN=1 19 ﬁf? =i (2-94)
720575, , =35
8400EL | =6

The first three eigenvalues are equal to zero, because the system is unsupported and has three independent s#iff-
body motions. If all the beam elements in the structure are identical an upper bound for the undamped circular
eigenfrequency then becomes

(Merﬁ, \/8400 Bl ) (2-95)

In case of different beam elements the right hand side of (2-95) must be calculated for all element types, and the

largest of these represent the true upper bound for the structure.

2.1.3 Period Errors and Numerical Damping

In case of zero structural damping the following expansion of the undamped circular eigenfre-
quency of a certain mode as predicted by the Newmark algorithm follows from (2-60), (2-75)

1 1
W= w(l — (96( 2v* — 367 + 11) + 5/3) K+ O(a*)) (2-96)

The corresponding period of undamped eigenvibrations is

= 2T B, L 2 4
T_U_Tl+(96(12 36/4-11)4-2,8)%: +O(m)) (2-97)

where 7' = %T denotes the exact undamped eigenperiod. As illustrated in Example 2.6 the
numerical determined eigenvibrations will deviate more and more from the analytical solutions,
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if the underlying eigenperiods T and T are different. As a measure of the deviations of the
periods the relative period error is defined as

ATT _ TT_T . (% (1292 = 367 +11) + %ﬁ) K2 + O(x4) (2-98)

Let v = &. Then, (2-98) implies that T < T" for 3 < 5, and T > T for § > 5. Especially,

= 2%
T =T + O(x*) for the Fox-Goodwin algorithm, where § = .

0.9}

0.8r

075 :
107 10"

10° 10
I

Fig. 2-3 Variation of | Ap| as a function of k = wAt. a = 0.09, 3 = 1.

As mentioned in the introduction to this chapter high frequency modes does not reflect the phys-
ical reality. Apparently this seems of less importance, since these modes seldom influence the
displacement solution. However, since the velocity and acceleration increase with the frequency
for a given displacement amplitude, the high frequency modes may carry a substantial fictitious
kinetic energy, which may be transferred to the low frequency modes via possible linear viscous
coupling terms. For this reason high frequency modes should be dissipated by the numerical
algorithm without affecting the accuracy of the low frequency modes. This may be obtained by
choosing ¥ = o + 3, where « is a small positive number, in which case (2-74) attains the form

Ap| = V1 - ag? (2-99)

(2-99) has been illustrated in Fig. 2-3. Of special interest is the limit value |Ap |, approached
by (2-99) in the high frequency range. From (2-69) follows that £2 — %, as « and hence w
passes to infinity for fixed Af. Hence,

= o
Aol =4/1-3 (2-100)

Insertion of 7 = « + 1 into (2-80) provides
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1 1
Ap = Ap - sak? —iz (307 + 60 — 1+ 128)x* + O(x*) (2-101)

As seen the introduction of numerical damping reduces the local truncation error from O(x?) to
O(x?). This means that the accuracy of the Newmark algorithm in this case is comparable with
the those of the forward and backward Euler schemes.’

From (2-59), (2-69), (2-74) and (2-99) follow that the damping parameter « is related to the
modal damping as follows

L= %IM In(1—af?) = 2 _\t (1 +0(x )) = éan(l + O(n?)) (2-102)
As seen ( is approximately proportional with o and . For &¢ T = = and a = (.1 the numerical
modal damping ratio becomes ¢ ~ 0.0157. This is comparable to the structural modal damp-
ing, typically of the order of magnitude ¢ ~ 0.01. Hence, the algorithm will overestimate the
damping properties of the system. In case of resonance under harmonic excitations, where the
response is proportional to the inverse of the damping ratio, or in case of stochastic excitations,
where the response is proportional to the inverse of the square root of the damping ratio, the
structural response will be underestimated correspondingly. It follows, that numerical damping
cannot be introduced in the Newmark algorithm without using significantly smaller time steps
than suggested by the accuracy requirements for the corresponding algorithm with a = 0. Con-
sequently, there is a need of an algorithm, where { = O(x?), rather than { = O(x).

Example 2.6: Newmark solution for a SDOF oscillator

0.8 " AN Xy R i
06-\ o\ b b Y g
0.4t 7 A i X '
— 02 ; | g i ! f, ; '
N i ' 1 W W (]
S A | I f o U 0w B
‘ i o

!

{1 v 1
o —02b \1 ‘l‘ ;J‘ Y .\ ,‘ ‘ : ‘4 \\‘ l‘ I
oab \ | i beop Ly W
st Y b 5 ﬁ,' Rdl Vihy
\ g Y
-08F | o 9L /
—.1 - b
X :
0 1 2 3 4 -
t/T

Fig. 2-4 Newmark algorithm, (3,v) = (}, ). Damped eigenvabranons of SDOF oscillator. w = 1, ¢ = 0.01,
(os do) = (1,0). Analytical solution: —, 4t = 0.05: - - -, 3¢ = 0.10; -.--, 2 = 0.20; ......

Fig. 2-4 shows the numerical results for eigenvibrations of a SDOF oscillator with w = 1 and { = 0.1 obtained
by the New mark algorithm with the parameters (4,4) = (1, 1), and with the time steps 7 ‘M = 0.05, 0.10, 0.20.
Since, v = the algorithm is not related with numerical dampmg Correspondingly, the numencal solutions are
dissipated in the same rate as the analytical solution. Since, § = § L all numerical solutions are related with period
clongation, which increases proportional with A¢? as indicated by (2-98).
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2.2 Generalized Alpha Algorithm

The problem with the Newmark algorithm that numerical damping of the high frequency modes
can only be treated at the cost of accuracy of the low frequency modes was soon recognized.
One attempt to cure this problem is the socalled collocation methods, first proposed by Wilson.?
Wilson’s algorithm, known as the #-method, is a modification of the Newmark algorithm with
linear varyingacceleration, where the equations of motion are fulfilled at the time ¢;.,4, ¢ > 1,
rather than at the time ¢;,;. Later the method was generalized by Hilber et al.’ to allow for
other variations of the acceleration via the introduction of an extra parameter.

Hilber et al.'” also proposed the socalled o method as a solution to the problem. Instead of
introducing the exact damping forces, stiffness forces and external forces in the equation of
motion at the time £;,;, a weighted sum of these forces at the times ¢; and ¢, is introduced as
follows

M1 + af(cx_,,- + K fj) 341 i) (CJ'{J-+1 - T = fjH) =0 (2-103)

where o is an interpolation parameter fulfilling ay € [0, 1]. Based on the same way of thinking,
Wood et al.'' suggested an alternative a-method, where the damping forces, stiffness forces and
external forces are left unchanged in the equation of motion at the time ¢, whereas the inertial
forces are specified as a weighted sum of these forces at the times ¢; and ¢;,

CEmM}“CJ’ + (1 - Otm)Mij+1 =i CI;(j+1 + Kxj+1 = fj+1 (2—[04)

Again the interpolation parameter fulfills a,,, € [0,1]. The generalization of the indicated
a-methods, where the inertial forces, and the damping, stiffness and external forces, are inter-
polated with different interpolation parameters, was suggested by Chung and Hulbert.? In this
case the equations of motion for the solution at the time ¢;;, read

”ml\’Iij -+ (1 — (km)kl)”(j.i_l + Yy (CXJ + KXj = fj) -+
(1-ay) (cxj+1 +Rxpr— G ) =0 , j=1,..,n (2-105)

The equations of the generalized a-method consist of (2-105), along with the Newmark equa-
tions (2-3) and (2-4). Hence, the generalized a-method contains the parameters [, -, cx,, and
ay. As for the other mentioned methods, the generalized o-method has a local truncation error

¥E.L. Wilson: 4 Computer Program for the Dynamic Stress Analysis of Underground Structures. SESM Report
No- 68-1, Division of Structural Engineering and Structural Mechanics, University of Califirnia, Berkeley, 1968.

“H.H. Hilber and T.J.R. Hughes and R.L. Taylor: Collocation, Dissipation and "Overshoot” for Time Integra-
tion Schemes in Structural Dynamics. Earthquake Engineering and St ructural Dynamics, 6, 1978, 99-118.

'"H.H. Hilber, T.J.R. Hughes and R.L. Taylor: Improved Numerical Dissipation for Time Integration in Stric-
tural Dynamics. Earthquake Engineering and Structural Dynamics, 5, 1977, 283-292.

'"W.L. Wood, M. Bossak and O.C. Zienkiewicz: 4n Alpha Medification of Newmarks Method. International
Journal for Numerical Methods in Engineering, 15, 1981, 1562-1566.
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O(k?), resulting in a numerical damping ratio ¢ = O(x?). At optimal tuning of the parame-
ters of the method, Chung and Hulbert demonstrated that the numerical damping ratio and the
relative period error are smaller than those of the competing methods. General for all the men-
tioned algorithms is that the equations of motion is not fulfilled at the time ¢;. For this reason
the singlestep multivalue formulation of the algorithms requires a state vector of dimension 3n,
encompassing the displacement vector, the velocity vector and the acceleration vector.

At first the singlestep singlevalue formulation of the generalized a-algorithm is indicated. Simi-
lar to the derivation of the Newmark algorithm, the idea is to eliminate x;, and X, in (2-105)
by means of (2-3) and (2-4), in order to obtain an equation for the acceleration X, . This results
in

(1= am)M + (1 = ay) (ALC + BAPK) 5511 =
affj + (1 = Otf)fj+1 = Cl!mMij — CXJ. = KXj =

(1—ap)(1—7)AtCx; — (1 - af)K(At;‘cJ - (% - ﬁ)_\tz xj) -
((1 = am)M + (1 - ag)(yAIC + BAEPK) )%, +
leffj + (1 - af)fj+1 - MXJ — CXJ = KXJ' -

(1-ay) (AtCij + K(At;’cj # %Atz x,)) =

}"Cj_y.l = X_:, + NI_I [affj S = (1 == af)fj+1 5 MXJ 53 (33'(]I = KXj =

1
(1-ay) (_\.tcxj +K (Atxj + S A8 x,)” (2-106)
where M is the socalled dynamic mass matrix defined as

M = (1 — ap)M + (1 — af)(qmc + gm?K) (2-107)

To start the algorithm the acceleration X, at the time ¢, is needed, which is calculated from
(2-10). The algorithm has been summarized in Box 2.4. The main problem left is a procedure
for the optimal selection of the parameters 3, v, «,, and «; to insure unconditional numerical
stability and desirable damping of high frequency modes. This problem is addressed in the fol-
lowing section.

The singlestep multivalue formulation for the state vector made up of the displacement, velocity
and acceleration vectors follows from (2-3), (2-4) and (2-105)
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where

I 0 -',letQI Xj+1
(1-ap)K (1-af)C (1-oam)M| |Xjn
[ 1 AT (3 -p)aca] [x 0 JE
0 I (1—y)AtI| |%;|+| O 0 lf"’] =%
—o;K —a;C —anM| |%; afl (1-ap)I| L9
Zj+1 = DZJ + EJ (2—108)
5 .
Zj == XJ
X
— — _1 -
I 0 —BA1 I AtT (3 - B)ALT
D= 0 I —vALT 0 1 (1—y)AI|
(1-af)K (1-af)C (1-an)M| |-o;K —oC —a,, M
1 0 —gaet] [ o o 1,
E; = 0 I —y AT 0 0 L ? ]
(1-a)K (1-0af)C (1-amM| |ogI (1—apI] L7 |
(2-109)

The corresponding singlestep multivalue implementation of the SDOF system (2-17) follows
by specialization of (2-108) and (2-109)

q B
%= g . D=D7D
dj
o 0 IN
Dl = O 1 _’J At
(1-ap)w? (1-ap)2Cw (1-—amnm)
- d ! (2-110)
1 At (3 - AL
D, = 0 1 (1—7)At
| —apw? —ap2(w —Qm
0 0
E;=Di' |0 0 F‘E}
ay (1 —ay) Il )
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Box 2.4: Generalized alpha algorithm

Given the initial displacement vector x; and the initial velocity vector x; at the time ¢.
Perform the following initial calculations

1. Calculate the initial acceleration vector ¥; from

g = M (fg — Cly — Kxo)

2. Calculate dynamic mass matrix M from

M = (1 - an)M + (1 - ay) (YALC + SAPK)

Repeat the following items for j = 0,1, ... ,n
1. Calculate new acceleration vector from

%41 =%+ M! [affj + (1 — ay)fjp1 — Mx; — Cx; — Kx; —
(1 - ay) (Atc&:j + K(Aﬁcj + %Atz xJ)H

2. Calculate new displacement and velocity vectors from
Xj41 =% +%; At + ((% — ,-j)ij + ﬁj‘cjﬂ)At?

2.2.1 Numerical Stability and Selection of Parameters of the Gen-
eralized Alpha Algorithm

The special eigenvalue problem for the amplification matrix D in (2-110) is reformulated into
the following generalized eigenvalue problem

Dy=Ape =
D' Dyy = Aple =
Dy = ApD; o 2-111)

For the undamped case, { = 0, the characteristic equation follows from (1-10) and (2-110)
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det (D2 = 5\DD1) -

1-3p At (L-B+0p)AP
det 0 l—j\p (1—"}—|—’)5\D)At =
_(af + (1 - OZf)}D)(_dz 0 —Oyy, — (1 e Oém)j\D

= (Ofm +{1.— Otm)j\D) (1 = /_\D)z
- (af +(1- af)Z\D) (1 Ayt 43p—(1— AD)@ . ,6+ﬁ)\p))ﬁ2 —0 (2-112)

Being of the 3rd order, the characteristic equation (2-112) has one real and two complex conju-
gated solutions. We are merely interested in unconditional stable numerical algorithms, which
implies that all three eigenvalues must fulfill [Ap| < 1 for arbitrary value of ». The parameters
for which this is fulfilled can be shown to be*®

1
5 <y <25

' X X (2-113)
a‘mgi 3 af§§ ’:’.25_)“(1}“*0{7”

The inequalities in the 1st line are identical to the corresponding conditions (2-78) for uncon-
ditional stability of the Newmark algorithm. The 1st and last inequality implies the condition
af > aq. The high frequency limit of the eigenvalues as x — oo may be obtained by dividing
(2-112) with x2, and performing the limit passing. The result becomes

(a,f F(1- o;f))iD) (1 — o o — (L I\D)(% —,3+§SD)) ~ 0 (2-114)

Z

The solutions of (2-114) are

1 ¥ g =Bkl )P A

- e

2}3 ? j

p=q T+z-W-yly-3P-46 (2-115)

25 , J=

iy 3
- =%

1+ﬂf J

We shall choose  in a way that the eigenvibrations corresponding to 7 = 1 and 7 = 2 become
critical damped in the high frequency limit. In this case the square root of the Ist and 2nd
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eigenvalues vanish, and the roots of the characteristic equation coalesce into a double root. The
condition for this is

ﬁ=~3(7+%)2 (2-116)

For all finite kK < oo the eigenvalues become complex, corresponding to oscillatory eigenvi-
brations. As seen from (2-69) and (2-70), the relation (2-116) is identical to the condition for

critical damped eigenvibrations for the Newmark method. Insertion of (2-116) into (2-115)
provides the following expression for the eigenvalues at critical dampning

. Yt —20 =5
Ap = — = 2-117
D 2[3 ~ ¥ % ( )
Next, v is selected at the stability limit, cf. (2-113)
1

7:§+a‘f—a'rn (2*118)
Then, (2-117) becomes

3 - Wm 1

S = P 2 (2-119)

B =l < §

The modulus of the eigenvalue (2-119) is denoted as |Ap|.. Finally, the modulus of the 3rd
eigenvalue in (2-115) is chosen to be equal |Ap|s, which means that all three eigenvalues have
identical modulus in the high frequency limit. Then, oy and o, may be expressed in terms of
the [Ap|eo as follows

|Ap]oo _ 2Aple —1

Gf = =———— |, 4y = —=
$ Bl tl B et 1

(2-120)
This completes the selection of the parameters of the generalized «-algorithm. At first, the
modulus of the eigenvalues of the multiplication matrix in the high frequency limit is chosen
0 |Ap|s < 1. Values [Ap|s < 1 introduces numerical damping of the high frequency compo-
nents, whereas |Aple = 1 conserve the mechanical energy of the eigenvibrations as measured
by eigenvibrations. Next, oy and v, are determined from (2-120). Finally, ~ is calculated
from (2-118), and § from (2-116). The resulting algorithm will be unconditional stable. The
procedure of the parameter selection has been summarized in Box 2.5.
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—

Box 2.5: Selection of parameters of the generalized alpha algorithm

1. Select modulus of the high frequency limit of the eigenvalues of the multiplication
matrix D given by (2-110, so

2. Calculate parameters oy and o, from
_— |AD|oo _ 2|_A5|m—1
" Bt * ™ Pl
3. Calculate parameter y from
1

",‘=§+Ozf—am

4. Calculate parameter /3 from

o=36+3)
AN g
1 ==
0.95¢
oot
|Ap]
0.85
08
0.75 '
107 10° 10° 10*
K
Fig. 2-5 Variation of | Ap| as a function of & = wAt. —: Generalized a-algorithm, |Ap|. = 0.8.

- - - Newmark algorithm, « = 0.09, 3 = }.

It turns out that the complex eigenvalues have the largest modulus. Fig. 2-5 shows the variation
of the modulus of these eigenvalues as a function of x. Additionally, the corresponding result
for the Newmark algorithm calibrated to the same high frequency limit has been shown with a
dashed signature. As seen the numerical damping of the low frequency modes is much smaller
for the generalized «-algorithm than for the comparable Newmark algorithm.
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Fig. 2-6 Numerical damping ratio as a function of x = wAt. —: Generalized a-algorithm, |Ap | = 0.8.
- - -: Newmark algorithm, o = 0.09, 3 = 1.5

This observation has been further illustrated in Fig. 2-6, which shows the variation of the nu-
merical damping ratio, as calculated by (2-59). For the Newmark method an asymptotic linear
variation with x is obtained as predicted by (2-102), whereas the variation for the generalized
a-method is quadratic.

Example 2.7: Generalized alpha solution for a SDOF oscillator

T
5 J
b
0.8F / i 3 e 1
f\ A i ,
061 ( 1 A \. iy N
2 T R R A O (A VO
04t i \ it By o U =
0z} P R Bro 4 o N ‘
=~ oo A TR VA ﬂ, D
N~ o ‘l\ :‘4 A el B t ot .“ : it
S o2} j v : !E A b g P ’r, g
—0.4F \# “‘ f‘ ‘q\ ¥ ~‘ iy \. ‘l / i
i LY \
-0.6F \ :ﬁ -\“ fJ \' Lef Yo i
—o8h \J \,Z' ,
-l
i . . A : . : . .
0 0.5 1 15 2 25 3 35 4 45 5
t/T

Fig. 2-7 Generalized n-algorithm, [Ap| = 0.8. Damped eigenvibrations of SDOF oscillator. w = 1, ¢ = 0.01,
(g0, do) = (1,0). Analytical solution: —, 2 = 0.05: - - -, 2 = 0.10: -.--, 2 = 0.20: .......

Fig. 2-7 shows the numerical results for eigenvibrations of the same SDOF oscillator as considered in Example
2.6, obtained by the generalized a-algorithm with [Ap| = 0.8, and with the time steps $¢ = 0.05, 0.10, 0.20.
Since the numerical damping of the generalized o-algorithm is very small, the numerical solutions are dissipated
in the same rate as the analytical solution. As seen the numerical solutions are related with period elongation,
which are approximately of the same magnitude as for the Newmark algorithm as shown on Fig. 2-4, and hence
increases proportional with At2,
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2.3 Exercises

2.1 Consider the damped eigenvibrations of the two-degrees-of-freedom system defined in Ex-
ample 1.6 subjected to the initial values

(a.) Write a MATLAB program, which perform Newmark integration.

(b.) Perform and compare the calculation for (3, v) = (0.25,0.50), (4,7) = (0.25,0.25)
with the time steps At = T3 /10 and At = T3 /100, where T} denotes the fundamental
undamped eigenperiod.

2.2 Consider the same problem as in Exercise 2.1.
(a.) Write a MATLAB program, which perform generalized alpha integration.

(b.) Perform and compare the calculation for [As| = 0.8, |Ae| = 1.0 with the time steps
At = Ty/10 and At = T, /100, where 77 denotes the fundamental undamped eigen-
period.




CHAPTER 3
LINEAR EIGENVALUE PROBLEMS

In this chapter the generalized eigenvalue problem (1-9), and the related characteristic polyno-
mial will be further analyzed. At first in Section 3.1, the Gauss factorization of the coefficient
matrix of the generalized eigenvalue problem is treated. This factorization plays an important
role in several iterative numerical eigenvalue solvers based on the characteristic polynomial.
Furthermore, the factorization provides a simple way for calculating a sequence of characteris-
tic polynomials known as the Sturm sequence, which makes it possible to formulate upper and
lower bounds of the eigenvalues of the problem. These bounds are contained in the so-called
eigenvalue separation principle treated in Section 3.2, Various iterative schemes for solving the
indicated generalized eigenvalue problem require that the stiffness matrix is non-singular. For
structures, which admit stiff-body motions, it then becomes necessary to perform a so-called
shift, where an artificial non-singular stiffness matrix is introduced. The eigenvectors of the
shifted system are identical to those of the original problem, whereas the eigenvalues of the
two systems deviate with the specified shift parameter. Shifting of a generalized eigenvalue
problem is treated in Section 3.3. Some iterative eigensolvers presume a special eigenvalue
problem corresponding to M = I in (1-9). In this case an introductory transformation from
the anticipated generalized eigenvalue problem into an equivalent special eigenvalue problem
becomes necessary. This can be achieved in several ways. In Section 3.4 a so-called similarity
transformation has been used, which preserves the symmetry of the transformed stiffness ma-
trix. A similarity transformation leave the eigenvalues unaffected, whereas the eigenvectors are
changed in a known manner.

3.1 Gauss Factorization of Characteristic Polynomials
Since the coefficient matrix of the generalized eigenvalue problem K — AM is symmetric, it
may be Gauss factorized on the form

K - MM = LDL” (3-1)

where L is a lower triangular matrix with units in the main diagonal, and D is a diagonal matrix,
given as
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e =
la; 1
s 16 & 4 (3-2)
1 lna lng oo 1]
diy 0 +s» O
B=], % . . (3-3)
0 0 e d'rm

The details of the Gauss factorization of an symmetric matrix has been given in Box. 3.1. Since,
det(L) = det(LT) = 1, the following representation of the characteristic polynomial (1-10) is
obtained

P()) = det (LDL") = det (L) det (D) det (L") = det (D) = dyyda -+ - dnn, (3-4)

At the same time (1-11) can be written on the form

PN = aplh =R 0 = Ba) ove T = ) 3-5)

Despite the striking similarity between (3-4) and (3-5), d;; is very different from the correspond-
ing factor (A — A;) in (3-5), as demonstrated in Example 3.2 below.

Let A be monotonously increased in the interval [0,00[. From (1-10) follows that P(0) =
a, = det(K) > 0. Since all factors in (3-5) have negative sign for A €]0. \[, it follows that
P(X) > 0 throughout this interval. As X passes A; from below, the factor (A — X;) changes its
sign from negative to positive, while the other factors remain negative. This means that the sign
of P(\) changes from positive to negative at the passage of A;. Then, a similar sign change
must occur in (3-4). For A < A, all the diagonal elements dy1, das, ..., d,, are positive. As
A passes A, exactly one of these factors (not necessarily d;;) changes its sign from positive
to negative, while the other factors remain positive. The sign of the characteristic polynomial
remain negative for A €]A;, Xo[. As A passes A, from below, the factor (A — X2) in the same
way changes its sign from negative to positive, making the characteristic polynomial positive in
the interval A €] Ao, As[. A similar sign change occurs in (3-4), meaning that an additional diag-
onal element has changed its sign from positive to negative. Hence, for A €]y, A3] exactly two
of the diagonal elements d;,, dos, ..., d,, are negative. Proceeding in this manner, it is seen
that if X is placed somewhere in the interval |\,,. A,,41[, exactly m diagonal elements among
dy1, da, . .., d,, are negative. This observation is contained in the following theorem.
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Theorem 3.1: Let D be the diagonal matrix in the Gauss factorization of the coefficient matrix
K — AM of a generalized eigenvalue problem, and A is an arbitrary parameter. Then, the num-
ber of negative components in the main diagonal of D is equal to the number of eigenvalues of
the generalized eigenvalue problem, which are smaller than the parameter A entering the factor-
1zation.

The theorem can be used to formulate bounds for any of the eigenvalues as demonstrated below
in Example 3.3. Actually, one can calculate say the jth eigenvalue ); with arbitrary accuracy.
The method is simply to make an initial sequence of calculations of the characteristic polyno-
mial P(}) as a function of A by (3-4), until 7 components in the main diagonal of D are negative.
Next, one can perform additional calculations to reduce the interval, where the jth sign change
takes place. This procedure for calculation of eigenvalues is known as the telescope method.

Box 3.1: Gauss factorization of symmetric matrix

Gauss factorization reduces a symmetric matrix K of dimension 7 X 7 to an upper trian-
gular matrix S in a sequence of n — 1 matrix multiplications. After the first (i — 1) matrix
multiplications the following matrix is considered

K® =L ALL --Li'’K , i=2,...,n (3-6)

where K() = K. Sequentially, the indicated matrix multiplications produce zeros below
the main diagonal of the columns j = 1,...,7 — 1. Then, pre-multiplication of K with
L; ! will produce zeroes below the main diagonal of the 4th column without affecting the
zeroes in the previous columns. L is a lower triangular matrix with units in the principal
diagonal, and where only the ¢th column is non-zero, given as

3 W
0 1

e 0 G «on 1 3-7)
00 --0 1
00 0 —lyry 1
0 0 -« 0 =l O - 1]
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The components /; ; entering the ith column are given as
(@)
— Ki.i

=S L j=itlean (3-8)

lj|i

where K J(? denotes the component in the jth row and ith column of K*). By insertion it
is proved that the inverse of (3-7) is given as

o 2
01

L; = o a4 (3-9)
00 -0 1
00 -+ 0 Lyys 1
00 0 Iy, 0 --- 1]

Then, K™ obtained after the (n — 1)th multiplication with L1, , has zeroes in all the first

n—12

(n —1) columns below the main diagonal, corresponding to an upper triangular matrix S.
Hence

Ll i K =8 =

n—1

K —_— LS s L = Lle e Lnﬁl (3‘—‘10)

Since, L defined by (3-10) is the product of lower triangular matrices with 1 in the main
diagonal, it becomes a matrix with the same structure as indicated by (3-2).

Because K is symmetric, S must have the structure

S =DLY (3-11)

where D is a diagonal matrix, given by (3-3). This proofs the validity of the factorization
(3-1).
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Example 3.1: Gauss factorization of a three-dimensional matrix

Given the symmetric matrix

5 -4 1
E=KVY=|.4 § -1 (3-12)
1 -4 6

5 —4 1
E¥=Lr"KM =10 28 42
’ k4 0 -32 58
Ll=| ¢ 10 = (3-13)
=3 0§ 9 o 1 0 0
5 i e 4
L —Ll— —§ 1 0
191
5 —4 1
K® =1;"K® =8= |0 28 -32
o I W 0 0 21429
Ept=10 1 0| = (3-14)
0 32 1 ' 1 0 0
- L® =L L, =L=|-0.38 10
0.2 -1.1429 1
From this follows that
1 0 0 5 0 0
L= =08 1 4 , D=|o 88 0 (3-15)
02 -1.1429 1 0 0 21429

Example 3.2: Gauss factorization of a three-dimensional generalized eigenvalue problem

Of course for a given value of A the matrix KX — AM may be factorized according to the method explained in
Box 3.1. However, for smaller problems explicit expressions may be derived, as demonstrated in the following.
Given the mass- and stiffness matrices defined in Example 1.4, the components of L and D are calculated from the
following identities, cf. (1-79), (3-1)

1 0 0| (dyy 0 0 L oy I3 di diilag diilay
o1 1 0 0 dog O 0 1 lige| = |diiln daa + d113, ditlailar +daslzs | =
Is1 I3z 1 0 0 dgj [0 0 1 dilay  diloilsy +doslse  dag + dinl3, + daol?,
2 - 20 -1 0

-1 1-A -1 (3—-16)
L 0 -1 2-1%A
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Equating the corresponding components on the left and right hand sides, provides the following equations for the
determination of the unknown quantities

1 1
— ———)\:—-— —

diu=2-5A=-3(A-4)
ditlsy = -1 = Iy = -
11021 = 2= T

1 4 A _gx+14
d22+d11531:4—)\ = d22=4—/\+—(A—4) 5 = ¥

2 (A —4) A—4

Lod (3-17)
dy1lagl dyolzs = doglsg = —1 o e TR
11021031 + dazlzs = daslsn = 32 Y oanrid
1!

dsz + d11l3; +doaldy, =dsz — lzo =2 — 5)\ =
domg_ Ly A= _ 1@ -2+ -48  1(A-2)(A-4)(A-6)
BTETGT R B4 2 MB-gr+1d = 2 N-art14 )

Then, the following expression for the characteristic equation is obtained, in agreement with (1-80)

S (L0 g

(3-18)

1
P(X) = di1dzadaz = —5()\—4) (—

Example 3.3: Bounds on eigenvalues

In this example bounds on the eigenvalues of the GEVP in Example 1.4 is constructed from the number of negative
components in the diagonal of the matrix D, using Theorem 3.1.

For A = 1 one gets:

2 -1 0 1 : 00111 -3 o0
K-MM=|-1 3 -1f = LDLT=|_2 0 Z 0 1 -2 (3-19)
0 -1 2 0 -2 1/ |0 0o 2B 1

The components of the matrices L and D may be calculated by the formulas indicated in (3-17). As seen
dip =3 >0,dy2 =7 > 0,dss = 12 > 0. Hence, all three diagonal components are positive, from which

it is concluded that Ay > A = 1.

For A = 8 one gets:

-2 -1 0 1 -2 0 01 3 0
K-MM=|-1 -4 -1 = LDL"=|1l 1 0 - o 1 2 (3-20)
2 12
0 -1 -2 g £ 1 0 0 = 1
Asseend;; = —2 < 0,dag = —% <0, d33 = _17,—2 < 0. Hence, all three diagonal components are negative, from

which it is concluded that A3 < A = 8.

For A = 5 one gets:
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-1 -1 0 1 -1 0o of|1 2 o0
K->M=|-1 -1 -1| = LDL"=|2 1 01 0 f =1 (3-21)
0 -1 —3 0 -1 1 00 -3 1
Asseendyy = —% <0,dee=12>0,dz3 = fg < 0. Hence, two diagonal components are negative and one is
positive, from which it is concluded that Ay < A =5 < As.
For A = 3 one gets:
: -1 0 1 : 0 0|1 -20
K-=M=|-1 1 —1| = IDL'=|-2 1 0 -1 0 1 3 (3-22)
3
0 -1 % 01 1]]0 o0 3
As seen diy = % > 0,das = -1 < 0,dzs = % < 0. Hence, two diagonal components are positive and one is
negative, from which it is concluded that A} < A = 3 < As.
In conclusion the following bounds prevail
1< X <8
3< A <h (3-23)
< A3 <8

3.2 Eigenvalue Separation Principle

The matrices M and K™ of dimension (n — m) x (n — m) are obtained from M and K,
if the last m rows and columns are omitted in these matrices. Then, consider the sequence of
related characteristic polynomials of the order (n — m)

P (A™) = det (K™ — AWM m=0,1,...,n—1 (3-24)

where M@ = M, KO = K, A® = X and P@()) = P()). The eigenvalues corresponding to
M™ and K™ are denoted as A AY™, ... Al™ |
Now, for any m = 0,1,...,n — 1 it can be proved that the roots of Pm*+1) (Xn+1)) = ( are
separating the roots of P™ (A™) =0, i.e.

pE A g W e Y < 3 g 300 20D )00 2o (325

n—m-—1 n—m—1 n—m —

A formal proof of (3-25) has been given by Bathe.! The sequence of polynomials P ()\) with
roots fulfilling the property (3-25), is denoted a Sturm sequence. (3-25) is illustrated in Exam-
ple 3.4.

'K.-1. Bathe: Finite Element Procedures. Printice Hall, Inc., 1996.
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Next, consider the Gauss factorization (3-1). Omitting the last m rows and columns in M and
K is tantamount to omitting the last m rows and columns in L. and D. Then

P (X)) = det (K™ — X™M™ ) = det (LMDMLI™) = det (D) =

dlld22 te 'dn.—-m,'nfm (3_26)
where
_ i -
o 1
Lt = | Iy I3 1 (3-27)
_lm—m,l ]n—m,z ln.—m,S S 1_
d“ 0 i R 0
O g s 0
Dm = |~ "# , (3-28)
0 O T dn,—m,rhm

The bounding property explained in Theorem 3.1 for the case m = 0 can then easily be gener-
alized. Let A(™ = 4, and perform a Gauss factorization on the matrix K™ — M) Then
the number of eigenvalues, )\f,,-m) < i, will be equal to number of negative diagonal components
di, ... dy—mn—m 10 the matrix D.

The number of negative elements in main diagonal of the matrix D in the Gauss factorization of
K — AM = LDLT, and hence the number of eigenvalues smaller than A, can then be retrieved
from the signs of the sequence P (), PAI(X),..., P™=D()) as seen in the following way.

Introduce P™()) as an arbitrary positive quantity. Since P~V ()) = d,,, it follows that the
sequence P ()), P™=1()) has the sign sequence sign(P™ (X)), sign(P"=1())) = +, —, if
dy; < 0, and the sign sequence +, +, if dj; > 0. dj; < 0 indicates that at least one eigenvalue
is smaller than A, in which case one sign change, namely from + to —, has occurred in the
indicated sign sequence.

Next, P2 ()\) = dy1day is considered. dj; < 0 A dy < 0 indicates that two eigenvalues
are smaller than X. This in turns implies that P™~()) has a negative sign, and P"~2)(})
has a positive sign. Then, one additional sign change has occurred in the sequence of sign
of the characteristic polynomials sign(P™(})), sign(P"=Y(\)), sign(PM=2(X\))=+, —, +. If
doy > 0, then P=1()) and P"~2)()) have the same sign, and no additional sign change is
recorded in the sequence of signs of the characteristic polynomials.
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Proceeding in this way it is seen that the number of sign changes in the sequence of signs
sign(P™(\)), sign(P™=V(X)),...,sign(P©())) determines the total number of eigenvalues
smaller than A. This property of the sequence of characteristic polynomials is known as a Sturm
sequence check. In Example 3.5 it is illustrated, how the sign of the components di1, das, da3
for the case n = 3 can be retrieved from the sequence of signs of the Sturm sequence.

Example 3.4: Bounds on eigenvalues by eigenvalue separation principle

For the mass- and stiffness matrices defined in Example 1.4, the matrices M(1) and K*) become

Mm:[é U} , Km:[ 2 ‘1} (3-29)

g byt 4 AV =4-2=259
det 2 =0 = 1 ‘ 3-30
¢ ({ A =44+ Z=541 &8

The matrices M and K? become

M(2>=B—] , K9=[2] = iP'=4 (3-31)

The relation (3-25) becomes

AV @ <cad = LA o <) 5 {250< <541 (3-32)
X Tt < e MWD <x <o 541 < A3 < o0

The exact solutions are A; = 2, Ay = 4, and A3 = 6, cf. Example | 4.

Example 3.5: Sturm sequences and correspondence to sign of components in D-matrix

Consider a generalized eigenvalue of order n = 3. For a given value of A, the Sturm sequence P(3)(}), P(2)()),
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PM(X), PO()) is calculated. Below are shown the 8§ possible sign sequences of the Sturm sequence.

+
PE() >0

f

44
PO >0 = dy; >0

PA(A) <0 = dj; <0

\

3

.

4+
PO >0 = dyy >0

s
PO <0 = dyy <0

+-+
PO >0 = deg <0

+——
P(l)()\) <0 = dyp >0

PO >0
POM) <0
PO >0
PO <0
POy >0
PO <0

PO\ >0

e+
—

4+
=

=i
=

++——
=

+—++
=

+—+—
=

=t
=

=

dzz >0

d33<0

das < 0

dag >0
(3-33)

daz >0

d33 <0

dsz < 0

tP(")(,\) <0 = dsz >0

With an arbitrary positive value for P(®)()) the first curly bracket indicate how the sign of dy; is retrieved from
the possible signs of P ()). The sign sequences ++ and +— have been indicated atop of P)(A). At the
next level the sign of PY()) in combination to the previous sign sequence makes it possible to retrieve the
sign of dgg. Finally, at the 3rd level the sign of the characteristic polynomial P(M(}) in combination to the
previous sign sequence makes it possible to retrieve the sign of d33. As an example, the sequence of signs
sign(P®) (X)), sign(P® (X)), sign(P™M) (X)), sign(P{® (A))=+ — +— are obtained for the specific sign combi-
nation di; < 0, do2 < 0 and daz < 0. Moreover, there are three sign changes in the indicated sign sequence
+ — +—, and correspondingly all three components d;;, dz2 and ds3 are negative. The reader is encouraged to
verify, that the number of sign changes in the sequence of signs at the lowest level in (3-33) always is equal to the
number of negative components in the specific combination of dy 1, dos and dz3 producing this sequence of signs.

Example 3.6: Physical interpretation of the eigenvalue separation principle

- 1)

b)

4“J‘+1

hf"an

{'Un.kl

S
et

Fig. 3—1 Vibrating string. a) Definition of elements and degrees of freedom. b) Undamped eigenmodes.
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The vibrating string problem in Example 1.2 is considered again. The eigenvibrations of the discretized string is
given by (1-68) with M(®) = M and K = K given by (1-69) or (1-70).

Next, consider the system defined by the matrices M) and K*) of dimension (n — 2) x (n — 2), where the
last row and column are omitted in M(0) and K (0). Physically, this corresponds to constraining the displacement
Uy —1(t) = 0, as indicated by the additional support in Fig. 1.3b. The corresponding eigenmodes of the continuous

system have been shown with a dashed signature. As seen in Fig. 1.3b the wave-lengths related to the circular

eigenfrequencies w%o), w&l), wéo) and wél) decreases in the indicated order. Hence, the following ordering of these

eigenfrequencies prevails

) (1) (0)

wio <wy ' <wy ' K wé;) (3-34)

Since )\f,,-m) = (w_gm))z, the corresponding ordering of the eigenvalues become

2D & 28 £ 2. & 310 (3-35)

which corresponds to (3-25).

3.3 Shift

Occasionally, a shift on the stiffness matrix may be used to enhance the speed of calculation
of the considered GEVP. In order to explain this the eigenvalue problem (1-9) is written in the
following way

(K — oM+ pM — ,\_11\1) ®U) = 0 (3-36)

Obviously, we have withdrawn and added the quantity pM inside the bracket, where p is a
suitable real number, which will not affect neither the eigenvalues A;, nor the eigenvectors o),
(3-36) is rearranged on the form

(K _ MM)q:U) ~0 (3-37)
where
K=K-pM , pj=X—p (3-38)

Hence, instead of the original generalized eigenvalue problem defined by the matrices (K, M),
the system with the matrices (K, M) is considered in the shifted system, where K is calculated
as indicated in (3-38). The two systems have identical eigenvectors. However, the eigenvalues
of the shifted system become (A — p), (A2 — p), ..., (An — p), where Ay, Ay, ..., A, denote the
eigenvalues of the original system.
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For non-supported systems (e.g. ships and aeroplanes) a stiffbody motion & # 0 exists, which
fulfills

K® =0 (3-39)

(3-39) shows that A = 0 is an eigenvalue for such systems. Correspondingly, det(K) = 0 for
systems, which possesses a stiffbody motion. However, some numerical algorithms presume
that det(K) # 0. In such cases a preliminary shift on the stiffness matrix must be performed,
because det(K — pM) # 0, if det(K) = 0.

Example 3.7: Shift on stiffness matrix

Given the mass- and stiffness matrices

M= 2 A . | # (3-40)
1 2 -3 3
The characteristic equation (6-6) becomes
. i A =0
it 3—2) 3-A1) _ 0 = 1 (3-41)
-3-2 3-2X Ao =06

A1 = 0, since det(K) = 0.

Next, a shift on the stiffness matrix with p = —2 is performed, which provides

K—[ 3 “3]+2[2 1}—[ T 1] (3-42)
8 3 1 2 =1 7y

Now, the characteristic equation becomes

= = =5 =92
gl |T4E S Y oy o oW (3-43)
-1l—-p T-2u ja =8
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3.4 Transformation of GEVP to SEVP

Some eigenvalue solvers are written for the special eigenvalue problem. Hence, their use pre-
sumes an initial transformation of the generalized eigenvalue problem (1-9). Of course, this
may be performed, simply by a pre-multiplication of (1-9) with M, However, then the result-
ing system matrix M 1K is no longer symmetric. In this section a similarity transformation is
indicated, which preserves the symmetry of the system matrix.

Since, M = MY it can be factorized on the form

M = ss” (3-44)

The generalized eigenvalue problem (1-9) may then be written in the form

K(ST) 'sTa) = y;887al) =
STIK (ST sTel) = ), STeV) (3-45)

where the identity (ST)_1 = (S‘l)T has been used. (1-9) can then be formulated in terms of
the following standard EVP

K3\ = )oY (3-46)
where
K=8"'K(s )" (3-47)
dU) = gTpl)
(3-48)

(3-47) defines a similarity transformation with the transformation matrix S~*, which diagonal-
ize the mass matrix. Similarity transformations is further explained in Chapter 6. Obviously,
K = K7. As seen from (3-46) the eigenvalues ). ..., )\, are identical for the original and
the transformed eigenvalue problem, whereas the eigenvectors &) and ®U) are related by the
transformation (3-48).

The determination of a matrix S fulfilling (3-44) is not unique. Actually, infinite many solutions
to this problem exist. Below, two approaches have been given. In both cases it is assumed that
M = M7 is positive definite.
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Generally, Choleski decomposition is considered the most effective way of solving the problem.
In this case a lower triangular matrix S is determined, so (3-44) is fulfilled. Obviously, S is
related to the Gauss factorization as follows

Wlm 0 e @
0 Md 0

S=LD: , Di=| il _ (3-49)
0 0 Vd'n.n,

The diagonal matrix D2 does only exist, if the components d;; of the matrix D are all positive.
This is indeed the case, if M is positive definite. Although, S may be calculated from (3-49),
there exists a faster and more direct algorithm for the determination of this quantity.

Alternatively, a so-called spectral decomposition of M may be used. The basis of this method
is the following SEVP for M
M pjv(j) (3-50)

p; and v denotes the jth eigenvalue and eigenvector of M. Both are real, since M is symmet-
ric. The eigenvalue problems (3-50) can be assembled into the matrix formulation, cf. (1-14)

My = VR (3-31)
p1 0 0
0 pp -+ 0

p=. T v @@ ) (3-52)
0 0 - py

The eigenvectors are normalized to magnitude 1, i.e. v Tyl = dij. Then, the modal matrix

V fulfills, cf. (1-23)

vi=vT (3-53)

From (3-51) and (3-53) the following representation of M is obtained

M = VpuVT (3-54)

Finally, from (3-44) and (3-54) the following solution for S is obtained
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T 0 s @
0 wis U0

gk | ph=| " ¥ o (3-55)
0 Y Lim

The drawback of the spectral approach is that an initial SEVP must be solved, before the trans-
formed eigenvalue problem (3-46) can be analyzed. Hence, the method requires the solution of
two SEVP of the same dimension.

Box 3.2: Choleski decomposition of symmetric positive definite matrix

Choleski decomposition factorizes a symmetric positive definite matrix M into the matrix
product of a lower triangular matrix S and its transpose, as follows

M=S88" =

mir Moy -+ My 8 0 <0 g S11 S21 v Snl

Ma1 Mgz - Mupa| |81 S2 -+ 0 0 s -+ Sua| _

[ My Mp2 " Mgy Snl Sn2 ' Sun 0 0 o S
M W2

1

591511 S5y + 8% symmetric

(3-56)
5 + o SE A4Skt sk, + 82

LSn1S11  Sp2S22 Sn1S21 ‘Snn Sn,n—l Sn? Snl

Equating the components of the final matrix product with the component on and below
the main diagonal of M, equations can be formulated for the determinations of s;;, which

are solved sequentially. First s;; = ,/my; is calculated. Next, s;;, ¢ = 2,...,n are
determined from s;; = m;1/s11. Next, sopo = (/Mg — s3, is calculated, and s, i =
3,...,n can be determined from s;5 = (ma; — 8;1821)/522. Next, the 3th column can be

calculated and so forth. The general algorithm for calculating the components s;; in the
7th column reads

Sy = iy =88, —sve— g8 i =1 n
33 =\ Mi — 8- S 0 1=40 (3-57)

Sij = (?’n-ij — 8ij-1854-1— """ — Silsjl]/sjj , =71+ 1, s wowy TB
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3.5 Exercises

3.1 Given the same mass- and stiffness matrices as in Exercise 1.1.

(a.) Show that the eigenvalue separation principle is valid for the considered example.

3.2 Given the following mass- and stiffness matrices

MZZO’K:ES—l
00 -1 4

(a.) Calculate the eigenvalues and eigenmodes normalized to unit modal mass.

(b.) Perform a shift p = 3 on K and calculate the eigenvalues and eigenmodes of the new
problem.

3.3 Given a symmetric matrix K.

(a.) Write a MATLAB program, which determines the matrices L and D of a Gauss fac-

torization as well as the matrix (S™)7, where S is a lower triangular matrix fulfilling
SEf =K.

3.4 Given a symmetric positive definite matrix K.

(a.) Write a MATLAB program, which performs Choleski decomposition.




CHAPTER 4
APPROXIMATE SOLUTION METHODS

This chapter deals with various approximate solution methods for solving the generalized eigen-
value problem.

Section 4.1 consider the application of static condensation or Guyan reduction.' The idea of
the method is to reduce the magnitude of the generalized eigenvalue problem fromnton; €< n
degrees of freedom. Next, the reduced system is solved exact. In principle no approximation is
related to the procedure.

Section 4.2 deals with the application of Rayleigh-Ritz analysis. Similar to static condensation
this is a kind of system reduction procedure. As shown the method can be given a formulation
identical to static condensation. However, exact results are no longer obtained.

Section 4.3 deals with the bounding of the error related to a certain approximate eigenvalue.

4.1 Static Condensation

The basic assumption of static condensation is that inertia is confined to the first n; degrees of
freedom, whereas inertia effects are ignored for the remaining ny = n — n; degrees of freedom.
The approximation of the method stems from the ignorance of these inertial couplings. This
corresponds to the following partitioning of the mass and stiffness matrices

M - 5 Ml] O , K — Kll K12 (4_1)
0 0 Ks Kj

M,; and K, are sub-matrices of dimension n; x n;, Kj3 = KZ, is a sub-matrix of dimension
ni X ng, and Kys is of the dimension ny x ns. The eigenvalue problems for the first n; and
the last ny eigenvectors can be assembled in the following partitioned matrix formulations, cf.
(1-14)

"~ ISRK. Nielsen: Structural Dynamics, Vol. 1. Linear Structural Dynamics, 4th Ed. Aalborg tekniske Univer-
sitetsforlag, 2004.

— T8 —
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Ku Kol [u] _ [Mu 0] [&4] , ]
= 1
[ Ka1 K| [®a | 0 0] [®y
i S o ; (4-2)
K K| [P My 0] [®y A
= 2
[ Ko1 Koz |Po | 0 0] [P )

where A; and A, are diagonal matrices of the dimension n; x n, and ny X ng

% 0 s B T 0 a1
0 A -+ 0 0 An 0

A=, T L] =] TR _ (4-3)
0 0 - Ay 0 0 i

@gj ) and (I)éj ) denote sub-vectors encompassing the first n; and the last ny components of the
jth eigenmode ®), Then, the matrices ®,;, ®,,, Py and Py, entering (4-2) are defined as

By 5= [@gl) (1)(12) . '(I)gm)] . Dy = [(I)§m+1) (I)gm+2) o {I)gn)] el
Py = [(P(zl) @‘(?2) o ¢;7b1)] : (1322 - [‘:ﬁ(zn1+1) @gm+2) o é(zn)]

At first the solution for the first n; eigenmodes is considered. From the lower lower half of the
first matrix equation in (4-2) follows

Ky @ + Kypp®y =0 =
®y = *K521K21‘I’11 (4-3)

From the corresponding upper half of the said matrix equation, and (4-5), follows

K Py — K12K2_21K21(I)11 =Mpu®uA =
K11 @1 = My @134 (4-6)

where

K=Ky - K12K5 Ko 4-7)
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(4-6) is a generalized eigenvalue problem of reduced dimension n;, which is solved for (Ay, ®11).
Next, the remaining components of the first n; eigenmodes are calculated from (4-5). The
modal masses become

T
@y

‘I)21

M;; O
0 0

q::'11

=& My ®y; (4-8)
@21

mg =

Hence, the total eigenmodes will be normalized to unit modal mass with respect to M, if the
sub-vectors ®,; are normalized to unit modal mass with respect to M.

Next, the solution for the last ny eigenmodes are considered. From the last matrix equation in

(4-2) follows
d
12:| A_2_1 e
Dy

Obviously, (4-9) is fulfilled for A;* =0 A @35, = 0. Ay ! — 0 implies that all n, eigenvalues
are equal to infinity. Hence, the following eigensolutions are obtained

My P2
0

[Ku K, 4

Ky Ky

oo 0 0
0 - 0 D 0
A= T, :{ (4-10)
: - T i @‘22 ®2'2
T —

The matrix ®95 is undetermined. Any matrix with linear independent column vectors will do.
Then, this quadratic matrix may simply be chosen as an ny % 7 unit matrix

By =1 (4-11)

The modal masses become

F

0 My; 0 0
my; = =10 (4-12)
Generally, if the ith row and the ith column in M are equal to zero, then ®7 = [0,...,0,1,0,...,0)

is an eigenvector with the eigenvalue A = oo. The modal mass is 0.

In praxis the calculation of K, is solved by means of an initial Choleski decomposition of Ko,
cf. Box 3.2
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Kp=58T & Kz =(s1)"s? (4-13)

where both S and S~! are lower triangular matrices. Then, K, is determined from

Ki =K —R'R (4-14)

where the ny % ne matrix R is obtained as solution to the matrix equation

SR = Ky, (4-15)

In principle (4-15) represent ny linear equations with ny right-hand sides. Given that S is a
lower triangular matrix, this is relatively easily solved.

Finally, it should be noticed that the static condensation approach is only of value if n; < n.

Example 4.1: Static condensation

Given the following mass- and stiffness matrices

0000 2 -1 0 0

M=[0 200 L |1 2-1 0 (4-16)
0000 0 -1 2 -1
000 1 0 0 -1 1

The rows and columns are interchanged the mass and stiffness matrices, so the following eigenvalue problems are
obtained

(2 @& < <t]. - Bo @4 - -« i

0 i -1 o [®n 01 o of [Buf|r O

= = 20| |g,, 00 00||s.|lo x
-1 0 0 2" 00 o0 o0f" - :
] ] ) (4-17)
3 @ =¥ <], - [BHE 80 . .- ]

0 1 -1 ol |%e 01 o of [Piz||2 0

1 -1 2 0| |g,, 00 00|10 x
<1 0 0 2 “ oo 00" 5 .

A formal procedure for obtaining the mass and stiffness matrices in (4-17) by means of a similarity transformation
has been demonstrated in Example 6.1. Then,

2 0 -1 -1 2 0 2 0
K;; = , Kis=Kjz = . Koo = . M, = 4-18
11 [U 1] : 12 21 {_1 0} ; 22 [0 2] ) 11 [U 1] ( )
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From (4-7) follows

-1
- o 2 0 -1 -1f|2 0 -1 -1 1 -1
Kii =K - KK Ky = = = 2 4-19
i B | I e B i | B
The reduced eigenvalue problem (4-6) becomes
1 -3 2 @
[ ;9 ‘1’11=[ }‘1’11-’\1 (4-20)
2 3 01
The eigensolutions with eigenmodes normalized to modal mass 1 become
R Bl _ G- o _|z -2
A= 0 )\2]_[ g %+_? y P = Vi 2 (4-21)
2 2
From (4-5) follows
i 1 1
o2 [ oflg 271" 4

From (4-10) and (4-11) follows

ds 0 5 00 10
Moy = - , Py = s [ Pr— 4-23
*~lg )\J [o ooJ M L} 0} “ [o 1] fee)

After interchanging the degrees of freedom backlto the original order (the st and 2nd components of ®;; and @4
are placed as the 2nd and 4th component of ) the Ist and 2nd components of ®5; and ®,; are placed as the
3rd and 1st component &7, the following eigensolution is obtained

M 0 0 0 -2 g 0 0])
1, V2
W 0 Az 0 0 _ 0 §+T 0 0
0 0 X 0 0 0 oo 0
0 0 0 XN 0 0 0 oo
(4-24)
1
i < 03
(1) 52 $3) @ 3 = 0
@*[cp 32 30 @] =
] Lo¥d -I.30 5 @
3
g ¢ 00
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4.2 Rayleigh-Ritz Analysis

Consider the generalized eigenvalue problem (1-9). If M is positive definite, so v Mv > 0 for
any v # 0, the so-called Rayleigh quotient may be defined as

vIKv
- 4-25
oLY) vIMv e
It can be proved that p(v) fulfills the bounding, see Box 4.1
AL < p(v) € A (4-26)

where A; and ), denote the smallest and the largest eigenvalues of the generalized eigenvalue
problem.

Especially, if v = ®), where &) has been normalized to unit modal mass, it follows that
SDTMSY = 1 and PUVTKPY = ), see (4-34) and (4-35) below. Then, p(v) = ;. This
property is contained in the so-called Rayleigh’s principle

A1 = min p(v) (4-27)

Next, assume that v is M-orthogonal to @V, so ®)"Mv = 0. Then, the following bounding
of the Rayleigh quotient may be proved, see Box 4.1

Ao < p(v) < Ay (4-28)

Correspondingly, A may be evaluated by the following extension of the Rayleigh principle,
where the M-orthogonality of the test vector v to the first eigenmode ®(1) has been included as
a restriction

s et)
Xy = (4-29)

SNTNv =0
The corresponding optimal vector will be v = &),
Generally, if v is M-orthogonal to the first m — 1 eigenmodes &), @) &im-1) g0

®TMy = 0, j = 1,...,m — 1, the following bounding of the Rayleigh quotient may
be proved, see Box 4.1

A7n E ,U(V) S /\” s m<n (4—30)




4.2 Rayleigh-Ritz Analysis 85

Correspondingly, A,, may be evaluated by the following extension of the Rayleigh variational
principle, where restriction of M-orthogonal of the test vector v to the eigenmodes 1) =
0,7=1,...,m— 1 are included

g oV

T (4-31)
dNTMv =0 , j=1,...,m—1

The corresponding optimal vector will be v = &™),

The Rayleigh quotient may be used to calculate an upper bound for the lowest eigenvalue A;.
The quality of the estimate depends on the choice of v. The better the qualitative and quantita-
tive resemblance of v to the shape of the lowest eigenmode, the sharper will be the calculated
upper bound.

Box 4.1: Proof of boundings of the Rayleigh quotient

Given the linear independent eigenmodes, normalized to unit modal mass
&M @@ @™ Using the eigenmodes as a vector basis, any n-dimensional
vector may be written as

v=q®" + 8?4+ .. 4 ¢, 0™ (4-32)

Insertion of (4-32) into (4-25) provides

T T . .,
i=17= 10, R LT - (S IR 157 3
pv) = 2222 - T <L (4-33)

i Z qiqj'(I’{i)Tl\fI‘I)(j) Qf + q% “fpums g quz

i=14=1

where the orthonormality conditions of the eigenmodes have been used in the last state-
ment, 1.e.

0, i#]
1, i=j

£} =

qa(ﬂTKq)(-f):{f b (4-35)
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Given the following ordering of the eigenvalues

OgAlSAZS'“SAnflg)\nSm (4—36)

it follows directly from (4-33) that

M+ EM+ o+ EN
#+a++d

p(v) > =\

(4-37)

qslen + Q;)\n + # = (1721)\7; -

p(v) <
G+a+-+a;

which proves the bounding (4-26).

(4-32) is pre-multiplied with 7M. Then, use of (4-34) provides the following expres-
sion for the jth modal coordinate

g; = W TMv (4-38)

Hence, if v is M-orthogonal to ®), j = 1,...,m — 1l it followsthat g, = go = - .- =
Gm-1 = 0. In this case (4-33) attains the form

= Gon A+ q72u+1’\m+1 + -k gl

p(v) (4-39)
e + Gy b bl
Proceeding as in (4-37) it then follows that
2)\m,+-2 )\m++ 2)\r
p(V) 2 q'ﬂ’L - qm;—l - zqn m — )\m.
gz, + Grm+1 + g
, , , (4-40)
3\ Ao
p(V) S < n2+ qrn;1 - u +;‘1”An = )\n
an + q'rr1+1 = ¥ + q”
which proves the bounding (4-30).
In the so-called Ritz analysis m linearly independent base vectors, ¥(1) . W) are defined,
which span an m-dimensional subspace V,, € V,,. Often the base vectors are determined as
the static deflections from m linearly independent load vectors fi, . . ., f,,. This is preferred, be-

cause it often is simpler to specify static load, which will produce displacements qualitatively in
agreement with the eigenmodes to be determined by the analysis. The Ritz-basis is determined
from the equilibrium equation
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K¥=f = ©T=KIf (4-41)

=[O w@ ... g™ f=fi £ (4-42)

Then, any vector v € V,,, can be written on the form

t i
v=gT® 4+ ¢U® 4. 4 g, M= [0 @ ... g q_2 =Py ; g = q_2
Qm Q'm

(4-43)

The idea in Ritz analysis is to insert (4-43) into the Rayleigh quotient (4-25), and determine
the modal coordinates ¢, ¢s, - . . , gm, Which minimizes this quantity. Hence, the following re-
formulation of the Rayleigh quotient is considered

(vq)'K¥q  ¢"Kq

pla) = =— (4-44)
(¥q)"M¥q q"™Mgq
where
M= UMV = [M;;] , My=¢O0TMPD
i ; . . . (4-45)
K=9TKV = [K;] , Ki;=9¢OTKw0

M and K are denoted as the projected mass- and stiffness matrices on the subspace spanned by
the Ritz basis W.

The approximation to A, then follows from (4-27)

m om -

2 2 kG4,
i=17=1

A1 £ pp = min p(q) = min me——

qGVm G1snlm z Z qullszqJ

i=17=1

(4-46)

Generally, p; is larger than \; in agreement with (4-26). Only for @) € V,, will modal coor-
dinates q ..., g, exist, so @) = ;M 4 ... 4 ¢ W with the implication that p; = A;.

The necessary condition for a minimum is that




88 Chapter 4 - APPROXIMATE SOLUTION METHODS

T
i q]i(q = 3 len van i =
dg; \ q"Mq
d"Mq- g5 (4"Ka) —a"Kq - g5 (a™Ma) _
(q"Mq)®
=z (a"Kq) - pi(qTMq) =0 (4-47)
9q; 0g;

Now, %ﬁ(qTI:(q) = LR Bl K = 2350, K,-kczk, where the symmetry property,
Kir = Ki; (K = K7), has been applied. Similarly, E%(qTMq) = 2% 7 Mixgx. Then, the
minimum condition (4-47) reduces to

Z Kiq; — PZ M;;q; =0 (4-48)
i=1 J=1

From (4-48) follows that p; is determined as the lowest eigenvalue to the following generalized
eigenvalue problem of dimension m

Kq — pMq =0 (4-49)

(4-49) has m eigensolutions (p;, q®), i = 1,...,m. p; becomes an approximation to the 7th
eigenvalue ;. The corresponding approximation to the ith eigenmode is calculated from

B0 =g TW 4. g WM =wq® | i=1,....m (4-50)
where g1 4, . . ., qim; denote the components of g*).

The relations (4-50) can be assembled into the matrix equation

o =TQ (4-51)

& — [‘i)(l) ®@ ... (i,(m)] ., Q= [q(l) q(2) .. ,q("m)] (4-52)

We shall assume that the eigenvectors q*) are normalized to unit modal mass with respect to
the projected mass matrix, i.e. the following orthonormality properties are fulfilled

qPTMg = {[1] ) Héﬁ' (4-53)
, =]
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q@TRq = {0 » 17 (4-54)
pi o, 1=]
Then, the modal mass of the eigenmodes ® become
PTM® = (FQ)TMTQ = Q™MQ =1 (4-55)

Hence, the approximate eigenmodes ®(* will be normalized to unit modal mass, if this is the
case for the eigenvectors q® with respect to the projected mass matrix. @ forms an alternative
Ritz-basis in V™, which in addition is M-orthonormal. Similarly, the approximate eigenmodes
are K-orthogonal as follows

dTK® = (TQ)'K¥Q=Q"KQ =R (4-56)

where R is n-dimensional diagonal matrix with the eigenvalues py. ..., p,, in the main diago-
nal.

Obviously, the Rayleigh quotient approach corresponds to m = 1. Hence, Ritz analysis is
merely a multi-dimensional generalization, for which reason the name Rayleigh-Ritz analysis

has been coined for the method.

As a generalization to (4-26) the following boundings can be proved?

/\1 E ~1 ) )\2 S P2 ) e ) Am _: Pm _': /\n (4"57)

2K.-I. Bathe: Finite Element Procedures. Printice Hall, Inc., 1996,
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Box 4.2: Rayleigh-Ritz algorithm

1. Estimate m linearly independent static load vectors fy, ..., £, assembled column-
wise in the n x m matrix £ = [f; f5- - - f,,,].

2. Calculate the Ritz basis from ¥ = K~'f | ¥ = [0 g0 ... gm)],

3. Calculate projected mass and stiffness matrices in the m-dimensional subspace
spanned by the Ritz basis: M = "MV |, K = $TK T,

4. Solve the generalized eigenvalue problem of dimension m: KQ = MQR.

5. Determine approximations to the lowest m eigenvector from the transformation o =
vQ, & = [V ®@...5(™]. The corresponding approximate eigenvalues are
contained in the main diagonal of R..

Returning to the static condensation problem in Section 4.1, let us define a Ritz basis of the
dimension m = n, as

I
U, = (4-58)
-K5% Koy

where 1 is a unit matrix of dimension n; x n;. Given the structure of the mass and stiffness
matrices in (4-1), we may then evaluate the following projected matrices

T

i 1 M]] 0 1
M=9TM¥, = =My, (4-59)
K K 0 0| |-KiKu
7
s I Kll KlZ I 5
K=9TKY, = =K — KppK5 Ko =Ky

*K§21K21 Ko Ko *KEQIKM
(4-60)
Hence, (4-49) reduce to the generalized eigenvalue problem (4-6), with Q = ®,,,and R = A;.

Consequently, static condensation may be interpreted as merely a Rayleigh-Ritz analysis with
the Ritz basis (4-58).

The following identity may be proved by insertion

K K 1 g aj I
(Kll_KIZKEQKZI) = (4-61)

Ky Kal| |[-K5Ka
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Then, we may construct an alternative Ritz basis from (4-41) with the static load given as the
right hand side of (4-61), i.e.

2],

e Kll KIZ I I 1 -1 ~ 1
¥, =K f= = 1 (Kll Rk Km) — UK
Ko Ka 0 -Ko Ko

(4-62)

Hence, the base vectors in Wy is a linear combination of the base vectors in ¥,. Then, ¥, and
¥, span the same subspace V1, for which reason both bases will determine the same eigenval-
ues and eigenvectors.

The projected mass and stiffness matrices become
M = ¥iMV¥, = K M¥, Kj}! = KMy Kj! (4-63)
K = UTKY, = K '9TK® K] = K;} (4-64)

Then, the modal matrices Q; and Q,, obtained as solutions to (4-49) for the respective Ritz
bases, are seen to be related as

Q =KiQ (4-65)
(4-65) follows from ® = ¥, Q, = ¥,Q,.

Example 4.2: Rayleigh-Ritz analysis

Given the following mass- and stiffness matrices

3 00 2 =1 0
M=1|0 10 y K= |=1 4 =1 (4-66)
0 0 3 0 -1 2

which have the exact eigensolutions, cf. Example 1.5

A0 0 2 00 e =i g
A=|o x 0f=o 40 , 2=[eWe®e®]= |z o (4-67)
0 0 X3 0 0 6 22 g i

f=1(0 0 (4-68)
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The Ritz basis becomes

2 -1 0 10 1 71
T=|-1 4 -1 0 0 =13 2 2
0 -1 2 01 17

The projected mass and stiffness matrices become

~ 1 129 11 5 147 1
M=_— y K=
144 [11 29] 12 L 7}
The eigensolutions with modal masses normalized to 1 become

3

0 24 0 7
R= |~ = . Q=|qvg?]=|%

V&

The solutions for the eigenvectors become

2
:_ [gmg@] 1L i F 2 o :
$ = {4} b ] 5|2 2 S =% 0
17 2

7

(4-69)

(4-70)

(4-71)

(4-72)

As seen from (4-71) and (4-72) p; = 4 and &2 are caleulated exactly, cf. (4-67). This is so, because 2 is

placed in the subspace spanned by the selected Ritz basis as seen from the expansion

0 |7 9 1 1

2 —opll) _ogpl2) = = el -
12 2 12 2 0
1 7 ~]

2 =1 0 1 0 5 .1

1
=1 4 -1 1 1 =6 4 2
0 -1 2 10 5 1

The projected mass and stiffness matrices become

(4-73)

(4-74)

(4-75)
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o 1 |41 13 s 7 2
M=— K=z 4-7
36 [13 5] ! 3[2 1] (4-76)

The eigensolutions with modal masses normalized to 1 become

Rz[’g sz[{z} 2} : Q=[qmqm]={' . } @)

The solutions for the eigenvectors become

”5:31 "‘|§
k=] [#]
S

Vi 3

ma2] -1 A C ‘2\/: ﬁ?

x — | F = = = 2 2 s 2 2
@_[i’ 'I’]_642 ¥2  wE| T E :2; (4=78)

2 ] 2 2

5 1 i 2

In this case (py, @1)) = (Ar, @V) and (po, @) = (A3, ). This is so, because 1) and &) are placed
in the sub-space spanned by the selected Ritz basis.

4.3 Error Analysis

Given a certain approximation to the jth eigen-pair (\;, ), the error vector is defined as
gy = (K = XjM)ci)U) (4-79)

Presuming that the eigenvectors have been normalized to unit modal mass, it follows from (1-
19) and (1-21) that

M= (@)1 | K=(2) A" (4-80)
Insertion of (4-80) into (4-79) provides

ej= (@) (A-XT)@ 8 =

o L —1

30 = q)(A = AjI) 37, (4-81)

We shall use the Euclidean vector norm ||- || g and the Hilbert matrix norm || - ||  in the following.
For a definition of these quantities, see Box 4.3. The mentioned norms are compatible, so

|89, < ”@(A—}jl)‘I¢>THHHEJ‘IIE < ”‘I’HH”(A—S\jl)“1HH|"1)TJ|H||E.'J’||E (4-82)
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The last statement of (4-82) follows from the defining properties of matrix norms, see Box 4.3.

(A —)\;I) is a diagonal matrix. Then, (A —A;I)~" is also a diagonal matrix with the components
(A — Aj)7Y, k= 1,...,n in the main diagonal. The eigenvalues of a diagonal matrix is equal
to the components in the main diagonal. Since, the Hilbert norm of a symmetric matrix is equal
to the numerical largest eigenvalue, it follows that

= -1 1 1
A—)\-I) H = ms ( = ) - _ 4-83
H( . B kel [Ae — Al klrllin | Ak — A ( )

The Hilbert norms of ® and ®7 are identical as stated in Box 4.3. Further, it can be shown that,
see Box 4.4

1
@l = . (4-84)

where 11 is the lowest eigenvalue of M.

Then, (4-82), (4-83) and (4-84) provides the following bounding of the calculated eigenvalue
Aj

1 lelle _ 1 el
m |2De |20

Inin |A — Ay < (4-85)

(4-85) is only of value, if p; can be calculated relatively easily. This is the case for the special
eigenvalue problem, where M = I, which means that p; = -+ - = p,, = 1, so (4-85) reduces to

leille el (4-86)

S e =Xl = TEG = E0
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Box 4.3: Vector and matrix norms

A vector norm is a real number ||v|| associated to any n-dimensional vector v, which
fulfills the following conditions

1. ||v]] > 0 forv # 0 and ||0]| = 0.
2. |lev]| = |e| - ||v|| for any complex or real number c.

3. |lu+v| < |ul| + ||v]| (triangle inequality).

The most common vector norms are

1/p

1. pnorm (p €]0,oo]): vl = (3 IuP)

2. Onenorm (p = 1): ||v|1 = >_ |l

i=1

n 1/2
3. Two norm (p = 2, Euclidean norm): ||v||s = |[v| = (E |fvz~|2) .
i=1

Suiy

where v; denotes the components of v. Given

IVl = (VI+vV3+v2)?=17.19

ve|gl = V= (H?’]:Q) = (4-87)
2 = (12 +3%4+2%)"" =3.74
[[V|loo = max(1,3,2) =3

A matrix norm is a real number || A || associated to any n x n matrix A, which fulfills the
following conditions

1. |[A|| > 0 for A # 0 and ||0]| = 0.

2. |lcA|| = |¢| - ||A]| for any complex or real number c.
3. ||A + BJ < ||A]| + ||B]| (triangle inequality).

4. |AB|| < |A[]B].
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The most common matrix norms are

3
1. One norm: ||Alj; = max > laisl-
J=L.qn

=1

T
2. Infinity norm: |A]le = max Y |al.
’L=l,...,ﬂ.j=1

non 1/2
3. Euclidean norm: ||A||g = (z > afj) .
i=1j=1

1/2
4, Hilbert norm (spectral norm): ||Ally = ( max )\,—) , where J; is the ith eigen-

value of AAT identical to the eigenvalues of ATA, so | Al|g = ||AT|| .

a;; denotes the components of A. Notice, if A = AT the eigenvalues of AAT = A?
becomes equal to the square of the eigenvalues of A. Given

(Al = max(2 +3,5+1) =6
Al = max(2 +5,3+1) =7
— e T— & 1l 1/2
= [3 —1} = = [11 10] |Allz= (4+25+9+1) =6.24
13
Allz = \ - (3++5) =5.83

\

(4-88)

A matrix norm || - ||, is said to be compatible to a given vector norm || - ||, , if

[AV]le < [| Al - 1]l (4-89)

It can be shown that the Hilbert matrix norm is compatible to the Euclidean vector norm,
that the one matrix norm is compatible to the one vector norm, and that the infinity matrix
norm is compatible to the infinity vector norm. However, the Euclidean matrix norm is
not compatible to the Euclidean vector norm.
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Box 4.4: Hilbert norm of modal matrix

Presuming that the columns of the modal matrix have been normalized to unit modal
mass, so m = 1, it follows from (1-19) that

M= (87) '8! = M =937 (4-90)

From the definition of the Hilbert norm in Box 4.3 and (4-90) follows that || ®||%, becomes
equal to the maximum eigenvalue of M™%, If py, us, ..., jt,, denote the eigenvalues

of M in ascending order, then the eigenvalues in ascending order of M~ become

ﬂi, —_ #Lz, i, so the maximum eigenvalue of M~ is equal to i This proves (4-84).

Example 4.3: Bound on calculated eigenvalue

Given the mass- and stiffness matrices for the following special eigenvalue problem

1 0 0 3 -1 0
M=|0 10 , K=|-1 2 -1 (4-91)
00 1 0 -1 3

The eigensolutions with modal masses normalized to | are given as

MDD 0 1 00 %ﬁ‘ B a
A=]0 X 0|=]0 30 , e=[eWe@e®]= |26 o _I (4-92)
0 0 Az 00 4 28 VTE

Assume that the following approximate solution , {Az, ®(*)), has been calculated to the 2nd eigen-pair ( Ay, @)

1.0
Sp=31 , 2= go = |2| = 1.4283 (4-93)
-1.0

Then, the error vector becomes, cf. (4-79)

3 -1 0 10 0 1.0 ~0.30
e2=||-1 2 -1|-31|0 1 0 0.2| = |-0.22 = |es|=03852 (494
0 -1 3 00 1) [-10 ~0.10

Since, M = I we may use the simplified result (4-86). which provides

. 0.3852
A2 — Ra| < 142§3=n.26971 (4-95)

Actually, |[Az — Xg| = 0.1,
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4.4 Exercises

4.1 Given the following mass- and stiffness matrices

000 6 -1 0
M=10 2 1 , K=]-1 4 -1
i | 0 -1 2

(a.) Perform a static condensation by the conventional procedure based on (4-5), (4-6),
and next by a Rayleigh-Ritz analysis with the Ritz basis given by (4-62).

4.2 Given the following mass- and stiffness matrices

200 6 -1 0O
M=|0 21 , K=[-1 4 -1
011 0 -1 2

(a.) Calculate approximate eigenvalues and eigenmodes by a Rayleigh-Ritz analysis us-
ing the following Ritz basis

1
V=[P = |1 —1
I i

4.3 Consider the mass- and stiffness matrices in Exercise 4.2, and let

<
I
=

(a.) Calculate the vector @) = K~'Myv, and next A; = p(®W), as approximate solu-
tions to the lowest eigenmode and eigenvalue.

(b.) Establish the error bound for the obtained approximation to the lowest eigenvalue.




CHAPTER §
VECTOR ITERATION METHODS

5.1 Introduction

In structural dynamics only a small number n of the lowest eigen-pairs, (A, 81, (A, @®)
.o, (Any, ™)), where ny < n, are of structural significance. Hence, there is a need for meth-
ods, which concentrate on the determination of the low-order modes. This is the underlying
motivation for most of the methods described in the following chapters.

It should be noticed that if A; is known, then @) can be determined from the linear, homoge-
neous equations, cf. (1-9)

(K-3M)2P =0 (5-1)

If ), is an eigenvalue, the coefficient matrix K — ;M is singular. Then, ®() can be determined
within a common factor by solving a linear system of nn — 1 equations as illustrated in Example
Liss

On the other hand, if ®)is known, the eigenvalue \; can be determined from the Rayleigh
quotient, cf. (4-25)

SOTK )

Aj = SHTMPW) (5-2)

Since, the eigenvalues are determined as solutions to the characteristic equation (1-10), which
can only be solved analytically for n < 4, all solution methods for practical problems relies
implicitly or explicitly on iterative numerical schemes.

Iterative numerical solution methods may be classified in the following categories

Vector iteration methods operate directly on the generalized eigenvalue problem (5-1), so that

a certain eigenvalue and associated eigenmode are determined iteratively with increasing accu-
racy. Vector iteration methods are considered both in Chapters 5 and 7.

— 99 —
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Similarity transformation methods transform the generalized eigenvalue problem via a sequence
of similarity transformations, so the transformed mass and stiffness matrices eventually attain a
diagonal form. These methods are considered in Chapter 6.

Characteristic polynomial iteration methods operates directly or indirectly on the characteristic
equation (1-10). These methods are dealt with in Section 7.4.

5.2 Inverse and Forward Vector Iteration

The principle in inverse vector iteration may be explained in the following way. Given a start
vector, ®,. Based on the generalized eigenvalue problem (5-1), one may then calculate a new
vector @, as follows

K®, =M®, = & =K 'Md,=Ad, (5-3)
where
A=K'M (5-4)

Clearly, if &y = &) is an eigenmode, then ®; = %j(I)g. If not so, we may consider €,
as another, and hopefully better approximation to the eigenmode. Next, based on ®; we may
proceed to calculate a still better approximation ®, from

K®, = M®, = &,=Ad, (5-5)

This proceed may be continued until the convergence criteria ®,,; = /\i@k is fulfilled with
J
sufficient accuracy.

The inverse vector iteration algorithm may then be summarized as follows

Box 5.1: Inverse vector iteration algorithm

Given start vector ®,, which needs not be normalized to unit modal mass. Repeat the
following items for k = 0,1, ...

1. Calculate @1 = AP,
2. Normalize solution vector to unit modal mass, so II)EHM@H] = i3

L.

A/ @F, M®y

(ik%l =
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Obviously, the algorithm requires that the stiffness matrix is non-singular, so the inverse K
exists. By contrast the mass matrix needs not be non-singular as is the case in Example 5.1 be-
low. After convergence the lowest eigenvalue is most accurately calculated from the Rayleigh
quotient (4-25).

In case the lowest eigenvalue is simple, i.e. that A; < Ay, the inverse iteration algorithm con-
verges towards the lowest eigenpair (\;, ®()). The solution vector obtained after the kth itera-
tion step, @, is an n-dimensional vector, which may be expanded in the basis formed by the n
undamped eigenmodes as follows

b, = Ch,k@(l) =3 qglkcz)(?) e o Q'n,kq){") = iy, |
q1.k et
> =
P = [@(1) .13(2) 2 @(n)} R qo.k
Q'rt,k J

The components of the vector q; denote the modal coordinates of the vector ®,. The expansion
(5-6) should be considered as formal, since the base vectors @), &) & are unknown.
Actually, the whole analysis deals with the determination of these quantities. Similarly, the
expansion for &, reads

Ppy1 = Ppi (5—7)

where g, denotes a vector of modal coordinates of d k+1. Insertion of (5-6) and (5-7) into the
iteration algorithm provides

K®qy; = M@qy =
STKP qpy = DTMS q, =
AQy1 = qk (5-8)

where the orthogonality properties (1-19) and (1-21) have been used, and the eigenmodes are
assumed to be normalized to unit modal mass. The diagonal matrix A is given by (1-15). As
k. — oo convergence implies that A;qr1 = qi = W) where ) signifies the eigenmode in
the modal space. This means that
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AW = )\j‘I’(j) =
A1 O 0] [Ty U,
0 A 0] | ¥, Wy
& ; ; Al =
O U A’I’l ql’.’i’. \Dﬂ
- % .‘ T
\I’j—l 0
o) — ¥ | = |1 (5-9)
\I”j+1 0
R
The jth component of ¥ is equal to 1, and the remaining components are zero.
Let the start vector be given as qy = [1,...,1]7. Then, the following sequence of results may
be calculated from (5-8)
) 17 1
+ O 1 = )
0 + 1 =
=N gy ® =] =
10 0 s 1T =
5 @ M3
5 O w|o|®
0 L L Xl’f
a=A"lq = ; )\:2 A= | = oarx (5-10)
[0 0 =l s ,\%
e S
%1 0 0 T ¥ 1 A
0o + 0| |5 55 ()"
=A"1lg._ = A2 Ag B I A2
9k k-1 L ; : |
I‘.
0 0 wl ) %l ()] )

If X < Ay = --- < A, it follows from (5-10) that
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Jlim M= || =00 (5-11)
0

Hence, the algorithm converge to W) in the modal space. The corresponding convergence to
& then takes place in the physical space.

As seen from (5-11), |qx| — 0if Ay > 1, and |qx| — oo if A; < 1. This is the rationale behind
the normalization to unit modal mass of the iteration vector, performed at each iteration step in

the algorithm in Box 5.1.

The relative error of the iteration vector after the kth iteration step is defined from

|/\i1ch _ .I,(1)| . A\ 2 A 2 A\ 2
_ = 3. . dpii M ] Y =
E1k Ea] |A\Yaqx — @ 1 ()\2) + (AJ +oo (/\")
% k 5 2k 5% 2k
V)

From (5-12) follows, that the relative error at large values of k has the magnitude &, 5 ~ (;—;)k

Based on the asymptotic behavior of the relative error, the convergence rate is defined from

k+1 (1)
. Elk AT Ak — W
T1=111‘11M=1 |1 i |=

k—oo El,k‘ k—o0 |)‘}ka — lIl(l)|

1+ Az 2k+2+.“+ Az 2k+2
lim ﬁ\/ %) 2) o 2 (5-13)

I R

The last statement of (5-13) presumes that the eigenvalue A, is simple, i.e. that Ay < Ay, It
follows from (5-12) that the smaller is the fraction % the faster will the convergence to the first
eigenmode be. Hence, the convergence rate as defined by (5-13) should be small (despite lin-
guistic logics suggests the opposite). An vector iteration scheme, where the convergence rate is
proportional to %;— is said to have linear convergence. Hence, inverse vector iteration has linear
convergence.

The Rayleigh quotient based on ®;, = ®q; becomes

P{K®,. _ 91 ®"K®q: _ qiAqy

e ) ) 5-14
Pla) dIM®; g ®"MPq:  qlq o
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The relative error of the Rayleigh quotient after the kth iteration step is defined from

i plar) — M
Egk = T

From (5-10) follows that

1 1

o _T —
i 1
| [0 0 i;}
3k 0 )\2 0 2E 1
q{Aqk - :2 B - 32 B )\%krl "
) LO0 Al |3E )
F 1T
AF Y
1 1
T iy By 1 1 1 1
: : A A AR A
1 1
| Ak [aE]

Then, (5-15) may be written as

1 ) 1
Attt t

+ SEE
)\%Icﬁl )\gk—l

(5-15)

2k-1
)\n

(5-16)

(5-17)

where the dots denote terms, which converge to zero as £ — oo. (5-17) shows that the relative
error of the Rayleigh quotient at large values of & has the magnitude eq ;. ~ (%)%“1. Hence,
the relative error on the components of the eigenmode at a certain iteration step, as measured
by &1k, is significantly larger than the relative error on the eigenvalue estimate, as determined

by the Rayleigh quotient.

The convergence rate of the Rayleigh quotient is defined from




5.2 Inverse and Forward Vector Iteration 105

2k+1
ry = lim 2251 — fim () -8+ - (ﬁf (5-18)
2 2k—1
k—oo Egk k—oo (A;_) (1 - i\é, i ) A2

Hence, the Rayleigh quotient has guadratic convergence in inverse vector iteration.

Example 5.1: Inverse vector iteration

Consider the generalized eigenvalue problem defined by the mass and stiffness matrices in Example 4.1, Calculate
the lowest eigenvalue and eigenvector by inverse vector iteration using the inverse iteration algorithm described in

Box 5.1 with the start vector

1
1
Pg = i (5-19)
1
The matrix A becomes, cf. (5-5), (4-16)
-1
2 -1 0 0 00 B 0 02 8 1
A:_12_10 0200 _|0402 (5-20)
0 -1 2 =1 00 00D 0 4 0 3
0 0 -1 1 00 01 0 4 0 4
At the Ist and 2nd iteration step the following calculations are performed
02 0 1)1 3
s 4 9 § = =
=0 402 _ 18 o $TME, =136
0 4 0 3] |1 T
0 4 0 4] [1 8
(5-21)
3 0.25725
& = 1 |6] _ |0.51450
PTVA86 7] [0.60025
\ 8 0.68599
( 0 2 0 1| (025725 1.7150
- 5 = =
Bym 0 4 0 2| |0.51450| _ |3.4300 5 BT M, — 46.588
0 4 0 3] 10.60025 4.1160
0 4 0 4] [0.68599 4.8020
(5-22)
1.7150 0.25126
B i 3.43001  10.50252
v46.588 |4.1160 0.60302
4.8020 0.70353
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The Rayleigh quotient based on ®4 provides the following estimate for Aq, cf. (4-25)

i

0.25126 2 -1 0 0] [0.25126
050252 |[-1 2 -1 0| [0.50252
0.60302 0 -1 2 -1| [0.60302
0.70353 0 0 -1 1] |0.70353
p(®2) = — = 0.1464646 (5-23)
0.25126] [0 0 0 o] [0.25126
0.50252| [0 2 0 0| [0.50252
0.60302| |0 0 0 0| |0.60302
0.70353] [0 0 0 1] |0.70353
The exact solutions are given as, cf. (4-24)
3 0.25000
,\1=1—‘—/§=0.1464466 , W= 2 =[S0 (5-24)
2 4 1421 1060355
L2 0.70711

The relative errors, £; and €3, on the calculation of the eigenvalue and the 1st component of &1 becomes

7 @M 0.00458
Y27 @M T 1.0848

=4.22-107%
(5-25)
_ p(®2) — A 0.1464646 — 0.1464466

= — == . _q
"22 X 0.1464466 Lg 18

As seen the relative error on the components of the eigenmode is significantly larger than the error on the Rayleigh
quotient.

The generalized eigenvalue problem (1-9) may be reformulated on the form

Mad = \ MK 'MaV =
o) = A\ MK gl =

K 'oW = K- 'MK'e®W | gl = MeW (5-26)

From (5-26) the following Rayleigh quotient may be defined

) = viIKly
& T vTK-IMK-lvy

(5-27)

If v. = ¥l = M®W then (5-4) provides the limit \;. An inverse vector iteration procedure
based on the formulation (5-26), (5-27) has been indicated in Box 5.2. The lowest eigenmode
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®1) can only be retrieved after convergence, if M~ exists.

Box 5.2: Alternative inverse vector iteration algorithm

Given start vector ¥;. Repeat the following items for k = 0,1, ...
1. Calculate v, = K~1¥,.
2. Calculate ¥y ; = Mvgyi.
3. Calculate the Rayleigh quotient (5-29) for the test vector ¥, by

via%  (_ 9TKTY,
v, iUk UTK-'MK-1 ¥,

p(Wx) =

4. Normalize the new solution vector, so W7, K-'"MK ¥, =1

Wit Wyt

Vi = ——— e =
VT W VITK- MK~ 0,

5. After convergence the lowest eigenmode at the same iteration step is calculated from
P =M1,

Example 5.2: Alternative inverse vector iteration

Consider the generalized eigenvalue problem defined by the mass and stiffness matrices in Example 1.5, Calculate
the lowest eigenvalue and eigenvector by inverse vector iteration using the alternative inverse vector iteration
algorithm in Box 5.2 with the start vector

by = |1 (5-28)

The inverse stiffness matrix becomes, cf. (1-77)

2 -1 @] L7 2
K'l=|_-1 4 -1 =2 4 2 (5-29)
§ -1 B 1 4 %

At the 1st and 2nd iteration steps the following calculations are performed
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P S E Y
Vi= 15 |2 =6
1 2 7] [1] 5
L g o] [5] 5 517 [5
@—1(2)10 4——1-8 4 . . 8—4—1
‘T8 : T 12 S O T 36
0 0 1|5 5 5
(5-30)
517 [1
T
_Vvi%o _ 36 84 _
p(%o) = = R ¥ 4| |1] = g =2:0488
50 |1
S I e
1: — — :
| viti 12-4/8 15| |0.3004
( |72 1| [0.3904 0.3644
ve=15 |2 4 2| |0.6247| = |0.3384
1 2 7] [0.3904 0.3644
- T
10 0] [0.3644 0.1822 ) 0.3644| " [0.1822
¥=|0 1 0 [03384] = |0.3384| , vi¥>= |0.3384] |0.3384
0 0 3] (03644 0.1822 0.3644| |0.1822
(5-31)
0.3644] " [0.3004
VT\Ill 1 " ' ‘
W)= 2= |0, s =2.
p(¥1) TG, = 02473 0.3384| |0.6247 0055
0.3644| |0.3904
_ 2 366
@ ; 0.182 0.3664
T,y = o=~ 7o |0-3384| = |0.6805
\ vvaWe  VORAT g eoo|  [0.3664
The lowest eigenvector at the end of the 2nd iteration step becomes
100 0.3664 0.7328
,=M'¥=(0 1 0 0.6805| = |0.6805 (5-32)
00 % 0.3664 0.7328
The exact solutions are given as, cf. (1-87)
¥2 0.7071
oM = | 42| = |0.7071 M =2 (5-33)
2] [o.7071

As for the simple formulation of the inverse vector iteration algorithm the convergence towards the exact eigen-

value takes place as a monotenously decreasing sequence of upper values, p(y), p(T4),.. ..
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The principle in forward vector iteration may also be explained based on the eigenvalue problem
(5-1). Given a start vector, ®;, a new vector ®; may be calculated as follows

K@U - M(bl = @1 - MilK@D = B@g (5*34)
where
B =M"1K (5-35)

Clearly, if @ = @1 is an eigenmode, then ®; = \;®,. If not so, a new and better approxi-
mation ®, may be calculated based on ®; as follows
o, = B®, (5-36)

The process may be continued until converge is obtained. The forward vector iteration algo-
rithm may be summarized as follows

Box 5.3: Forward vector iteration algorithm

Given start vector @, which needs not be normalized to unit modal mass. Repeat the
following items for k. = 0,1, ...

1. Calculate i)k“ = B®,.
2. Normalize solution vector to unit modal mass, so fIJ{Hl\IéDkH = i

'I)Jhtl

/BT M®yyy

@1 =

Obviously, the algorithm requires that the mass matrix is non-singular, so the inverse M~
exists. By contrast the stiffness matrix needs not be non-singular. After convergence the eigen-
value is calculated from the Rayleigh quotient.

In case the largest eigenvalue is simple, i.e. that A, ; < A, the forward iteration algorithm
converges towards the largest eigenpair (}\”, @(”)). The convergence rate of the eigenmode

estimate is linear, and the convergence rate of the Rayleigh quotient is quadratic in the fraction

—’\;—‘ . A proof of this has been given in Section 5.3.
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Example 5.3: Forward vector iteration

Consider the generalized eigenvalue problem defined by the mass and stiffness matrices in Example 1.4. Calculate
the largest eigenvalue and eigenvector by forward vector iteration using the forward vector iteration algorithm in
Box 5.3 with the start vector

1
&= |0 (5-37)
0
The matrix B becomes, cf. (5-35), (1-77)
1 -1
100 2 -1 0 4 -2 0
B=10 10 -1 4 —-1|=|-1 4 -1 (5-38)
00 3 0 -1 2 0 -2 4
At the Ist and 2nd iteration step the following calculations are performed
( 4 -z o[z
$i=|-1 4 =1 [0|=|=1|] = SMD; =9
0 -2 4] |0
(5-39)
4 1.3333
%—L 1{ = |-0.3333
=—%=|-1| = |0
V9 0 0
4 -2 @ 1.3333 6.0000
Py=|-1 4 -1| |-03333| = |-26667] =  PSIMP,=25333
0 -2 4 0 0.6667
(5-40)
6.0000 1.1921
Py = ——— | —2.6667| = |—0.5298
25333 1 6667 0.1325
The Rayleigh quotient based on €5 becomes
T
1.1921 2 -1 0 1.1921
-0.5298| |-1 4 -1{ |-0.5298
0.1325 0 -1 2 0.1325
p(®y) = — = 5.404 (5-41)
11921 |3 0 O 1.1921
05298 |0 1 0| |-0.5298
01325 |0 0 5| | 0.1325

The results for the iteration vector and the Rayleigh quotient in the succeeding iteration steps become
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[ 1.0622]
®3 = |-0.6276| , p(®3)=5697
| 0.2897]

0.9584]
Py = |-0.6726| , p(P4)=05855\ (5-42)
| 0.4204]

0.8811]
B; = [-06923] . p(®s)=5933
| 0.5149]

The exact solutions becomes, cf. (6-54)

32 0.7071
8™ = 8| = {_pgazi| , X=8 (5-43)
2 0.7071

2

The relative slow convergence of the algorithm to the exact solution is because the fraction %5 = % is relatively

high. Theoretically the relative errors of the Rayleigh quotient after 5 iterations should be of the magnitude, cf.
(5-17)

Ea5 (g)2 5 (1 " %) — 0.0087 (5-44)

Actually, the error is slightly larger, namely

-
ca5 = L%ﬁ = 0.0112 (5-45)

5.3 Shift in Vector Iteration

Shift on the stiffness matrix in the eigenvalue problem (5-1) as indicated by (3-36)-(3-38) may
be appropriate both in relation to inverse and forward vector iteration, either in order to obtain
convergence to other eigen-pairs than (A1, @) or (), @), or to improve the convergence
rate of the iteration process.

Let K = K — pM. denote a shift on the stiffness matrix as indicated by (3-38). The vector

iteration is next performed on the shifted eigenvalue problem (3-37). The algorithms in Box 5.1
and 5.3 remain unchanged, if the matrices A and B in (5-6) and (5-35) are redefined as follows

A=K'M (5-46)
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B=M"1K (5-47)

The Rayleigh quotient estimate of the eigenvalue A; after the kth iteration step becomes
. STK D,
= (P, e

In the modal space the inverse vector iteration with shift on the stiffness matrix can be written
as, cf. (5-8)

(5-48)

K& = M®q, =
o7 (K- /M) @ qus = 'MOq =

(A - PI) Qet1 = Qe (5-49)

(5-49) is identical to (5-8), if ); is replaced with \; — p. With the same start vector qg =
[1,...,1]7 as in (5-10), the solution vector after the kth iteration step becomes, cf. (5-10)

[ 1 [ (2=p\F ]
e (3425
! ( /\j;f’ )’C
(Zi—1-p)F Aj-1—-p
1
= | b ) = 1 5-50
qk (/\j*ﬂ)k (AJ . [J)'I“ ( )
1 ( Aj—p )k
[eyreEmL Ait1—p
1 Aj— &
L ()\-,;—p)" J L (An_f’) -
where the jth eigenvalue fulfills
|A; = pl = f?iu |Ai — pl (5-51)
It then follows from (5-50) that
i
0
: I — i)
khm ()\j — p) gp= 1| =¥ (5-52)
0
_0_
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Hence, for a value of p fulfilling (5-51) the algorithm converge to ¥\) in the modal space. In
physical space the algorithm then converge to V). The convergence rate of the eigenmode
becomes, cf. (5-13)

/\j_p‘
Aj—1— P

AP D (5-53)

™ = max ( y
)\ j
i+l — P

Then, the corresponding convergence rate of the Rayleigh quotient is given as o = 7%

a) : : : — : z : A
0 A1 ’\J‘—l )\j P /\j+1 A1 An

b) : — : + 4 : : 5
0 X Aj-1 Aj Aj+1 An-1 An

¢) .l } : % : : ——— )
0 /\1 )\j—-l /\j )\j+l ’\nkl )\n P

Fig. 5—1 Optimal position of shift parameter at inverse vector iteration. a) Convergence towards A;. b) Conver-
gence towards A;. ¢) Convergence towards A,,.

In case inverse vector iteration towards the jth eigenmode is attempted, the shift parameter
should be place in the vicinity of A; as shown on Fig. 5.1a in order to obtain a small con-
vergence rate. It should be emphasized that any inverse vector iteration with shift should be
accompanied with a Sturm sequence check to insure that the calculated eigenvalue is indeed the
.

R

At inverse vector iteration towards the lowest eigenmode the convergence rate 7 = |} —
pl/|Aa — p| should be minimized. Hence, p should be placed close to but below A;, as shown
on Fig. 5.1b.

At inverse vector iteration towards the highest eigenmode the convergence rate r; = |\, —
pl/|A — p| should be minimized. Hence, p should be placed close to but above A,,, as shown
on Fig. 5.1c.

In case of forward iteration with shift, (5-49) provides the solution after % iterations
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[ (M —p)* ] i (ﬁ)k |
(Aj-1 = 0)* (%)k
= | K- | =y—p) 1 (5-54)
(Ajs1 — 0)* (Me)”
| (G —0)F | | (3=2)" |

where the jth eigenvalue fulfills

Dy = pl = max |X— gl (5-55)
Clearly, (5-55) has the solutions A; = A; or A; = A,,. The former occurs, if p is closest to A,
and the latter if p is closest to A;. Then, it follows from (5-54) that

1 .
lim ————qe=¥Y | j=1;n (5-56)
k20 (A = p)

For a value of p fulfilling (5-55) the algorithm converge to ¥¥/) in the modal space, or to &)
in the physical space. Forward iteration with shift always converge to either the lowest or the
highest eigenmode depending on the magnitude of the shift parameter. The convergence rate of
the iteration vector becomes

iy = max(

Shift in forward vector iteration is not as useful as in inverse vector iteration, because the optimal
choice of the shift parameter is more difficult to specify. At forward vector iteration towards the
highest eigenmode the optimal shift parameter is typically placed somewhere in the middle of
the eigenvalue spectrum. Especially for p = 0, (5-57) becomes

An— P
Aj—p

/\;‘-1—.0’
Ai=p |

)\J+1—P‘
Aj—p ) )

/\I—P*
)\j_p‘l 3

) (5-57)

An#l
An

(5-58)

m =

as stated in Section 5.2 on forward iteration without shift.
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Example 5.4: Forward vector iteration with shift

The problem in Example 5.3 is considered again, However, now a shift with p = 3 is performed on the stiffness
matrix.

The matrix K becomes, cf. (3-38), (1-77)

2 -1 0 $ 00 I -1 0
K=|-1 4 =1]=3|p 1 g|=|=1 1 =4 (5-59)
0 -1 2 00 % 0 -1 1
The matrix B becomes, cf. (5-47), (1-77)
=1
£ 00 ; -1 0 1 -2 0
B=|0 10 1 I =1]=1=1 1 =1 (5-60)
1 1
001 0 -1 1 g - 1
At the 1st and 2nd iteration step the following calculations are performed
( 1 -2 9l1 1
Fi= -1 1 ~1{ |0l=|=1] = SIMB;=15
0 -2 1} |o 0
4 ) (5-61)
1 0.8165
& 1 1| = |-0.8165
1= —F7— |- = |—=U.
V15|
{ 0 0
( T
1 -2 B 0.8165 2.449%
$y=|-1 1 -1 |-08165 =|-1.6330] = &TM&, =
0 -2 1] 0 1.6330
(5-62)
2.4495 0.9258
$,=—=|-1.6330| = [-0.6172
v 1.6330 0.6172
The Rayleigh quotient estimate of A3 based on @4 becomes, cf. (5-48)
T
0.9258 1 -1 0 0.9258
—p.6172] -1 1 -1] [-0.6172
. 0.6172 0 -1 3] | 06172
Az =p(®2)+3= = ~ +3 = 2.9048 + 3 = 5.9048 (5-63)
09258 [f 0 0 0.9258
-06172| |0 1 0| |-0.6172
0.6172) |0 0 4] | 06172

The results for the iteration vector and the e

igenvalue estimate in the succeeding iteration steps become
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0.7318]
-0.7318| , Az =5.9891
| 0.6273

@3

Il

0.7331] )
—0.6982 . Az = 5.9988 (5-64)
0.6982,

Py

0.7100
&5 = [—0.7100] , A3 =5.9999
| 0.6983]

/

The results in (5-64) should be compared to those in (5-42). As seen the convergence of the shifted problem is
much faster.

5.4 Inverse Vector Iteration with Rayleigh Quotient Shift

As demonstrated in Section 5.3 the convergence properties of inverse vector towards the lowest
mode are improved if a shift on the stiffness matrix is performed with a shift parameter fulfilling
p == A;. The idea in the present section is to update the shift parameter at each iteration step with
the most recent estimate of the lowest eigenvalue. Assume, that an estimate of the eigenvalue
A1 is known after the kth iteration step. Then, a shift with the parameter p;, = ), is performed,
so a new un-normalized eigenmode estimate is calculated at the (k + 1)th iteration step from

B -1
Byt = (K = pkl\’I) M®, (5-65)
where ®;. is the normalized estimate of the eigenmode after the kth iteration step.

A new estimate of the eigenvalue, and hence the shift parameter, then follows from (5-48)

(i);{-fl (K ) f’k‘M) Pjt1
L pom o= 2 = i 5-66
Pr+1 3T Mo, + Pk ( )

The convergence towards ()\1; ‘1)(1)) is not safe, since the first shift determined by p; may cause
convergence towards other eigen-pairs, especially if the first and second eigenvalue are close.
For this reason the first couples of iteration steps are often performed without shift. When the
convergence towards the first eigen-pair takes place, the convergence rate of the Rayleigh quo-
tient estimate of the eigenvalue will be cubic, i.e. 5 = (%)3. Additionally, the length of the
converge process is very much dependent on the start vector, as demonstrated in the succeeding
Example 5.5. Even though the convergence may be fast it should be realized that the process
requires inversion of the matrix K — p.M at each iteration step, which may be expensive for
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large systems.

Box 5.4: Algorithm for inverse vector iteration with Rayleigh quotient shift

Given start vector @y, which needs not be normalized to unit modal mass, and set the
initial shift to py = 0. Repeat the following items for k = 0,1, . ..

=5 -1
1. Calculate &, = (K . pkM) M®,.

2. Calculate new shift parameter (new estimate on the eigenvalue) from the Rayleigh
quotient estimate based on @, by
s &7, (K — ;M) &1y
1= . -
’ (I'kq;l M@y,

+ pr (estimate on Ay )

3. Normalize the new solution vector to unit modal mass

D1

(i).;'q:—Fl M (i)k’-f-l

Dy =

Example 5.5: Inverse vector iteration with Rayleigh quotient shift

Consider the generalized eigenvalue problem defined by the mass and stiffness matrices in Example 1.4. Calculate
the lowest eigenvalue and eigenvector by inverse vector iteration with Rayleigh quotient shift with the start vector

Il
$5= |0 (5-67)
0

At the 1st and 2nd iteration step the following calculations are performed
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( 2 -1 0 10 0 2 -1 0
K=|-1 4 -1|-0-f0 1 0|=|-1 4 -1
0 -1 2 0 0 3 g -1 2
=% =
2 -1 @ 3 0 0f1 0.2917
&1=]-1 4 -1 0 1 ol |ol=]00833 = &TM&, =0.05035
0 -1 2 0 0 %] (0] |0.0417
(5-68)
T 5
0.2917 2 -1 0 |02917
PL = 5705035 0.0833 -1 4 -1| [0.0833| +0=2.8966
0417 0 -1 2| |0.0417
0.2917 1.2999
Py = ——— |0.0833| = |0.3714
v/0.05035
L 0.0417 0.1857
2 -1 0 100 0.6517 —1.0000  0.0000
K=|-1 4 -1|-289%6-|0 1 0|=|-10000 1.1034 -1.0000
0 -1 2 00 % 0.0000 —1.0000  0.5517
-1
0.5617 —1.0000  0.0000 % 0] 11.2999 ~0.0567
®y = |-1.0000 1.1034 —1.0000 0 0f [0.3714] = [ —0.6812 = ®IM®; = 1.0342
0.0000 —1.0000  0.5517 0 3] [0.1857 —1.0664
S
i
—0.0567 0.5517 —1.0000  0.0000| |—0.0567
P2 = 10342 —0.6812 —1.0000  1.1034 —1.0000| |—0.6812| + 2.8966 = 2.5206
' —1.0664 0.0000 —1.0000  0.5517| |—1.0664
| —0.0567 —0.0557
Py = ———= | -0.6812| = | -0.6698
v1.0342
\ —1.0664 —-1.0486
(5-69)
The results for the iteration vector and the eigenvalue estimate in the succeeding iteration steps become
[0.9011
$3= |0.6830| . p3=2.0793
10.5049
. (5-70)
—0.6985
@4 = |-0.7073 . ps=2.0001
| —0.7152

4

Despite the shifts the convergence is very slow during the 1st and 2nd iteration step. Not until the 3rd and 4th step
a fast speed-up of the convergence takes place. This is due to the poor guess of the start vector.
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5.5 Vector Iteration with Gram-Schmidt Orthogonaliza-
tion

Inverse vector iteration or forward vector iteration with Gram-Schmidt orthogonalization is
used, when other eigen-pairs than (A, () or (), @) are wanted.

Assume, that the eigenmodes @) & . &™) m < pn, have been determined. Next, the
eigenmode ®™*1) is wanted using inverse vector iteration by means of the algorithm in Box
5.1. In order to prevent the algorithm to converge toward ®) a cleansing of the vector @,
for information about the first m eigenmodes is performed by a so-called Gram-Schmidt or-
thogonalization . In this respect the following modified iteration vector iteration algorithm is
considered

m
Bpyr =B — Y ;00 (5-71)
i=1

Inspired by the variational problem (4-31), where the test vector v is chosen to be M-orthogonal
to the previous determined eigenmodes, the modified iteration vector @, is chosen to be M-
orthogonal on &), & &0 je.

dOTMP, =0 , i=1,...,m (5-72)

(5-71) is premultiplied with ®PTM. Assuming that the calculated eigenmodes have been
normalized to unit modal mass, it follows from (1-17), (5-71) and (5-72) that the expansion
coefficients ¢y, ¢s, . . ., ¢, are determined from

0=30TMP;,; — Y ¢;@V"MIY = OTMPyyy —¢; =

F=]1
¢ = ®dOTM®,,, (5-73)

After insertion of the calculated expansion coefficients into (5-71), i)kﬂ 1s considered as the
estimate to ®(™+1) at the (k + 1)th iteration step. The convergence takes place with the linear
- /\?n+l
convergence rate vy = B
In principle the orthogonalization process need only to be performed after the first iteration
step, since all succeeding iteration vectors then will be orthogonal to the subspace spanned by
&M @ & However, round-off errors inevitable introduce information about the first
eigenmode. Obviously, the use of this so-called vector deflation method becomes increasingly
cumbersome as /m increases.

A similar orthogonalization process can be performed in relation to forward vector iteration to
ensure convergence to eigenmodes somewhat lower than the highest.
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—

Box 5.5: Algorithm for inverse vector iteration with Gram-Schmidt orthogonalization

Given start vector ®,, which needs not be normalized to unit modal mass. Repeat the
following items for k = 0,1, ...

1. Calculate &, = K-'M®,,.

2. Orthogonalize iteration vector to previous calculated eigenmodes @), j = 1,...,m
m
Dy = Ppy1 — ZC;"I’U) , ¢ =0VTM®,,,
j=1

3. Normalize the orthogonalized iteration vector to unit modal mass

D

V égﬂ M 'i)k+1

Pry1 =

Example 5.6: Inverse and forward vector iteration with Gram-Schmidt orthogonalization

Given the following mass- and stiffness matrices

2000 5 -4 1
Mo |02 00 Ko |4 6 -4 1 (574
0010 1 -4 6 —4
000 1 0 1 -4 5

Further, assume that the lowest and highest eigenmodes have been determined by inverse and forward vector
iteration

0.31263 ~0.10756

B _ 049548 Ly _ | 0.25563 (5-75)
0.47912| ~0.72825
0.28979 0.56197

Calculate @2 by inverse vector iteration with deflation, and &) by forward vector iteration with deflation. In
both cases the following start vector is used

(5-76)

g, | Rl =

The matrices A and B become
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[24 32 14 08 i
A=KM= 3.2 62 24 14
28 48 26 16
116 28 16 1.2
(5-71
[ 25 -20 05 00
B—M-1K= -20 30 -20 05
1.0 —-40 6.0 —-4.0
. 0.0 1.0 —-40 5.0
At the 1st iteration step in the inverse iteration process towards ®(2) the following calculations are performed
(24 32 14 08] [1 7.8
e 32 52 24 14 1| _ (112 = o = 3WTMB, = 247067
28 48 26 16| |1 11.8
116 28 16 12| |1 7.2
[ 7.8 0.31263 0.07595
P, = M oy (VAREES),  [=GRIGE) o ®TM&, = 0.01801 (5-78)
11.8 0.47912 —0.03740
| 7.2 0.28979 0.04016
0.07595 0.56599
&, = 1 —0.041568| | —0.30989
3 v/0.01801 | —0.03740 —0.27871
(0.04016 [ 0.29927
The results for the iteration vector in the succeeding iteration steps become
[ 0.61639]
Bl —0.14318
—0.42383
| —0.13960 |
[ 0.53412]
0.02582
By =
—0.48439 (5-79)
| —0.43985
0.44527
0.12443
B3 =
—0.48944
—0.57702

The process converged with the indicated digit after 13 iterations.




122 Chapter 5 - VECTOR ITERATION METHODS

At the 1st iteration step in the forward iteration process towards ®(®) the following calculations are performed

25 —-20 05 00][1 1.0
N b i T T P e O - 7 I
1.0 —-40 6.0 -40| |1 -1.0
00 10 -40 50/ |1 2.0
1.0] ~0.10756 1.14859
Q)= & —cy@@ = | 05| _q3g1qq | 020563 | -08B - grvs — 550161
-1.0 —0.72825 0.00604
2.0 0.56197 1.22367
1.14859] 0.48573
i ~0.85314| _ | -0.36079
V5.59161 | 0.00604 0.00256
1.22367 0.51748
(5-80)
The results for the iteration vector in the succeeding iteration steps become
[ 0.44542] )
®, = | 041892
~0.02891
| 0.50962]
[ 0.44063]
— 1 7
B, — | 041617
—0.02534 (5-81)
| 0.51445]
[ 0.43867]
B, = | 041674
~0.02322
| 0.51696]

The process converged with the indicated digit after 9 iterations.

Based on the Rayleigh quotient estimates of the obtained eigenmodes the following eigenvalues may be calculated,
cf. (5-2)

A 0 0 0 0.09654 0 0 0
0 A 0 0 0 1.39147 0 0

A= 4 = (5-82)
0 0 A O 0 0 43735 0

0 0 M\ 0 0 0 10.6384




5.6 Exercises 123

5.6 Exercises

5.1 Given the following mass- and stiffness matrices

200 G =1 4
M=10 2 1 , K=[-1 4 -1
011 d =1 2

(a.) Perform two inverse iterations, and then calculate an approximation to A;.
(b.) Perform two forward iterations, and then calculate an approximation to As.

5.2 Given the following mass- and stiffness matrices

ig00 3 =1 @
M= (0 1 0] , =4 4 -
00 1 0 -1 2

The eigenmodes ®) are ) are known to be, cf. (1-87)

V2 V2
2 2
Pl — [ V2 FO) — | _v2
2 ? 2
) V2
2 2

(a.) Calculate @ by means of Gram-Schmidt orthogonalization, and calculate all eigen-
values.

5.3 Given the following mass- and stiffness matrices

11000 2 -1 0 0 0
14100 -1 ¥ -1 H 8
M=1{01410 Re | @t =1 8 <1 8
00141 B @ =1 8 =i
00 0 1 4] L0 0 0 -1 2

(a.) Write a MATLAB program, which calculates the lowest three eigenvalues and eigen-
modes of the related generalized eigenvalue problem by means of inverse vector iter-
ation with Gram-Schmidt ortogonalization.
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CHAPTER 6
SIMILARITY TRANSFORMATION
METHODS

6.1 Introduction

Iterative similarity transformation methods are based on a sequence of similarity transforma-
tions of the original generalized eigenvalue problem in order to reduce this to a simpler form.
The general form of a similarity transformation is defined by the following coordinate transfor-
mation of the eigenmodes

P = pyl) (6-1)

where P is the transformation matrix, and ®) and W’ signify the old and the new coordinates
of the eigenmode. Then, the eigenvalue problem (1-9) may be written

Kél) = AJ,M(I,(J‘) -
KP¥Y) = \,MPT =

K@U = \, Ny (6-2)

K=PTKP ., M=P"MP

The eigenvalues A; are unchanged under a similarity transformation, whereas the eigenmodes
are related by (6-1). In the iteration process the transformation matrix P is determined, so this
matrix converge toward the modal matrix ® = [®Y) &(2) ... )], Hence, after convergence of
the iteration process the eigenmodes are stored column-wise in P = ®. On condition that the
eigenmodes have been normalized to unit modal mass it then follows from (1-19) and (1-21)
that K = PTKP = A, and M = PTMP = I, so the transformed stiffness and mass matrices
become diagonal at convergence, and the eigenvalues are stored in the main diagonal of K. By
contrast to vector iteration methods similarity transformation methods determine all eigen-pairs
(A, @9), j=1,...,n.

The general format of the similarity iteration algorithm has been summarized in Box 6.1.

— 125 —
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Box 6.1: Iterative similarity transformation algorithm

Let My =M, Ky = K and &, = 1. Repeat the following items for £ = 0,1, ...

1. Calculate appropriate transformation matrix Py, at the kth iteration step.

2. Calculate updated transformation matrix and transformed mass and stiffness matrices
Bppy =8Py, Min=PiMP; , Ky =P{K\P,

After convergence:

k=K, , m=M,

A 0O 0
A= 0 )\:jz 0 = m 'k , B = [@(jl) Hl) . .. q)(jn)] - @wm_%
0 0 A

Orthonormal transformation matrices fulfill, ¢f. (1-23)

P! =P} (6-3)

For transformation methods operating on the generalized eigenvalue problem, such as the gen-
eral Jacobi iteration method considered in Section 6.2, the transformation matrices P, are not
orthonormal, in which case M, and K, converge towards the diagonal matrices m and k as
given by (1-20) and (1-22). Then, P{ P, # I, and an original SEVP will change into a GEVP
during the iteration process. The eigenvalue matrix A and the normalized modal matrix & are
retrieved as indicated in Box 6.1, where m~2 denotes a diagonal matrix with the components
1//M; in the main diagonal.

Some similarity transformation algorithms are devised for the special eigenvalue problem, as
is the case for the special Jacobi iteration method in Section 6.1, and the Householder-OR
iteration method in Section 6.3. Hence, application of these methods require an initial similarity
transformation from a GEVP to a SEVP as explained in Section 3.4. This may be achieved by
specifying the transformation matrix of the transformation & = 0 in Box 6.1 as, cf. (3-48)

P, = (57" (6-4)

where S fulfills (3-44). Then, M, = I. If the succeeding similarity transformation matrices are
orthonormal, then all transformed mass matrices become identity matrices as seen by induction
from M1 = PIM P, = P{IP, = I. Moreover, ®;.,; is orthonormal at each iteration step,
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as seen by induction from ®7,, &1 = PI®] &, P, = PIIP, =1

Finally, it should be noticed that after convergence the sequence of eigenvalues in the main diag-
onal of A and the eigenmodes in ® is not ordered in ascending magnitude of the corresponding
eigenvalues as indicated in Box 6.1, where the set of indices (71, jo, . . . , j») denotes an arbitrary
permutation of the numbers (1,2,...,n).

Example 6.1: Interchange of rows and columns in GEVP by means of a similarity transformation

Interchange of rows and columns in a matrix may be performed by a similarity transformation. Assume, that the
if the ith row and column are to be interchanged with the jth row and colums. Then the similarity transformation
matrix is given as

_ i J :
10 0 0 0
0 0 0
o 0 O = @ s T e 03 (6-5)
00 -+ 1 -« 0 - 0|3
0 0 - 0 - 0 - 1]

The rule is that ones are placed at the positions (¢, 1) and (j,1) of P. Consider the generalized eigenvalue problem
defined by (4-16). It is easily verified that P~ = P, so the transformation matrix is orthonormal, cf. (3-4). The
intention is to interchange the 1st row and column with the 2nd row and column, and next the new 2nd row and
column with the 4th row and column. This is achieved by two similarity transformations with the transformation
matrices P; and Py, given the following combined transformation matrix obtained as a product of tweo matrices
of the type (6-5)

01 0 01 0 0 0 0 0 0 1
B =P, = 1 0 0 0{0 0 0 1 _ 1 00 0 (6-6)
001 00010 00 1 0
0O 0 0 1|10 1 0 0 0 1 0 0
The transformed stiffness and mass matrices become
0 0 0 1 d 00 0 010 0 0 1 [2 0 0 0
W= 1 0 00 0 2 0 0|1 0 0O _ 01 0 0
00 10 00 0O 10010 0 0 0O
0 00 O 00 1[0 1 00 0 0 0 0
(&-7)
0 0 0 1 ! 2 -1 0 0] |10 0 0 1 [ 2 0 -1 -1
K = 1 0 0 0 -1 2 -1 0of ({1 0 0 0O _ 0 1 -1 0
00 1 0 0 -1 2 —-1({(0 0 1 0 -1 -1 2 0
G 1T 68 q 0 0 -1 1/ (0 1 0 0 |1 0 0 2

In the formulation (6-1 the solutions for the eigenmodes in the transformed system as given by (4-21)- (4-23) may
be written as
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e
A2 e 00
W=l v 3.4 s
it —1t7T 10
1 1
q ~1 01
The corresponding eigenmodes of the original system is obtained from, cf. (6-1)
000 1| 2 -3 00 7 -3 01
100 0| £ 2 00 L =1 0B
G= P — 001 0 1 ﬂ 1 /3 = 1 V3 1 Va3 (6_9)
sy S L@ ghigp =gvg 4 #
0100 i -1 01 2 2 go

6.2 Special Jacobi lteration

The special Jacobi iteration algorithm operates on the special eigenvalue problem, so M = I
at the outset. The idea is to ensure during the kth transformation that the off-diagonal compo-
nent Kj; ., entering the ith and jth row and column of K, becomes zero after the similarity
transformation. The transformation matrix is given as

. i J .
10 0 0 0 0 0
01 0 0 - 0 0] 0
00 - cosf@ 0 -+ —sinf 0 --- 0f1
e i = @ Lan U B o1
00 -~ sng 0 -~ cogf 0 - 0|7
00 o 0 - 0 1 0
00 .-~ 0 0 . 0 0 --- 1]

Basically, (6-10) is a identity matrix, where only the components P;, F;;, Pj; and P;; are differ-
ing. Obviously, (6-10) is orthonormal. The components of the updated similarity transformation

matrix ®j,, = &P}, and the transformed stiffness matrix K, ; = P1K; P become

{ Qik+1 = Cripcosd + Oypsint |, I=1,...,n 6-11)

Ppiky1 = Prjpcos@ — Pyesind |, I=1,...,n
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( Kiipr1 = K cos® 0 + Ky sin? 0 + 2K cos Osin 0
Kiivsr = Kjik cos® § + K sin? 0 — 2K cosflsinf
Kijiir = (Kjje — Kiig) cos 0sin 6 + Ky i ( cos® § — sin? ) (6-12)
Kiikt1 = Kigs1 = Kypcos0 + Kyjpsin® , 1#4,5

\ K.Ij,k+1 = Kj£!k+1 = Ktj,k cosf — Kh‘,k sin g [ 74 i,j

The remaining components of @, and Ky ; are identical to those of ®; and K. Hence, only
the 2th and jth row and column of K, are affected by the transformation.

Box 6.2: Special Jacobi iteration algorithm

Let My = I, Ky = K and &, = 1. Repeat the following items for the sweeps m =
1,2,...

1. Specify omission criteria &, in the mth sweep.

2. Check, if the component [;; ;. in the 7th row and jth column of K, fulfills the criteria

K?j,k —
T ETRN G "

3. Ifthe criteria is fulfilled, then skip to the next component in the sweep. Else perform
the following calculations

(a.) Calculate the transformation angle # from (6-13), and then the transformation
matrix P; as given by (6-10).

(b.) Calculate the components of the updated similarity transformation matrix
P11 = PPy, and the transformed stiffness matrix K, = P? K, P, from
(6-11) and (6-12). Notice that k& after the mth sweep is of the magnitude
s(n—1)n-m.

After convergence:

A O 0
$, == [@(J‘l) (I)(jz) o q)(jn)] . KA 0 /\jz 0
0 0 A

Next, the angle ¢ is determined, so the off-diagonal component K; 1., becomes equal to zero
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1
Kij,k+1 = —5 (Ki‘i,,k = ij,k) sin 26 + K‘ij.,k cos20 =0 =

2Kij (6-13)

Kk = Kjjk

Notice, that even though Kjj; 1 = 0 after the transformation, a subsequent transformation
involving either the ith or jth row or column may reintroduce a non-zero value at this position.
Optimally, K;; should be selected as the numerically largest off-diagonal component in K.
However, in practice the iteration process is often performed in so-called sweeps, where all
5(n — 1)n components above the main diagonal in turn are selected as the critical element to
become zero after the transformation. In this case the method is combined with a criteria for
omission of the similarity transformation, in case the component is numerically small. The
transformation is omitted, if

2
Kij‘k S

e M 14
KarKon < & (6-14)

where £,, is the omission value in the mth sweep.

Finally, it should be noticed that if K, has a banded structure, so non-zero components are
grouped in a band around the main diagonal, the banded structure is not preserved during the
transformation process as seen from Example 6.1, where the initial matrix Kg is on a three di-
agonal form, whereas the transformed matrix K is full, see (6-16) below.

The special Jacobi iteration algorithm can be summarized as indicated in Box 6.2.

Example 6.2: Special Jacobi iteration
Given a special eigenvalue problem with the stiffness matrix
2 -1 0 1 00

K=Kp=|-1 4 -1 , ®=1]0 10 (6-15)
O o=l 2 0 0 1
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In the 1st sweep the following calculations are performed for (3, j) = (1,2) :

;

e —
0= lza‘.rcta,n( ( 1\) =0.3927 = Cf)sg 0.9235
2 2—-4 sinf = 0.3827
0.9239 -0.3827 0
Pp= 03827 0.9239 0
0 0 1
0.9239 -0.3827 0 1.5858 0 —0.3827
$, = PPy = [0.3827 09239 0 , Ki= PgKnPo = 0 4.4142 —0.9239
{ 0 0 1 —0.3827 —0.9239 2
(6-16)
Next, the calculations are performed for (i, 7) = (1,3) :
{
1 2- (—0.3827)) cosf = 0.8591
# = —arctan | ——— | =0.5374 =
a ( 15858 — 2 sin¢ = 0.5119
0.8591 0 —0.5119
Py = 0 1 0
0.51192 0 0.8591
0.7937 —0.3827 —-0.4729 1.3578 —0.4729 0
®;, =®,P, = [0.3287 0.9238 -0.1959| , Kz = PTKlPI = |-04729 44142 -0.7937
0.5119 0 0.8591 0 —0.7937  2.2280
(6-17)
Finally, to end the 1st sweep the calculations are performed for (i, ) = (2,3) :
| 2 (—0.7937) B cosf = 09511
B=gama (4.4142 = 2.2280) =48 = {si110 = —0.3089
1 0 0
P,= |0 09511 0.3089
0 -0.3089 0.9511
0.7937 -0.2179 -0.5680 1.3578 —0.4498 —0.1461
®3 = &P, = [0.3287  0.9392 0.0991| , K3 =PIK,P> = |-04498 4.6720 0
L 0.5119 -0.2653  0.8171 —0.1461 0 1.9703
(6-18)
®4 and K represents the estimates of the modal matrix @ and A after the 1st sweep. As seen the {127 = 0,
whereas K1p9 = —0.4729. This is in agreement with the statement above, that off-diagonal components set to

Zero in one iteration, may attain non-zero values in a later iteration. Comparison of Ky to K3 shows that the
numerical maximum off-diagonal component has decreased from | — 1| = 1 to | — 0.4498| after the lst sweep.

Hence, the algorithm is converging.

At the end of the 2nd and 3rd sweep the following estimates are obtained for the modal matrix and the eigenvalues
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( [0.6276 -0.3258 —0.7071] [ 1.2680 0.0039 —0.0000
®s = |0.4607 08876 0.0000] , Ke=| 00039 47320 0
06276 —0.3258  0.7071] |—0.0000 0 2.0000
(6-19)
[0.6280 —0.3251 —0.7071] [ 1.2679 —0.0000 —0.0000
P9 = (04597 08881 0.0000| , Ko=|-00000 4.7321 0
06280 —0.3251  0.7071] |—0.0000 0 2.0000

As seen the eigenmodes are stored column-wise in ® according to the permutation (7, ja, 73) =

(18,91

6.3 General Jacobi Iteration

The general Jacobi iteration method operates on the generalized eigenvalue problem, i.e. M #
I. The idea of the transformation is to ensure that during the kth transformation the off-diagonal
component M;; ;. and Kj; ., entering the ith and jth row and column of M, and K, simultane-
ous become zero after the similarity transformation.

Fig. 6—1 Projection of ¢th and jth column vectors of similarity transformation matrix in the (w;, x;)-plane.

The transformation matrix is given as
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" i J -
10 - 08 o 00 - @
1 B0 s B @ o @
00 1~ B 0+ B3
B
6 O soe @ O s0e 1 B oo 0] F
0 0 00 -0 1 0
0 G < 8 0 o B O s 1

Because we have to specify requirements for both M;; x4 and K, .41, we need two free para-
meters « and [ in the transformation matrix, where only the angle & appears in (6-10). As a
consequence (6-20) is not orthonormal. Actually, the ith and jth column vectors neither have
the length 1 nor are mutual orthogonal, by contrast to the corresponding vectors in (6-10), see
Fig. 6-1. The components of the updated similarity transformation matrix ®,,; = ®,P;
and the transformed mass and stiffness matrices, My, = P{ MP; and Ky, = PIK,Py,
become

(I),'_- :(I),j_,+01'¢"« 5 t!:l,...,ﬂ,
i k+1 lik ks 6-21)
Qg1 = Pyp + 8% , I=1,....n

Miigy1 = Mg + o My 5 + 20Mij 0

Mjjpe1 = Myjp+ B2 Mg + 28Mij 0

S Mijes1 = BMi g + aMjjn+ Mij‘k(l — a,d) (6-22)
Mjipsr = My = Mg + My, 1#4,]

Mijrsr = Mjper = My + BMuy , 1#1,]

Kiipwr = HKyp+ azf’(jj'k + 20 K55

Kjjx+1=Kjjr+ _ﬁzf{i?;:;‘. + 20Kk

J Kijrr1 = PR+ aKgp + I(ij!k(l + ry.ﬂ) (6-23)
Kipii = Kappi=Kup+aKpe , (#4647

Kigsr = Kjpwp = Ky + BKup , 1#4,3

The remaining components of @, My, and K, are identical to those of @, My and K.
Hence, only the ith and the jth row and columns of K, and M;, are affected by the transforma-
tion.
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Next, the parameters o and J are determined, so the off-diagonal components M;; ;.1 and
Kijx+1 become equal to zero

Mij=k+1 = ﬁ]\«fﬁ’k == Gij‘k -+ ﬂrfij!k(]. + QB) =10

(6-24)
Kij,,ec+1 = ﬁf(ii‘k + CEij’k A K-,;j,;c(l -4 Qﬁ) =0
The solution of (6-24) becomes, see Box 6.3
I U R
“=e\27Va i H =T
_ ij,k:Mi ik ij,sz'j,k > y if Kii’ijj‘k- -‘/—‘ ﬂfii‘kij,k'
Kopeisn — Mua K50
b— K oM x — My o Kok (6-25)
K eMijn — My p Kk

K oM — My o Kij i 1 ot
= : ) ) ) , I ’ f Kz'i Aﬁ{"u:Mi‘ W e
) \/Ka‘j.kMij,k = M 1 i A== o i .
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Box 6.3: Proof of equation (6-25)

From (6-19) follows

BKar+aKye  Kya

_ _KiwMije — My Kigre
OMiip + aMy;r My

KiaxMign — M Kx

B= (6-26)

Elimination of 3 in the Ist equation in (6-24) by means of (6-26) provides the following
quadratic equation in «

Mk (ijkaij.k - ij,kKij.k) o — Mij k (Kii,kﬂ/fjj,k i ii,kij'k) x—
Mij i (KiioMij e — My 1 Kiji) = 0 (6-27)

If Ky o Mjj . = My 1K, the coefficient in front of « cancels. Then, in combination to
(6-26) the following solutions are obtained for o and 3

= (6-28)

o KipnMw — MaaKea 1
ij,kf‘ffi ik ij,kKij,k ’ ¢4

If Kjix M # MK solutions of the quadratic equation for « in combination to
(6-26) provides

1/1 1 a
o = — (E = = Z =+ ab) . F= —EG' (6-29)

a

where a and b are as given in (6-25). Both sign combinations in (6-28) and (6-29) will do.

The transformations are performed in sweeps as for the special Jacobi method. In this case the
criteria for omitting a transformation during the mth sweep may be formulated as

2 2
Mow | Miw . (6-30)
¥ ™~ m
KiwKijn  MixMjsn
where &, is the omission value in the mth sweep.

The general Jacobi iteration algorithm can be summarized as indicated in Box 6.4.
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Box 6.4: General Jacobi iteration algorithm

Let My = M, Ky = K and &, = I. Repeat the following items for the sweeps m =
1,2 e

1. Specify omission criteria £,, in the mth sweep.

2. Check, if the components M;; and Kj; in the ith row and jth column of M, K
fulfill the criteria

2 2
Kk 3. M, .
m

KiuxKjje  MypM;j

3. Ifthe criteria is fulfilled, then skip to the next component in the sweep. Else perform
the following calculations

(a.) Calculate the parameters « and 3 as given by (6-29), and then the transforma-
tion matrix Py, as given by (6-20).

(b.) Calculate the components of the updated similarity transformation matrix
®, 1 = PPy, and the transformed mass and stiffness matrices M., =
PIM,P; and Ky = PTK, P} from (6-21), (6-22) and (6-23). Notice that k
after the mth sweep is of the magnitude £ (n — 1)n - m.

After convergence:

k=Ksx . =M

Ap 0 0
f=| ¥ M Yl om ik |, &= (@980 800 = Bogm?
0 0 A

Jn

Example 6.3: General Jacobi iteration

Given a generalized eigenvalue problem with the mass and stiffness matrices

0.5 05 0O 2 =1 0 L 08
M=My= |05 1 05 , K=Ko=|-1 4 -1 v Po=10 1 0 (6-31)
0 05 1 0 -1 2 00 1
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In the 1st sweep the following calculations are performed for (7, j) = (1,2) :
2.05=05-(-1
a:\/40055 > (1) =0.7071
TR T (_ ) (NB K1 0Magp = Kzz,oMru,n)
1
SISV = —1.4142
A 0.7071 %
1 ~1.4142 0 i —1.4142 0
Py = |0.7071 1 0 ®, = &Py = |0.7071 1 0
0 0 1 0 0 1
1.7071 0 0.3536 2.5858 0 —0.7071
M, =PTMyPo=| 0 0588 05 |,Ki=PIKPy= 0 10.8284 -1
| 0.3536 0.5 1 -0.7071 -1 2
(6-32)
Next, the calculations are performed for (¢, j) = (1, 3) :
_2-0.3536—1-(—0.7071) B
= T 25858.1-1.7071.2 = =Ll {n — 0.9664
_ 2.5858-0.3536 — 1.7071- (—0.7071) 8= —0.6443
k= 2.5858 -1 — 1.7071 - 2 Sha
1 0 —0.6443 1 —~1.4142 —0.6443
P, = 0 1 0 @, =@, P; = |0.7071 1 —0.4556
0.9664 0 1 0.9664 0 1
3.3243 04832 0 3.0869 —0.9664 0
M, = PTM, P, = (04832 0.5858 05 | . Ke=PTK,P;=|-009664 108284 —1
0 0.5  1.2530 0 =it 3.9814
(6-33)
Finally, to end the st sweep the calculations are performed for (¢, 7) = (2.3) :
. -0.5—1.2530 - (—1
. 3.9844 - 0.5 530 (-1) .
10.8284 - 1.2530 — 0.5858 - 3.9844 8 a = —0.4702
_10.8284-0.5—0.5858 - (—1) — 3= 0.2543
T 10.8284 - 1.2530 — 0.5858 - 3.9844
1 0 0 1 —1.1113 —1.0039
P,= |0 1 0.2543 &, = ®,P, = |0.7071 12142 —0.2012
0 -0.4702 1 0.9664 —0.4702 1
3.3243 0.4832 0.1229 3.0869 —0.9664 —0.2458
My = P7M,P, = |0.4832 0.3926 0 , K3 =PTK,Py = | —0.9664 12.6498 0
\ 0.1229 0 1.5452 —0.2458 0 4.1761
(6-34)

At the end of the 2nd and 3rd sweep the following estimates are obtained for the modal matrix and the transformed

mass and stiffness matrices
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0.7494 —-1.2825 -1.0742
$g= |0.8195 1.0999 —0.2865
1.0376 —0.6084  0.9213

3.4931 —0.0024 0.0000 3.0336 0.0048 —0.0000
M = |-0.0024 03225 0 , Ke=| 00048 13.029 0
0.0000 0 15517 ~0.0000 0 4.2464
{ (6-35)

0.75601 -1.2820 -1.0742
P9 = (0.8189 1.1005 —0.2865
1.0379 -0.6076  0.9213

3.4932 —0.0000 0.0000 3.0336 0.0000 -0.0000
My = | -0.0000 0.3225 0 , Ko= | 0.0000 13.029 0
0.0000 0 1.5517 —0.0000 0 4.2464

\

Presuming that the process has converged after the 3rd sweep the eigenvalues and normalized eigenmodes are next
retrieved by the following calculations, cf. Box. 6.4

3.4932  —0.0000 0.0000 0.5350 0 0
1
m =M= |-0.0000 03225 0 , m~i=| 0 17608 0 =
0.0000 0 L5517 0 0  0.8028
A 00 0.8684  0.0000 —0.0000
A=]0 A 0|=M;'Ko=| 00000 40.395 —0.0000 (6-36)
0 0 X —0.0000 —0.0000  2.7365
04013 -2.2573 —0.8623
d=[213® a2 =pym % = [04381 1.9378 —0.2300
0.5553 —1.0698  0.7396

The reader should verify that the solution matrices within the indicated accuracy fulfill "M@ =
Iand PTK® = A.

6.4 Householder Reduction

The Householder reduction method operates on the special eigenvalue problem . Hence, a pre-
liminary similarity transformation of a GEVP to a SEVP must be performed as explained in
Section 3.4.

The Householder method reduces a symmetric matrix K to three diagonal form by totally n—2
consecutive similarity transformations. After the (n — 2)th transformation the stiffness matrix
has the form
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831 61 o .- 0 0
Bi og P2 - 0 0
0 ﬁg g 4o 0 0
K1 = R : : (6-37)
0 0 G - dpg Py
L 0 0 0 L b ,Bn.—l Qp B
During the reduction process the numbers o, ..., a, and 3, .. ., 3,-1, as well as the sequence
of transformation matrices P4, ..., P, _5 are determined. Since all transformation matrices be-

come orthonormal all transformed mass matrices remain unit matrices.

After completing the Householder reduction process the special eigenvalue problem with the
three diagonal matrix K,,_; must be solved by some kind of iteration method, which preserves
the three diagonal structure of the reduced system matrix, and benefits from this reduced struc-
ture in order to improve the calculation time. As mentioned in Section 6.2 this requirement
rules out the special Jacobi iteration method. Since, the inverse of a three diagonal matrix is
full, inverse vector iteration with Gram-Schmidt orthogonalization must also be avoided. Of the
methods discussed hitherto only forward vector iteration with Gram-Schmidt orthogonalization
meets the requirement. As wee shall see the requirements are also met by the QR iteration
method to be discussed in Section 6.5. Finally, an initial Householder reduction 1is favorable in
relation to characteristic polynomial iteration methods discussed in Section 7.4.

The transformation matrix during the kth similarity transformation is given as follows

P,=I-2w,w} |, |w=1 (6-38)
w;. denotes a unit column vector to be determined below. Hence, w{wk = 1.
Obviously, P is symmetric, i.e. Py = Pf Moreover, P, is orthonormal as seen from the
following derivation

P.P% = (I — ZWkW;‘_F) (I - QWkWE:) =

I- 2wkwgf — 2w wi + 4(wgwk)wkw;f =T =3
P =Pt (6-39)
As mentioned, this means that the mass matrix remains an identity matrix during the House-

holder similarity transformations, because this is ensured in the initial transformation from a
GEVP to a SEVP, as explained in the remarks subsequent to (6-4).
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Fig. 6—2 Geometrical interpretation of the Householder transformation.

Consider a given column vector x. Then,

Prx = (I - 2wkwg)x =X— 2(wka) W (6-40)
Notice that wfx is a scalar. The transformed vector, P,x, may be interpreted as a reflection of
x in the line [, which is orthogonal to the vector wy, and placed in the plane spanned by x and

wy. as illustrated in Fig. 6-2.

At the kth transformation the applied unit vector wy, is taken on the following form

g
6 o | } krows
Wy, = = (6-41)
Wit Wi | }n—krows
| Wa
where
Wiwp =Wiwg=wi  + +uwl=1 (6-42)

Then, the transformation matrix may be written on the following matrix form

k n—k
columns columns
~ ~ =

L. 0 } k rows )
P.’«: = 3 PR
0 P, } n — k rows

(6-43)

Il

T = =
Ik = 2Wka

where I denotes a unit matrix of dimension (n — k) x (n — k).
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In order to determine the sub-vector w; defining the transformation matrix, the stiffness matrix
before the kth similarity transformation is considered, at which stage the stiffness matrix has
been reduced to three diagonal form down to and including the (k — 1)th row and column.
Hence, the stiffness matrix has the structure

n—=k
columns
k A~
g A 0 0 0 0
B az [ 0 0 0
0 0 0 0
' B S (6-44)
Ke=10 0 0 - o4y By O
0 0 O Br-i Kix ky, k
0000 - 0 K K |}n-krow

k. is a row vector of the dimension (n — k), and K. is a symmetric matrix of the dimension
(n — k) x (n — k) defined as

ki = [Kiws1 Kirvz - Kien) (6-45)
Kiyivrr Kisirso Kyyin
_ Kprokrr Kivok Kyt
Kk _ k+.2 k+1 L+-2A+2 k:s-z 3 (6—46)
I{n k+1 -[{n k+2 -l{mt

Then, with the transformation matrix given by (6-43) the stiffness matrix after the kth transfor-
mation becomes

n—k
columns
k iy
(o5} ﬁf))l 0 0 O 0
ooy 3 0 0 0
0 5 oy 0 0 0
5T B ! : : ; : :
K.’:\.‘+1 - PRK.'\,P.'( —_ O O O a{k_l 3};_1 O
0 0 0 Bect Kk kP, k
0 0 0 0 pzkf ng{g P, } n — krows

(647)
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where
X = Kﬁck (6—48)
kP = ki (ik . QWkw{) = Ky — 2(kuWy,) WT (6-49)
PTKP, = K — 2w Wi Ky, — 2Kywy, W] + 4(WEK Wy, ) Wy Wy (6-50)

Since, k; is a row vector and Wy, is a column vector, kW, is a scalar. Similarly, \Tv}:f(kv‘vk
becomes a scalar.

If the kth row and column in (6-45) should be on a three-diagonal form, it is required that

Piki =B , &= | (6-51)
0
where €y, is a unit column vector of dimension (n—k). The transformation matrix is symmetric,
so PTkI = P,kI. Moreover, P, kY is a reflection of the vector k¥ in the line / as depicted in
Fig. 6-2, and hence has the length [k} |. Hence, it follows that /4, should be selected as
B = +|ky (6-52)

Then it follows from (6-49) that
K — 2(kywi )Wy = tlkilex =

W, = a (i F [lefo ) (6-53)

where it is noticed that 2(k;W;) is a scalar, which may be absorbed in the coefficient a. a is
determined so the vector wy, is of unit length.
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Box 6.5: Householder reduction algorithm

Transform the GEVP to a SEVP by the similarity transformation matrix P = (S‘l)T,
where S is a solution to M = SS7, and define the initial transformation and stiffness
matrices as

K, =S'K(s )" |, & =(s)"

Next, repeat the following items fork =1,...,n — 2

1. Calculate the similarity transformation matrix P, at the kth similarity transformation
by (6-43), (6-55).

2. Calculate updated transformation and stiffness matrices from (6-47), (6-57)
Qi1 =8P, , Ky =PIKPy

After completion of the reduction process the following standard eigenvalue problem is
solved by some iteration method

K, ;V=VA

A is the diagonal eigenvalue matrix of the original GEVP, and V is the orthonormal
eigenvector matrix of the three diagonal matrix K,,_;. Then, the eigenmodes normalized
to unit modal mass of the original GEVP are retrieved from the matrix product

=9, ,V

Both sign combinations in (6-52) and (6-53) will do. However, in order to prevent numerical
problems of the algorithm in the case, where k;, ~ K} 1€, the following choice of sign in the
solutions for 3, and W, should be preferred

B = —sign(Kyi1) K] (6-54)

kT + sign (K k+1) |Ki|&x
| KT+ sign(Kprs) ke |

By = (6-55)

The updated transformation matrix before the kth transformation is partitioned as follows

k n—=k
columns columns

A =
b, Dy, } k rows (6-56)
(I'k =

D, Doy } n — k rows
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With the transformation matrix as given by (6-43) the transformation matrix after the kth trans-
formation becomes
k n—=k
columns columns
y e i

Dy, PPy, }k rows D)

Dpy1 = B
Doy, $ P, } n — k rows

Finally, it should be noticed that alternative algorithms for reduction to three diagonal form have
been indicated by Givens' and Lanczos.?

Example 6.4: Householder reduction

Given a generalized eigenvalue problem with the mass and stiffness matrices given by (5-74). The similarity
transformation matrix transforming from a GEVP to a SEVP becomes

V2 0 00 ¥ 4§ 00
" 5 V3
Somi=|0 V20Ol . guyr_ |0 % 00 58
0 0 10 0 0 10
0 0 01 0 0 01

Then, the stiffness matrix and updated transformation matrix before the 1st Householder similarity transformation
becomes, cf. (3-47), (3-48)

¥2 o9 00][5 -4 1 0][£2 0 00
V2 Y . 2z
K =sik(s) = |0 ¥ 004 6 -4 110 500
0 0 1 o0{|1 -4 6 -4/]0 0 1 0
0 0 0 1[0 1 -4 5[0 0 01
M5 V2
o |2 3 —2v2 4L
S - Q) 6 —4 (6-3%)
o0 £ 4 5
[¥2 0 0 0
V2
8|0 F 00
0 0 10
L0 0 01
At the Householder transformation k = 1 one has
(x—é
18
_ (6-60)
k=2 ¥ o A
¥ = | T ? |1I_ 9

"W. Givens: Numerical Computation of the Characteristic Values of a Real Symmetric Matrix. Ouak Ridge
National Laboratory, ORNL - 1574, 1954,

2C. Lanczos: An Iterative Method for the Solution of the Eigenvalue Problem of Linear Differential and Integral
Operators. Journal of Research of the National Bureau of Standards, 45(4), 1950, 255-282.




6.4 Householder Reduction 145

Then, cf, (6-43), (6-54) and (6-55)

2
81 = —sigxl(—2)3—£ = % =92.1213
2 2
_ _ —9 _ 3v2 o
) 2] 33 1 2- ¥ ) 0.9856
wi=a| ||+ sngn(—Q)T 0| | =a . = wi;=| 0.1691
0 0 0 0 (6-61)

~0.9828 0.3333 0
Pi=1, -2%;%] = | 0.3333 0.9428 0
| 0 0 1

The stiffness matrix and updated transformation matrix after the Householder transmission k& = 1 becomes

2.5000  2.1213 0 0
K = PTK, P, = 21213  5.1111  3.1427 —2.0000
0 3.1427  3.8889 —3.5355
0 —2.0000 -3.5355 5.000
(6-62)
0.7071 0 0 0
By — By = 0 —0.6667 0.2357 0
0 0.3333 0.9428 0
L 0 0 0 i
where the transformed matrices are calculated by means of (6-47) and (6-57), respectively.
At the Householder transformation k = 2 the following calculations are performed
ag = 5.1111
(6-63)
ky = [3.1427  —2.0000] , |kg| =3.7251

B2 = —sign(3.1427) - 3.7251 = —3.7251

Wo = a o120 + sign(3.1427) - 3.7251 1 =a 88678 = Wy = 0.9601
—2.0000 0 —2.0000 —0.2796 (6-64)

By =T, - 2wpw = | 08436 0.5369
0.5369 0.8436

The stiffness matrix and updated transformation matrix after the Householder transmission k& = 2 becomes
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2.5000 2.1213 0 0
K, = PTK,P, = | 21213 51111 —37251 —0.0000
0 —3.7251  7.4120  2.0005
0  —0.0000 2.0005 1.4769
(6-65)
0.7071 0 0 0
By— 3Py | O 00067 —0.1988 0.1265
0 0.3333 —0.7954 0.5062
0 0 0.5369 0.8436

The reader should verify that the solution matrices within the indicated accuracy fulfill 3 M®; = I and
PTK®; = K.

6.5 QR lteration

As is the case for the Householder reduction method QR-iteration operates on the standard
eigenvalue problem, so an initial similarity transformation of the GEVP to a SEVP is presumed.

Let K; = SflK(Sfl)T denote the stiffness matrix after the initial similarity transformation,
where S is a solution to M = SS7, cf. (3-44), (3-47).

QR iteration is based on the following property that any non-singular matrix K can be factorized
on the following form

K = QR (6-66)

where Q is an orthonormal matrix, and R is an upper triangular matrix. Hence, Q and R have
the form

Q= |aiaq) ., arq =0y (6-67)
-7”11 Tre gy B e Tln_
0 799 Tog Toa -+ Ton
0 0 o s

R=10 o 753 ;j: ;j (6-68)
0 0 0 0 o 1

where ¢;; denotes Kronecker's delta. It should be noticed that the factorization (6-66) holds
even for non-symmetric matrices. The orthonormality of Q, which implies that Q™! = Q7 is
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essential to the method.

Based on K a sequence of transformed stiffness matrices K, are next constructed with the QR
factors Q and R;, according to the algorithm

Kiy = QTK Qi = QT QuRxQr = R Qy

(6-69)

Hence, K, is obtained by a similarity transformation with the transformation matrix Q. The
transformation is reduced to an evaluation of R Q. due to the orthonormality property of Q.
For the same reason all transformed mass matrices remain unit matrices.

Now, it can be proved that

My, W 0
B Hog wse O

Kpe=Reo=A=| . ! . . , B, =®= [(I)(n) Fn-1) ... @(1)} (6-70)
0 0 A

Q, converge to a unit matrix, as a consequence of K., = R..

As seen, at convergence the eigen-pairs are ordered in descending order of the eigenvalues.
Moreover, the algorithm converges faster to the lowest eigenmode than to the largest, as is the
case for subspace iteration as describes in Section 7.3, a method which has some resemblance
to QR iteration. The rate of convergence seems to be rather comparable to that of subspace iter-
ation. These properties have been illustrated in Example 6.5 below. The proof of convergence
and the associated determination of the convergence rate is rather tedious and involved, and will
be omitted here.
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Box 6.6: Proof of equation (6-61)

Let k; ko, . .., k, denote the column vectors of the matrix K, i.e.

K= [kiks-- ki) (6-71)

Since K is non-singular, k; ks, . . ., k,, are linearly independent, and hence form a vector
basis. A new orthonormal vector basis q; gz - - - q,, linearly dependent on k;y ko, ..., k,
may then be constructed by a process, which resembles the Gram-Schmidt orthogonaliza-
tion described in Section 5.5. (6-66) is identical to the following relations

ki =rmq
ko = rioqr + 7re2qy

J
k; =ryan +roQe + -+ 7559 = ZTW% (6-72)
k=1

: n
k, = Z TknGk
k=1

(6-72) is solved sequentially downwards using the properties of orthonormality of g;.
From the 1st equation follows by scalar multiplication with q;

1
m=lk| = aqa=-—k (6-73)
1

Now, q; and ry; are known. Scalar multiplication of the 2nd equation with q;, and use of
the orthogonality property q! qz = 0, provides

. 1
ro=qiks = Tr=lke—rpq| = q= fr._(k.? —r12q1) (6-74)

22
At the determination of q;, 1 < j < n, the mutually ortonormal basis vectors
g1, 92, - - -, ;-1 have already been determined. Scalar multiplication of the jth equation

with qu, k = 1,2,...,7 — 1, and use of the orthogonality property q7 q; = 0, provides

j-1 i-1
1
r =ik = = kj— ) mgGe| = @ = ? (ka ~ B T’k:qu) (6-75)
k=1 H k=1

Hence a solution fulfilling all requirements has been obtained for the components 7;; of
R and the column vectors q; of Q, which proves the validity of the factorization (6-66).
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Box 6.7: QR iteration algorithm

Transform the GEVP to a SEVP by the similarity transformation matrix P = (S’l)T,
where S is a solution to M = SS7, and define the initial transformation and stiffness
matrices as

K =STK(S™)" , & = (57

T

Repeat the following items for k = 1,2, ...

1. Perform a QR factorization of the stiffness matrix before the kth similarity transfor-
mation
Ky = QR4

2. Calculate updated transformation and stiffness matrices by a similarity transforma-
tion with the orthonormal transformation matrix Q)

Pri=2Qr , Kip = QIKiQr = ReQu

After convergence:

A?L 0 fr O
B Kt 5o 4 |

A= T T — Ko =Ry, ®=[a®WaD.. . 30] =3,
g f§ e ¥y

The general QR iteration algorithm can be summarized as indicated in Box 6.7.

Usually, the QR algorithm becomes computational expensive when applied to large full ma-
trices, due to the time consuming orthogonalization process involved in the QR factorization.
However, if K, is on the three diagonal form (6-37), it can be shown that matrices R, and Q,
have the form

,_.
-
LR
%]
g
e
3
(]
(en]

Ry (6-76)

o O o O =
=
=
[+
o
-
P
=
=
ot
n
e [ o B s S s i e |
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-Q11 12 G13 Gi1a Q15 Q'ln—
21 22 G23 {24 Qa5 Gon
0 g32 Gss qaa Qs G3n
Q=10 0 g qu s Gan (6-77)
0 0 0 gs4 gs5 sn,
L0 0 0 0 0 Tnn

Hence, Ry, becomes an upper three diagonal matrix with only 3n — 3 nontrivial coefficients
versus %n(n + 1) for a full matrix K. Similarly, Qs contains zeros below the first lower
diagonal. As a consequence of the indicated structure of Ry and QQj, the matrix product
Ki+1 = RiQj will again be a symmetric three diagonal matrix. Hence, this property is pre-
served for the transformed stiffness matrices during the iteration process. This motivates the
application of QR iteration in combination to an initial Householder reduction of the initial
generalized eigenvalue problem to three diagonal form, which is known as the HOQOR method.

Example 6.5: HOQR iteration

QR iteration is performed on the stiffness matrix of Example 6.3, which has been reduced to three diagonal form
by Householder reduction. Hence, the initial stiffness matrix and updated transformation matrix reads, cf. (6-65)

2.5000 2.1213
21213  5.1111
0 -3.7251

K=

—3.7251

0

7.4120

0 —0.0000

2.0005

0

-0.0000
2.0005
1.4769

—-0.1988 0.1265
—-0.7954 0.5062
0.5369 0.8436

(6-78)

At the determination of q; and 1 in the Ist QR iteration the following calculations are performed, cf, (6-73)

2.5000
2.1312
K, = | 2181
0
0
2.5000
1 (21812
D=3577 | 0
{ 0

qp and 79, rpo are determined from the following calculations, cf. (6-74)

i e

2.5000
2.1312

0.7625
0.6470
0
0

= 3.2787

(6-79)
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= . = e
2.1213 0.7625 2.1213
Ky — 5.1111 = 0.6470 5.1111 — 4.9944
—3.7251 0 —3.7251
0 0 0
2.1213 [0.7625]
"
= || M gg0aq. |O04T01 _ g 5001 (6-80)
—3.7251 0
0 0 |
2: T3 0.7625 —0.3630
G = 1 5.1111) 4.9244 . 0.6470 _ 0.4278
4.5001 —3.7251 0 —0.8278
0 0 0
ds and 713, Te3, T33 are determined from the following calculations, cf. (6-75)
0
—3.7251 T T
kg= , =qfks = 24101 , ro3 = qiks = —7.7292
3 74190 T3 = qi K3 723 = (3 K3
2.0005
g == ‘kg +2.4101q; + 7.7292q2‘ = 2.6959 (6-81)
—0.3590
1 0.4231
= ks + 2.4101qy + 7.7292 ) e
Ha 2.6959( & e e 0.3761
0.7421
Finally, a4 and 14, 724, 734, 744 are determined from the following calculations, cf. (6-75)
0
k4 d T4 = qu4 =0 T'a4 = qu4 = —1.6560
2.0005 ! ' =
1.4769
T3q = qgk,; =1.8483 . 144 = |kg — 0qy + 1.6560qo — 1.8483qz| = 0.1571 (6-82)
(0.3974
1 - —0.4684
4= ky—0 1.6560q; — 1.8483 =
U= 51571 (1 — 0 + 1:6360a a) —0.4163

0.6703
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Then, at the end of the 1st iteration the following matrices are obtained

[0.7625

0.6470
Q

R

Py =P, Q0 =

K, =RQ; =

—-0.3630
0.4278
—0.8278

0

4.9244
4.5001
0
0

0.5392
-0.4313
0.2157

0

5.6860
2.9115
0
0

—0.3590
0.4231
0.3761
0.7421

—2.4101

—7.7292

2.6959
0

—0.2567
—0.1206

0.8010
—0.4444

29115

8.3232

=2.2317
0

0.3974
—0.4684
-0.4163

0.6703

=
0
—1.6560
1.8483
0.1571

(6-83)

—0.2539 0.2810
—0.2629 0.4799

0.2175 0.5143

0.8280 0.3420

0 0

—2.2317 0
2.3854 0.1166
0.1166 0.1053

As seen the matrices R and Q; have the structure (6-76) and (6-77). Additionally, K has the same three diagonal
structure as K. The corresponding matrices after the 2nd and 3rd iteration become

[0.8901
0.4558
0
0

Q2

[6.3881
0
0
0

Ry =

By = $2Qz =

Kz =RoQs =

-0.4279

0.8356

—0.3445
0

6.3850
6.4780
0
0

0.3629
—0.4389
0.5570
—0.2026

8.5962
2.9525
0
0

—0.1566
0.3058
0.9362
0.0748

-1.0171

—2.68606

1.6695
0

—0.3577

0.1744
0.5021

—0.6566

2.9525

6.3386

—0.5372
0

0.0117
—0.0229
—0.0702

0.9972

=
0
—0.0402
0.1170
0.0968

(6-84)

—0.3795 0.3103
—0.1796 0.4947

0.4533 0.4818

0.6648 0.2931

0 0

—0.5372 0
1.4687 0.0072
0.0072 0.0966
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[0.0458 —0.3230 —0.0345  0.0002
Q. |03248 09404 01003 —0.0005
! 0  —0.1061 009943 -0.0051
Lo 0 0:0051  1.0000
=
[0.0801 4.8514 —0.1745 0
R._ | 0 50643 —06610 —0.0008
’ 0 0 1.4065  0.0077
Lo 0 0 0.0965
(6-85)
0.2270 —0.4134 —0.4242 0.3125
—0.3584  0.3248 —0.1434 0.4954
$s=P3Q3 =
0.6899  0.2442  0.4844 0.4793
—0.4049 —0.6226 0.6036 0.2900
10172 1.6451 0
1.6451  4.8328 —0.1492
Ky =R3Q3 =
0  —0.1492 1.3986 0.0005
0 0 0.0005 0.0965

As seen from Rg and K4 the terms in the main diagonal have already after the 3rd iteration grouped in descending
magnitude, corresponding to the ordering of the eigenvalues at convergence indicated in Box 6.7. Mareover, for
both matrices convergence to the lowest eigenvalue A; = 0.0965 has occurred, illustrating the fact that the QR

algorithm converge faster to the lowest eigenmode than to the highest.

The matrices after the 14th iteration become

[1.0000 —0.0000 —0.0000  0.0000
Quy — 00000 10000 0.0000 —0.0000
H 0 —0.0000 1.0000 —0.0000
0 0 0.0051  1.0000
[10.638 0.0003 —0.0000 0
- 0.0000 4.3735 —0.0000 —0.0008
H 0 0 1.3915  0.0077
L0 0 0 0.0965
0.1076 —0.4387 —0.4453
~0.2556 04167 —0.1244
P15 =P®14Quu = )
0.7283  0.0232  0.4894
—0.5620 —0.5170  0.5770
10.638  0.0001 0
0.0001  4.3735 —0.0000
B =K -
! 14Que 0 —0.0000 1.3915
0 0 0.0000

0.3126
0.4955
0.14791
0.2898

0
0

0.0000
0.0965

(6-86)
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Presuming that convergence has occurred after the 14th iteration the following solutions are obtained for the eigen-
values and eigenmodes of the original general eigenvalue problem

M 0 0 O 10.638 0 0 0
A=|0 Az 00 e 0 4.3735 0 0
0 0 A 0 0 0 1.3915 0

0 0 0 Xx 0 0 0 0.0965
0.1076 —0.4387 —0.4453

3= [ 33 8 3W] = &5 = —0.2556  0.4167 —0.1244
0.7283  0.0232  0.4894

—0.5620 -0.5170  0.5770

0.3126
0.4955
0.4791
0.2898

5

(6-87)

The reader should verify that the solution matrices within the indicated accuracy fulfill 8" M@® = Iand 7K ® =
A, where M and K are the mass and stiffness matrices given by (5-74). (6-87) agrees with the results (5-75), (5-

79), (5-81) and (5-82) in Example 5.6.
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6.6 EXxercises

6.1 Given a symmetric matrix K in a special eigenvalue problem.

(a.) Write a MATLAB program, which performs special Jacobi iteration.

6.2 Given the symmetric matrices M and K.

(a.) Write a MATLAB program, which performs general Jacobi iteration.

6.3 Given the following mass- and stiffness matrices defined in Exercise 4.2.

(a.) Perform an initial transformation to a special eigenvalue problem, and calculate the
eigenvalues and eigenvectors by means of standard Jacobi iteration.

(b.) Calculate the eigenvalues and normalized eigenvectors by means of general Jacobi
iteration operating on the original general eigenvalue problem.

6.4 Given the symmetric matrices M and K of dimension n > 3.

(a.) Write a MATLAB program, which performs a Householder reduction to three diago-
nal form.

6.5 Given the symmetric matrices M and K.
(a.) Write a MATLAB program, which performs QR iteration.

6.6 Consider the mass- and stiffness matrices defined in Exercise 4.2 after the transformation
to the special eigenvalue problem as performed in Exercise 6.3.

(a.) Calculate the eigenvalues and normalized eigenvectors by means of QR iteration.
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CHAPTER 7
SOLUTION OF LARGE EIGENVALUE

PROBLEMS

7.1 Introduction

In civil engineering large numerical models with n = 10° — 107 degrees of freedom have be-
come common practise along with the development of computer technology. However, most
natural and man made loads such as wind, waves, earthquakes and traffic have spectral contents
in the low frequency range. As a consequence only a relatively small number n; < n of the
lowest structural modes will contribute to the global structural dynamic response. In this chap-
ter methods will be discussed, which have been devised with this specific fact in mind.

Sections 7.2 and 7.3 deals with simultaneous inverse vector iteration and socalled subspace
iteration, respectively. In both cases a sequence of subspaces are defined, each of which are
spanned by a specific system of basis vectors. The idea is that these subspaces at the end of the
iteration process contains the n; lowest eigenmodes @), ®®@) . &) of the general eigen-
value problem (1-9). These eigenvalue problems may be assembled on the following matrix
form, cf. (1-14), (1-15), (1-16)

A O e 0
K[fli(” $e ... cI)(”l)] = 1\/[[(1)(1) H2 ... q,(m)] 0 Az -~ O il
0 0 o Dy
K®d =M>PA (7-1)
)\1 0 s 0
0 A --- 0
A= . . (7-2)
0 0 - Ay

By contrast to the formulation in Chapter 6 the modal matrix ® is no longer quadratic, but has
the dimension n x ny, defined as

— 157 —



158 Chapter 7 — SOLUTION OF LARGE EIGENVALUE PROBLEMS

&= [0 3D ... )] (7-3)

Fig. 7-1 Principle of subspace iteration.

The principle of iterating through a sequence of subspaces has been illustrated in Fig. 7-1. V;
denotes a start subspace, which is spanned by the start basis ®; — {(I'élj (I)gz) . The iteration
process passes through a sequence of subspaces Vi, V5, ..., where V}, is spanned by the basis
o, = {(I’g,l) @ﬁf)] At convergence, ®.. = [@2} (I)g))] = [®1 @] is spanning the limiting
subspace 1, containing the eigenmodes searched for.

Simultaneous inverse vector iteration is a generalization of the inverse vector iteration and in-
verse vector iteration with deflation described in Sections 5.2 and 5.5. The start vector basis
converges towards a basis made up of the wanted eigenmodes as shown in Fig, 7-1.

The subspace iteration method and socalled subspace iteration described in Section 7.2 is in
principle a sequence of Rayleigh-Ritz analyses, where the Ritz base vectors are forced to con-
verge to each of the eigenmodes. Consequently, if the start basis contains the n; eigenmodes
the subspace iteration converge in a single step as described in Section 7.2, which is generally
not the case for simultaneous inverse vector iteration. Being based on a convergence of a se-
quence of vector bases both methods are in fact subspace iteration methods, although this name
has been coined solely for the latter method. A more informative name for this method would
probably be Rayleigh-Ritz iteration.

Section 7.4 deals with characteristic polynomial iteration methods, which operates on the char-
acteristic equation (1-10). These methods form an alternative to inverse or forward vector it-
eration with deflation in case some specific eigenmode different from the smallest or largest is
searched for. To be numerical effective these methods require that the generalized eigenvalue
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problem has been reduced to a standard eigenvalue problem on three diagonal form, such as the
Householder reduction described in Section 6.4. Polynomial methods may be based either on
the numerical iteration of the characteristic polynomial directly, or based on a Sturm sequence
iteration. Even in the first mentioned case a Sturm sequence check should be performed after
the calculation to verify that the calculated n, eigenmodes are indeed the lowest.

It should be noticed that some problems in structural dynamics, such as acoustic transmission
and noise emission, are governed by high frequency structural response. Additional to the nu-
merical problems in calculating these modes, lack of accuracy of the underlying mechanical
models in the high-frequency range adds to the problems in using modal analysis in such high
frequency cases.

7.2 Simultaneous Inverse Vector Iteration

Let &y = @él) Q)f)g) e ‘I)S"“)] denote n; arbitrary linearly independent vectors, which span

an n; dimensional start subspace. Next, the algorithm for simultaneous inverse vector iteration
takes place according to the algorithm

Bpy=AD, , &=071,.. (7-4)

where A = K™'M, cf. (5-4). (7-4) is identical to the inverse vector iteration algorithm de-
scribed by (5-4). The only difference is that now n, vectors are simultaneous iterated.

At convergence the iterated base vectors obtained from (7-4) will span an n;-dimensional sub-
space containing the »n; lowest eigenmodes. However, due to the inherent properties of the
inverse vector iteration algorithm all the iterated base vectors tend to become mutually parallel,
and parallel to the lowest eigenmode &) Hence, the vector basis becomes more and more ill
conditioned. For the case shown on Fig. 7-1 this means that the subspace Vj, will converge to
the limit plane V..., but the iterated base vectors @fcl) and (IJE?) become more and more parallel.
In order to prevent this the method is combined with a Gram-Schmidt orthogonalization pro-
cedure. Similar to the QR factorization procedure described in Box 6.6 the iterated basis @H ]
can be written on the following factorized form

Ppi1 = PR (7-5)

where @, is an M-orthonormal basis in the iterated subspace, and Ry, is an upper triangular
matrix. Hence, ®,.,, and R, have the properties

@M:{@m @ ... WT\pY)

k41 S kg1’ k41 k+1 k1T 04 (7-6)
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i Tiz 713 Tiny
0 7o 723 Tany
Rk+l = 0 0 33 Tan, (7-'7)
|0 0 0 Tryny |
The M-orthonormal base vectors @, = 3! Y tI',(fH - <I’§€ +1) } spanning the iterated subspace

Vi+1, as well as the components of the triangular matrix R, are determined sequentially
in much the same way as the determination of the matrices Q and R in the QR factorization
described by (6-66) - (6-69). At first, it is noticed that (7-5) is identical to the following relations

£ (1)

Bil= Tli@kﬂ

= (2 2
‘I’:(CL = 1'"12'1)1£c+1 S ?"22'I)§c-|)-1

B0 (7-8)

LY Rl RS |
=1

= () (1) (2)
A Sl =1 ®y)y + Py s 5 ’JJ@R-H

]

(1L1 (2)
D= E rmz¢'k+1

(7-8) is solved sequennally downwards using the M-orthonormality of the already determined
base vectors & P H The details of the derivation has been given in Box 7.1.

\

After convergence the eigenvalues are obtained from the Rayleigh quotients evaluated with the
calculated eigenvectors, cf. (4-25). Since each of the n; eigenmodes have been normalized to
unit modal mass the quotients become

Y =0WTKeY | j=1...m (7-9)
The Rayleigh quotients in {7-9) may be assembled in the following matrix equation
A=®TKdD (7-10)
where
A 0 - 0
0 A 0
A = ) .2 ' ‘I’ — [@(1) @ (P(“J)] — @w (7_1 ])
0 0 T




7.2 Simultaneous Inverse Vector lteration 161

The upper triangular matrix Ry, converges towards the diagonal matrix A~!. Although the

Rayleigh quotients (7-10) provides more accurate estimates, the eigenvalues may then as an
alternative be retrieved from

A=RZ (7-12)

(7-12) follows from the following relations fulfilled at convergence

K&, =Md, =
K®, R, = M®,, =
K&, = M®, R (7-13)
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Box 7.1: M-orthonormalization of iterated basis

Evaluating the modal mass on both sides of the 1st equation of (10-8) provides
_ i .
=8 = o= 8l (7-14)

where the norm || ®(, || represents the square root of the modal mass of ®}.), defined as

1
H(I)EcﬂH = (‘I)k:sz(I)gl-kl) ’ (7-15)

Now, (Iifclll and ry; are known. Scalar pre-multiplication of the 2nd equation

with (IJRI_HT M, and use of the orthonormality properties @LIQTM@L?I = 0 and
(I’E:_ITMQHI = 1, provides

nT 2 2)
T = ‘I’ngl M‘I’Lﬁ = tm= ”@LH T12@A+IH =

1 /-
2, = — (2% —raoll) (7-16)

At the determination of ®Y s + 1» 1 < j < ny, the mutually ortonormal basis vectors
cﬁ(l q)(?)

k410 Tkl
jth equatlon with 'I’Hl M, i = 1,2,...,5 — 1, and use of the orthogonality property
@E:H I\;Ié[l'k+l = () provides

@E +11 have already been determined. Scalar pre-multiplication of the

1
(1)
(I).‘.+I Tij ®k+1
i=1

(I’J(JL: ( k41 ZTU L+1) (7-17)

=3I TMaW

k+1 k41 =

=

It is characteristic for simultaneous inverse vector method in contrast to the subspace iteration
method described in Section 7.3, that eigenmodes which at one level of the iteration process
is contained in the iterated subspace, may move out of the iterated subspace at later levels as
illustrated in Example 7.1.
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Box 7.2: Simultaneous inverse vector iteration algorithm

Given the n,-dimensional start vector basis ®y = [@E,l) @éz) e (I*é”l) . The base vectors

must be linearly independent, but need not be normalized to unit modal mass. Repeat the
following items for £ = 0,1, . ..

1. Perform simultaneous inverse vector iteration:
ék-‘rl =Ad, , A= KM

2. Perform Gram-Schmidt orthogonalization to obtain a new M-orthonormal iterated
vector basis ®,., as explained by (7-14) - (7-17) corresponding to the factorization:

D1 = P Ris

After convergence has been achieved the eigenvalues and eigenmodes normalized to unit
modal mass are obtained from:

B D o B
A=|. 7 | =9LK®.,=Ry , @=[eVe®..eMm] -9,
0 S /\n1

As for all kind of inverse vector iteration methods the convergence rate of the iteration vector is
linear in the quantity

/\\l )\2 Am
r1 = max (;\_2" s _Anm) (7-18)

Correspondingly, the Rayleigh quotients (7-9) have quadratic convergence rate 75 = r2.

The simultaneous inverse vector iteration algorithm always converge towards the lowest n,
eigenmodes. Hence, no Sturm sequence check is needed to ensure that these modes have in-
deed been calculated. Further, the rate of convergence seems to be comparable for all modes
contained in the subspace, as demonstrated in Example 7.1 below.

The simultaneous inverse vector iteration algorithm may be summarized as indicated in Box
T2
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Example 7.1: Simultaneous inverse vector iteration

Consider the generalized eigenvalue problem defined in Example 1.4. Calculate the two lowest eigenmodes and
corresponding eigenvalues by simultaneous inverse vector iteration with the start vector basis

B = [@g%gﬂ - (7-19)

B = O
[en BN ol v

The matrix A becomes, cf. (6-44)

-1

2 -1 0 3 00 0.2017 0.1667 0.0417
A=K"M=|-1 4 -1 0 1 0| =00833 0.3333 0.0833 (7-20)
0 -1 2 00 3 0.0417 0.1667 0.2917

Then, the 1st iterated vector basis becomes, cf. (7-4)

02917 0.1667 0.0417] [0 2] [0.2500 0.7500
&, = [8" &(%| = A® = |0.0833 03333 0.0833| [1 1| =[0.5000 0.5000 (7-21)
0.0417 0.1667 02917] |2 0| |0.7500 0.2500

At the determination of @51) and 711 in the 1st vector iteration the following calculations are performed, cf. (7-14)

T
0.2500 0.2500

10 o] [0.2500
®(" = |05000| ., ruu=[&{"||=| [05000] [0 1 o] |os000| [ =0.7500
0.7500 0.7500] [0 0 ! [0.7500
(7-22)
, |o-2s00 0.3333
é(llz——- = 66
i = 5eop |0-5000 0.6667
| 0.7500 1.0000
@&2) and 72, 722 are determined from the following calculations, cf. (7-16)
( © a1 17 4
0.7500 0.3333] [+ 0 o] [0.7500
3% = 05000 . m2=|06667| [0 1 0| |0.5000| =0.5833
0.2500 1.0000] [0 0 i 0.2500
[0.7500] 0.3333
22 = || [ 0.5000] —0.5833 [0.6667||| = 0.4714 (7-23)
02500, 1.0000
0.7500 [0.3333 1.1785
(= —— | |0.5000| —0.5833- [0.6667| | = | 0.2357
' 0.2500 | 1.0000 ~0.7071
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Then, at the end of the st iteration the following matrices are obtained
i [0.7500 0.5833
R, =
0 0.4714
) i 7-24
0.3333 1.1785 ( )
P, = [0.6667  0.2357
1.0000 —0.7071

The reader should verify that ®;R; = ®,. The corresponding matrices after the 2nd and 3rd iteration become

R, =

Py

Rs

[0.4787
0

[0.5222
0.6963
0.8704

0.4943
0

0.6163
0.7043
0.7924

0.1231

0.2611

7-25

1.1078 (72
0.1231

~0.8616

0.0650
0.2529
7-26
1.0583 ( )
0.0623
~0.9339

Convergence of the eigenmodes with the indicated number of digits were achieved after 14 iterations, where

Ry =

&y =

[0.5000
0

[0.7071
0.7071
07071

0.0000

0.2500

1.0000 =
0.0000

—1.0000

Presuming that convergence has occurred after the 14th iteration the following eigenvalues are obtained from
(7-10) and (7-12)

A= [’\‘
0

= (20 8] = @y = |0.7071

0
2

2.0000 ~0.0000
=B Kdiy =R 1=
,\] R [—u.onoo 4.0000}
0.7071  1.0000 (7-28)
0.0000
0.7071 —1.0000




166 Chapter 7 - SOLUTION OF LARGE EIGENVALUE PROBLEMS

A3 = 6, see (1-87). Then, the convergencerate of the iteration vectors becomes 7, = max (;—;, %) =max (%,3) =
%, cf. (7-17). This is a relatively large number, which is displayed in the rather slow convergence of the iterative
process. The convergence towards &) and (%) occurred within the same iteration step. This suggests that the

convergence rate is uniform to all considered modes in the subspace.

Further it is noted that

= |1 0 2
m_ V2 _ V2 V2 T Y2 s, V2 o
£ 2 1 4 ; Ty é g Pt %

- (7-29)
1 0 2
1 1 1

o= | gl =—z- 1|4z (1| =-z 204 = 0

~1 2] 0

Hence, the st and 2nd eigenmode are originally in the subspace spanned by the basis ®,. As seen during the
iteration process these eigenmodes are moving out of the iterated subspace.

7.3 Subspace lteration

As is the case for the simultaneous inverse vector iteration algorithm the subspace iteration algo-
rithm presumes that a start subspace 14, spanned by the vector basis ®, = [@én 113((]2) e <I>g”)} 5
has been defined.

At the kth iteration step of the iteration process a vector basis &, = [Q)S) (I),,(f) e CI)S”)],

which spans the iterated subspace Vj, has been obtained. Based on this a simultaneous inverse
vector iteration is performed

1 =A®, . k=0,1,... (7-30)
where A = K~!M, cf. (5-4). Next, a Rayleigh-Ritz analysis is performed using ®,; as a
Ritz basis, in order to obtain approximate solutions to the lowest n; eigenmodes and eigenval-

ues. This requires the solution of the following reduced generalized eigenvalue problem of the
dimension n, cf. (1-14), (4-49)

Ki1Qrp1 = M1 Qe Ren . E=0,1,... (7-31)

M4, and K, denote the mass and stiffness matrices projected on the subspace Vjyq, cf.
(4-45)
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Mk-!—l = (i)z+11\’1'i’k+l
) o (7-32)
Kii1 = 1 K®Ppis

Qg = {qmlqﬁzl . qgﬂ} of the dimension n; x n; contains the eigenvectors of the eigen-

value problem (7-31). In what follows the eigenvectors qgfll are assumed to normalized to unit
modal mass with respect to the projected mass matrix, i.e.

r— A 0, i#]
s Mengl); = (7-33)
1, i=j
R+ 1s a diagonal matrix containing the corresponding eigenvalues of (7-30) in the main diag-
onal

L
0 . e 0
Ry = | . oo ™ (7-34)
; { : 0
0 0 Py k41
The eigenvalues p;x41, 7 = 1,...,n; indicates the estimate of the eigenvalues after the kth

iteration. These are all upperbounds to the corresponding eigenvalues of the full problem, cf.
(4-57).

At the end of the kth iteration step a new estimate of the lowest n; eigenvectors are determined
from, cf. (4-51)

D1 = D1 Qra (+-35)

If the column vectors in Q41 have been normalized to unit modal mass with respect to Mk+1,
the M-orthogonal column vectors of ®,.,; will automatically be normalized to unit modal mass
with respect to M, cf, (4-55).

Next, the calculations in (7-30) - (7-35) are repeated with the new estimate of the normalized
eigenmodes @ .

At convergence of the subspace iteration algorithm the lowest 7; eigenvectors and eigenvalues
are retrieved from

A 0 0
; 0 A 0
& =[eVa?...0M] =5, a0 % o R, =+Q., (7-36)
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At convergence, Q.. can be shown to be a diagonal matrix, where the numerical value of the
components are equal to the eigenvalue of the original problem as indicated in (7-36).

It should be realized that subspace iteration involves iteration at two levels. Primary, a global
simultaneous inverse vector iteration loop as defined by the index & is performed. Inside this
loop a secondary iteration process is performed at the solution of the eigenvalue problem (7-31).
Usually, the latter problem is solved iteratively by means of a general Jacobi iteration algorithm
as described in Section 6.3. Because the applied similarity transformations in the general Jacobi
algorithm are not orthonormal, the eigenvectors qi‘? ) are not normalized to unit modal mass at
convergence. Hence, in order to fulfill the requirements (7-33) this normalization should be
performed after convergence. Further, the eigenvalues will not be ordered in ascending order of

magnitude as presumed in (7-36), cf. Box 6.4.

The convergence rate for the components in the kth eigenmode and the kth eigenvalue, r; x and
T2 i, are defined as

A
Tk = d
/\"n.]+l
/\2 k=1,...,m (7-37)
k 2
T2k = =T
’ )\TZLH-I -

Hence, convergence is achieved at first for the lowest mode and latest for mode k = n,, as
has been demonstrated in Example 7.2 below. This represents a marked difference from simul-
taneous inverse vector iteration, where as mentioned the convergence rate seems to be almost
identical for all modes contained in the subspace. A rule of thumb says that approximately 10
subspace iterations are needed to obtain a solution for the components of ®!) with 6 correct
digits.
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Box 7.3: Subspace iteration algorithm

Given the n,-dimensional start vector basis ®, = [®" &7 - -- ®{™]. The base vectors
must be linearly independent, but the base vectors need not be normalized to unit modal
mass. Repeat the following items for £ = 0,1, ...

1. Perform simultaneous inverse vector iteration:
T = ADE , A=K*M

2. Calculate projected mass and stiffness matrices:
NIk-«-l = ‘i)g_,_lM‘i’kH ) f{kﬂ = (-TE’{HK‘i'kH

3. Solve the generalized eigenvalue problem of dimension n; by means of a general
Jacobi iteration algorithm with the eigenvectors Q. normalized to unit modal mass
at exit;

Ki1Qri1 = My Qui Ries
4. Calculate new solution to eigenvectors:
Ppi1 = Brp1 Qisr

After convergence has been achieved the eigenvalues and eigenmodes normalized to unit
modal mass are obtained from:

A0 0

g e 0
A=V YR cuq, | = [@0aR . 0] =g,

0 U /\‘nl

Finally, a Sturm sequence check should be performed to ensure that the lowest n; eigen-
pairs have been calculated.

In order to speed up the iteration process towards the n; modes actually wanted, the dimension
of the iterated subspace is sometimes increased to ny > n,. Then, the convergence rate of the
iteration vector the highest mode of interest decreases to

)\TI
Mg & 7 L (7-38)

In case of an adverse choice of the start basis vector @ it may happen that one of the eigen-
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modes searched for, &%), j = 1,...,n;, is M-orthogonal to start subspace, i.e.

qg,(j)Tl\,Iq)é”“) =0 , k=1,2,...,m (7-39)
In this case the subspace iteration algorithm converges towards the eigenmodes @, . .. U1
eU+D @) $+D) In principle a similar problem occurs in simultaneous inverse vector

iteration, although round-off errors normally eliminates this possibility.

Singular to subspace iteration is that eigenmodes contained in the initial basis ® remain in
later iterated bases. Hence, if ®) J =mn1+1,...,nis contained in Py, this mode will be
among the calculated modes.

In both cases we are left with the problem to decide whether the calculated n; eigenmodes
are the lowest n; modes of the full system. For this reason a subspace iteration should always
be followed by a Sturm sequence check. This is performed in the following way. Let u be a
number slightly larger than the largest calculated eigenvalue p,,, ., and perform the following
Gauss factorization of the matrix K — ;M

K — uM = LDLY (7-40)

where L and D are given by (3-2), (3-3). The number of eigenvalue less than p is equal
to the number of negative elements in the diagonal of the diagonal matrix D, c¢f. Section
3.1. Hence, the analysis should show exactly n; negative elements in D. Alternatively, the
same information may be withdrawn from the number of sign changes in the sign sequence
sign (P (1)), sign(P"=Y (), . .., sign(P®(n)), where PO (y), ..., PO(u) denotes the
Sturm sequence of characteristic polynomials, and P (1) is a dummy positive component in
the sequence, cf. Section 3.2.

The marked difference between the subspace iteration algorithm and the simultaneous inverse
vector iteration algorithm is that the orthonormalization process to prevent ill-conditioning of
the iterated vector base in the former case is performed by an eigenvector approach related to
the Rayleigh-Ritz analysis, whereas a Gram-Schmidt orthogonalization procedure is used in the
latter case. There are no marked difference in the rate of convergence of the two algorithms.

Example 7.2: Subspace iteration

The generalized eigenvalue problem defined in Example 6.2 is considered again. Using the same initial start basis
(7-19) as in Example 7.1, the problem is solved in this example by means of subspace iteration.

At the st iteration step (k = 0) the simultaneous inverse vector iteration produces the vector basis @1, which is
unchanged given by (7-21).

Based on @ the following projected mass and stiffness matrices are calculated, cf. (4-45), (7-21), (7-32)
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0.2500 0.7500] [1 0 0] [0.2500 0.7500
B o ' ‘ 2 ' ' 0.5625 0.4375
M1=‘I’?M‘1’1: 0.5000 0.5000 0 1 0f |0.5000 0.5000| = [04375 05625}
0.7500 0.2500 0 0 % 0.7500 0.2500 ‘ '
0.2500 0.7500 g 2 1 0 10.2500 0.7500
S — ' ' a ' ' 1.2500 0.7500
K1:‘§?K‘I’1= 0.5000 0.5000 =] 4 —1| {0.5000 0.5000 {07500 12500:{
0.7500 0.2500 0 —1 21 10.7500 0.2500 ’ ’ J
(7-41)
The corresponding eigenvalue problem (7-31) becomes
K:Q: =M Q:R; =
1.2500 0.7500 [m (2)]: 0.5625 0.4375 [(1) {2)] pa O
0.7500 1.2500( L0 * 0.4375 0.5625| L+ ** 0 paa
V2
2 0 )\1 0 T -2
R = = y = 7—42
. {0 4} [0 AJ . [“f 2 =2
The estimate of the lowest eigenvectors after the st iteration becomes, cf. (7-35)
0.2500 0.7500| ryz ¥z -l
@y =&:Q: = [0.5000 0.5000 {ji }: 2 | =[2W 8@ (7-43)
0.7500 0.2500| LT 2 2 9

(7-42) and (7-43) indicate the exact eigenvalues and eigenmodes, ¢f. (1-87). Hence, convergence is obtained in just
asingle iteration. This is so because the start subspace V4, spanned by the vector basis ® contains the eigenmodes
@) and &2 as shown by (7-29). This property is singular to the subspace iteration algorithm compared to the
simultaneous inverse vector iteration technique.

Next, let us perform the same calculations using the start basis

1 -1
oo =[a 8] = |2 2 (7-44)
3 =3
The simultaneous inverse vector iteration (7-30) provides, ¢f. (7-20)
0.2917 0.1667 0.0417] |1 -1 0.7500 —0.0833
@, = APy = (0.0833 0.3333 0.0833| |2 2| = |1.0000  0.3333 (7-45)
0.0417 0.1667 0.2917] [3 -3 1.2500 —0.5833

The projected mass and stiffness matrices become
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0.7500 —0.0833 e 0 0 |0.7500 -0.0833
. . v 2 ' e 2.0625 —0.0625
M; = [1.0000 0.3333 0 1 0] [1.0000 0.3333 {D 0635 0 2847J
1.2500 —0.5833 0 0 % 1.2500 —0.5833 ' '
b (7-46)
T
! -0. 2 -1 7500 0.
i 0.7500 —0.0833 0| 10.750 0.0833 42500 —0.2500
K, = |1.0000 0.3333 -1 4 —1 1.0000 0.3333 02500 1.5833
1.2500 —0.5833 0 -1 2 1.2500 —0.5833 ' ' )
The solution of the corresponding generalized eigenvalue problem (7-31) becomes
2.0534 0 -0.6982 —0.0254
R, = , Qi = (7-47)
0 5.0656 -0.0851 —-1.8784
The estimate of the lowest eigenmode after the 1st iteration becomes, cf. (7-35)
= —0.5165 0.1375
= Uit ol —0.6982 —0.02564
P, = P$;Q; = |1.0000 0.3333 0.0851 1.8784 = |-0.7265 -0.6516 (7-48)
1.2500 —0.5833 ' ' —0.8231  1.0640
Correspondingly, after the 2nd, 7th and 14th iteration steps the following matrices are calculated
[2.01 ~2.0171  0.1513
R = 0118 0 . B 0 0.15
0 5.2263 —0.0887 —5.3145
; (7-49)
0.6195 0.0821
®, = |0.7241 0.5686
0.7535 —1.1604
(20000 0 ~2.0000  0.0011
R; = B Qr =
0 4.0533 —0.0007 —-4.0661
’ (7-50)
—0.7067 -0.8711
®; = |-0.7074 -0.1155
b—[].?()69 1.1020 )
—2.0000 0 —2.0000 0.0000
Ry = Qu=
0 4.0002 —0.0000 -4.0002
- (7-51)
0.7071 0.9931
P14 = |0.7071 0.0068
10.7071 ~1.0068
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As seen the subspace iteration process determines the 1st eigenvalue and eigenvector after 7 iteration, whereas the
2nd eigenvector has not yet been calculated with the sufficiently accuracy even after 14 iterations. By contrast
the simultaneous inverse vector iteration managed to achieve convergence for this quantity after 14 iterations, see
(7-27).

The 2nd calculated eigenvalue becomes p3 14 = 4.0002. Then, let ;x = 4.05 and perform a Gauss factorization of
the matrix K — 4.06M, i.e.

—0.0250 -1.0000  0.0000
K —-4.05M = | -1.0000 -0.0500 -1.0000| =
0.0000 -1.0000 -0.0250

1 0 o] [-0.0250 0 0 1 40 0
LDLT = |40 1 0 0 39.950 0 0 1 -0.0250 (7-52)
0 -0.0250 1 0 0 -0.0500| [0 0 1

It follows that two components in the main diagonal of D are negative, from which is concluded that two eigen-
values are smaller than g = 4.05. In turn this means that the two eigensolutions obtained by (7-47) are indeed the
lowest two eigensolutions of the original system.

Finally, consider the start vector basis

0 2
@n=[q>gl)¢§f)]: A -1 (7-53)
2 0
Now,
L L 9F L
1 L 00 0
/3 P
eMTMa’ = 2= 11| [0 1 of |-1f =0
1] [0 0 1| | 2
(7-54)
117 [t o o] [ 2]
2 2
WWM@’S”Z% 1| [0 1 o] |-1]| =0
1] [0 0 %] | 0Of J

It follows that the lowest eigenmode @ (%) is M-orthogonal to the selected start vector basis. Hence, it should be
expected that the algorithm converges towards ®(?) and &) Moreover, in the present three dimensional case a
start subspace, which is M-orthogonal to ®*), must contain ®(?) and ®). Actually, cf. (1-87)

4] 1 0] i “ 1 1
e®=| ol =—5-|-1|+5 |-1|=-5-8" +5 2
1 2] 0
_ (7-55)
1 0 s
- /2 V2 /2 V2 V2
é(‘i)““\’? -1 ZT -1 +% -1 '_T @((}1)4'?'@(()2)
1 2
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Hence, convergence towards &) and &) should take place in a single iteration step. Actually, after the st
subspace iteration the following matrices are calculated

r 3
4 0 —2.0000 -2.1213
R = y Q=
0 6 —2.0000 -2.1213

= 7-56
1.0000 -0.7071 ( ( )

&= 00000 0.7071
|~1.0000 —0.7071 )

The 2nd calculated eigenvalue becomes pp 1 = 6. In order to check whether pa 1 = Ag or pa1 = Az we choose
i = 6.05, and perform a Gauss factorization of the matrix K — 6.05M, i.e.

—1.0250 -1.0000  0.0000
K —-6.05M= | —-1.0000 -2.0500 -1.0000| =
0.0000 -1.0000 -1.0250

1 0 0| | —1.0250 0 0 1 0.9756 0
LDL" = |0.9756 1 0 0 —-1.0744 0 0 il 0.9308 (7-57)
0 0.9308 1 0 0 —0.0942| |0 0 1

It follows that three components in the main diagonal of D are negative, from which is concluded that the largest of
the two calculated eigenvalues must be equal to the largest eigenvalue of the original system, i.e. pa 1 = Ag. Still,
we do not know whether py 1 = Ay or py,1 = Ag. In order to investigate this another calculation is performed with
p = 4.05. The Gauss factorization of the matrix K — 4.05M has already been performed as indicated by (7-52).
Since this result shows that two eigenvalues exist, which are smaller than j» = 4.05, p;; = 4 must be the largest
of these, and hence the 2nd eigenvalue of the original system.

7.4 Characteristic Polynomial Iteration

In this section it is assumed that the stiffness and mass matrices have been reduced to a three
diagonal form through a series of similarity transformations as explained in Section 6.4, corre-
sponding to, cf. (6-32)

[ai B 0 - 0 0 ]
‘:31 g Jz o 0 0
K=|, 7% 7 (7-58)
0 0 0 SR 2 f3n—l
0 0 0 oy o,
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Y1 51 0 0 0
& 2 by 0 0
0 8 =~ --- 0 0
M= | BT (7-59)
0 0 0 * Yp—1 On-1
L O 0 0 6n—l Tn

The Helmholz reduction in Section 6.4 results in M = I. The slightly more general case,
where M is three diagonal has been assumed in what follows. In principle polynomial iteration
methods works equally well on fully populated stiffness and mass matrices. However, the com-
putational efforts become too extensive to make them competitive in this case.

Now, the characteristic equation of the generalized eigenvalue problem can be written in the
following form, cf. (1-10)

P(x) = PO(x) = det (K - AM) _

(61 — Dy By — Ad 0 0 0
[3'1 - )\61 g — )\",2 ﬁg - )\(52 e 0 0
P 0 Po— Ay a3 —Ayy - 0 0
dcet . . . ] . ; =
U 0 D e Oy — /‘\/Yﬂ.—l ﬁn—l - }\(5”’71
L 0 0 0 w5 Pyeed ~ Mgpst iy ~ AV
(Ofn - )\’:"n) ' P(l)(/\) - (/31%1 - )‘611.—1)2 : P(z)()\) (7_60)

The last statement in (7-60) is obtained by expanding the determinant after the components in
the last row. PM{)\) and P®()) denote the characteristic polynomials obtained by omitting
the last row and column, and the last two rows and columns in the matrix K — AM, respec-
tively, cf. (3-26). The validity of the result (7-60) has been demonstrated for a 4-dimensional
case in Example 7.3. In turn, P{V()\) may be expressed in terms of P®)()) and P@)()\) by a
similar expression. Actually, the complete Sturm sequence of characteristic polynomials may
be calculated recursively from the algorithm
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Pe=D()) = (e — M)
PO-D0) = (a1 = dm) (a2 = Ma) — (6 = 28)°

PO=™(2) = (@ — M) + PP (A) = (Bt = Afpo1)” - PO () m=3.4,...

(7-61)

The effectiveness of characteristic polynomial iteration methods for matrices on three diagonal
form relies on the result (7-61).

Assume that the jth eigensolution (A;, ®U)) is wanted. At first one needs to determine two
figures 49 and y, fulfilling A;_; < o < Aj < gy < Aj41. This is done based on the sequence of
signs sign(P™ (u)),sign(P"1(u)),...,sign(PM()), sign(P® (1)), in which the number
of sign changes indicates the total number of eigenvalues smaller than j, and where P (1) is
a dummy positive figure, cf. Section 3.2.

Below, on Fig. 7-2 are marked two points p_; and ux on the A-axis in the vicinity of the
eigenvalue searched for, which is A; in the illustrated case. The values of the characteristic
polynomial in these points, P (1) and P(j), may easily be calculated by means of (7-61)
(notice that P(y) = P®(u)). The line through the points (px—1, P(pur—1)) and (px, P(ur))
has the equation

y(N) = P(m) + (Plm) — P(ukl))ﬁ (7-62)
P(X)
() = P(u) + (P(n) - Plin—)) 22
A T R
e e N\ TS~ ey

Fig. 7-2 Secant iteration of characteristic equation towards A;.

The line defined by (7-62) intersects the A-axis at the point y.,. It is clear that this point will be
closer to A; than both p;_; and pi;. The intersection point of the line with the A-axis is obtained
as the solution to the equation y(A) = y(ur+1) = 0, which is given as

Hht+1 = [ — Plu)
' P(ur) — P(w-1

) (ILA: = f"k—l) (7-63)

Next, the iteration index is raised to k + 1, and a new intersection point ;. is obtained. The
sequence fu. p1, o, . - . converges relatively fast to the eigenvalue A; as demonstrated below in
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Example 7.4.

are performed

Pux)

G) — 20
(I) Ve TN S

Rl = BE = Bl —Plue_1)

)\j,]_ < Mg < )\j < 1 < Aj+1

Box 7.4: Characteristic polynomial iteration algorithm

(.uk- - Jukfl)

4. Normalize the eigenmode to unit modal mass:

In order to calculate the jth eigenvalue ); and the jth eigenvector @) the following items

1. Based on the sequence of signs sign(P™ (), sign(P™=D(n)), ..., sign(P® (u)),
sign (PO (p)) of the Sturm sequence of characteristic polynomials determine two
figures pg and p fulfilling the inequalities:

2. Perform secant iteration in search for A; = i, according to the algorithm:

3. Determine the unnormalized eigenmode @) from the algorithm (7-65).

Alternatively, the eigenvalue A; may be determined by means of Sturm sequence check, where
the interval ]uo, ¢41] 1s increasingly narrowed around the eigenvalue A; by bisection of the pre-
vious interval. This algorithm, which is merely telescope method described in Section 6.2, will
generally converge much slower than the secant iteration algorithm.

Finally, the components [(I)ij Vo Y| of the eigenmode @) are determined as non-

trivial solutions to the linear equations

(K-aM)ed =0 =

_”fl - )\j“;l o — Ay

= Az01
0 0
0 0

0

Qg — )\_;,"'}2 /32 — /\jdg
0 ,132 e )\J‘(SQ Vg — )\j'}g

0
0]

0
0
0

Op—1 — )\j"}/n.—l .ﬁn—l - }\jdn—l

i-}n——l - Ajd-'.n,-l

0
0
0

iy, — >‘j In

[ (I)gj )] K(Jﬁ
(I)g) 0
| o
o |0

oY o
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Let 0) = [, 8, ... Y] denote the eigenmode with components arbitrarily normalized.
Setting (TJ? ) =1 the equations (7-64) may be solved recursively from above by the following
algorithm

Y = 1

. B — Ay

- ~ X: - —

@éﬂ):-ﬂl AL . AL y (7-65)

I — Ajda o I — Ajda

Y — B2~ Ajdm—a pif) Sl )‘J'“’m'lti)g)_l ., m=4,....n
B —Ajm-id Bm-1 = Ajm—i J

Hence, the determination of the components of the vector @) is almost free. Obvious, the
indicated algorithm breaks down, if any of the denominators 3,,_; — A;0,,—; = 0. This means
that the algorithm should be extended with alternatives to deal with such exceptions.

Finally, the eigenmode &'/ should be normalized to unit modal mass as follows

j
Bl - — 7-66
= _ (7-66)

Example 7.3: Evaluation of determinant

The determinant of the following matrix on a three diagonal form of the dimension 4 x 4 is wanted

(851 ﬂ'l 0 0

K |B @ B 0 (7-67)
0 dz 13 [7‘3
0 0 ;63 [a %]
Expansion of the determinant after the components in the 4th row provides
ap G 0 a;r 5 O
det (K):P(°)=a4-det g1 e 3 —Bs-det| [3 a2 O =
0 B2 a3 0 32 s
ag 31 0 3
ag-det | |8 a2 B ﬁg.det([f:‘ ‘1D=a4.P<”__d§.P(?) (7-68)
Moo

0 G aj

(7-68) has the same recursive structure as described by (7-60).




7.4 Characteristic Polynomial Iteration 179

Example 7.4: Characteristic polynomial iteration

The generalized eigenvalue problem defined in Example 1.4 is considered again. Calculate the 3rd eigenvalue by
secant iteration on the characteristic polynomial, and next determine the corresponding eigenvector.

At first a calculation with i« = 2.5 is performed, which produces the following results
0.7500 —1.0000  0.0000 1

K-25M= [-1.0000 1.5000 -1.0000 =
0.0000 -1.0000  0.7500

P®(25)=1 , sign(P®(2.5) =+ ¢ (7-69)
P (2.5) = 0.7500 , sign(P@(2.5)) = +
P1(2.5) = 0.7500 - 1.5000 — (-1)? = 0.1250 , sign(PM(2.5)) = +
P©(2.5) = 0.7500 - 0.1250 — (=1)? - 0.7500 = —0.6563 , sign(P'?(2.5)) = -

Hence, the sign sequence of the Sturm sequence becomes + + +—. One sign change occurs in this sequence from
which is concluded that the lowest eigenvalue A; is smaller than j = 2.5.

Next, a calculation with j = 5.5 is performed, which provided the results
—0.7500 —1.0000  0.0000

K-55M= |-1.0000 —1.5000 -1.0000 =
0.0000 —1.0000 -0.7500

P®)(5.5) = . sign(P®)(5.5)) = + (7-70)
PP(5.5) = —0.7500 , sign(PP(5.5)) = -
PN (5.5) = (—0.7500) - ( — 1.5000) — (—1)* = 0.1250 ., sign(PM(5.5)) = +
P(5.5) = (—0.7500) - 0.1250 — (—1)*- (—0.7500) = 0.6563 , sign(P”(5.5)) = +

Now, the sign sequence of the Sturm sequence becomes + — 4+, in which two sign changes occur, from which is
concluded that the lowest two eigenvalues Ay and A; are both smaller than p = 5.5.

Finally a calculation with u = 6.5 is performed, which provided the results
~1.2500 —1.0000  0.0000 )

K —-65M= |-1.0000 —2.5000 -1.0000 =
0.0000 —1.0000 -1.2500

P (6.5) = , sign(PEN6.5) =+ ¢ (-7
P3)(6.5) = —1.2500 , sign(P?(6.5) = -
P (6.5) = (—1.2500) - ( — 2.5000) — (—1)? = 2.1250 . sign(PY(6.5)) = +
P)(6.5) = (—1.2500) - 2.1250 — (-1)? - (—1.2500) = —1.4063 , sign(P9(6.5)) = —

In this case the sign sequence of the Sturm sequence becomes + — +—, corresponding to three sign changes.
Hence, it is concluded that all three eigenvalues A1, As and Az are smaller than = 6.5.
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From the Sturm sequence checks it is concluded that Az < 5.5 < A3 < 6.5. Then, we may use the following start
values, o = 5.5 and 1 = 6.5, in the secant iteration algorithm. Moreover P(5.5) = P (5.5) = 0.6563 and
P(6.5) = P{9)(6.5) = —1.4063, cf. (7-70) and (7-71). Then, from (7-61) it follows for k = 1

(—1.4063)

fa =05 (—1.4063) — 0.6563

(6.5 — 5.5) = 5.8182 (1-72)

Next, P(p2) = P(5.8182) = 0.3156 is calculated by means of the algorithm (7-61), and a new value u3 can be
obtained from

0.3156
0.3156 — (—1.4063)

pz = 5.8182 — (5.8182 — 6.5) = 5.9431 (7-73)

During the next 5 iterations the following results were obtained

pq = 6.00900500472288
fs = 5.99960498912941
te = 5.99999734553262 (7-74)
w7 = 6.00000000078659
pg = 6.00000000000000

As seen the convergence of the secant iteration algorithm is very fast.

The linear equation (7-64) attains the form
(K - 6.0000M)<i:<3> =0 =
(3
-1 -1 o] [P

0
=1 =8 =1| |8 = |5 (7-75)
0 -1 -1 |8P 0

g',(a)ﬁ_i__l). s 2

e IR I (7-76)
Y Gt VN ) BPPIN

b = - 1- o (D =1 |

Normalization to unit modal mass provides, cf. (1-87)

1
. 2
33 — %; -1 (7-77)
1
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7.5 Exercises

7.1 Given the following mass- and stiffness matrices defined in Exercise 4.2.

(a.) Calculate the two lowest eigenmodes and corresponding eigenvalues by simultaneous
inverse vector iteration with the start vector basis

11
& =[@"&P] = |1 o
1 =]

7.2 Given the symmetric matrices M and K of dimension n.

(a.) Write a MATLAB program, which for given start basis performs simultaneous inverse
vector iteration for the determination of the lowest n; eigenmodes and eigenvalues.

7.3 Consider the general eigenvalue problem in Exercise 4.2.

(a.) Calculate the two lowest eigenmodes and corresponding eigenvalues by subspace it-
eration using the same start basis as in Exercise 7.1.

7.4 Given the symmetric matrices M and K of dimension 7.

(a.) Write a MATLAB program, which for given start basis performs subspace iteration
for the determination of the lowest n; eigenmodes and eigenvalues.

7.5 Consider the general eigenvalue problem in Exercise 4.2.

(a.) Calculate the 3rd eigenmode and eigenvalue by Sturm sequence iteration (telescope
method).

7.6 Given the symmetric matrices M and K of dimension n on three diagonal form.

(a.) Write a MATLAB program, which performs Sturm sequence check and secant iter-
ation iteration for the determination of the jth eigenvalue, and next determines the
corresponding eigenvector.
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_ APPENDIX A
Solutions to Exercises

A.1 Exercise 1.1

Given the following mass- and stiffness matrices

100 2 -1 0
M=10 2 0 K=|-1 20
00 3 0 03

1. Calculate the eigenvalues and eigenmodes normalized to unit modal mass.

2. Determine two vectors that are M-orthonormal, but are not eigenmodes.

SOLUTIONS:
Question 1.

The generalized eigenvalue problem (1-9) becomes

=¥y =i 0 ol 0
-1 $-% 0 o’ | = |0
0 0 3-1x] |ef 0

M

2)

Upon evaluating the determinant of the coefficient matrix after the 3rd row, the characteristic equation

(1-10) becomes

=X  ~1 0
P(A) = PO = det ~1 2-2% 0 =
0 0 3-3X

3(3-V3) . j=1
%(3-!-\/’3) 5 AEY
6 ; F=3

— 185 —

AJ(@—AJ@—ZM)—(fUﬂ==@—%M)@76M+zﬁ):0 =

(3)
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The largest eigenvalue A3 = 6 is obtained when the 1st factor in (3) is equal to 0, whereas the two lowest
solutions corresponds vanishing of the 2nd factor.

Because the 3rd eigenmode is decoupled from the 1st and 2nd the solution method is slightly different in
this case. As seen be inspection the solutions have the form

[ (d) A
e
d0) = ,_p%?) , j=12

| 0

4

§ f ()
&)(3)2 0

_1 Py

The 1st and 2nd components of the 1st and 2nd eigenmodes, Q(lj ) and @éj ) are determined from the two
first equations in (2). We choose to set (I>§"7 ) = 1, and determine @%’ ) from the 1st equations. Notice that

we may as well have determined tI’éj) from the 2nd equation. Then

. . 114+43) , j=1
2-x)-1-2=0 = q)g”_{f( ) » (5)
3(1-v8) , j=2
The modal masses become
177M o0 o] [ 1
e - . ; WL 34+v3 , j=1
0 0 0 % 0 33 ; g=2
T i
0 1 0 0f [0 i
Mz =2@TME® = 10| 0 2 0f |o| =5 (7)
1] [0 0 %] |1

&1 denotes the 1st eigenmode normalized to unit modal mass. This is related to ®(1) in the following
way

1 : 1 0.4597
W= 30—~ |1q43)| = 06280 (&)
M, V3 ++3 2( 0 ) 0

The other modes are treated in the same manner, which results in the following eigensolutions
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M 00 3(3—3) 0 0
A=|0 X 0= 0 5(3+v3) 0
0 0 X 0 0 6

04597 0.8881 0
> = [qs(l) @ @W} = 06280 —0.3251 0
0 0 14142

Question 2:

Consider the vectors

1 0
vi= |0 ¥, WD = ‘\‘2@
0 0

Upon insertion the following relations are seen to be valid

v}Ple =1 s VQTI\IVQ =1 3 V,{MVQ =0

Hence, v; and v, are mutually M-orthonormal. However,

K {3- V)
Kvy = [—1| # AMv; = 0
L 0 0
-_\/TQ ,
Kvy = V'E # AoMvy = %(3 7 \/g)
0 0

Hence, neither v; nor vo are eigenmodes.

N

©

(10)

(11)

(12)
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A.2 Exercise 1.2

The eigensolutions with eigenmodes normalized to unit modal mass of a 2-dimensional generalized
eigenvalue problem are given as

A0 _ 110 _ (a0 a®] —
oxj [OJ’@[@@}%H (1)

1. Calculate M and K.

=

A:

t3)

el

SOLUTIONS:
Onestion 1.
From (1-19) and (1-20) follows

M= (31)7

md ! (2)
K= (1) ka! 3)
Since it is known that the eigenmodes have been normalized to unit modal mass it follows from (1-20)
and (1-22) that
m=1 , k=4 )

The inverse of the modal matrix becomes

) V2o Ve vZ V2

=T _ 2 2 _ 2 2

e ‘L@' v {ﬁ _»_@} ®)
2 2 2 2

Of course, (5) can be obtained by direct calculation. Alternatively, the result may be obtained from the
following arguments, Notice that @ is orthonormal, so @' = &7, cf. (1-23). Additionally, the modal
matrix is symmetric, i.e. ® = &, from which the indicated result follows.

Insertion of (4) and (5) into (1) and (2) provides

2 L' o [2 £ o
KZ@ LN o] [£ Z _[ 25 -15 ”
2 _ 3| g 4| 2 2| |15 25

Actually, since M = I, the considered eigenvalue problem is of the special type, cf. the remarks subse-
quent to (1-9).
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A.3 Exercise 3.1

Given the following mass- and stiffness matrices

100 2 -1 0
M=|0 2 6| , E=|-1 2 @ 1)
001 0 0 3

1. Show that the eigenvalue separation principle is valid for the considered example.

SOLUTIONS:
Question 1.

The eigenvalues )\(-0), which have been calculated in Exercise 1.1, are

13-v3) , j=1
AN={3E+vE) , j=2 @
6 s 3=3

Correspondingly, the eigenvalues A and )\gl) are calculated from

J

(1)
2—- X =1
PO = det 4 wl] =
-1 2-2X

((2 _)\;1))(2_ 2/\45_1)) e 1)2) _ (B—GAS-I))JV 2()\3(;1))2) =0 =

3. %(3 - \{3) y J=1 3)
! 13+Vv3) , j=2
PR (A3 = det ([2 - ,\§2)D = )\gz) =2 (4)
Then, (3-25) attains the following forms for m = 0 and m = 1
0V < < a® cdD <) 2o
| s 1 1 - 1 o=
015(3—\3)55(3—\’3)55(3+\/3)‘_~§(1+\/§):6‘_\00 (5)
0 <A <V <00 =
1 - 1
0<5(8-v8) <2< (3+V3) <00 (6)

Hence, (3-25) holds for the considered example. )\gm - ,\gl) and )\éﬂ) = )\gl), because of the decoupling
of the 3rd eigenmode from the 1st and 2nd eigenmode.
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A.4 Exercise 3.2

Given the following mass- and stiffness matrices

M:[2 0} , K=[ 8 *1] (1)
00 ~1 A

1. Calculate the eigenvalues and eigenmodes normalized to unit modal mass.

2. Perform a shift p = 3 on K and calculate the eigenvalues and eigenmodes of the new problem.

SOLUTIONS:
Question 1:

The generalized eigenvalue problem (1-9) is written on the form

2 ol || 1] 6 -1| [0 . &
0 of (@] N |-1 4| |8 * 77
Obviously, (2) has the solution
@] o
=0 , @”:l%}:” 3)
o1 11

Hence, Ay = oo Is an eigenvalue. This is so because the mass matrix is singular, and has zeroes in the
last row and column. Since, the modal mass A/, related to eigenmode (2 is zero, this mode cannot be
normalized in the usual manner. In Section 4.1 the problem of infinite eigenvalues will be thoroughly
dealt with.

The other eigensolution may be obtained by the standard approach. Then, the eigenvalue problem (2) is
written on the form

6-2n -1] [eP] o o
- 4] |2V 0
The characteristic equation (I-11) becomes

-2x =1
dct([ﬁ 11 4}):4(6—2)\1)(1)2_23—8)\1:0 = ,\1:% (5)

We choose to set fbgl) = 1, and determine <I>él) from the Ist equations. Then

1
(6-2xn)-1-25" =0 = @)= (©6)
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The modal mass becomes

&
a-sn-[ 4[] -
1

Then, the eigenmode normalized to unit modal mass $) becomes

ot = g - L[] - o ®
Hence, the following eigensolutions have been obtained
AN 0} _ [%3 0] = [q,(l) @(2)] ~ [0.7071 0] ©)
0 Az 0 oo 0.1768 1
Question 2:

(3-38) attains the form
o e e D e o e (10)
-1 4 0 0 -1 4
The eigenvalue problem (3-37) becomes
0 -1 2 0]\ [&M] o
=Xy m| = (11)
=1 4 0 0 i) 0

For the same reason as in question 1, Ay = oo is still an eigenvalue with the eigenmode given by (3).
The characteristic equation for the 1st eigenvalue becomes, cf. (5)

—2A1 —l 2 1 23
det =4(-2M)-(-1)"==-1-8M =0 = X=-- [(=—- 12
¢ [ B 4] ( 1) ( ) 1 1 3 ( 3 ) (12)
Let <I>g1) = 1, and determine (Ing) from the Ist equations of (11)
1
(-2n) 1-9)=0 = @)=~ (13)

which is identical to (6). Hence ®(!) is unaffected by the shift as expected, cf. the comments following
(3-38). The eigensolutions are unchanged as given by (9), save that A = ——é—.
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A.5 Exercise 3.4: Theory

Gauss Elimination

Given a symmetric matrix K of the dimension n x n with the components K;; = Kj;. Consider the
static equilibrium equation

Kx=f =
(K, Ko Kiz o Kin| [21] 1]
Ky Koy Ksz -+ Ko |22 f2
Ky Kz Kiz oo Kanl| (23| = | f3 (1)
_Knl Kuo Kpz - Krm_ L Tn | _fn_

In order to have a one at the 1st element of the main diagonal of the coefficient matrix the 1st equation is
divided with K71 resulting in

r 1 (1 D7 [ (1)
1 K%z) KIS) K}En T1 1( )
Ky Kz Ky - Ko |22 f2
K31 Kz K3z - Kaf |@3| =] fs (2)
| K1 Knp Kngo oo Kvm_ LTn ] 5 fn d
where
(0 o B -
K1j =Ky = e )
(3)
m_ N1
' K11
In turn, the lst equation of (2) is multiplied with Ky, ¢ = 2,...,n, and the resulting equation is

withdrawn from the ith equation. This will produce a zero in the 4th row of the 1st column, corresponding
to the following system of equations

i 1) (1) LT 5 H = =
1 I{£2 KIB o K]n Ty 1(1)
0 Ky K o KD |e| A
0 K K - KQ| |es] = |8 ()
e e ol [ £
_0 Kn,:z Ku,f% I{”“g SR LAl
where

KD =Kij—KaK3 |, i=2..,n , j=2%..,n
)
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Next, the 2nd equation is divided with K. éé), so the coefficient in the 2nd component in the main diagonal
becomes equal to 1. In turn, the resulting 2nd equation is multiplied with KS ), i =3,...,n, and the
resulting equation is withdrawn from the ith equation. This will produce zeros in the ith row of the 2nd

column below the main diagonal, corresponding to the system of equations

r 1 1 DT . M p(1)7]
1KY K o KR [m] (A
0 1 k2 ... k2| |z (2)
0 K2 - EP| |z|=|fP (6)
10 0 1{7223) Kv(ezw)_ L Tn | L 7(12)_
where
KD
(2) 2j
% =y d T hean
Ky
1
52):—2() 7
)
K (7)
KP =k -kQKD | i=3..n , j=3..n
5 g0 KO iy

The process of producing ones in the mam diagonal, and zeros below the main diagonal is continued for
all nn columns resulting in the following system of linear equations

L K ] [
0 1 EZ ... E@| |z 72
0 0 1 K‘gz) = fé“)‘) ®)
0 0 0 e 8 X 1 L®n L T(L”)_

Next, (1) are solved simultaneous with n righthand sides, where the loads form the columns in a unit
matrix. The n solution vectors X = [x x2 X3 - - - X,,] arc organized in the matrix equation, i.e.

KX=1 =
(K1 K1z Kiz - Ki| [z 212 23 o0 25 1 00 - 0]
I(gl I{QQ .KQ;; ] I(gﬂ Zol T2 Loz v Toy 010 --- 0

Ky K3 Ksz -+ Kzul| |@31 @32 @33 - @3, =0 0 1 - 0 9

_I(n.l Kyp Kuz - I(nn_ LLn1  Thz Tn3z o Tpp 000 -1
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Following the steps (2)-(8), simultaneous Gauss elimination of the coefficient matrix and the n righthand
sides provides the following equivalent matrix equation

1 k) kG - K] [en e s o za] [P 0 0 o 0]
0 1 Kég,) o Ké,i) Ta1 T2z T2z 0 T 2(?) 2(3) 0o -+ 0
0 0 1. K:Si) T31 T3z T3z o Tan| = éf) fég) fég) e 0
0 0 0 o 1 | %1 ®n2 Tnz - Tnn _f;r(:;) f7(z.g) fﬂr(zg) T 1'(1.:;1).1

10)
As indicated the identity matrix on the righthand side is transformed into a lower triangular matrix I‘(

In the program the triangulation of the matrix K and the calculation of the matrix F is performed in a
matrix A of the dimension n x 2n, which at the entry of the triangulation loop has the form

A = [KI] (11)

At exit from the triangulation loop the matrix A stores the triangulized stiffness at the position originally
occupied by K, and the matrix F at the position occupied by the unit matrix.

Calculation of L, D and (S~ )7

Using the Gauss factorization of the stiffness matrix (9) may be written, cf. (3-1)

KX=LDLTX =1 =

(12)
L'X=ID'L '=D 'L !=F

Upon comparison of (10) and (12) it becomes clear that LT is stored as the coefficient matrix in (10),

whereas the righthand sides store the matrix F = D~'L~!. Since, L™! is a lower triangular matrix with
ones in the main diagonal, the main diagonal must contain the main diagonal of D!, Hence,

s - 1 LI b
00 o g toc e
0 P 0 . 0 0 5 0 0
Dl=|0 o 2 .. o0 % D=0 B f(—gj ce 0 (13)
) . . 3
o 0 0 - £ [0 0 0 o o)

Finally, cf. (3-49)
S=LD: = S !=D:L-'=D:D!L!=D:F (14)

The matrices D and (S™1)7 are retrieved from the righthand sides of (10) as stored in the matrix F
according to the indicated relations at the end of the program.
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A.6 Exercise 4.1

Given the following mass- and stiffness matrices

0 00 6 —1 0
M=1|0 2 1| , K=|-1 4 -1 (1)
011 0 -1 2

1. Perform a static condensation by the conventional procedure based on (4-5), (4-6), and next by
Rayleigh-Ritz analysis with the Ritz basis given by (4-62).

SOLUTIONS:
Question 1:

The 1st and 3rd row, and next the 1st and 3rd column of the are interchanged, which brings the matrices
of the general eigenvalue problem on the following form, cf. (4-1), (4-2)

NOT— 11 0
S 11 12 11 2 0
My M
21 22 0 0 0
)
” s [ 2 -1 0
K — 11 12 11 4 _1
K K
21 22 0 1 6

Notice that the interchange of two rows or two columns may change the sign, but not the numerical value,
of the characteristic polynomial. However, since the characteristic polynomial is zero at the eigenvalue
the determination of the eigenvalues is unaffected by the sign change.

The reduced stiffness matrix (4-7) becomes

K = Ky — Ki2Ky Ko = [_i —j — LU} 6! [0 —1} = [2 2311 (3)

The reduced eigenvalue problem (4-6) is solved

2 -1 L 1
{1 24 Py = [1 2} P/ 4

6
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The eigensolutions with eigenmodes normalized to modal mass 1 with respect to IM;; becomes

A 0 0.7325 0 0.5320 1.3103
A= T = @ =[]V 8] = 5)
0 A 0 9.1008 0.3892 —-0.9212

From (4-5) follows

D) i8) 4 05320  1.3103
Poy =Py P =—|6 0 -1 = 10.0649 —-0.1535 6
n= (22 =~ | ]l0.3892 ~0.9212 | ] =
From (4-10) and (4-11) follows
0
Ay =[] =[o0] , P1p= [O] ,  Pop = [1] (7)

After interchanging the degrees of freedom back to the original order (the st components of ®1; and
®, are placed as the 3rd component of PU ), and the components of ®4; and $45 are placed as the 1st
component $), the following eigensolution is obtained

3

[\ 00 07325 0 0
A=10 X 0|=| 0 91008 0
0 0 X 0 0 oo

(8)
) 0.0649 —0.1535 1
& = ®(1)®(2)©(3)]: 0.3892 —0.9212 0

) 0.5320 1.3103 0

Next, the same problem is solved by means of Rayleigh-Ritz analysis. The Ritz basis is constructed from
(4-62)

2 -1 0 10 0.5750 0.1500
T, = -1 4 -1 0 1] = |0.1500 0.3000 9)

0 =l 6 00 0.0250 0.0500

The projected mass and stiffness matrices become, cf. (4-63), (4-64)
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T
0.5750 0.1500] [ 1 @] [0.5750 0.1500
N — [0.1500 0.3000| |; 5 | |0.1500 0.3000| _ |0-548125 0.371250
0.371250 0.292500
0.0250 0.0500] L0 O 0] |0.0250 0.0500
" (10)
0.5750 0.1500 o _1 o] [057350 0.1500
i - |0.1500 03000 |_; 4 _g| |0.1500 0.3000] — |0-5750 0.1500
0.1500  0.3000
0.0250 0.0500 0 -1 6] |0.0250 0.0500

The eigensolutions to the eigenvalue problem defined by M and K with modal masses normalized to 1
with respect to M become, cf. Box. 4.2

R |m Of_[0725 0 Q:{q(lﬁq@)}: 0.6748  3.5418 an
0 0 91008 0.9599 —4.8415

The solutions for the eigenvectors become, cf. (4-51)

0.5750  0.1500 0.5320  1.3103
& = [80) 5] = |0.1500 03000 Uit 3-5‘”8}; 0.3802 —0.9212 (12)

0.9599 —4.8415 )
0.0250 0.0500 0.0649 —0.1535

As seen the eigenvalues (11) are identical to the lowest two eigenvalues from the static condensation
procedure (8). The two lowest eigenmodes in (8) are retrieved from (12) upon interchanging the 1st and
3rd components in the latter.

A.7 Exercise 4.2

Given the following mass- and stiffness matrices

2 00 g ~] 0
M=o 2 1| , K=|-1 4 -1 (1)
0 1 1 g —1 2

1. Calculate approximate eigenvalues and cigenmodes by Rayleigh-Ritz analysis using the following
Ritz basis
i TS
v=[eWo@] =1 -1
11
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SOLUTIONS:
Question 1:

The projected mass and stiffness matrices become, cf. (4-45)

1 1172 0 o
1\71:1-10211——[?1]
13
11| o1 1l 1
> (2)
1 116 =1 o]l[1 1
o 4
K=|1 -1] [-1 4ﬁ11—1=[8]
4 16
11 0 -1 2|1

J

The eigensolutions to the eigenvalue problem defined by M and K with modal masses normalized to 1
with respect to M become, cf. Box. 4.2

R_|m 0| _[L0459 0 Qz[q(l)q@)]: —0.3864  0.0269 3
0 p 0 53541 0.0887 —0.5849

The solutions for the eigenvectors become, cf. (4-51)

11 —0.2976 —0.5580
_ o —0. 02
é:[@“)@?’]: i -1 el TR 0.6118 (4)
0.0887 —0.5849
1 —0.2976 —0.5580

The exact eigensolutions can be shown to be

A 000 0.7245 0 0
A=10 X 0= 0 2.9652 0
0 0 Az 0 0 9.3104

(5)
~0.0853 —0.6981 —0.0458
o = @‘”@01@(3)}: —0.3884 —0.0486  0.5778
—0.5251  0.1997 —0.8149

As seen p; and po are upperbounds to the exact eigenvalues A; and As, and po is smaller than Ag, cf.
(4-57). The estimates of the eigenmodes are not useful. Not even the signs of the components of H(2)
are correctly represented. These poor results are obtained because the chosen Ritz basis is far away from
the basis spanned by ®(1) and ®(2).




A.8 Exercise 4.3 199

A.8 Exercise 4.3

Consider the mass- and stiffness matrices in Exercise 4.2, and let

1. Calculate the vector ®(1) = K~ 1Mv, and next A\, = p((i)m ), as approximate solutions to the
lowest eigenmode and eigenvalue.

2. Establish the error bound for the obtained approximation to the lowest eigenvalue.

SOLUTIONS:
Question 1.
From the given formula we calculate

-1

6 -1 0 9 0 o] [1 0.55
M =1_1 4 1 0 2 1| (1] = |1.30 (2)
B =i @ 01 1| |1 1.65

The Rayleigh quotient based on @) becomes, cf. (4-25)

/g
0.55 6 -1 0f [0.55

1.30 -1 4 -1| |1.30

’ <63 1.65 0 ~1 2| 188

M = p(@M) = o = 0.7547 (3)
055 [2 0 0] [0.55
1.30| (0 2 1] |1.30
165 |0 1 1] [1.65

The obtained un-normalized eigenmode ®(!) resembles ®(*) much better than the corresponding ap-
proximation for &) indicated in eq. (4) of Exercise 7.2. As a consequence the obtained eigenvalue M
is 2 much better approximation to the exact eigenvalue A; = 0.7245 given in eq. (5) of Exercise 4.2,
than the approximation p; = 1.0459 obtained by the Rayleigh-Ritz analysis. The indicated formula for
obtaining ®(!) represents the Ist iteration step in the socalled inverse vector iteration algorithm described
in Section 5.2
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Question 2:
From (2) follows that
81| = 2.1714

The error vector becomes, cf. (4-79)

6 -1 0 2 0 0f) |055 1.1698
er=||-1 4 -1|-07547- |0 2 1| | |1.30| = |-0.2075

0 -1 2 011 1.65 —0.2264
|e1| = 1.2095

The lowest eigenvalue of IV can be shown to be

(1 = 0.3820
Then, from (4-85) the following bound is obtained

" 1.2095

Bl B e =21
Ml < 53820 21714 s

& =

=

(4)

3

(6)

(7)

Actually, |A; — A;| = |0.7245 — 0.7547| = 0.0302. Hence, the bounding method provides a rather crude

upperbound in the present case.

A.9 Exercise 5.1

Given the following mass- and stiffness matrices defined in Exercise 4.2.

1. Perform two inverse iterations, and then calculate an approximation to A;.

2. Perform two forward iterations, and then calculate an approximation to Aj.

SOLUTIONS:
Question 1:

The calculations are performed with the start vector
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el (1)

Il
_ =

The matrix A becomes, cf. (5-4)

-1

6 -1 0 2 00 0.350 0.125 0.075
A=t & 3t 0 2 1| =1(0100 0750 0.450 (2)
0 -1 2 011 0.050 0.875 0.725

At the 1st and 2nd iteration steps the following calculations are performed, cf. Box 5.1

0.350 0.125 0.075| |1 0.55
€, = (0100 0.750 0450| |1| = [1.30] = @{MP, =10.9975
0.050 0.875 0.725] |1 1.65
(3)
0.55 0.16585
il:m 1.301 = |0.39201
1.65 0.49755
0.350 0.125 0.075| [0.16585 0.14436
®y = [0.100 0.750 0.450| [0.39201| = |0.53449| = SIMI, = 1.8812
0.050 0.875 0.725| |0.49755 0.71202
(4)

| 0.14436 0.10526

Py = ———— |0.53449 | = [0.3897
2 /1881 0.53449 ?89 0
0.71202 0.51914

Since, ®5 has been normalized to unit modal mass, so @gM@Q = 1, an approximation is obtained from
the following Rayleigh fraction, cf. (4-25)

-
0.10526 6 -1 0 0.10526

M=d®IK®, = (038970 |-1 4 —1| [0.38970| = 0.72629 (5)
0.51914 0 -1 # 0.51914

The exact solution is Ay = 0.72446.
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Question 2:
The calculations are performed with the start vector given by (1).

The matrix B becomes, cf. (5-35)

2 00 6 -1 0 3.0 —05 00
B=1|0 2 1 -1 4 —-1|=1]-10 50 =30 (6)
01 1 B =1 B 1.0 —6.0 5.0

At the Ist and 2nd iteration steps the following calculations are performed, cf. Box 5.3

30 —05 00] [1] [25
& =|-10 50 -30| [1]=]10] = &TME =145
1.0 —60 50/ (1] |00
(N
. [28]  [o.esess
& = —— |1.0] = |0.26261
145
0.0 |0.00000
30 05 007 [0.65653 1.83829
,=|-10 50 30| [0.26261| = | 065653] = BTMI, =7.25862
1.0 —60 50| |0.00000] |-0.91915
(8
1.83829 0.68232
= ———— A 5 = 2
1= s | 063653 0.24369
_0.91915| | —0.34116

Again, @4 has been normalized to unit modal mass, so ‘I)thIJZ = 1, an approximation is obtained
from the following Rayleigh fraction

g
0.68232 6 -1 0 0.68232
Ny = BITK®: = | 0.24369 S | 0.24369 | = 3.09739 9
~0.34116 0 -1 2| |-0.34116

The exact selution is A3 = 9.31036. The poor result is obtained because ® is a rather bad approximation
to @3,
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A.10 Exercise 5.2

Given the following mass- and stiffness matrices

100 2 -1 0
M=i0 10 , K=|-1 4 -1 (1
00 % 0 -1 2

V2
2

s = |Z| | 8@~ )
%

“|§1 ”lﬁ ”‘i‘:\

1. Calculate ) by means of Gram-Schmidt orthogonalization, and calculate all eigenvalues.

SOLUTIONS:
Question 1:

&%) may be determined either by using inverse iteration with deflation with &) or by forward iteration
and deflation with ). Here an alternative strategy is used based on the knowledge of both &) and
&), Consider an arbitrary vector

1
x= |2 (3
2

Since, ®(1), ®2) and ) form a vector basis, we may write

x =c;®W 4 8@ 4 38 (4)

In order to determine the expansion coefficient ¢;, (4) is premultiplied with ®UTM, and the M-
othonormality of the eigenmodes are used, i.e. that 8O TM®) = §;;. For j = 1,3 the following
results are obtained
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2171 0 0] [
£l o1 0| |2|=22 , j=1
2| o o 1] [2
;= &V TMx = : . ’ ()
=2 I G W
2 2
o1 0 =-¥% , j=3
¥ oo 3] (2
Then, from (3), (4) and (5) follows
1 o2 Y2 ~0.5
2
@@ = |2 —%ﬁ- i +%- =] gp =
2 o 12 0.5
T
—0.5] [3 0 0] [-05
=1 00| |0 o| | 00| =025 =
05 [0 0 3] [ 05
. [os i~
@ = | 00| =] 0 (6)
0.5] 1

The indicated method only works because the dimension of the problem is three, and two eigenmodes
are known in advance. Hence, the modal matrix becomes, cf. (1-87)

I
b
2 2

Given that all eigenmodes have been normalized to unit modal mass the eigenvalues may be calculated
from the Rayleigh quotient, cf. (1-21), (4-25)

A=d"Kd = (8)

o O N
o e O
[ S e T

Generally, if n — 1 eigenmodes to a general eigenvalue problem is known the remaining eigenmede can
lways be determined solely from the M-orthonormality conditions.
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A.11 Exercise 6.3

Given the mass- and stiffness matrices defined in Exercise 4.2.

1. Perform an initial transformation to a special eigenvalue problem, and calculate the eigenvalues and
eigenvectors by means of standard Jacobi iteration.

2. Calculate the eigenvalues and normalized eigenvectors by means of general Jacobi iteration oper-
ating on the original general eigenvalue problem.

SOLUTIONS:
Question 1.

Initially, a Choleski decomposition of the mass matrix is performed, ¢f. (3-44). As indicated by the
algorithm in Box 3.2 the following calculations are performed

S = mn:\ﬁ
S mi i—o
2n=TTS
.: 0
831=T£=——0
(1)
=\/r VR
i V2
S32 = iy — Sq1 - 891} = —=(1 =0+ 0
32 322( 132 — 31 - 821) \f( ) = —
R
Sggzm:\/l(ﬂ sB=c

Hence, the matrices S and S~ ! become

v2 0 0

S=]0 v2 0 =
20 0

s'=10 ¥£2 g9 )
0 -2 V2

The initial value of the updated similarity transformation matrix and the stiffness matrix becomes, cf.
(3-48), (6-4)
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.
2 9 0
Bo=(SH=|0 £ £
0 0 V2
Ko=K=8"'K@E )T = 0 3)
2 o0 o0|[6 -1 02 o o0 30 —05 05
0o ¥ o||-1 4 -1/f0 L - =|-05 20 -30
0 _;g V2 0 =1 =2/lo o V2 05 -3.0 8.0
In the 1st sweep the following calculations are performed for (7, 7) = (1,2) :
{
1 2-(-0.5) cosf = 0.9239
0 = ~arctan [ =———— | = —0.3927 =
g e (3.0 ~20 ) {sin 6 = —0.3827
0.9239 0.3827 0
Py = |-0.3827 0.9239 0
0 G 1
4
0.6533 0.2706 0 @
®; = &Py = |-0.2706 0.6533 —0.7071
0 0 1.4142
3.2071 0 1.6070
K, =PIK¢Pp=| 0 1.7929 —2.5803
\ 1.6070 —2.5803  8.0000
Next, the calculations are performed for (7, j) = (1,3) :
1 2-1.6070 cosf = 0.9566
= —aigtaf | —————— | =02
4 23‘1”&”(3.2071—8.0000) s = {siuﬁ'=~0.2915
0.9566 0 0.2915
Py = 0 10
—0.2915 0 0.9566
5
0.6249 0.2706  0.1904 o
®y = $,P; = |-0.0527 0.6533 —0.7553
-0.4122 0 1.3528
2.7165  0.7521 0
Ky, = PTK Py = |0.7521  1.7929 —2.4682
0  —24682  8.4906
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Finally, to end the 1st sweep the calculations are performed for (¢, 7) = (2,3) :

7

1 2. (—2.4682) cos 6 = 0.9500
8= -arctan [ —— =% ) _ 3176
: R (1.7929 = 8.4906) Bl = {siné‘ = 0.3123

1 0 0
P; = {0 09500 -0.3123
0 0.3123  0.9500

0.6249 0.3165  0.0964 (6)

®3 = PP = | —0.0527 0.3848 —0.9215
—0.4122 0.4224  1.2852

2.7165 0.7145 —0.2349
K3 =PJKyPy = | 0.7145 0.9816 0
-0.2349 0 9.3019

At the end of the 2nd and 3rd sweep the following estimates are obtained for the modal matrix and the
eigenvalues

i [ 0.6980 0.0862  0.0729 [2.9652 0.0028 0.0000]
b= | 00481 03885 —09202| , Kg= |0.0028 0.7245 0
| -0.2004 05249  1.2978] 00000 0  9.3104)
(7
[ 0.6981 0.0853  0.0729] [2.9652 0.0000 0.0000]
$g= | 00486 03884 -0.9202| , Ko= |0.0000 0.7245 0
| —0.1997 0.5251  1.2978 00000 0  9.3104

As seen the eigenmodes are stored column-wise in ® according to the permutation (jy, ja2, 73) = (2,1,3),
cf. Box 6.2.

Question 2:

The following initializations are introduced, cf. Box 6.4

2 00 6 =1 0 100
My=M=1|0 2 1 Ko=K=|-1 4 -1 , ®o=10 1 0 (8)
6 1 1 0 =1 2 0 01




208 Chapter A — Solutions to Exercises

In the 1st sweep the following calculations are performed for (i, j) = (1,2) :

4

4.0-2-(-1)
i v I L Ja=-04122
b_6~0f2-(f1) ik 8= 04142
DR T D
1 0.4142 0 1 0.4142 0
Pyg=|—-0.4142 1 0| , ®=%Py=|-04142 l 0
0 0 1 0 0 1
(9)
2.3431 0 —0.4142
M; =PIMoPo=| 0 23431 1
—0.4142 1 1
75147 0  0.4142
K:=P{KoPo=| 0 42010 -1
04142 -1 2
Next, the calculations are performed for (7, j) = (1,3) :
( 2-(—0.4142) — 1-0.4142
T OTEIAT 1 — 2.3431 2 =—Haei L Jo= 10023
- 7.5147 - (—0.4142) — 2.3431 - 0.4142 { ddar B8 = —0.3050
n 7.5147 -1 — 2.3431 . 2 -
1 0 —0.3050 1 0.4142 —0.3050
P, = 0 1 0 , $o=DP; = | —0.4142 1 0.1263
1.0023 0 1 002:
00 1.0023 0 1 (10)

2.5174 1.0023 0
M, = P{M;P; = |1.0023 23431 1
0 1 1.4707

10.3542 —1.0023 0
K, =PTK,P, = |-1.0023 42010 -1
0 1 2.4465
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Finally, to end the 1st sweep the calculations are performed for (7, j) = (2,3) :
(24465 1-1.4707-(-1) —
4.2010 - 1.4707 — 2.3407 - 2.4465 £ {a = —1.2369
y_ 42010123431 (1) P 3= 0.7404
4.2010 - 1.4707 — 2.3431 - 2.4465
1 0 0 1 0.7915 0.0016
P;= |0 1 0.7404 | , 3= PPy = | 04142 0.8437 0.8667
0 —1.2369 1 1.0023 -1.2369 1
{ (11)
2.5174 1.0023 0.7421
M; = PIM,P; = [1.0023 21193 0
0.7421 0 4.2357
10.3542 —1.0023 —0.7421
K3 = PTK,Py = |-1.0023 10.4174 0
—0.7421 0 3.2684

At the end of the 2nd and 3rd sweep the following estimates are obtained for the modal matrix and the

transformed mass and stiffness matrices

/

1.6779 —0.0129 0.1846
5= | 0.0350 1.3400 0.8282
—0.3741 —1.9075 1.1188
5.7469 0.1959 —0.0118
Mg = | 0.1959 2.1179 0
—0.0118 0 4.5448
1.6780 —0.1060 0.1819
P9 = | 0.1169 1.3379 0.8281
—0.4801 —1.8869 1.1195
5.7769 0.0000 0.0000
My = [0.0000 2.1139 0 ,
\ 0.0000 0 4.5448

Presuming that the process has converged after th

17.0856 —0.1959 0.0118
, K= |-0.1959 19.6067 0
0.0118 0 3.2925
(12)
17.1296 —0.0000 —0.0000
Ky = | -0.0000 19.6810 0
—0.0000 0 3.2925

e 3rd sweep the eigenvalues and normalized eigenmodes

are next retrieved by the following calculations, cf. Box. 6.4
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( 5.7769 0.0000 0.0000 0.4161 0 0
1
m =My = [0.0000 2.1139 0 , mz=| 0 06878 0 =
0.0000 0  4.5448 0 0  0.4691
Xy 00 2.9652 —0.0000 —0.0000
A=10 A3 0|=My'Kg=|-00000 9.3104 0.0000 (13)
0 0 N —0.0000  0.0000  0.7245
1 0.6981 —0.0729 0.0853
& =[2?8® @MW) =®ym2=| 00486 0.9202 0.3884
—0.1997 —1.2978 0.5251

The solutions (13) are identical to those obtained in (8) for the special Jacobi iteration algorithm. In the
present case the eigenmodes are stored column-wise in ® according to the permutation (j1,72,73) =
(2,3,1), cf. Box 6.4. The convergence rates of the special nd the general Jacobi iteration algorithm
seems to be rather alike.

A.12 Exercise 6.6

Given the mass- and stiffness matrices defined in Exercise 4.2.

1. Calculate the eigenvalues and normalized eigenvectors by means of QR iteration.

SOLUTIONS:

Question 1:

At first, as indicated in Box 6.7 an initial similarity transformation of the indicated general eigenvalue
problem into a special eigenvalue problem is performed with the similarity transformation matrix P =
(Sfl)T, where S is a solution to M = SS?, In case S is determined from an Choleski decomposition of
the mass matrix the initial updated transformation and stiffness matrices have been calculated in Exercise
6.3, eq. (4). The result becomes

2 0 0
B=E =g £ =L
0 0 V2
K, = ST'K(S™ )T = (1
2 o 0fl[6 -1 0¥ 0o o0 30 —05 05
0 ¥ of|-1 4 -1{|0 ¥ —Z|=|-05 20 -30
0 _}%2_ NG 0 -1 9 0 0 V2 0.5 =3.0 8.0
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As seen the original three diagonal structure of K is destroyed by the similarity. This may be reestab-
lished by means of a Householder transformation as described in Section 6.4. However, this will be
omitted here, so the QR-iteration is performed on the full matrix K.

At the determination of q; and r;; in the lst QR iteration the following calculations are performed, cf.
(6-72)

{

3.0 3.0
ki=|-05| , m™i=|[|-05|=3.0822
0.5 0.5
)
3.0 0.9733
qi = 30822 —-0.5| = |—0.1622
L 0.5 0.1622
qy and 19, 79y are determined from the following calculations, cf. (6-73)
( - r &
—0.5 0.9733 —0.5
ko= | 20| , m2=|-0.1622 2.0 = —1.2978
| —3.0 | 0.1622] |[-3.0
~0.5] [ 0.9733]
reo=|| 20| +1.2978 - | —0.1622 | | = 3.4009 3)
~3.0] | 0.1622)
1 =08 0.9733 0.2244
= : 1.2978 - | —0. = 5
q2 3.4009 20( + 0.1622 0.5262
-3.0 0.1622 —0.8202
qs and 73, 193, 733 are determined from the following calculations, cf. (6-74)
[ 05
ks=|-30| , 7rs=qalks=22711 , ry3=qlks=—8.0282
| 8.0
rag = [ky — 2.2711q1 + 8.0282qs| = 1.9080 (4)
1 0.0477
3= ——— kg — 2.2711 .0282qs2 | = |0.
9B = T 5080 ( 3 711q; + 8.0 qg) 0.8348
0.5486
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Then, at the end of the 1st iteration the following matrices are obtained

( [ 0.9733 02244 0.0477] )
Q)= |—-0.1622 0.5662 0.8348
| 0.1622 —0.8202 0.5486 |
i =
3.0822 —1.2078  2.2711
Ri=| o0 3.4009 —8.0282
0 0 1.9080 |
(5)
0.6882  0.1587 0.0337]
®; =P,Q; = |-0.2204 0.9521 0.2024
0.2294 —1.1600 0.7758
3.5789 —1.8540  0.3095
Ko =RiQ; = [-1.8540 83744 —1.5650
\ 0.3095 —1.5650  1.0466
The corresponding matrices after the 2nd and 3rd iteration become
[ 0.8853  0.4648 0.0115] )
Q2= |—-0.4585 0.8689 0.1861
| 0.0766 —0.1700 (0.9825
L
4.0425 —5.6020 1.0719
Ry=| 0 6.6809 —1.3940
0 0 0.7405 ]
(6)

0.5391  0.4521 0.0706
$; = P3Q2 = |-0.6243 0.6862 0.3734
0.7945 -1.0332 0.5489

6.2303 —3.1708  0.0567
K3 =RoQ:= |-3.1708 6.0422 —0.1259
0.0567 —0.1259  0.7275
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I [ 0.8912  0.4536 0.0021] )
Qs = |-0.4536  0.8610 0.0219
| 0.0081 —0.0205 0.9998
) ) =
6.9910 —5.5673  0.1135
R; = 0 3.9475 —0.1014
0 0 0.7274|
(7
[ 02760 0.6459 0.0816] )
by =P3;Q3 = [—0.8645 0.3206 0.3871
| 11811 -0.5714 0.5277
_ ’
8.5763 —1.7913  0.0059
K;=R3Q3=[-1.7913 3.5192 —0.0148
| 0.0059 —0.0148  0.7245

As seen from Ry and K4 the terms in the main diagonal have already after the 3rd iteration grouped
in descending magnitude, corresponding to the ordering of the eigenvalues at convergence indicated in
Box 6.7. Moreover, for both matrices convergence to the lowest eigenvalue Ay = (0.7245 has occurred,
illustrating the fact that the QR algorithm converge faster to the lowest eigenmode than to the highest.

The matrices after the 14th iteration become

Qs =

Ry =

b5 =

Kis =

1.0000
~0.0000
| 0.0000

[9.3104
0
0

D,Quu =

R14Q1q =

0.0000 0.0000]
1.0000  0.0000

~0.0000 1.0000
~0.0000  0.0000]
92.9652 —0.0000
0 0.7245
[ 0.0729  0.6981
~0.9202  0.0486
| 1.2978 —0.1997
[ 9.3104 —0.0000
~0.0000  2.9652
| 0.0000 —0.0000

0.0853
0.3834
0.5251

0.0000
—0.0000
0.7245

(8)
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Presuming that convergence has occurred after the 14th iteration the following solutions are obtained for

the eigenvalues and eigenmodes of the original general eigenvalue problem

Az 00 9.3104 -0.0000  0.0000
A=10 X 0|=Kis=[-0.0000 29652 —0.0000
0 0 M 0.0000 -0.0000  0.7245

0.0729  0.6981 0.0853
$=[2® e eV = ®5= | -09202 0.0486 0.3884
1.2078 —0.1997 0.5251

N

(€)

The solution (9) agrees with the corresponding solutions for the special and general Jacobi iteration

algorithms obtained in Exercise 6.3, eq. (8) and (14), respectively.

A.13 Exercise 7.1

Given the mass- and stiffness matrices defined in Exercise 4.2.

1. Calculate the two lowest eigenmodes and corresponding eigenvalues by simultaneous inverse vec-

tor iteration with the start vector basis

SOLUTIONS:
Question 1.

The matrix A becomes, cf. (5-4)

6 -1 0

0 -1 2

Then, the 1st iterated vector basis becomes, cf. (5-4)

0.350 0.125 0.075] [1 1
&, = [8V3P] = A®y= [0.100 0750 0.450| [1 0
0.050 0.875 0.725| |1 -1

200 0.350 0.125 0.075
A=K M=|-1 4 -1 0 2 1| =10100 0.750 0.450
B 1 3 0.050 0.875 0.725

(1)

(2)




A.13 Exercise 7.1

215

At the determination of 'IJSU and rq; in the st vector iteration the following calculations are performed,

cf. (7-14)
( T B
0.550 0.550 2 0 0] |0.550
&1 = |1.300] , r1 = H@E”H = | |1300| [0 2 1| |1300]| =3.3162
1.650 1.650 0 1 1 |1.650
(3)
0.550 0.1659
= 1 11300| = |0.3920
* T 38182 | :
L 1.650 0.4976
tixgz) and 79, 799 are determined from the following calculations, cf. (7-16)
- - 4T
0.275 0.1659 2 00 0.275
é?’ = |-0.350 » T2 = |0.3920 0 2 1| |-0.350| = —0.9578
| —0.675 | 04976 [0 1 1] |-0.675
[ 0.275] 0.1659
o2 = || | —0.350| +0.9578 - [0.3920] || = 0.6380 (4)
| —0.675 | 0.4976
i 0.275 [0.1659 0.6800
(2)
= —0. 0.9578 - |0. = ;
i 06380 0.350| + 0.3920 0.0399
L —0.675 10.4976 -0.3111
Then, at the end of the 1st iteration the following matrices are obtained
R = 3.3162 —0.9578
0 0.6380
5
0.1659  0.6800 )
®; = 103920  0.0399
| 0.4976 —0.3111
The reader should verify that & R; = ®,. The corresponding matrices after the 2nd and 3rd iteration
become
Ry = 1.3716  —0.1507
|0 0.3392
- 6
0.1053  0.6944 (6)
P, = (0.3897  0.0492
10.5191 —0.2311
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~ [1.3798
0

[0.0902
By = |0.3888
0.5237

—0.0371
0.3374 |

0.6972
0.0496
~0.2086

™

Convergence of the eigenmodes with the indicated number of digits were achieved after 9 iterations,

where

( 1.3803

By =
14 {0

0.0853
$9 = |0.3884
0.5251

—0.0000
0.3372

0.6981
0.0486

—0.1997

(8)

Presuming that convergence has occurred after the 9th iteration the following eigenvalues are obtained

from (7-10) and (7-12)

.
B [Al 0} i [0.7240 0.00001

0 A

iz [.1,(1} @(2]] -

The solution (9) agrees with the corresponding solutions obtained in Exercises 6.2 and 6.6.

0.0853
$9 = (0.3884
0.5251

0.0000 2.9652

0.6981
0.0486
—-0.1997

o

)
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A.14 Exercise 7.3

Given the mass- and stiffness matrices defined in Exercise 4.2.

1. Calculate the two lowest eigenmodes and corresponding eigenvalues by subspace iteration with the
start vector basis

1 1
&= [8" 8" =1 0
1 -1
SOLUTION:
Question 1:

The matrix A becomes, cf. (5-4)

-1
6 -1 0 2

0
A=K"M=|=1 4 =i 0 2
0 -1 3 0 1

Then, the 1st iterated vector basis becomes, cf. (7-4)

0 0.350 0.125 0.075
1| = [0.100 0.750 0.450 (D
1 0.050 0.875 0.725

0.350 0125 0075] [t 1] [oss0 0275
& = [V 8P = A®y = |0.100 0750 0450| |1 0] = [1.300 —0.350 2)
0.050 0.875 0.725| |1 —1| |1.650 —0.675

In order to perform the Rayleigh-Ritz analysis in the st subspace iteration the following projected mass
and stiffness matrices are calculated based on ®; , cf. (4-59), (4-60), (7-32)

T
0.550 0.275| |2
M, = ®]M&; = [1.300 —0.350| |0
0

0 0.550  0.275 r ]
1.650 —0.675

0

10. —3
2 1| {1300 —03s0| = | 10998 81768
1 1| |1.650 —0.675 L '

T 53
0.550  0.275 6 -1 0] |0.550  0.275 {

~ - . 8.300 —1.850
K, =®K®; = 1300 -0350| |-1 4 -1| |1.300 -0.350 L 8;]
1650 —0675] | 0 —1 2| [1.650 —0.675] S
(3)
The corresponding eigenvalue problem (7-31) becomes
KiQ =MQR; =
8.300 —1.850 [ (1) (2)] _ | 10,998 -3.1763 [ (1) (2)] ma 0 o
~1.850 1.575| - 1 =3.176% l32q4| Tt M 0 pan
0.7246 0 —0.2471 —0.4845
R = ; = (4)
0 2.9752 0.1813 —1.5569
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The estimate of the lowest eigenvectors after the 1st iteration becomes, cf. (7-35)

—0.0861 —0.6947
= | —0.3848 —0.0850 ()
—0.5302 0.2514

®; =91Q; = |1.300 —0.350

1.650 —0.675

0.550  0.275
{ 0.1813 —1.5569

—0.2471 —0.4845}

Correspondingly, after the 2nd and 9th iteration steps the following matrices are calculated

(07245 0 —0.7245 —0.0013]
R2= 3 Q2=

0 2.9662 0.0004 —2.9673

[0.0854  0.6972 (©)
;= [0.3881  0.0603

05255 —0.2162 J

[0.7245 0 ~0.7245 —0.0000
Ry = y Qo=

0 2.9652 0.0000 —2.9652

[—0.0853 —0.6981 )
by = | —0.3884 —0.0486

|-0.5251  0.1997 i

The subspace iteration process converged with the indicated accuracy after 8 iterations.
Finally, it should be checked that the calculated eigenvalues are indeed the lowest two by a Sturm se-

quence or Gauss factorization check. The 2nd calculated eigenvalue becomes ps g = 2.9652. Then, let
4 = 3.1 and perform a Gauss factorization of the matrix K — 3.1M, i.e.

—0.2 =10 0

K-31M=|-10 —22 —41| =
§ -3 =11
1 0 0] [-02 o 0 15 0
LDLT = |5 1 0 0 28 0 0 1 —1.4643 (8)
0 —1.4643 1 0 0 -71036lo o i

It follows that two components in the main diagonal of D are negative, from which is concluded that two
eigenvalues are smaller than ;¢ = 3.1. In turn this means that the two eigensolutions obtained by (8) are
indeed the lowest two eigensolutions of the original system.

The solution (8) agrees with the corresponding solutions obtained in Exercises 6.3, 6.6 and 7.1,




A.15 Exercise 7.5 219

A.15 Exercise 7.5

Given the mass- and stiffness matrices defined in Exercise 4.2.

1. Calculate the 3rd eigenmode and eigenvalue by Sturm sequence iteration (telescope method).

SOLUTION:
Question 1:

At first a calculation with g = 2.5 is performed, which produces the following results

1.0 —-1.0 0.0
K-25M=[-10 -10 -35 =
0.0 —-35 -0.5
P®(2.5) =1 . sign(P®)(2.5)) = (1
P®(2,5)=1.0 : sxgn(P Bia5)) =
PW(2.5) = 1.0 - (-1.0) — (-1.0)> = 2.0 , sign(PM(2.5)) =
P®(25) = -0.5-(—2.0) - (-3.5)%-(1.0) = -11.25 ‘s1gn(P 9(2.5)) =
Hence, the sign sequence of the Sturm sequence becomes + + ——. corresponding to the number of sign
changes ngjg, = 1 in the sequence. One eigenvalue is smaller than y = 2.5.
Similar calculations are performed for j» = 3.5, 4.5, ..., 9.5
uw=3.5: Signscquence=+ - ++ = Ngign = 2
pw=4.5: Signsequence =+ — + -+ = TNsign = 2
p=>5.5: Signsecquence =+ — + + = gy = 2
=065 Signsequence =4 — + + = Ngign = 2 (2)
u="7.5: Signscquence =+ —++ = Tgign = 2
jt=8.5: Signsequence =+ —++ = Tgign = 2
p=9.5: Signsequence =+ —+ — = Tsign = 3

From this is concluded that the 3rd eigenvalue is placed somewhere in the interval 8.5 < Az < 9.5.

Next, similar calculations are performed for 4 = 8.6, 8.7,...,9.4
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p=86: Signsequence=+4+—++ = Ngg =2
p=87: Signsequence =+ —++ = Ngign = 2
u=88: Signsequence =+ — + + = Ngign = 2
p==809: Signsequence=+4+—++ S Ngigy = 2
iw=90: Signsequence =+ —+ + = Tsign = 2 (€)
p=91: Signgequence =+4—4+ = Rgea—72
p=92: Signsequence=+—4+ = Tggn =2
pw=093: Signsequence=+—4+4+ = Nggy = 2
p=94: Signsequence =+ —+— = Ngg =3

From this is concluded that the 3rd eigenvalue is confined to the interval 9.3 < A3 < 9.4.

Next, calculations are performed for p = 9.31, 9.32, ..., 9.39

u=9.31: Signsequence =+ — + + = Ngign = 2
u=9.32: Signsequence =+ —+ — = Tgign =3
Jo=9.33: Signsequence =+ — + — = Tgign = 3
4= 9.34 : Sign sequence = + — + — = Nsign = 3
4=9.35: Signsequence =+ — + — = Ngign = 3 #)
w=9.36: Signsequence =+ —+ — = TNgign = 3
p=937: Signsequence =+ —+— = T =3
p=9.38: Signsequence =+ — + — = Ngign = 3
p=939: Signsequence=+—+-— = Nggn =3

From this is concluded that the 3rd eigenvalue is confined to the interval 9.31 < A3 < 9.32.

Proceeding in this manner, it may be shown after totally 52 Sturm sequence calculations that the 3rd
eigenvalue is confined to the interval 9.31036 < A3 < 9.31037. Each extra digit requires 9 calculations.

Setting A3 ~ 9.310365, the lincar equation (7-64) attains the form
(K - 9.310365M) 8 =0 =

~12.6207 -1 o] [&¥

0

1

-1 -14.6207 —103104| [ | = |0 (5)
®) 0

0 -103104 -7.3104] |

Setting ®'*) = 1 the algorithm (7-65) now provides
g @

_  (—12.6207)

B = T2 g = 12,6207 |

(=) = &% =|_12627 (6
iy -1 —14.6207 :
e R . BRI 07) (~12.6207) = 1 17.7800

(-10.3104) ~  (—10.3104)
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Normalization to unit modal mass provides

0.0729
& = | _0.9202 )
1.2978

The eigenvalue M3 ~ 9.310365 and the corresponding cigenmode ®() as given by (7) agree with the
corresponding results obtained in Exercises 6.3 and 6.6.
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