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The Reverse Approach for Monopile Scour

Peres Akrawi Hartvig

Department of Civil Engineering, Aalborg University, Niels Bohrs Vej 8, 6700 Esbjerg, Denmark

Abstract

The present paper deals with the theoretical and numerical modeling of
scouring and backfilling around an offshore monopile. Based on existing
relations for the bed load and the bed update, and a new model for the sed-
iment pickup, it demonstrates the possibility of computing the mean bed
shear stress if the bed and bed update is estimated. The present concepts
may be useful for developing methods for scour forecasting.

Keywords: Inverse, scouring, backfilling, scoured bed, monopile,
sediment, Exner equation, bed load, suspended load, entrainment,
pick-up, bed shear stress

1. Introduction

A common approach for simulating sediment transport deals with the
phenomenon as a coupled series of casual events involving the bed sur-
face, the fluid flow and the sediment transport. In such a perception, the bed
surface influences the fluid flow which influences the sediment transport
which influences the bed surface and so it continues. This is illustrated
in the interaction triangle in Fig. 8.1 together with the links between each
item, namely the transport equations for the fluid mass, fluid momentum
and other relevant quantities, models for the bed load and suspended load
and the Exner equation. This approach is adopted in e.g. Brørs (1999) or
Roulund et al. (2005) and appears to represent the state-of-the-art within
the field despite its inherent simplifications.

[Fig. 8.1 about here]

In the present study, I propose to use the components of this approach
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as usual, although not quite as usual, since I will proceed counter-clockwise
in Fig. 8.1 for the bed domain of interest. I begin by prescribing the bed
elevation and the bed elevation rate. Then, I compute the corresponding
sediment transport and fluid flow. This is why I have named the present
approach as the reverse approach in contrast to the conventional approach
that I will refer to as the forward approach. After drafting the reverse ap-
proach, I have discovered that it can be interpreted as a conventional inverse
method defined by its aim to determine unknown causes based on observa-
tion of their effects.

In the present paper, I apply the reverse approach to the case of scour
around a circular offshore monopile. To be precise, I consider the two spe-
cial cases scouring and backfilling of the scour phenomenon, i.e. when the
scour hole is growing or shrinking, respectively, as documented in Hartvig
et al. (2010). The present implementation also rests on the definitions of
the scour depth S and scour volume V and their development equation as
detailed in Hartvig (2011). The monopile is subjected to either steady cur-
rent or linear waves that I onwards simply refer to as current or waves. Far
from the pile, the erosion conditions may be either clear-water or live-bed
as defined later. Finally, the bed material is assumed to be non-cohesive
uniform soil. By proper modification, the present implementation may be
extended to other cases and treat e.g. non-linear waves, combined current
and waves, cohesive sediment, graded sediment, other structural geome-
tries and other development equations.

To concretize the approach further, I go from the bed elevation in Fig. 8.6a
and its rate in Fig. 8.7a to the field of the bed shear stress in Fig. 8.11a. From
a separate thread of existing work, some knowledge of the field for the bed
shear stress for nearly the same configuration is known. Both fields of the
bed shear stress should approximately agree and this compatibility condi-
tion facilitates the investigation of the underlying components or parame-
ters of the reverse approach. Specifically, I investigate the performance of
two bed load models and the sensitivity of the time scale on the bed shear
stress. In future research, other investigations and even the calibration of
the underlying parameters can be undertaken if the approach is found to
be sufficiently accurate.

Besides the idea of going backwards in the interaction triangle, the present
approach is also unique in that it operates on conventional bed load mod-
els. It can therefore be used for benchmarking the bed load models or the
studies that are based on them. It also presents a new model for sediment
pickup and the entrainment rate based mainly on the friction velocity and
the mean grain concentration in the bed load layer. Ultimately, I hope that
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the present approach can contribute to advancing the development of a
tractable and accurate long-term method for forecasting the scour hole de-
velopment in typical field conditions.

The rest of the paper is organized as follows: After some opening clar-
ifications, I present the governing equations for the problem. In Secs. 4-5.,
I use the forward approach to establish the boundary conditions and the
reverse approach to establish the field conditions. In Sec. 6, I detail the
spatial discretization and present a summary of the main scheme. Finally,
in Secs. 7-8, I present the results for one configuration, discuss these and
conclude briefly on the findings.

2. Opening clarifications

Before I proceed too far, I would like to introduce the domain, my no-
tation, the identities and numerical methods that I frequently invoke in the
paper.

2.1. Domain
The Cartesian and polar coordinate systems are shown in Fig. 8.2. The

streamwise axis is denoted by x, the lateral axis by y, the radius from Origo
by r and the angle relative to the streamwise axis by θ ∈ [π;π]. It is implied
that the vertical axis z points upward from Origo.

The bed domain A in the xy-plane is assumed to be composed of the
near-field domain AΓ and the scour domain AΩ. The two latter domains are
shown in dark and light gray, respectively. The bed domain is bounded
by the inner boundary r = rmin and the outer boundary r = r∞. Since I
will here consider a circular pile with the pile axis in Origo, rmin is constant
with respect to θ and related to the outer pile diameter D = 2 rmin. For
convenience, the outer boundary is taken to be circular too with a constant
radius r∞.

The scour domain AΩ defines the plane extent of the scour hole and is
shaped as a semi-circle upstream (x > 0) and a semi-ellipse downstream
(x > 0) as given by Hartvig (2011). The scour domain has the outer radius
rc in the upstream and lateral directions and the outer radius rccr in the
downstream direction.

The presence of the pile and the conditions in the scour domain will
influence the conditions in the near-field domain. In contrast, the outer
boundary is placed sufficiently far away from the pile and the scour do-
main that it is assumed to be undisturbed by their influence. Consequently,
I will refer to the variables at the outer boundary as undisturbed and suffix
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them with r∞. The domain outside the bed domain is referred to as the
far-field.

[Fig. 8.2 about here]

2.2. Notation & Identities
I write a vector in the two-dimensional Euclidean xy-plane as vα where

the subscript α is reserved to denote indices 1 and 2. The Cartesian and
polar components are written (vx, vy)rec and (vr, vθ)pol, respectively. The
quantities are defined in Fig. 8.2. I note here that I often use the Cartesian
components to represent a vector concisely although the numerical scheme
operates entirely on the polar components based partly on the following
identities. The magnitude of the vector is written as v without the tensor
index or as |vα| where the double lines || denote magnitude or absolute
value. The vector magnitude is computed in terms of its polar components
as:

|vα| =
√
v2
r + v2

θ (2.1)

In addition, I also adhere to Einstein’s summation rule so terms with
repeated tensor indices imply summation of the term over each value of
the tensor index, i.e. ∂vα/∂xα ≡ ∂vx/∂x + ∂vy/∂y. The previous quantity
∂vα/∂xα is the divergence of the vector vα and is equivalently expressed in
polar terms:

∂vα
∂xα

=
∂vr
∂r

+
1

r

(
∂vθ
∂θ

+ vr

)
(2.2)

Likewise, I write a three-dimensional Euclidean vector as vi where the
subscript i is reserved to denote indices 1, 2, 3 and the Cartesian compo-
nents are denoted (vx, vy, vz)rec.

For illustrative purposes, I use f to represent a general scalar variable
and its precise meaning should be clear from the context. The gradient vec-
tor ∂f/∂xα of f is expressed in terms of its polar components:

∂f

∂xα
=

(
∂f

∂r
,
1

r

∂f

∂θ

)
pol

(2.3)
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2.3. Numerical methods
Turning to the numerical methods:

• Quadrature refers here to integration of a known scalar function by
the adaptive Simpson’s method.

• Discrete integration refers here to integration of a discrete signal of a
scalar function by the trapezoidal method. By nesting the operation
and restating the integrand, the method is also used to integrate a
scalar field function over the bed domain by exploiting:∫

A
f da =

∫ r∞

rmin

∫ π

−π
fr dθ dr (2.4)

where a is an infinitesimal area of the bed domain A.

• Finite differences are used to differentiate a discrete signal of a scalar
function or discretize a field function as elaborated in Sec. 6.

• The bisection method is used to determine the solution xf ∈ [xa, xb]
that satisfies the implicit equation f(xf ) = 0.

3. Governing Equations

In this section, I present the governing equations that I have consid-
ered, namely the Exner equation, two bed load models and a model for the
entrainment rate that enters the Exner equation. These equations are com-
mon for both a forward and reverse approach although the model for the
entrainment rate has been developed with the reverse approach in mind.

3.1. Exner equation
If the sediment can be decomposed into a suspended and bed load and

the latter can be regarded as an incompressible continuum, then the con-
servation of mass or volume of the bed material is expressed by the Exner
differential equation:

− Ch
∂h

∂t
=
∂Qbα
∂xα

+ e (3.1)

In the equation, ∂h/∂t is the bed elevation rate, h is the bed elevation
defined positive upwards from a reference level and t is time. Furthermore,
Qbα is the bed load flux and e is the entrainment rate that determines the
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transfer to suspended load. In this connection, I want to clarify that Qbα is
here the volumetric flux of the bed material in the bed load layer per unit
width and e is the volumetric net flux in upwards direction per unit area.
The latter thus represents entrainment in a general sense that covers both
pick-up (e > 0) and deposition (e < 0) of grains. Ch is the volumetric
grain concentration in the bed, i.e. the ratio of the grain volume to the
bulk volume and lies in the range ]0, Cmax]. Cmax is the maximum grain
concentration that corresponds to the arrangement of grains that gives least
possible pore space.

3.2. Bed load models
In order to expose the influence of the choice of the bed load model,

I have implemented two bed load models. I have designed the models
mainly on the influential work of Brørs (1999) and Roulund et al. (2005)
and consequently, I have allowed myself to refer to the two models as the
Brørs and Roulund model, respectively. Both of these models operate on
mean quantities and in the present framework, they can thus only predict
mean quantities, such as the bed load flux or the mean bed shear stress.
On the following lines, I will describe the common properties of the two
models and afterwards, detail each of them.

3.2.1. Common properties
The Shields number is defined as:

ζ ′ ≡ τ ′

(s− 1) ρfgd
(3.2)

where ζ ′ is the Shields number, g is the acceleration due to gravity, d is a
characteristic grain diameter, ρf is the density of the fluid, s = ρd/ρf is the
relative grain-fluid density and ρd is the density of the solid grain. τ ′α is the
mean bed shear stress at the bed surface that is induced by the presumingly
grain-free fluid. It is also written in terms of the friction velocity:

U ′fα ≡


τ ′α
τ ′

√
τ ′

ρf
, τ ′ > 0

0, else

(3.3)

whereU ′fα is the friction velocity vector with the magnitudeU ′f =
√
τ ′/ρf .

The prime ( )′ denotes the contribution from skin friction. When the bed is
hydraulically rough and one has smeared out the effect of the roughness
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elements in the simulation or experiment rather than resolving them in de-
tail, the apparent bed shear stress τ and the related quantities Uf and ζ will
include an additional contribution from form drag and this contribution is
thus neglected in (3.2).

For the present problem, the bed elevation can vary considerably in
space and it becomes important to include the influence of the slope. From
analytical geometry, the slope angle is:

φ = tan−1

∣∣∣∣ ∂h∂xα
∣∣∣∣ (3.4)

where φ ≥ 0 is the slope angle that is computed using (2.1), (2.3) and
(3.4) with the polar derivatives given by Sec. 6.2. The slope angle is zero
for a locally plane bed and can attain a maximum value equal to the re-
pose angle φr. The latter is related to the static coefficient of friction µs by
µs = tanφr. Following Roulund et al. (2005), the critical Shields number is
computed as:

ζc = ζc0 ·

cos (φ)

√
1− sin2 (θ3) tan2 (φ)

µ2
s

− cos (θ3) sin (φ)

µs

 (3.5)

where ζc is the critical Shields number, ζc0 is the critical Shields number
for a plane bed and θ3 is the angle defined in Fig. 8.3. If the bed is plane or
τ ′ is zero, the angles θ3 to θ5 are not defined by Fig. 8.3, but are all taken as
zero. In this connection, the angle θ2 is often helpful and can be determined
by exploiting (2.3) and Figs. 8.2–8.3 as:

θ2 = atan2
(
y2 = −1

r

∂h

∂θ
, x2 = −∂h

∂r

)
(3.6)

where atan2(y2, x2) is the two-argument arctangent function in the range
[−π, π], in contrast to the conventional one-argument arctangent function
tan−1(y2/x2) in the range ]− π/2, π/2[ that is used in (3.4).

The quantity ζ ′ − ζc is central for characterizing the bed load flow. To
be concise, I refer to the situation ζ ′ < ζc as subcritical, ζ ′ = ζc as critical and
ζ ′ > ζc as supercritical.

[Fig. 8.3 about here]
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3.2.2. The Brørs model
Following Brørs (1999), the bed load flux of the Brørs model is taken as:

Qbα =

 Qb0 ·
(
τ ′α
τ ′
− cQ

∂h

∂xα

)
, ζ ′ > ζc

0, else
(3.7)

where Qb0 is the magnitude of the bed load flux in case of plane bed
and cQ is a slope coefficient. If the bed is plane or cQ = 0, the second term
on the upper right-hand-side of (3.7) vanishes, meaning that the bed load
flux will have the magnitude Qb0 and be directed in the same direction as
the bed shear stress. In other cases, the bed load flux will have a different
magnitude from Qb0 and be directed somewhere between the directions of
the shear stress and the steepest slope −∂h/∂xα, controlled by the slope
coefficient cQ.

Following Brørs (1999), the magnitude of the bed load flux Qb0 is deter-
mined by the bed load equation of Nielsen (1992, Sec. 2.3.4):

Qb0 = 12
(
ζ ′ − ζc

)√
ζ ′
√

(s− 1)gd3 (3.8)

Deviating slightly from Brørs (1999), the equilibrium grain concentra-
tion in the bed load layer is determined from the following piece-wise lines:

Cbe =


0, ζ ′ ≤ ζc

0.30
ζ ′ − ζc

0.75− ζc
, ζc < ζ ′ < 0.75

0.30, 0.75 ≤ ζ ′
(3.9)

where Cbe is the equilibrium mean grain concentration in the bed load
layer.

3.2.3. The Roulund model
The Roulund model is based on the approach of Roulund et al. (2005)

that is a two-dimensional generalization of the bed load equation of En-
gelund and Fredsøe (1976). The bed load flux is given as:

Qbα = Ubαpd
π

6
(3.10)

where Ubα is the bed load velocity and p ∈ [0, 1] is the ratio between the
actual and maximum amount of grains that are traveling as bed load. This
function is given as:
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p =


(

1 +

( π
6µd

ζ ′ − ζc

)4
)−1/4

, ζ ′ > ζc

0, else

(3.11)

where µd is the dynamic coefficient of friction, fulfilling µd < µs. The
relation between Ubα and τ ′α is obtained from the following considerations.
Imagine a single spherical grain as it travels in the bed load layer with
presumingly constant speed along a linear path. The grain is assumed to
be subjected only to the forces of gravity, buoyancy, fluid drag and friction,
given by:

Fg =
π

6
d3ρfg · (s− 1)

FD =
π

4
d2 1

2
ρfcDU

2
rel

Fµ = µdFg⊥x′

(3.12)

Above, Fg is the gravity force in downwards direction reduced by hy-
drostatic buoyancy, FD is the fluid drag force in the direction of the relative
velocity and Fµ is the friction force in the opposite direction of motion. Urel
is the magnitude of the relative velocity, cD is a drag coefficient. and Fg⊥x′
is the reduced gravity force normal to the steepest bed slope. The relative
velocity is defined by:

Urelα ≡ cuU ′fα − Ubα (3.13)

where Urelα is the relative velocity and cu is an amplification coefficient
that determines the ratio of the mean fluid velocity in the bed load layer to
the friction velocity. The drag coefficient is computed as:

cD =
8µd

3c2
uζc0

(3.14)

The reduced gravity force Fg can be decomposed into the direction of
the steepest bed slope and normal to the steepest bed slope:(

Fg‖x′

Fg⊥x′

)
= Fg ·

(
sinφ
cosφ

)
(3.15)

where Fg‖x′ is the reduced gravity force in the direction of the steepest
bed slope. Following Newton’s 1st law, the external static forces in the
direction of particle motion must be in equilibrium:

9



Fg‖x′ cos (θ3 − θ4) + FD cos θ5 − Fµ = 0 (3.16a)

where the angles θ4 and θ5 are illustrated in Fig. 8.3. By considering the
forces normal to the particle direction and the geometrical relations of the
relative velocity according to (3.13) and Fig. 8.3, three additional equations
can be obtained:

− Fg‖x′ sin (θ3 − θ4) + FD sin θ5 = 0 (3.16b)

Urel sin θ5 − cuU ′f sin θ4 = 0 (3.16c)

Urel cos θ5 − cuU ′f cos θ4 + Ub = 0 (3.16d)

If the bed is plane (φ = θ3 = θ4 = θ5 = 0) and the Shields number is
supercritical, Eqs. (3.16a) and (3.16d) yield Ub = cuU

′
f · (1 −

√
ζc/(2ζ ′)) in

the direction of the fluid velocity. For small Shields numbers, we further
obtain p ' (ζ ′ − ζc)/(µdπ/6) as seen from (3.11). In this case, Eq. (3.10)
reduces to the more familiar version of the Engelund and Fredsøe (1976)
bed load equation:

Qb0 '
{ cu

µd

(
ζ ′ − ζc

) (√
ζ ′ − 0.7

√
ζc

)√
(s− 1)gd3, ζ ′ > ζc

0, else
(3.17)

that bears a resemblance to the Nielsen (1992) equation in (3.8). Roulund
et al. (2005) did not treat the suspended load and therefore did not assume
a model for the equilibrium grain concentration in the bed load layer. In-
stead, Cbe is here taken from Engelund and Fredsøe (1976) based partly on
Bagnold (1954):

Cbe =


Cmax(

1 + C−1
l

)3 , ζ ′ − ζc − π
6µdp > 0

0, else
(3.18)

where Cl is the corresponding linear grain concentration. This is given
as:

Cl =

√√√√ζ ′ − ζc −
π

6
µdp

clsζ ′
(3.19)
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where cl is a coefficient for the sediment-fluid flow. For large Shields
numbers, we obtain p ' 1 ⇒ Cl ' (cls)

−1/2 and with the typical choices
cl = 0.027, s = 2.65 and Cmax = 0.65 for natural sediments in a fluid with a
logarithmic velocity profile near the bed, the equilibrium grain concentra-
tion in the bed load layer approaches the asymptotic limit Cbe ' 0.32. This
is comparable to the maximum limit of the Brørs model in (3.9), Cbe ' 0.30.

3.3. Entrainment rate
In this section, I describe the entrainment rate e that enters the Exner

equation and develop a model for it, inspired partly by Garcia and Parker
(1991), Rijn (1985) and Engelund and Fredsøe (1976).

If the suspended load can be regarded as an incompressible continuum
and the fluid velocity and the grain concentration can be decomposed into
mean and fluctuating contributions, the Reynolds-averaged equation for
the conservation of mass or volume of the suspended load is:

∂C

∂t
+
∂qsi
∂xi

= 0, t > 0 (3.20a)

where

qsi = C · (Ui −Wdδi3) + c̃ũi (3.20b)

Above, C, c̃ are the mean and fluctuating contributions of the instanta-
neous volumetric grain concentration, respectively, and similarly, Ui, ũi are
the mean and fluctuating contributions of the instantaneous fluid velocity.
Furthermore, qsi is the mean flux of the grain concentration, Wd is the set-
tling speed of the sediment, δ is the Kronecker delta and the overbar ( )
denotes Reynolds averaging. Eqs. (3.20) neglect molecular diffusion since
the turbulent fluctuations are considered to be dominant.

If the mass or volume of bed material is conserved and the domain of
the transport equation (3.20a) is bounded from below by the upper surface
of the bed load layer at the elevation zb, we must require that the upward
flux at this boundary is equal to the entrainment rate:

e = qsz(z = zb) (3.21)

If the bed is impermeable, the mean upward fluid velocity must van-
ish at the bed, i.e. W (z = 0) = 0. The mean upward fluid velocity at
the boundary between the domains of the bed load and suspended load is
therefore assumed to be negligible, i.e. W (z = zb) ' 0. This approximation
reduces (3.21) to:
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e ' −CbWd + c̃w̃(z = zb) (3.22)

where Cb is the mean grain concentration in the bed load layer. The
quantity c̃w̃(z = zb) is central to the problem and I will refer to it as the
entrainment correlation. An equilibrium situation can arise when the en-
trainment rate is zero. This occurs when the grain concentration is steady
and uniform in the xy directions, or the bed surface is steady and the bed
load flux is uniform in the xy-plane as seen from (3.1). In this equilibrium
situation, e = 0 and (3.22) implies:

c̃w̃(z = zb, e = 0) = CbeWde (3.23)

where Cbe is the equilibrium grain concentration in the bed load layer
that can be related to Eqs. (3.9) or (3.18)–(3.19). Wde is the settling speed in
the equilibrium situation. Based on these considerations, I note two simple
constraints for the entrainment rate or the entrainment correlation:

1. In the equilibrium situation, the entrainment rate must be zero.
2. In the equilibrium situation, the entrainment correlation must be equal

to CbeWde as seen from (3.23).

On the next few lines, three models for the entrainment rate or entrain-
ment correlation are considered. Garcia and Parker (1991) proposed that
the entrainment correlation is modeled as:

c̃w̃(z = zb) = CbeWde (3.24)

In other words, they suggest that the entrainment correlation in general,
or more precisely in weakly disequilibrium situations, behaves as in the
equilibrium situation. This model naturally satisfies the second constraint
and allows the first constraint to be satisfied. However, the problem with
using it within the present context is the fact that in order to determine the
entrainment rate from (3.22), the actual grain concentration in the bed load
layer Cb must be determined. This is usually done by solving (3.20a) and
evaluating its solution at the boundary. If one simply assumes Cb = Cbe
here, the entrainment rate is erroneously nil at all times.

Dey and Debnath (2001) proposed the following equation for sediment
entrainment:

Φp = 0.0006Z ′D0.24
∗ σ1.9

d , Z ′ =
ζ ′

ζc
− 1 (3.25)
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where Φp is the Einstein entrainment number, Z ′ is the transport stage
and D∗, σd are dimensionless coefficients for sediment-fluid properties and
grain size distribution, respectively. The Einstein entrainment number is
defined as:

φp ≡
E∗

ρd
√

(s− 1) gd
(3.26)

where E∗ is the entrained sediment-mass rate. Based on the usage of
this model in Dey and Barbhuiya (2005) and deviating slightly from Yan-
maz (2006), one may interpret that E∗ is related to the entrainment rate e
through e = E∗/ρd. Then, according to Eqs. (3.25)–(3.26), we always have
e > 0 when T > 0. This interpretation of the model fails to satisfy the first
constraint at the outer boundary when live-bed scour occurs (T > 0) in an
equilibrium situation (e = 0).

On the other hand, one can argue that the previous interpretation is
incorrect and that a correct interpretation instead relates E∗ to the entrain-
ment correlation, i.e.:

c̃w̃(z = zb) =
E∗
ρd

(3.27)

This interpretation also appears to be consistent with the definitions of
Rijn (1985, Sec. 4) when bearing in mind that he dealt with the mass grain
concentration. The interpretation (3.27) allows the first constraint to be sat-
isfied. To satisfy the second constraint, the equilibrium grain concentra-
tion must be modeled as Cbe = E∗/ (ρdWde) instead of using Eqs. (3.9) or
(3.18)–(3.19). It is now apparent that this interpretation is equivalent to the
Garcia and Parker (1991) model with a particular formulation for Cbe – and
the problem of determining the grain concentration Cb without resorting to
solving its transport equation still remains.

Instead, I propose the following model for the entrainment correlation:

c̃w̃(z = zb) = ceCbU
′
f (3.28)

where ce is a dimensionless coefficient that I will call the equilibrium coef-
ficient. In this model, Cb and U ′f are assumed to be the governing quantities
for characterizing the entrainment correlation. The friction velocity associ-
ated with skin friction U ′f is retained since it is assumed to be proportional
to the total friction velocity Uf and the latter is known to characterize the
intensity of the fluctuation w̃ in the inner region of simple boundary layers

in the limit of infinite Reynolds number, i.e. U ′f ∝ Uf ∝
√
w̃2. The mean
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grain concentration is retained based on the hypothesis that the inertia of
the grains is relatively weak so turbulent eddies will convect the available
grains at a particular point. Depending on whether there are few or many
grains available, on average, the fluctuation c̃ is expected to vary weakly or

strongly, respectively, i.e.
√
c̃2 ∝ Cb.

The model has several attractive properties. First, the model is dimen-
sionally correct since U ′f appears exactly in the first power in (3.28). Sec-
ondly, it allows an independent determination of Cb since Cb appears ex-
actly in the first power in (3.28). By combining Eqs. (3.22), (3.28) and e = 0,
Cb simply cancels out from the resulting equation:

ce =
Wde

U ′fe
(3.29)

where U ′fe is the friction velocity in the situation of equilibrium entrain-
ment. Cb can therefore be determined from other sources. For the sake of
simplicity, I determine it from Eqs. (3.9) or (3.18)–(3.19) by assuming:

Cb ≈ Cbe (3.30)

This approximation does not imply e = 0 at all times as it did in the
model of Garcia and Parker (1991). In fact, the present model facilitates
both a crude and refined determination of Cb, the former approach based
on (3.30) and the latter based on solving and evaluating (3.20). Thirdly,
if the equilibrium coefficient is computed from (3.29), both constraints are
satisfied. Fourth, (3.29) can be interpreted as a criterion for the onset of
entrainment or, in other words, initiation of suspension. As such, it closely
resembles the existing empirical criteria of the type ce2 = Wd/U

′
f where the

constant is taken as ce2 = 0.8 in Engelund and Fredsøe (1976) or 0.25 <
ce2 < 1 as summarized in Rijn (1984b). The equilibrium coefficient is also
seen to be related to the Rouse number Wd/(U

′
fκ), where κ is the Karman

constant. Finally, the prediction of the present model does not appear to
differ radically from the existing models. Using (3.26)–(3.28), the present
model can be expressed in terms of the Einstein number as:

Φp = ceCb
√
ζ ′ (3.31)

To illustrate the prediction further, I have exemplified the entrainment
correlation c̃w̃(z = zb) in Fig. 8.4. It is shown as function of the transport
stage Z ′ for the configuration in Table 8.1 in case of plane bed (ζc = ζc0),
equilibrium condition (Cb = Cbe), σd = 1.2 and cu = 10. The reported
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formulas for the Einstein number Φp of Dey and Debnath (2001) in (3.25)
and Rijn (1984d) have been related to the entrainment correlation through
(3.26)–(3.27). The Garcia and Parker (1991) model of (3.24) is shown using
the settling speed of a solitary grain as given by (3.32). Furthermore, three
different formulations of the equilibrium grain concentrationCbe have been
used where the suffixes Br, Ro and Ri refer to Cbe based on the Brørs model
(3.9), Roulund model (3.18)–(3.19) or the model of Rijn (1984b), respectively.
The present model is shown using the equilibrium grain concentration as-
sumption (3.30) and prescribing the equilibrium coefficient ce = 0.4 rather
than computing it from (3.29). The figure indicates that the order of magni-
tude of the entrainment correlation is comparable for all the models for the
considered range of the transport stage.

Following Fredsøe and Deigaard (1992, pp. 198-200), the settling speed
for a solitary grain in a still fluid is given by the following equation:

Wd0 =

√
4 (s− 1) gd

3CD2
, CD2 = 1.4 +

36

R2
, R2 =

Wd0d

ν
(3.32)

where CD2 is a drag coefficient, R2 is a Reynolds number, Wd0 is the
settling speed in the case of a solitary grain and the implicit equation is
solved by the bisection method. The settling speed of the sediment Wd in
the presence of neighboring grains may be less than Wd0 depending on the
grain concentration. As an approximation, the dependence on the grain
concentration is entirely neglected and the results from the case of a solitary
grain are used at all times, i.e.:

Wd ≈Wde ≈Wd0 (3.33)

Combining Eqs. (3.22), (3.28), (3.29), (3.30) and (3.33), the entrainment
rate is in practice computed as:

e = WdCbe ·
(
U ′f
U ′fe
− 1

)
(3.34)

[Fig. 8.4 about here]
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4. Boundary Conditions

Based on the existing knowledge on the bed shear stress in undisturbed
boundary layer flows and the governing equations from the previous sec-
tion, I will derive the conditions at the inner and outer boundary in this
section. Due to the complexity of the numerical scheme, my presentation
is bound to become more detailed from this point on. The reader is en-
couraged to review Sec. 6.4 from time to time to obtain an overview of the
scheme in its entirety.

4.1. Bed shear stress
If the current or waves are traveling in the streamwise direction x, the

undisturbed mean bed shear stress is one-dimensional and is taken as:

τ ′α
∣∣
r∞

=

(
τ ′x
∣∣
r∞

0

)
rec

(4.1)

where τ ′x|r∞ is the component in the streamwise direction that I call
the streamwise bed shear stress and determine from relevant boundary layer
theories.

For current, the streamwise bed shear stress is determined from the
Colebrook-White equation that is valid for the boundary layer flows in
pipes and channels with steady mean current:

τ ′x|r∞ =
ρff

′
cuU

2
cu

2
, f ′cu =

f ′d
4
,

1√
f ′d

= −2 log10

(
kN

3.7De
+

2.51

Re
√
f ′d

)
, Re =

UcDe

ν

(4.2)
Above, f ′cu is the friction factor for current, Ucu is the depth-averaged

fluid velocity in the streamwise direction and De is the equivalent pipe
diameter. The equation is solved by the bisection method.

For waves, the streamwise bed shear stress is determined by an adjust-
ment of the results for oscillatory boundary layers. Oscillatory boundary
layers experience a harmonic temporal variation that can be expressed as:

τ ′x
∣∣
r∞

= τ ′m cos (ωt+ ξ)

Above, τ ′m is the magnitude of the bed shear stress, ω = 2π/T is the
circular wave period, T is the wave period and ξ is the phase advance of
the bed shear stress compared to the streamwise fluid velocity. To facilitate
a spatial variation that resembles the wave flow according to linear wave
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theory, I adjust the above equation by introducing a spatial term in the
argument of the cosine function and compute the streamwise bed shear
stress as:

τ ′x
∣∣
r∞

= τ ′m cos (ωt− kx+ ξ) (4.3)

where k = 2π/L is the wave number, L is the wave length and the
minus in the spatial term mimics that the wave is propagating in the x-
direction. The remaining results from the theory of oscillatory boundary
layer are left unchanged. The parameters of Sec. 7 suggest that the bound-
ary layer is laminar throughout the wave cycle at the outer boundary and
for laminar oscillatory boundary layers, the bed shear stress magnitude is:

τ ′m =
ρfνUm√

ν

ω

(4.4)

where Um is the magnitude of the streamwise fluid velocity close to
the bed but above the boundary layer. If the boundary layer at the outer
boundary is transitional or predominantly turbulent, τ ′m can be determined
from other expressions, see e.g. Fredsøe and Deigaard (1992).

Finally, I will introduce some definitions for the undisturbed parame-
ters for later use. The reference bed shear stress τ ′ref is:

τ ′ref =

{
τ ′x|r∞ , Current
τ ′m, Waves

and the corresponding reference Reynolds number is:

Rref =

{
UcuD/ν, Current
UmD/ν, Waves

Depending on whether the corresponding reference Shields number is
subcritical or supercritical, the far-field is characterized as being in the state
of clear-water or live-bed.

4.2. Bed load flux
Once the undisturbed bed shear stress has been determined as outlined

above, the undisturbed bed load flux Qbα|r∞ can be determined. In prac-
tice, the undisturbed bed is assumed to be plane or approximately plane,
such that the undisturbed bed load flux is one-dimensional as the bed shear
stress. For subcritical or critical Shields number, I take Qbα|r∞ = 0. For su-
percritical Shields number, I determine the sign of bed load flux as that of
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τ ′x|r∞ and determine the bed load flux magnitude from either (3.8) or (3.17)
depending on which model is active.

The bed load flux must also satisfy the boundary conditions at the inner
and outer boundary. The inner boundary is assumed to be impermeable
and therefore, the bed load flux normal to the pile perimeter must be zero.
At the outer boundary, the bed load flux must be identical to the undis-
turbed one. This can be expressed as:

Qbαnα = 0, r = rmin (4.5a)

Qbα =
(
Qbx|r∞ , 0

)
rec , r = r∞ (4.5b)

where nα is the normal vector of the inner boundary. These boundary
conditions are put into use when the bed load flux within the bed domain
is to be determined.

4.3. Entrainment rate
Once the undisturbed bed shear stress and undisturbed bed load flux

have been determined, the corresponding undisturbed grain concentration
in the bed load layer Cbe is determined from Eqs. (3.9) or (3.18)–(3.19). To
compute the undisturbed entrainment rate from (3.34), it is now necessary
to determine the equilibrium friction velocity U ′fe.

For current, the undisturbed entrainment rate must be zero as discussed
previously in Sec. 3.3 and the equilibrium friction velocity is therefore taken
as the undisturbed friction velocity, i.e.:

e|r∞ = 0 ⇔ U ′fe = U ′f

∣∣∣
r∞

(4.6)

For waves, the equilibrium friction velocityU ′fe is determined implicitly
by requiring that the period-average of the undisturbed entrainment rate is
nil, i.e.:

〈e〉|r∞ = 0 ⇔ U ′fe (4.7)

where the brackets 〈〉 denote the period-average. The period-average is
defined by the following operation:

〈f〉 ≡ 1

T

∫ T

0
f dt
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where f is the scalar function that is to be averaged. Eq. (4.7) is solved
by the bisection method and the obtained solution for U ′fe is always slightly
smaller than the maximum undisturbed friction velocity

√
τ ′m/ρf .

The rationale for the above choice is given on the following lines by
studying the period-average of the Exner equation (3.1):

〈−Ch
∂h

∂t
〉 = 〈∂Qbα

∂xα
〉+ 〈e〉 (4.8)

The order of differentiation and integration can be interchanged and if
the grain concentration in the bed Ch is constant with respect to time, (4.8)
reduces to:

− Ch
∂〈h〉
∂t

=
∂〈Qbα〉
∂xα

+ 〈e〉 (4.9)

Now consider an arbitrary point P at the outer boundary as time passes.
The temporal development of the bed shear stress from (4.3) reveals that its
period-average must be zero, i.e. 〈τ ′x〉|P = 0. If the undisturbed bed is also
approximately plane, the period-average of (3.8) or (3.17) is also nil, i.e.
〈Qbx〉|P ≈ 0. Next, the period-average of the undisturbed bed is assumed
to be steady, i.e. 〈h〉|P = 0. Then, it is apparent from Eq. (4.9) that the
period-averaged entrainment rate must be zero too, 〈e〉|P = 0.

4.4. Bed elevation rate
The undisturbed bed elevation rate can now be found by considering

the Exner equation at the outer boundary:

∂h

∂t
=

1

−Ch

(
∂Qbα
∂xα

+ e

)
, r = r∞ (4.10)

For both current and waves, the undisturbed bed elevation can be de-
termined as the right-hand-side of (4.10). Based on the arguments from
the previous sections, I note here that (∂h/∂t)|r∞ = 0 for current. For
waves, the undisturbed bed elevation rate is not necessarily zero since there
may be a contribution from the bed load flux divergence or the entrain-
ment rate. In this case, the undisturbed divergence is computed by (2.2)
with the derivatives from Sec. 6.2 and the polar components (Qbr, Qbθ)pol =

Qbx|r∞ · (cos θ,− sin θ)pol.
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5. Field Conditions

Having now presented the governing equations and the boundary con-
ditions, it is now time to move on to the field conditions. Since these steps
are not trivial, I would like to pause for a moment and give an overview
of the rationale here with reference to the Exner equation (3.1). As seen
from the equation, it describes the relation between the grain concentration
in the bed Ch, the bed elevation rate ∂h/∂t, the bed load flux divergence
∂Qbα/∂xα and the entrainment rate e at each point in the bed domain. The
procedure to determine the bed shear stress in the bed domain therefore
involves the following six assumptions or steps:

1. First, Ch is assumed to be known and constant with respect to time
and space.

2. Secondly, ∂h/∂t is prescribed in the bed domain such that it resembles
that of Hartvig (2011) in the scour domain and approaches the undis-
turbed bed elevation rate at the outer boundary as given by (4.10).

3. Now, the only remaining unknown in (3.1) is the bed load flux Qbα
since its divergence and the entrainment rate can both be considered
to be functions of Qbα. To proceed, a guess ê is made of the true
field of the entrainment rate e such that the guessed entrainment rate
approaches the undisturbed value at the outer boundary as given in
Sec. 4.3 and satisfies a volume rate condition as detailed later. The hat
(̂ ) denotes guess.

4. Fourth, the bed load flux is assumed to be irrotational so the Exner
equation simplifies to the Poisson equation. By approximating the
derivatives of the Poisson equation and its boundary conditions with
finite differences, the resulting matrix equation can be solved and the
bed load flux in the bed domain can be determined as detailed later.

5. Fifth, since the bed load flux is now known, one of the bed load mod-
els can be used to determine the friction velocity and the grain con-
centration in the bed load layer. Subsequently, the field of the entrain-
ment rate can be computed by (3.34) and is denoted e∗.

6. Since the guessed ê and computed e∗ fields of the entrainment rate
should be identical, steps 3–5 are repeated until acceptable agreement
has been achieved.

5.1. Bed elevation rate
The bed elevation rate is decomposed into two contributions:
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∂h

∂t
=

(
∂h

∂t

)
∗

+

(
∂h

∂t

)
∗∗

(5.1)

where the first contribution represents the contribution of Hartvig (2011)
and the last represents a modification. The two contributions are referred
to as the unmodified and modified bed elevation rate, respectively. For later
uses, I define the volume rate of each contribution as:

−dV
dt
≡
∫
A

(
∂h

∂t

)
∗
da, M ≡

∫
A

(
∂h

∂t

)
∗∗
da, (5.2)

where dV /dt and M are referred to as the scour volume rate and the mod-
ified volume rate, respectively. Both (∂h/∂t)∗ and dV /dt are given as input
in the present scheme.

On the following lines, I will detail how the modified bed elevation
rate and its volume rate is determined. For current, a bank of deposited
bed material can appear downstream of the scour hole. In this case, M is
prescribed and the bank rate is taken to be a hemiellipsoid with the origin in
the point (xh = rccr + rh, 0)rec, the radius rh in the xy-plane and the height
rz , i.e.:

(
∂h

∂t

)
∗∗

=

 rz ·
√

1−
(
r3

rh

)2

, r3 < rh

0, else
(5.3)

where r3 =
√

(x− xh)2 + y2 is a relative radius. The upper equation of
(5.3) has been obtained from the canonical definition of an ellipsoid with
offset, i.e. ((x− xh) /rx)2 + (y/ry)

2 + (z/rz)
2 = 1. The height is computed

as:

rz = 3M/(2πr2
h)

to ensure that the volume of the bank rate is exactly M . For waves, the
modified bed elevation is prescribed similar to the undisturbed values:(

∂h

∂t

)
∗∗

=
1

−Ch

(
∂Qbα
∂xα

∣∣∣∣
r∞

+ e|r∞

)
(5.4)

where (∂Qbα/∂xα)|r∞ and e|r∞ should be interpreted as the undisturbed
values at the same streamwise position x as the field point in consideration.
Following the definition in the right equation of (5.2), M is then computed
by discrete integration of (5.4) over the bed domain.

21



5.2. Bed load flux
If ∂Qby/∂x = ∂Qbx/∂y, the bed load flux can be assumed to be irro-

tational in the mathematical sense. In this case, the bed load flux can be
expressed as the gradient of a scalar function:

Qbα =
∂Λ

∂xα
(5.5)

where Λ is a scalar field function that I refer to as the potential. Turning
to the Exner equation (3.1), it can be interpreted as a field condition. By
assuming the irrotational hypothesis (5.5) and applying the polar expres-
sion for divergence (2.2) and gradient (2.3), the field condition is restated in
polar terms as:

∂2Λ

∂r2
+

1

r

∂Λ

∂r
+

1

r2

∂2Λ

∂θ2
= −Ch

∂h

∂t
− e, rmin < r < r∞ (5.6a)

where the left-hand-side represents the divergence ∂Qbα/∂xα of the bed
load flux or the Laplacian ∂2Λ/∂x2

α of the potential. The boundary condi-
tions (4.5) are also restated in polar terms:

∂Λ

∂r
= 0, r = rmin (5.6b)

∂Λ

∂r
= Qbx|r∞ cos θ, r = r∞ (5.6c)

In formulating these boundary conditions, it has been assumed that the
undisturbed bed is approximately plane. It has also been exploited that
the pile perimeter and the outer boundary are both circular and have the
normal vector nα = (cos θ, sin θ)rec.

If we turn to the field for the entrainment rate e on the right-hand-side
of Eq. (5.6a) and for a moment perceive it to be known, the system of equa-
tions in (5.6) can be interpreted as the Poisson equation in Λ with two Neu-
mann boundary conditions. Such a problem can be solved by discretizing
it and solving the resulting system of linear equations.

If we return to reality, the field for the entrainment rate is unknown. In
the present formulation with the bed load flux governed by either the Brørs
or Roulund model, the entrainment rate depends non-linearly on the bed
load flux magnitudeQb and thus on its potential Λ. Even if the entrainment
rate did depend linearly on the bed load flux magnitude, it would still de-
pend non-linearly on the potential. This non-linearity rules out an explicit
determination of the entrainment rate.
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Therefore, the entrainment rate is determined implicitly by guessing the
field by iteration as detailed in Sec. 5.5. For each guessed field, the system
of equations in (5.6) is updated and solved for Λ as described in Sec. 6.3 and
the corresponding bed load fluxQbα is computed by (2.3) and (5.5) with the
polar derivatives approximated as detailed in Sec. 6.2.

5.3. Volume rate condition and bed load outflux
Besides the Exner equation, an additional condition must be satisfied

that I derive here. Integration of the Exner equation over the bed domain
A gives:

−
∫
A
Ch

∂h

∂t
da =

∫
A

∂Qbα
∂xα

da+

∫
A
e da, t > 0 (5.7)

The individual terms in equation (5.7) can be rewritten in a more concise
form. In addition to (5.2), the following two definitions are introduced:

F ≡
∫
A

∂Qbα
∂xα

da, E ≡
∫
A
e da (5.8)

where F is the bed load outflux and E is the entrained outflux. The
quantities express the volume rate at which the bed material leaves the bed
domain as bed or suspended load, respectively. If the grain concentration
in the bed is constant with respect to the bed domain, (5.7) reduces to the
following volume rate condition:

Ch ·
(
M − dV

dt

)
+ F + E = 0 (5.9)

By exploiting the divergence theorem, the bed load outflux F can be
expressed entirely in terms of the undisturbed bed load flux and the normal
vector of the outer boundary:

F =

∫
C
Qbαnα dc = 2

∫ π

0
Qbx (θ, r = r∞) cos (θ) r∞ dθ (5.10)

where dc is an infinitesimal piece of the outer boundary and nα is its
normal vector that points away from the bed domain and into the fair-field.
The first equality of (5.10) brings out the important fact that all variables in
(5.9) are prescribed. Consequently, the computed solution for the potential Λ
cannot truly satisfy the field and boundary conditions (5.6) unless the volume rate
condition (5.9) is satisfied.
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In formulating the second equality in (5.10), it has been assumed that
the undisturbed bed is approximately plane which implies that the undis-
turbed bed load flux is one-dimensional and symmetrical about the stream-
wise axis.

I note here that, for current, Qbx is constant with respect to space and
therefore (5.10) yields F = 0. For waves based on (4.3), F = 0 if the crest
or trough of the shear stress wave is directly above the pile axis, i.e. if
ωt+ξ = nπ where n is an integer. In all other cases, F 6= 0 and is computed
by evaluating the right-most integral in (5.10) by quadrature.

5.4. Bed shear stress
Once the bed load flux Qbα has been determined for the bed domain,

we now face the challenge of determining the bed shear stress and the re-
maining model variables by either of the bed load models. In the next sub
sections, I have outlined the steps for each model that involve eliminating
the unknowns one by one.

Before doing so, I have two minor remarks. First, the schemes are un-
able to distinguish between situations with subcritical or critical Shields
numbers since both situations correspond to a nil bed flux according to the
bed load models. In this case, the Shields number is assumed to be critical.
Secondly, the schemes for each bed load model consume about the same
amount of computational resources.

5.4.1. Brørs model
To determine the model variables in the Brørs model, I have derived the

following system of equations:

Qbr = Qb0 ·
(
τ ′r
τ ′
− cQ

∂h

∂r

)
(5.11a)

Qbθ = Qb0 ·
(
τ ′θ
τ ′
− cQ

r

∂h

∂θ

)
(5.11b)

(
τ ′r
τ ′

)2

+

(
τ ′θ
τ ′

)2

= 1 (5.11c)

The first two equations stem from evaluating (3.7) in the polar direc-
tions through (2.3) and assuming that the Shields number is supercritical.
The last equation has been derived from (2.1). The system of three equa-
tions has three unknowns, namely Qb0, τ ′r/τ ′ and τ ′θ/τ

′. The latter two can
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be eliminated by rewriting the system into a single equation with the un-
known Qb0:(

Qbr
Qb0

+ cQ
∂h

∂r

)2

+

(
Qbθ
Qb0

+
cQ
r

∂h

∂θ

)2

− 1 = 0, Qb0 6= 0

This equation that can be rewritten as a conventional quadratic equa-
tion:

cq2 q
2 + cq1 q + cq0 = 0 (5.12)

with the following auxiliary variables:

q =
1

Qb0
, cqr = cQ

∂h

∂r
, cqθ =

cQ
r

∂h

∂θ
cq2 = Q2

br +Q2
bθ, cq1 = 2 (Qbrcqr +Qbθcqθ) , cq0 = c2

qr + c2
qθ − 1

Eq. (5.12) can then be solved analytically and the positive real root for
q can be transformed back to Qb0. To ensure that the solution is real or in
physical terms, to avoid that the bed slope completely governs the bed load
flux, the following condition must be satisfied:

cQ <
1

max

∣∣∣∣ ∂h∂xα
∣∣∣∣ (5.13)

In the present approach, the slope angles can be as high as the repose
angle and if the latter is taken as φr = 32 deg, the slope coefficient must
be less than 1.6. This allows the use of cQ = 1.5 as in Brørs (1999) but
precludes the use of the upper values in the observed range [1.5, 2.3] that
is also stated in Brørs (1999). These considerations result in the following
scheme:

1. For nodes where Qbr = Qbθ = 0, I simply take Qb0 = θ3 = 0 and
ζ ′ = ζc = ζc0.

2. For the remaining nodes, I do the following steps:
(a) Prescribe cQ.
(b) Compute Qb0 by solving (5.12) analytically.
(c) Compute τ ′r/τ ′ from (5.11a).
(d) Compute angle θ3 from τ ′r/τ

′ = cos (θ2 + θ3). This equation has
been derived from Fig. 8.3 in terms of U ′fα that is co-directed
with τ ′α.
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(e) Compute ζc from (3.5).
(f) Compute ζ ′ by solving (3.8) for each node with the bisection

method.
(g) Compute U ′f from (3.2) and (3.3).
(h) Compute Cbe from (3.9).

5.4.2. Roulund model
To determine the model variables in the Roulund model, I do the fol-

lowing steps:

1. Compute θ3 − θ4 = atan2(Qbθ, Qbr) − θ2. This equation has been de-
rived from Fig. 8.3 in terms of Ubα that is co-directed withQbα accord-
ing to (3.10).

2. Compute θ5 by the equation that results from combining (3.16a) and
(3.16b).

3. Compute Urel by (3.16b).
4. For nodes where Urel is complex-valued, update θ5 := θ5 + π and

recompute Urel as in the previous step.
5. For each node:

(a) Treat p as the unknown and solve for it by the bisection method
with the initial limits p ∈]0, 1[ and the following steps:

i. Guess p̂ from the actual limits.
ii. Compute Ub from (3.10).

iii. Compute θ4 by the equation that results from combining
(3.16c) and (3.16d).

iv. Compute U ′f by (3.16c).
v. If U ′f is complex-valued, update θ4 := θ4 +π and recompute
U ′f as in the previous step.

vi. Compute θ3 from θ3 − θ4 from Step 1.
vii. Compute ζc by (3.5).

viii. Compute ζ ′ by (3.2) and (3.3).
ix. Compute p∗ by the piece-wise formulation in (3.11).
x. Compare p∗ and p̂ and update the limits accordingly.

xi. Repeat Steps 5(a)i-5(a)x until convergence is acceptable.
(b) Compute Cbe from (3.18)–(3.19).
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5.5. Entrainment rate
Once the field of the bed shear stress has been determined as described

in the previous section, it is time to consider the final item of the field con-
ditions, namely the scheme for the entrainment rate. Each guessed field of
the entrainment rate e is decomposed into a predictor and corrector contri-
bution:

ê = (ê)pre + (ê)cor (5.14)

where the subscripts denote the predictor and corrector contribution, re-
spectively. The contributions or steps are conceptually alike the predictor
and corrector components of Hartvig (2011) but differ in that they are here
applied to the entrainment rate and involve other steps.

The predictor contribution attempts to bridge the difference between the
guessed and computed fields for the entrainment rate while ensuring that
ê approaches the undisturbed value near the outer boundary. The contri-
bution is determined as follows:

1. Initial iteration: The predictor guess is determined from the undis-
turbed value at the same streamwise position, i.e. (ê)pre = e|r∞ as
given in Sec. 4.3.

2. Subsequent iterations:

(a) Based on U ′f and Cbe from Sec. 5.4 and Eq. (3.34), compute en-
trainment rate e∗.

(b) Compute entrainment rate residual:

∆e = e∗ − ê (5.15)

(c) Compute error measures to monitor the convergence process of
the scheme:

ε1 =

√√√√ 1

ndof

ndof∑
j=1

(∆e)2
j , ε2 = max |∆e| , ε3 =

ε2
max |ê|

Above, (∆e)j represents the entrainment rate residual at node j
out of total of ndof nodes and ε1 to ε3 are positive error measures
that should decrease over-all as the entrainment rate iterations
are carried out.
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(d) Update predictor guess:

(ê)pre := ê+ c∆ef∆e∆e (5.16)

where c∆e < 1 is a coefficient for the numerical scheme and f∆e

is a ramping function. The latter satisfies f∆e = 1 for rmin ≤ r ≤
rd, f∆e = 0 for r ≥ re and is determined by linear interpolation
with respect to the radius in the intermediate domain.

The corrector contribution ensures that the volume rate condition (5.9) is
satisfied although, in some cases, the predictor guess may satisfy the vol-
ume rate condition approximately without the help of the corrector. The
contribution is determined through the following three steps after the pre-
dictor guess has been determined:

1. Following the definition of the right equation of (5.8), compute the
entrained outflux E by discrete integration of (ê)pre.

2. Compute volume rate residual R as the left-hand-side of (5.9).
3. Compute (ê)cor as the hemiellipsoid with the origin in Origo, inner

radius rmin, outer radius re and the height rze. Following Hartvig
(2011), the surface is taken as:

(ê)cor =

 rze ·
(

1−
(
r − rmin

re − rmin

)2
)1/2

, r < re

0, else

with the height computed as:

rze =
6R

π ·
(
4r2
e + (3π − 8) rermin − (3π − 4) r2

min

)
Once both contributions have been determined, the guessed entrain-

ment rate is updated according to (5.14). The solution of e is able to con-
verge for some configurations when the the values for c∆e are sufficiently
small, the bed domain is sufficiently large and the spatial resolution is suf-
ficiently fine.

6. Spatial Discretization & Summary

In this section, I present the spatial grid and the corresponding finite ap-
proximations. The latter are used for computing the gradient or divergence
in different contexts and discretizing the potential Λ. I close the section with
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a summary of the main scheme of the present model, encompassing both
the boundary and field conditions.

6.1. Grid
Following Hartvig (2011), the spatial grid is shaped as a spider-web as

shown in Fig. 8.5. The angle is distributed evenly as:

θjθ = ∆θ · (jθ − 1)− π, jθ = 1, 2, . . . , nθ (6.1)

where ∆θ = 2π/nθ is the angle increment and jθ and nθ are the actual
and maximum number of nodes along the angular coordinate, respectively.
To obtain the most accurate computation of quantities involving mixed
derivatives, i.e. the gradient magnitude, the divergence or the Laplacian,
the cells must be nearly square. Therefore, the radius is distributed as the
following geometric sequence with the radius at the inner boundary of the
bed domain specified as rmin:

rjr = rmincθ
jr−1, cθ = 1 + ∆θ, jr = 1, 2, . . . , nr (6.2)

where jr and nr are the actual and maximum number of nodes in the
radial direction, respectively, and the latter controls the radial extent of the
outer boundary of the bed domain. The total number of nodes is ndof =
nrnθ.

[Fig. 8.5 about here]

6.2. Finite differences
The first and second order derivatives of a scalar function f with respect

to the angle are approximated by conventional central differences that fol-
low this pattern where the subscript letters refer to the nodes in Fig. 8.5:(

∂f

∂θ

)
C

≈ fI − fH
2∆θ

, All nodes (6.3a)

(
∂2f

∂θ2

)
C

≈ fI − 2fC + fH

(∆θ)2 , All nodes (6.3b)
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The first and second order derivatives in the radial direction are approx-
imated by polar variants of forward differences for inner nodes, central dif-
ferences for interior nodes and backward differences for outer nodes, i.e.:(

∂f

∂r

)
A

≈ w1fC + w2fB + w3fA
rB − rA

, Inner nodes(
∂f

∂r

)
C

≈ w4fD + w5fC + w6fB
rD − rB

, Interior nodes(
∂f

∂r

)
E

≈ w7fE + w8fD + w9fC
rE − rD

, Outer nodes

(6.4a)

(
∂2f

∂r2

)
C

≈ w10fD + w11fC + w12fB

(rD − rB)2 , Interior nodes (6.4b)

where the inner, interior and outer nodes are defined in Fig. 8.5 and w1

to w12 are dimensionless weights. I have determined the weights based on
Taylor analysis on the radial grid (6.2) as:

w1 =
−1

cθ + c2
θ

, w2 = 1 +
1

cθ
, w3 =

−2− cθ
1 + cθ

,

w4 =
1

cθ
, w5 = cθ −

1

cθ
, w6 = −cθ,

w7 =
1 + 2cθ
1 + cθ

, w8 = −1− cθ, w9 =
c2
θ

1 + cθ
,

w10 =
2

cθ
(1 + cθ) , w11 =

−2

cθ
(1 + cθ)

2 , w12 = 2 (1 + cθ)

The weights are also consistent with the conventional values for an even
radial spacing (cθ ' 1). The approximations (6.3a) and (6.4a) of the first
order derivatives are used to compute the divergence by (2.2) and the gra-
dient by (2.3).

6.3. Discretization and solution of Poisson equation
The derivatives of the Poisson equation and its boundary conditions

(5.6) are approximated by the corresponding finite differences (6.3b), (6.4a)
and (6.4b). The system of eqs. (5.6) is then rewritten as the matrix equation:

AjmΛj = Bm, j ∈ 1, 2, . . . ndof , m ∈ 1, 2. . . . ndof (6.5)

where Ajm is a square ndof × ndof coefficient matrix that is sparsely
populated, Λj is the vector containing the nodal values of the potential and
Bm is the following load vector that represents the right-hand-sides of (5.6):
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Bm =


0, Inner nodes

−Ch
∂h

∂t
− e, Interior nodes

Qbx|r∞ cos θ, Outer nodes

(6.6)

The coefficient matrix Ajm is built once, outside the loop for the en-
trainment rate. When the guessed field of the entrainment rate has been
computed, Bm is computed according to (6.6) and the matrix equation (6.5)
is solved by a conventional row reduction method. The resulting nodal
vector Λj is then reshaped back to a discrete scalar field Λ.

6.4. Summary of main scheme
The main scheme of the present approach can be summarized in the

following steps of which steps 2–6 differ for waves or current:

1. Define input, including spatial grid, bed elevation h, bed elevation
gradient ∂h/∂xα, unmodified bed elevation rate (∂h/∂t)∗, scour vol-
ume rate dV /dt.

2. Prescribe undisturbed bed shear stress τ ′α|r∞ .
3. Compute undisturbed values:

(a) Bed load flux Qbα|r∞ .
(b) Entrainment rate e|r∞ .
(c) Bed elevation rate ∂h/∂t|r∞ .

4. Compute bed load outflux F .
5. Prescribe bed elevation rate ∂h/∂t.
6. Make initial guess of entrainment rate ê.
7. Build coefficient matrix Ajm and ramping function f∆e.
8. For each entrainment rate iteration:

(a) Compute Bm and solve for the potential Λ.
(b) Compute bed load flux Qbα.
(c) Compute friction velocity U ′fα and Cbe.
(d) Update guess of entrainment rate ê.
(e) Repeat steps 8a–8d until convergence is acceptable.
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7. Results and discussion

In the previous sections, I presented the underlying equations and steps
in the reverse approach in the context of monopile scour. In this section, I
present a parametric study that exposes different aspects of the approach,
compare the results with available data and infer some indications for fu-
ture use.

The study is based on the experimental run A.08 of Hartvig et al. (2010)
that has also been investigated in Hartvig (2011). The pile diameter is
D = 0.10 m. The bed configuration represents a conical scour hole that has
developed relatively much but not fully attained equilibrium. The scour
volume is V = 8.0D3, the scour shape factor is ψ = 7.8 and the scour depth
is S = (V/ψ)1/3 ≈ D. The far-field is subjected to the action of current or
waves with the characteristic velocities Ucu ≈ 0.5 m/s or Um ≈ 0.2 m/s, re-
spectively. Following the definitions in Sec. 4, this implies a live-bed state
with a reference bed shear stress τ ′ref = 0.5 Pa. The reference Reynolds
numbers are Rref ≈ 4 · 104 and Rref ≈ 2 · 104 during current or waves, re-
spectively. For the wave runs, the Keulegan-Carpenter number is defined
as K ≡ UmT/D and provides K = 3 for the present wave configuration.

Table 8.1 presents the common parameters of the configuration. Ta-
ble 8.2 presents the simulations, the varying input parameters and some
key results. Figs. 8.6–8.11 are pairs of contour plots of the bed surface h,
the unmodified bed elevation rate (∂h/∂t)∗ and the fields of the entrain-
ment rate, bed load flux magnitude and bed shear stress magnitude for
either bed load model. In these figures, the color bar shows the minimum
and maximum field values and the bold curve represent the outer bound-
ary of the scour domain.

The simulations cover the following variations:

• The influence of bed forms in the bed surface. This has been investi-
gated by taking the bed elevation h as h1 or h2 as shown in Fig. 8.6.
The former is an idealized bed surface that has been created synthet-
ically and the latter is the measured one that has been smoothened
slightly. For both cases, the scour depth and scour volume are nearly
identical and the slope angle is everywhere less than or equal to the
repose angle since the beds have been subjected to a correction for
local sliding as detailed in Hartvig (2011). For this reason, the scour
hole extends slightly beyond the scour domain in h1.

• The case of scouring or backfilling. This is denoted by S or B in the
simulation name, respectively. An example of the unmodified bed
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elevation rate in either case is shown in Fig. 8.7.

• The influence of the bed load model and its parameters. The identi-
fiers Br or Ro refer to the Brørs or Roulund model, respectively. The
variation of cQ or cu has been investigated, respectively.

• The influence of the modified bed elevation rate (∂h/∂t)∗∗ during
scouring.

• The influence of the unmodified bed elevation rate (∂h/∂t)∗. This
has been investigated in terms of the scour volume time scale tV . For
scouring, the formulation for the unmodified bed elevation rate at
the pile perimeter – the unmodified base elevation rate b∗ – has also been
varied. The quantity tV is related to the intensity of dV /dt and is
central for a long-term forecasting method. The quantity b∗ is related
to the spatial skewness of the unmodified bed elevation rate. The
parameters are detailed and illustrated in Hartvig (2011) and b∗ is
briefly elaborated below.

The model for the base elevation rate of Hartvig (2011) is denoted as b∗1.
The parameter fb is a skewness parameter where fb = 1 implies no skew-
ness of (∂h/∂t)∗ and fb > 1 implies that (∂h/∂t)∗ is skewed increasingly
towards the upstream domain so erosion/deposition is amplified here as
illustrated in Fig. 8.7. In the present paper, I have also investigated the
following formulation that can facilitate even more skewness:

b∗2 =


bccb, |θ| ≤ θb1

(|θ| − θb2)
bc − bccb
θb2 − θb1

+ bc, θb1 < |θ| < θb2

bc, θb2 ≤ |θ|
Above, b∗2 is the alternative unmodified base elevation rate, cbbc is the

downstream value of b∗2 before the angle θb1 and bc is the upstream value
beyond the angle θb2. The upstream value bc is computed as the dependent
parameter from:

bc =
−2π · (dS/dt)pre

2π − θb1 − θb2 + cbθb1 + cbθb2

where (dS/dt)pre is the predictor scour depth rate as detailed in Hartvig
(2011) and the remaining values are given in Table 8.1.
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[Tables 8.1–8.2 about here]

[Figs. 8.6–8.11 about here]

7.1. Discussion
Based on the present simulations, I make the following four comments.
First, it is clear from Table 8.2 and Figs. 8.8–8.11 that the results are par-

ticularly sensitive to the choice of the bed load model and its parameters.
If we focus on the mean bed shear stress during scouring, τ ′max/τ

′
ref varies

from 1.6 to 2.6 when the bed load model or its parameters are varied. The
typical spatial distribution of the bed shear stress magnitude is shown in
Figs. 8.10–8.11 where the zone of the field maxima is attached to the pile
at θ ≈ 3π/4. The outstanding exception is simulation S72 where the Brørs
model is employed with cQ = 1.5 together with the measured bed surface
h2. This simulation yields τ ′max/τ

′
ref = 5.2 detached from the pile due to a

local bed variation. These trends also indicate that there can be great vari-
ation in the predicted bed elevation rate in a forward approach depending
on the formulation of the bed load model.

Secondly, I have compared the computed field of the bed shear stress
during scouring with the reported numerical results of Roulund et al. (2005,
Sec. 6.2, Fig. 36). Using a steady Reynolds-averaged approach, they treated
a configuration similar to the present one with Rref = 5 · 104. When the
bed was plane, they obtained τ ′max/τ

′
ref ≈ 6. When the scour hole was fully

developed, the local scour depths were S/D ≈ 1.1 and S/D ≈ 0.6 in the up-
stream and downstream regions, respectively. In this scoured bed configu-
ration, they obtained τ ′max/τ

′
ref ≈ 3 in a zone at about 3π/4 ≤ θ ≤ π, slightly

detached from the pile, presumingly due to the presence of a horseshoe
vortex.

The results of Roulund et al. (2005) appear to be confirmed by the large-
eddy study of Zhao and Huhe (2006, Figs. 9–10). They treated a comparable
configuration with Rref = 7 · 103 and S/D = 0.85 and appear to report
τ ′max/τ

′
ref ≈ 3 detached in front of the pile. The laminar study of Yuhi et al.

(2000, Figs. 9–10) treating a somewhat different configuration with Rref =
2 · 103 and S/D = 1.2 also confirms the same location of the maximum

34



bed shear stress although the maximum amplification appears to be much
higher at τ ′max/τ

′
ref ≈ 9, presumingly due to the horseshoe vortex being

laminar.
Compared to the present results, the location of the zone of maximum

bed shear stress differs. This discrepancy could stem from the formulation
of the unmodified bed elevation rate (∂h/∂t)∗. Since this is not redeemed
by varying the model for the unmodified base elevation rate b∗ or its param-
eters, the discrepancy could stem from the more fundamental assumption
in Hartvig (2011) that assumes that the strongest deposition/erosion occurs
at the pile perimeter. Another plausible cause is the irrotational hypothe-
sis in (5.5). Aside from this discrepancy, the magnitude of the maximum
bed shear stress agrees approximately with the Brørs bed load model with
cQ = 1.5 that yields τ ′max/τ

′
ref = 2.6. In contrast, the Roulund model sys-

tematically underestimates the bed shear stress as τ ′max/τ
′
ref ≈ 2 regardless

of the variation of cu.
Thirdly, similar model variations are observed in the case of backfilling

waves although I note that the maximum magnitude τ ′max/τ
′
ref is system-

atically smaller here than for current scouring. The experimental study of
Sumer et al. (1997) reports τ ′max/τ

′
ref ≈ 3 − 4 for a plane bed. For a scoured

bed configuration around a slender monopile, the only available study to
my knowledge is the numerical study of Umeda et al. (2008) for a laminar
oscillatory flow. They report τ ′max/τ

′
ref ≈ 3 but for a different configuration

with Rref = 5 · 103 and K = 20. To obtain a more conclusive verdict of
the model performance during backfilling, a detailed determination of the
mean bed shear stress for a scoured bed configuration in waves is required.

Finally, the model results depend on the scour volume time scale tV .
The simulations indicate that a faster scouring process (e.g. S14 to S31) is
related to an increase in τ ′max/τ

′
ref. Conversely, a faster backfilling process

(e.g. B14 to B21) is related to a decrease in τ ′max/τ
′
ref. The simulations also

indicate that the relation is quite non-linear. A ten times faster scouring
process or 10 times slower backfilling process is related to only a 10-30 %
increase of τ ′max/τ

′
ref. For a long-term forecasting method, these indications

are encouraging and bothering at the same time. On one hand, they indi-
cate that the time scale can be uniquely determined for a given bed shear
stress field. On the other hand, even small variations in the bed shear stress
change the order of magnitude of the time scale and thereby alter the fore-
cast completely.
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8. Conclusion

In conclusion, I have here presented the reverse approach and demon-
strated its viability for monopile scour as seen in the contour plots in Figs. 8.6–
8.10. Compared to numerical scour studies based on a forward approach,
the present approach differs in the formulation of sediment pickup in (3.28)
and the assumption of irrotational bed load flux (5.5). For the configura-
tion that is considered in Sec. 7, the maximum amplification of the mean
bed shear stress relative to the far-field is typically between 1.5–2.6 dur-
ing scouring and 1.4–2.3 during backfilling. The maximum amplification
is particularly sensitive to the bed load model and its parameters but also
depends on the intensity and spatial distribution of the bed elevation rate.

Compared to the numerical studies of Roulund et al. (2005) and Zhao
and Huhe (2006) for similar configurations during scouring, the present
results for the mean bed shear stress appear to be in the correct order of
magnitude but fail to reproduce the spatial distribution of the bed shear
stress. This indicates that the model prediction is not mature yet and could
perhaps be improved by changing the formulation of the underlying un-
modified bed elevation rate of Hartvig (2011). For backfilling, no compara-
ble studies appear to be available.

To facilitate a more conclusive assessment and provide data for calibra-
tion, future detailed studies are encouraged. These should treat the near-
bed flow – including the distribution of the mean bed shear stress – around
a monopile in a scoured bed configuration subjected to current or waves.
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Figure 8.1: Interaction between the bed surface, the fluid flow and the sediment transport.
The present paper demonstrates the reverse approach
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Table 8.1: Common properties. Estimated values are denoted with †. For simulation S33,
the values nθ = 500, nr = 384 and r∞ ≈ 60D are adopted

Group Property Value

Sediment

Characteristic grain diameter d = 0.15 mm
Grain concentration maximum Cmax = 0.65 †
Grain concentration in bed Ch = 0.6 †
Static friction coefficient µs = 0.62
Dynamic friction coefficient µd = 0.51 †

Fluid Fluid density ρf = 1000 kg/m3 †
Fluid viscosity ν = 1.3 · 10−6 m2/s †

Sediment-fluid

Gravity acceleration g = 9.81 N/kg †
Relative grain-fluid density s = 2.65 †
Critical Shields number for plane bed ζc0 = 0.05
Sediment-fluid coefficient cl = 0.027 †
Settling speed, computed from (3.32) Wd0 = 0.01 m/s

Bed domain
Pile radius rmin = 0.05 m = D/2
Scour domain parameters rc = 0.23 m, cr = 1.2
Ramp inner and outer radii rd = 0.2 r∞, re = 0.3 r∞
Outer boundary radius r∞ ≈ 20 D

Numerical
resolution

Angular resolution nθ = 400
Radial resolution nr = 238
Entrainment rate iteration coefficient 0.01 ≤ c∆e ≤ 0.10

Unmodified bed
elevation rate

Common properties V0 = 8.0 D3, ψ0 = 7.8
Current properties ψ∞ = 7.5, tψ = 1min, rh = rc
Wave properties c1 = 250, c2 = 1.9
b∗1 properties cp = 1
b∗2 properties cb = 0, θb1 = π, θb2 = 3π/4

Load conditions
Reference bed shear stress τ ′ref = 0.5 Pa
Reference friction velocity U ′fref = 0.0224 m/s
Time t = 0
Wave properties L = 2.6 m, ξ = 0, T = 1.64 s
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Figure 8.5: Example of spatial grid with nθ = 8 and nr = 5. The entire grid is not shown
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Figure 8.9: Bed load flux amplification Qb/Qbref. Above a: S14. Below b: S41

49



 

 

 

 

1.2

1.2
1.2

1.2

1.2

0.8

0.8

0.8

0.8

1.8

1.8

1.4

1.4

1

1

11

1

1

1
1 1

1

1

1

1

11 1

1

1

1 0.6

0
.60.6

0.6

y
[m

]

x [m]

y
[m

]

x [m]

−0.2 −0.1 0 0.1 0.2 0.3

−0.2 −0.1 0 0.1 0.2 0.3

0.088
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
1.702

−0.2

−0.1

0

0.1

0.2

0.137

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.606

−0.2

−0.1

0

0.1

0.2

Figure 8.10: Bed shear stress amplification τ ′/τ ′ref. Above a: S14. Below b: S41
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Figure 8.11: Bed shear stress amplification τ ′/τ ′ref. Above a: S14. Below b: S41
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