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Figure 1: Architecture overview of the proposed intelligent virtual assistant, Max.

ABSTRACT
In the light of recent trends toward introducing Artificial Intel-
ligence (AI) to enhance Human-Robot Interaction (HRI), intelli-
gent virtual assistants (VA) driven by Natural Language Processing
(NLP) receives ample attention in the manufacturing domain. How-
ever, most VAs either tightly bind with a specific robotic system
or lack efficient human-robot communication. In this work, we
implement a layer of interaction between the robotic system and
the human operator. This interaction is achieved using a novel VA,
called Max, as an intelligent and robust interface. We expand the
research work in three directions. Firstly, we introduce a REST-
ful style Client-Server architecture for Max. Secondly, inspired by
studies of human-human conversations, we embed conversation
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strategies into human-robot dialog policy generation to create a
more natural and humanized conversation environment. Finally,
we evaluate Max over multiple real-world scenarios from the ex-
ploration of an unknown environment to package delivery, with
the means of an industrial robot.
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1 INTRODUCTION
In order to leverage Artificial Intelligence (AI) to enhance Human-
Robot Interaction (HRI), manufacturers need to identify the critical
issues of the interaction between operators and industrial robots [8,
14]. The recent technological rise of AI technologies facilitates
industry and research stakeholders to implement more efficient
natural language-basedmethods for HRI [5, 9, 12, 13, 21, 22]. Several
voice-enabled virtual assistants (VA), e.g., Alexa [1] and Siri [2],
are widely available in the context of entertainment or personal
service. They particularly excel in having robust natural language
processing (NLP) capacities and being able to handle continuous
natural dialogues. However, outside of the entertainment domain,
the manufacturing environment mainly focuses on limited, fixed,
and atomic actions, e.g., pick up material/tools.

In particular, to support a flexible and scalable manufacturing
working environment, VAs need to have an intuitive and extendable
architecture able to adapt into various situations, learning capabili-
ties to understand human intents and the ability to control robots
without human intervention.

Furthermore, the current evaluation standards of such VA are
more concerned with task-completion experiences. The available
research on improving the user experience during industrial HRI is
limited [11, 15, 17]. As the most flexible entity in the manufactur-
ing systems, the human operator plays an essential role in overall
productivity. Therefore, it is crucial to design a user-friendly and
human-aware interface to enhance the interaction between indus-
trial robots and human operators [6, 7, 19].

In this work, we present the development of an innovative VA,
named Max, for industrial settings based on a scalable and easily
maintained Client-Server (CS) style architecture. The communica-
tion between Max’s server and client is implemented via highly
flexible RESTful API calls. To enhance the user experience, we in-
troduce human-human conversation strategies based on neural
conversational models [23, 24], and specialized dialogue genera-
tion policies [10, 20, 25]. This way, we can guide Max’s response
generation while leveraging the state-of-the-art Bidirectional En-
coder Representations from Transformers (BERT) [4] model for
interpreting human utterance.

2 METHODOLOGY
2.1 Architecture Overview
The proposed VA, Max, consists of three parts, i.e., voice service,
spoken language understanding component, and a robot control
agent. The Max Client (i.e., voice service and robot control agent)
is implemented on a Raspberry Pi 4. The Max Server is deployed
on University Cloud hosting the spoken language understanding
component. Figure 1 illustrates a high-level system architecture of
Max.

CS style architecture is explicitly chosen to improve scalability
and reduce maintenance cost. The communication between client
and server is achieved through RESTful style API calls. The main
motivation behind this is to enable a loosely coupled language in-
terface to be able to work with various industrial robots. The main
responsibilities of the client are to 1) continuously listen to the
operator’s speech, 2) translate the speech into a transcript, 3) send
HTTP requests which wrap the transcript as a parameter to the

server, 4) invoke robot control agent to control the robot according
to the response from the server, and 5) provide the vocal response
to the human operator. The Max server supports three services: 1)
human intent recognition with dialogue state tracking, 2) robot ser-
vice maintenance and 3) conversation strategy-embedded response
generation.

Since the robot service identification and robot skills repository
are maintained in server-side, the client does not need to bind with
the specific robot. Max’s client sends an update request to the server
when the operator tries to access the robot, which is not recognized
by the client. Thus, the robot control algorithm will be updated in
the back-end. Therefore, all the maintenance are handled in the
central server, and each client is independent of the connected
robot. Furthermore, security and access rights are defined at the
time of set-up of the server so different operators will be assigned
different roles when they access the server through the client.

2.2 Voice Service
The Max voice service mainly includes a speech-to-text service
and a text-to-speech service. To comprehend the operators’ intent,
Max leverages the Google speech-to-text service, Automatic Speech
Recognition (ASR) API, to recognize the operators’ voice signal and
transcribe it. These transcripts (i.e., human utterance) are then sent
to the spoken language understanding service on Max’s server-side
for further processing, e.g., human intent identification.

Max’s response is composed of two parts, text reply for human
operator and commands for controlling the robot (see section 2.4).
To provide a natural and humanized response, Max supports two
text-to-speech solutions to convert the text reply into an audio
sequence and replay it through the speaker; an offline solution
based on the Python package, Pyttsx, and an online one based on
Amazon Polly service.

2.3 Spoken Language Understanding Service
2.3.1 Human Intent Identifier. Different from the open-domain
conversations, the dialogue between operator and robot is mainly
related to the specific manufacturing tasks. Therefore, Max is de-
signed as a task-oriented dialogue system.

In our work, we fine-tune the base BERTmodel, which has larger
feed-forward networks. We train it on our human-labeled training
dataset. The dataset mainly provides dialogues of the manufactur-
ing tasks of using a Mobile Industrial Robot (MiR200) (e.g., please
delivery this box to the warehouse). BERT encodes the user utterance
(including intents, slots annotated with inside–outside–beginning
(IOB) tags and slots values) predicts the requested intent (i.e., intent
requested by the operator for a given robot service) and requested
slots (i.e., requested by the operator in the current utterance).

2.3.2 Conversation Strategies. Comparing with the open-domain
dialogue systems, task-oriented dialogue systems are easier to main-
tain due to specific task domains and pre-built knowledge while
they suffer from lower flexibility and user experience.

In our work, we study the generic conversational strategies
which have been proposed in open-domain conversations [3, 16, 18].
Two conversational strategies, lexical-semantic strategy and general
diversion strategy [25], are selected to increase the task completion



rate and enhance the user experience with a high dynamic and
humanized conversation environment.

Lexical semantic strategy. Different from [25], we apply the
don’t repeat yourself strategy to our VA instead of the human user.
Max can respond differently but remains in the same context when
the operator asks the same things. For example, Max may say: "My
battery is fine at this moment." or "I am fully charged and ready
to work." when the operator queries the battery level of the robot.
General diversion strategy. We introduce two general diversion
strategies: i) initial activities and ii) switch a topic, to provide options
to the operators and attract their attention when the current task
is impossible to continue. Initial activities mean that Max should
be able to initiate a request to start the manufacturing tasks at
the appropriate time. For example, Max may say: "There are two
scheduled tasks today. Would you like me to do them now?". The
robot should be able to switch to a task-related topic, if the current
task is impossible to continue, by responding "Sorry, the location is
not registered in the system. Do you want to mark it on the map
now?".

2.3.3 Robot Skill Identifier. Max is designed to be robot-agnostic
and, therefore, can support various kinds of industrial robots such
as mobile and manipulators. To enable such extended support of
robot services, we define a unified JSON format schema to maintain
the robot control service on the server’s side. Thus, we allow easy
extension and integration of new robot services and APIs.

2.4 Robot Controller Agent
The robot controller agent, as a core part of Max’s client, assists with
the control of the robot according to the operator’s instructions.
There are two types of robot controller agents implemented for
Max, i.e., service maintenance agent (SMA) and service execution
agent (SEA). SMA chooses the right SEA for manufacturing tasks
based on the operator’s voice commands. The maintenance of SEAs
is also performed through SMA, e.g., updating SEA in the back-end
if there is a new version available on Max’s server-side. SEA is
the low-level robot control algorithm which communicates directly
with the robot. In general, the communication between Max’s client
and robots may vary depending on the supported protocols from
the robot, e.g., TCP/IP, OPC-UA. (see Fig. 1).

3 EXPERIMENTAL RESULTS
The experiments conducted for this work are based on MiR 200, a
safe, cost-effective industrial mobile robot that quickly automates
shop floor internal transportation and logistics. We consider the
following three scenarios to evaluate Max’s performance: i) collab-
orative environment exploration, ii) package delivery and iii) conver-
sation strategy-embedded response generation (see Table 1).

3.1 Collaborative Environment Exploration
As an initial test for evaluating Max’s performance, we chose the
collaborative exploration of a shop floor environment. Building a 2D
digital shop floor map of a factory hall is essential for the planning
of autonomous internal transportation tasks and the calculation of
the robot’s operational capacity. Two simple tasks are identified in
this scenario (see Tasks #1 and #2 in Table 1). The tested intentions
here are Check_location and Update_location.

Table 1: Tasks for intent verification

Task id Task description Intent

1 Remove the position
from the digital map

Update_location

2 Check the current loca-
tion on the digital map

Check_location

3 Deliver the package to
the operator in the pre-
defined destination

Deliver_package

4 Initial activities Greeting

5 Switch a topic Ask_help

6 Don’t repeat yourself Check_mission

In this scenario, Max’s server returns the predicted requested
intent and slot values (e.g., Shelf A) from operator’s utterance to
Max’s client (see figure 2). The SMA calls MiR’s SEA, which controls
the MiR 200 through REST API calls, according to the requested
service. The SEA sends the HTTP Delete and Get requests to remove
Shelf A and obtain the storage room’s position from digital map
respectively.

Figure 2: The predicted dialogue service, requested intents
and requested slot values (shown with the blue rectangle)
for the operator utterance.

3.2 Package Delivery
Package delivery is the second scenario for the evaluation of Max’s
performance. As seen in Table 1 and Task #3, Max has to handle
the request to deliver a package to a human operator in a target
location according to oral instruction.

The intent tested here is Deliver_package. Similarly to the pre-
vious scenario, Max’s server returns the predicted intent and re-
quested slot values (e.g, warehouse, box, small) from operator’s
utterance to Max’s client, as Fig. 3 shows. The extracted slot values
are then set as parameters for a HTTP Post request (i.e., package de-
livery request) which will be sent to MiR 200’s internal web server
by SEA.



Figure 3: Max uses two turns to obtain all the requested slot
values from operator’s utterance.

3.3 Testing Conversation Strategy
The last scenario for the evaluation of Max’s performance is focused
on exploring how embedded conversation strategies can improve
the task-completion rate and bootstrap the user experience. Tasks
#4, #5 and #6 are implemented for this scenario as listed in Table 1.
The intents tested in this scenario are i) Greeting, ii) Ask_help and
iii) Check_mission. Figure 4 illustrates the embedded conversation
strategies between Max and an operator. In this case, Max’s client
remains in standby mode until it received a confirmation from the
operator.

Figure 4: The embedded conversation strategies.

4 DISCUSSION & CONCLUSION
Taking advantage of the CS style architecture and RESTful style API
design, Max provides a more flexible and scalable range of services
for HRI in industrial settings. One shortcoming of the CS style

paradigm is the traffic congestion problem, i.e., the response time of
the server may become longer when a high number of simultaneous
requests is sent from the clients. Therefore, the deployment (e.g.,
number of servers, load balance strategy) of the server-side needs
to be carefully designed and tested. In our case, Max’s server is
deployed on a local server and a Cloud server cluster so as the client
requests are forwarded to the cloud in case the number of local
requests reaches the allowed upper limit.

Such dynamic load balance adjustment is achieved by using
Nginx1 (i.e., HTTP reverse proxy) and Gunicorn2 (WSGI HTTP
Server). The results from the stress testing received by Siege3 indi-
cate that the actual maximum concurrent number is 289.79/second
for 100,000 transactions (with transaction rate 14204.55 trans/sec)
in 7.04 seconds. A future improvement will be to ensure security
by verifying the operator’s authority, to avoid the unintentional or
malicious REST API calls for robot control.

The performed experiments took place in our workshop where
the background noise is high, resembling an industrial environ-
ment. We observed that the intent error rate, i.e., misunderstanding
operator’s intent, and slot error rate, i.e., incorrect prediction of
slot value reach 20% to 30% respectively in the workshop while
they remain less than 10% and 5% respectively in a quiet, office
environment.

The accuracy of the prediction of requested slot values depends
on the ambient noise, operators’ voice volume and the physical
distance between the operator andMax’s client, as well as the length
of the sentence. In our package delivery experiment, Max took two
turns to predict the entire requested intent and slot values. Further
work will investigate the noise suppression methods to filter out
the steady-state noise of the environment, such as the sound of
ventilation.

Task-completion experiences are usually considered as the pri-
mary criteria for industrial HRI evaluation. However, it is also
important to mention that the overall effectiveness of the HRI pro-
foundly relies on human productivity and user experience. Based on
our experiments, we observed that the two proposed human-human
conversation strategies, attract the attention of the operators and
create a pleasant interaction.
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