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Solution verification of WECs: comparison of
methods to estimate numerical uncertainties

in the OES wave energy modelling task
Claes Eskilsson, Alex Shiri and Eirini Katsidoniotaki

Abstract—High-fidelity models become more and more
used in the wave energy sector. They offer a fully nonlinear
simulation tool that in theory should encompass all linear
and nonlinear forces acting on a wave energy converter
(WEC). The focus on the studies using are usually dealing
with validation. However, a validated model does not
necessarily give reliable solutions. Solution verification is
the methodology to estimate the numerical uncertainties
related to a simulation. In this work we test four different
approaches: the classical grid convergence index (GCI);
a least-square version (LS-GCI), a simplified version of
the least-square method (SLS-GCI) and the ITTC rec-
ommended practice. The LS-GCI requires four or more
solutions whereas the other three methods only need three
solutions. We apply these methods to four different high-
fidelity models for the case of a heaving sphere. We tested
two parameters in the time-domain and two parameters in
the frequency domain. It was found that the GCI and ITTC
were hard to use on the frequency domain parameters as
they require monotonic convergence which sometimes does
not happen due to the differences in the solutions being
very small. The SLS-GCI performed almost as well as the
SL-GCI method and will be further investigated.

Index Terms—Solution verification, validation & verifica-
tion, computational fluid dynamics, wave energy

I. INTRODUCTION

HOW to estimate the accuracy of a numerical
solution when there is no exact solution to com-

pare against? This is the question at heart of solution
verification. Solution verification is the often overlooked
part of the verification and validation (V&V) procedure
of numerical models. The traditional verification step,
in which we make sure the numerical code is working
correctly by comparing to exact solutions for simplified
equations, can be considered a task for code developers
and thus not applicable when doing numerical analysis
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of wave energy converters (WECs) using established
software. In the validation stage, we make sure that
the underlying mathematical models approximate the
application problem under investigation, typically per-
formed by comparing numerical results to experimen-
tal test data. The vast majority of all studies of WECs
using high-fidelity CFD codes have been targeting vali-
dation, see e.g. [1]–[6] to name just a few [7] and the nu-
merous references within. There even exists dedicated
collaborations that target the validation of numerical
models for wave energy by performing blind-tests and
code-to-code comparison campaigns: the Collaborative
Computational Project in Wave Structure Interaction
(CCP-WSI) [8]–[10] and the Ocean Energy Systems
wave energy modelling task (OES-WEMT) [11]–[14].
Yet, there is another flavour of verification that is often
omitted but should be performed ideally for every
computational case: the solution verification. Here the
uncertainty of the simulations and thus the quality of
the computations are estimated.

A. Solution verification

There exists a rich literature on V&V for general CFD
simulations. The solution verification studies start from
the classical text book of Roache [15] presenting the
fundamental grid convergence index (GCI). In aero-
nautics there exists several standards and guidelines
that dates back decades [16], [17]. With regard to the
marine engineering sector the closest we have to a
standard would be the ITTC recommendations a [18].
However, the ITTC outlines the solution verification
methods but there is little discussion about what vari-
ables to actually measure the convergence.

B. Paper contribution

There have been a work focusing on solution ver-
ification for wave energy converters [19]–[22], and a
number of studies that has employed solution verifica-
tion approaches to prove convergence of solutions, e.g.
[23], [24]. We here present a first comparison of the
uncertainties given by different solution verification
approaches when applied to wave energy application.
However, more important is that the paper tries to
step beyond comparing RAO:s and aims to propose
a set of variables to be used in solution verification of
wave energy applications equally valid for decay and
diffraction tests, regular waves and irregular sea states.



II. SOLUTION VERIFICATION

In the present study we will compare four different
methods to estimate the numerical uncertainty:

• the original grid convergence index (GCI) method
of Roache [25].

• The least-square grid convergence index (LS-GCI)
method of Eca and co-workers [26]–[28].

• a simplified variant of the least-square grid con-
vergence index method (SLS-GCI) as presented by
Tanaka and Miyake [29].

• the International Towing Tank Conference (ITTC)
best practice recommendations [18], which almost
verbatim follow the work of Stern et al. [30].

All methods are fundamentally similar and based on
(i) numerically obtained convergence rates, (ii) Richardson
extrapolation to obtain estimate of the value at zero grid
spacing ϕ0, and (iii) transfer of errors to uncertainty by
means of safety factors or correction factors. Nevertheless,
there are subtle differences in the way the methods are
devised. In the sections below we give details about
the above methods, whereas Table I outlines the pros
and cons of the four methods to be investigated.

A. General definitions
We start by reminding ourselves of the difference

between error and uncertainty. Error (δ) refers to the
difference between a numerical solution (ϕi) and the
exact solution (ϕ0)

δ = ϕi − ϕ0 . (1)

Uncertainty (Uϕi
) defines an interval that should con-

tain the exact solution with a certain degree of confi-
dence, i.e.,

ϕi − Uϕi
≤ ϕ0 ≤ ϕi + Uϕi

. (2)

The basis for obtaining the numerical error is grid
refinement study with m solutions. Let h1 < h2 <
. . . < hm be a sequence of meshes where hi denotes
a representative cell size and h1 the smallest cell size.
The cell size is typically obtained from

hij =

(
Ni

Nj

)(1/d)

, (3)

where N is the element count and d is the the
dimension of the mesh. The cell sizes are non-
dimensionalized by dividing with h1, i.e. hi = hi/h1.
We further introduce the refinement ratio rij = hi/hj .

B. Original GCI method
The original CGI method [25] only requires two

meshes, but in general three meshes are always used
as the estimate for the convergence rate become highly
uncertain for only 2 meshes. The sequence of meshes
require a constant refinement ratio. Traditionally r = 2
is used, but as this can be unsustainable for larger mesh
sizes r =

√
2 is put forward by [30]. Using three meshes

the convergence rate p can be estimated as

p = ln

(
∆32

∆21

)
/ ln(r) . (4)

TABLE I
OUTLINE OF THE SOLUTION VERIFICATION METHODS.

Method Advantages Disadvantages

CGI
• Only 3 meshes
• Easy to implement

• Constant r
• Requires

monotonic
convergence

• Safety factors not
related to conver-
gence

• Does not use stan-
dard deviation

LS-CGI
• Non-constant r
• Safety factors rel-

ated to convergence

• ≥ 4 meshes
• Complex

implementation

SLS-CGI
• Only 3 meshes
• Non-constant r
• Safety factors rel-

ated to convergence

• Complex
implementation

ITTC
• Only 3 meshes
• Easy to implement
• Non-constant r
• Correction

factors related
to convergence

• Avoids overly con-
servative safety fac-
tors

• Requires
monotonic
convergence

where we define ∆ij = ϕi − ϕj . By using Richardson
extrapolation we can estimate the converged value ϕ0

ϕ0 ≈ ϕ1 +
ϕ1 − ϕ2

rp − 1
, (5)

and thus the error

δ1RE = ϕ1 − ϕ0 =
∆21

rp − 1
. (6)

A key step in [25] is that the numerical errors are
converted into uncertainties by means of safety factors
FS , giving

Uϕ = FS |δ| . (7)

In the original CGI method the safety factors are simply
set to 1.25 if three or more meshes are used and 3.0 if
only two meshes are used.

Thus we get the following two expressions of the
uncertainty, one for the finest resolution and one for
the coarser:

U1 =
1.25|∆21|
rp − 1

, (8)

U2 =
1.25|∆21|rp

rp − 1
, (9)

C. Least-square GCI method
A more refined GCI approach is due to Eça and co-

workers [26], [27] using a least-square approach.
The numerical error is estimated as

δRE = ϕi − ϕ0 = ahp
i , (10)



in which p is the numerically obtained order of con-
vergence and a is a case specific constant. Assuming
first and second order convergence as well as a mixture
of first and second order convergence we additionally
have

δ01RE = ϕi − ϕ0 = a01h
1
i , (11)

δ02RE = ϕi − ϕ0 = a02h
2
i , (12)

δ12RE = ϕi − ϕ0 = a11h
1
i + a12h

2
i . (13)

Using a least square approach we then evaluate ϕ0, p
as well as the constants to obtain the errors.

Following [25] the numerical errors are converted
into uncertainties by means of safety factors. Here,
however, the values of the applied safety factors follow
from the convergence. If p > 0 the convergence is
monotone, otherwise it is oscillatory. If in addition the
convergence is in the asymptotic range (0.95 ≤ p ≤
2.05, for a standard second-order scheme) the safety
factor is set to 1.25. If the convergence is monotonic
but not in the asymptotic range, then the safety factor
is set to 3.

In addition, the uncertainties are not only directly
following the computed errors but are also dependent
on the standard deviations. Thus, the larger the mesh
sequence, the more improved the estimated uncertain-
ties become. To summarize, the uncertainties can be
evaluated as

Uϕ =1.25δRE + US if p ∈ [0.95, 2.05] ,
(14)

Uϕ =min
(
1.25δRE + US , 3δ

12
RE + U12

S

)
if p < 0.95,

(15)
Uϕ =max

(
1.25δRE + US , 3δ

02
RE + U02

S

)
if p > 2.05,

(16)

where US , U02
S and U12

S are the standard deviations
obtained from the least square fits. In the case of oscilla-
tory convergence, a range-based estimate is employed

Uϕ = 3δ∆M , (17)

in which the error between the maximum and mini-
mum is obtained as

δ∆M =
max |ϕi − ϕj |
(hm/h1)− 1

1 ≤ i, j ≤ m. (18)

D. Simplified least-square GCI method
As in the LS-GCI method the exact value, the con-

vergence rate and the constants are obtained using
least-squares. This version is alleged to work with only
three meshed. Upper (pu) and lower (pl) thresholds
of the convergence of the discretization schemes are
introduced. In this work we set the lower threshold to
pl = 0.95 and the upper threshold to pu = 2.05, as we
are working with second order discretrization schemes
and in order to harmonize with the LS-GCI method.

The uncertainties are then evaluated as

Uϕ =1.25δRE + US if p ∈ [0.95, 2.05] , (19)
Uϕ =3δ01RE + U01

S if p ∈ (0, 0.95) , (20)
Uϕ =3δRE + US if p > 2.05 . (21)

For the case of oscillatory or not converged solutions
(p < 0) we compute the uncertainty as

Uϕ = Um
S =

√√√√1

3

3∑
k=1

(
ϕk − ϕ̄

)2
, (22)

where ϕ̄ denotes the mean of ϕ.

E. ITTC
The ITTC guidelines [18] lean heavily upon the work

of Stern and co-workers [30], in which uncertainty
estimates are given by using correction factors rather
than safety factors. Stern et al. argues that the safety
factor approach can be overly conservative.

The approach requires only m = 3 solutions, albeit
m = 5 is required if higher-order terms are sought after.
In this work we use m = 3. If r is constant then (4)
can be used. If r is not constant the convergence is
estimated by

p =
ln (∆32/∆21)

ln(r21)
+

1

ln(r21)
(ln(rp32 − 1)− ln(rp21 − 1)) .

(23)
The error is now estimated by (24) multiplied with a
correction factor FC , giving

δ∗RE = FC δ1RE = FC
∆21

rp − 1
. (24)

The correction factor can be estimated as

FC =
rp − 1

rpest − 1
(25)

Here pest is an estimate for the limiting orders of
accuracy in the asymptotic range. In this work we use
the theoretical order of accuracy pest = 2.

The uncertainty is given by bounding the error by
the sum of the absolute value of the correction and the
absolute value of the amount of correction

Uϕ = (|FC |+ |1− FC |) |δ1RE |. (26)

There are several versions of expressions with regard
to uncertainty and correction factors. ITTC [18] lists the
one given by Wilson et al. [31] as recommended:

Uϕ =
(
2.4 (1− FC)

2
+ 0.1

)
|δ1RE |

if |1− FC | < 0.125 (27)
Uϕ =(1− FC) |δ1RE | if |1− FC | ≥ 0.125 (28)

III. PARAMETERS

Of paramount importance of the usability of the so-
lution verification is which parameters we estimate the
numerical uncertainty. Typically the parameters are ex-
pressed in non-dimensional form. This is easily achiev-
able: using response amplitude operators (RAO) for
responses and any forces can be non-dimensionalized
with e.g. the hydrostatic stiffness. In this study we
will use decay coefficient (c) and decay period (Tr) for
decay tests and RAO’s (x̂) and response period (Tr) for
analyses in the time-domain.

However, in order to device a metric usable for all
case, regular as well as irregular, we will look into the
results in spectral form and look at the convergence of



TABLE II
NUMERICAL MODELS USED.

Label Code Main features

RANS1 OpenFOAM-v2212 Incompressible RANS, FVM, implicit timestepping, geometric VOF, mesh morphing
RANS2 OpenFOAM-v2212 Incompressible RANS, FVM, implicit timestepping, algebraic VOF, mesh morphing
RANS3 OpenFOAM-v1912 Incompressible RANS, FVM, implicit timestepping, algebraic VOF, overset mesh
FNPF1 Shipflow MOTIONS-v7 FNPF, BEM, explicit timestepping, MEL

the spectral moments and variables derived from the
spectral moments. Thus, we will compare traditional
parameters based for convergence like RAO and decay
coefficients to their spectral moments. We define the
spectral moments as

mn =

∫ ∞

0

fnF (f)df (29)

where f is the frequency and F is a function. Especially,
we will look into the convergence of the variance σ =√
m0 and the response period given by T02 =

√
m0/m2.

IV. NUMERICAL MODELS

In contrast to the previous work [12] and [13], this
study is restricted to the use of high-fidelity models,
i.e., unsteady RANS and FNPF models. For high-
fidelity models numerical discretization errors are im-
portant and thus we can use solution verification pro-
cedures developed for general CFD. For LPF/WNPF
models the modelling errors are dominant and thus
the estimation of δ0 can not be done by the same ap-
proach as for the high-fidelity models. Hence, we stress
that the solution verification approaches discussed in
section II are not directly applicable to LPF/WNPF
models.

The four different numerical models used and their
main features are presented in Table II. Out of the
four models, two are versions of the Reynold-averaged

Navier-Stokes multi-phase interFoam solver in the
OpenFOAM open-source framework founded on the
cell-centred finite volume method (FVM) [32], [33].
Another is a version of the interIsoFoam solver also
available in OpenFOAM. The main difference between
these two solvers are the use of algebraic vs geometric
volume of fluid (VOF) implementations. interFoam
relies on the so-called multidimensional universal lim-
iter for explicit solution (MULES) and an interface com-
pression scheme. In contrast, interIsoFoam relies on
the geometric VOF called isoAdvector as presented in
[34]. IsoAdvector reconstructs the interface inside the
cells using an isosurface concept. Additionally, we use
two different mesh motion strategies inside OpenFOAM:
the classical mesh morphing approach and the overset
mesh where a separate body mesh moves on top of a
background mesh.

The last model solves the fully nonlinear potential
flow (FNPF) equations, i.e. the Laplace equation to-
gether with the fully nonlinear free surface conditions.
The FNPF model used is the Shipflow-Motions 7 [35],
[36]. The FNPF equations are solved using an unsteady
three-dimensional boundary element method (BEM)
together with a mixed Eulerian–Lagrangian method
(MEL) for the free surface. The BEM model is a surface
model, with panels om the body and free surface (and
also on the bottom for finite depth cases). In contrast
to the FVM volume methods, the BEM surface method

Fig. 1. Decay tests of a sphere. Top: Photos of the sphere at the initial positions for the three drop cases. Bottom: Normalised time series of
recorded heave motion for the three drop height. From [13].



TABLE III
SPHERE DATA. FROM [13].

Parameter Unit Value

Diameter (D) m 0.300
Mass (m) kg 7.056
Center of gravity (CoG) m (0, 0, -0.0348)
Roll moment of inertia (Ixx) kgm2 0.098251
Pitch moment of inertia (Iyy) kgm2 0.098254
Yaw moment of inertia (Izz) kgm2 0.073052
Water depth (d) m 0.9
Acceleration of gravity (g) ms−2 9.82
Water density (ρw) kgm−3 998.2

uses significantly less degrees of freedom top handle
the problems.

V. TEST CASES

We use the fundamental case of a heaving sphere
for this work. The heaving sphere was initially in-
vestigated in full-scale (with a sphere diameter of
D=10 m) as the first test case of the OES-WEMT [12].
Decay, regular waves and irregular wave cases, with
different power take-off (PTO) damping coefficients,
were investigated in [12], [37]. The decay test was later
re-visited in model-scale (D=0.3m) in Kramer et al. [13].
Kramer et al. performed an highly-accurate experimen-
tal campaign, with an experimental uncertainty below
0.3 % in response amplitude, see Fig. 1. In this work
we use the model-scale set-up [13], with Froude-scaled
settings taken from [12] where needed.

The experimental campaign was carried out in the
wave basin at Aalborg University, Denmark. The wave
tank is 13.00×8.44m with 0.9m water depth. The origin
of the global coordinate system is located in the middle
of the basin with z-axis pointing upwards from the
still free surface elevation. The origin of the body local
coordinate system is located at the center of the sphere;
and coincide with the global coordinate system when
the sphere is at equilibrium. The sphere is defined in
Table III. As the sphere is restricted to move in heave
only, there is no mooring defined for the sphere cases.

A. Mesh sequences

The choice of mesh sequence greatly affects the
later analyses. Here we use sequences made up of
six meshes designed so a subsection of the meshes
give rise to a three mesh sequence with constant re-
finement ratio, as required by the CGI method. Fig. 2
shows the meshes used for the RANS1 and RANS1
models. The meshes have been uniformly refined by
changing the underlying base resolution and keeping
the relative refinement defined by the refinement boxes
equal in all meshes. The resulting number of cells are
N = [9.91, 3.79, 2.00, 0.87, 0.28, 0.05] million cells.

The RANS3 model uses overset meshes
with a baseline mesh size of h =
[0.06, 0.03, 0.021, 0.015, 0.011, 0.0075] m with
refinement zones around the free surface.

M6

M4

M2

M5

M3

M1

Fig. 2. Example of the mesh sequence used for the RANS1 and
RANS2 models.

The FNPF1 model uses the same panel num-
ber for the free surface (≈ 4000) with refinement
around the body. The body mesh is refined as: N =
[500, 1125, 2000, 3125, 4500, 6125] panels.

B. Heave decay of a sphere
Three drop heights (H0) were considered in the

experiments: H0 = [0.1D, 0.3D, 0.5D]. The largest drop
height equals the sphere just being lifted out of the
water, see Fig. 1. The analytical damped natural period
is Te0 = 0.76 s [13]. From the experimentally recorded
non-dimensional response in Fig. 1 we see that not
much differs between the 0.1D and 0.3D cases. Thus
we only consider the 0.1D and 0.5D cases in the
numerical analysis.

Fig 3 and 4 show an example of the results in
time- and spectral domain using the RANS1 model.
From visual inspection it appears only the most coarse
mesh gives different solutions, the lines appear to be
on top of each other. We also see that the spectrum
gets wider and that even in the decay tests there are
multiple frequencies active. For the 0.5D case there is
a pronounced skewness to the spectrum.

C. Heaving sphere in regular waves
This section uses a Froude scaled setting of the cases

modelled with LPF/WNPK in [12]. The model-scale is
λ = 1/33.33. We choose the settings that yields the
largest heave response according to [12]: an incident
Stokes V wave at the resonance period Te0 = 0.76 s
with wave steepness H/L = 0.0628 (H = 0.05845 m
and L = 0.9317m) and no PTO damping.

Fig 5 shows an example of the results in time- and
spectral domain using the RANS1 model. In contrast
to the previous test case, here we see a more standard
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Fig. 3. Heave decay of a sphere with 0.1D drop height for different
mesh resolutions for model RANS1. Top panel: time series and
bottom panel: frequency domain.
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Fig. 4. Heave decay of a sphere with 0.5D drop height for different
mesh resolutions for model RANS1. Top panel: time series and
bottom panel: frequency domain.

convergence with the amplitude growing with increas-
ing mesh size.

VI. UNCERTAINTY RESULTS

We use the LS-CGI results as a baseline as they
are performed using the largest mesh sequence. Thus,
we will present those results in some detail and then
compare the results from the other methods to the LS-
CGI results.

A. Heave decay of a sphere
We start by comparing the different numerical mod-

els behavior using the LS-GCI method. The results
are shown in Fig. 6. The immediate results is that
the results from the RANS3 model is associated with
larger uncertainties than the other three models. This

15 15.5 16 16.5 17 17.5 18
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0 1 2 3 4 5
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0.2

0.4

0.6

0.8

Fig. 5. Heave motion of a sphere in regular waves for different mesh
resolutions for model RANS1. Top panel: time series and bottom
panel: frequency domain.

highlights the difficulty in defining an overset mesh
and that overset meshes can have larger uncertainties
than more standard mesh-morphing approaches. We
also see that the RANS1 model exhits somewhat larger
uncertainties than the RANS2 model especially for the
coarser meshes. The RANS2 model provides excellent
results for coarse meshes for the smaller motion 0.1D
case. The FNPF1, with regard to uncertainties, give
very good results already for the M5 mesh as it is only
M6 that shows a larger uncertainty than the 5% rule-
of-thumb. This is partially due to the fact that it is only
the body mesh that changes, while the surface mesh is
already well resolved even for the M6 mesh.

Comparing the uncertainties of the time-domain
variables to the frequency domain variables, there is a
general agreement. If the time-domain solutions have
a U < 0.05 then most likely also the frequency domain
solutions will have a low uncertainty. There were more
instances of non-monotonically converged solutions
for the frequency domain variables. These instances
were mostly due to the error being so small it became
unstable to compute the least-squares. However, U still
became small as the range-based estimate (17) was
small since the differences in ϕi were minute.

Clearly, the 0.1D case is more difficult to resolve
with low uncertainty. From Fig. 6, we would conclude
that RANS1 model would need to use the M3 and M5
meshes for the 0.1D and 0.5D cases, respectively. The
RANS2 model would manage with the M5 mesh for
both cases, whereas the FNPF1 model need M5 for
0.1D but can use the coarsest M6 mesh for the 0.5D
case. The RANS3 model is yet not fully converged.
However, it is more interesting to look at the accuracy
of the solutions versus the computational cost. Fig. 7
shows the uncertainty versus computational cost in
CPU hours. We see that the FNPF1 models are surpris-
ingly heavy, we would expect the FNPF to be at least
an order of magnitude faster. This is of course due to
using a fixed resolution of the free surface that gives a
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Fig. 6. Heave decay of a sphere with 0.1 drop height (top panel) and 0.5D drop height (bottom panel). Uncertainties for different mesh
resolutions for different models using LS-CGI. The solid red lines show the 5% uncertainty.

larger than necessary overhead. It can alse be seen that
even though the RANS2 model is more accurate per
resolution than RANS1, it is also more computational
costly, so the ’accuracy per CPU hour’ becomes more
similar for the 0.5D case. For small motions the RANS2
method is still to be recommended.

We use the M6, M5 and M3 meshes for comparing
the LS-CGI computed uncertainties to the original CGI,
SLS-GCI and the ITTC approaches. We present the
uncertainties using the different methods for RANS1
model the M3 mesh in Table IV. The original GCI and
ITTC methods fails for non-monotonically converging
cases as seen by the dashes in the table. This is a
significant shortcoming as we see that for the frequency
based parameters we can get oscillatory convergence
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Fig. 7. Heave decay of a sphere with 0.1 drop height (top panel) and
0.5D drop height (bottom panel). Uncertainties for different mesh
resolutions for different models using LS-CGI versus computational
effort. The solid red lines show the 5% uncertainty.

due to the very similar values. This is naturally covered
by the least square methods. Otherwise the simpler
three mesh methods provide good estimated compared
to the six mesh LS-GCI method. For the 0.5D case the
time-domain uncertainties are very similar, whereas for
the 0.1D case the uncertainties are somewhat under-
predicted.

B. Heaving sphere in regular waves

We repeat the above exercise for the case of a regular
wave. The time-series and spectrum presented in Fig. 5
are processed using the LS-GCI method for the time-
domain variables of heave RAO (X3) and response
period (T ), as well as for the variance of the spectrum
(σ =

√
m0) and the spectral response period (T02 =√

m0/m2). The resulting uncertainties are presented in
Fig. 8. This is a significantly harder case than the decay
tests, and clearly none of the models are even close
to be numerically converged. This is in stark contrast
to the outcome of a more traditional grid convergence
study done by plotting the solutions like in Fig. 5. From
Fig. 5 it would be tempting to state that M1 is indeed
a grid independent solution, but the results in Fig. 8
clearly show how wrong such as conclusion would be.

TABLE IV
UNCERTAINTIES FOR THE DECAY TEST USING DIFFERENT METHODS.

Case Parameter LS-CGI SLS-CGI GCI ITTC

U(Td) 4.00E-02 6.30E-04 3.76E-04 2.49E-04
0.1D U(cd) 2.62E-02 2.40E-03 1.35E-03 6.36E-04

U(T02) 2.03E-02 4.66E-02 — —
U(σ) 3.42E-02 1.12E-01 — —

U(Td) 1.42E-02 1.88E-02 2.48E-02 1.18E-02
0.5D U(cd) 4.47E-03 7.41E-03 9.87E-03 5.26E-03

U(T02) 1.02E-03 1.12E-04 6.26E-05 2.69E-05
U(σ) 1.60E-03 1.07E-03 — —
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This case requires significantly denser meshes to yield
reliable solutions.

VII. CONCLUSION

To judge the reliability of numerical solution can be
done by means of V&V methodologies and especially
should solution verification be carried out on a regular
basis. There are many versions of solution verification
approaches and we have used the least-square grid
convergence index (LS-GCI) method [27] as our base-
line method as it is the most flexible, but also the most
costly (more than four meshes) and it can be a bit
complex to implement. Nevertheless, there exist freely
available tools, e.g. the toolbox [38] from Marin comes
highly recommended. Of the methods that only rely
on three meshes the original GCI and ITTC methods
fails for non-monotonically converging cases which is a
significant shortcoming. The simplified LS-GCI method
[29] appears to match the LS-GCI method for the decay
cases and will be further tested.

The comparison between standard time-domain and
straightforward spectral parameters based on spectral
moments was initiated. This investigation is done in
order to standardise the metric used when estimating
the numerical uncertainty of high-fidelity modelling of
WECs. A spectral moment based metric is independent
of whether we are dealing with a decay, diffraction,
regular or irregular wave case. The results in this
study indicate that it might be feasible route, albeit
it is a significant short coming of the study that no
irregular waves were studied. This is on-going work
but running full irregular sea-states in CFD is highly
time-consuming.

Finally, to define and implement standardized meth-
ods to express the confidence in numerical simulations
of WECs are of utmost importance. Today, there is
no guidelines specific for WECs, the closest would be
the recommendations of ITTC [18]. The present study
was initiated within the Ocean Energy Systems wave
energy modelling task, and we hope this work will
continue in that project.
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