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1. REVIEW OF PROBABILITY THEORY 

1.1 Stochastic variables 

A probability space is a triple (n, u, P), where n is a sample space, u is a sigma algebra 
and P is a probability measure. A sample space n is a set of all probable outcomes of 
an experiment. The elements w E n , the sample space, are named elementary events or 
sample points. A set of elementary events is named an event, i.e. A ~ n . The empty set 
0 is named the impossible event, and n itself is named the safe event. A sigma algebra, 
u, of the sample space n is a nonempty set of events (i.e. a set of sets) of n with the 
property 

(1.1) 

(1.2) 

Eq. (1.1) claims that if the event A c n is included inn, so is the complement, Ac. Eq. 
(1.2) says that if a finite sequence of events A1 , ... ,An are all in n, so is the union of the 
events. Actually, eq. (1.2) is claimed to be valid even if a countable infinite number of 
events is considered. Eqs. (1.1) and (1.2) are sufficient to prove that u is closed under 
all conventional set operations. 

Example 1.1: Intersection of events is an event 

Let A E lT AB E 0'. From De Morgan's law it then follows 

(1.3) 

The right-hand side is an event from the axioms (1.1) and (1.2). So, the left-hand side is an event. 
From eq. (1.1) follows that its complement ((An B)ct =An B is an event too. 

A probability measure, P : u --7 [0, 1], is a function which relates each element of u 
(each event) with a number in the closed interval from 0 to 1. More precisely, the 
following axioms are to be fulfilled by a legal probability measure 

1. 'v'A E u: P(A) E [0, 1] (1.4) 

2. P(n) = 1 (1.5) 

n 

3. If AI,A2, ... ,An are mutually disjoint then (Ui=1Ai) = LP(Ai) (1.6) 
i=l 

Events A, B E u are mutually disjoint, if their intersection An B = 0. Eq. (1.6) is 
requested to be valid even for countable infinite many disjoint events. 
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A stochastic variable X : n--+ R is a function with the property, that 

Vx ER: {wEn I X(w) ~ x} E (T 

0 
X 

X 

Figure 1.1: Definition of a stochastic variable. 

(1.7) 

For each w E n, the stochastic variable defines a real value X(w) E R. For some 
X consider the semi-infinite interval]- oo,x] . {w E n I X(w) ~ x} indicates the 
elementary events, which are mapped into the said interval. This set can always be 
defined, but need not be included in the sigma algebra u. However, if the function 
X ( w) qualifies as a random variable, { w E n I X ( w) ~ x} is indeed an event (a member 
of u) no matter which semi-infinite (no matter which x) is considered. The event 
{ w E n I X ( w) ~ x} can then be related with a certain probability, which is denoted 
the probability distribution function Fx ( x) of the stochastic variable X defined as 

Fx(x) = P({w En I X(w) ~ x}) = P(X ~ x) (1.8) 

The name, probability distribution function, indicates that the probability is a function 
of the considered semi-infinite interval as defined by x. Set signs around events, and the 
argument, w, of the random variable will usually be omitted in what follows, as shown 
by the abbreviated notation in the last statement of eq. (1.8) . Further, stochastic 
variables are designated with capital letters, whereas the sample values are indicated 
with lower case letters. 

Notice that 

{ w E n 1 x ( w) ~ - oo} = ·0 

{wEn I X(w) ~ oo} = n 

{wEn I X(w) ~ b} ={wEn I X(w) ~a} u {wEn I a< X(w) ~ b} 

where the latter events in eq. (1.11) are mutually disjoint. From eq.(1.6) follows 

Fx(-oo) = 0 

(1.9) 

(1.10) 

(1.11) 

(1.12) 
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Fx( +oo) = 1 (1.13) 

P(a <X~ b)= Fx(b)- Fx(a) (1.14) 

The range flx = X(w) may either be discrete (either finite or countable infinite) or 
continous. Correspondingly, X is named a discrete or a continous stochastic variable. 

X 
X 

-----------------+x3 

Figure 1.2: Discrete stochastic variable. 

The probability function of a discrete stochastic variable is defined from 

Px(xi) = P({w En I X(w) =xi}) i = 1,2 ... (1.15) 

Below in table 1.1 some well-known probability functions for discrete stochastic variables 
are listed 

Distribution Probability function Parameters Short notation 

Px(x) = (:)p"'(1-p)n-x, 
n: Number of trials X"' 

Binomial 
B(n,p) p : Probability of success 

X= 0, 1, 2, ... 

Geometric Px(x) = p(1- p)"'- 1 p: Probability of success 
X"' 
Ge(p) 

X= 1,2, . .. 

Hyper- Px(x)=(~) (~=:) N : Total population 
X"' n : Number drawn 

geometric (~) m : Favourable objects 
H(N,n,m) 

X= 0, 1, 2, ... 
~ X"' 

Poisson Px(x) = exp(->.) "'' >.: Mean number of successes 
Po(>.) 

x=0,1,2, ... 

Pascal (n+x-1) n : Number of successes X"' 
Px(x) = x p"'(1- p)"' 

p : Probability of success Pa(n , s) 
X= 0, 1, 2, ... 

Table 1.1: Probability functions for discrete stochastic variables. 
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X 

x +dx 

X 

Figure 1.3: Continuous stochastic variable. 

Assume that X is a continuous stochastic variable. The probability of having samples 
in the interval ]x, x + dx] follows from eq. (1.14) 

dFx(x) 
P(X E]x,x + dx]) = Fx(x + dx)- Fx(x) = dx dx (1.16) 

The probability density function of the stochastic variable is defined by 

fx(x) = dFx(x) 
dx 

(1.17) 

A continous stochastic variable is completely specified by its probability density function 
(pdf). Below in table 1.2 some well-known pdf's for continuous stochastic variables are 
listed. 

Distribution Density function Short notation 
0 ' x<a 

Uniform fx(x) = 1 a~x~b X"' U(a , b) b- a ' 
l 0 ' X > b 

Normal fx(x) = Eu exp ( -t (x:r)2
) ' 

X ER X "' N(J.L, o-2 ) 

0 
' 

x<O 
Gamma fx(x) = < ~ X "' Ga( er, {3) 

Na+llx" exp( -{3x) ' x~O 

0 
' X< 0 

Exponential fx(x ) = 
{3 exp( -{3x) X~ 0 

X "' E({3) 

' 
0 

' X < 0 
Rayleigh fx(x) = 

x ( xl · ) x~O 
X"'R(o- 2

) 
~ exp - 2u2 ' 
0 

' x<O 
Weibull f x(x) = < 

2-(~)"-lex (-(~t) 
X"' W(xo, Xt, er} 

Xt Xt p Xt ' x~O 

Table 1.2: Density functions for continuous stochastic variables. 

In order to introduce the probability density function of a discrete stochastic variable 
the so-called Dirac's delta function must be defined. 
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H(x) 

X X 
------------~-----------------

I 
(; 

X 

Figure 1.4: a) Ramp function . b) Derivative of ramp function. 

o(x) 

X 

Consider the ramp function H~(x) shown in figure 1.4a. It 's derivative o~(x) as shown 
in figure 1.4b is characterized by being 0 outside the interval x E [-~, ~], where the 
value ~ is attained. The area below the graph is obviously 1 for all c. Dirac's delta 
function can then be visualized as the limit of 8~( x) as c --t 0, preserving the area 1, but 
with infinite value at x = 0. The limit of the ramp function H~(x) as c --t 0 is named 
the Heaviside's unit step function H(x) defined as 

H(x) = { 
0, 

1, 
x<O 
x~O 

(1.18) 

Formally, Dirac's delta function can be thought of as the derivative of the Heaviside's 
unit step function. This interpretation is usual in engineering texts, but may cause 
winces in the face of a mathematician. 

Let f( x) be continuous at the point x = xo. Then 

oo xo+~/2 

J o(xo- x)f(x)dx = lim J o~(xo- x)f(x)dx = 
~--o 

-oo xo-~/2 

xo+e/2 

lim f(xo) J ~dx = f(xo) 
~--o "' 

(1.19) 

xo-~/2 

Eq. (1.19) states the fundamental property of the Dirac's delta function. 

In fig. 1.5 the probability distribution function of a discrete stochastic variable is shown. 
It appears as a step function, which is right continuous (i.e. Fx(xi) = Fx(xi+t:), c > 0). 
The probability function Px(xi) indicates the magnitude of the jumps. Formally, the 
probability density function of such a step function appears as a sequence of Dirac's 
delta-spikes with intensity Px(xi) as shown in fig. 1.5. 
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In fig. 1.6 the corresponding probability distribution and density functions of a contin
uous stochastic variable are shown. 

Generally, the sample space consists of discrete and continuous parts. In fig . 1. 7 the 
probability distribution function and the probability density function of the so-called 
mixed type are shown. The probability Px(xi) of obtaining the discrete sample Xi 
appears as a jump in Fx(x) and as a delta-spike in fx( x ). Again, the probability 
distribution function is right continuous at the discontinuity points. 

a) Fx(x) 

1 

•} Px(x2) 
: } Px(x3) 

} Px(x 1) X 

x, x2 x3 

b) fx(x) 

Px(x 1) 

X 

x, x2 x3 

Figure 1.5: Probability distribution function and probability density function for a 
discrete stochastic variable. 

a) 

1 

b) 

Figure 1.6: Probability distribution function and probability density function for a 
continuous variable . 
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a) Fx(x) 
I 

1 I I 
I ~ 
~)Px(x,) 

} Px(xJ 
I 

I I 
I I X 

2 

I I 

fx(x) 
I I 
I I b) 
I I 
I I 
I I 
I I 
I Px(x1) Px(x2) 1 
I I 
I I 

X 

XI Xz 

Figure 1. 7: Probability distribution function and probability density function of a 
stochastic variable of mixed type. 

y 

Oy 
X 

Figure 1.8: 2-dimensional stochastic variable. 

Let X and Y be stochastic variables defined on the same sample space n. The pair is 
termed a 2-dimensional stochastic variable. Consider the events {wEn I X (w) ~ x} E 
CT and {wEn I Y(w) ~ y} E CT. Then, the intersection {wEn I X(w) ~ x} E CT n {wE 
n I Y(w) ~ y} E u is also an event for which a probability is defined for arbitraty x and 
y, see fig . 1.8. 

The probability distribution, Fxy(x, y), of the 2-dimensional stochastic variable is de-
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fined from 

Fxy(x ,y) = P({w En I X(w):::; x} E u n {wEn I Y(w):::; y} E u) 

= P(X:::; X 1\ y:::; y) (1.20) 

Since {wEn I X(w) < oo} ={wEn I Y(w) < oo} =nand {wEn I X(w) < - oo} = 
{ w E n I y ( w) < -00} = 0' it follows 

Fxy(x,oo) = P({X:::; x} n D)= P({X:::; x}) = Fx(x) (1.21) 

Fxy (oo,y) = P(n n {Y:::; y}) = P( {Y:::; y}) = Fy (y) (1.22) 

Fxy(oo,oo) = P(nnn) = P(D) = 1 (1.23) 

Fxy ( -oo, y) = P(0 n {Y:::; y}) = P (0) = 0 (1.24) 

Fxy (x, -oo) = P( {Y :::; y} n 0) = P (0) = 0 (1.25) 

The range Dxy of the 2-dimensional stochastic variable may either be discrete (finite 
or countable infinite number of points (xi, Yi) E R2

) or continuous. In the latter case 
nxy forms a subset of R2 . Correspondingly, [X, Y] is named a discrete or a continuous 
stochastic variable. [X, Y] is discrete if both X and Y are discrete, continuous if both 
X and Y are continuous. Else, [X, Y] is of the mixed type. 

The probability function of a discrete stochastic variable is defined from 

Pxy(Xi,Yi) = P({w En I X(w) =Xi 1\ Y(w) = Yi) (1.26) 

The probability density fxy of a continuous 2-dimensional stochastic variable is defined 
from the mixed derivative 

(1.27) 

fxy (x, y) dxdy signifies the probability ofthe event {w En I X < X (w) :::; x+dx }n{w E 
n I y < y ( w) :::; y + dy}. Hence, f XY (X' y) is a non-negative function of X and y. The 
probability that [X, Y] is in any subset of Dxy is obtained by integrating fxy(x , y) 
over that [X, Y] is in any subset of nxy i obtained by integrating fxy(x, y) over that 
subset. As an example the following probability becomes 

bt b2 

P(a1 <X:::; b1/\ a2 < Y ::S b2) = J J fxy (x,y)dydx (1.28) 

a1 a2 
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y 

X 

Figure 1.9: Evaluation of integral by means of probability density function. 

From eqs. (1.21- 1.25) and eq. (1.27) follow, see fig. 1.9. 

X y 

Fxy (x, y) = j j fxy (x, y) dydx (1.29) 

-oo -oo 

The integral (1.28) can be evaluated in terms of the probability distribution function as 
follows 

bt b2 

P(a1 <X :S: b1/\a2 < Y :S: b2) = j j fxy(x,y)dydx = 

bt b2 a1 b2 

j j fxy (x, y) dydx- j j fxy (x, y) dydx = 

bt b2 bt a2 

j j fxy(x,y)dydx- j j fxy(x,y)dydx 
-oo -oo -oo -oo 

-la~ lb: fxy (x, y) dydx +la~ J:~ fxy (x, y) dydx = 

Fxy (b1, b2) - Fxy (b1, a2) - Fxy (a1, b2) + Fxy (a1, a2) (1.30) 

The events A E u and B E u are said to be independent if 

P(AnB) = P(A)P(B) (1.31) 

Now, let A= {wEn I X(w) E ]x,x+dx]} and B ={wEn I Y(w) E ]y,y+dy]}. 
The stochastic variables X og Y are said to be mutually independent, if these events 
are independent for any x and y. Obviously, this is the case only if 
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fxy (x, y) = fx (x) fy (y) (1.32) 

Let X 1 , X 2 , ... Xn be a set of stochastic variables all defined on the same sample space n. 
Then [XI, Xz, ... , Xn] is termed an-dimensional stochastic variable or an-dimensional 
stochastic vector. As a straightforward generalization of the 2-dimensional case, the 
distribution function of [XI ,Xz, ... ,Xn] is 

(1.33) 

Depending on whether the range nxlx2···Xn is discrete or continuous, [XI' Xz' ... 'Xn] is 
said to be a discrete or a continuous n-dimensional stochastic variable. The probability 
function of a n-dimensional stochastic variable is defined from 

(1.34) 

If the range is continuous the probability density function of [X I, Xz, . .. , X n] is defined 
as the nth order mixed derivative 

(1.35) 

Using the vector notation xr = [XI ,Xz, ... 'Xn] and fx (x) = fxlx2···Xn (xi' Xz, ... 'Xn) 
the probability that a continuous n-dimensional stochastic variable X is in an arbitrary 
domain D ~ nx can be written 

P (X E D) = L fx ( x) dx (1.36) 

The vector [XI, Xz, ... , Xn] is said to bean-dimensional normally distributed stochastic 
variable, in short notation X "-' N (ft, C), if 

fx (x) = l 1 exp (-~ (x- ILl c-I (x- 1-L)) 
(27r)If(det(C)) 2 2 

(1.37) 

where fL is an n-dimensional vector and C is a symmetric positive definite matrix. 
det (C) is the determinant of C which is always positive. 
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Example 1.2: Two-dimensional normally distributed stochastic variable 

For a two-dimensional normally distributed variable, one may write 

(1.38) 

The matrix C will be positive definit, if p2 < 1. Then eq. (1.37) attains the form 

(1.39) 

where 

Xj -J-'i 
~i = ' i = 1, 2 (1.40) 

CTj 

1.2 Combined stochastic variables 
X y 

g 
y 

Figure 1.10: Combined stochastic variable. 

Consider the real function g : R ~ R. The combined mapping Y : n ~ R, : Y ( w) = 
g (X ( w)) can then be defined. Per definition Y is a stochastic variable, if 

Vy ER: {wEn I g(X(w)) ::::; y} E 0' (1.41) 

Eq. (1.41) cannot be true for arbitrary real functions g (x). However, the class of 
functions (the so-called Borel measurable functions) for which it is true is extremely 
large. Without any practical restrictions, eq. (1.41) can then be assumed to be fulfilled. 
Y is called a combined 3tocha3tic variable. 

Assuming t he distribution function Fx (x) or the probability density function fx (x) of 
X is known, one may want to know the distribution function Fy (y) or the probability 
density function Jy (y) of the combined stochastic variable. In the simplest case we may 
assume g ( x) to be a differentiable monotonous increasing or decreasing function of x, 
and that X is a continuous stochastic variable. The probability of {Y E ]y, y + dy]} is 
then equal to the probability of {X E ]x,x + dx]}, where y = g (x). Hence, 
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fy (y) dy = fx (x) dx <=> 

fy (y) = fx (x) I g'~x) I = fx(9-
1
(Y)) I g'(g!l(y)) I (1.42) 

where g' ( x) = d~Sx) and x = g-1 (y) signifiy the inverse function. If g ( x) is not 
monotonous, the probability distribution function Fy (y) can be evaluated from the 
basic definition 

Fy (y) = p (Y :S y) = p (g (X) :S y) = J fx (x) dx (1.43) 

{xEnx jg(x)~y} 

where the integral is evaluated over the set { x E nx I g ( x) :S y}, i.e. these points of 
the sample space where g (x) :S y. 

Example 1.3: Distribution of the square of a stochastic variable 

Let Y = g (X) = X 2 . Eq. (1.43) then provides for the probability distribution function of Y 

Fy (y) = P ( x 2 ~ v) 

= { : ( -fy ~ X ~ ..JY) 

= {~X (..JY)- Fx (-..JY) 

,y < 0 

, y ~ 0 

, y < 0 

,y ~ 0 

The probability density function of Y then becomes 

fy (y) = { :./y(/x(../Y) + fx( -fy)) 

Example 1.4: Inverse method 

Fx(x) 

X 

,y ~ 0 

, y > 0 

Figure 1.11: Illustration of the inverse method 

(1.44) 

(1.45) 
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Let X be a continuous stochastic variable and define Y = Fx (X), i.e. g(x) has been 
chosen as the monotonous increasing function Fx ( x). From eq. ( 1. 41) it then follows 
for the probability distribution function of Y 

Fy (y) = P (Y :::; y) = P(Fx (X):::; y) 

={ 
0 ,yE )-oo,O( 
p (X :::; Fxt (y)) ,yE(0,1) 

1 ,yE )1, oo[ 

={ 
0 ,yE)-oo,O[ 

Fx (Fx1 (y)) = y ,yE(0,1) 

1 , yE )1, oo[ 

The probability density function then becomes 

jy (y) = { ~ , y E )-oo, 0( U ]1, oo( 
, yE [0, 1] 

(1.46) 

(1.48) 

Hence, Y f"'oJ U (0, 1). This observation forms the basis of the so-called inverse method for 
generating samples x of a stochastic variable on a computer. A sample of Y f"'oJ U (0, 1) 
is generated by a so-called pseudo random number generator, and the realizations of X 
are then calculated from x = Fx1 (y). The principle is illustrated in fig. (1.11). 

Example 1.5: Log-normally distributed stochastic variable 

Let X rv N(J.L, a-2 ) and y = g(x) =ex. Then g1 (x) = ex,x = g- 1 (y) = 1ny,g1 (g-1 (y)) = y. Hence, 

1 ( (lny- J.L) 2
) 1 

fy(y) = ...J2;o- exp - 20"2 y' y > 0 (1.49) 

A stochastic variable with the pdf given by eq. (1.49) is termed a log-normally distributed variable, 
Y"' LN (J.L, a-2

). 

The principle of combined stochastic variables can be generalized to stochastic vectors. 
Let X ( w) be a n-dimensional stochastic vector, and g : Rn -+ Rm a m-dimensional 
stochastic vector function. Then a m-dimensional stochastic vector Y : n -+ Rm is 
defined from the combined mapping 

Y (w) = g(X(w)) (1.50) 

As an example consider the linear combination 

Y =A+ BX (1.51) 
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X is an n-dimensional stochastic variable, A is an n-dimensional deterministic vector 
and B is an n x n dimensional non-singular deterministic matrix. The inverse transfor
mation becomes 

X= B-1 (Y- A) (1.52) 

Consider the small volume ~x placed at x. ~x is mapped into ~y a t y = A + Bx by 
the mapping (1.51). In the limit as ~x and ~y goes to zero, they are related through 

~y 
~x =I det (B) I (1.53) 

The probability that YE ~y is equal to the probability that X E ~x. Hence, 

jy (y) ~y = fx (x) ~x ==> 

fy (y) = fx(B-1(y - A)) I det~B) I (1.54) 

If X"' N (J.t, C) , it follows from eq. (1.37) that 

exp (-~ (B-1 (y- A)- J.t)T c-1 (B-1 (y- A)- JL)) 
jy (y) = n 1 

(27r)2 (det(C))2 I det(B) I 
exp ( -~ (y- A- BJL)T (BCBr)-

1 (y- A- Bp,)) 
n 1 

(21r) 2 ( det (BCBT)) 2 
(1.55) 

where the well-known results form matrix algebra (B-1)T c-1B-1 = (BCBr)-
1 

and 

det (B) = det ( Bt B t) = det ( Bt) det ( B t). The matrix B t is defined as the solut ion 

of the matrix equation B t B t = B. Eq. (1.55) shows that Y "' N (A + Bp,, BCBT). 
Hence, normality is preserved under linear transformations as eq. (1.51) . This result 
can be shown to hold, even when B is non-quadratic, i .e. when X and Y are of different 
dimensions n and m. 

Example 1.6: Random phase stochastic variable 

Let Y be a combined stochastic variable of X"' U (0, 21r) defined by the mapping 

Y = g (X) = a cos ( b + X) (1.56) 

where a E R+ and b E R. Y defined by eq. (1.56) is called a random phase variable. Eq. (1.56) 
does not define a monotonous mapping of the interval [0, 21r] on [-a, a] for any value of b. Hence, the 
method eq. (1.42) cannot be used. 



g(x) 

a 
y+dy~------------------~ 

y._~-----------------i 

-a 

Figure 1.12: Mapping y = g(x) for wot = f· 
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X 

However, as seen from figure 1.12 the event {Y E [y, y + dy]} occurs when {X E [x1, :tt + dx] U 
[x2, x2 + dx]}, where x1 and x2 are the mapping points of the inverse mapping g-1 (y). The length of 
the intervals [x1, Xt + dx] and [x2, x2 + dx] are both equal to dx because of the symmetry property of 
the mapping function . It then follows 

1 1 1 
fy (y) dy = fx (xi) dx + fx (x2) dx = -dx + -dx = -dx => 

27r 27r 7r 

fy(y) =; ~~:1 =; lasin(b
1

+x)l =; aJ1-c:s2(b+x) 
1 1 

1r J a2 - y2 

The probability density function (1.57) is shown in figure 1.13. 

- a 1 a 
1Ta 

y 

Figure 1.13: Probability density function of random phase stochastic variable. 

Example 1. 7: Transformations to standard normal space 

(1.57) 

Let X"' N (J.Lx,Cxx) and select A and Bin eq. (1.51) in a way that Y"' N (J.Ly,Cyy) fulfil 

J.Ly = A+ BJ.Lx = 0 (1.58) 
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Cyy = BCxxBT =I 

where I denotes the identity matrix. A solution to eq. (1.59) is 

cp= [cp(l), ... ,cp(n)J 

A
_l. 

x:i = 

where cp(i) and.\; are the eigenvectors and eigenvalues of Cxx, i.e. 

Cxxcp(i) = .\;tf>(i), i = 1, 2, ... , n 

Eq. (1.63) can be assembled as 

Cxx tP = tP Axx =* 

Cxx = cpAxxtP-1 

(1.59) 

(1.60) 

(1.61) 

(1.62) 

(1.63) 

(1.64) 

Upon insertion of eqs. (1.60) and (1.64) in eq. (1.59), the validity of eq. (1.60) is proved. with the 
solution obtained for B, A should be selected as follows 

A= -BJ..Lx (1.65) 

The indicated solution eq. (1.60) is not unique. Actually, if B is a solution any quantity B1 of the 
following form will do 

B1 =OB (1.66) 

where 0 is an arbitrary orthonormal transformation (rotation) matrix, i.e. 0 has the property o-1 = 
oT. Actually 

(1.67) 

Eq. (1.55) can then be written 

n 1 ( 1 2 ) fy(y) = .rr tn= exp - -y; 
•=1 v2rr 2 

(1.68) 

Eq. (1.68) shows that all components in Y are mutually stochastically independent and identically 
distributed N ""'(0, 1). Hence, it has been shown that at least one linear transformation exists (actually 
infinitely many), which maps a normal vector X""' (J..Lx, Cxx) into standardized independent normal 
vectors Y""' N (0, I). 
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Finally, consider the non-linear bijective (one-to-one) mapping 

y = g(X) (1. 69) 

where X and Y are n-dimensional stochastic variables. Using the same arguments as 
leading to eqs. (1.42) and (1.54), the pdf of Y is evaluated as 

(1.70) 

where det ( ag(~:;Jy))) signifies the Jacobian of the mapping (1.69) and x = g - 1 (y) 
is the inverse mapping. 

Example 1.8: Box-Muller transformation 

Consider the non-linear transformation 

.1. 
Yl = ( -2 ln :z:1) 2 cos (21r:z:2) 

Y2 = (-2ln:z:l)! sin(2n2) 
} (1.71) 

Let X = [X1,X2], where X1,X2 "' U(O , 1) are stochastic independent. The problem is then to 
determine the joint probability density of y T = [Y1, Y2] obtained by the transformation (1.71). 

With the restriction [:z:1, :z:2] E [0, 1] X [0, 1] the mapping (1.71) is bijective. Hence, the joint pdf of 
yT = [Y1 , Y2] can be obtained by eq. (1.70). The equations in (1.71) are squared and added. Then, it 
follows 

Further the J acobian of the mapping (1.71) becomes 

det (!!;) = 

211" 

From eq. (1.72) and (1.73) it then follows 

- 21r(-2ln :z:l) ~ sin(2n2) ] ) = 
21r( -2ln :z:l) 2 cos(21r:z:2) 

(1.72) 

(1.73) 

(1.74) 
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xl "'u (0, 1) 1\ x2 "'u (0 , 1) and mutually stochastic independence of xl and x2 implies that 

It then follows from eq. (1.70) 

where 

, [x1,x2] E [0 , 1) X [0, 1) 

1 [x1 1 X2) ~ [0, 1) X [0, 1) 
(1.75) 

(1. 76) 

(1.77) 

Hence, mutually independent stochastic variables, X 1 "' U (0 , 1) , X 2 "' U (0, 1), are transformed into 
mutually independent stochastic variables Y1 "' N (0, 1) , Y2 "' N (0, 1) by the mapping (1.71). Eq. 
(1.71) is known as the Box-Muller transformation and may be used to generate samples [Yl, Y2) of 
mutually independent stochastic variables Y1 "' N (0, 1) and Y2 "' N (0, 1). Initially, independent 
samples x1 and x2 are generated by a pseudo random number generator . If this sample [x1, x2) is 
inserted in the right-hand side of eq. (1.71) the left-hand side will be samples of the indicated stochastic 
variables Y1 and Y2. 

Next, consider the monotonous mapping g: )0, 1) ...... R+ defined by 

1 
r = g(xl) = (-2lnxl)2 x1 E )0, 1) (1.78) 

It follows that x1 = g-1 (r) = exp(-tr2) and g1 (x1) = -x\ (-2lnxl)-~ ~ g1 (g- 1 (r)) = 
-~exp(tr2 ). The combined stochastic variable R = g(Xl), where X1 "'U(0,1) and g(xl) is 
defined by eq. (1.78), then has the probability density function of R is given by eq. (1.42) 

(1.79) 

Hence, R "' R (1), i.e. Rayleigh distributed with the parameter u2 = 1. Consider the 2-dimensional 
stochastic variable yT = [Yt, Y2] defined by the following transformation 

Yt = Rcos(21rX2) } 

Y2 = Rsin(21rX2) 
(1.80) 

If R"' R(1) and X2 "'U (0, 1) and Rand X2 are stochastic independent, eq. (1.80) is then equivalent 
to the Box-Muller transformation, and it follows that Y1 "' N (0, 1) and Y2 "' N (0, 1) and that Y1 
and Y2 are stochastically independent. Eq. (1.80) can also be used to generate samples of mutually 
independent standardized normally distributed stochastic variables. In this case independent samples 
of R (by the inverse method) are generated along with a sample of X2. The samples of Y1 and Y2 then 
follow upon inserting into eq. (1.80). 
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1.3 Expectations 

The expected value (mean value), E [X], of a discrete and a continuous stochastic vari
able, respectively, is defined as 

n 

E [X]= L xiPx(xi) (1.81) 
i=l 

00 

E [X]= j xdx(x)dx (1.82) 

-oo 

In the following the symbox J.Lx is reserved for the expected value. If the probability 
density function, fx (x), is visualized as a continuous distribution of mass of total 
magnitude 1 along the x-axis ( occationally the phrase "probability mass" is heard) and 
Px (Xi) as concentrated mass particles at the points Xi, J.LX can be interpreted as the 
center of gravity of the mass distribution. 

The variance, V ar [X], of X is defined as the expected value of the combined stochastic 
variable (X - J.LX )2 • For a discrete and continuous stochastic variable it is given as 

n 

Var[X] = E [ex- J.Lx)
2

] = L(xi - J.Lx)
2 

Px (xi) 
i=l 

n n n 

= L x; Px (xi)- 2px L XiPx (xi)+ J.L~ L Px (xi) 
i=l i=l i=l 

(1.83) 

00 

Var[X] = E [ex- px)
2

] = j (x- J.Lx)
2 

fx (x)dx 
-oo 

00 00 

= j x2 fx (x) dx- 2px j xfx (x) dx + J.L~ 1: fx(x)dx 
-oo -oo 

(1.84) 

where the normalization conditions L~=l Px (xi) = 1 and f~oo fx (x) dx = 1 have 
been used. The symbol oJ will be reserved for Var [X]. ox is termed the standard 
deviation. Within the mentioned mass analogy, a1- can be interpreted as the mass 
moment of inertia around the center of gravity. In case J.Lx # 0, the coefficient of 
variation, V [X], is defined as 

V[X] =ox 
J.LX 

The abbreviation Vx will be used for V [X]. 

(1.85) 
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Consider more generally the combined stochastic variable Y = g (X1 , X 2 , ... , Xn) · The 
expected value of Y is computed in the following way for discrete and continuous stochas
tic variables 

E[Y] = E [g (X 1 , . . . , X n)) 

= L · · · Lg(xi1, ... ,Xin)Pxl···Xn (Xi1, . . . ,Xin) (1.86) 
i1 In 

E [Y] = E [g (X 1 , . .. , X n)] 

00 00 

j ·· · j g(x! ,·· ·xn)fx1 ... Xn(xb···xn)dx1···dxn (1.87) 

- oo -oo 

In case infinitely many states of the discrete n-dimensional variable [X1 ,X2 , ... , Xn) 
the multiple sum (1.86) may not converge. In this case the expected value of Y = 
g (X1 , X 2 , . .. , Xn) does not exist. For the continuous n-dimensional stochastic variable 
the integral (1.87) may also be divergent , as the integral limits goes to infinity, so the 
expectation does not exist . 

If g (X) =Xi and g (X) = (Xi - px;) (Xj - J.LXj ), the expected value.3 and covariance.3 
are obtained, i.e. 

J.LX; = E [Xi) (1.88) 

(1.89) 

The last statement of eq. (1.89) is proved in the same way as the last statements of 
eqs. (1.83) and (1.84). Occasionally, we shall abbreviate the index notation to write 
J.LX; = J.Li and Cx;Xj = Cij· The variances are obtained from a_k = Cx;X;. The 
correlation coefficient.3 are defined as 

(1.90) 

Because fx;Xj (xi , Xj) ?:: 0 and (a (Xi- J.Lx;) + (Xj - J.LXj ))2 > 0 it follows for all 
a ER 
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Since the left-hand side of the 2nd order equation (1.91) is non-negative, its discriminant 
must be non-positive. Using eq. (1.90) it then follows 

2 < 1 Px;Xi-

(1.92) 

The variables Xi and Xj are said to be uncorrelated, if PX;Xj = 0. Now, let [X i, Xj ] be 
normally distributed. From eq. (1.38) follows that the parameter p can be interpreted 
as the correlation coefficient of Xi and Xj. If Xi and Xj are uncorrelated, so p = 0, 
it follows from eq. (1.39) that Xi and Xi are then independent. Generally, it can be 
stated that normally distributed mutually uncorrelated stochastic variables are mutually 
stochastic independent as well, because the covariance matrix Cxx becomes diagonal, 
so Fx (x) = IIf=1 fx, (xi)· It is generally not true that uncorrelation among stochastic 
variables implies mutually stochastic independence. However, if Xi and Xj are mutually 
independent stochastic variables, then 

00 00 

Cx,xi = j j (xi- J-LX; )(xi - J-LxJ fx, (xi) !xi (xj) dxidXj 
-oo -oo 

00 00 

= j (xi- J-Lx.) fx, (x i) dxi j (xj- J-lXi) !xi (x j) dxj = 0 (1.93) 

-oo - oo 

Hence, the opposite statement is true. Mutually stochastic independence always implies 
uncorrelation. Finally, it can be shown that the mean value of the product of two 
uncorrelated variables is equal to the product of the mean values 

(1.94) 

1.4 Conditional distributions 

Let [X, Y] be a two-dimensional stochastic variable. If [X, Y] is discrete the conditional 
probability function of Y on X is defined as 

Px (xi)> 0 (1.95) 
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If [X, Y] is continuous the conditional probability density function of Y on X is defined 
as 

fxy(x, y) 
fYIX (y I x) = fx(x) , fx (x) > 0 (1.96) 

Pyjx (Yi I xi) and fYIX (y I x) has the properties of a usual probability function and a 
usual probability density function, i.e. they are non-negative, and admit the normaliza
tion conditions 

(1.97) 

00 00 

J f ( I ) d = ]_00 fyx(x, y)dy = fx(x) = 
1 YIX y x Y fx(x) fx(x) (1.98) 

- 00 

The conditional expected value of the combined stochastic variable h (Y) on X = x can 
then be defined from 

E [h(Y) I X= x] = 

L h(yj )PYjX(Yj I Xi) 
j 

00 

j h(y)/Yjx(Y I x)dy 
- oo 

(1.99) 

If h (Y) = Y then eq. (1.99) determines the conditional expected value, f.i.YIX = 

E [Y I X= x], and if h (Y) = (Y- P,Yjx)
2

, eq. (1.99) determines the conditional vari-

ance, denoted a?
1
x = E [ (Y- P,Yjx)

2 I X= x] . g(x) = E [h (y) I x] is a function of 
x. We may then define the combined stochastic variable g. The expected value of this 
quantity becomes 

E[g] = E [E [h (Y) I X]]= E [h (Y)] (1.100) 

Eq. (1.100) will only be proved for the continuous case. From eqs. (1.87) and (1.96) 
follow 

00 00 

E[g(X)]= J g(x)fx(x)dx= J E[h(Y)Ix]fx(x)dx 
-oo -oo 

-_l (l h(y)!Y1x (y I x) dy) fx(x)dx = 1 h(y)jy(y)dy 



= E[h(Y)] 

In the same way it can be proved that 

E [E [Xh (Y) I X]] = E [Xh (Y)] 

Example 1.9: Conditional normal probability density functions 

Let [X, Y] "" N (J.£, C) where 

IL = [~~] 

c = [ o-]c 
o-xo-y P 

o-x a-y P] 
0"2 y 

Then it follows from eq. (1.39) that the joint pdf can be written 

fxy(x, y) = exp -- -1 [ 1 (x-11-x)
2 

.J2;o-x.J2;o-y~ 2 o-x 

.!. (Y -11-y- p~(x -~-Lx)) 
2

] 

2 O"y~ 

= fx(x)fYIX (y I x) 

1 (1(X-/1-X) 2
) fx (x) = V'h exp --

2rro-x 2 o-x 

( ( 

(7 ) 2) 1 1 v-~-Ly-p~(x-11-x) 
!Yix(vlx)= exp --

.J2;o-y ~ 2 O"y ~ 
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(1. 101) 

(1.102) 

(1.103) 

(1.104) 

(1.105) 

(1.106) 

(1.107) 

Eq. (1.107) shows that the conditional distribution also becomes normal with the following conditional 
expected value and conditional variance 

O"y 
E[Y I x] = 11-Y + p- (x -11-x) 

o-x 
{1.108) 

{1.109) 

As an extension of eq. (1.107) consider the m-dimensional stochastic vector X"" N (1Lx• Cxx) and 

an n-dimensional stochastic vector Y "" N (!Ly, Cyy). The covariance between X and Y is given 
by the matrix Cxy. It can then be shown that the pdf. of Y on the condition X = x is normally 
distributed with mean and covariance 
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11-YIX = J-ty + C~yCxk ( x - J-tx) } 

Cv1x = Cyy - C~y Cxk Cxy 
(1.110) 

So, any conditional distribution of a normal vector is normal itself. Along with the preservation of 
normality of any marginal distribution and under linear transformations this stresses the attractive 
mathematical properties of the normal distribution. 

If X and Y are mutually independent stochastic variables then PYIX (y I x) = Py (y) 
and fYIX (y I x) = fy (y), as seen from the following statements 

p ( I ) _ Pxy(x ,y) = Px(x)Py(y) =P () 
YIX y x - Px(x) Px(x) Y Y (1.111) 

f ( I ) _ f X Y (X, Y) = f X (X) fy ( Y) = f ( ) 
YIX Y x - f x(x) fx(x) Y Y (1.112) 

1.5 Convergency of a sequence of stochastic variables 

Initially consider an infinite sequence of real numbers { Xn, n = 1, 2, ... } = { x1, x2, ... }. 
Convergency of this sequence to some limit x means that all elements Xn in the sequence 
deviates within an arbitrary small value c from x after a certain number N, which of 
course depends on the selected value of c. Formally this statement can be written 

Vc > 03N = N (c ) : n;:::: N (c) =} I X n - xI< c (1.113) 

The convergency of a sequence is often tested by the equivalent Cauchy's criterion of 
mutual convergence, which states that a limit x exists if and only if 

Vc > 03N = N(t:): n,m;:::: N(c) =*I Xn -Xm I< E: 

The following abbreviated notation is introduced 

lim Xn =X 
n-+oo 

(1.114) 

(1.115) 

Next, consider an infinite sequence of random variables {Xn, n = 1, 2, ... }, all defined 
on the same sample space n. For each elementary event wE .Q an ordinary sequence of 
real numbers is generated {xn, n = 1, 2, ... }, where Xn = Xn (w). Define A~ n as the 
set of elementary events w for which such sequences do converge. It can be shown that 
A is an event, i.e. the probability P (A) is defined. One may then construct a stochastic 
variable X : .Q --+ R in the following way 

Vw EA: X(w) = lim Xn (w) 
n-+oo 

(1.116) 
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Vw E A c : X ( w) otherwise specified (1.117) 

where Ac specifies the complementary event. If P(A) = 1, we say that the sequence of 
stochastic variables {Xn, n = 1, 2, . .. } converges with probability 1, or almost certain 
to the stochastic variable X. The following abbreviated notation is used to indicate the 
limit with probability 1 

lim-ac Xn =X 
n-+oo 

(1.118) 

Notice, Ac need not be empty even though P (A c)= 0. The notation merely states that 
the number of elements w E A c is infinitely small compared to the number of elements 
in A. 

The set of samples for which inequality (1.113) is fulfilled for some n :::: N (c:) can be 
written {w En 11 Xn (w )-X (w) I< c: }. Hence, the set for which the inequality is fulfilled 
for all n :::: N ( c:) can be written as the intersection of all such events, n~=N(e) { w E n 11 

Xn(w)- X(w) I< c:}. Convergence with probability 1 implies, that the probability of 
this event is 1. Hence, eq. (1.118) can be written as 

Vc: > 03N(c:)P; (n~=N(e) {w En 11 Xn(w) -X(w) I< c:}) = 1 (1.119) 

Eq. (1.119) can also be written 

V c: > 0 ; lim p ( n~= N { w E n 11 X n ( w) - X ( w) I< c:}) = 1 
N -+oo 

(1.20) 

An alternative limit definition of the sequence {Xn, : i = 1, 2, .. . } can be defined, if 
there exists a stochastic variable X : n ~ R, so 

lim E [cxn - X)
2

] = o 
n-+oo 

(1.121) 

Then, {Xn, i = 1, 2, ... } is said to be convergent in mean square to the limit X . Eq. 
(1.121) requires the convergence of the sequence of ordinary non-negative real numbers 

{E [(Xn - X)2
] , n = 1, 2, . .. } to the limit x = 0 according to eq. (1.113). Mean square 

convergence can also be stated in terms of an equivalent Cauchy type of criterion, saying 
that a mean square limit X exists to the sequence {X 1 , X 2, .•• } if and only if 

lim E [(Xn- Xm )2
] = 0 

n-+oo 
m-+oo 

The following abbreviated notation will be used for the limit in mean square 

lim-ms Xn = X 
n-+oo 

(1.122) 

(1.123) 
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Example 1.10: Sequence not convergent with probability 1 and convergent . 
In mean square 

To emphasize the difference between the limit stochastic variables lim -acn-+ooXn and lim -msn .... ooXn 
consider the following sequence {Xn, n = 1, 2, ... }. The stochastic variables of the sequence are assumed 
to be mutually independent.Further, the stochastic variables are assumed to be discrete with only two 
states x1 = 0 and x2 = 1, with the probability function of Xn given by 

,x = 0 

,x = 1 
(1.124) 

Since the probability mass concentrate at the state x = 0 as n -+ oo, one may assume that a limit 
stochastic variable X (w) = 0 (a stochastic variable with the single state 0) exist in either mean square 
or with probability 1. To investigate this left-hand sides of eqs. (1.120) and (1.121) will be evaluated. 

In case of almost certain convergence to the limit X = 0, consider the probability 

P(n~=N{w E 011 Xn(w)- X(w) I< e:}) = 

P(n~=N{w E 011 Xn(w) I< e:}) = 

P(n~=N{w E 0 11 Xn(w) I= 0}) = 

P({w E 0 I XN(w) = 0}) · .. P({w E 0 I Xp-l(w) = O})P({w E 0 I Xp(w) = 0}) = 

(1 - ~) (1- N~ 1 ) .. · (1- p~ 1 ) (1-;) 

N-1 N p-2p-1 
~ N + 1 ... p- 1 -p- = 

N-1 

p 
(1.125) 

In the 3rd statement it has been used that I X(w) I< e: can only be fulfilled if I X(w) I= 0. Next, it 
has been used that any Xn and X m are mutually stochastic independent, soP (Xn = 0 1\ X m = 0) = 
P (Xn = 0) P (X m = 0). From eq. (1.125) it now follows 

P(n~=N{w E 011 Xn(w)- X(w) I< e:}) = 

lim (n~=N{w E 0 11 Xn(w)- X(w) I< e:}) = 
p-+00 

N-1 
lim --=0 

p-+00 p 
(1.126) 

Hence, the left-hand side of eq. (1.120) converge to 0 as N -+ = and no limit X = 0 exists with 
probability 1 for the indicated sequence. 

In case of mean square convergence to the limit X = 0 consider the expectation 

(1.127) 

Since this converge to 0 as n -+ CXJ eq. (1.121) will be fulfilled, and the limit X = 0 exists in mean 
square. 
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Example 1.11: Sequence convergent with probability 1 and not in mean 
square 

Now, the previous example is considered again with a slightly changed probability function 

,x = 0 
(1.128 ) 

, x = n 

The states allowed by Xn is now X = 0 and X= n with the indicated probabilities. Corresponding to 
eq. (1.125) we evaluate 

P(n~=N{w En 11 Xn(w) I= 0}) = 

P({w En I XN(w) = 0}) . ·· P({w En I Xp-l(w) = O} )P({w En I Xp(w) = 0}) = 

(N- 1)(N + 1) N(N + 2) (p- 2)p (p - 1)(p + 1) 

N 2 (N + 1)2 (p - 1)2 p2 

N-1p+1 
N p 

(1.129) 

From eq. (1.129) follows 

P(n~=N{wEOIIXn(w)-X(w) l<c:})= lim N-
1 

P+
1 = N-

1 => 
p-+oo N p N 

lim P(n~=N{w En 11 Xn(w)- X(w) I< c:}) = lim N -
1 = 1 

N-+oo N-+oo N 
(1.130) 

Consequently, the limit with probability 1 now exists. 

In case of mean square convergence to the limit X= 0, eq. (1.127) now becomes 

(1.131) 

From eq. (1.131) now follows limn-oo E[(Xn- X)2 ] = 1, so no limit in ~ean square exists for the new 
sequence. 

From the indicated examples is learned, that almost certain convergence does not imply 
convergence in mean square, and oppositely, that the existence of a mean square limit 
does not guarantee almost certain convergence. 

Even if both limits exist they may still be different stochastic variables (functions of w ), 
even for w E A where the sequence of sample values converge according to eq. (1.113). 
However, it can be shown that if both limits exist, they can only deviate within a 
non-empty subset of samples BC n with the probability P (B) = 0. 

From later applications the following 2 theorems on mean square convergency are stated. 
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Theorem 1.1 
If lim -msn._.00 Xn. =X and lim -msn._. 00Yn = Y then 

lim E [Xn Yn] = E [XY] 
n--+ oo 
m--+oo 

P roof: 

E[XnYm- XY] = 

E[(Xn.- X) (Ym- Y )] + E[(Xn - X)Y] + E[(Ym- Y)X] S 

(1.132) 

(1.133) 

where use has been made of the so-called Schwarz inequality which states that for any stochastic 
variables X, Y 

(1.134) 

The right-hand side of eq. (1.133) converge to zero from the premises, from which eq. (1.132) follows. In 
order to prove the Schwarz inequality, consider the non-negative quantity (aX + Y)2

. The expectation 
of the quantity is non-negative, leading to 

(1.135) 

In analogy to the statement leading to eq. (1.192), the discriminant of the 2nd order equation on the 
left-hand side must be non-positive. This leads directly to the Schwarz inequality (1.134). 

Theorem 1.2 Mean square convergence criterion 
The sequence {Xn, n = 1, 2, ... } converges in mean square to some stochastic variable X if and only 
if the moments E [XnXm] exists and has the same limit no matter how the limit passings n-> oo and 
m --1- oo are performed. 

Proof: 
Consider 

(1.136) 

At the proof of the sufficiency (the "if part") of the theorem, it is assumed that E [x~], E [XnXm] 

and E [x;.J all converge to the same limit no matter how n- oo and m-oo. The right-hand side 
of eq. (1.136) then has the limit 0 as n, m --1- oo. According to the Cauchy criterion, eq. (1.120) this 
implies the existence of a mean-square limit X. 

At the proof of the necessity (the "only if' part), the existence of a mean-square limit X is assumed, 
and it shall be proved that E [XnXm] converge to a limit, which is indeed E [ X 2] when n -> oo and 



29 

m -> oo independently. This follows by inserting Xm for Ym and X for Y in theorem 1.1, in which 
case 

lim E[XnXm]=E[X2
] 

n-+oo 
(1.137) 

m-+oo 

Consider the special case when all the stochastic variables Ym, and so also the limit Y, 
are discrete and equal to 1, i.e. Vw En: Y1(w) = Y2(w) = · · · Y(w) = 1. Then, theorem 
1.1 provides 

lim E [Xn] = E [XJ = E [lim-msXn] 
n~~ n~~ 

(1.138) 

Eq. (1.138) shows that the operation of limit passing and expectation commute, when 
limit in mean square of a sequence of stochastic variables is considered. This property 
will occationally be used in the following. 

Obviously, mean square convergence only make sense, if I E [XnXm] I< oo for all n, m. 
From the Schwarz inequality follows 

1 1 

I E [XnXm] ~~ E [X~] 2 E [X~] 2 (1.139) 

Hence, E [XnXm] exsits for all n, m, if 

E[X~]<oo,n=1,2 ... (1.140) 

Eq. (1.140) must also be fulfilled by the limit in mean square, X, if this is not included 
in the sequence. When eq. (1.140) is fulfilled for all n, Xn is called a 2nd order stochastic 
variable and {X1 ,X2, ... } is called a 2nd order sequence. 

If the Schwarz inequality is applied with Y(O) = 1, it follows 

(1.141) 

Even though almost certain convergency may seem more intuitively comprehensive we 
shall in the following mostly concentrate on convergency in mean square. This is so, 
because the existance of such a limit can be checked barely from the properties of the 
joint 2nd order moments E [XnYm] of the sequence according to the above theorem 1.2. 
The knowledge of these moments is the best information available about the joint dis
tribution of the stochastic variables of the sequence. In contrast necessary and sufficient 
conditions for convergence with probability 1 is more involved. 
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The central limit theorem 

Consider a sequence of stochastic variables {Xn, n = 1, 2, . . . } defined by 

1 n 

Xn =- Lyi 
n . 

J=l 

(1.142) 

where the stochastic variables Yj are mutually independent and identically distributed 
with the mean, J.LY , and variance, a~. The mean value, J.lXn, and variance, ai", of Xn 
becomes 

(1.143) 

1 
n n 

= 2 L LE [(Yj- J.LY )(Yk- J.LY )] 
n . 

J = l k=l 

1 
n n 

1 
n 

= n 2 L LE [(Yj - J.LY )(Yk - J.LY )] + n 2 LE [(Yj- J.LY ?] 
j=l k=l j=l 

(1.144) 

k:f:j 

Since Yj and Yk are stochastic independent one has 

(1.145) 

The double sum in eq. (1.144) then cancel, and eq. (1.144) reduces to 

2 1Ln 2 12 ax =- ay= -ay 
n n2 n 

j=l 

(1.146) 

Hence, 

lim E [(Xn- J.LY )
2

] = lim .!_a~ = 0 
n-+oo n-+oo n (1.14 7) 

This shows that the sequence {Xn , n = 1, 2, ... . } converge in mean square to the limit 
X ( w) = J.LY as n -+ oo. This result states one form of the law of large numbers. It 
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can even be proved that {Xn , n = 1, 2, ... } converge with probability 1 to the limit 
X (w) = Jl-Y (Kolmogorovs law of large numbers). The proof for this is considerably 
more involved and is omitted. 

Consider the sum of mutually independent stochastic variables Yj 

n 

(1.148) 

The mean value, Jl-Sn, and variance, ut, follows from eq. (1.146) 

n 

Jl-Sn = L Jl-Yj (1.149) 
j=l 

(1.150) 

Now, the significant observation is that if none of the stochastic variables Yj in eq. 
(1.148) is dominating the sum Sn tends to become normally distributed with the mean 
value eq. (1.149) and variance eq. (1.150) as the number n of addends increases. This is 
obtained under fairly mild conditions even if all the stochastic variables Yj have different 
probability distributions. This observation is contained in the following very important 
limit theorem which will be stated without proof. 

Theorem 1.3: Central limit theorem 
The stochastic variable Sn as defined by eq. (1.148) converge to a normally distributed random variable 
with the mean value (1.149) and the variance (1.150) as n -+ oo independently of the probability 
distributions of the stochastic variables Yj, if the following conditions are fulfilled for some 8 > 0 

(1.151) 

(1.152) 

(1.153) 

Because sums and differences of normally distributed stochastic variables become nor
mally distributed, the theorem is trivial if Yj "' N (JJ-Yj, u~). 

In structural mechanics a certain load effect can often be modelled as a sum of numerous 
mutually independent and equally important contributions (if some components were 
of minor importance to the problem they should be excluded from the model!). From 
the central limit theorem it can then be concluded, that the said load effect is normally 
distributed. Aside from tractable mathematical properties, which is a legal objective 
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when competing models cannot be graded due to lack of information, the enormous 
popularity of normal distributions in science and engineering is justified mainly from 
the central limit theorem. There exist various generalizations of the theorem. For 
instance, consider the sequence of n-dimensional stochastic vectors {Sn, n = 1, 2, ... }, 
where 

n 

(1.154) 

Yj are mutually independent n-dimensional stochastic variables with mean value J-Lyi 

and covariance matrix Cyiyi. Then, eq. (1.154) converges under equally mild condi
tions as n -+ oo to a n-dimensional normal vector Sn rv N (J-Lsn, Csn sn), where 

n 

1-Lsn = L 1-LY; 
j=l 

n 

CsnSn = L Cyiyi 
j=l 

(1.155) 

(1.156) 

Example 1.12: Distribution of sums of identically uniformly distributed sto
chastic variables 

a) b) c) 

t8 (s) 
1 

t8 (s) 
2 t8 (s) 

3 

1 1 
I 

1 3 ( 3 )2 / 4 - s-2 

s I 
ts2"- ;H3-s)2 

I 
s I s s 

0 0 0 
0 1 0 1 2 0 1 2 3 

Figure 1.14: Distribution of sum of uniformly distributed random varibles. 

The probability distribution function of Sn as given by eq. (1.148) can be determined from the recursive 
formula 

00 

= J P(Sn-1 + Y ~SI Yn = y)fyn (y)dy 

-00 

00 

= J P(Sn-1 + y ~ s )fyn (y)dy 

-oo 
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00 

J Fsn_ 1 (s- y)fyn (y) dy (1.157) 

-oo 

where it has been used that Sn-1 = Y1 + Y2 + ... Yn-1 is stochastic independent of Yn Now, let 
Yj "' U(O, 1). Eq. (1.157) then provides the following recursive relation for the probability density 
function 

with 

1 

Fsn (s) = J Fsn_ 1 (s- y) ·1dy ::} 

0 

1 

fsn(s) = jtsn_ 1 (s-y)dy, n = 2,3 , .. . 

0 

fs 1 (s) = fy1 (s) = { ~ 's ~ [0 , 1] 
, sE [0, 1] 

(1.158) 

(1.159) 

The result obtained from eq. (1.158) has been sketched in figure 1.14 for n = 2, 3. The resemblance 
with a normally distributed variable is allready visible for fs

3
(s). 

Example 1.13: Product of independent stochastic variables 

Consider a sequence of stochastic variables { Pn , n = 1, 2, .. . } defined by 

n 

(1.60) 

where the stochastic variables are mutually stochastic independent. All factors are assumed of equal 
importance to the product. The natural logarithm of Pn then becomes 

n 

lnPn = LlnYj 

i=l 

If n is sufficiently large it follows from the central limit theorem that 

so 

(1.161) 

(1.162) 

(1.163) 
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Models made up of a product of independent contributions are also widely used in engineering. 

Example 1.14: Bending moment of a simply supported beam 

The horizontal simply supported beam of length l in figure 1.15 is loaded by n vertical statical loads 
P 1 , P2, ... , Pn, which are modelled as mutually independent stochastic loads with mean values J.L P; and 
variances u~ .. The load P; is acting the distance x; from the left end . The bending moment at the 
distance y with sign defined in figure 1.15 can be written 

n 

M(y) = L h(y, x;)P; (1.164) 

i=l 

~ 
t~ i~ 

xl 
~ 

M(y) 

~~=~E===Q£ 
Xj 

y 

e 

Figure 1.15: Simply supported beam loaded by n independent random loads. 

The influence function, h(y, x) , providing the bending moment at the position y from a unit load P = 1 
at x, is given by 

{ 

(/- y)x 
h(y, x) = 

(/ -X )y 
,x < y 

,x > y 

The expected value J.I.M(y) and the variance u1t(y) of M(y ) become 

n 

1-!M(y) = L h(y, x;)I-!P; 

i=l 

n 

u1t(y) = L h2 (y, x;)u~i 
i=l 

(1.165) 

(1.166) 

(1.167) 

If h(y, x;)J.'P; are comparable for all n loads, each of these contributes comparably to the sum in eq. 
(1.164). If n is large (say n > 10), then M(y) "' N(~-tM(y), u1t(y)) according to the central limit 
theorem, even if none of the loads are normally distributed. 
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2. STOCHASTIC PROCESSES 

2.1 Basic concepts 

In section 1.1 the concepts of an-dimensional real stochastic vector xr = [X 1 , X2, ... , Xn] 
and of a stochastic sequence {X 1 , X 2 , ... X n, ... } were introduced. In both cases sets of 
indexed stochastic variables defined on the same sample n are considered. A stochastic 
process is defined as a natural generalization of these concepts as simply an indexed set 
{X(t), t ET} of stochastic variables X(t) defined on the same sample n. The parameter 
t is designated the index parameter and T the index set. This can be 

T = { 1, 2, .. . , n} {X ( t), t E T} is an n-dimensional stochastic variable 

T = {1, 2, ... , n, ... } {X(t), t ET} is a stochastic sequence, 

or an index discrete stochastic process 

{X(t), t E T} is an index continuous stochastic process 

The stochastic variables X(t) of the process may be discrete or continuous. Depending 
on whether the index parameter t and the states of the stochastic variables are discrete or 
continuous one then get the following 4 categories of stochastic processes, index discrete 
state discrete processes, index discrete state continuous processer, index continuous state 
discrete processes, index continuous state continuous processes. Physically, t may signify 
as well time as space, depending of whether a time or spatial dependent phenonomen 
is observed. 

Example 2.1: Stochastic depth of beam 

~--------------~X 
L 

Figure 2.1: Random beam depth process. 

Consider the beam of length L with rectangular cross-sections, where the depths are stochastic. At the 
distance z from one of the beam ends, the depth is modelled as a stochastic variable H(x). The set of 
stochastic variables from all sections of the beam forms a stochastic process {H(z), x E [0, £]}. The 
sample space 0 is formed of all beams of the length L. 

In nature all processes are considered to be continuously dependent on the index param
eter t (at least within the framework of classical physics). Hence, such phenonomena 
should be modelled as index continuous state continuous processes, as indicated in the 
above example 2.1. However, in practice, we do not manage to measure the depth 
exact at finite many sections spaced with a certain distance L\x. Further, the depths 
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cannot be measured below a certain minimum accuracy !:lh (say 1 nm), so the ob
served beam depths will be discrete at the samples n!:lh, n = 1, 2, . .. , N, where N !:lh 
is the maximum depth likely to occur. Hence, any engineering application of stochastic 
processes inevitably involves a discretization of the index set and the sample space, 
so only index discrete state discrete processes can be handled. Nevertheless, we shall 
develop the theory also for continuous processes. These are considered the limit of the 
discretized process, as the number of considered index parameters and the number of 
discrete sample states goes to infinity. 

As in the case of n-dimensional stochastic variables, the probability structure is specified 
by the joint distribution functions of the stochastic variables in the process. The decisive 
difference is that the number of stochastic variables may be infinite. With ever increasing 
accuracy the probability structure of. the process can then be described by a sequence 
of joint distribution functions 

Fx(tt)(xi) 

Fx(tt)X(t 2 )(x1, x2) 

(2.1) 

for all t 1 , t 2 , ••• tn, · · · E T. These are named the distribution functions of the 1st order, 
the 2nd order, etc. Of course the nth order distribution functions Fx(t 1 ) ••• X(tn)(x1, ... , Xn) 
depend on which stochastic variables are considered and may consequently be considered 
to be a function of both index parameters t 1 , •.. , tn besides the state variables x1 , ... , Xn . 
Obviously, the knowledge of the nth order distribution functions automatically implies 
that the distribution function of lower order can be obtained by marginalization, letting 
some of the state variables go to infinity. As an example the ( n- 1 )th order distribution 
functions are obtained from 

(2.2) 

Eq. (2.2) is known as the consistency condition of the sequence (2.2) . Further, the nth 
order distribution function must fulfil the following symmetry condition at any order n 

(2.3) 

where a1, ... , an 1s an arbitraty permutation of the numbers 1, 2, .. . , n. Eq. (2.3) 
simply states 
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(2.4) 

Now the following question can be asked. If a family of finite-dimensional distribution 
functions within the index set T is given, under what conditions does there exist a 
stochastic process associated with these distribution functions . The answer to this 
question is contained in the so-called K olmogorovs extension theorem, which states that 
the necessary and sufficient condition for existence of such a process is that the given 
family of distributions satisfies the condition of consistency and symmetry. In the case 
of index discrete processes ( n-dimensional stochastic variables and stochastic sequences) 
this theorem is trivial. In the more subtle case of index continuous processes it is not 
trivial. 

The following notation will be introduced for ease 

(2.5) 

In this notation the symmetry property for the 2nd order distributions read 

(2.6) 

The probability function of the nth order for a state discrete process is defined from eq. 
(1.26) 

(2.7) 

The probability density function of the nth order for a state continuous process is defined 
as indicated in eq. (1.27) 

(2.8) 

When a certain Wn E n is considered, the mapping points Xn(t) = X (t,wn) form a 
real function defined on T, which is termed a realization. If all w E n are considered, 
a sequence of realizations {xn(t) = X(t ,wn)} is obtained from which the probabilistic 
structure may equally well be defined. In figure 2.2 is shown the realizations, when 
one and the same physical phenomenon is modelled by stochastic processes of the four 
categories. 

The joint probability structure of the process may alternatively be described by a hieracy 
of joint stochastic moments of increasing order. In case the following expectations exist 
the process is defined if the following joint expected values can be defined 

(2.9) 
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f.ln 1 n2 • •• nn (t1, t2, . .. , tn) which is named the joint moments of the order n1 + n2 + · · · + nn 
must be provided for arbitrary order n1, n2, ... , nn and arbitrary index permeations 
t1,t2, ... tn (i.e. arbitrary stochastic variables X(ti),X(t2), ... ,X(tn)). Further, the 
moments should be known no matter the number n of considered stochastic variables. 
Of specific interest is the following lower order joint moments. 

The mean value function J.LX ( t) specifies the expected value of the stochastic value X ( t ) 

J.tx(t) = E[X(t)] (2.10) 

The auto-correlation function J.lX x ( t1, t 2 ) specifies the joint moment of the stochastic 
variables X(t 1 ) and X(t2) 

J.txx(t1,t2) = E[X(t1)X(t2)] (2.11) 

The auto-covariance function KX x ( t1, t2) specifies the covariance between the stochastic 
variables X (t 1 ) and X (t2), cf. eq. (1.89) 

a) x(t) c) x(t) 

t t 

b) x(t) d) x(t) 

...... 
. . . 

t t 

Figure 2-2: Realizations of stochastic processes. a) Index discrete state discrete process. 
b) Index discrete state continuous process. c) Index continuous state discrete process. 
d) Index continuous state continuous process. 



Due to the symmetry property as indicated by eq. (2.3) it follows that 

Kxx(ti,tz) = Kxx(tz,tl) 

The variance function a]c (t) is obtained from eq. (2.11) for t1 = tz 

a]c (t) = E ( (X(t)- px(t))
2

] 
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(2.13) 

(2.14) 

where ax (t) is the standard deviation function. The auto-correlation coefficient function 
pxx (t 1, tz) specifies the correlation coefficient of X (ti) and X (t2), cf. eq. (1.90) 

Kxx(ti , t2) 
Pxx(t1,t2) = ax(ti)ax(t2) (2.15) 

Specification of the stochastic structure based on eq. (2.9) may render itself useless 
because the indicated moments cannot be estimated from the available data. Hence, 
there is no need to put such strong limitations on the mathematical model (the stochastic 
process) to ensure the existence of joint moments of arbitrary order. Normally, no more 
that the mean value function and the atuo-covariance function can be synthesized from 
the measurement. A stochastic process for which the moments E[X2 (t)] exist for all 
t E T is called a 2nd order stochastic process. For such processes one can prove the 
following theorem. 

Theorem 2 .1: The existence of the mean value function and the auto-covariance function 
is garanteed for a 2nd order stochastic process 

Proof: 

The existence of the mean value function follows from the Schwarz inequality 

I J-!X (t) 1=1 E[X(t)] 1=1 E[X(t) . 1] I 
1 1 

~ (E[X2 (t)]E(12l) 2 = E[X2 (t)] 2 < oo (2.16) 

In the same way the existence of the auto-correlation function is proved 

1. 1 
I P.xxCt1, t2) I= I E[X(t1)X(t2t)] I~ E[X2(t1 )] 2 E [X2(t2)] 2 < oo (2.17) 

The existence of the auto-covariance function t hen follows from eq. (2.12). 

In principle any 2nd order stochastic process which has been calibrated to certain mea
sured mean value functions and auto-covariance functions will do. However, at the 
modelling process further knowledge of the physics should be invoked. For instance, 
a certain candidate should be abandoned if it has t he measured mean value function 
J.tH (x) and autocovariance function KHH (x1, x2) of the height along t he beam in exam
ple 2.1, but produces negative beam depth with a certain significant probability. 
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A stochastic vector process is a set of N -dimensional stochastic vectors {X( t), t E T}, 
XT(t) = [X1(t), ... ,XN(t)], where all stochastic processes are defined on the same 
sample space. A vector process can be considered a double indexed set of stochastic 
variables, when the elements T as well as the component indices form the index param
eters. In the same manner as for scalar processes, the stochastic structure of a vector 
process is specified by a sequence of distribution functions 

Fx;t(tt) (xi) 

Fx;
1

(tt) X;
2

(t 2 ) (x1,xz) 
(2.18) 

for all tb t2, ... , tn E T and all i1, iz, ... , iN E {1, 2, ... , N}. The distribution functions 
of the nth order depend of the considered stochastic variables Xi 1 (t1), .. . ,Xin (tn)· 
Besides on the state variables x1, . .. , Xn, these depend of the index parameters t1, ... , tn. 
The following notation will be applied 

(2.19) 

The symmetry property of the distribution functions of the 2nd order, eq. (2.6) takes 
the form 

(2.20) 

The probability function of the nth order for a state discrete vector process and the 
probability density function of the nth order for a state continuous vector process are 
designated, cf. (1.34), (1.35) 

(2.21) 

(2.22) 

A stochastic vector process {X ( t) , t E T} is a 2nd order stochastic process if all the 
coordinate processes {Xi (t), t ET} are 2nd order stochastic processes. 

For vector processes, the prefix "cross" is usually applied to characterize the statistical 
moments, when stochastic variables from different coordinate processes are considered. 
The prefix "auto" is reserved to cases, where statistical moments for the same coordinate 
process {Xi (t), t ET} are considered. 

The mean value function /-LX; (t) specifies the expected value of the stochastic variable 
xi (t) of the ith order coordinate process 
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J.Lx,(t) = E [Xi (t)] (2.23) 

The cross-correlation function J.Lx,
1 
x,

2 
( t1 t2) specifies the joint moment of the stochastic 

variables Xi1 (t1 ) and Xi 2 (t2 ) of the i 1 th and i 2 th coordinate process 

(2.24) 

The cross-covariance function KX;
1 
x,

2 
(tt, t2) specifies the covariance between the stochas

tic variables xil (tt) and xi2 (t2), i.e. 

(2.25) 

Due to eq. (2.20) the following symmetry property applies 

(2.26) 

The variance function of the it th coordinate process a~. (t) is obtained from eq. (2.25) 
'1 

for tt = t 2 = t and it = i 2 . ax;
1 

(t) is the standard deviation function of the it th 
coordinate process. 

The cross-correlation coefficient function p x, 
1 
x ,

2 
( t1, t2) specifies the correlation coeffi

cient of xil (tt) and xi2(t2), cf eq. (2.15) 

(2.27) 

Example 2.2: Stochastic depth and width of beam 

For the beam of example 2.1 the width W(x) at position x is also considered as a stochastic variable. 
Then {X(x), x E [0, L]}, XT(x) = [H(x), W(x)] forms a 2-dimensional vector process defined on the set 
0 of beams of length L with rectangular cross-section. The symmetry property eq. (2.26) reads 

(2.28) 

The left-hand side as well as the right-hand side of eq. (2.28) specify the covariance between the 
stochastic variables H(x1) and W(x2). 

The process {X(t) , t E T} is called a Gaussian process, if then-dimensional stochastic 
vector xr = [X(tt ), ... , X(tn)] is normally distributed for any order n and arbitrary 
index parameters tt, ... , tn ET, i.e. the probability density function i{x}(xl, t1; x2, h, 
... , xn, tn) is given by eq. (1.37). The vector of expected values J.Lx and covariance 
matrix Cxx of X can be specified from the mean value functions J.LX (t) and the auto
covariance function KX x ( t 1 , t2 ). Hence, a Gaussian process is completely described by 
its mean value function and auto-covariance function. 
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Example 2.3: Harmonic processes 

Let R"" R ( u 2 ) , 0"" U (0, 2rr) be mu tally independent stochastic variables. Next consider the stochas

tic process {X (t), t E R} where 

X(t) = Rcos(wot + 0) = RcosGcos(wot) - Rsin0sin(wot) (2.29) 

and wo E R+ is a deterministic constant. Eq. (2.29) which will be referred to as a harmonic process, 
is remarkable in the sense that it is generated from only two stochastic variables R and e. 

The mean value function J.'X (t) and the auto-covariance function "-XX (t1, t2) becomes 

p,x(t) = E [Rcos(wot + 0)] = E[R]E [cos (wot +e)] 

= v;;O' . 0 = 0 

"-xx(tl , t2) = E [R2 cos(wot1 +e) cos(wot2 +e)] 

= E [R2
] E[cos(wot1 +e)cos(wot2 +0)] 

= E [R2
] E [~ cos(wo(t2- tl)) + ~ cos(wo(t2 + t1) + 2e)] 

= u 2 cos(wo(t2 - t1)) 

where it has been used 

E[R] =loo r_:_ exp (-~) dr = ~ 0' 
u2 2u2 V 2 

0 
00 

E[R
2

] = j r
2 

; 2 exp ( - ;;2 ) dr = 2u
2 

0 
211" 

E [cos (wot + 0)] = J cos(wot + 0)2_d0 = 0 
27r 

0 
211" 

E [cos(wo(t1 +t2)+20)] = j cos(wo(t1 +t2)+20) ]:_dO =0 
27r 

0 

(2.30) 

(2.31) 

(2.32) 

(2.33) 

(2.34) 

(2.35) 

From example 1.8 follows Y1 = Rcos e"" N (0, 1) and Y2 = Rsin e"" N (0, 1), so X (t) = Y1 cos (w0 t)
Y2 sin (w0 t) . Being a sum of 2 normally distributed variables it follows that X (t) is normally distributed 

too, X (t) "" N (1-'x (t), u~ (t)) . The mean value, J.'X (t) = 0 according to eq. (2.30). The variance, 

u~(t), follows from eq. (2.31) for t1 = t2 = t, so u~(t) = u2. However, this does not imply th at 
{X(t), t E R} is a Gaussian process. Actually, none of the higher order joint distributons are normal. 
In order to see this consider X ( t1 ) , X ( t2) , X ( t3 ) for arbitrary t1 , t2, t3. Assume X ( t 2) = :r:2 and 
X ( t3) = :r:3. These samples are then generated by the samples R = r1, e = 01 of the basic variables 
of the process fulfilling 

:r:2 = r1 cos (wot2 + 81) 

:r:3 = r1 cos(wot3 + 81) } (2.36) 
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The probability distribution of X (tl) on condition of X (t2) = x2 and X (t3) = X3 is then dis
crete at the single sample x1 = r1cos(w0 t1 +B1), with (r1,Bl) determined from eq. (2.36). If 
[X ( t1) , X ( t2) , X ( t3 )] had been jointly normal, the distribution of X (t1) on condition of X ( t2) and 
X(t3) had been normal, cf. eq. (1.110). 

Next consider the even more simple stochastic process {X(t), t ER} where 

X(t) =a cos(w0 t +e) (2.37) 

where a, wo : E R+ are deterministic constants and e "' U (0, 211'). (2.37) will be referred to as a 
random phase process. From example 1.6 follows that the 1st order pdf of X (t) is given by 

,I xI> a 
,I xI< a (2.38) 

The 1st order pdf is now far from being normally distributed. The mean value function and the 
auto-covariance function of the process become 

2lr 

J-Lx (t) = E [a cos (wot +e)]= a J cos(wot + B)]:_dB =: 0 
211' 

0 

2lr 

a2 j cos (wot1 +B) cos (wot2 +B) ]:_dB 
211' 

0 

2,.-

a - cos(wo(tl - t2)) +-cos (wo Ct1 + t2) + 2B) -dB 2 J (1 1 ) 1 
2 2 211' 

0 

Example 2.4: Sums of harmonic processes 

(2.39) 

(2.40) 

As an extension to eq. (2.29) consider the following process {X(t), t E R} made up of a finite sum of 
harmonic processes 

N 

X(t) = I:Rj cos (wjt +ej) 
j=l 

(2.41) 

where Wj E R+ are deterministic constants. The random variables Rj ""' R ( uJ) and ej ""' U (0, 211') are 
mutually stochastic independent. The mean value function and auto-covariance function of eq. (2.41) 
becomes 

N N 

J-Lx(t) = I:E[Rjcos(wjt+ej)] = I:E[Rj]E[cos(wjt+ej)] =:0 (2.42) 

j=l i=l 
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N N 

= LLE[RjR~ccos(wjit +Gj)cos(w~ci2 +G~c)] 
i =t k=t 

N 

=LE [RJ] E[cos(wjtt +Gj)cos(wjt2 +Gj)] 

i=t 
N N 

LLE[Rj]E[R~c]E[cos(wjit +Gj)]E[cos(w~ct2 +G~c)] 
i=t k=t 

kfj 
N 

= L E [ RJ] E [ ~ cos( Wj ( i2 - it)) + ~cos{ Wj ( i 2 + it) + 28 i)] 
i=l 

N 

=La} cos(wj(i2 - t 1 )) 

j=l 

(2.43) 

At the derivation of eq. (2.43) the mutual stochastic independency of Rj, R~c. Gj, G~c fork f. j has 
been used, so 

E[RjRk cos(wjit + Gj) cos(w1ci2 + G~c)] = 
E [Rj] E [R~;] E [cos(wjtl + Gj)] E [cos (w1ct2 + G~c)] = 
E ( Rj) E [ R~c) · 0 · 0 = 0 (2.44) 

Since, Rj cos (wj + Gj) "' N ( 0, a}) , X (t) is made up of normally distributed variables, and then is 
normally distributed itself 

(2.45) 

Still, this does not mean that {X(i), i E R} is a Gaussian process. However, if the number of terms, 
N, in the sum (2.41) is sufficiently large, and all addends contribute equally, which will be the case if 
the variances, er], are all of comparable magnitude, it can be argued from the central limit theorem 

that the distribution of any finite dimensional subset of stochastic variables XT = (X(i1 ), ... ,X(in)] 
extracted from the process will be normal as the number of terms grows to infinity. Hence, eq. (2.41) 
will asymptotically approach a Gaussian process. 

Finally, consider the process {X(i), t E R} made up of a finite sum of random phase processes 

N 

X(t) = L ai cos(wjt + Gj) 

i=l 

(2.46) 

where ai, Wj E R+ are deterministic constants and Gj "' U(O, 211-) are mutually stochastic independent. 
Using almost identical derivations as leading to eqs. (2.42) and (2.43) the mean value function and the 
auto-covariance function become, cf. eq. (2.40) 

~-tx(t) = 0 (2.47) 



N 2 

~xx(t1,t2) =La; cos(wj(t2 -t1)) 

j=l 

45 

(2.48) 

If all addends of eq. (2.46) are of equally importance, it can again be argued from the central limit 
theorem that the random phase process, eq. (2.46) approaches a Gaussian process as the number of 
terms, N, grows to infinity. The rate of convergence is generally believed to be slower than of eq . (2.41). 

2.2 Continuity, differentiability and integration in mean square 

First, the concepts of continuity, differentiability and integration of an ordinary function 
x : T -+ R defined on some interval T = [a, b] are resumed. 

x(t) 

~ 
/: ! 

I I t 

a b 

Figure 2.3: Discontinuous, non-differentiable, integrable real function 

The function x(t) is said to be continuous in some point t0 E T, if for any sequence of 
index values t E T the corresponding sequence of function values { x( t)} converges to 
the value x( to) 

lim x(t) = x(to) 
t->to 

(2.49) 

The meaning of (2.49) is that the graph of x(t) does not make a jump at the point 
to , so the limit of the sequence of function values {x(t)} is the same, whether t -+ t0 

from above or below. Obviously, the function with the graph shown in figure 2.3 is 
not continuous in the point t 1 . The function x( t) is said to be continuous in T if it is 
continuous for all t ET. 

The function x( t) is said to be differentiable in some point t 0 if for any sequence of index 
values t E T the corresponding sequence of difference quotients converges to some limit 
ftx(to) 

lim x(t)- x(to) = !!._x(to) 
t->to t - to dt 

(2.50) 
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The difference quotient on the left-hand side of (2.50) signifies the slope of the secant. 
These slopes are required to converge to one and the same limit, ft x( t 0 ), the slope of the 
tangent, whether t -+ t0 from above or from below. If not so, the graph of x(t) makes 
a break at the point t0 . As seen in figure 2.3, x( t) is not differentiable in the point t2 • 

Since differentiability at a point to only makes sense, if it is continuous in this point, it 
is not differentiable in point t1 either. The function x(t) is said to be differentiable in 
T if it is differentiable for all t E T. 

Next, divide the interval [a, b] into n subintervals D..ti = ti - t,_1, t0 = a, tn = b, and 
select some point tt E ]ti-1, ti[ in the interior of each of these intervals. The area, A, 
below the graph of x( t) can then approximately be calculated by the sum 

n 

An~ L x(t7)D..ti, D..ti = ti- ti-1 (2.51) 
i=1 

Now, let the number of intervals n -+ oo, so maxi=1,n D..t, -+ 0. For instance, this is 
obtained if D..ti = b-;:a for all intervals. If the sequence of corresponding areas {An} 
converges to some limit A as n -+ oo, which is the searched area, no matter how the 
internal points tt are selected within the sub-intervals, the function x(t) is said to be 
Riemann integrable over the interval [a, b], and (2.51) is called a Riemann sum. Any 
function, which makes a finite number of finite jumps in the interval T is Riemann 
integrable. So, this is also the case for the function x(t) shown in figure 2.3. 

Since the concepts of continuity, differentiability and integrability involves a continuous 
change of index parameters, it is obvious that one has to confine oneself to index con
tinuous stochastic processes {X(t), t E T}, where T = [a, b] is some interval, if these 
concepts are to be extended to stochastic processes. On the other hand the stochastic 
processes may be as well state continuous as state discrete. 

Let E be the event (i.e. the subset of elementary events w E n) for which the corre
sponding realizations x(t) = X(w, t) are either continuous, differentiable or Riemann 
integrable in the ordinary sense as described above. Continuity and differentiability 
may either refer to a certain fixed index point to E T or to all index values in T. If 
the probability P(E) of the event E is equal to 1, the process {X(t), t E T} is said 
to be continuous, differentiable or Riemann integrable with probability 1 or almost cer
tain. Again, this does not mean that all the realizations x(t) = X(w, t) are continuous, 
differentiable or Riemann integrable. Only, that non-continuous, non-differentiable or 
non-Riemann integrable realizations occur with a relative frequency within a set of re
alizations, which goes to zero as the number of realizations within the considered set 
goes to infinity. 
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Example 2.5 Realization of a continuous, non-differentiable stochastic pro
cess 

x( t) 

t 

Figure 2.4: Realization of Wiener process 

In figure 2.4 is shown a typical realization of a somewhat spurious process {X(t), t E [0 , b)} with 
T = [0 , b] and where X{O) = 0 with probability 1. The ripples on the top of the realization are 
assumed to have zero wave height and zero wave length. Then, the realization is continuous. However, 
the tangents are everywhere vertical, so the differential coefficient changes discontinuously from -oo 
to +oo. Obviously, a derivative does not exist. If almost all realizations of {X(t), t E (0, b)} have 
the indicated properties, {X(t) , t E [0, b]} is continuous and non-differentiable for all t E [0, b] with 
probability 1. If further {X(t), t E [0, b]} is Gaussian the considered process is a so-called Wiener 
process, which as will later be seen, forms an important brick in the modelling of many stochastic 
phenomena. 

Any phenomenon within the realm of structural mechanics is continuous and differen
tiable in time and space. Hence, these phenomena should be modelled by stochastic 
processes which possess these analytical properties with probability 1. Since the ex
istence of such properties of a certain stochastic model normally requires information 
which goes beyond the mean value function and the auto-covariance function, and since 
these moments are often the only information available about the process, one has tried 
to define the concepts of continuity, differentiability and integrability as limits of certain 
sequences of stochastic variables in mean square instead of limits with probability 1. 
The idea is that the existence of such limits in mean square can be verified entirely from 
the analytical properties of the auto-correlation function f.£Xx(t1 , t2). 

2.2.1 Continuity in mean square 

A stochastic process {X(t), t E [a, b]} is said to be continuous in mean square at the in
dex value to E [a, b] if the stochastic sequence {X(t)} converges to some limit stochastic 
variable X(t0 ) in mean square as t----* t0 , cf. (1.121) 

limE [(x(t)- X(t0 ))
2

] = 0 
t-+to 

(2.52) 
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The process is said to be continuous in mean square in T if a limit X( to) exists, fulfilling 
(2.52) for all to E T . 

From the mean square convergence theorem follows that continuity in mean square is 
guaranteed if and only if the correlation function J.Lxx(ti, tz) exists and has a limit as 
t1 , t 2 -t to independently, i.e. if 

(2.53) 

(2.53) states that the process {X(t), t E (a, b]} is continuous in mean square at t =to 
if and only if the auto-correlation J.Lxx(t1 , t 2 ) exists and is continuous at the diagonal 
t 1 = t 2 = t 0 . Further, the process is said to be continuous in mean square in T, if this 
property is fulfilled for all t 0 E T. Obviously, this is the case if {X(t), t E [a, b]} is a 2nd 
order process. 

Example 2.6: Continuity in mean square of the Wiener process and the 
Poisson counting process 

x( t) 

4 

3 

2 

1 

t 
0+---~~------+----------+----------r----------

0 

Figure 2.5: Realization of Poisson counting process. 

A traffic light at a crossroad switches to red at a time, which may be selected as t = 0. The first car 
arrives to the red light at the random time t = t1, the next car arrives at the time t = t2 , etc. As long 
as the traffic light has not switched back to green these cars make a queue and one may be interesting 
in knowing the number of cars X(t), which have arrived after some elapsed timet, in order to design 
the length of the carriageway marking. Obviously, X(t) is a stochastic variable, which changes with 
the elapsed timet. Then the set of such stochastic variables {X(t), t E ]0, oo[} indicating the number 
of waiting cars at variable instants of times forms per definition a stochastic process, which is called 
a counting process. The realizations of a counting process is piece-wise constant and jumps with the 
magnitude 1 each time a new event is registrated (in casu a new car arrives). 

If further the times t1 ... tx(t ) of arrival of the cars to the crossroads are independent events, which 
is often assumed to be the case in little traffic, the counting process is a so-called Poisson counting 
process, which is another important brick in stochastic modelling. For this process it can be shown 



that the auto-correlation function is given by, see section 3.3 

,t1 E) -cx:>, O( V t2 E)-cx:>,O( 

, t1, t2 E (0, ex:>(, v E R+ 
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(2.54) 

The corresponding correlation function of the Wiener process {X(t), t E [0, ex:>[} with the typical real
ization as shown in figure 2.4 can be shown to be, see section 3.2 

, t1 E) - ex:>, 0( V t2 E) - ex:>, 0( 

, t1, t2 E (0 , ex:>(, So E R+ 
(2.55) 

Both correlation functions (2.54) and (2.55) exist and are continuous at the diagonal. Hence, as well the 
Wiener process as the Poisson counting process are continuous in mean square. However , the Poisson 
counting process is not continuous with probability 1 as seen from the typical realization shown in 
figure 2.5 . 

2.2.2 Differentiability in mean square 

Consider the following combined stochastic variable 

Y(to , h)= X( to+ h)- X(to) 
h 

(2.56) 

where h may be any real number fulfilling to + h E [a, b] so the stochastic variable 
X( t0 +h) is a member of the considered stochastic process. h may be as well positive as 
negative. Now, consider the limit passing h ~ 0, in which case a sequence of stochastic 
variables {Y(t0 , h)} is obtained. The stochastic process {X(t), t E [a, b]} is then said to 
be differentiable in mean square at t 0 E T if the stochastic sequence {Y( t0 , h)} converges 
in mean square as h ~ 0 to some limit stochastic variable, designated ftX(to), 

(2.57) 

The process {X(t), t E [a, b]} is said to be differentiable in mean square in T if a limit 
ftX(to) exists, fulfilling (2.57) for all to E T. In this case, the set of limit stochastic 
variables { ftX(t), t E [a, b]} is named the 1st order derivative process of the process 
{X(t), t E [a, b]}. 

From the mean square convergence theorem follows that the existence of the mean 
square derivative ftX(t) is guaranteed if and only if E[Y(to, hi)Y(to, h2)] exists and 
has the same limit no matter how the limit passings h1 ~ 0 and h2 ~ 0 are performed. 
Then, 

limE [Y(to, h!)Y(to, h2)] = 
ht-+0 

. [ 1 1 ] hm E -h (X(to + h1)- X( to)) -h (X(to + h2)- X(to)) 
ht-+0 1 2 
h2-+0 
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(2.58) 

(2.58) states that the process {X(t), t E [a, b]} is differentiable in mean square if and only 

if the 2nd mixed derivative at~~t2 J..lX x( t1 , t 2 ) exists and is continuous at the diagonal 
t1 = t2 = to. The independence of the limit passing of h1 and h2 means that the 
directional derivative of the 2nd order in any direction is required to exist and be 
continuous at t0 • As stated in the mathematical analysis this is ensured if and only if 
this property is fulfilled for the mixed derivatives. 

Example 2. 7: 1st order derivative process of the Wiener process 

a) 

tz -------------+-------------+-----------------

b) 

============*===========~==========~--~tz 

Figure 2.6: 1st and 2nd partial derivative of correlation function of Wiener process. 

If almost all realizations of the Wiener process have the appearance as shown in figure 2.4 it is clear 
that this process is not differentiable with probability 1. Now, let us check whether it is differentiable 



51 

in the mean square. For a certain t 2 > 0 one has the following variation of the correlation function 
(2.55) as a function of t1 

"XX (t,, t2) = { ~~Sot, 'tl < 0 

'0 ~ tl ~ t2 => 
2rrSot2 ' tl > t2 

_ll_"xx(t,t,) = { ~~So 'tl < 0 

= { ~1rSo 't2 < tl 
,O~t1 ~t2 (2.59) 

atl 't2 ~ tl 
0 'tl > t2 

In the last statement of (2 .59) the intervals are specified in terms of t2 instead of t1. 8 ~1 J..IX x ( t1, t2) 

as a function of t2 has been plotted in figure 2.6a. 

The mixed derivative 8~2 (et JJx x ( t1, t2)) as a function of t2 then becomes, see figure 2.6b 

(2.60) 

S(t) is Dirac's delta function, cf. (1.19). (2.60) is zero for t1 f:. t2 and goes to infinity for t1 = t2 . 
Hence, (2.60) is far from being continuous at the main diagonal t1 = t2, and the Wiener process is not 
differentiable in mean square. 

The 1st derivative process in mean square as a model for the derivatives of some phys
ical phenomena is somewhat obscure, since one can not say anything about it's set of 
realizations. The only way to get familiar with it is to calculate it's joint moments. To 
shorten the notation the abbreviate {X'(t), t E [a, b]} , X'(t) = ftX(t) will be adopted 
for the 1st order derivative process. 

The mean value function of the process becomes 

/1-X'(t) = E[X'(t)] = E [!x(t)] = E [liT_=.IfsX(t + h~- X(t)l 

1. E [X(t +h)- X(t)] _ 1. px(t +h)- px(t) _ .!!:_ ( ) 
Im h - Im h - d /1-X t 

h->0 h->0 t 
(2.61) 

At the derivation of (2.61) use has been made of the previously proved assertion that 
the operations of limit passing in mean square and expectation commute, cf. (1.138). 
(2.61) can equally be stated that the operations of stochastic differentiation in mean 
square and expectation commute (E [ftX(t)] = ftE[X(t)l). Despite the suggestive 
appearance of this statement it should be noticed that ft in front of ftX(t) is a part of 
a symbol and not an operator. The statement should then merely be considered as a 
formal tool for deriving results, which can be proved to be rigorously correct in a more 
involved manner. 

The auto-correlation function becomes 
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limE [h lh (X(t1 + h1)- X(ti)) (X(t2 + h2) - X(t2))] = 
ht-+0 1 2 
h2-+0 

lim hl ( lim hl E [X(t1 + h1)X(t2 + h2)- X(t1 + h1)X(t2)]-
h1-+o 1 h2-+0 2 

lim hl E [X(ti)X(t2 + h2)- X(ti)X(t2)]) = 
h2-+0 2 

lim hl (lim hl (J.Lxx(ti+hi,t2+h2)-J.Lxx(ti+h~,t2))-
ht-+O 1 h2-+0 2 

lim hl (J.Lxx(t1,t2+h2)-pxx(t1,t2))) = 
h2-+0 2 

lim hl (! J.Lxx(t1 + h1,t2)- 8ta J.Lxx (t1, t2)) = 
ht-+0 1 U~2 2 

a2 
8t1 8t2 J.LX x( t1' t2) (2.62) 

From the Schwarz inequality follows, cf. (1.134) 

1 1 

iE[X'(tl)X'(t2)] I~ E[X'(t1?] 2 E(X'(t2)2) 2 (2.63) 

Hence, the moment f.LX' X'(tl, t2) exists, if only the moments E [X'(t!)2] = f.LX' X' (t1 , ti) 
and E [X'(t2)2] = f.LX'X'(t2, t2) exist. However, this is guaranteed, if the process is 
differentiable in mean square, corresponding to the limit (2.58) exists in this case. The 
existence of the mixed derivative (2.62) is then guaranteed for all t 1 , t 2 if only this 
derivative exists at the main diagonal. 

(2.62) can equally be given the suggestive formulation that the operations of stochastic 
differentiation in mean square and expectation commute, i.e. 

Combining (2.61) and (2.62) follows that the auto-covariance function of the 1st deriva
tive process, "-X' X' ( t1, t 2 ) is related to the auto-covariance function of the underlying 
process as follows, cf. (2.12) 
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(2.64) 

Generally, joint moments of the nth order are given in the same way as 

(2.65) 

Hence, these joint expectations exist if the partial derivative on the right-hand side of 
(2.65) exists and is continuous. 

Next, the 2nd derivative in mean square, {X"(t), t E [a, b]}, of the process {X(t), t E 
[a, b]} is defined as the 1st derivative of the process {X' (t), t E [a, b]}. From (2.58) 
follows that the existence of the 2nd derivative in mean square is guaranteed if and only 
if 

(2.66) 

exists and is continuous at the diagonal. Hence, the existence of the 2nd order derivative 
requires the existence and continuity at the diagonal of the 4th order mixed derivatives 
of the correlation function of the underlying process. 

The mean value function J.lX"( t) and the auto-covariance function KX" X"(t1, t2) follows 
immediately from (2.61) and (2.64) 

d d2 

/-LX" ( t) = dt J.lX' ( t) = dt2 J.lX ( t) (2.67) 

(2.68) 

If t signifies time and X(t) models a displacement variable, the 1st and 2nd order 
derivative processes are designated the velocity process and the acceleration process, 
respectively. 

The nth order derivative in mean square, {X(n), t E [a, b]}, may recursively be defined 
as the 1st derivative process of the (n - 1)th order derivative process. The mean value 
function and the auto-covariance function becomes 

(2.69) 

(2. 70) 
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The process exists if the auto-correlation function J1- x<n> x<n) ( t1, t2) = at~
2

;t" Jl-X x( t1, t2) 
1 2 

exists and is continuous at the main diagonal. 

Generally, the nth order joint moment of the n1 th order derivative process, the n 2th 
order derivative process, . .. , and the nnth order derivative process is related to the nth 
order moment of the underlying process as follows 

(2.71) 

Example 2.8: 1st derivative process in mean square of a harmonic process 

(2.56) for the harmonic process (2.29) can be written 

Y(t, h)= Rcos(wo(t +h)+ e)- Rcos(w0 t +e) = 
h 

R ( -wo sin(wot +e)- ~w5 cos(wot + e)h + · · ·) =* 

lim Y(t, h)= -Rwo sin(wot +e) (2.72) 
h-+0 

where a Taylor expansion of Rcos(wo(t +h)+ e) to the 2nd order in h has been applied. (2.72) is 
valid for all w E 0, i.e. for all function values R(w) and e(w) of the stochastic variables. Hence, the 
1st derivative process with probability 1 is given by (2.72). 

Now, 

~~ E [ ( Y(t, h)- ( -Rwo sin(w0 t +e))) 
2

] 

~~ E [R
2 

( -~w5 cos(w0t + e)h + ... ) 
2

] = 

lim E[R2
] (~wcih2 E[cos2 (wot +e)]+·· ·) = 0 

h-+0 4 

Hence, f,X(t) = -Rwo sin(wot +e) is also the 1st derivative process in mean square. 

(2. 73) 

Example 2.9: Derivative processes in mean square of Gaussian processes 

Consider a Gaussian process {X(t), t E [a, b]} with the 1st order derivative process { ftX(t), t E [a, bJ}. 
Then-dimensional stochastic variable [Y(t1, h1) ... Y(tn, hn)] is then defined by the linear transforma
tions, cf. (2.56) 

. 1 
Y(tn, hn) = hn (X(tn + hn)- X(tn)) 

} (2.74) 
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(2.74) defines [Y(t1, h1) ... Y(tn, hn)] as a linear mapping of the 2n-dimensional normally distributed 
stochastic vector [X(t1 ), X(h + h1) ... X(tn) , X(tn + hn)]. Hence, (Y(t1, hl) ... Y(tn, hn)] is normally 
distributed for any h 1 ... hn. This is so also for the vector of limits in mean square as h1 ... hn --+ 0, 
[jtX(t1) ... ftX(tn)]. This means that the 1st order derivative process of the Gaussian process 
{X(t) , t E [a, b]} is also Gaussian. In this case the 1st order derivative process is completely described 
by it's mean value function (2.61) and it's auto-covariance function (2.64). 

If it exists, it is then seen by induction that also the nth order derivative process becomes Gaussian. 
This property may be stated that the linear operation of mean square differentiation transforms a 
Gaussian stochastic process into a new Gaussian process. 

2.2.3 Integration in mean square 

The following Riemann integral is considered 

t 

y(t) = j h(t,T)x(T)dT (2.75) 

a 

Relative to (2.51) the upper limit of the integral t is now assumed to be variable. The 
function h(t, T) is called a filter function or an impulse response function. Forget about 
the meaning of these names for the time being. Instead, consider h( t, T) merely as 
weights multiplied on the integrand x( T ), which are dependent on the variable upper 
integration limit. The only limitation on the selection of the weights will be that the 
Riemann integral (2. 75) exists, i.e. that the following Riemann sum converges as n ~ oo 

n 

Yn(t) = L h(t, Ti)x( Tt)L::l.Ti (2.76) 
i=l 

for any sub-division To < T1 < · · · < Tn, To = a, Tn = t of the interval [a , t], such that 
maxt=l.. .n L::l.Ti ~ 0, L::l.Ti = Ti - Ti-1· The intermediate times in the sum, Tt , may be 
selected anywhere within the interval [Ti- l , Ti[. h(t, T) may be as well real as complex. 
In the following calculations in this section only real functions are assumed. 

With the same sub-division as indicated by (2. 76), consider the following combined 
stochastic variable Yn ( t) defined as a linear combination of the stochastic variables 
X( Tt) . .. X( T~) within the stochastic process {X( T ), T E [a, t]} 

n 

Yn(t) = Lh(t ,Ti)X(Tt)L::l.Ti (2.77) 
i=l 

If the same limit passing as described in relation to (2.76) is applied to (2.77) a sequence 
{Yn(t)} of stochastic variables is obtained. This sequence may or may not converge to 
some limit Y(t) , either with probability 1 or in mean square. If the sequence do converge 
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the following symbol will be applied for Y (t), which is named the weighted integral of 
X(t) 

t 

Y(t) = j h(t, r)X(r)dr (2.78) 

a 

If the weighted integral Y(t) exists for all t ET, the set of stochastic variables {Y(t), t E 
[a, t]} forms a stochastic process designated the weighted integral process of the process 
{X(r),r E [a,t]}. 

Refining ourselves to the limits of the sequence (2. 77) in the mean square sense, it 
follows from the mean square convergence theorem that the weighted integral in mean 
square exists if and only if E[Yn(t )Ym(t)] exists and has the same limit no matter how 
the limit passings n -+ oo and m -+ oo are performed. Then, 

lim E[Yn(t)Ym(t)] = n-+oo 
m -+oo 

lim E [~ ~ h(t, T~ i)h(t, T~ 1·)X(r~ i)X(r~ 1·)b.rn ib.Tm 1·] n -+cx:> L...t L...t , , , ' , , 
m-+oo i=l j = l 

n m 

lim """""""" h(t, T~ i)h(t, T~ 1·)J.Lxx(r~ i, T~ 1-)b.rn ib.Tm 1· = n~oo L...t L...t ' ' , , ' ' 
m-+oo i=l j=l 

t t 

J J h(t ,ri)h(t,r2)pxx(r1,r2)dr1dr2 (2.79) 

a a 

Where T~ i and T~ j indicate intermediate points in sub-divisions with n and m sub
intervals, ~nd b.rn,i, and b.rm,j are the corresponding interval lengths. (2.79) states that 
the weighted integral process of the process {X(t), t E [a, b]} with the weights h(t, T) 
exists if the planar weighted Riemann integral of the correlation function (2.79) exists 
for all t E [a, b]. 

The mean value function of the weighted integral process becomes 

I'Y(t) = E(Y(t)] = E [j h(t, r)X(r)dr l = E [li~~s t. h(t , rt)X(rt)M; l 
limE[~ h(t,rt)X(rt)b.ri] = lim ~ h(t,rt)E[X(rt)]D.ri = n-+oo L...t n-+oo L...t 

i=l i=l 

t 

J h(t, r)Jl.x(r)dr (2.80) 

a 
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where commutation of the operations of expectation and limit passing in mean square 
has been applied. (2.80) can then be stated that the operations of expectation and 
stochastic integration in mean square commute , i.e. 

E [! h(t, r)X(r)dr] ~I h(t, r)E [X(r )] dr (2.81) 

Again, it should be noticed that J: h(t,7)X(7)d7 is a symbol for the weighted integral 
in mean square and not a linear operator. Hence, this statement should be considered 
merely as a formal tool for deriving results, for which a more rigorous derivation becomes 
tedious. 

The auto-correlation function becomes 

J~~ E [t t h(t1, 7~,i)h(t2, 7;,j)X(7~,i)X(7;,j).6.7n,i.6.7m,j] -
m->oo 1=l J=l 

n m 

J~~ L L h(t1, 7~,i)h(t2, 7;,j)J.Lxx(7~,i' 7!).6.7n,i6.7m,j = 
m-+oo i=l j=l 

tl h J J h(t1,71)h(t2,72)J.lXX(71,72)d71d72 (2.82) 

a a 

Combining (2.80) and (2.82) the following expression is obtained for the auto-covariance 
function, cf. (2.12) 

tl t2 J J h( t1 , 71 )h( t2, 72 )J.LX X( 71, 72 )d71 d72 -
a a 

tl t2 J h(t1, 7I)J.Lx( 7I)d71 J h(t2, 72)J.LX( 72)d72 = 

a a 

tl t2 J J h(t1,7t)h(t2,72)(J.LX X(71,72) - J.LX(7I)J.LX(72))d71d72 = 
a a 
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tl t2 

j j h(tl,rl)h(t2,r2)"-xx(r1,r2)dr1dr2 (2.83) 

a a 

Generally, the nth order joint moment of the weighted integral process can be proved 
to be 

E [Y(tl) · · · Y(tn)] 

t1 tn 

j · · · j h(t1, rl) · · · h(tn , rn)E [X( r1) · ··X( rn)] dr1 · · · drn (2.84) 

a a 

(2.84), which includes (2.80) and (2.82) as special cases, may suggestively be stated as 
the operations of expectation and stochastic integration in mean square commute. 

Example 2.10: Integral process of harmonic process 

For the harmonic process (2.29) , the integrated process can be shown to be 

t 

Y(t) = J X(t)dt = B._(sin(wot +e)- sin(woa +e)) 
wo 

(2.85) 

(2.85) is valid for any function values R(w) and e(w), w E 0, and then signifies the integral process 
with probability 1. Moreover, (2 .85) can be proved to be the integral process in mean square. The 
proof is omitted. 

Example 2.11: Weighted integral process in mean square of Gaussian process 

Consider a Gaussian process {X(t), t E [a , oo[}. Then-dimensional stochastic variable [Yn 1 (tt) ... Ynn (tn)] 
is then defined by the linear transformations, cf. (2.77) 

} (2.86) 

Yn;, i = 1 ... n in (2.86) signifies the Riemann sum (2 .77) using n; intervals for the division of the 
interval (a, t;]. 

(2.86) defines [Yn 1 (tt) . .. Ynn (tn)] as a linear mapping of the (nt + n2 + · · · + nn)-dimensional normally 
distributed stochastic vector [X( r:

1 
,l) . .. X( r:1 ,n1 ), X( r:

2
,1 ) •• • X( r:2 ,n2 ) .. . X( r:n ,l) . .. X( r:n ,nn )]. 

Hence, [Yn1 ( t1) ... Ynn ( tn )] is normally distributed for any n1 ... nn. This is so also in the limit as 
n1 . . . nn ----+ oo where then-dimensional vector of weighted integrals in mean square, [Y(tt) . . . Y(tn)J, 
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is obtained. This means that the weighted integral process of the Gaussian process {X(t), t E [a, oo[} 
is also Gaussian. In this case the weighted integral process is completely described by it's mean value 
function (2.80) and it 's auto-covariance function (2.83). Hence, the linear operation of mean square 
integration , transforms a Gaussian stochastic process into a new Gaussian process. 

Example 2.12: Simply supported Bernoulli-Euler beam 

A; x lu(x) "-El ~ 
t----

e 

Figure 2.7: Simply supported Bernoulli-Euler beam with random loading. 

Figure 2.7 shows a plane, horizontal simply supported Bernoulli-Euler beam of the length /. Sections 
are identified by the coordinate x, which is measured from the left end. The bending stiffness El is 
assumed to be deterministic and constant. The beam is loaded in vertical direction with a loading P( x), 
which is considered uncertain. Hence, this loading is modelled by a stochastic process {P(x ), x E [0, /]} 
with a certain mean value function J-'p(x) and auto-covariance function Kpp(x1, x2) signifying the 
deterministic variation and correlation structure of the excitation. Because the loading is uncertain the 
displacement U(x) in the direction of the loading becomes uncertain as well , and will be modelled by 
a stochastic p rocess {U(x), x E [0, ~} . The loading and the displacement processes are related by the 
following stochastic differential equation and stochastic weighted integral which may be interpreted as 
well with probability 1 as in mean square 

d4 
El dx4 U(x ) = P(x), x E ]0, /[ 

d2 d2 
U(O) = ~2 U(O) = U(l) = dx 2 U(l) = 0 

} (2.87) 

U(x) = j h(x, r)P(r)dr (2.88) 

(2.89) 
,x > r 

Here, h(t , r) signifies the influence function for the displacement, i.e. the displacement at the position 
x from a unit load at the position r . 

From (2.69) and (2.80) follows that the mean value function 1-'u(x ) of the displacement either can be 
obtained from the following differential equation or from the following integral 

d4 
El dx4 pu(x) = J-'p(x), x E [0, ~ 

d2 d2 
1-'u(O) = dx2 Pu(O) = 1-'u(l) = dx2 pu(/) = 0 

} (2.90) 
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I 

J.Lu(x) = J h(x, r)J.Lp(r)dr 

0 

(2.91) 

J.Lu(x) is simply the displacement of the beam if it is loaded with the mean value loading J.Lp(x). The 
auto-covariance function of the displacement follows from (2.83) 

I I 

~~:uu(xt,x2) = J J h(x1,rt)h(x2 , r2)Kpp(rt,r2)drtdr2 

0 0 

(2.92) 

The nth order joint moments E[U(xt) · · · U(xn)] can be calculated from (2.84) in case the corresponding 
moments, E[P( rt) · · · P( rn)J, are available for the loading 

E(U(x1) · · · U(xn)] = 

I I J ·· · J h(xt ,Tt) · · ·h(xn , rn)E[P(rt) ···P(rn)]drt · · · drn (2.93) 

0 0 

In civil engineering a great deal of phenomena can with acceptable accuracy be modelled 
by linear models, such as the Bernoulli-Euler beam in example 2.12. Since Gaussianity 
is preserved under such linear operations as stochastic differentiation and stochastic 
integration the response processes (stresses, displacements, etc.) become Gaussian too. 
However, even if the excitation is non-Gaussian the response processes may under certain 
conditions be assumed to be Gaussian. Actually, if the random variables X( rt) in the 
sum (2. 77) are not too strongly correlated, and all the weights h(t, rt) are of equal 
magnitude, Yn(t) may be assumed to be Gaussian as n ---+ oo because of the central 
limit theorem. This is the main reason for the extensive applicability of Gaussian 
processes as models for response processes in structural mechanics. 

2.3 Homogeneous processes 

A stochastic process {X(t) , t E T} is said to be homogeneous in the strict sense (or 
strictly homogeneous) if the set of finite dimensional joint distributions of the stochastic 
variables of the process is invariant under a linear translation t ---+ t + a for every a E T. 
This means 

F{x}(x1,ti) = F{x}(x1,t1 +a) 

F{x}(x1,t1;x2,t2) = F{x}(x1,t1 + a;x2,t2 +a) 
(2.94) 
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(2.94) states that the joint distribution functions of the n-dimensional stochastic vari
ables [X(tt) ... X(tn)] and [X(t1 +a) ... X(tn +a)] are identical for any order n, any 
index values t 1 . . . tn E T and any a E T. (2.94) then only makes sense if T is un
bounded, i.e. T = zn for index discrete processes and T = Rn for index continuous 
processes. Actually, if T is bounded, and t is placed on the boundary, then an a E T 
exists such that t +a tf_ Tin which case (2.94) becomes meaningless. 

If (2.94) only holds for n = 1 and n = 2, the process is termed homogeneous in the weak 
sense (or weakly homogeneous). 

If especially a = - t 1, it is seen from (2.94) that when {X(t), t E T} is weakly ho
mogeneous, the 1st order distribution functions become independent of t1, and the 
2nd order distribution functions will only depend on the index parameters it and t 2 

through the difference t2- it, i.e. F{x}(x,ti) = F{x}(x) and F{x}(xt,it;x2,t2) = 
F{x} ( x 1 , x2 ; t2 - it). For a strictly homogeneous process the higher order distribu
tion functions depend on it . .. tn through the differences t2 - it, t3 - it . .. tn - t1, i.e. 
F{x}(Xt , it; x2, t2 ; . .. ; Xn, tn) = F{x}(x1,x2 ... Xni t2 - t1 ... tn- it)· If the index pa
rameter t denotes time, the terms strictly and weakly stationary processes are used 
synonymously with the designations strongly and weakly homogeneous processes. 

Since F{ x} ( x) is independent of t for a weakly homogeneous process, the mean value 
function and the variance function also become independent of t, i.e. f-tx( t) = f-tX and 
o-i-( t) = o-~. As F{x} (xt, t1; x2 , t2) is merely a function of (t2- ti), the auto-covariance 
function fulfils 

(2.95) 

The symmetry property (2.13) of the auto-covariance function implies that 

""XX(T) =""XX( -T), T = t2- it (2.96) 

Hence, the auto-covariance function of a weakly homogeneous process is an even function 
of the index difference. 

The previous definitions can immediately be extended toN-dimensional stochastic vec
tor processes {X(t), t E T}, XT(t) = [Xt(t) ... XN(t)]. The process is strictly homo
geneous if for any order n , any index parameter (t1 , it) .. . (tn, in) ET x {1 ... N} and 
any a ET 

F{x}(xl, t1 , i1) = F{x}(xt, t1 +a, it) 

F{x}(xt, t1, it; x2 , t2, i2) = F{x}(xl, t1 +a, it; x2, tz +a, iz) 

(2.97) 

Vector processes are weakly homogeneous, if (2.97) only holds for n = 1 and n = 2. If 
{X(t), t E T} is homogeneous, it implies that all coordinate processes are homogeneous. 
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The opposite statement is not necessarily true. For a weakly homogeneous vector pro
cess the mean value functions become constant as a function of t, i.e. J-LX; ( t) = J-LX; . 

The cross-covariance functions become a function of the index difference t2 - t1 , i.e. 
KX;

1
X;

2
(tl,t2) = KX;

1
X;

2
(t2 -ti)· The symmetry property (2.13) attains the form 

(2.98) 

In nature all processes will be of limited extent in space and time. Hence , no natural 
processes can be strictly or weakly homogeneous in the sense of the definitions (2.94) 
and (2.97). Application of homogeneous processes is then a matter of approximate 
mathematical modelling. For instance the wind velocities in a storm grow up from calm 
condition until a period of length say 1 hour is reached, where extreme wind velocities 
are reached, followed by a decaying period, where the wind velocities eventually returns 
to calm. It is common practice to model the central period as a weakly homogeneous 
process in wind engineering. This is justified if a characteristic time length scale of the 
structure to which the wind load model is applied is small compared to the mentioned 
length of 1 hour of the central part of extreme exposure. 

In the remaining part of this section it is assumed that T = R. A necessary condition 
for considering a physical process as homogeneous is that the distances in the index 
set To = it1 - t2l, within which significant correlations among the stochastic variables 
are present, are small compared to the minimum diameter in T. For instance for the 
beam-depth process {H(x),x E [O,L]} of example 2.1 this means that the distances x0 , 

between which H(x) and H(x + x0 ) are significantly correlated, fulfils x0 ~ L. To will 
be referred to as the correlation length of the process. A formal quantitative definition 
for homogeneous processes in terms of the auto-correlation coefficient function is given 
by 

To= loo IPxx(T)idT (2.99) 

A typical variation of p x x ( T) and the geometrical interpretation of To , are shown in 
figure 2.8. 

-I 

Figure 2.8: Auto-correlation coefficient function and geometrical interpretation of cor
relation length To. 
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The characteristic time length of the structure exposed to the mentioned homogeneous 
wind loading model should then be selected as the correlation length of the displacement 
response process of the structure. In case the structure is sensible to dynamic loading 
it can be shown that To~ tTo, where (is the damping ratio and To is the eigenperiod 
of the structure (more precise the damping ratio and eigenperiod of the fundamental 
mode). Using ( ~ 0.01 and T0 ~ 1 s follows To ~ 100 s. This is well below the length of 
the period of extreme exposure, so the application of homogeneous modelling is justified. 
On the other hand, in case of earthquake excitation the central part of exposure, due 
to the arrival of horizontal shear waves, is much shorter, say 10 s. Hence, excitations 
due to earthquakes must be modelled by non-homogeneous stochastic processes. 

Assuming lx:x;
1

X;
2 
(T)I to be integrable, the following Fourier transform pair may be 

defined 

00 

KX;1X;2(T) = J eiwTSX;
1

X;
2
(w)dw (2.100) 

-oo 

00 

Sx;
1
X;

2
(w) = 2~ j e-iwrx:x;

1
X;

2
(T)dT (2.101) 

-oo 

(2.100) and (2.101) are termed the Wiener-Khintchine relations. Sx;
1
X;

2
(w) is desig

nated as the cross-spectral density functions (especially the auto-spectral density func
tion, if i 1 = i2). x:x;

1
X;

2
(T) is always real, whereas Sx;

1
X;

2
(w) is generally complex. 

Since the Fourier transformation Sx;
1 

X;
2 
(w) uniquely defines the cross-covariance func

tion all information about the correlation structure is also contained in Sx;
1 

X;
2 
(w ). 

Before a physical interpretation of Sx;
1
x;

2
(w) along with a formal derivation of (2.100) 

and (2.101) are given some useful mathematical properties of the cross-spectral density 
function will be proved. Substituting u = -T into (2.101) and applying (2.96) provide 

00 00 

Sx. X· (w) = __!_ j eiwu x:x. X· ( - u)du = __!_ J eiwu x:x. X· (u)du = 
'1 '2 27r 't '2 27r '2 '1 

- oo -oo 

(
__!_ loo e-iwuKX; X; (u)du) * = Sx. X· (w) (2.102) 27r 2 1 '2 '1 

-oo 

Sx* . X· (w) denotes the complex conjugate of Sx. X; (w ). At the derivation of (2.102) 
'2 '1 '2 1 

it has been used that (eiwu)* = (cos(wu) +isin(wu)) * = cos(wu)- isin(wu) = e-iwu, 

so ( (eiwu)*) * = (e-iwu)*. Use of this relation in (2.101) provides 

00 

Sx- X· (w) = __!_ j (eiwT)* KX;
1
X;

2
(T)dT = 

't '2 27r 
-oo 
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(2.103) 

The corresponding results for the auto-spectral density function is obtained by setting 
i1 = i2 = i in (2.102) and (2.103), i.e. 

(2.104) 

(2.105) 

(2.104) and (2.105) establish the auto-spectral density as a real and symmetric function. 

Since, the auto-covariance function ~X; X; ( T) and the auto-spectral density function 
Sx;X; (w) are symmetric functions, the Wiener-Khintchine relations for these quantities 
can be written as the following cosine transform pair 

00 00 

~X;X;(r) = J cos(wr)Sx;X;(w)dw + i J sin(wr)Sx;X;(w)dw = 

- oo 

00 

2 J cos(wr)Sx;x;(w)dw 
0 

-oo 

00 00 

Sx;x;(w) = 2~ J cos(wr)~X;X;(r)dr - i;7r J sin(wr)~x;X;(r)dr = 

- oo 

00 : J cos(wr)~X;X;(r)dr 
0 

-oo 

(2.106) 

(2.107) 

where it has been used that cos(wr) is an even function and sin(wr) is an odd function 
of w and r. The variance function O"t = ~X;X;(O) is obtained by setting r = 0 in 
(2.106) 

00 

O"t = 2 j Sx;x;(w)dw 
0 

(2.108) 

Positive values of w may be interpreted as a circular frequency, if r represents time, 
whereas w is a wave number, if r represents a space variable. Although w will be 
called "frequency" in the following, this distinction should be kept in mind. Then, 
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(2.108) shows that the auto-spectral density function can be interpreted as the density 
distribution of the variance al, in the frequency space. So, 2Sx,x, (w )dw represents the 
variance contribution from harmonic components in the interval ]w,w + dw]. 

In order to give a further physical interpretation of the spectral density concept the 
theory of Fourier analysis of periodic functions will initially be reviewed. In this re
spect, consider a real function x(t) defined in the interval [-f , f]. If x(t) is piece-wise 
differentiable and the absolute value, I x(t) I, is integrable over the interval [-f, fJ, 
x(t) can be represented by the following so-called Fourier series 

1 CX) 
x(t) = 2ao + L (an cos(wnt) + bn sin(wnt)) 

where 

27r 
Wn =nT' 

T 
2 

n=l 

n = 1,2, ... 

an = ~ J x(t) cos(wnt)dt, n = 0, 1, 2, ... 

_1:. 
2 

T 
2 

bn = ~ J x(t) sin(wnt)dt, n = 1, 2, ... 
T -2 

(2.109) 

(2.110) 

(2.111) 

The right-hand side of (2.109) converges to x(t) at all continuity points in [-f, f]. At 
any discontinuity point the series converges to the mean value, ~ (x(t-) + x(t+)), of the 
limits from the left and from the right. The range of definition may be extended outside 
[-f, f], in which case x(t) determined by (2.109) becomes a periodic function with the 
period T. Next, use of Euler's formulas 

} (2.112) 

in (2.109) provides 

1 CX)1 . CX)1 . 
x(t) = 2ao + L 2(an- ibn)etwnt + L 2(an + ibn)e-twnt = 

n=l n=l 

1 CX) 1 . -CX> 1 . 
-a +~-(a - ib )e'wnt + ~ -(a + ib )e-tw_nt = 
2 0 ~ 2 n n ~ 2 -n -n 

n=l n=-1 
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1 00 1 · -oo 1 · 
-a + "' -(a - ib )e'wn t + "" -(a - ib )e'wn t 
2 o L_.., 2 n n 6 2 n n 

n=l n=-1 

(2.113) 

At the derivation of (2.113) a change of summation variable from n to -n is initially 
performed in the second sum. Next, it has been used that W-n = -wn, an = a-n and 
bn = -b-n, as seen from (2.110) and (2.111). Setting bo = 0, the Fourier series can 
then be represented in the following compact form 

00 

x(t) = L eiwnt X(wn, T)D.w 
n = -oo 

where 

2rr 
6.w=

T 

f 
X(wn, T) = ~ T (an- ibn) = ~ J x(t) ( cos(wnt)- i sin(wnt)) dt = 

2rr 2 2rr 

_1:_ 
2 

-f 

(2.114) 

(2.115) 

(2.116) 

D.w as given by (2.115) is termed the fundamental circular frequency. Since, (eiwnt)* = 
e-iwnt, cf. the remarks subsequent to eq. (2.103), and because x(t) is real, so x(t)* = 
x(t), complex conjugation of the left-hand and the right-hand sides of (2.114) provides 

00 00 

x(t) = L (eiwntX(wn,T))* D.w = L (eiwnt)* X*(wn,T)D.w = 
n=-oo n=-oo 

00 

L e-iwntX*(wn, T)D.w 
n=-oo 

x 2(t) can then be represented by the series 

00 

L X(wn, T)X*(wm, T)ei(wn-wm)t6.w2 = 
n=-oo m=-oo 

00 00 

L L X(wn, T)X*(wm, T)ei21r(n- m)+- 6.w2+ 
n=-oom=-oo 

m#n 

(2.117) 
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00 

L X(wn, T)X*(wn, T)b.w2 (2.118) 
n=-oo 

The time average value of x 2 (t) over the interval [--'f, -'f] can then be calculated as 
follows 

T 
2 

~ j x 2 (t)dt = f X(wn, T)X*(wn, T)b.w2 = :; f I X(wn, T) 1
2 6.w(2.119) 

_1:. n=-oo n=-oo 
2 

The contributions from the off-diagonal terms in the double sum (2.118) cancel, because 

0 + i · 0 = 0, n =J m (2.120) 

Now, X (w-n, T) =X( -wn, T) = X*(wn, T) as follows from (2.110) and (2.116). Then, 
I X(w-n, T) 12 =1 X(wn, T) 12 • (2.119) can then be written 

T 
2 

27r 1 J /lx,T = TX(O, T) = T x(t)dt 
T -2 

00 00 

a;,T = 2:; L I X(wn, T) 1
2 b.w = 2 L Sxx ,r(wn)b.w 

n=l n=l 

(2.121) 

(2.122) 

(2.123) 
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1-Lx,T signifies the time average value of x(t) over the interval. Notice X(O, T) is real, so 
X(O, T)* = X(O, T). a-;,T signifies the time average value of the squared deviation from 

1-Lx,T, ( x( t) - f.Lx,T) 
2

, as seen from the following derivation 

T 

~ J(x(t) - P.x ,r)
2
dt= 

-f 
T T T 

~ J x
2
(t)dt- 2p.x ,T~ J x(t)dt + P.;,T~ J dt = 

T T T 
-2 -2 -2 

T 
2 

1 J 2 ) 2 2 T X (t dt- 1-Lx,T = O"x,T 
T -2 

(2.124) 

(2.122), which is termed Parceval'8 theorem, states that contribution to a-; ,T is made up 
by independent contributions 2Sxx,r(wn)~w from the circular frequencies Wn = n 2,]!, 
n = 1, 2, . . .. Marc-Antoine Parceval was a French mathematician, who lived during the 
French Revolution. Surely, (2.122) was not invented by the father of Lohengrin. Now, 
(2.122) should be compared with (2.108). 1-Lx,T as given by (2.121) is an estimate of the 
mean value function /-LX, a-; T as given by (2.124) is an estimate of the variance a-i- of 

' the homogeneous process, and Sxx,r(wn) as given by (2.123) is an estimate of the auto-
spectral density function Sxx(wn) at the circular frequency Wn. Actually, for a certain 
class of so-called ergodic processes to be considered in chapter 4, for any realization x( t) 
of the process {X(t), t ER} one has 

T.. 
2 

f.LX = lim f.Lx,T = lim T
1 J x(t)dt 

T -H:X) T ........ 00 

T 
-2 

T 
2 

a-~= lim a-; T = lim T
1 J (x(t)- f.Lx)

2
dt 

T-+oo ' T-+oo 
T 

-2 

Sxx(wn) = lim Sxx,r(wn) = lim 
2
T7r I X(wn, T) 1

2 

T-+oo T-+oo 

(2.125) 

(2.126) 

(2.127) 

Further, in the limit T -t oo the Riemann sum (2.122) converges to the integral (2.108). 

In the same way it can be shown that for any realizations x(t) and y(t) of the ergodic 
stochastic processes {X(t), t E R} and {Y(t), t E R} that the cross-spectral density 
function is given by 

Sxy(wn) = lim 
2
T7r X*(wn, T)Y(wn, T) 

T--+oo 
(2.128) 
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where 

(2.129) 

Obviously, Sxx,r(wn) = 2
; I X(wn, T) 1

2 2: 0, which also holds in the limit as T ---+ oo. 
To the extent, that the auto-spectral density function can be determined by the ergodic 
relation (2.127), it then follows that Sx,x,(w) is a real symmetric non-negative function 
of the circular frequency w. 

The Fourier transformation as applied in (2.100) and (2.101) can formally be derived 
from the finite transforms (2.114) and (2.116) as T---+ oo 

CX> 

x(t) = j eiwtX(w)dw 

(2.130) 
-ex> 

CX> 

X(w) =- e-zwtx(t)dt 1 J 0 

27r 
-ex> 

The lliemann sum (2.114) converges to the 1st of the integral transformations in (2.130). 

Example 2.13: Auto-spectral density function of a harmonic process 

a) X (t) b) c) 

Figure 2.9: Harmonic process. a) Realization. b) Auto-covariance function. c) Auto-spectral density 
function. 

The harmonic process considered in example 2.3 can be shown to be homogeneous in the strict sense. 
The auto-spectral density function of the process follows from (2.31) and (2.101) 

00 00 

Sxx(w) = - e-•wT r:r cos(wor)dr =- e-•wT- e•woT + e-•woT dr = 1 J 0 2 r:r2 J 0 1 ( 0 0 ) 

2'1l' 2'1l' 2 
-oo -oo 

(2 .131) 

-oo 
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In the latter statement the following formal mutual Fourier transform of:~:( r) = 1 and the Dirac's delta 
function X(w) = c(w) is applied 

00 

1 = J e iW T C(w)dw 

- oo 

00 
(2.132) 

0(w) = - e -IWT • 1dT 1 J . 
271" 

-oo 

This validity of the first relation of (2.132) follows from (1.19). The second relation, which is applied 
in (2.131) then follows from the second relation of (2.130). 

A realization of the harmonic process with the amplitude R = r, along with the auto-covariance 
function, as given by (2.31), and the auto-spectral density function, as given by (2.131), are shown in 
figure 2.9. 

a) 

7 

b) 

\....s 
0 

Figure 2.10: White noise. a) Auto-covariance function. b) Auto-spectral density 
function 

A homogeneous Gaussian process {X(t), t E R} with mean value function J.lX = 0 is 
termed white noise, if the auto-spectral density function is constant for all frequencies, 
1.e. 

Sxx(w) =So, wE R (2.133) 

From (2.100) and (2.132) the auto-covariance function of a white noise can be evaluated 
as 

(2.134) 

-oo -oo 

where the change of integra bel variable u = -w has been made. If especially 27r So = 1, 
the process is named unit white noise. The auto-covariance function and the auto
spectral density function of a white noise process, are shown in 2.10. 

According to (2.134), X(t) and X(t + -r) for a white noise are stochastic independent 
no matter how small values of I r I are considered. The samples x(t) and x(t + r) will 
then not be close to each other even for small values of I r I· Hence, the realizations 
of white noise are discontinuous for any index value, t. Inserting (2.133) into (2.108) 
provides a1- = oo, implying X(t) "'N(O, oo ). Let a < b. Then 
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P(a < X(t):::; b)= lim (<P (_!_)- <P (_!!__)) = 0.5-0.5 = 0 
ux-+oo ux ux 

(2.135) 

<P(x) is the distribution function of a stochastic variable X I"V N(O, 1). Together (2.134) 
and (2.135) imply that the realizations of a white noise process are discontinuous for 
all t E T, and the samples will be beyond of any finite interval with probability 1. 
Surely, such a process cannot be given any rigorous mathematical definition. It is 
not even possible to sketch typical realizations of the process. It is common practice 
in engineering applications to define a white process as 1st derivative process of the 
Wiener process. The reason for this is of course the identity between (2.60) and (2.134). 
Again the lack of rigor becomes obvious, since the Wiener process has non-differentiable 
realizations as mentioned in example 2.5. The designation 'white noise' originates from 
optics, where the auto-spectral density function of sunlight is almost constant over the 
visible frequency range of the electromagnetic spectrum. 

The harmonic process dealt with in example 2.3 and the white noise process can be 
considered as limiting extreme stochastic processes, where the variance is concentrated 
on the angular frequencies w0 and uniformly distributed over all frequencies, respectively. 
Both cases are idealizations, which are only approximately met in practice. 

a) 
X ( t) 

c) 
Sxx (CJ) 

Figure 2.11: Narrow-banded process. a) Realization. b) Auto-covariance function. c) 
Auto-spectral density function 
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For physical processes with some resemblance to a harmonic process the variance will 
be continuously distributed over a range of frequencies , although there will be a marked 
concentration of variance contributions from a narrow interval close to ±w0 . Such a 
process is named a narrow-banded stochastic process. 

A realization, the auto-covariance function and the auto-spectral density function for 
a narrow-banded process are shown in figure 2.11. The realization is approximately 
harmonic with the angular frequency wo, although the amplitude is slowly varying in 
a random manner. x(t) may be considered to be composed of a sum of harmonic 
components with slightly different angular frequencies, all in the vicinity of wo. The 
slowly varying amplitudes are due to the superposition of such components. Finally, 
it is observed that each crossing of the t-axis by x(t) is succeeded by exactly one local 
maximum or local minimum. 

The auto-covariance function shown in figure 2.11 b appears as a cosine function with 
angular frequency w0 and with monotonously decreasing amplitudes. The correlation 
length ro of the process indicates the values of r, where the local maxima of KX x( r) 
have diminished to insignificant magnitudes. As seen r 0 ~ T0 = ::for a narrow-banded 
process. 

The auto-spectral density function of a narrow-band process is shown in figure 2.1lc. As 
a measure of the narrow-bandedness the half-band width B may be introduced, defined 
as shown in the figure. Based on B, a non-dimensional band-width parameter ( can be 
introduced as follows 

( = _!!_ 
2wo 

(2.136) 

Response processes in civil engineering structures sensible to dynamic excitations show 
narrow-banded character. In this case w0 is usually the fundamental circular eigenfre
quency of the structure. (as given by (2.136) turns out to be a measure of the damping 
properties of the structure and is typically ( ""' 0.05. 

The surface elevation at a certain site from swell waves appears to some extent as shown 
in figure 2.1la and can then be classified as narrow-banded. 

In wind engineering the most common example of narrow-banded excitation is vortex 
shedding from slender flexible structures such as chimneys. In this case the vortex shed
ding process may be locked-in to take place at the fundamental circular eigenfrequency 
w0 of the structure and not at the Strouhal's frequency, resulting in serious resonance. 

In equally vague terms, a broad-banded process is defined as a process where the variance 
contributions are uniformly distributed over a wider band of frequencies in a way that 
no single significantly dominating frequency can be identified in the spectrum. In this 
respect a broad-banded process has some resemblance to white noise. However, the 
crucial difference is that any physical broad-banded process will have finite variance, as 
well as continuous (and even differentiable) realizations. 
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a) 
X ( t) 

b) Kxx( T) 

CV0T 
2rr 

-2 - 1 1 2 

-o-x2 

Sxx (cv) 

CV 
------------+--------------+--------------~---------------

c.; a 

Figure 2.12: Broad-banded process. a) Realization. b) Auto-covariance function. c) 
Auto-spectral density function. 

A realization, the auto-covariance function and the auto-spectral density function of a 
broad-banded process are shown in figure 2.12. The realization in figure 2.12a has a 
very irregular performance. Each crossing of the t-axis is quite often succeeded by more 
than one local maximum or local minimum contrary to the narrow-banded case. 

In figures 2.12a and 2.12b the time has been normalized with respect to the mean 
zero upcrossing period T0 = 2

71", which can be estimated from the realization simply by wo 
counting the number of upcrossings in a certain sample interval. As seen from figure 
2.12b significant correlations are only present for time separations of magnitude T0 , i.e. 
the correlation length fulfils To rv To for a broad-banded process. Finally, the auto
spectral density function of a broad-banded process has been shown in figure 2.12c. 

Examples of broad-banded natural loading processes are the surface elevation from the 
so-called wind waves, i.e. waves which are still in the generation area. Gusty wind 
loads due to atmospheric turbulence is also of broad-banded character. Most physical 
phenomena, where t signifies a spatial parameter have realizations, which resemble the 
time series shown in figure 2.12a and consequently should be categorized as a broad
banded process in case of stochastic modelling. E.g. the yield stress along a long bar 
will vary in the irregular way shown in figure 2.12a around some mean value. 

Negative angular frequencies cannot be interpreted physically. Due to the symmetry of 
Sxx(w) one occasionally prefers to operate with the so-called one-sided auto-spectral 
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density function, defined as 

Sx(w) = 2Sxx(w), wE (O,oo( (2.137) 

For the one-sided auto-spectral density function only one index X is applied. Sx x(w) 
will correspondingly be referred to as the double-sided auto-spectral density function. 
The Wiener-Khintchine relations (2.100), (2.101) and the result (2.108) for the variance 
may be expressed in terms of Sx(w) as follows 

00 

Kxx(r) = j cos(wr)Sx(w)dw 
0 

2100 

Sx(w) =- cos(wr)Kxx(r)dr 
7r 0 

a~ = 100 

Sx(w )dw 

(2.138) 

(2.139) 

(2. 140) 

Based on the one-sided auto-spectral density function the spectral moments are defined 
in the following way 

<X> 

Ai = j wiSx(w)dw, i = 0, 1, 2, ... 

0 

(2.141) 

Sx(w )/ Ao has the main-characteristics of a probability density function (non-negatively 

and area = 1 ). The expected value of this 'pdf' is t and the variance is ( ~ - ~). 
Hence, the variational coefficient becomes, cf. (1.85) 

(2.142) 

b was suggested as a band-width parameter by Vanmarcke.1 For a harmonic process, 
A1 = woAo and A2 = w5Ao, implying b = 0. Hence, small values of b indicate narrow
bandedness. 

Example 2.14: Band-limited white noise 

A weakly homogeneous stochastic process is called band-limited white noise, if the one-sided auto
spectral density function is given as 

1 E. Vanmarcke: Random fields: Analysis and Synthesis, The MIT Press, Cambridge, Massachusetts, 
1983. 
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Figure 2.13: Band-limited white noise. 
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Sx(w) = : 
,wE [wo- ~,wo+~] 

,w rf. [wo- ~,wo + ~] 
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(2.143) 

w0 is termed the center frequency and B is the band-width of the auto-spectral density function. These 
are assumed to fulfil B ~ 2wo . 

The auto-covariance function follows from (2.138) 

(2.144) 

The spectral moments are obtained from (2.141) 

(( 
B)i+l ( B)i+l) 

wo + 2 - wo- 2 (2.145) 

Vanmarcke's band-width parameter is obtained by inserting (2.145) into (2.142). Eliminating B in 
favour of the non-dimensional band-width parameter ( the result may be written as 

(2.146) 

Example 2.15: Auto-spectral density function of a process made up of a sum 
of harmonic processes, and modelling of homogeneous Gaussian processes 

In example 2.4 the auto-covariance function of the sum of harmonic processes (2.41) was evaluated and 
the result was given by (2.43). Using the result (2.131) for the auto-spectral density of each of the 
components in (2.43), the auto-spectral density function is seen to be 

N 2 

Sxx(w) = L CF; (8(w- Wj )) + 8(w + Wj )) 

i=l 

(2.147) 
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Figure 2.14: a) Discretization of zero-mean stationary Gaussian process with continuous auto-spectral 
density function. b) Auto-spectral density function for the process made up of a sum of harmonic 
processes or a sum of random phase processes. 

Similarly, for the sum of random phase processes (2.46) the auto-covariance function was evaluated as 
given by (2.48). In this case the auto-spectral density function can in the same way be evaluated as 
follows 

N 2 

Sxx(w)= L a1(8(w-wj)+8(w+wj)) 

j=l 

(2.147) and (2.148) have been depicted in figure 2.14b. 

(2.148) 

In example 2.4 it was mentioned that as well the sum of harmonic processes as the sum of random 
phase processes approaches a zero-mean Gaussian process as the number of harmonic components, N, 
grows to infinity, if only the amplitudes rTj and ai are all of comparable magnitude, so no harmonic 
component is dominating. This observation may be used to model a zero-mean stationary Gaussian 
stochastic process by an equivalent continuous auto-spectral density function as shown in figure 2.14a. 
A number of circular frequencies w1 ... Wj ... WN are selected on the frequency axis. To each of these 
frequencies a harmonic process Rj cos(wi t + ei) is associated, which is selected so the intensity trrJ 
of the delta-spike at w = Wj in figure 2.14b and the variance contribution of the hatched area in figure 
2.14a are alike, i.e. 

I 

.!.rr~ = Jw. Sxx(w)dw 
2 j 

wj -1 

u) ~ 2 J Sxx(w)dw ~ J Sx(w)dw, j = 1,2 ... N (2.149) 
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where wj_1 = t(wj-1 + Wj) and wj = t(wj + Wj+l) signifies the midpoints between the circular 
frequency points w1 .. . WN. These points should be selected, so the variances (2.149) are all of equal 
magnitude, i.e. the frequency band .6.w = wj -wj_1 = t(wj+l -Wj-1) should be small, where Sx(wj) 
is large, in order to insure a convergency to a Gaussian process as N -+ =· 
For a sum of random phase processes the corresponding replacement requires that the amplitude ai of 
the jth harmonic process fulfils 

I 
W· 

~aj = j Sxx(w)dw => 

wj_l 

aj =4 J Sxx(w)dw = 2 J Sx(w)dw, 

wj _l wj_l 

j = 1,2 .. . N (2.150) 

Again the discrete circular frequencies of the replacement model, w1 ... w N, should be selected, so a j , 

j = 1, 2 ... N as given by (2.150) are all of equal magnitude. 

2.3.1 Derivative processes of homogeneous processes 

If {X(t), t E R} is a strictly or weakly homogeneous stochastic process, it can be shown 
that the 1st derivative process in mean square, {X'(t), t E R}, becomes strictly or 
weakly homogeneous as well. 

The mean value function and auto-covariance function in the homogeneous case follow 
from (2.61) and (2.64) 

d 
/-LX'(t) = dt/-LX = 0 (2.151) 

(2.152) 

In the latter statement of (2.152) &t2 = dr (with t1 kept constant) and 8t1 = - dr (with 
t 2 kept constant) are applied. 

By induction it follows that the nth derivative {X(n)(t), t E R} becomes homogeneous in 
strict or weak sense, if {X(t), t ER} is strictly or weakly homogeneous ( {X"(t), t ER} 
becomes homogeneous, because so is {X'(t), t ER} and so on). 

For the mth and nth derivative processes, {X(m)(t), t E R} and {X(n)(t), t E R}, 
m, n > 0, the mean value functions becomes 1-"x<ml(t) = 0 and 1-"x<nl(t) _ 0. Their 
cross-covariance function then becomes, cf. (2.70) 
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(2.153) 

Especially, for m = 0 and n = 1 the cross-covariance function of {X(t), t E R} and 
{X'(t), t ER} is obtained as 

d 
x:xx•(r)= drx:xx(r), r=t2-t1 (2.154) 

Since, x:x x( r) is a symmetric function of r, its derivative must be zero at r = 0. 
Then, x:xx•(O) = lrx:xx(O) = 0. This shows that for a weakly homogeneous process 
the stochastic variables X(t) and X'(t) are uncorrelated. Further, if {X(t), t E R} is 
Gaussian it can even be stated that X ( t) and X' ( t) are stochastically independent, since 
zero correlation implies stochastic independency in this unique case. 

Using the Wiener-Khintchine relation (2.100) on the right-hand side of (2.152) and 
(2.153) one has 

00 

x:x•x•(r) =- d~2 j eiwrsxx(w)dw = 
-oo 

00 J eiwrw2Sxx(w)dw, r = t2- t1 (2.155) 

-oo 

-oo 
00 J eiwr( -1)m(iw)m+nsxx(w)dw, r = t2- t1 (2.156) 

-oo 

Upon comparison with (2.100) the auto-spectral density function Sx•x•(w) of {X'(t), t E 
R}, and the cross-spectral density function Sx<mlx<nl(w) of {x<m>(t),t E R} and 
{x<n>(t), t ER} are then seen to be given as 

(2.157) 

(2.158) 

The variance function ai(n) of the nth derivative process is simply 

00 00 

ai(n) = J w2n Sxx(w )dw = J w2n Sx(w )dw = >.2n, n = 0, 1, ... (2.159) 
-oo 0 
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where .A2 n are the spectral moments defined in (2.141). 

In case of homogeneous processes, the 1st derivative in mean square exists, if l:2 Kx x( T) 
exists and is continuous at T = 0 according to (2.58). As seen from (2.155) this is 
tantamount to state that w2 Sxx(w) is integrable over ]-oo, oo[ because this is the re
quirement for the existence of its Fourier transform, KX' X' ( T ), as a continuous function. 
Generally, {X(n)(t), t E R} exists if w2nSxx(w) is integrable, corresponding to the 
variance (2.159) is finite. 

2.3.2 Integrated processes of homogeneous processes 

Example 2.16: Impulsive loadings of dynamic systems 

a) 

x(t) 
6 ( t) 
eic.>t 

r.========;r--z ( t) 

y(t) 
h(t) 
H((.))eic.>t 

b) 

x(t) linear 
system 

H(w) 

y(t) 

Figure 2.15: a) Plane frame exposed to harmonic excitation. b) Symbolic representation of single 
input - single output relation. 

Figure 2.15a shows a plane frame. At some point on the structure a time dependent force x(t) is 
acting, which causes the dynamic response y(t) somewhere in the structure. Physically, y(t) may be a 
displacement, a bending moment, etc. The relationship between the input, x(t), and the output , y(t), 
may be represented symbolically as shown in figure 2.15b. 

In physics the impulse of a time varying force x(t) is defined as the time integral 

I= j x(t)dt (2.160) 

An impulsive force applied at the time r is zero outside a short interval [r, r + dr[, where it is infinite 
in a way that the integral (2.160) attains a finite value. It follows from (1.19) that an impulsive force 
with the impulse I applied at the time r can be written 

x(t) = I8(t- r) (2 .161) 

If I= 1, the impulsive force is called a unit impulse. 

Assume the frame is at rest and a unit impulse is applied at the timet= 0. The response can then be 
written as 

y(t) = h(t), t > 0 (2.162) 
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x(t) 

t 

y(t) 

t 

Figure 2.16: Effect of an impulse applied at the timer. 

If the mechanical properties (eigenfrequencies, damping properties) of the frame are not varying with 
time the response only depends on the elapsed time interval from the instant of time of applying the 
impulse. Hence, a unit impulse applied at the time r < t, will imply the response y(t) = h(t- r) at 
the timet. Now, the impulse during the interval [t, t + ~r[ is not 1 but x(r)dr according to (2.160). 
Hence, the response from this differential impulse becomes y(t) = h(t- r)x(r)dr, see figure 2.16. The 
response from all such previous differential increments can then be written as the following weighted 
integral 

t 

y(t) = J h(t- r)x(r)dr (2.163) 

-oo 

(2.163) is nothing but a systematic application of the su.perposition principle for adding load effects 
in linear systems. Further, future impulses applied at r > t cannot affect the present response. This 
means that the impulse response function must fulfil the following causality condition 

h(t) = 0, t < 0 (2.164) 

(2.163) is of the weighted integral type (2.75). The reason for using the designation impulse response 
function for the function h(t, r) should now be clear. In the present case h(t , r) = h(t- r) is merely 
a function of the elapsed interval since the application of the impulse, since the structural system has 
been assumed to be time-invariant. 
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Example 2.17: Frequency response of dynamic systems 

Now, assume that the structure shown in figure 2.15 is excited by a harmonic varying force 

x(t) = Xo cos(wt) = Re(Xoeiwt) (2.165) 

X 0 is the amplitude and w is the circular frequency of the excitation. The last statement of (2.165) 
follows from Re(ei"') = Re(cosx + isinx) = cosx. Harmonic varying excitations of the indicated type 
are quite often caused by unbalanced machines operating in the building . 

It is now a fact that the structure starts oscillating with the same circular frequency, w, but with a 
different phase. Then y(t) can be written, cf. (2.165) 

(2.166) 

Yo = H (w) X o (2 .167) 

Yo as given by (2.167) is the amplitude of the response. The difference between (2.166) and (2.165) is 
that the amplitude Yo of the response is generally complex, whereas X o is real. Yo can then be written 
on the polar form 

Yo =I Y o I eie (2.168) 

(2.166) can then be written 

y(t) = Re(l Yo I ei(wt+S) ) =I Yo I Re(ei(wt+S) ) =I Yo I cos(wt +e) (2.169) 

I Y o I is the observed amplitude of the response in the experiment. The meaning of the phase e is that 
the harmonic input and output are not zero at the same time. Phase lags are caused by damping in 
vibratory systems. 

H(w) in (2.167) is named the frequency response function. Physically, H(w) can be interpreted as the 
complex amplitude of the response y(t), when a unit harmonic input x(t) = Re(eiwt) is applied at the 
structure, cf. figure 2.15. 

The impulse response function h(t) and the frequency response function H(w) can be 
characterized as functions, which describe the response of the system to standard
ized loadings, namely a unit impulse and a unit amplitude harmonic varying excita
tion. Since, both functions defines one and the same system there should be a close 
relationship between them. In order to derive this relationship, let x( r) = eiwT in 
(2.163), where the real operator has been omitted for ease. The response then becomes 
y(t) = H(w )eiwt. Hence, (2.163) provides 

t 

H(w)eiwt = j h(t- r)eiwT dr ::::} 

-oo 

t 0 00 

H (w) = J h(t- r)e-iw(t-T)dr =- j h(u )e-iwudu = J e-iwuh(u)du (2.170) 

-oo oo 0 
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where the change of integration variable u = t- T has been applied. This is possible 
because the integration is with respect to T, so t is constant. The lower integration limit 
in (2.170) can be replaced with -oo because of the causality condition (2.164), so one 
has that the frequency response function , H(w), is the Fourier transform of the impulse 
response function , i.e. 

00 

H(w) = j e-iwuh(u)du (2.171) 

-oo 

From (2.130) then follows that h(u) is obtained by the inverse relation 

00 

1 J . h(u) =- e'wu H(w)dw 
27f 

(2.172) 

- oo 

A system, for which the impulse response function fulfils h( t, T) = h( t - T) is called 
time-invariant. The reason for this designation follows from the discussion in example 
2.16. 

Now, assume that {X(t), t E R} is a strictly or weakly homogeneous process, and the 
system is time-invariant. Corresponding to (2.78) the integrated process is written 

t 

Y(t) = j h(t- r)X(r)dr (2.173) 

- oo 

The mean value function becomes, cf. (2.80) 

t 00 

f-Ly(t) = j h(t- r)f-Lxdr =/-LX j h(t- r)dr = 
-oo -oo 

00 

/-LX j h(u)du =f-LY (constant) (2.174) 

-oo 

where the change of integration variable to u = t - T has been applied. In (2.83) the 
substitutions u1 = t 1 - r 1 and u2 = t 2 - r2 provides 

tl 

Kyy(t1, t2) = j It: h(t1- r1)h(t2- r2)Kxx(r2- ri)dr1dr2 = 
-oo 

00 00 

j j h(u1)h(u2)Kxx(t2- t1 + u1- u2)du1du2 = Kyy(t2- t1) (2.175) 

-oo -oo 
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The auto-spectral density function of {Y(t), t ER} follows from (2.101) and (2.175) 

CXJ 

Syy(w) = ;7r j e-iwr Kyy(r )dr = 
-CXJ 

CXJ CXJ CXJ 

;7r j e-iwr j j h(ut)h(u2)Kxx(r + u1- u2)du1du2dT = 
-CXJ - CXJ -CXJ 

CXJ CXJ 

j eiwu1 h(ui)du1 j e-iwu2 h(u2)du2· 

-CXJ -CXJ 

(2.176) 
-CXJ 

In the innermost integral of (2.176) u1 and u 2 are constants, and a new integration 
variable u = T + u 1 - u2 can be introduced with du = dr. This integral is then seen 
to be Sxx(w). The next integral is seen to be H (w). Finally, the outermost integral is 
evaluated to be H*(w ). (2.176) can then be written as 

Syy(w) = H*(w)H(w)Sxx(w) =I H(w) 12 Sxx(w) (2.177) 

The result for the outermost integral follows because, cf. (2.102) 

(2.178) 

(2.177), which is one of the most important relations in spectral analysis of response 
processes in linear systems, has been illustrated in figure 2.17. S x x( w) is most often 
broad-banded in vibration problems in civil engineering. In this case I H(w) 1

2 is usually 
narrow-banded, which is merely a statement that civil engineering structures are lightly 
damped. The figure then shows that the response processes in structural dynamics most 
often are narrow-banded, i.e. their sample curves appear as shown in figure 2.1la. w0 

in figure 2.17 signifies the fundamental circular eigenfrequency of the structure. 

For w = 0, (2.171) provides 

CXJ CXJ 

H(O) = j h(u)du = j h(t - r) · 1dr = I (2.179) 
-CXJ -CXJ 

Hence, (2.174) can be written as 

(2.180) 
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In (2.179) H(O) can be interpreted as the response, when a staticalload of magnitude 1 
has been applied for infinitely long time. Hence, H(O) = t signifies the statical influence 
coefficient, cf. (1.165). k is the corresponding stiffness coefficient. (2.180) can then be 
interpreted as the .static response of the system to the static excitation x(t) = J.LX· 

Sxx(GJ) 

Figure 2.17: Broad-banded excitation process filtered through a narrow-banded filter. 

For the plane frame in figure 2.15a one may now consider several response quantities 
y(t) and z(t) generated by the same time-dependent loading x(t). For the frame shown 
in figure 2.15a the extra response quantity, z(t), may represent the horizontal top storey 
displacement. Let the response y(t) be determined by the frequency response function 
Hyx(w) and the response z(t) by the frequency response function Hzx(w), see figure 
2.18. The corresponding impulse response functions hyx(t) and hzx(t) are determined 
by (2.172). If the loading is modelled as a weakly stationary stochastic process {X(t), t E 
R} one may then ask for the cross-correlation of the response processes {Y(t), t E R} 
and {Z(t), t ER}. 

The cross-covariance function becomes, cf. (2.175) 

tl t2 

x:yz(ti, tz) = j j hyx(ti- rl)hzx(tz- rz)x:xx(rz- r1)dr1drz = 

-oo -oo 
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00 00 

j j hyx(ui)hzx(u2)Kxx(t2- t1 + u1- u2 )du1du2 (2.181) 

-oo -oo 

Hyx(w) y(t) 

hyx(t) 

x(t) 

Hzx(w) z ( t) 

hzx(t) 

Figure 2.18: Symbolic representation of single input- multiple output system. 

The cross-spectral density function of {Y(t), t ER} and {Z(t), t ER} then follows from 
(2.101). With a derivation simular to the one leading to (2.177) the result becomes 

Syz(w) = Hyx(w)Hzx(w)Sxx(w) (2.182) 

Example 2.18: Cross-spectral density of particle velocity and acceleration 
processes in long-crested sea states 

Figure 2.19: Planar linear wave. 
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A planar 2-dimensional irregular sea-state is considered. Initially, a Cartesian (z, y, z)-coordinate sys
tem is defined. The (x, y)-plane is horizontal and placed in the mean water level (MWL). The x-axis is 
directed along the direction of propagation and the z-axis is orientated in the upwards direction. The 
sea-bottom is horizontal and the water depth is h. The sea-bottom is then defined by the coordinate 
plane z = - h, see figure 2.19. 

The surface elevation 77( x, t ) is measured by a wave gauge at the position xo. The surface elevation 
at the measure point is modelled by a zero-mean weakly stationary stochastic process { 77(0, t), t E R}. 
Using the theory of (2.123) the corresponding surface elevation auto-spectral density function S1111 (w) 
can be estimated from the measured time series. 

In offshore engineering loadings are caused by the horizontal fluid velocity it,.,(z, z, t) and horizontal 
fluid acceleration u,., ( x, z, t). The cross-spectral density functions of these quantities will be determined, 
assuming that fluid velocities and fluid accelerations can be derived from the surface elevation by linear 
wave theory (Airy wave theory). 

H11x71(w,x, z) 
u x(X,Z, t) 

~ 

Hiix71(w,x, z) 
u 

f------
x(x, z, t) 

Figure 2.20: Symbolic representation of single input - multiple output system for long crested sea-states 

In the present case { 7J(zo, t), t E R} is the basic generating input to the system. As usual, the frequency 
response functions H;.,1J(w, x , z) and Hu, 11 (w, x, z) at the position (x, z) is preliminary determined 
considering a harmonic varying input 7J(zo, t), i.e. 

7J(z0 , t) = Re (a exp( i(wt - k(w)xo + 8))) (2.183) 

(2.183) can be interpreted as a regular wave-let propagating along the x-axis with the wave-height 
H = 2a, the circular frequency w, the wave number k(w) and the phase 8. The wave number is related 
to the circular freque.ncy w by the dispersion relation1 

w2 
ktanh(kh) = 

g 
(2.184) 

where g is the acceleration of gravity. For mathematically defined circular frequencies w < 0, the 
wave number is formally defined as k(w) = -k( -w), i.e. k(w) becomes an odd function of w. Since 
tanh( -z) = - tanh(x), k(w) also fulfils (2.184) for w < 0, if only this relation is fulfilled for positive 
circular frequencies. (2.183) describes the surface elevation at the position xo. The corresponding 
surface elevation at the arbitrary position z becomes 

7J(z,t) = Re(aexp(i(wt-k(w)x+G))) = 

1 R. Wiegel: Oceanographical engineering, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1964. 
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(2.185) 

The fluid velocity and the flow acceleration at the position (x, z), z E [-h, O], then follows from usual 
linear wave theory2 

u.x(x,z,t) = Re ( H.u_xTI(w, x,z)aexp(i(wt- k(w)xo +e))) (2 .186) 

u.x(x, z, t) = ! u.x(x, z, t) = Re ( Hv."' 11 (w, x, z)aexp(i(wt- k(w)xo +e))) (2.187) 

H· ( x ) _ cosh(k(w)(z +h)) -ik(w)(x-xo) 
Uz:fl w, 'z - w sinh(k(w)h) e (2.188) 

H - ( ) - c· ) cosh(k(w)(z +h) ) -ik(w)(x-xo) 
Ux7J w, x, z - ~w w . ( ) ) e smh(k w h 

(2.189) 

The requested cross-spectral densities then follow immediately from (2.182) 

(2.190) 

(2.191) 

(2.192) 

Su.,u:r: (w; Xt, Zt; x2, z2) specifies the cross-spectral density function of the fluid velocity processes 
{u.x(xl,Zl,t),t ER} and {u.x(x2,z2,t),t ER}, etc. It should be noted that the expressions (2.190), 
(2.191) and (2.192) do not depend on the position xo of the wave gauge. As an example 

cosh(k(w)(z1 + h)) ik(w)(x - x ) cosh(k(w)(z2 +h)) -ik(w)(x -x ) ( ) w e 10 w e 20 Sw= 
sinh(k(w)h) sinh(k(w)h) 7171 

w2 cosh(k(w)(zl +h)) cosh(k(w)(z2 +h)) e-ik(w)(x2 -x1) 

sinh2 (k(w)h) 
(2.193) 

Without any restriction the position of the wave gauge can then be chosen as the origin of the coordinate 
system, so xo = 0. 
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3. EXAMPLES OF STOCHASTIC PROCESSES 

3.1 One-dimensional random walk process 

t 
.tH 

Figure 3.1: Realization of a one-dimensional random walk process. 

Consider a motion starting at the origin along the x-axis. At the instants of time 
t = i6.t, i = 1, 2, ... a jump of magnitude 6.x is performed either in the forward or the 
backward direction. The jump in the forward direction is performed with the probabil
ity p and the jump in the backward direction with the probability 1-p. The magnitude 
of the jump is then described by the discrete stochastic variable xi with the probability 
function P(Xi = 6.x) = p and P(Xi = -6.x) = 1-p. In case the sequence { XI, X2, ... } 
are mutually independent and identical distributed discrete stochastic variable the de
scribed process is called a one-dimensional random walk process. It is assumed that Xi 
is realized at the timet= i6.t, i = 1, 2,. . . The one-dimensional random walk process 
can formally be described as a stochastic process {X(t), t E [0, oo[}, where 

[L] 
X(t) = :L xi, x(o) = o (3.1) 

i=I 

[x] signifies the integer part of x (e.g. [2.00) = 2, [2.99] = 2). Hence, for any t E [i6.t, 
(i + 1)6.t[, one has X(t) =XI + ... x i. Obviously, {X(t), t E R} has a discontinuous 
staircase like appearance as shown in figure 3.1 and should then be classified as an index 
continuous state discrete process. 

In order to calculate the mean value function and the auto-covariance function of the 
process the following expectations are calculated for any Xi and Xj 

6.xp- 6.x(1 - p) = 6.x(2p- 1) (3.2) 

(3.3) 
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(3.4) 

In (3.4) it has been used that Xi and Xj are stochastic independent for i =I j, so 
E[XiXj] = E[Xi]E[Xj] · The mean value function of the one-dimensional random walk 
then becomes 

{ 
0 ' 

J-tx(t) = E[X(t)] = [L] 
Li=l E[Xt) 

{ 

0 ' ~t < 1 

2:::!~~] ~x(2p- 1) ~t 2: 1 

{ :x(2p-1) (i,] 

~x(2p -1) [~t] (3.5) 

In the last statement it has been used that [~t] = 0 for t < ~t, so the requirement 
J-tx(t) = 0 for L < 1 is automatically fulfilled. 

At the evaluation of the auto-correlation function of the process it is temporarily as
sumed that t 1 ~ t2. Then, from (3.2), (3.3) and (3.4) 

..!.1... < 1 .6.t 

..!.1... > 1 .6.t -

..!.1... < 1 .6.t 

..!J... > 1 
.6.t -

..!.1... < 1 .6.t 

..!.L > 1 .6.y -

{ 

0 ' 

"(~J ~x2 + "(~] "[~] ~x2(2p- 1)2 
L.....a=l L.....a=l L.....(J =1) 

j# 

..!J... < 1 .6.t 

..!.1... > 1 .6.t-

{ 

0 ..!J... < 1 

(;l;}] b.x2 + 2:~~] ( ( -,l;}] - 1) b.x2 (2p- 1)2 
;. 2: 1 

{ 
0 ..!.1... < 1 

[it] ~x2 (1 + ([~] -1) (2p -1)2) ~ 2: 1 -
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[~t] 6x
2 

(1 + ([~t] -1) (2p-1?) = 

[~t] 6x24p(l- p) + px(ti)px(t2), (3.6) 

where again [h] = 0 for t 1 < 6t has been used. Further, in the last statement of (3.6), 
(3.5) has been inserted. 

Similarly, for t 2 ~ t 1 it can be proved 

(3.7) 

(3.6) and (3. 7) can then be combined into 

(3.8) 

The indicated auto-correlation function with the value pxx(t1t) = [,L] 6x24p(l- p)+ 

([LJ 6x(2p - 1))
2
, but is not continuous on the diagonal ii = t2 = t. Hence, the 

one-dimensional random walk process is not continuous in the mean-square cf. (2-53). 
It is of course neither continuous with the probability 1. 

The auto-covariance function then follows from (2.12), (3,5) and (3.8) 

min ( [~t] , [~t]) 6x
2
4p(l- p) (3.9) 

Especially, the variance function becomes 

(3.10) 

Let P{x}(i6x,j6t) = P(X(j6t) = i6x) signify the probability function of the 1st 
order at the times t = j 6t, j = 0, 1, 2, . . . og the process. Obviously, this quantity 
fulfils the difference equation 

P{x}(i.6.x, (j + 1)6t) = 

P{x} ((i- 1)6x,j6t)p + P{x} ((i + 1)6x,j6t)(l - p) (3.11) 
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(3.11) is called the masterequation for the one-dimensional random walk process in 
physics, and describes the development of P{x}(i~x,j~t) in space and time. In order 
to solve (3.11) the initial distribution P{x}(i~x,O) = O,i = 0, at the timet= 0 must 
be known. Deterministic start at the point x = i0 ~x means that P{x}(i0 ~x, 0) = 1 
and P{x}(i~x,O) = 0 i #- io. 

As the number of jumps, [L], goes to infinity the sum on the right-hand side of (3.1) 
approaches a normally distributed random variable as follows from the central limit 
theorem, see section (1.6). From the multi-dimensional generalization of the central 
limit theorem it can equally be argued that any n-dimensional vector [X(t1 ) ... X(tn )] 
approaches normality as min ([ft] ... [-;h)) goes to infinity, i.e. when all stochastic 
variables in the vector are generated by infinitely many jumps. Hence, (3.1) approaches 
a Gaussian process as the number of jumps goes to infinity. 

3.2 Wiener processes. Gaussian white noise 

A Wiener process {W(t), t E [0, oo[} is defined as a one-dimensional random walk in 
which p = t, and where ~t -4 0 and ~x -4 0 in a way that throughout the limit passing 
one has 

~x2 
~t = 2rrSo (3.12) 

where 50 is a positive constant. 

Since the interval, ~t, between the jumps goes to zero it follows that infinitely many 
jumps take place in a finite interval [0, t]. From the concluding statements of section 
3.1 it then follows that a Wiener process is a Gaussian process. Since, the magnitude, 
~x, of the jumps goes to zero the sample curves will be continuous. A Wiener process 
can then be classified as an index continuous state continuous process. 

Since a Wiener process is a Gaussian process it is completely defined by its mean value 
function !-lw(t) and its auto-covariance function ~~:ww(t1 , t 2 ), which will be determined 
next. 

Applying p = t in (3.5) it follows 

!-lx(t) = 0 (3.13) 

(3.12) holds throughout the limit passing as ~t -4 0. Hence, one also has for the Wiener 
process as well 

!-lw(t) = 0 (3.14) 

For any t E [0, oo[ one has 

[ 
ti l . ~t +ai, ~=1,2, ... (3.15) 
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where ai E (0, 1[. For p = t, (3.9) can then be written 

D.x2 
t~:xx(ti,t2) = min(t1- a1b.t,t2- a2b.t) b.t = 

min(t1 - a1b.t, t2- a2b.t)21rSo => 

(3.16) 

(3.14) and (3.16) prove the assertions of the Wiener process in example 2.6, cf. (2.55). 
That the realizations have the appearance shown in figure 2.4 is clear from the con
struction of the process as a limit case of a one-dimensional random walk process. 

Especially, the variance function becomes 

cr~(t) = t · 21rSo (3.17) 

Consequently, W(t) ""'N(O, cr~(t)) with the variance given by (3.17). 

Formally, a Gaussian white noise process has previously in section 2.3 been defined as 
the derivative process of a Wiener process. From the construction of the Wiener process 
as the limit of a one-dimensional random walk process, it follows why this must change 
discontinuously from - oo to +oo infinitely often as explained in section 2.3 subsequent 
to (2.135) 

In (3.11) p = t is inserted, and the following reformulation is performed 

P{x}(ib.x, (j + l)b.t)- P{x}(ib.x,jb.t) 
b.t 

~ D.x2 P{x}((i -l)b.x,jb.t)- 2P{x}(ib.x,jb.t) + P{x}((i + l)b.x,jb.t) 
2 b.t b.X2 

(3.18) 

For b.x sufficiently small one has P{x}(ib.x,j b.t) ~ f{w}(ib.x,j b.t)b.x, where f{w} (x, t) 
signifies the probability density function of the 1st order of the Wiener process. Insert
ing this result into (3.18) and performing the limit operations b.x -t 01\ b.t -t 01\ t;;; = 
27r So for which the one-dimensional random walk process converge to a Wiener process, 
(3.18) is seen to converge to the following partial differential equation, which is the 
master equation for the Wiener process. 

8!{w}(x,t) 82 f{w}(x,t) 
8t = 7rSo 8x2 

f{w}(x,O) = b(x) 

t>O } (3.19) 

where the following well-known finite difference operators have been used 

of{W}(x,jb.t) _ f{W} (x, (j + l)b.t)- f{W} (x,jb.t) ( ) 
8t - b.t + 0 b.t (3.20) 
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EP!{w}(i6x,t) = !{w}((i-1)6x,t)-2i{w}(i6x,t)+f{w}((i+1)6x,t) O(" )( ) 
8x2 6.x2 + ox 3.21 

(3.19) is termed the Fokker-Planet equation of the problem, and is a diffusion equa
tion identical to the non-stationary one-dimensional heat equation. In the present case 
(3.19) specifies the diffusion of the probability mass along the x-axis from the ini
tial deterministic position at x = 0, corresponding to the indicated initial distribution 
f{w}/x,O) = 8(x). The solution of (3.19) is given as 

1 ( 1 x
2 

) 
f{W} (x, t) = $crw(t) exp -2 cr~(t) (3.22) 

which is proved by insertion into (3.19). 

crw(t) is given by (3.19). Hence, W(t) rv N(O, cr!(t)) in agreement with the previous 
stated result. 

A stochastic process {X(t), t E [0, oo[} is said to have independent increments, if for 
any 0 ::=; to < t 1 < · · · < tn the stochastic variables X(ti)- X( to), X(t2)- X(ti) ... 
X(tn)- X(tn -d are stochastic independent. The quantity 

(3.23) 

is called the increment. It will now be shown that the Wiener process {W(t), t E [0, oo[} 
has independent increments. Since the Wiener process is Gaussian, its increments, 
6W(ti), become jointly normal distributed. To prove that they are mutually indepen
dent it then suffices to prove that they are uncorrelated. However, for any i =/:. j one 
has 

(3.24) 

Assume i < j. Then, min(ti+I,tj+I) = ti+l, min(ti+I,tj) = ti+1 , min(ti,ti+I) = ti and 
min(ti, ti) = ti. Hence, 

(3.25) 
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Next, it is shown in the same way that E[~W(ti)~W(tj)] = 0 for j > i, so one has 

(3.26) 

(3.26) proves the assertion that increments of a Wiener process are uncorrelated and 
hence stochastic independent. The property that a Wiener process has independent 
increments is unique among Gaussian processes. Hence, a Wiener process can be defined 
as a Gaussian process with index set T = [0, oo[, where P(W(O) = 0) = 1, and which 
has independent increments. 

Setting i = j in (3-24) one obtains 

E [~ W 2 (ti)] = 21rSo (min(ti+1 , ti+I) - min( ti+l, ti) - min( ti, ti+I) + min(ti, ti)) = 

(3.27) 

Hence, the increments ~ W( ti) are mutually independent stochastic variables N ( 0, 21r So 
(ti+l- ti)). 

3.3 Poisson processes. Compound poisson processes 

The Poisson process as well as the renewal process to be considered in the next section 
belong to a class of processes known as counting processes, {N(t), t E]O, oo]}, which were 
preliminary introduced in example 2.6. N(t) signifies the random number of arrivals 
during the interval ]0, t] up to and including the present timet of some discrete events 
arriving at the random instants of time t 1 , t2 ... iN(t)· In example 2.6 the considered 
events were the arrivals of cars to a cross-road with the traffic light switched to red. 

Counting processes are index continuous state discrete stochastic processes. Hence, the 
specification of their probabilistic structure involves the determination of the family of 
joint probability functions P{N}(n,t) = P(N(t) = n), P{N}(n1,t1;n2,t2) = P(N(tl) = 
n 1 1\ N(t2) = n2), .... Generally, it will be assumed that the counting process only 
counts the events which are arriving after the timet= 0, i.e. P(N(O) = 0) = 1. 

Formally, a Poisson process { N( t), t E [0, oo[} is defined as the counting process fulfilling 
the following conditions 

1. {N(t), t E]O, oo]} has independent increments. 

2. The probability of one arrival in the interval ]t, t + dt] is equal to v(t)dt, where 
v(t) is positive. 

3. The probability of more than 1 arrival in the interval ]t, t+dt] is ignorable compared 
to v(t)dt. 

If vis constant with time the Poisson process is said to be stationary. v(t) is called the 
intensity of the Poisson process, and can according to the 2nd condition be interpreted 
as the probability per unit time of an event. 
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Counting processes for which the 3rd requirement is fulfilled are called regular counting 
processes. Also the renewal counting process of the next section is regular. 

In order to derive the master equation for the Poisson counting process, consider the 
event Ak = {N(t- dt) = n- k A N(t)- N(t- dt) = k} that n- k events have arrived 
in ]0, t - dt] and k events have arrived in ]t - dt, t]. Since, Ak is just one of several 
events resulting in n arrivals during ]0, t] the event { N( t) = n} of exactly n arrivals in 
]0, t] can be written as the union Ao U A1 U A2 U · · ·. Further, the events Ao, A1, A2, ... 
must be mutually disjoint, because these events specifies different number of arrivals in 
]t- dt, t]. From (1.6) then follows 

P(N(t ) = n) = P(Ao U A1 U A2 U .. ·) = P(Ao) + P(Al) + P(Aa) + .. · = 

P(N(t- dt) = n A N(t)- N(t- dt) = 0)+ 

P ( N ( t - dt) = n - 1 A N ( t) - N ( t - dt) = 1) + 

P(N(t- dt) = n- 2 A N(t)- N(t- dt) = 2) + .. · = 

P(N(t- dt) = n)P(N(t)- N(t- dt) = 0)+ 

P(N(t- dt) = n- 1)P(N(t)- N(t- dt) = 1)+ 

P(N(t- dt) = n- 2)P(N(t)- N(t- dt) = 2) + · · · (3.28) 

In the last statement of (3.28) the 1st condition of independent increments of the Poisson 
process has been used. Then, N(t- dt) and N(t) - N(t - dt) become independent 
stochastic variables, so their joint probabilities split into a product, cf. (1.32). Using 
the 3rd condition that P(N(t)- N(t- dt) > 1) = 0, (3.28) provides the following 
differential equation for the 1st order probability function for dt -+ 0 

P{N}(n, t) = P{N}(n, t - dt)(l- v(t- dt)dt) + P{N}(n -1, t- dt)v(t- dt)dt => 

d 1 
dtp{N}(n,t) = dt(P{N}(n,t)-P{N}(n,t-dt)) = 

(P{N}(n- 1, t)- P{N}(n, t))v(t) (3.29) 

(3.29) should be solved with the initial value P{N}(n, 0) = P(N(O) = n) = 0, n > 1, 
specifying that the probability that any number of events n has arrived at the time 
t = 0 is zero, corresponding to P{N}(O, 0) = P(N(O) = 0) = 1. The solution of (3.29) 
with the indicated initial condition can be shown to be 

(3.30) 
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That (3.30) fulfils (3.29) with the indicated initial values is most easily proved by inser
tion. As seen from table 1.1, P{N}(n, t) has a Poisson distribution with the parameter 

..\ = J; v( r )dr . Especially, for a stationary Poisson process ..\ = vt and (3.30) becomes 

P { N} ( n, t) = ~ ( vt) n exp ( -vt), n = 0, 1, ... 
n. 

Let X"' Po(..\). Then the expected value and 2nd order moment become 

oo oo An oo ..\n-1 
E[X] = "\;"' nP(X = n) = "\;"'n-e->.= ..\e->. "\;"' = 

6 6 n! 6 (n - 1)! 
n=O n=O n=l 

oo ),m 
, ->. L: , ->. >. , "'e - = Ae e ="' m! 

m=O 

(3.31) 

(3.32) 

(3.33) 

From (3.32) follows immediately that the mean value function of {N(t), t E]O, oo)} in 
the stationary case is given by 

flN(t) = E[N(t)] = ..\ = vt (3.34) 

In order to evaluate the auto-correlation function /-lNN(t1, t 2) it is temporarily assumed 
that t 1 :::; t2 • Since N(tz) = N(ti) + (N(t 2 ) - N(ti)), and N(tl) and N(t2 )- N(ti) 
are stochastic independent, because the Poisson process has independent increments, it 
follows from (3.33) and (3.34) that 

(3.35) 



Similarly, for tz 2: t1 it can be proved 

(3.35) and (3.36) can be combined into 

JLNN(t1,t2) = vmin(t1,t2) + v2t1t2 
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(3.36) 

(3.37) 

(3.37) process the preliminary assertion (2.54). The auto-covariance function then be
comes 

(3.38) 

Especially, the variance function becomes 

aJv(t) = vt (3.39) 

N(t + dt)- N(t) signifies the number of events in ]t, t + dt] . Using the 3rd condition of 
the Poisson counting process the expected value of this increment becomes 

00 

E [N(t + dt)- N(t)] = L nP (N(t + dt)- N(t) = n) = 
n=O 

0 · P ( N ( t + dt) - N ( t) = 0) + 1 · P ( N ( t + dt) - N ( t) = 1) + 

2 · P (N(t + dt) - N(t) = 2) + · · · = 

1 · P (N(t + dt)- N(t) = 1) = v(t)dt (3.40) 

Hence, v(t) can alternatively be interpreted as the expected number of events per unit 
time. The identity of this interpretation and the previous one is a consequence of the 
regularity condition 3 of the counting process. 

Especially, for a stationary Poisson process follows for any s, t > 0 

0 

(vt)k 
P(N(t + s)- N(s) = k) = P(N(t) = k) = k!e-vt 

f. 
1 

Figure 3.2: Realization of interarrival and waiting times. 

t 

(3.41) 
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Let It be the time of the first event, and more generally let In be the time between the 
(n -1)th and the nth events. Then, the sequence of random variables {In, n = 1, 2, ... } 
is called the sequence of interarrival times. The waiting time, Wn, of the nth event is 
then defined as 

Wn = It +·· · +In, n = 1, 2, . .. (3.42) 

where Wo = 0. 

For the interarrival times the following theorem is valid. 

Theorem 3.1 
The inter arrival times In, n = 1, 2, ... , of a stationary Poisson counting process are independent and 
identical exponential distributed, In "'E(v). 

First, the theorem is proved for n = 1. 

Fit (t) = P(ft ~ t) = 1- P(ft > t) = 1- P(N(t) = o) = 1- e-vt ::} 

h
1 

(t) = .!!_F1
1 
(t) = ve-vt, t > 0 

dt 
(3.43) 

For I 2 the conditional distribution is initially derived by assuming that the first event takes place at 
some time s. Then from (3.41) 

FI2 1It (t Is)= P(h ~ t I It = s) = 1- P(h > t I It = s) = 

1-P(N(t+s)-N(s)=Oift =s)= 

1- P(N(t + s)- N(s) = 0) (due to independent increments) 

1- P(N(t) = 0) (due to the stationarity) = 1 - e-vt (3.44) 

Hence, the conditional distribution FI2 1It (t I s) is independent of It and I2 "' E(v). Recursively it 
can be shown that each arrival time In is independent and exponentially distributed , which proves the 
theorem. 

A renewal process can be defined as a counting process for which the interarrival times 
are independent and identical distributed, determined by some distribution function 
F1( t). Hence, a Poisson counting process can be characterized as a renewal process 
with exponential distributed interarrival times, F1(t) = 1- e-vt. 

(3.42) can be written 

(3.45) 

Since the interarrival times are independent, Wn-t = I1 +· · ·+In-1 and In are stochastic 
independent. The distribution function Fwn (t) of the waiting time of the nth event then 
fulfils, cf. (1-1.57) 

Fwn(t) = P(Wn ~ t) = P(Wn-t +In~ t) = 



<Xl <Xl 

j P(Wn-1 ~t-u I In= u)frn(u)du = j Fwn_ 1 (t- u)fr(u)du = 
0 0 

t 

j Fwn_ 1 (t- u)fr(u)du, n = 1, 2, ... 

0 

99 

(3.46) 

where it has been used that Wn-1 and In are independent. In the last statement of 
(3.46) the upper integration limit has been reduced from oo tot because Fw" _1 ( u) = 0 
for u < 0. For fr( u) = ve-vu the solution of (3.46) can be shown to be 

F (t) = ~ (vt)i e-vt 
Wn ~ ·r . z. 

(3.47) 
1=n 

(3.47) can be proved by insertion into (3.46). However, this is more easily seen from 
the fact that Wn ~ t if nor more events have occurred in the interval ]0, t]. Hence, 

<Xl <Xl ( t)i 
P(Wn ~ t) = P(N(t)?::: n) = LP(N(t) = i) = L ~e-vt 

. . z. 
(3.48) 

1=n 1=n 

x(t) 

-
l p2 

) PN(t) 

}R t 

0 t 1 t2 tN(t) 

Figure 3.3: Realization of compound Poisson Process. 

The jumps of the Poisson counting process at the instant of times t1, t 2 ... iN(t) are 
always of magnitude 1 as shown in figure 2.5. Now, consider a more general case, where 
the magnitude of the jumps at the time ti is Pi, where P1 , P2 ... PN( t) are identical 
distributed and mutually independent stochastic variables with the probability density 
function fp(p). Moreover, P1 , P2 . .. PN(t) are stochastic independent of the random 
arrival times. The indicated process {X(t), t E [0, oo[} is named a compound Poisson 
process. A realization of the process is shown in figure 3.3. From its construction 
it is clear that the compound Poisson process also has independent increments and 
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exponential distributed interarrival times. Obviously, the value X(t) at the time t of 
the compound Poisson is the sum of all the previous jumps P1 , Pz, ... , PN(t)· Thus 

N(t) 

X(t) = L pi 
i=l 

(3.49) 

The mean value, auto-covariance function and variance function of the compound Pais
son process can be shown to be 

t 

J.Lx(t) = E[P] J v(r)dr (3.50) 

0 

min(tt,t2) 

Kxx(tbtz) = E[P2
] J v(r)dr (3.51) 

0 

(3.52) 

3.4 Renewal processes 

The Poisson counting process was initially presented in example 2.6 as a specification 
of the number of cars arriving at a traffic light, which has switched to red. The Pais
son counting process is characterized by the fact that the interarrival times between 
car arrivals are mutual independent and identically exponentially distributed (in the 
stationary case), which indeed is the case in little traffic. However, in heavy traffic 
the interarrival times are no longer exponential distributed. Instead, the cars tend to 
arrive with a constant (deterministic) interarrival time. In order to handle such cases, 
it seems quite naturally to generalize the stationary Poisson counting process to allow 
for other distributions of the interarrival times than the exponential distribution. If the 
interarrival times 11 ,12 ... In, . . . of the counting process { N( t), t E [0, oo[} are mutu
ally independent and identically distributed stochastic variables with the distribution 
function F1(t), the counting process is called a renewal process. Correspondingly, the 
events registrated by the counting process are called renewals. 

The waiting time Wn until the arrival of the nth event is given by (3.42). Since, 
the interarrival times are still mutually independent and identically distributed, the 
distribution function Fw" (t) must still fulfil the recursive integral equation (3.46). 

Analog to (3.48) the probability function P{N}(n, t) = P(N(t) = n) of the renewal 
counting process can be calculated as follows 

P(Wn ~ t) = P(N(t) 2: n) => 

P{N}(n,t) = P(N(t) = n) = P(N(t) 2: n)-P(N(t) 2: n+l) = Fw"(t)-Fw"+1 (t)(3.53) 
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The mean value function, f.LN(t), of the renewal process is called the renewal function. 
f.LN(t) = E[N(t)] signifies the mean number of renewals up to and including the timet. 
Using (3.53) one has 

00 00 

f.LN(t) = E[N(t)] = L nP(N(t) = n) = L n(Fwn (t)- Fwn+t (t)) = 
n=l n = l 

00 

L (nFwn (t)- (n + l)Fwn+l (t) + Fwn+Jt)) = 
n=l 

00 

Fw1 (t) + Fw2 (t) + Fw3 (t) + · · · = L Fwn (t) (3.54) 
n = l 

From (3.46) and (3.54) it then follows 

00 00 

f.LN(t) = Fw1 (t) + L Fwn (t) = Fw1 (t) + L Fwn+t (t) = 
n=2 n=l 

00 t 

F1(t) + L j Fwn(t- u)fi(u)du = 
n=lo 

Fr(t) +I(~ Fw.(t- u)) /J(u)du = 

t 

F1(t)+ j f.LN(t-u)fi(u)du (3.55) 

0 

where it has been used that W1 = !1, so Fw1 (t) = F1(t). (3.55) is called the renewal 
equation, and it is an integral equation for the determination of the renewal function. 

The derivative, VN(t) = ftf-LN(t), of the renewal function is called the renewal density. 
Upon differentiating of (3.55) with respect tot this is seen to fulfil the integral equation 

t 

VN(t) = fi(t) + J VN(t- u)fi(u)du + f.LN(t- t)fi(t) = 
0 
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t 

JI(t)+ J vN(t-u)fi(u)du 

0 

where it has been used that J-lN(O) 
equation. 

(3.56) 

0. (3.56) 1s also sometimes called the renewal 

The Poisson counting process is uniquely defined as a regular counting process with 
independent increments. Since a stationary Poisson counting process is the unique 
renewal process with exponential distributed interarrival times, it follows that other 
renewal processes cannot have independent increments. This fact makes the analysis of 
renewal counting processes somewhat more involved. 

Example 3.1: Renewal processes with Gamma distributed interarrival times 

N'(t) 

N'(t) 

4 
3 
2 
1 

t 
0 

0 t; t~ t~ t~ t~'(t) 

N(t) 

N(t) 
2 
1 

t 
0 

0 tt = t~ t2= t~ t ~(t) 

Figure 3.4: a) Realization of stationary Poisson counting process. b) Realization of renewal counting 
process with Gamma distributed interarrival times. 

In figure 3.4a is shown a realization of a stationary Poisson counting process {N'(t), t E (O,oo(} with 
mean arrival rate v, i.e. the interarrival times are exponentially distributed, In ""' E(v). The events, 
which arrive at the random times t~, t~, t~, t~, . .. , may specify significant loadings on a structure. If 
the loadings are not likely to destroy the structure totally, it may be decided as repair strategy only 
to repair the structure after every second load event. The renewals of the structure then take place 
at the times t1 = t~, t2 = t~, ... , see figure 3.4b. The number of renewals is specified by the counting 
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process {N(t), t E [0, oo[}, which picks out every second of the load events as specified by the Poisson 
counting process. Of course, the probabilistic structure of this counting process is of interest in order 
to estimate the future repair expenses of the structure. 

Obviously, the considered counting process is a renewal counting process with the interarrival time I 
defined by 

I =h +h (3.57) 

where h and I2 are mutually independent, identically exponential distributed stochastic variables with 
the parameter v, h "'E(v) , h "'E(v). The distribution function of I can then be obtained from, cf. 
(3.46) 

t t 

F1(t) = J F11 (t- u)fi2 (u)du = J (1- e-v( t-u)) v e-vudu = 
0 0 

(3 .58) 

Since, r(1 + 1) = 1 · r(1) = 1, (3.58) is seen to specify a Gamma distribution with the parameters 
a= 1 and /3 = v, I"' Ga(1, v), cf. table 1.2. 

The probability of n or more renewals, P (N(t) ~ n), is equal to the probability of 2n or more load 
events as determined by the Poisson counting process, i.e. 

P(N(t) ~ n) = P (N'(t) ~ 2n) (3.59) 

Then, the probability function becomes, cf. (3.31) 

P{N}(n, t) = P (N(t) = n) = P(N(t) ~ n)- P(N(t) ~ n + 1) = 

P(N'(t) ~ 2n) - P(N'(t) ~ 2n + 2) = 

(3.60) 

Next, the renewal function can be calculated 

00 00 

1-'N(t) = ~ nP(N(t) = n) = ~ n (-
1
-(vt)2n + 1 

(vt)2n+l) e-vt = 
L...t L...t (2n)! (2n + 1)! 
n=l n=l 

00 

L 1 ( 2n ( )2n 2n+1-1( )2n+l) - vt - -- vt + vt e = 
2 (2n)! (2n + 1)! 

n=l 

1 Loo ( (vt)2n-l (vt)2n) - 1 Loo (vt)2n+1 --vt + -- e vt - - e vt 
2 (2n - 1)! (2n)! 2 (2n + 1)! 

n=l n=l 
(3.61) 
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t " 00 ~ "oo ((vt)2n-1 ~) - t " 00 ~ Now, ev = L....Ji =O i! = 1 + L....in=l (2n-1)! + ~ and e v = L....Ji=O i! . 

- "oo (vt)2n+t "oo (vt)2n+t . 
e vt) = L....in=O ( 2n +l)! = vt + L....in=l ( 2n+l)! . (3.60) can then be wntten 

P.N(t) = -vt(e" t -l)e-111
-- -(e"1

- e-"1)- vt e-vt = -t-- + -e-211 t 1 1 (1 ) V 1 1 
2 2 2 2 4 4 

So l(e 11 t -
' 2 

(3.62) 

As seen from (3.62), JJ.N(t) approaches asymptotically to ~t as t-+ oo, i.e. to the mean value function 
of a Poisson counting process with the mean arrival rate ~- However, the indicated renewal process will 
not approach to a Poisson counting process with the mean arrival rate ~- Of course, this is so because 
all the interarrival times remain Gamma distributed, Ga(1, v), and do not converge to an exponential 
distribution, E( ~ ). 

The indicated results (3.58), (3.60) and (3.61) can be generalized to the case, where the renewal of the 
structure is performed after every kth event of the Poisson counting process. Then, the interarrival 
time I of the renewal process is defined by 

I=h+···+Ik, k=1 ,2, ... (3.63) 

where Ij "' E(v), j = 1 ... k. It can then be shown that in this case I becomes Gamma distributed 
with the parameters a= k- 1 and {3 = v, I,...., Ga(k- 1, v), i.e. 

f (t) = v(vt)k - 1 e-vt t >_ 0 
I (k-1)! ' 

where it has been used that r(k) = (k- 1)!. 

The probability function corresponding to (3.60) becomes 

kn+k-1 

"' 1 . ~ -:r(vt)'e- vt , 
t. 

P{N}(n, t) = P(N(t) = n) = k = 1,2, ... 

i=kn 

The renewal function can also be calculated analytically as follows 

i27r!!. where 'Yn = e A: , n = 1, 2 ... k- 1. 

3.5 Markov chains 

(3.64) 

(3.65) 

(3.66) 

A state discrete stochastic process {X ( t), t E T}, where the index parameter t signifies 
the time, is called a state discrete Markov process if for any t1 < t 2 < · · · < tn < tn+l 
in T the following relation exists between the conditional probability functions 

P{x}(Xn+l,tn+lixn,tn; ... ;x2,t2;x1,t1) = 

(3.67) 

The finite or countable infinitely many states of the Markov process have been desig
nated X1J x2 •.. Xi, .••• 
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Assume, that up to and including the present time tn the following states of the process 
have been observed X(t1) = x1, X(t2) = x2 . .. X(tn) = Xn, and consider a set of real
izations passing through these observations. The left-hand side of (3.67) then specifies 
the relative number of these realizations, which realizes the value Xn+l at the next fu
ture time tn+l· Next, consider another and larger set of realizations, which only passes 
through the most recent observation X(tn) = Xn but may attain arbitrarily values at 
the preceeding instants of observation t1, t2 . . . tn-1· The right-hand side of (3.67) then 
specifies the relative number of these realizations, which realizes the value Xn+l at the 
future time tn+l· If {X(t) , t ET} is a Markov process the two constructed conditional 
probabilities will be identical for all states Xn+l at any future time tn+l· Hence, the 
probability of the Markov process X(t) to take the value Xn+l at the time tn+l under 
condition that its values have been observed at some preceeding instants of time, only 
depends on the knowledge of its most recent observed value X(tn) = Xn at the present 
time tn, whereas the past observations are of no importance. 

The conditional probability function on the right-hand side of (3.67) is known as the 
transition probability function of the Markov process. A state discrete Markov process is 
completely described by its 1st order probability function P{x}(x, t) and its transition 
probability function. For example the 2nd and 3rd order probability functions become 

(3.68) 

(3.69) 

Next, a compatibility equation is derived, which a Markov process necessarily must fulfil, 
if the relation (3.67) holds for arbitrarily index values t1 < t2 < · · · < tn-l < tn. For 
any state discrete stochastic process (not necessarily Markovian) follows for arbitrary 
ti < tk < tj 

P{x}(xj , tj ;Xi, ti) = LP{x}(xj ,tj;xk, tk;xi,ti) = 

P{x}(xj, ti; xi, ti) 
P{x}(xJ,tilxi,ti) = ( ) = 

P{x} xi, ti 

L P{x}(xj , t;ixk, tk; Xi, ti)P{x}(xk, tk lxi, ti), ti < tk < t; (3. 70) 
XJ: 

where the summation is performed over all intermediate states Xk. If now {X(t), t ET} 
is a Markov process, (3. 70) reduces to 

P{x}(xj , tilxi,ti) = LP{x}(x;,tilxk,tk)P{x}(xk,tklxi,ti), ti < tk < t; (3.71) 
XJ: 
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(3.71), which is the requested compatibility equation, is known as the Chapman-Kol
mogorov-Smoluchowski equation. The relation (3. 71) is interpreted in figure 3.5. The 
relation simply sums up the probabilities of all intermediate sample paths Xk from the 
initial state Xi at time ti to the final state Xj at the time ti. 

x( t) 

Xz 

Sum over all inter
mediate transition 
states xk 

t 

Fig. 3.5: Interpretation of the Chapman-Kolmogorov-Smoluchowski equation. 

In the remaining part of this section it is assumed that the index set T = { t1, t2 ... tn, ... } 
of the Markov process is discrete. Then the index discrete state discrete Markov pro
cess {X(t), t E {t1, t2 ... tn, ... }} is called a Markov chain. Quite often the instants of 
observation have equidistant interval ~t, so tk = k~t, k = 1, 2, .. . , although this need 
not be so in the general case. 

At the time tn one may be interested in the transition probabilities Pjin) from the state 
Xi at the time tn to the state x j at the next observation time tn+I, i.e. 

Pjt) = P{x}(Xj, tn+tiXi, tn) (3.72) 

These probabilities can be assembled in the so-called transition probability matrix p(n), 

so Pjt) forms the element in the jth row and the ith column. 

Obviously, 2:xj P{x}(Xj, tn+tlxi, tn) = 1, so the columns of p(n) fulfil 

(3.73) 

The Markov chain is called stationary if the transition probability matrix p(n) does not 
depend on n. Then the transition probability matrix from states at time t1 to states 
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at time t2, from states at time t2 to states at time t 3 , etc. are all identical, i.e. p(I) = 
P(2

) = · · · = P. Stationary Markov chains are met , when index continuous Markov 
processes, which are also stationary in the strict sense, are observed at equidistant 
instants of time tk = k!::lt, k = 1, 2, .... In the rest of this section the Markov chains 
are assumed to be stationary. 

Let 1r(I) be the vector of 1st order probabilities 1rP) = P{x}(xi, tt) , i = 1, 2, ... for all 
states at the initial time t 1 • The 1st order probabilities at the next time of observation 
t 2 then follows from marginalization of (3.68) 

1ry) = P{x}(xj, t2) = L P{x}(xj, t2; Xi, t1) = 
Xj 00 

LP{x}(xj,t21xi,ti)P{x}(xi , ti) = Lpii'lrp) (3.74) 
Xi 

In vector form (3.74) can be written 

1r(2) = P1r(1) 

i=l 

(3.75) 

Now, 1r(2 ) forms the initial value for the next transition from states at the t ime t 2 to 
the states at the following time of observation t 3 . From (3. 75) follows 

1r(3 ) = P1r(2) = PP1r(l) (3. 76) 

Proceeding in this manner the 1st order probabilities at the time tk after ( k - 1) tran
sitions is seen to be given as 

1t'(k) = pk-11T'(l) (3.77) 

where p k - I =PP · ·· P (P multiplied by itself k- 1 times). 

Example 3.2: 5 state Markov chain 

/R1 
, -- -- - - ---3------- -- -~ 

I 4 I 
I 1 I 
I 4 I 
I I 
L__ __ _ - - - --- - -~ 

, ----- -~ 

I I 

1 
4 

I 1 ~~ 
I 4 I 
I 1 I 
L- ---- - --- 3- -- - - -----~ 

Fig. 3.6: State transition diagram for 5 state Markov chain . 

r_LR~ --- - - -, 
I I 
I l I 
I I 

I L _ __ __ __ _ .J 
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Consider a Markov chain { X1, X2, ... } with the 5 states :z:1, :z:2 ... :z: 5 . The transition probability density 
matrix is given as 

l 1 0 1 0 4 2 2 
3 1 0 1 l [pr 0 Pn,T, l 4 2 8 2 

P= 0 0 1 0 1 
PR2R2 PR2T1 (3.78) 4 

0 0 0 1 1 0 PTlTl 4 4 
0 0 0 1 0 8 

The structure of the transition probability matrix can be illustrated by a state transition diagram as 
the one shown in figure 3.6. 

In the state transition diagram shown in figure 3.6 hatched line boxes R 1 , R 2 and T1 

have been drawn around the states 1 + 2, 3 and 4 + 5. The main difference between the 
boxes R 1 and R2 and the box T1 is that for the former all paths are orientated into the 
box, while for the box T1 all paths are orientated out of the box. States within a box 
with only inwards orientated paths are called recurrent states, whereas states within a 
box with only outwards orientated paths are called transient states. 

If the system at some time enters a recurrent state, it will continue to cycle only between 
the states belonging to the same box in all future. The name 'recurrent' indicates that 
once attained, such a state will be occupied at least one time more with probability 1 
in infinitely many future transitions. On the other hand the probability is zero that the 
system remains within a box of transient states after infinitely many transitions. The 
system may move forth and back between the states of the system, as is the case with 
states 4 and 5 in figure 3.6. However, at each transition there is a leakage of probability 
mass out of the box, and the probability of staying within the box eventually drops to 
zero. 

Recurrent states are further divided into so-called positive recurrent states and null 
recurrent states. The meaning of these concepts can be explained as follows. Assume 
a certain recurrent state x j is occupied at a certain time. One may then define the 
number of transitions, Nj, until the state xi is reoccupied again for the first time. If x j 
is positive recurrent the system will in average return to x j in finite many transitions, 
i.e. E[Nj] < oo. If infinitely many transitions in average are needed until Xj is attained 
again, i.e. E[Nj] = oo, Xj is classified as a null recurrent state. 

Example 3.3: Average recurrent length of state 1 in figure 3.6 

On condition of state 1 is occupied at a certain instant of time the probability of staying in state 1 is 
t, so P( N1 = 1) = t. State 1 can be reoccupied for the first time after 2 transitions, if the system goes 
to state 2 in the first transition and then immediately back to state 1 in the second transition. The 
probability for this event is P(Nt = 2) = t · t. Generally, state 1 is reoccupied for the first time after 
n > 2 transitions, if the system goes from state 1 to state 2 in the first transition, stays in state 2 in the 
succeeding n - 2 transitions and, eventually, returns to state 1 in the nth transition. The probability 

of this event is P(Nt = n) = t · ( t) n-
2 

· t = 3 ( t) n+l, n > 2. Hence, the probability function of 
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N1 becomes 

,n=l 
(3. 79) 

One can then calculate the expectation 

oo 1 
00 

( 1 )n+l 
E[N1 ]=LnP(Nl=n)=14+Ln3 2 = 

n=l n=2 
00 00 

2.50 + 3 ~ _::_ - 3 ~ ...!.._ = 2.50 
~2n ~ 2n 

(3 .80) 

n=l n=O 

where the results 2.:::0=1 2~ = 2.0, :Z.:::::O=o 2
1
n = 2, 0 have been used. Since, E[N1] = 2.50 < oo, state 

1 is positive recurrent. 

It can be shown that all states of a Markov chain can be classified into sets of recurrent 
states R 1 , R2 , . . . and sets of transient states T1 , T2, . . . . Using a suitable numbering, 
the transition probability matrix can then be written 

PRtRt 0 PRtTt PRtT2 
0 PR2R2 PR2T2 PR2T2 

P= 
0 0 Pr1T1 0 

(3.81) 

0 0 0 Pr2T2 

where P R;R; is the transition probability matrix of the recurrent states within the class 
Ri, P R 1 T; is the transition probability matrix from transient states within Tj to recur
rent states within Ri, and Pr,r, is transition probability matrix from transient states 
within TiTi. The transition matrix Pr,Ti of transient states within Tj to transient states 
within Ti is 0, since non transitions into transients states are possible per definition. 
The division as given by (3.81) has also been emphasized in the last statement of (3.78) 
for the example shown in example 3.1. 

A state x j for which Pjj = 1 is called an absorbing state. State 3 in figure 3.6 is 
absorbing. If such a state is attained at some instant of time, the system will remain 
there in all future. Obvious, an absorbing state is also a recurrent state. 

A state x j for which Pjj = 0 is called a reflecting state. State 5 in figure 3.6 is reflecting. 
If the system arrives at such a state at a certain instant of time, it will leave the state 
again with probability 1 during the following transition. A reflecting state may be as 
well recurrent as transient. 

A state x j is accessible from the state Xi if at least one path can be found on the state 
transition diagram leading from the state Xi to the state x j in the direction of the 
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arrows. As an example, state 3 in figure 3.6 is accessible from state 5 and from state 4 
via state 5. On the other hand neither state 3, 4, or 5 are accessible from the states 1 
and 2. 

A Markov chain is called irreducible if all states are accessible from all other states. 
Obviously such a Markov chain cannot have any transient states, and only one class R1 
of recurrent states. 

Finally, a Markov chain is said to be periodic with the period N > 1, if after N tran
sitions the system returns to its initial state with the probability 1. Periodic Markov 
chains are only possible if all states are reflecting. 

Now, the prerequisites have been made to consider the problem of determining the 
probability distribution, 1r<=), obtained from (3. 77) after infinitely many transitions as 
k -t oo. If such a limit exists, the Markov chain is said to have a limiting distribution 
or a stationary distribution. If it exists, the limiting distribution must be invariant to 
further transitions, i.e. 

7r(oo) = P1r(oo) (3.82) 

(3. 71) determines the limiting distribution as the eigenvector to P, normalized so 

.2.::}:1 7rJ00
) = 1, and with the associated eigenvalue .A = 1. If the eigenvalue .A = 1 

is simple, it means that a unique solution 1r(oo) is obtained to (3.82). Mathematically, 
it can be proved that such a unique solution is obtained only if the Markov chain is 
irreducible, aperiodic and all states are positive recurrent. Since, the distribution of 
a periodic Markov chain repeats itself with a period N > 1, and not with the period 
N = 1 required for the stationary distribution, the restriction to aperiodic Markov 
chains is obvious. Since the initial distribution is not entering (3.82), it follows that the 
limiting distribution obtained after infinitely many transitions is the same in this case, 
no matter which initial distribution is applied. If the Markov chain is not irreducible, 
corresponding to multiple classes R 1 , R2 ,. • • of positive recurrent states are present, 
multiple solutions to (3.82) are obtained, one solution belonging to each recurrent class. 
A reduced relation similar to (3.82) is then obtained for the state variables in each 
recurrent class, Ri, i.e. 

(oo) p (oo) 
7rni = n.n, 1rn, (3.83) 

The state variables not belonging to the considered recurrent class are all zero. Any 
linear combination of the stationary distribution for each recurrent class, suitably nor
malized so the sum of the probabilities is 1, is also a stationary distribution. Which 
of these infinite many stationary distribution is eventually obtained after infinite many 
transitions, now depends on the initial distribution. 

Since the eigenvalue .A = 1 is known, the solution of the n-dimensional e.igenvalue prob
lems (3.82) or (3.83) can easily be obtained as follows. One arbitrary state variable is 
selected, and (3.82) and (3.83) are then rearranged into a system of n- 1 linear equa
tions, which is next solved in terms of the selected state variable. The actual magnitude 
of the components then follows from the normalization condition .2.::}:1 7rJ00

) = 1. 
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Example 3.4: Two state Markov chain 

1- pl 

Figure 3.7: State transition diagram of two state Markov chain. 

Assume, that a Markov chain can only attain the two states x 1 and x2 with the following transition 
probability matrix 

p = [Pn 
p21 

P12] 
p22 [ 

Pl 
- 1- P1 

1- P2] 
P2 ' 

(3.84) 

Pn = Pl specifies the probability of staying in the state Xt, and P21 = 1 - Pl is the probability of 
making a transition to the state x 2 on condition of starting in the state :z:1. Similarly, P2 specifies the 
probability of staying in the state :z:2 , and 1 - P2 is the probability of making a transition to Xt on 
condition of starting in the state :z:2 . The structure of the transition probability matrix can be illustrated 
by the state transition diagram shown in figure 3. 7. As seen the Markov chain is irreducible. If Pl E]O , 1( 
or P2 E]O, 1( it is also aperiodic and positive recurrent. Hence, a unique stationary distribution exists 
in this case. 

By induction it can be proved that 

pk = 1 [1 - P2 
2 - Pl - P2 1 - Pl 

(Pt + P2 - 1)k [ 1 - Pl 
2- Pl - P2 -(1 - pt) 

-(1 - P2)] 
1- P2 

(3.85) 

The steps of the induction proof is that (3.85) is firs t verified to hold for k = 1. Next, pk is assumed 
to be given by (3.85), and finally pk+l = pkp is calculated and shown to have the same form. 

Assume, Pt E]O, 1( or P2 E]O, 1(. The limit cases Pt = P2 = 0 and Pl = P2 = 1 are then excluded and 
need special consideration . Then Pl + P2- 1 E] -1, 1( => (Pl + P2 -1)k -> 0 ask-> oo. Hence, (3.85) 
converges to the limit 

poo= 1 [1-p2 
2 - Pt - P2 1 - Pt 

1- P2] 
1 - Pt 

Let the initial distribution -rr(l) be given as 

The stationary distribution then b ecomes 

-rrC oo) _ 1 [ 1 - P2 
- 2 - Pl - P2 1 - P1 

(3 .86) 

(3.87) 

-2---p-~---P-2 [ ~ = :~ ] (3.88) 
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As expected, the stationary distribution is independent of the initial distribution as specified by a in 
this case, i.e. the stationary distribution is unique. 

If P1 = P2 = 0 both states are reflecting. The system switches forth and back between the two states. 
Obviously, this corresponds to a periodic system with the period N = 2, and no stationary distribution 
is present. 

If P1 = P2 = 1 both states are absorbing. The system is no longer irreducible, but breaks down into 2 
recurrent classes, one for each state and the following limiting distributions are obtained, cf. (3.83). 

(3 .89) 

Which stationary state is attained depends on which state the system starts from, i.e. the stationary 
distribution now depends on the initial state. 

Next, let us solve the same problem based on (3.82). Without restriction let us solve the equations for 
rrf' in terms of rr2' 

[
rr

00

] [ P1 rr~ = 1- P1 
1 - P2 ] [ rrf' ] 

P2 rr2' 
(3.90) 

(3.90) is obtained for both equations of (3.90), reflecting that >. 
normalization condition rr~ 00

) + rr~ 00
) = 1 is applied, so 

1 IS an eigenvalue. Next, the 

1- P2 rrf' = __ _.::_ __ 
2- P1- P2 

(3.91) 

which is identical to (3.88). 

Example 3.5: Stationary distributions of 5 state Markov chain 

The 5 state Markov chain of example 3.2 is considered again. Since there are 2 classes of recurrent 
states R1 and R2, two stationary distributions are present. 

For the recurrent class R 1 the stationary states are determined by (3.81) and (3.83) 

[ 
11"( 00) ] [ l l ] [ 11"( 00) l 1 -42-1-
7r~oo) - ~ t - 7r~oo) -

(3.92) 

Solving the equations for rr~ 00
) in terms of 1r~ 00

) the solution rr~ 00
) 

normalization condition 1ri 00
) + 1r~ 00

) = 1 provides 

~rrioo) is obtained. Next, the 

7rioo) + ~7rioo) = 1 :::} 

(oo) _ ~ (oo) _ 3 
71"1 - 5 71"2 - 5 

Hence, the stationary distribution of the Markov chain for the recurrent class R1 

(oo) 
71"1 

(oo) 
71"2 

..,..(oo) _ (oo) 
"1 - 71"3 

(oo) 
71"4 

(oo) 
rrs 

(3.93) 

becomes 

(3.94) 
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For the recurrent class R 2 the stationary distribution is 1r~oo) = 1. Then, the stationary distribution 
of the Markov chain becomes 

(oo ) 
11'"1 

=m 
( oo ) 

7r2 
7r(oo) - ( oo ) (3.95) 2 - 7r3 

( oo) 
7r4 

( oo) 
7rs 

Any linear combination a7r~oo) + (1- a)1r~oo), a E]O, 1[ is again a stationary distribution . 
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4. ERGODIC PROCESSES 

If a physical phenomenon is to be modelled by a stochastic process {X(t), t E [0, oo[}, the 
statistical properties of the process such as the mean value function and auto-correlation 
function must be determined from available measurements. Assume N number of inde
pendent time series of x 1 ( t), x2 ( t) ... x N ( t) are available. The mean value function and 
the auto-correlation function can then be estimated from the averages 

1 N 
t-tx(t) ~ N L Xn(t) 

n=l 

( 4.1) 

1 N 

t-txx(tl, t2) ~ N L Xn(tl)xn(t2) 
n=l 

(4.2) 

where the estimate ( 4.1) is applied on the right-hand side of ( 4.2). The accuracy of the 
estimates depends on theN number of available time series. 

x( t) 

t 

NT0 

Figure 4.1: Realization of ergodic process. 

Quite often only a single time series is available. However, if {X(t), t E [0, oo[} can be 
assumed to be homogeneous from the physical nature of the problem, the probabilistic 
structure will be invariant under a shift To in the index set. If further T0 is sufficiently 
large, so that X(t), X(t+To) ... X(t+(N -1)T0 ) are all mutually independent stochastic 
variables, one may divide the available time series x( t) into N sub-time series x1 ( t) = 
x(t), x2(t) = x(t +To) ... XN(t) = x(t + (N- 1)To) as shown in figure 4.1. These 
cannot be considered as independent realizations of a stochastic process {X(t), t E 
[0, oo[}. Actually, x1 (To) and x2(0) are identical. Nevertheless, the stochastic variables 
producing the samples entering ( 4.1 ), ( 4.2) can be considered identically distributed and 
mutually independent stochastic variables. This heuristic approach suggests that the 
statistical properties of the process may be estimated based on such sub-time series. 
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Next, the interval [0, To] is further sub-divided into M equidistant intervals of length 
!:::.t = ~. Due to the mandatory stationarity assumptions of the process, ( 4.1) should 
provide the same value /-LX at all times t = 0, !:::.t ... (M- 1)!:::.t. Applying the average 
of these local estimates as the final estimate for f.LX, we have 

1 M 1 N 

f.LX ~ M L N L Xn((m -1)!:::.t) = 
m=l n=l 

M N T 

1 "' "' ( ) 6-t--+0 1 J MN !:::.t L L Xn (m -1)!:::.t !:::.t-- T x(t)dt 
m=l n=l 0 

(4.3) 

T = MN!:::.t = NTo ( 4.4) 

where x(t) is the original available time series. Using a similar averaging technique for 
local estimates of f.L x x ( t, t + T) as given by ( 4.1) at times t = 0, !:::. t ... (M - 1)!:::. t, the 
auto-correlation function may be estimated from 

T - T 

f.Lxx(r) ~ - 1
- J x(t)x(t + r)dt, r > 0 

T - r 
0 

(4.5) 

By ( 4.3) and ( 4.4) the problem of estimating the mean value function and the auto
covariance function has been reduced to the evaluation of certain time averages of a 
time series x(t). The length T of the time series must be sufficiently large, so that 
an extra increase of T does not alter the estimates significantly. To should be at least 
the correlation length of the process in order to ensure the mutual independence of the 
samples xn(t). N should be larger than 50 to ensure the stabilization of the averages 
( 4.1) and ( 4.2). Hence, T must be at least of magnitude 50 times the correlation length 
of the process. This of course demands longer time series for narrow-banded than for 
broad-banded processes. 

Even if the right-hand sides of (4.1) and (4.2) have stabilized for a given sample in
terval T, the results are only at any value, if limits are independent of the specific 
realization of {X(t), t E [0, oo[} to be applied. This is not necessarily the case for an ar
bitrary homogeneous process. However, if the same limit values are obtained for almost 
all realizations x( t) applied on the the right-hand side of ( 4.3) and ( 4.5) the process 
{X(t), t E [0 , oo[} is said to be ergodic in the mean value with probability 1 and ergodic 
in the auto-correlation function with probability 1, respectively. Ergodicity of higher 
order moments with probability 1 can be defined in the same way. If the process is 
ergodic in the moments of arbitrary order it is said to be strictly ergodic. 

Ergodicity with probability 1 is closely related to the definition of the corresponding 
stochastic integrals with probability 1. Similarly to the definition of stochastic integrals 
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in mean square ergodicity in the mean square can also be defined. In this respect 
consider the following stochastic integrals in mean square 

1 {T 
Mx,T = T Jo X(t)dt 

T-T 

Mxx,r(r) = T ~ r J X(t)X(t + r)dt, r > 0 
0 

(4.6) 

(4.7) 

The stochastic process {X(t) , t E [0, oo[} is then said to be ergodic in the mean value in 
mean square if lim-ms Mx,T = J.LX as T ~ oo. This means, cf. (1.121) 

lim E [(Mx,T- J.l-X )2
] = 0 =? 

T-+oo 

T 

2J.Lx lim T
1 J E [X(t)] dt + J.L~ = 0 

T-+oo 
( 4.8) 

0 

where (2.81) has been used for the evaluation of the expectations of the stochastic 
integrals. Since the process is homogeneous, E[X(t)] = J.Lx and E [X (ti)X(t2 ) ] = 
J.Lxx(t2 - t!) = "'Xx(t2 - ti) + J.L~, see (2.12). lim-ms Mx,T = J.Lx as T ~ oo is then 
obtained if 

T T 

f~oo ; 2 j j ( "'xx(t2- t1) + J.L~ )at1dt2-
o 0 

T 

2J.Lx lim Tl j J.Lxdt + J.L~ = 0 =? 
T-+oo 

0 

( 4.9) 
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tz u 

T T 

duf 
tt tt 

T T 

fdu 
tt = - U J 

-T 

Figure 4.2: Mapping of integration areas. 

In order to evaluate the planar integral in ( 4.9) further the change of integration variable 
u = t 2 - t 1 is performed in the outermost integral. Then, see figure 4.2 

TT 

j j Kxx(t2 -t1)dt1dt2 = 

0 0 

0 T 

j Kxx(u)(T + u)du + j Kxx(u)(T- u)du = 

-T 0 

T T 

2 j Kxx(u)(T + lul)du = 2T j Kxx(u) (1 + 1;1) du 
0 0 

( 4.10) 

where first it has been applied that Kx x( u) is a constant as a function of t 1 , and 
hence can be set outside the innermost integration with respect to t 1 . Secondly, the 
symmetry property (2.96) has been used. From ( 4.9) and ( 4.10) then follows that the 
process {X(t), t E [0, oo[} is ergodic in the mean square if and only if its auto-covariance 
function fulfils 

T 

)~~! Kxx(u)(1+;)du=O (4.11) 
0 

For a certain r > 0 consider the stochastic variable Yr(t) = X(t)X(t + r ). ( 4.7) can 
then be written 
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T-T 

Mxx,T(r) = T ~ 
7 
J YT(t )dt 
0 

(4.12) 

From the similarity between (4.6) and (4.12) it follows that the stochastic integral (4.12) 
converges in mean square to the limit /-LX x( T) = E[YT(t)] = E [X (t)X (t + T )], and the 
process hence is ergodic in the auto-correlation function in mean square, if and only if 

T-T 

f~oo T ~ T J Kyr Yr ( U) ( 1 + T ~ T) du = 0 (4.13) 

0 

where Kyr Yr ( u) is the auto-covariance function of the process {YT(t), t E [0, oo[} defined 
from 

E [(X(t)X(t + r)- f.Lxx(r)) (X(t + u)X(t + u + r)- f.Lxx(r))] (4.14) 

Now, it can be stated that the random variables Mx,T and Mxx,T(r) provide unbiased 
and consistent estimates of /-LX and f.Lxx(r), when a certain realization x(t ) is inserted 
on the right-hand side of ( 4.6) and ( 4. 7). That the estimates are unbiased for any T 
follows from taking the expectation on both sides of ( 4.6) and ( 4. 7) and succeeding use 
of (2.81) 

[ 

T l T T 
E [Mx,T] = E ~ J X(t)dt = ~ J E[X(t)]dt = ~ J pxdt =/-LX 

0 0 0 

T- T 

E [Mx x,r(r)] = T ~ 
7 
j E [X(t)X(t + r)] dt = 

0 

T-T 

-
1

- j tLxx(r)dt = tLxx(r) T-T 
0 

( 4.15) 

(4.16) 

That the estimates are consistent, i.e. that the variances E [(Mx,T- /-LX?] and 
E [(Mxx,r(r)- f.Lxx(r)?] goes to zero as T-+ oo, is simply another statement for 
the ergodic in mean square statements. 
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It can be proved that ergodicity in statistical moments of a certain order implies er
godicity of all the moments of lower order. Hence, ergodicity in the covariance implies 
ergodicity in the mean value. 

Without proof it is finally stated that the consistency ofthe estimates (2. 122) and (2.123) 
to the limits ai and Sxx(wn) is guaranteed if only the process {X(t), t E [0, oo[} is 
ergodic in the auto-covariance function in mean square. The estimate (2.122) is unbiased 
for any T, whereas (2.123) usually is biased. 

x( t) 

x+jx+-----~------~----~r---~------~--
x+---~~------~----~-----r~~~;----

I 
I 
I 

I I 
I I 
I I 

jt 2jt 3jt ijt Njt =T 

t 

Figure 4.3: Estimation of probability density function by ergodic sampling. 

Not only the statistical moments, but also the joint pdfs of the process can be estimated 
by ergodic sampling from an available time series. The procedure for doing this has been 
illustrated in figure 4.3. The sample interval is divided into N equidistant intervals of 
the length b.t = ~. The interval ]ib.t, ( i + 1 )b...t], i = 0 ... N- 1, is associated with the 
sample Xi = x(ib.t). The sample interval of X(t) is in the same way divided into disjoint 
intervals. The probability of samples in the interval ]x,x + b.x] is approximately equal 
to f{X} ( x )b.x. This probability can then be estimated by the fraction .6.~x) , where 
b.N(x) is the number of samples Xi for which Xi E)x, x + 6x]. One then has 

1 b.N(x) 
f{x}(x) ~ 6x N 

( 4.17) is supposed to give the correct answer as N ~ oo and b.x ~ 0. Now, 

T 
1 6N(x)6t~ 1 1 J 

f{x}(x) ~ 6 x N 6 t b.t T l]x,x+.6.xJ(x(t))dt 

, yE A 

, y~A 

0 

( 4.17) 

( 4.18) 

(4.19) 

Hence, f{x}(x)b.x is estimated as the time-average of lx 1]x,x+.6.xJ(x(t)), where the 
indicator function for the interval A =]x,x + 6x] is defined by (4.19). In figure 4.3 
1]x,x+.6.xJ(x(t)) = 1 for the parts of the abscissa axis marked with a bold line. As the 
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probability density function is tantamount to the knowledge of all statistical moments of 
the considered process, it is only expected to be estimated correctly using the indicated 
procedure if the process is strictly ergodic. 

The probability distribution function specifies the relative number of samples in] -oo, x]. 
Hence, it can be estimated from the following time average 

T 

F{x}(x) ~ ~ J 1] -oo,x](x(t))dt ( 4.20) 

0 

Example 4.1: Probability density function of harmonic process by ergodic 
sampling 

a) 

r 
rcose 

X 

x( t) b) 

X 

- r r 

Figure 4.4 : a) Realization of harmonic process. b) P robability density function obtained by ergodic 
sampling. 

Consider the harmonic process defined by (2.29). The first order pdf is given by 

1 ( x2) i{x}(a:) = tn= exp - - 2 
v21ru 2u 

(4.21) 

Here the mean value function is taken as iJX = 0. Let r and 8 denote the amplitude and the phase 
of the realization, respectively. The corresponding realization x(t) = r cos(wot +B) has been shown in 
figure 4.4a. Using this time series in ( 4.3) and ( 4.5), the following results are obtained as T - oo 

P.x = 0 

r2 
~~:xx(r) = - cos(wor) 

2 

(4.22) 

(4.23) 

( 4.22) is the correct mean value function of the harmonic process, cf. (2.30), which is consequently 

ergodic in the mean value. In general the sample variance r2

2 
is different from a-2 • Hence, ( 4.23) is 
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different from (2.31), and the harmonic process is not ergodic in the auto-covariance function. Because 
of the periodicity, the distribution function ( 4.20) determined by the ergodic sampling approach as 
T --+ oo, is equal to the length of the bold-line marked intervals on the abscissa of figure 4.4a in 
proportion to To = 2

"" . Then, 
wo 

( ) 
1 1 . X 

F{x} x =-+- arcsm - , 
2 1r r 

xE[-r,r] 

The first order pdf is obtained by differentiation with respect to x 

f ( ) _ { x-Vr;-x2 
{X} X -

0 

' lxl < r 
' lxl > r 

(4.24) 

(4.25) 

(4.25), which has been shown in figure 4.4b, is completely different from (4.21). This is due to the 
limited ergodicity properties of the harmonic process. 

Instead of the harmonic process, the random phase process (2.37) is next considered. For this process 
strictly ergodicity is present. The pdf obtained by ergodic sampling is still given by ( 4.25) with r = a 
and is seen to be exactly identical to (2.38). 
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