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Summary

The most appropriate approach to modeling occupants depends on the pur-
pose and the object of the simulation. In this chapter, we will offer con-
ceptual and practical guidance for choosing the most appropriate occupant 
behavior modeling approach, following a fit-​for-​purpose rationale. The aim 
of the fit-​for-​purpose approach is to achieve the most relevant possible rep-
resentation of occupant behavior for a specified simulation aim in an effi-
cient manner.

7.1 � Introduction

Many different approaches exist to model occupants and their behavior (see 
Chapter 6). It is important to take a step back and reflect on how people 
are considered in today’s design practice. People are first and foremost the 
recipients of a design in terms of experience. Attention is directed toward 
the social and cultural context of a project from the very initial stages of the 
design process. Designers typically gather qualitative information about the 
future occupants of their buildings through user journeys and stakeholder 
workshops. However, often the future occupants are not yet known, and 
even if they were, building owners are naturally eager to keep the building 
functions as flexible as possible in order to cater to a wide range of potential 
tenants throughout the lifespan of a building.

When it comes to modeling, occupants are considered during building 
design and operation in terms of three main attributes: movement, presence, 
and behavior (Figure 7.1).

The following applications of occupant modeling to the building design 
process have been identified (Dong et al., 2018) (Figure 7.2):

•	 Building performance analysis: Examples of building performance anal-
ysis include energy performance analysis (from component to whole 
building), comfort performance analysis (people presence and behav-
ior), and daylight performance simulation (heavily influenced, among 
others, by behaviors such as blind/shade operation);
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•	 Building architecture and engineering design: Circulation design (people 
movement) and heating, ventilation, and air-​conditioning (HVAC) siz-
ing (people presence and behavior);

•	 Building safety design: Crowd management and passenger flow analysis 
(especially relevant in public buildings), people movement, and struc-
ture vibration subjected to crowd loads (Jones et al., 2011).

The modeling of people movement for circulation design, safety design, 
crowd management, and passenger flow analysis is well-​established in ar-
chitecture and engineering practice (Yan et al., 2017). In contrast, presence 
and behavior modeling falls short of implementation in the design workflow. 
This gap is the focus of this chapter.

Current occupant behavior (OB) modeling practices are aligned with the 
tasks from building codes and standards, which tend to treat occupant be-
havior superficially, considering it in terms of either basic schedules or min-
imum requirements for personal control. This practice is likely to change 
as standards become increasingly focused on operational performance. For 
example, NABERS (Residovic, 2017) is a building rating standard valid for 
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Figure 7.1 � The three categories of people modeling.
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Figure 7.2 � Applications of people modeling during the building design phase.
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12 months only that places value on representing a building or workplace’s 
actual operational performance. Other standards also request a comparison 
of in-​use measurements and model assumptions, e.g., WELL (International 
WELL Building Institute, 2020). This shift in building standards toward 
operational performance is likely to drive the need for more realistic OB 
modeling practices.

Current OB modeling practices are illustrated by O’Brien et  al. (2017). 
When the authors asked practitioners to describe their overall assumptions 
about occupants in building performance simulation, most interviewees 
responded they used values derived from standards (e.g., ASHRAE 90.1 
[ASHRAE, 2013]) or they modified the default settings based on personal 
experience and judgment. Assumptions notably varied according to the 
purpose of the simulation, yet there was no convergence or transparency re-
garding individual modeling practices. For example, when asked to describe 
their assumptions regarding plug loads use during detailed design and 
equipment sizing, a similar number of people responded with ‘All equip-
ment is always on’, ‘Based directly on occupancy schedules’, and ‘Standard 
profiles from modeling standards’. These findings show that the current con-
sideration of occupants in design workflows is sub-​optimal and lacks clarity, 
transparency, and awareness regarding the impact of assumptions on the 
design. Gaetani et al. (2020) also showed that the high number of models for 
occupant presence and behavior available in academic contexts seldom find 
application in practice.

It is important to mention that different OB models have different re-
quirements for their implementation in building performance simulation. 
Choosing the ‘right’ approach also means using models within their ap-
plicability range. Lindner et al. (2017) as well as Mahdavi and Tahmasebi 
(2016b) investigated the requirements of occupant behavior models for use 
in building performance simulation. These studies highlighted a number 
of challenges connected with more advanced models, such as: the fact that 
some models do not provide an output in a binary form (i.e., a window is 
open or closed at a given simulation timestep, as required by the simulation 
software), which makes it necessary for the modeler to formulate further 
assumptions; the lack of reproducibility of simulation results employing sto-
chastic models (see Chapter 6); improper model behaviors leading to an ex-
aggerated frequency of occupant actions occurring in short timespans; and 
an absence of reversal functions. Regardless, if these challenges were to be 
addressed, there would still be a lack of guidance on actual model selection 
for practical purposes.

The above indicates a strong potential to improve current design work-
flows with regard to occupant behavior modeling. Generally, authors agree 
that the chosen modeling approach should depend on the purpose of the 
simulation (Gaetani et al., 2020; Gilani et al., 2016; Mahdavi and Tahmasebi, 
2016b; Roetzel, 2015), which is the topic of this chapter. We begin with a con-
ceptual overview of a fit-​for-​purpose modeling rationale in Section 7.2.
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7.2 � Fit-​for-​Purpose Modeling: A Conceptual Overview

Models are used to explain and predict diverse phenomena in various 
domains. Once a reliable computational model of a phenomenon is con-
structed, the model can be seen as its virtual version. Models’ computa-
tional core (including the implemented routines and algorithms) map inputs 
to outputs. As the statistician George Box put it, ‘All models are wrong, 
but some are useful’ (Box, 1979). Fit-​for-​purpose models are, in short, mod-
els that are suitable and useful for the purpose for which they have been 
developed.

In the field of building simulation, model input variables and parameters 
are typically descriptors of building-​related entities. Such entities can en-
compass building components and systems, whole buildings, or ensembles 
of buildings. Input variables also include external (e.g., weather) and internal 
(e.g., use patterns) boundary conditions as well as information on human–​
building interaction. Frequently, the overall computational model includes 
sub-​models for the generation of data related to boundary conditions and 
interaction. Instances of such sub-​models include weather data generators 
and occupant data generators. Model output typically entails variable val-
ues relevant to entities’ behavior or performance. There are many facets to 
buildings’ performance, including, for instance, building integrity, energy 
efficiency, and indoor environmental quality. Certain aspects of perfor-
mance such as thermal and visual conditions, air quality, and acoustics are 
directly relevant to occupants’ requirements and needs; others, for example, 
energy and environmental performance, can be influenced by occupants’ 
behavior. Consequently, in these and similar instances of building perfor-
mance simulation utilization, information and models regarding occupants’ 
presence and behavior in buildings need to be included to achieve a com-
plete representation of the building and its use patterns.

Building performance simulation typically generates data that either en-
tails values of building performance indicators or is processed to arrive at 
such values. Simulation-​based building performance assessment commonly 
involves the comparison of computed values of the performance indicator 
with desired or mandated benchmarks. Simulation models can be used to 
find answers to what-​if types of questions. As such, models are used to find 
answers to two broad types of questions: direct and indirect. Direct ques-
tions ask, ‘What output (performance indicator value) do I get for a given 
input?’ Indirect questions ask, ‘In order to have a certain output, what input 
do I need?’ To answer the second type of question, simulation is typically 
run iteratively. Iteration can be conducted manually or facilitated by com-
putational tools that either support parametric simulation or are coupled 
with optimization routines.

Given this background, building performance simulation can be viewed as 
an activity to derive the values of relevant performance indicators given spe-
cific model input assumptions (building description, boundary conditions, 
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use patterns). Whereas in this chapter we focus on the present contribution 
to occupant-​related matters, the simulation activity can serve a host of pur-
poses (Chwif, Barretto, and Paul 2000; Dong et al. 2018; Mahdavi and Tah-
masebi 2016b). Several such purposes are listed in broad categories below:

a	 Building component design/optimization (e.g., heat transfer in building 
details)

b	 Building design support (i.e., decision-​making regarding buildings’ 
modeling shape and geometry, construction, envelope)

c	 Building systems design support (configuration and sizing of systems 
for heating, cooling, ventilation, and lighting)

d	 Building operation support (e.g., model-​predictive control)
e	 Urban-​scale performance assessment (e.g., prediction of airflow and 

pollution migration patterns)
f	 Evidence of compliance (with requirements formulated in codes, stand-

ards, certification, and ratings systems)
g	 Competition, promotion, education.

It seems reasonable to suggest that a simulation model must fit the purpose 
if it is to reliably answer the questions that are directed at it. As the answer 
provided by the model comes in the shape of a performance indicator value, 
the following is suggested to simplify the matter: in order to formulate a 
guiding principle for the selection of a proper simulation model (and the 
choice of the occupant model included therein), the specifics of the build-
ing performance indicator under consideration must be considered. This 
statement can be reiterated in terms of two assertions: First, the nature and 
resolution of the selected simulation model must correspond to specifics of 
targeted performance indicator. Second, the occupant model embedded 
in the simulation model must be compatible with the selected simulation 
model. In other words, the nature of the building performance inquiry im-
plies a fitting building performance indicator, the target indicator implies a 
fitting general simulation model, and the general simulation model implies 
a fitting occupant model.

To tease out the practical ramifications of these observations, as a first 
step, a kind of classification or typology of performance indicators is needed. 
Detailed ontological treatments of performance-​related data in general and 
building performance indicators in particular can be found in (Mahdavi and 
Taheri, 2017, 2018; Mahdavi and Wolosiuk, 2019). For the sake of the present 
discussion, it may suffice to consider three main dimensions of building per-
formance indicators, namely topical domain, spatial attribute, and temporal 
attribute, where:

i		  The topical domain specifies the field of performance inquiry. Queries 
may concern, for example, energy use, thermal comfort, noise exposure, 
or daylight availability.



150  Isabella Gaetani et al.

ii		 The spatial attribute concerns the physical extent of the entity whose 
performance is being queried. For instance, radiant asymmetry can be 
computed for an office workstation, parameters of the acoustic field for 
a lecture room, energy use for a whole building, and temperature strat-
ification for an urban canyon.

iii	 The temporal attribute specifies the point in time or the duration of the 
interval for which the performance indicator value is obtained. For ex-
ample, task illuminance level may be simulated for a specific time of the 
day, and a building’s heating load may be specified on an hourly, daily, 
monthly, or annual basis.

Given sufficient computational means and resources, the values of perfor-
mance indicators can be obtained at very high levels of resolution. More-
over, in most cases, it would be a simple matter of aggregation to derive, 
from high-​resolution arrays of data to lower-​resolution values. This would 
suggest that through basic statistical operations of summation and averag-
ing, the annual heating load of a building or the mean annual illuminance 
of a room, for example, could be derived from respective hourly or even sub-​
hourly simulation results. The fact that this process inevitably involves a 
loss of information explains why the reverse process is problematic. In other 
words, the process of disaggregation, that is the derivation of high-​resolution 
values from aggregate ones is non-​trivial in principle, if not infeasible.

This observation may lead to the naïve assumption that there is a simple 
solution to the fit-​for-​purpose problem: ideally, simulations should always 
be conducted at the highest possible spatial and temporal resolution and ap-
ply aggregation and averaging procedures to fit the resolution of the results 
to the level commensurate to the purpose, i.e., as represented by building 
performance indicator values with the right resolution. There are multiple 
reasons of practical and conceptual nature why this assumption is naïve. 
From a practical perspective, high-​resolution simulation models come with 
a cost in terms of time, resources, expertise, difficulty in identifying model 
faults, and higher risk of errors due to the number of inputs. Moreover, it 
has been argued that, particularly in design support scenarios, there is often 
not sufficient information to generate high-​resolution simulation models. 
Consequently, an early design stage simulation model would have to be fed 
a considerable amount of detailed but uncertain data. The corollary of this 
circumstance would be that simulation would generate results with higher 
levels of resolution, but also with higher levels of uncertainty.

These reflections seem to suggest that, conceptually speaking, higher 
resolution does not always mean higher accuracy or better suitability of a 
model to the task at hand. Model selection should target the right resolu-
tion, not necessarily the highest possible resolution. A common criterion 
with regard to the temporal adequacy of the simulation algorithms is re-
lated to the nature of the modeled processes. Specifically, in the thermal do-
main, proper consideration of thermal inertia, latency, and storage require 
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transient simulation and, depending on the nature of deployed numeric 
solutions, certain minimum levels of temporal resolution. This thermally 
relevant interval-​to-​interval carryover of computational results is of lesser 
concern in the visual and acoustic simulation domains.

These observations seem to justify why conducting and interpreting 
computer-​generated examinations via simulation models has occasionally 
been referred to as both an art and a science. In more prosaic terms, when it 
comes to competent use of simulation tools, experience is of crucial impor-
tance. Nonetheless, the preceding discussion does imply certain general di-
rections regarding the proper selection of simulation models and associated 
occupant models. Before engaging in a more detailed discussion of these 
directions, we need to address the representational options concerning oc-
cupants’ patterns of presence and behavior in buildings. Detailed treatment 
and classification of occupant models have been presented in previous pub-
lications (Gaetani et al., 2016a, 2020; Lee and Malkawi, 2014; Page et al., 
2008); hence, we focus here on the broad classes of such models as relevant 
to the present discussion.

Taking thermal performance simulation as a case in point, we begin by 
considering what types of information need to be captured in an occupant 
model. Such a model must capture the basic state attributes of the occupants 
(e.g., presence, metabolic rate, clothing level) as well as their effects on the in-
door environment. The latter effects can be classified in terms of passive and 
active effects. Passive effects pertain to, for instance, occupants’ release of 
sensible heat, latent heat, CO2, and water vapor in the indoor environment. 
Active effects mainly pertain to occupants’ interactions with building control 
devices and systems (e.g., windows, shades, fans, thermostats). The categori-
zation of models of occupants’ presence and behavior in buildings can be ap-
proached in a similar manner as the dimensions of performance indicators. 
Occupants’ passive and active effects could be assigned to specific domains. 
For instance, whereas occupants’ metabolic rate is relevant to the thermal 
domain, the sound absorption effect of their clothing is relevant to the room 
acoustics domain. The spatial attribute is relevant as well; occupants may be 
represented as a collective (e.g., all people in a building, on a floor, in a room) 
or they may be assigned to individual locations (e.g., a workstation, a single-​
occupancy office). Concerning the temporal attribute, changes in occupants’ 
presence state at a location can be expressed in intervals of various lengths. 
Likewise, their actions can be assumed to occur within such intervals, or, in 
the case of event-​driven simulation runs, at specific points in time.

An additional dimension of occupant models relates to the question of 
whether occupants’ position and actions are expressed as fixed recurrent 
patterns or in probabilistic terms. As will be discussed later in this chapter, 
a probabilistic occupant model may be more appropriate than simple sched-
ules and rules in certain cases. We suggest that the variety of the occupant 
models can be categorized in terms of their respective loci within this multi-​
dimensional space. Taking the thermal domain as a case in point, simplified 
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spatially single-​zone and temporally annual or monthly calculation models 
tend to reduce the occupant down to their share in internal gains (typically 
lumped with other contributors, such as lights and equipment) and their 
fresh air requirements (frequently expressed in terms of ventilation rates), 
both specified in terms of fixed daily schedules. At the other end of the spec-
trum, a simulation platform with integrated agent-​based modeling routines 
can consider each occupant individually and model their impact on the 
spaces and their interactions with the systems in a dynamic, high-​resolution, 
and probabilistic manner.

To provide a clearer understanding of these issues, we exemplify them us-
ing three related thematic foci: the code compliance use case, the temporal 
dimension of the performance indicators, and the potential of probabilistic 
modeling. Each is described in turn in the paragraphs that follow.

First, in the case of code compliance, the scope and dimensions of per-
formance indicators are typically predefined. In many instances, even the 
requirements regarding the deployed computational tools may already be 
predetermined. Moreover, in code compliance scenarios, the submitted 
performance indicator values are typically expected to be reproducible, at 
least in theory. The implications for the selection of the occupant model may 
be summarized as follows. The resolution of the occupant model should 
be, in principle, in line with that of the computational model. If a code or 
certification procedure requires an aggregate performance indicator (such 
as monthly heating and cooling energy demands), it is not necessary per 
se to have a high-​resolution simulation model or occupant model, unless 
the use of such models is mandated. In this context, it is perhaps useful to 
note that a number of rather simplified code-​based performance assessment 
methods were actually introduced as replacements for earlier prescriptive 
codes and procedures. For example, in the domain of buildings’ thermal 
quality, the prescriptive codes focused on certain requirements concerning 
building fabric and envelope, with no relationship whatsoever to occupants 
and use patterns. As such, the shift to a performance-​based approach, in 
terms of energy demand calculations was meant to replace—​or at least 
supplement—​the prescription of maximum thermal transmittance values 
of walls, windows, and roofs. The point is that the inclusion of occupant-​
related assumptions was not originally geared toward measuring buildings’ 
performance sensitivity to occupant behavior. Rather, such assumptions 
were indeed meant to provide a normalized basis for measuring the impact 
of other factors on buildings’ energy performance. Of course, the specifics 
and meaningfulness of specific occupant-​related assumptions in simplified 
calculation methods could be questioned, but the reasoning behind their 
standardized format must be understood before they are criticized.

Second, decisions regarding model selection need to consider the tem-
poral dimension of the building performance indicator. As alluded to 
earlier, in contrast to visual and acoustic simulation, the modeling of build-
ings’ thermal behavior requires mapping of comparatively slow processes 
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attributable to buildings’ and systems’ inertia. Consequently, systematic 
thermal analysis of the dynamics of buildings’ behavior requires numeric 
simulation tools capable of modeling transient phenomena. The community 
has converged toward hourly simulations in basic simulations of energy per-
formance and thermal conditions. However, both sub-​hourly intervals and 
even event-​driven simulation procedures might be necessary and appropri-
ate, particularly when dealing with human interactions with and automated 
control of systems for shading and ventilation.

Third, it has been argued that both the patterns of occupants’ presence 
in buildings and their behavior (specifically, their interactions of buildings’ 
control systems and devices) display probabilistic features. It may be thus 
more appropriate, at least for certain simulation use scenarios, to make use 
of probabilistic occupant models (Mahdavi 2011; Mahdavi and Tahmasebi 
2016a). The application of probabilistic methods obviously does not result 
in single values of performance indicators, but distributions of values. This 
can indeed be useful, as probabilistic modeling can address, in theory, the 
uncertainty arising from occupant-​related events and processes. However, it 
is important in this context to avoid a common fallacy: probabilistic occu-
pant models that are insufficiently or not at all validated may generate the 
look of realistic occupant-​related processes but may not provide meaningful 
and reliable results. If a probabilistic model’s underlying empirical basis is 
limited or unreliable, so will be the data it generated. In such cases, it would 
be more meaningful to express the inherent uncertainty of simulation re-
sults via sensitivity analysis. Thereby, distributions of building performance 
indicator values simply express the implications of model input uncertainty, 
rather than pretending to generate more accurate predictions.

To summarize the above, consider the simple matrix of Table 7.1. Therein, 
the basic requirements concerning occupant models (i.e., their spatial 
and temporal resolution as well as presence of probabilistic features) are 
given for the general categories of simulation purpose (i.e., code compli-
ance, building design support, building systems design support, and build-
ing operation support). Spatial resolution is differentiated in terms of low  

Table 7.1  �Desirable features of occupant models (concerning spatial and temporal 
resolution and in view of support for probabilistic modeling) for 
different purposes

Code 
compliance

Building design 
and retrofit 
support

Building 
systems design 
support

Building 
operation 
support

Spatial resolution Low/medium Medium/high Medium/high High
Temporal resolution Low/medium Medium/high High High
Probabilistic 

modeling
NA Low Medium High
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(e.g., whole buildings, floors), medium (e.g., rooms), and high (e.g., individual 
workstations). Likewise, temporal resolution is denoted as low (e.g., annual 
or monthly), medium (hourly), and high (sub-​hourly, event-​driven). Assum-
ing the model is sufficiently tested and based on reliable and fitting empiri-
cal data, the relevance or appropriateness of probabilistic occupant models 
is again characterized as low, medium, or high. Note that this latter qualita-
tive classification of probabilistic methods is motivated by the fact that not 
all applications of probabilistic modeling are at the same (presumably high) 
level of resolution. For instance, the application of occupancy patterns with 
more or less random fluctuation characteristics may occur at the aggregate 
level of a whole building or floor/space in a building or at the level of individ-
ual occupants. At the other end of the spectrum, agent-​based modeling ap-
plications routinely involve high-​resolution and dynamic representations of 
individual occupants. In the case of building operation support, a key em-
ployment area of probabilistic methods pertains to model-​predictive control 
applications. Whereas the predictive utility of such applications typically 
targets short future time horizons, the required resolution of the underlying 
data is high, whereby predictions could be required at the micro-​interval 
level or even in event-​based modus.

Needless to say, this table is not intended to provide a recipe for occupant 
model selection. Given the complexity and variability of building design and 
operation processes and their dependence on technical, typological, local, cli-
matic, economic, and cultural factors, such a recipe would be neither realistic 
nor useful. Rather, the intention is to communicate a general overview of the 
relevant factors and considerations. Ultimately, the expectation is that higher 
levels of awareness concerning such factors and considerations could trans-
late into more robust technical decisions concerning the choice of appropriate 
simulation tools and methods in general and occupant models in particular.

The next section provides an overview of how to translate these concepts 
into practice.

7.3 � The fit-​for-​Purpose Approach in Practice

In Section 7.2, the purposes of simulation and building performance indica-
tors and their relation to the appropriate model complexity were introduced. 
These topics are further developed in this section, which aims at providing 
practical steps to apply the fit-​for-​purpose approach to modeling problems.

It is worth noting again that this approach is strictly dependent on the pur-
pose of the simulation and, hence, on the performance indicator. As a result, 
it is also important that demonstrative studies select sensible performance 
indicators—​for example, the heating peak load of a building could appear 
to be heavily influenced by occupant behavior if such load is calculated as 
maximum yearly value, but it could turn out to be independent of occupant 
behavior if the load itself is calculated as 95% load duration curve instead.
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7.3.1 � Why Should I Use a Fit-​for-​Purpose Approach?

The first important point of consideration is why a fit-​for-​purpose approach 
should be used.

The state-​of-​the-​art of occupant behavior modeling in practice is to adopt 
fixed a priori schedules and other simple rule-​based models to describe oc-
cupant presence and behaviors. The use of such models assumes a com-
pletely foreseeable and repetitive environment, where changes occur based 
on shifts in one or more variables (such as time or environmental triggers). 
However, it has been argued that this oversimplified approach to occupant 
behavior modeling could lead to underperforming building designs and 
building controls that are not optimized for real occupants and their be-
haviors (with negative consequences on both energy and comfort/well-​being 
performance of the building), as well as potential for over-​ or under-​sizing of 
building systems (O’Brien et al., 2019). Especially during the design phase, a 
careful consideration of OB acknowledges that the building might be used 
in a variety of ways. The ability of a building to maintain the desired perfor-
mance under uncertainties in building operation—​also known as ‘building 
robustness’ (Kotireddy et al., 2018)—​is an important criterion to consider 
when evaluating design alternatives.

For example, Gaetani et al. (2017a) showed how a fit-​for-​purpose approach 
can aid in designing buildings that are optimized for ‘real’ occupants. In the 
study, a simplified south-​facing cubicle with varying thermal properties was 
chosen as a case study to determine whether manual blinds were prefera-
ble to a fixed 0.5 m overhang as a shading strategy to limit cooling loads. 
Without applying the fit-​for-​purpose approach, the manual blind design 
outperformed the design with overhang in both fictitious buildings with low 
thermal insulation. In contrast, when using a fit-​for-​purpose approach, the 
cubicle with overhang (and 40% window-​to-​wall ratio) outperformed the de-
sign with blinds. The design with overhang showed a similar median value 
of cooling energy demand to the design with manual blinds; however, it also 
showed to be more robust (less sensitive) to occupant behavior.

As briefly explained in Section 7.2, a fit-​for-​purpose approach does not 
advocate for the use of complex models at all costs. Simpler models might be 
preferable for two reasons: (1) the use of more complex models, which typ-
ically need a higher number of input parameters, might introduce errors if 
such input parameters are uncertain; and (2) the use of more complex mod-
els for occupant behavior aspects that do not affect the investigated building 
performance indicator is a waste of time and resources.

The first point is best explained by means of Figure  7.3, which clearly 
shows the trade-​off between abstraction error and input uncertainty at 
growing model complexity.

If the input parameters to a given model are uncertain and the degree of 
uncertainty cannot be reduced, then this uncertainty could have a larger 
effect on the prediction error for the higher model complexities compared 
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to the lower model complexities. The user is advised to perform a sensitivity 
analysis to ensure that the input uncertainty does not cause an unexpected 
propagation of errors in the prediction.

The second point implies the knowledge of those aspects of occupant be-
havior that affect the investigated performance indicators and the relation-
ship and co-​dependencies among various aspects of OB. The latter is by no 
means self-​evident, as explained in greater detail in the following section.

7.3.2 � Which Aspects of Occupant Behavior Matter for My Case?

The building performance indicator that is investigated for a simulation 
might or might not show sensitivity to occupant behavior, or it might show 
sensitivity to only specific aspects of occupant behavior. Because buildings 
and their surroundings are complex systems, understanding whether the in-
vestigated case is sensitive to one or more aspects of OB without simulating 
it is not trivial.

A fit-​for-​purpose approach implies gaining an understanding of the sen-
sitivity of the investigated performance indicators to various aspects of OB. 
This sensitivity depends on multiple factors, such as occupant behavior as-
pects themselves and degree of uncertainty, performance indicator, time-​ 
and spatial scale of the performance indicator, scale of the object of the 
simulation (e.g., single building vs. urban environment [Happle et al., 2018]), 
and so on.

A very first step is to assess which aspects of OB should be included (i.e., 
are present) for a specific case. Take an educational building as an example. 
Any simulation attempting to optimize the energy performance of such a 
building would reasonably include the heat gains of students. Conversely, 
when considering the energy performance of a data center, it might be 

Fit-for-purpose model

MODEL COMPLEXITY

Sum

Figure 7.3 � Model complexity versus prediction error.
Adapted from Alonso (1968).
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unnecessary to add the heat gains of the few technicians that operate the 
data center to correctly predict the cooling load. Indeed, people’s presence 
and their degree of freedom are related to the building typology. For ex-
ample, nobody would expect to be able to open windows in a movie the-
atre, but everyone hopes to do so at home. The degree of influence that 
occupants and their behaviors have on building performance and occupant 
comfort are also related to the building concept. For example, occupants’ 
window opening and closing behavior very much affects the performance 
of naturally ventilated buildings. Likewise, the behaviors of turning on/off 
personal devices and comfort needs are significant factors to consider in 
the design and performance evaluation of buildings with personalized con-
trolled workstations.

To apply a fit-​for-​purpose approach, the following questions need to be 
addressed before assessing how to model the various aspects of OB:

1		  Are one or more aspects of OB present? (e.g., are people present in the 
building? Are blinds manually operated? Are blinds operated automat-
ically but people can still override?)

2		  Are one or more aspects of OB uncertain? (e.g., can occupants set the 
thermostat according to their preference or is it set by the facility man-
agement according to a known schedule?)

If an OB aspect is not present, then it is also not necessary to model it. Sim-
ilarly, if an OB aspect is not uncertain, then existing knowledge can be used 
to model it. Pupils entering a classroom every day at 8 am and leaving at 1 
pm is an example of an OB aspect that is present (people are present), but 
not uncertain (the bulk of the occupants follow a known, predetermined 
presence pattern).

If an OB aspect is present and uncertain, then it is worth investigating the 
most appropriate model for that particular OB aspect. However, assessing 
which OB aspects are relevant to the investigated building performance in-
dicator(s) is not trivial. Relevance can be interpreted as the sensitivity of a 
performance indicator for a certain OB aspect.

To assess which OB aspects are relevant to the investigated performance 
indicator(s), various types of sensitivity analysis can be used (Hopfe, 2009; 
Hopfe and Hensen, 2011; Rezaee et al., 2015). A few methods that are used in 
the context of fit-​for-​purpose OB modeling are discussed below.

The Impact Indices method (Gaetani et al., 2018) is a sensitivity analysis 
based on the results of a single simulation run. By looking at the breakdown 
of heat gains and losses that make up the heat balance of a building, it is 
possible to derive simple indices that quantify the relative importance of 
the various heat flows. The indices’ definition is based on the building heat 
balance and borrows from the concept of skin load-​dominated buildings 
versus internal load-​dominated buildings. Simply put, the heat balance of 
skin load-​dominated buildings is more likely to be highly affected by, e.g., 
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blind use, which directly affects the solar gains and ultimately the role of 
the façade as an interface between indoor and outdoor environment, while 
a variation in internal loads is expected to only have a marginal effect. 
Instead, the amount and distribution of internal loads are especially crit-
ical in internal load-​dominated buildings. The concept can be better un-
derstood by considering the following analogy: shading devices are likely 
to be highly influential in a greenhouse, while the heat released by a person 
in the greenhouse is probably negligible because the indoor environment is 
primarily affected by the outdoor conditions. While this is intuitively evi-
dent at a qualitative level, the Impact Indices Method attempts to offer a 
quantitative base for this intuition.

Another method to test whether a building performance indicator is sen-
sitive to variations in one or more OB aspects is a scenario analysis. Con-
trary to typical sensitivity analyses, scenario analysis evaluates the effect 
of changing a number of variables at the same time. When using scenario 
analysis to evaluate the sensitivity of a building performance indicator to 
one or more OB aspects, the following remarks are relevant:

•	 The use of high/low variations of OB aspects through scenarios is a use-
ful method to test their impact on the building performance indicators.

•	 As with every type of scenario analysis, the outcome is strictly depend-
ent on the formulated scenarios, which should be inclusive, extreme, yet 
plausible scenarios of OB and should possibly be agreed upon with the 
simulation client.

•	 While terms related to occupant attitudes such as ‘energy-​conscious’, 
‘austere’, ‘wasteful’, or ‘green’ are often seen in literature in relation to 
formulated scenarios that have an impact on the energy and comfort 
performance, such terms are better avoided. Depending on the building 
performance indicator and the OB aspect, a given variation in a behav-
ior can lead to saving or wasting energy. For example, a more intense 
use of the plug loads will increase the building’s electricity use but also 
decrease the need for heating through higher heat gains.

•	 Caution should be used when formulating scenarios ‘one-​at-​a-​time’, i.e., 
that change only one aspect of OB while the others remain unchanged. 
While this method can be preferred due to its ease of implementation 
and low computational costs, the correlations and co-​dependencies be-
tween various aspects of OB are such that any scenario that does not 
consider the combinations of behaviors is potentially erroneous.

As an example of scenario analysis, Gaetani, Hoes, and Hensen 
(2017b) applied identical high/low perturbations to presence, HVAC 
use, equipment use, light use, heating setpoint, cooling setpoint, blind 
use, and window operation (for a total of 256 scenarios) to 16 fictious 
building variants located in Amsterdam (Building ID 1–​8) and Rome 
(Building ID 9–​16). The investigated performance indicators were cool-
ing energy, heating energy, and weighted overheating hours. Figure 7.4 
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shows the simulated impact of occupant behavior on heating energy use. 
Depending on the building design, the impact of the OB scenarios was 
quite different (consider the range between Building 1 and Building 4).  
For all building variants located in Rome (Buildings 9–​16), the heating 
energy demand was lower than 10 kWh m–​2 a–​1 regardless of OB.

Whether such relative variation is important or not is a decision that 
should be made according to the purpose of the simulation. In this ex-
ample, the simulation user might decide that it is not important to take 
the OB aspects into account for heating energy demand calculations in 
Rome, but it is for Amsterdam.

Scenario analysis also allows for a preliminary understanding of the impact 
of one or more OB aspects on the building performance indicator. In some 
cases, the performance indicator distribution resulting from the scenario 
analysis might be enough to make a conclusive decision (e.g., prefer one de-
sign over another). In this sense, the scenarios might be themselves consid-
ered as a first increase in the OB model complexity compared with the single 
schedule or IF-​THEN models.

At times, however, the distribution of the performance indicator resulting 
from the scenario analysis does not clearly point to a conclusive decision. 
A method for discerning influential and non-​influential OB aspects given a 
performance indicator distribution might be needed. Gaetani et al. (2020) 
advise using the Mann-​Whitney U test to this end.

7.3.3 � Which Model Should I Choose?

In the previous sections, we explored the need to first assess whether an OB 
aspect is present and uncertain for the case at hand, and second whether 
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Figure 7.4 � Variation in heating energy use due to high/low patterns for uncertain 
aspects of occupant behavior; see text for explanation of legend and results.



160  Isabella Gaetani et al.

the performance indicator(s) is (are) sensitive to such an aspect. If a prelimi-
nary analysis shows that one or more OB aspects (presence and/or behavior) 
are present, uncertain, and influential, the simulation user could attempt 
to account for such impact and uncertainty within the model, arriving at 
the question ‘Which model should I choose?’ The core of the fit-​for-​purpose 
approach is the hypothesis that model complexity should only be increased 
for those OB aspects that are present, uncertain, and influential.

The choice of model is not trivial and several factors must be considered:

•	 Models need to be used within their application range. The application of a 
given model for a case other than the one it was validated for is question-
able. In practice, this means that the simulation user should first assess 
whether a model is available for the needed application—​e.g., is there a 
model that quantifies the probability of occupant interaction with blinds 
in a south-​facing, fully glazed office located in Melbourne, Australia, or 
a similar climate? If not, the simulation user could either create their own 
model or accept the scenario analysis as the next best option.

•	 Models need to be used appropriately. Using poorly documented models 
that overpromise should not be attempted. It is the research commu-
nity’s duty to improve the level of documentation of published models 
and clarity about their applications. The user (as well as the developer) 
should be clear about model pitfalls and possible workarounds that can 
be adopted to reduce such pitfalls. For example, the nature of proba-
bilistic models (hence, to be based on a probability curve) clashes with 
the very nature of building performance simulation software, where the 
exact same model outputs result from a given set of initial conditions. 
Often, this discrepancy is solved by comparing a generated random 
number to the probability of presence or of an action to be undertaken 
as described in the model; this means that the presence status or occur-
rence of behavior is questioned every simulation timestep (as often as 
every five minutes). A typical workaround is to ‘freeze’ a behavior for 
a reasonable amount of time to avoid action being triggered too often. 
The simulation user should only use models that they feel confident are 
being used as intended. If this is not the case, the simulation user should 
either go back to the model developer and seek further assistance or 
accept the scenario analysis as next best option.

•	 Less complex models should be preferred, and more complex models should 
be adopted only if needed. If several models that can be used appropriately 
and in their application range are available for the case at hand, the simu-
lation user should opt for models with fewer input parameters and lower 
resolution in order to avoid prediction errors due to input uncertainty.

•	 All input data to a model must be known; otherwise, a sensitivity analysis 
must be performed. If one or more of the input parameters to a model are 
not known, the simulation user should input a range of parameters and 
verify their effect on the results.
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As an example, let us consider the cooling energy use of a building for which 
the scenario analysis resulted in a high potential variation due to OB (from 
roughly 10 up to 70 kWh m–​2 a–​1) (Gaetani, Hoes, and Hensen 2016b). This 
particular building and performance indicator were shown by the authors 
via sensitivity analysis to be sensitive to light switch behavior but not sen-
sitive to blind and window operation. The authors show the distribution 
in cooling energy deriving from the scenario analysis (‘Patterns’) with the 
performance indicator’s distribution obtained by applying higher complex-
ity models for various OB aspects (light switch behavior, shading devices 
operation, and window operation) (here reported in Figure 7.5).

As expected, changing the model complexity for light switch behavior—​
in this case, by means of Reinhart’s Lightswitch-​2002 model (Reinhart, 
2004)—​causes the distribution in the results to change radically (Figure 7.5). 
The predicted cooling energy use, which was simulated between 10 and 70 
kWh m–​2 a–​1 by means of the scenario analysis (‘Patterns’) is now estimated 
to be in the range of 10–​45 kWh m–​2 a–​1. The model approach selected to 
mimic the light switch behavior had a very strong impact on the results.

Conversely, adding model complexity to the other considered aspects of 
OB, to which the performance indicator was previously identified as non-​
sensitive, led to negligible differences in the results.
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As this example shows, it is important to consider combinations of as-
pects to investigate the interactions among behavior; while some effect is 
noticeable, for the case investigated in the study, modeling the lights’ opera-
tion alone causes the greatest variation.

To conclude, it is important to carefully consider the effect of assumptions 
regarding occupant presence and behavior on the decision-​making process 
based on simulation outputs. Most building simulation models require the 
simulation user to input a high number of occupant-​related parameters simply 
to run correctly. But does the simulation user know where these assumptions 
come from? Are they realistic and appropriate to the purpose of the simulation 
(e.g., a maximum heat gain scenario may be appropriate for assessing overheat-
ing risks, but not necessarily to size the building system)? Does the simulation 
user understand the impact of such assumptions on the simulation outputs?

If the answer to any of these questions is no, a sensitivity analysis (Section 
7.3.2) may be needed. Moreover, more refined models may have to be sought 
after (Section 7.3.3) for those aspects of OB that are present, uncertain, and 
influential.

7.4 � The Future of Building Performance Simulation and OB: 
Our Vision and How to Get There

As often the case, the advances in academia need to mature before they find 
their application in practice. In the field of OB modeling, we are now at a 
stage where ‘we know we should do better’ but we still have several barriers 
to overcome.

Our vision for the next few years can be summarized as follows:

•	 Building performance simulation including OB modeling is fully embed-
ded in the design workflow, building performance prediction is part of the 
decision-​making process that leads to a design proposal, and the perfor-
mance variations due to different potential behaviors are easily visualized.

•	 OB modeling is fully integrated into the building performance simula-
tion tools, with a database of models of varying complexity available to 
the simulation user (such as Deme et al., 2019; Ouf et al., 2018) depend-
ing on the investigated building, the design stage, and input uncertainty.

•	 OB models are progressively replaced by actual data in the operational 
phase of the building when the building performance simulation model 
is used as a digital twin.

In order to fulfill this vision, efforts should be directed toward improving 
workflows, models and tools, information, education, and communication. 
Regarding workflow improvements, research work should be devoted to 
developing clear, user-​friendly, and robust workflows and methodologies, 
so that OB modeling can become more intelligible for the design team and 
become part of an actual design tool, as opposed to being relegated to the 
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domain of specialists. Such workflows would ideally contain visualizations 
and be backed by building performance simulation engines. A change of 
culture in the way occupant (and especially OB) modeling is perceived by ar-
chitects and designers is essential to embark the clients onto people-​centric 
visions and feedback practices.

In terms of improving models and tools, for fit-​for-​purpose occupant be-
havior modeling to become state-​of-​the-​art, the available models and tools 
must support the design process in a seamless manner and without requir-
ing OB-​modeling expertise. In particular, efforts (Hong et al., 2015) must 
be directed toward making tools more architect-​friendly. Attia et al. (2009, 
2012) explored whether building performance simulation tools are viewed as 
architect-​friendly or not. While the authors did not specifically consider OB 
modeling, some of the findings may help map barriers to the wider imple-
mentation of OB modeling during the design stage. For example, Attia et al. 
found that for architects, the most important criterion concerning usability 
and graphical visualization of building performance simulation interfaces 
was the graphical representation of output results (Attia et  al., 2012). In 
terms of information management, the creation of comparative and multi-
ple alternatives is of paramount importance.

In another interview-​based study, Gaetani et  al. (2021) show that ar-
chitects want to have confidence in creating real sustainable designs and 
obtain a quick performance analysis that supports decision-​making. The 
interoperability of the performance model with 3D computer-​aided design 
tools (Revit, Rhino, Maya, SketchUp, 3DS Max, etc.) was seen as essential. 
These findings are in agreement with (Attia et al., 2012). When the authors 
asked architects to identify the most important features of a simulation tool, 
77 architects (31%) responded, ‘integration of intelligent design knowledge 
base to assist decision-​making’, followed by ‘friendliness of the interface 
concerning usability and information management and interoperability’ (70 
architects, or 28%).

Ultimately, behaviors are complex, and so tackling occupant modeling 
is necessarily an interdisciplinary, collaborative effort. Current mode-
ling practices still include high levels of uncertainty, and it is questionable 
whether comprehensive models (i.e., models that attempt to cover presence 
and all OB aspects at once) make sense. Validation and verification require 
a high-​resolution dataset, whose collection has traditionally been very time-​
consuming. The widespread adoption of smart sensors in buildings is a 
significant opportunity to create and share OB datasets and databases in 
an open-​source manner. Collaboration between researchers and industrial 
parties who have access to the data would ensure a fruitful use of such fun-
damental sources of knowledge. Guidelines for model implementation are 
emerging to guide the simulation user through the multitude of available 
models, such as the ASHRAE Global Occupant Database (Dong, 2021), 
which aims to provide a diverse set of data on occupant presence, movement, 
and behavioral activities for various building types in multiple countries.
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An additional area of improvement is regarding information, education, 
and communication. The benefits of appropriate OB modeling and their de-
sign implications are still considered unclear by design teams. Clear exam-
ples and real-​life case studies can help onboard designers, consultants, and 
their clients. O’Brien et al. (2017) illustrated that the second most impor-
tant reason not to include OB modeling as a standard practice in the design 
workflow was lack of understanding/education. Researchers and scientist 
should work collaboratively with architecture and design firms to clarify 
the potential influence of OB on building performance and the implications 
of appropriate people modeling for building design. Finally, the language of 
OB modeling may still be too dry and technical for some clients and prac-
titioners; better communication may direct clients toward people-​centric 
designs that include post-​occupancy evaluations as a standard practice. A 
business case is required for agile POEs that are fed back to the design team 
to help improve their models and designs.

7.5 � Closing Remarks

The modeling approach that is chosen to represent occupants and their be-
haviors can have an impact on the simulation results and, consequently, on 
the design choices that are based on those results. For this reason, it is worth 
for simulation users to investigate which modeling approach to adopt for 
the case at hand. In this chapter, we have advocated for the use of a fit-​for-​
purpose rationale, where the type of model and its complexity for each aspect 
of occupant behavior depends on the purpose and object of the simulation. 
Occupant behavior is still not fully integrated into the design workflow. Our 
hope is that the renewed interest in buildings’ actual operational performance 
will push the community toward a more appropriate consideration of oc-
cupant behavior modeling and its importance in achieving informed design 
decision-​making and accurate building energy use predictions. Researchers 
are already showing a commitment to improving workflows, models and 
tools, and, in particular, enhanced information, education, and communi-
cation concerning the role of human-​building interaction for building per-
formance. To further address this challenge, Chapter 8 will specifically focus 
on the integration of occupant models in simulation-​aided design methods.
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