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Abstract

Massive multiple-input multiple-output (MIMO) systems are a key technology for the
fifth-generation (5G) wireless networks. Therefore, evolving towards the 6th generation
(6G), MIMO and massive MIMO technology have to be upgraded to take advantage
of the new groundbreaking technologies in the field of artificial intelligence (AI). The
intersection between AI and wireless sensing is envisioned to be one of the key enablers
of future 6G. With this background and motivation, this thesis investigates three top-
ics: large intelligent surface (LIS), millimeter-wave (mmWave) Wi-Fi, and AI-enabled
resource allocation and beam tracking, all within the context of MIMO systems.

First, this thesis explores the LIS technology for the integration of wireless com-
munication and radio sensing. We establish that an LIS, acting as a radio image that
describes the propagation environment, can provide a high-resolution rendering of the
physical world. This enables the leverage of computer vision (CV) and machine learning
(ML) techniques to develop precise sensing methods, underpinning the potential of LIS-
based sensing in MIMO-based indoor industrial environments, among other applications
discussed throughout the thesis.

Second, this thesis explores mmWave Wi-Fi for indoor wireless sensing, laying the
groundwork for improved object localization. By proposing a novel dual-decoder neu-
ral dynamic learning framework, this work aims to address the unique challenges of
mmWave Wi-Fi localization, including the intermittency of beam training measure-
ments and the necessity to exploit underlying object dynamics. These advancements
align with the 6G vision of providing accurate and efficient localization solutions in
MIMO systems that can be directly integrated into the Wi-Fi standards.

Finally, this thesis explores the joint dynamic resource allocation and beam tracking
for mmWave MIMO systems, a critical task for achieving ultra-reliable low-latency com-
munication (URLLC). This part of the work leverages a proximal policy optimization
(PPO) framework to dynamically allocate resources and track multi-user beams, taking
into account the variable quality of wireless channels, thereby improving the overall
system performance and reducing tracking overhead.

In summary, the main outcome of the thesis is the proposal of radio sensing AI-based
methods to cover areas such as integrated sensing and communication, efficient local-
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ization methods, and dynamic resource allocation. This research provides an essential
foundation for future advancements in MIMO-based 6G systems.



Resumé

Massive multiple-input multiple-output (MIMO) systemer er en nøgleteknologi til femte
generation (5G) trådløse netværk. Derfor skal MIMO-teknologien opgraderes mod den
sjette generation (6G) for at drage fordel af de nye banebrydende teknologier inden for
artificial intelligence (AI). Krydsfeltet mellem AI og trådløs sensing forventes at være
en af de centrale katalysatorer for fremtidige 6G.

Med denne baggrund og motivation undersøger denne afhandling tre emner: large
intelligent surface (LIS), millimeter-wave (mmWave) Wi-Fi, og AI-aktiveret ressourceal-
lokering og beam tracking, alt sammen inden for rammerne af MIMO-systemer.

Først udforsker denne afhandling LIS-teknologien til integration af trådløs kommu-
nikation og radio sensing. Vi fastslår, at en LIS, der fungerer som et radiobillede,
der beskriver udbredelsesmiljøet, kan give en højopløselig gengivelse af den fysiske ver-
den. Dette muliggør anvendelsen af computer vision (CV) og machine learning (ML)
teknikker til at udvikle præcise sensoriske metoder, hvilket understøtter potentialet i
LIS-baseret sensing i MIMO-baserede indendørs industrielle miljøer, blandt andre an-
vendelser diskuteret i afhandlingen.

Dernæst udforsker denne afhandling mmWave Wi-Fi til indendørs trådløs sensing og
lægger grundlaget for forbedret objektlokalisering. Ved at foreslå en ny dual-decoder
neural dynamic learning framework sigter dette arbejde mod at tackle de unikke ud-
fordringer ved mmWave Wi-Fi lokalisering, herunder intermittensen af beam training
measurements og nødvendigheden af at udnytte underliggende object dynamics. Disse
fremskridt stemmer overens med 6G-visionen om at tilbyde nøjagtige og effektive lokalis-
eringssystemer i MIMO-systemer, der kan integreres direkte i Wi-Fi-standarderne.

Endelig udforsker denne afhandling den fælles dynamiske ressourceallokering og
beam tracking for mmWave MIMO-systemer, en kritisk opgave for at opnå ultra-reliable
low-latency communication (URLLC). Denne del af arbejdet anvender en ramme for
proximal policy optimization (PPO) til dynamisk at allokere ressourcer og spore multi-
user beams, idet man tager hensyn til den variable kvalitet of trådløse kanaler, og derved
forbedrer den samlede systemydelse og reducerer tracking overhead.

Sammenfattende er hovedresultatet af afhandlingen forslaget om radiosensoriske AI-
baserede metoder til at dække områder som integreret sensing og kommunikation, ef-
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fektive lokaliseringssystemer, og dynamisk ressourceallokering. Denne forskning giver
et væsentligt fundament for fremtidige fremskridt i MIMO-baserede 6G-systemer.



Contents

Curriculum Vitae iii

Abstract v

Resumé vii

Thesis Details xv

Acknowledgements xix

I Introduction 1

1 Introduction 3
1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Problem statement 7
1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2 Research questions (RQs) . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 Main assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Background and Contributions 13
1 State-of-the-art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.1 Radio map imaging . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2 Wi-Fi sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3 Resource allocation and sensing . . . . . . . . . . . . . . . . . . . 15

2 Grouping of the contribution areas . . . . . . . . . . . . . . . . . . . . . 16
3 Group 1: Radio map LIS sensing . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Holographic radio map . . . . . . . . . . . . . . . . . . . . . . . . 18

ix



x Contents

3.2 MF-based radio map . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Paper summaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 MMWave Wi-Fi sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1 Beam training protocol for mmWave Wi-Fi . . . . . . . . . . . . 23
4.2 Neural Ordinary Differential Equations . . . . . . . . . . . . . . 25
4.3 Paper summaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 Dynamic sensing and communication . . . . . . . . . . . . . . . . . . . . 28
5.1 Beam tracking and communications periodicity in 5G . . . . . . 28
5.2 Proximal policy optimization for dynamic resource allocation and

sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.3 Paper summaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Concluding remarks 33
1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3 Future work directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

II Papers 45

A A primer on large intelligent surface (LIS) for wireless sensing in an
industrial setting 47
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3 Holographic sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4 Machine learning for holographic sensing . . . . . . . . . . . . . . . . . . 52

4.1 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2 Dataset format . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5 Model validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.1 Simulated scenario . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2 Received power and noise modeling . . . . . . . . . . . . . . . . . 55
5.3 Noise averaging strategy . . . . . . . . . . . . . . . . . . . . . . . 56
5.4 Performance metrics . . . . . . . . . . . . . . . . . . . . . . . . . 57

6 Numerical results and Discussion . . . . . . . . . . . . . . . . . . . . . . 57
6.1 Impact of sampling and noise averaging . . . . . . . . . . . . . . 57
6.2 Impact of antenna spacing . . . . . . . . . . . . . . . . . . . . . . 58
6.3 LIS aperture comparisons . . . . . . . . . . . . . . . . . . . . . . 59

7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
8 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61



Contents xi

B Assessing wireless sensing potential with large intelligent surfaces 63
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2 Radio image-based LIS sensing . . . . . . . . . . . . . . . . . . . . . . . 67
3 System Model and Problem Formulation . . . . . . . . . . . . . . . . . . 68
4 Statistical Approach: Likelihood Ratio Test . . . . . . . . . . . . . . . . 69

4.1 Decision rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2 Estimator for g . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.3 Threshold design . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 Machine learning for radio image-based LIS sensing . . . . . . . . . . . . 72
5.1 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2 Local Outlier Factor . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.3 Dataset format . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6 Model validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.1 Simulated scenario . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.2 Received power and noise modeling . . . . . . . . . . . . . . . . . 76
6.3 Noise averaging strategy . . . . . . . . . . . . . . . . . . . . . . . 77
6.4 Stacked Denoising Autoencoder for image Super-Resolution . . . 78
6.5 Performance metrics . . . . . . . . . . . . . . . . . . . . . . . . . 79

7 Numerical results and Discussion . . . . . . . . . . . . . . . . . . . . . . 80
7.1 Impact of sampling and noise averaging . . . . . . . . . . . . . . 80
7.2 Impact of antenna spacing . . . . . . . . . . . . . . . . . . . . . . 81
7.3 LIS aperture comparisons . . . . . . . . . . . . . . . . . . . . . . 82
7.4 DAE for image Super-resolution evaluation . . . . . . . . . . . . 82
7.5 Route deviations evaluation . . . . . . . . . . . . . . . . . . . . . 84
7.6 Performance evaluation under changing environment . . . . . . . 85

8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
9 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

C Radio sensing with large intelligent surface for 6G 91
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
2 Problem Formulation and System Description . . . . . . . . . . . . . . . 94
3 LIS radio map generation . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4 Passive multi-human detection based on Large Intelligent Surface (LIS)

radio map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.1 Offline scanning phase . . . . . . . . . . . . . . . . . . . . . . . . 96
4.2 Detection phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5 Simulation, numerical results and discussion . . . . . . . . . . . . . . . . 99
5.1 Simulated scenario . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.2 Received signal and noise modeling . . . . . . . . . . . . . . . . . 99
5.3 Passive human detection . . . . . . . . . . . . . . . . . . . . . . . 100



xii Contents

5.4 Passive human detection distance evaluation . . . . . . . . . . . 101
6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

D User localization using RF sensing: A performance comparison be-
tween LIS and mmWave radars 105
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
2 System Models and Problem Formulation . . . . . . . . . . . . . . . . . 108

2.1 Large Intelligent Surface (LIS) System Model . . . . . . . . . . . 108
2.2 Radar System Model . . . . . . . . . . . . . . . . . . . . . . . . . 110
2.3 Main Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . 112

3 Implementation and Evaluation . . . . . . . . . . . . . . . . . . . . . . . 112
3.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
3.2 Radar Model Training Process . . . . . . . . . . . . . . . . . . . 113
3.3 LIS Radio Map Based Localization . . . . . . . . . . . . . . . . . 114
3.4 LIS Bounding Box Creation . . . . . . . . . . . . . . . . . . . . . 114
3.5 Evaluation Metric . . . . . . . . . . . . . . . . . . . . . . . . . . 114
3.6 Localization Comparison . . . . . . . . . . . . . . . . . . . . . . . 114

4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

E Floor map reconstruction through radio sensing and learning by a
large intelligent surface 119
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
2 System and Problem Formulation . . . . . . . . . . . . . . . . . . . . . . 122

2.1 Received signal and noise modeling . . . . . . . . . . . . . . . . . 123
3 Reconstruction learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

3.1 Least Squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
3.2 U-Net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
3.3 Conditional Generative Adversarial Network . . . . . . . . . . . 125

4 Dataset description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5 Numerical results and Discussion . . . . . . . . . . . . . . . . . . . . . . 127
6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

F OnRMap: An online radio mapping approach for large intelligent sur-
faces 131
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134



Contents xiii

2.1 Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
3 Radio Mapping: An Overview . . . . . . . . . . . . . . . . . . . . . . . . 135
4 OnRMap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.1 OnRMap: An Overview . . . . . . . . . . . . . . . . . . . . . . . 137
4.2 OnRMap: Detailed Description . . . . . . . . . . . . . . . . . . . 138

5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
7 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
8 Appendix: An Illustrative Indoor Scenario . . . . . . . . . . . . . . . . . 144
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

G mmWave Wi-Fi trajectory estimation with continuous-time neural dy-
namic learning 147
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
3 Dual-Decoder Neural Dynamic Learning . . . . . . . . . . . . . . . . . . 151

3.1 Waveform Temporal Information Encoding . . . . . . . . . . . . 152
3.2 Latent Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
3.3 Dual Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
3.4 Dual-Decoder Neural Dynamic Loss . . . . . . . . . . . . . . . . 153
3.5 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 153

4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
4.1 mmWave Wi-Fi Localization Dataset . . . . . . . . . . . . . . . . 154
4.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
4.3 Comparison to Baseline Methods . . . . . . . . . . . . . . . . . . 155

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
6 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

H Object Trajectory Estimation with Continuous-Time Neural Dynamic
Learning of Millimeter-Wave Wi-Fi 161
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
2 Problem Formulation and Existing Solutions . . . . . . . . . . . . . . . 166

2.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . 166
2.2 Existing Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 167

3 Dual-Decoder Neural Dynamic Learning . . . . . . . . . . . . . . . . . . 168
3.1 Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
3.2 Latent Dynamics Learning . . . . . . . . . . . . . . . . . . . . . 170
3.3 Dual Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
3.4 Customized Loss Function . . . . . . . . . . . . . . . . . . . . . . 173
3.5 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 174



xiv Contents

4 mmWave Wi-Fi Testbed and Data Collection . . . . . . . . . . . . . . . 175
5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

5.1 Model Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
5.2 Baseline Comparison . . . . . . . . . . . . . . . . . . . . . . . . . 177
5.3 Impact of Sequence Length . . . . . . . . . . . . . . . . . . . . . 179
5.4 Comparison between Regular and Dense Supervision . . . . . . . 180
5.5 Day-to-Day Generalization . . . . . . . . . . . . . . . . . . . . . 182
5.6 Extrapolation Performance . . . . . . . . . . . . . . . . . . . . . 183
5.7 Interpretation of Learned Latent Dynamics . . . . . . . . . . . . 184

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
7 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
8 Appendix: LSTM Update Step . . . . . . . . . . . . . . . . . . . . . . . 186
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

I Proximal policy optimization for integrated sensing and communica-
tion in mmWave systems 191
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
2 System Model and Problem Formulation . . . . . . . . . . . . . . . . . . 194

2.1 Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
2.2 Beam Codebook . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
2.3 Traffic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
2.4 Optimization Problem . . . . . . . . . . . . . . . . . . . . . . . . 195

3 PPO Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
4 PPO for joint beam alignment and resource allocation . . . . . . . . . . 197

4.1 State space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
4.2 Action space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
4.3 Reward signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

5 Simulation environment and evaluation description . . . . . . . . . . . . 198
6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
8 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201



Thesis Details

Thesis Title: Intelligent Sensing and Learning for Advanced
MIMO Communication Systems

Ph.D. Student: Cristian J. Vaca-Rubio
Supervisors: Prof. Petar Popovski, Aalborg University

Prof. Zheng-Hua Tan, Aalborg University

The main body of this thesis consists of the following papers.
[A] Cristian J Vaca-Rubio, Pablo Ramirez-Espinosa, Robin Jess Williams, Kimmo

Kansanen, Zheng-Hua Tan, Elisabeth de Carvalho, Petar Popovski, “A primer on
large intelligent surface (LIS) for wireless sensing in an industrial setting,” Inter-
national Conference on Cognitive Radio Oriented Wireless Networks, pp. 126–138,
2020.

[B] Cristian J Vaca-Rubio, Pablo Ramirez-Espinosa, Kimmo Kansanen, Zheng-Hua
Tan, Elisabeth De Carvalho, Petar Popovski, “Assessing wireless sensing poten-
tial with large intelligent surfaces,” IEEE Open Journal of the Communications
Society, vol.2, pp. 934–947, 2021.

[C] Cristian J Vaca-Rubio, Pablo Ramirez-Espinosa, Kimmo Kansanen, Zheng-Hua
Tan, Elisabeth de Carvalho, “Radio sensing with large intelligent surface for
6G,” IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 1-5, 2023.

[D] Cristian J Vaca-Rubio, Dariush Salami, Petar Popovski, Elisabeth de Carvalho,
Zheng-Hua Tan, Stephan Sigg, “User localization using RF sensing: A perfor-
mance comparison between LIS and mmWave radars,” IEEE European Signal
Processing Conference (EUSIPCO), pp. 1916–1920, 2022.

[E] Cristian J Vaca-Rubio, Roberto Pereira, Xavier Mestre, David Gregoratti, Zheng-
Hua Tan, Elisabeth de Carvalho, Petar Popovski, “Floor map reconstruction
through radio sensing and learning by a large intelligent surface,” IEEE Work-
shop on Machine Learning for Signal Processing (MLSP), pp. 1–6, 2022.

xv



xvi Thesis Details

[F] Herman L Santos, Victor Croisfelt, Cristian J Vaca-Rubio, Taufik Abrão, Petar
Popovski, “OnRMap: An online radio mapping approach for large intelligent sur-
faces,” IEEE International Conference on Communications (ICC), 2023.

[G] Cristian J Vaca-Rubio, Pu Wang, Toshiaki Koike-Akino, Ye Wang, Petros Boufounos,
Petar Popovski, “mmWave Wi-Fi trajectory estimation with continuous-time neu-
ral dynamic learning,” IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 1-5, 2023.

[H] Cristian J Vaca-Rubio, Pu Wang, Toshiaki Koike-Akino, Ye Wang, Petros Boufounos,
Petar Popovski, “Object trajectory estimation with continuous-time neural dy-
namic learning of millimeter-wave Wi-Fi,” IEEE Journal of Selected Topics in
Signal Processing (JSTSP), 2023. Submitted for publication

[I] Cristian J Vaca-Rubio, Carles Navarro Manchón, Ramoni Adeogun, Petar Popovski,
“Proximal policy optimization for integrated sensing and communication in mmWave
systems,” IEEE Wireless Communication Letters (WCL), 2023. Submitted for
publication

In addition to the main papers, the following publications have also been made.

[1] Anay Ajit Deshpande, Cristian J Vaca-Rubio, Salman Mohebi, Dariush Salami,
Elisabeth De Carvalho, Petar Popovski, Stephan Sigg, Michele Zorzi, Andrea
Zanella, “Energy-Efficient Design for RIS-assisted UAV communications in beyond-
5G Networks,” IEEE Mediterranean Communication and Computer Networking
Conference (MedComNet), pp. 158–165, 2022.

[2] Roberto Pereira, Anay Ajit Deshpande, Cristian J. Vaca-Rubio, Xavier Mestre,
Andrea Zanella, David Gregoratti, Elisabeth de Carvalho, Petar Popovski, “User
Clustering for Rate Splitting using Machine Learning,” IEEE European Signal
Processing Conference (EUSIPCO), pp. 722-726, 2022.

[3] Herman L dos Santos, Cristian J Vaca-Rubio, Radosław Kotaba, Yi Song, Taufik
Abrão, Petar Popovski, “EMF Exposure Mitigation in RIS-Assisted Multi-Beam
Communications,” IEEE Global Communications Conference (GLOBECOM), 2023.
Submitted for publication

[4] Pu Wang, Cristian J Vaca-Rubio, Toshiaki Koike-Akino, Ye Wang, Petros Boufounos,
“System and method for sensing a state of a device with continuous-time dynam-
ics,” 2023. US Patent Application

This thesis has been submitted for assessment in partial fulfillment of the PhD degree.
The thesis is based on the submitted or published scientific papers which are listed
above. Parts of the papers are used directly or indirectly in the extended summary of
the thesis. As part of the assessment, co-author statements have been made available to



Thesis Details xvii

the assessment committee and are also available at the Faculty. The thesis is not in its
present form acceptable for open publication but only in limited and closed circulation
as copyright may not be ensured.



xviii Thesis Details



Acknowledgements

First and foremost, I would like to express my honest gratitude to my supervisors,
Prof. Petar Popovski and Prof. Zheng-Hua Tan. Their unwavering support and expert
guidance were instrumental throughout my Ph.D. journey. Additionally, I am thankful
to Prof. Petar Popovski for welcoming me into his group, where I gained experiences
that went beyond the realm of research.

I would also like to extend my heartfelt thanks to Dr. Pablo Ramírez Espinosa,
whose support at various stages of my studies was invaluable, particularly during my
adaptation to what was initially a new field. Moreover, my appreciation extends to
Prof. Kimmo Kansanen and Prof. Elisabeth de Carvalho, who offered immense support
during the early stages of my Ph.D. journey.

I was fortunate enough during my Ph.D. to visit Mitsubishi Electric Research Lab-
oratories (MERL). There, I was introduced to a vibrant interdisciplinary environment
where I had the chance to engage with renowned researchers in the field and develop
new skills. I am grateful to the MERL group for their hospitality, the enlightening dis-
cussions, and the invaluable feedback that led to high-quality publication outputs, some
of which were even recognized at ICASSP2023. I would like to extend special thanks to
Dr. Pu (Perry) Wang, who supervised my visit and provided excellent training.

My heartfelt appreciation goes to Ana García Armada, Ioannis Krikidis, and Troels
B. Sørensen for their willingness to serve on my Ph.D. defense committee. I am also
grateful to all the members of the Connectivity group at Aalborg University for their
company during these years.

I cannot forget to thank the friends I made in Denmark - Victor, Igor, Isabel, and
Alessandro - who provided support throughout this process.

Finally, my deepest gratitude goes to my mother, father, and sister, whose constant
support has been my backbone throughout these years. Their encouragement made this
journey smoother and more bearable.

Cristian Jesús Vaca Rubio
Aalborg University, August 17, 2023

xix



xx Acknowledgements



Part I

Introduction

1





Chapter 1

Introduction

1 Background and Motivation
The field of wireless communication is the one undergoing a major breakthrough. The
enhancements in computing capabilities, the integration of artificial intelligence (AI),
the exploitation of new frequency bands and the emergence of new cellular technologies
are key enablers for this technological evolution. It once started by the development
of the fifth generation (5G) [1] of cellular networks, and it is now at the beginning of
a new phase with the emergence of the sixth generation (6G), which is promised to
transcend the paradigms of wireless communication [2]. In this thesis, we study some
of the cores of these advancements taking a look at massive multiple-input-multiple-
output (mMIMO), large intelligent surfaces (LIS), AI, wireless sensing, joint dynamic
beam tracking and resource allocation and millimeter-wave (mmWave) Wi-Fi sensing.

The 5G mobile network is the latest-implemented cellular technology, being the
United States (US) the country with the most cities supporting this technology in
2023 [3]. This generation made a significant step towards a fully connected world.
It was designed to support a vast amount of devices while offering enhanced broadband
capabilities and extremely reliable, low-latency communications [4]. The main purpose
of 5G is not only to lead to faster and more reliable connectivity, but also to provide
the necessary infrastructure to pave the way for the next era of digital innovation [5],
including the internet of things (IoT), autonomous vehicles, smart cities, and much
more yet to discover [6]. One of the main advantages of 5G is its significant increase
in data transmission, leading to speeds up to 100 times faster than the older fourth
generation (4G) [7]. These speeds allow brand-new changes, such as real-time stream-
ing in ultra-high-definition (UHD) and significantly faster download/upload speeds for
all type of traffics. What is more, 5G goals also entail extremely low latency [7]. This
means that 5G can support real-time control applications, such as remote surgeries in
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the healthcare sector, real-time control of industrial robots, and safer autonomous ve-
hicles. Besides, another major characteristic of 5G is being able to handle many more
devices simultaneously. This is necessary for the broad-scale implementation of IoT
devices [8], ranging from industrial automation to smart home systems. Furthermore,
5G networks were designed to be more flexible and efficient enabling a wide range of
new applications. This is in part due to the developments on mMIMO [7] technology,
where providing base stations (BS) with a large number of antennas enabled further
increase in spectral efficiency [9]. This was one of the biggest enablers of the three
main features of 5G [10, 11]. Also, mMIMO is more energy efficient [12]. Because of
the fact of using that many antennas, each of them transmits with a relatively low
amount of energy. This leads to an enhacement in energy efficiency in terms of transmit
power. However, the power required to drive the circuits is an important considera-
tion. Besides, mMIMO contributes to latency reduction thanks to its ability to serve
multiple users at the same time. This is a crucial feature for remote surgery, real-time
gaming, etc, where a minimal delay can have a significant impact on the performance.
In addition, mMIMO enhances the reliability of wireless networks, by enabling highly
directive beamforming techniques, which reduces interference and provides directivity
towards the targeted user. This leads to more reliable and robust transmissions, even
in challenging environments.

As we move towards the 6G era, it is anticipated an unprecedented transformation
of wireless networks. It will go beyond the bounds of being just designed as a com-
munication platform, but to become smart/intelligent systems that possess cognitive
abilities [13]. Although the exact specifications of 6G are still under development, it
is anticipated to offer data rates over 100 Gbps, latency levels below one millisecond,
and immense improvements in energy and spectral efficiency [13]. This forthcoming
generation is aiming to redefine our digital prospects, leading to a world that is even
more connected and smart.

Wireless sensing is envisioned to be one of the main enablers of 6G [14, 15]. It
can be defined as the usage of wireless signals to perceive, identify and understand the
environment. Fundamentally, it works by interpreting changes in the wireless signal’s
characteristics, i.e., signal strength, phase, frequency, etc [16]. These changes occur
because of the interaction of the signals with objects, people, movement in the environ-
ment, or changes in environmental conditions. In theory, wireless sensing devices can
detect these changes and use sophisticated algorithms to gain valuable insights of the
physical world. These days, we live in an era in which wireless signals are ubiquitous,
such as Wi-Fi, cellular or Bluetooth signals. This means that in many cases, wireless
sensing can be implemented using existing wireless infrastructure, and integrate this
functionality as an add-on seamlessly. This is one of the aspects we will address in the
thesis, specifically for mmWave Wi-Fi.

On a related note, LIS is regarded as a natural extension of mMIMO that designates
a large ideally continuous electromagnetic surface capable of transmitting and receiving
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radio waves [17, 18]. In practice, LIS is composed of a collection of closed-spaced tiny
antenna elements, embedded in a planar surface, with signal processing capabilities. The
potential of LIS in communications has received considerable attention [18, 19] in the
research community, along with its applications in high directive beamforming [20], and
positioning systems [21, 22]. However, in this thesis, we will leverage its radio image-
sensing capabilities and provide insights into its applicability in future 6G systems.

Simultaneously, the field of mmWave Wi-Fi sensing is emerging, leading to promising
advancements for indoor localization and object detection [23, 24]. By taking advantage
of high-frequency mmWave signals, these systems can provide high-resolution sensing
capabilities that will allow obtaining accurate environmental information and a detailed
understanding of the environment dynamics. This opens a vast range of opportunities,
from enhancing the accuracy of indoor navigation systems to developing state-of-the-art
joint communication and sensing systems easily integrated into daily lives.

Alongside the promises of the 6G new era, AI plays a vital role in these advance-
ments [25] that will take advantage of the huge amount of data generated in the networks.
It is promised to act as the binding glue that will hold all these advancements together.
By leveraging the usage of machine learning (ML) algorithms, AI can analyze complex
patterns, turning raw data into insightful features. This will transform the new genera-
tion into intelligent and adaptive systems. AI can be applied to many different aspects
of wireless communications, but in the context of this thesis, it is explored its capability
to exploit signal processing for wireless sensing. This enables a further understanding
of the physical world that can be later on used for new applications and communica-
tion performance enhancement. In summary, by following Huawei´s 6G vision [26] this
thesis focuses on the intersection between Native AI and Networked Sensing. More
specifically, this thesis covers AI-based sensing in three areas depicted in Figure 1.1.

As highlighted above, the intersection between wireless sensing and AI is one of the
key enablers for future 6G MIMO systems. Furthermore, in this thesis, we aim to pave
the way toward the first applications of beyond-massive MIMO sensing, through the
study and analysis of the feasibility of radio image-based LIS for this task. We believe its
well-demonstrated communication capabilities go beyond being a pure communication
system, and we intend to show the first steps for developing its sensing capabilities as a
potential device for integrated sensing and communication. Similarly, wireless sensing
is not limited to massive MIMO scenarios and we also study its feasibility in MIMO
commercial off-the-shelf devices based on mmWave Wi-Fi. This part of the research will
show the potential of AI in developing sensing solutions easily integrable into already
existing infrastructures and communication standards. We also explore the potential of
AI for joint beam tracking and resource allocation in mmWave MIMO systems, enabling
strategies to optimize both network performance and signaling overhead. Hence, we aim
to devise the necessary AI-based signal processing algorithms to make the first steps
into smart sensing systems. In short, we try to leverage the sensing capabilities of
LIS, tackle the difficulties of mmWave Wi-Fi sensing, and provide solutions for efficient
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Large Intelligent Surface
beyond massive MIMO

MIMO
mMwave
Wi-Fi

MIMO
mmWave
dynamic
systems

Sensing
Fig. 1.1: Intersection of areas covered in this thesis.

resource allocation and beam tracking with our methods. A detailed description of the
challenges and research questions is presented in the next chapter.

2 Structure of the thesis
The rest of the thesis is organized as follows: First, we formulate the problems and
research questions this thesis is targeting to answer. Second, we follow by providing
a review of the related literature for wireless sensing in different contexts as well as
AI applications to wireless sensing. Next, we categorize the contribution of the thesis
into different groups. For all the groups, we explain the specific contributions within
the wireless sensing paradigm and present a summary of our papers. We conclude the
thesis by discussing the main findings and outlining the directions for future research.



Chapter 2

Problem statement

This chapter identifies the advantages and challenges of LIS-based, mmWave Wi-Fi,
and dynamic sensing systems. Next, we address each of these challenges with a research
question. Then the proposed methodologies are introduced to perform the evaluation
along with their comparison methods in the literature.

1 Challenges
Before going into the challenges, we give a clear definition of an LIS. In the literature,
different terminologies can be used to define the same concept such as active intelli-
gent surface (AIS), active metasurface, smart radiating surface, and digital large-scale
antenna system (DLAS). In this thesis, we will use the term LIS. An LIS is a planar
surface composed of many antenna elements closely spaced. Ideally, it is a continuous
surface that can transmit and receive radio waves. Different to the majority of the works
of the literature related to LIS, in this thesis, we do not focus on making a theoretical
or asymptotic analysis but provide practical AI-based signal processing methods. What
is more, we place a greater emphasis on assessing the sensing capabilities of LIS rather
than focusing extensively on their communications, which have already been thoroughly
studied in the existing literature. For instance, we do not evaluate its high directive
beamforming capabilities, but instead, we aim to provide brand-new radio image-based
sensing methods that can be key enablers for future applications. To make sure of its
closeness to reality in modeling sensing behavior, for the LIS works we make use of ray
tracing to ensure a reliable/realistic multipath propagation environment.

As mentioned before, in this thesis we focus on LIS-based sensing, mmWave Wi-Fi
sensing, and dynamic joint resource allocation and beam tracking. The first focuses on
beyond massive MIMO with LIS and the two remaining on mmWave MIMO systems in
both experimental and theoretical setups. The main concerns over these three points
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can be grouped into the following:

1. Feasibility of radio-image based sensing methods:
LIS image-based sensing systems can be susceptible to interference from other
wireless devices operating in the same frequency band. Additionally, noise from
the environment or system components can affect the quality and reliability of the
sensed images. Advanced AI-empowered signal processing techniques are neces-
sary to address these challenges.

2. Intermittent sampling in mmWave Wi-Fi measurements:
Commercial mmWave MIMO Wi-Fi routers work under the necessity of a well-
established beam sweeping and communication protocol for the 60 GHz frequency.
Reusing ubiquitous already-deployed wireless communication signals can be bene-
ficial for integrating sensing functionalities seamlessly. Within this context, we are
interested in providing sensing-based localization methods. However, this presents
a main challenge: the intermittent sampling of beam training measurements due
to beam scanning overhead and contention over the wireless channel.

3. Efficient resource allocation for integrated sensing and communications:
High-frequency mmWave MIMO systems need to be highly adaptive due to the
fast varying channel conditions. We focus on 28 GHz. Usual protocols rely on
fixed periodicity to allocate slots for beam tracking and communication operations,
leading to highly inefficient and less reliable resource allocation policies.

2 Research questions (RQs)
RQ1: Can LIS provide a high-resolution image of the environment describing the
physical world? How can such a method be developed? What aspects of LIS are
beneficial for sensing performance? How accurate would a radio sensing method
be for different applications?

RQ2: What are the consequences of intermittently sampled beam training mea-
surements for indoor localization? Can this feature of mmWave Wi-Fi systems be
learned to provide highly-accurate indoor localization solutions?

RQ3: Is there a way to improve mmWave network performance by dynamic re-
source allocation and beam tracking? In other words, can we learn a dynamic
joint resource allocation and beam tracking policy to enhance the reliability and
efficiency of mmWave MIMO systems?

Now, we investigate each of the questions and provide a short description of our
approaches to tackle them.
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As previously stated, LIS has been proven to be a powerful communication device
in the literature. However, we focus on analyzing its sensing feasibility. We aim to
develop radio sensing methods that take into account the propagation environment
to describe the physical scenario. Nowadays, indoor scenarios are fully covered by
communication signals (Wi-Fi APs, cell phones, laptops, etc). These signals travel
all over the air impinging into obstacles, scatters, and people. These reflections will
be processed to develop radio-image-based sensing methods from the LIS viewpoint.
Concretely, we target to provide radio sensing methods that make use of already existing
communications signals to provide an image of the environment. For this purpose, we
analyze all the main features of LIS (antenna spacing, aperture size, amount of antennas)
to assess its impact on radio sensing performance. What is more, we propose mainly
two radio-image-based sensing methods that we denominate as (1) Holographic sensing,
and (2) Matched Filtered sensing. The former relies just on received signal power at
the LIS, while the latter relies on the variations of the signal phase all over the LIS. We
then leverage their feasibility in some applications using the proposed approaches. We
are providing a description of each of these methods in detail in Chapter 3.

Related to the second question, it is worth noting that the integration of sensing so-
lutions into already established communication protocols is a challenging task. In this
thesis, we aim to provide a method to further exploit mmWave Wi-Fi beam training
measurements for localization purposes. These measurements are usually irregular and
sparsed in time. This indeed adds difficulty to the problem, because using sequences-
based AI solutions like recurrent neural networks (RNN) will not result in the best
performance due to the assumption of regularly-sampled data. Also, using frame-based
solutions (meaning 1-to-1 mapping between a beam training measurement and a local-
ization coordinate) will not exploit the dynamics of beam measurements to assist the
localization task. Therefore, there is a need for a smarter framework that can tackle the
irregularity and sparsity of beam training measurement data. In this way, in this thesis,
we propose what we denominate as a dual-decoder neural dynamic learning framework.
More details are provided in Chapter 3.

Last but not least, fixed-slots allocation for beam tracking (sensing) and communica-
tions are not able to tackle the fast varying channels of mmWave systems. For example,
if a channel varies slowly due to the stationarity of the user or it varies faster due to
being a high-speed one (for instance a vehicle), fixed-slot allocations are not suitable and
it might lead to high packet error rates (PER) or low frame slots distribution efficiency.
Thus, providing a new policy design for dynamic beam tracking and resource allocation
is a key enabler in future mmWave systems. Chapter 3 provides more details of our
proposed method.
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3 Methodology
Throughout this thesis, different methodologies have been employed to address the pre-
sented research questions. All the methods developed are implemented using computer
simulations in the Python programming language.

For the LIS-based sensing, we relied on ray tracing software to perform the signal
propagation environment characteristics. In this way, we can ensure a reliable behavior
of the multipath components that later on we will use to perform sensing. Our perfor-
mance assessment is then based on channels generated by the multipath contributions
using the ray tracing software. The main sources of randomness in these simulations
are the additive Gaussian noise and the positions of the active transmitters in the sce-
nario, which act as the signal sources. As we are the first in the literature to tackle
radio-image-based sensing with LIS, we leverage the performance of these methods by
analyzing the impact of different parameters of LIS, as well as proposing new applica-
tions. Also, we compare the performance of this system in a localization task against
mmWave radars.

For the mmWave Wi-Fi sensing we make use of experimental data that was collected
during the internship at Mitsubishi Electric Research Laboratories (MERL). We created
a mmWave Wi-Fi testbed. This testbed uses off-the-shelf 802.11ad devices to gather
real-world mmWave Wi-Fi beam SNR data. For this, we used a pair of TP-Link AD7200
routers as an access point (AP) and a mobile user, which were housed on a stationary
post and a mobile TurtleBot, respectively. The TurtleBot is fitted with a 2D LiDAR
sensor and a wheel encoder, which helps to map the environment and place itself on a 2D
floorplan with an accuracy of under 1 cm. We used these 2D localization results as the
training labels and testing ground truth. The TP-Link AD7200 router used an analog
phased array of 32 antenna elements to sequentially scan over 36 predefined directional
beampatterns for each air time of a given responder. The data was collected by placing
the pair of TP-Link AD7200 routers in a corner conference room. The AP router
was kept stationary while the TurtleBot moved along a pre-set rectangular trajectory.
Over two days, we gathered two separate data sessions that lasted several hours each. In
order to compare the performance of our proposed method, we have implemented several
benchmark techniques used in the Wi-Fi sensing literature. Concretely, we implement a
support vector regressor (SVR), a fully connected neural network regressor (FCNNR),
and two variations of RNN to handle irregularly-sampled data: RNN ∆t and RNN
Exponential Decay.

Finally, for the dynamic beam tracking and resource allocation we develop an envi-
ronment simulated in Python. Here, the main sources of randomness are the velocity
and direction of the moving users, the additive Gaussian noise, and the complex fading.
In order to compare our proposed method, we implement a range of baselines based on
variations of Time Division Multiple Access (TDMA) that relate to the current imple-
mentation of fixed-slots allocation in the 5G standard.
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3.1 Main assumptions
In this subsection, we mention the main assumptions made throughout the thesis.

For the ray tracing simulations, we consider narrowband channels. We consider
synchronous TDD cases where there is channel reciprocity in uplink and downlink. For
the LIS-based system, we assume its aperture covers the entire dimension of a wall or a
ceiling. Besides, we assume an RF chain is connected to every antenna element. Also,
due to the dimensions and the proximity to the sensing targets, we assume a near-field
propagation condition.

For the mmWave Wi-Fi experimental setup, we do not make any specific assump-
tions, as we are using real-world data. During the data collection phase, we ensure
Line-of-Sight (LoS) between the APs.

Finally, for the dynamic sensing and communication mmWave MIMO system, we
assume a geometrical LoS channel model and a narrowband channel. We also assume a
codebook-based analog beamforming architecture with a single RF chain at the BS.
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Chapter 3

Background and Contributions

In this chapter, we first provide a review of the relevant state-of-the-art (SoA) in relation
to the specific areas covered in this thesis. We then categorize the areas of contribution
of the thesis into 3 groups related to every of the research questions we try to address.
Then we provide an explanation of the designed methods and their purpose to solve the
presented research questions and go beyond the challenges. We conclude each group’s
discussion by providing brief overviews of their respective published papers.

1 State-of-the-art
Wireless sensing strategies based on radio signals have been thoroughly studied in the
literature in different ways and applied to a wide range of applications. In the following
subsections, we provide some review of the SoA grouped around the three RQs we were
trying to address.

1.1 Radio map imaging
Radio map imaging can be described as the ability to use wireless signals to describe
the physical environment as an image. We provide a summary of the most relevant
literature below.

Initially, radio tomographic imaging (RTI) emerged as one of the earliest technologies
capable of creating environmental radio maps. RTI utilizes wireless signals to pinpoint
and track physical objects within a wireless sensor network (WSN), earning significant
attention due to its capacity for passive detection of users—without requiring them to act
as transmitters or receivers. [27]. Born from the principles of radar systems, RTI found
widespread application in diverse fields like indoor factories, surveillance, and through-
wall imaging [27, 28]. Essentially, RTI operates by measuring RF signals’ attenuation
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between paired nodes in a WSN [29], which illustrates the absorption of RF waves at
each location along their propagation path [30]. By analyzing these attenuations, RTI is
able to construct radio maps that effectively detect the presence and location of objects
within the WSN area [31].

To enhance the precision and robustness of RTI, numerous improvements have been
implemented in the field. For example, sparse Bayesian learning (SBL) was integrated
into the RTI process to augment reconstruction accuracy in scenarios featuring mul-
tipath fading [32]. Additionally, the deployment of RTI within factory environments
became increasingly attractive due to the rigorous challenges presented by severe mul-
tipath environments [28].

In parallel, radar-like methodologies experienced considerable advancements, leading
to the development of applications like gesture recognition [34], object classification [35],
and indoor positioning. These applications exploit radar signals to extract invaluable
information, offering reliable and robust results. Along the same line, radar-based si-
multaneous localization and mapping (SLAM) were developed. These systems combine
radar with other sensors like cameras and LiDAR to achieve superior performance across
all weather conditions [36]. High-resolution imaging utilizing virtual array processing
was also demonstrated with the usage of mmWave MIMO radar incorporating non-
uniform planar arrays for both transmitters and receivers [37].

Lastly, channel state information (CSI) radio map techniques [38] have gained recog-
nition in the literature. A pioneering framework for channel charting-aided localization
in mmWave networks has been introduced [39], which employs a convolutional autoen-
coder to estimate user localization based on multipath CSI. This framework, designed
around unsupervised learning, enables the construction of a radio-geometry map, show-
casing its applicability for beam prediction tasks [39].

1.2 Wi-Fi sensing
Wi-Fi sensing leverages the ubiquity of Wi-Fi signals to sense and interpret the physical
and environmental changes. Researchers have paid attention to this field, as it means we
can rely on already existing communication infrastructures for sensing applications. Wi-
Fi sensing has been applied to a wide range of problems such as intrusion detection [41],
activity recognition [42, 43], and vital signs or gesture recognition [44, 45]. However, we
will focus on highlighting the milestones in localization tasks.

Wi-Fi for localization and tracking has been a topic of extensive research. Predom-
inantly, Wi-Fi-based indoor localization methods are based on CSI from the physical
layer or Received Signal Strength Indicator (RSSI) measurements from the Medium Ac-
cess Control (MAC) layer for both fingerprinting and direct localization. Fingerprinting-
based localization consists of a procedure having two phases: offline (training) and online
(localization) phase. In the offline phase, a collection of measurements is collected to
generate a database of wireless features at known locations of the environment, followed
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by an online (localization) phase where the location is estimated by comparing it to the
previously gathered database. Its main advantage is the ability to handle complex en-
vironments. Conversely, direct localization methods typically use geometric techniques
such as triangulation to determine the location of the target based on certain measur-
able parameters. These parameters may include time of arrival (ToA), angle of arrival
(AoA), or RSSI. This leads to simple and straightforward implementations, however, its
accuracy highly depends on the measurement quality, which can be easily affected.

The first steps toward Wi-Fi indoor localization relied on RSSI in a direct localiza-
tion fashion [46–48]. Subsequently, classical ML solutions such as the k-nearest neighbor
(kNN) and SVM were applied to RSSI fingerprinting measurements [49–52]. However,
they were not really suitable and robust to the environment. More advanced ML so-
lutions were applied, for instance, deep learning [53, 54] to exploit more complex and
robust features for indoor localization. Furthermore, RNN-based RSSI sequence model-
ing was also taken into account [55, 56], proving more robust to environmental changes
by capturing temporal patterns and fluctuations in the RSSI caused by the multipath
effects.

As mentioned before, CSI fingerprinting is also a well-established approach. With
CSI, richer information can be obtained about the environment. This allows us to train
more advanced deep learning models to learn a mapping between CSI and location.
For example, the authors in [57, 58] used convolutional neural networks (CNN) to per-
form localization. Also, some methods were directly used to feed CSI and regress the
coordinate estimation [59, 60].

In line with current trends, there has been a significant effort to improve the ca-
pabilities of Wi-Fi signals. For instance, the introduction of IEEE 802.11bf standard
aims to enable high-resolution mmWave Wi-Fi sensing [61]. This advancement opens up
new possibilities for applications such as wireless LAN sensing and enhances the overall
performance and functionality of Wi-Fi networks. Reusing mid-grained mmWave train-
ing measurements have been explored recently in the literature [62–67]. This consists
in essentially using the signal-to-noise-ratio (SNR) values of the possible beam pat-
terns during the beam training phase in mmWave Wi-Fi for indoor localization. This
is of great interest due to its high applicability to current standards, as it is used in
already-implemented communication protocols.

1.3 Resource allocation and sensing
Sensing can be seen as well as the beam alignment/tracking procedure in mmWave
systems. Resource allocation and sensing are then critical for improving network per-
formance and efficiency.

Beam tracking and alignment are key features of mmWave technology. The fact of
using narrow beams requires a good alignment between transmitter and receiver, which
is difficult due to the mobility of the user and the high-frequencies involved. The beam



16 Chapter 3. Background and Contributions

tracking goal is to adapt continuously the beam direction to ensure an optimal align-
ment. Some techniques rely on Kalman filters [68] and particle filters [69] to mention a
few. Furthermore, reinforcement learning (RL) [70] methods have also been explored in
the literature. For instance, the works [71, 72] solve a beam alignment problem using
RL frameworks in different contexts.

On the other hand, the resource allocation goal is to optimize the distribution of
resources among users to maximize overall performance. This has been extensively ad-
dressed in the literature, especially in the context of 5G. The techniques used range from
classical methods like proportional fair scheduling [73], to sophisticated optimization
methods such as such as convex optimization [74], game theory [75], and reinforcement
learning [70]. Deep RL has also been applied to deal with the complexity and dynamic
nature of the resource allocation problem [76–79].

The integration of beam tracking and resource allocation tasks is an exciting and
challenging research direction. Joint optimization of these can significantly achieve an
improvement in performance [80]. In this way, more efficient policies can be designed
that take into account not only channel quality but also user data requirements. Some
recent works have proposed deep learning solutions to solve this joint optimization
problem [81, 82].

2 Grouping of the contribution areas
In order to group the contribution of the thesis, we start by discussing briefly the
aim of the thesis. As mentioned in Chapter 2, the focus of the thesis is to answer
3 research questions. These research questions concern providing robust radio map
sensing methods with LIS, tackling the challenges of intermittent sampling in beam
training measurements for mmWave Wi-Fi localization, and tackling dynamic resource
allocation and sensing in mmWave systems.

In this way, the objective is to come up with AI-based methods to tackle the afore-
mentioned challenges.

Furthermore, we classify the contributions of the thesis into 3 groups, related to the
type of problems we solved and the methods we exploit in each of them to answer the
RQs.

Fig. 3.1 shows a schematic of the areas and the papers within each of the categories.
The first group discusses the methods for radio map-based LIS sensing as well as eval-
uates different parameters of LIS for sensing performance, leverages some applications,
and provides a comparison with mmWave radars. In this way, the first block focuses on
RQ1. The second group focuses on RQ2 and provides a neural dynamic method to tackle
intermittent sampling for localization using beam training measurements. Finally, the
last group pays attention to the problem of joint resource allocation and sensing, trying
to address RQ3.
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Fig. 3.1: Schematic representation of the contribution areas and the papers in each of the groups.

In the next sections, we study each of the groups in detail providing an explanation
of the developed radio map methods, relating them to the SoA discussed in the previous
section, and finally providing a summary for each paper and how it tries to address their
corresponding RQ.

3 Group 1: Radio map LIS sensing
This group focuses on RQ1. Several radio map LIS methods are proposed to address
the existing challenges. The main idea is to re-utilize the signals already occurring in
the environment from emitter sources, and also take advantage of the reflections all over
the people and scatters in the room to provide radio maps that describe the physical
environment. We begin this part with a short description of the proposed radio map
methods. Next, we introduce the papers in this group along with a short summary,
where we highlight the role of AI using these radio maps.



18 Chapter 3. Background and Contributions

3.1 Holographic radio map
For this method, we analyze for the first time in the literature the ability of LIS to
create a radio map of the environment. Let us assume we have a transmitter entity in
an indoor room that is moving along a trajectory.

In order to create a holographic radio map, we assume that a LIS is compounded by
M antenna elements.

The complex baseband signal received at the LIS is then given by

y = hx + n, (3.1)

with x the transmitted (sensing) symbol, h ∈ CM×1 the channel vector to each antenna-
element, and n ∼ CNM (0, σ2IM ) the noise vector. Moreover, we consider a static
scenario where the channel h only depends on the user position, neglecting the impact
of time variations.

To minimize deployment expenses while capturing significant variations, we focus on
leveraging the received signal amplitude (or power) as a sensing metric. By adopting
this approach, we can potentially achieve more cost-effective and streamlined system
implementations, negating the need for intricate coherent detection techniques. In this
way, the radio map will be given by ∥y∥2.

Fig. 3.2: Hologprahic sensing for an indoor environment.
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Furthermore, this method works by measuring the superimposed multipath wireless
signals in the environment at the LIS viewpoint in every of its antenna elements. The
power of this received signal is exploited to generate a high-resolution image of the
propagation environment. Fundamentally, the LIS uses envelope detectors to measure
the CSI, not needing any kind of phase estimation. This method significantly simplifies
the nature of multipath propagation by converting the information into an image. The
holographic radio map method exhibits a dual advantage: i) the huge amount of elements
that conform the LIS provided highly accurate sensing, and ii) it enables the application
of CV and ML strategies to handle the resulting images.

To conclude, in comparison with the literature, this method eliminates the need of
having a calibration phase and there is no requirement to model scatterers for them
to be represented in the radio maps. This is a huge advantage to methods of radio
map reconstruction based on signal power as RTI (Section 1.1). Figure 3.2 shows an
exemplary scenario. The wireless signals are being propagated in the environment and
they are reflecting from the scatterers and people. Then, the wall LIS measures the
received signal power to compute the radio map. More details of these maps can be
found in papers A, and B.

3.2 MF-based radio map
Assume an indoor setting where we have Dc active devices randomly located within a
room carrying out their communication activities. For the sake of simplicity, we consider
that all Dc devices transmit at the same frequency, which could be representative of
Wi-Fi or cellular band transmissions.

To conduct the sensing, we place Large Intelligent Surface (LIS) made up of M
antenna elements installed across the ceiling, with its physical aperture covering the
entire area.

The combined complex baseband signal received at the LIS can be described as:

y =
Dc∑

d=1
hdxd + w, (3.2)

where xd denotes the transmitted (sensing) symbol from device d, hd ∈ CM×1 signifies
the channel vector from a particular position of device d to each antenna element,
and w ∼ CNM (0, σ2IM ) represents the noise vector. Please note that a narrowband
transmission is being considered here, thereby evading frequency selectivity effects.

Because of the large physical aperture of the used LIS in comparison with the dis-
tance existing between the transmitters and the LIS, we assume spherical way propa-
gation conditions. Due to this, the channel coefficient hs,i at the LIS i-th element is
proportional to:

hs,i ∝
1
di

e−j 2π
λ di , (3.3)
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Large Intelligent surface

Fig. 3.3: MF sensing for an indoor environment.

where di =
√

(xi − xd)2 + (yi − yd)2 + (zi − zd)2 denotes the distance between the ac-
tive device d w.r.t the i-th antenna, and λ is the wavelegth. In this way, we can compute
this operation along all the antenna elements from a designed virtual array, obtaining
hMF . This gives us the expected pattern along the LIS with respect to the phase vari-
ations. Finally, describing the LIS in a vectorized notation, we can derive an MF such
that:

yMF = hMF ∗ y, (3.4)
where ∗ denotes the convolution operator. To obtain a radio map, we just need to
compute the energy at the output of the MF procedure |yMF | ∈ RM×1. In this map, the
active transmitters will be easily detected while the scatters and people where signals
reflect from will act as virtual sources that will also be captured by the radio maps.
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Figure 3.3 shows an exemplary scenario. The LIS deployed in the ceiling measures the
received signal and performs the MF procedure to obtain a radio map of the environment
describing the physical phenomena. More details of these maps can be found in papers
C, D, E, and F.

3.3 Paper summaries
This group contains 6 papers:
Paper A: (published) Cristian J Vaca-Rubio, Pablo Ramirez-Espinosa, Robin Jess
Williams, Kimmo Kansanen, Zheng-Hua Tan, Elisabeth de Carvalho, Petar Popovski,
“A primer on large intelligent surface (LIS) for wireless sensing in an industrial setting,”
International Conference on Cognitive Radio Oriented Wireless Networks, pp. 126–138,
2020.
Paper B: (published) Cristian J Vaca-Rubio, Pablo Ramirez-Espinosa, Kimmo Kansa-
nen, Zheng-Hua Tan, Elisabeth De Carvalho, Petar Popovski, “Assessing wireless sens-
ing potential with large intelligent surfaces,” IEEE Open Journal of the Communications
Society, vol.2, pp. 934–947, 2021.
Paper C: (published) Cristian J Vaca-Rubio, Pablo Ramirez-Espinosa, Kimmo Kansa-
nen, Zheng-Hua Tan, Elisabeth de Carvalho, “Radio sensing with large intelligent sur-
face for 6G,” IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 1-5, 2023.
Paper D: (published) Cristian J Vaca-Rubio, Dariush Salami, Petar Popovski, Elisa-
beth de Carvalho, Zheng-Hua Tan, Stephan Sigg, “User localization using RF sensing:
A performance comparison between LIS and mmWave radars,” IEEE European Signal
Processing Conference (EUSIPCO), pp. 1916-1920, 2022.
Paper E: (published) Cristian J Vaca-Rubio, Roberto Pereira, Xavier Mestre, David
Gregoratti, Zheng-Hua Tan, Elisabeth de Carvalho, Petar Popovski, “Floor map re-
construction through radio sensing and learning by a large intelligent surface,” IEEE
Workshop on Machine Learning for Signal Processing (MLSP), pp. 1-6, 2022.
Paper F: (accepted) Herman L Santos, Victor Croisfelt, Cristian J Vaca-Rubio, Tau-
fik Abrão, Petar Popovski, “OnRMap: An online radio mapping approach for large
intelligent surfaces,” IEEE International Conference on Communications (ICC), 2023.

Paper A is the first one that devises the method of holographic sensing. It is the first
paper in the literature that uses LIS for radio mapping technology. In this work, we make
the first steps toward LIS radio sensing and propose an industrial problem to leverage
its applicability. We aim to detect the deviation of an industrial robot over a predefined
route using a LIS radio map. The robot transmits a constant sensing signal. AI arises
as a power solution to exploit radio sensing as an image, by exploiting computer vision
methods and SVM for the detection of robot deviation over the trajectory. Concretely,
from the CV literature, we reuse the pre-trained VGG19 network [83] as a backbone to
extract meaningful features from the radio map that will be later on fed to train our SVM
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solution. Here, we are showing the advantage of obtaining the propagation environment
as an image: we can exploit the advances in CV. We analyze the impact of different
features of LIS on the sensing performance such as signal sampling, antenna spacing,
and aperture. This comprehensive analysis underscores the transformative potential of
LIS in reshaping our understanding and utilization of radio-sensing technology.

Paper B tries to assess the potential of LIS for wireless sensing in an industrial
setting using a holographic radio map. We recover a similar scenario to paper A, and
we try to detect the deviation of an industrial robot over a set of predefined routes.
We derive a Generalized Likelihood Ratio Test (GLRT) to benchmark our AI solution.
This test, works under the assumption of noise statistics, while the proposed AI method
does not need any a priori assumptions. Again, we re-use the VGG19 as a feature
extractor. We then train an unsupervised algorithm Local-Outlier-Factor (LOF) to
perform the detection task. Besides, we propose an autoencoder (AE) for image-super
resolution inspired again in the CV literature. This exploits the ability to understand
the propagation environment as an image, augmenting the resolution of the radio maps
from lower antennas to higher, or worse SNR conditions to better. Here, to leverage the
sensing performance, we provide an extensive set of simulations by analyzing the impact
of LIS parameters. We focus on analyzing aspects such as antenna spacing, aperture,
number of antennas, as well as the generalization performance of the provided method.

Paper C is the first paper that proposes the MF-based radio map. In this work, we
assume the LIS is deployed in the ceiling. Then, by taking advantage of arbitrary signals
in the environment from active devices, we aim to detect and localize passive humans
(i.e., they are not carrying active transmitters) by using the aforementioned maps that
describe the environment. Here we make use of AI to perform the processing of the radio
maps that will be used for human detection and localization. First, k-means is used
to extract meaningful information from the map and separate the background of the
reflections (scatters and humans). Next after some image processing procedures that will
be discussed deeply in Paper C, we will end up adopting another CV technique called
component labeling (CL) that will allow us to detect and position the passive humans
in the scenario. In this paper, we leverage the effect of the number of active devices in
the room in the sensing performance in terms of passive humans localization error and
percentage of detection for 10 randomly located passive humans in the scenario, while
we show as well where the system breaks: we analyze how much distance is necessary
between humans to be correctly detected.

Paper D aims to demonstrate the versatile potential of LIS as a dual-function device,
capable of both sensing and communication, as compared to a purely sensing device such
as the millimeter-wave (mmWave) radar. This analysis is built upon the Matched Filter
(MF)-based radio maps introduced in Paper C. The study presents a comparative per-
formance evaluation between LIS and mmWave radar for the task of localizing a single
passive human. Although the results reveal that mmWave radar yields superior perfor-
mance, it is shown that the LIS system is capable of delivering competitive localization



4. MMWave Wi-Fi sensing 23

accuracy. This becomes particularly significant given the unique advantage of the LIS
system’s dual functionality. Unlike radars, which are limited to sensing operations, LIS
can concurrently handle sensing and communication tasks, thereby highlighting its inte-
grated operation within a singular device. This illustrates the promising potential and
versatility of LIS in real-world applications, countering the limitations of devices like
radar systems that are solely designed for sensing.

Paper E leverages the potential of an MF-based radio map with LIS for floor map
reconstruction. In this paper, we intend to show another application beyond localization.
With our method, we are able to use AI in the form of generative adversarial networks
(GANs) to translate our radio maps into floor plans. The proposed method is leveraged
against others in the literature such as U-Net and least squares linear reconstruction in
terms of accuracy of floor map reconstruction.

Paper F aims to provide an improvement of the MF-based radio map method pre-
sented in paper C. We will provide online processing of the radio maps using AI with
robust principal component analysis (RPCA) to process these maps. We then compare
the detection and localization performance against our previous proposed method.

In summary, all the papers of this group aim to tackle the challenges of RQ1. We
provide two radio maps method based on LIS to describe the environment and leverage
its applicability in a range of examples. Besides, we also compare its accuracy against
pure sensing systems such as mmWave radars. With this research, we aim to pave
the way towards the usage of LIS not only for communication but sensing, enabling
an integrated device that, exploited by AI, can be a key enabler in future 6G MIMO
systems.

4 MMWave Wi-Fi sensing
This group focuses on RQ 2. A method based on neural ordinary differential equations
(NODE) [84] is proposed to address the existing challenges. The main idea is to take
advantage of object dynamics for mmWave localization and model the evolution of the
hidden states in a continuous fashion. We begin this part with a short overview of
the beam training localization problem and follow by explaining the NODE theory to
further understand its advantages in this task. Next, we provide a summary of the
papers of this group to close this section.

4.1 Beam training protocol for mmWave Wi-Fi
The IEEE 802.11ad/ay standard is an improvement of 802.11ad for WLANs and provides
increased bandwidth and data rates by employing MIMO up to 60 GHz.

One of the most critical parts of such high frequencies is the beam training process.
Due to the high path-loss proper beam training must be conveyed in order to take
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Fig. 3.4: Beam training protocol for IEEE 802.11ad/ay.

advantage of this technology. This is mandatory in the 60 GHz band, where signals do
not reach far and are easily absorbed/blocked by obstacles.

The beam training procedure involves the AP and the receiver (client) working to-
gether to determine the best direction for the beam steerings of both devices. To do
that, the exchange of specific training frames is performed, defined by the standard.
Figure 3.4 shows an illustration of this procedure. In the 802.11ad/ay protocols, the
time is divided into fixed repeated intervals known as beacon intervals (BI). Its length
is defined by the network and can range from 100 ms to 800 ms. Within the BI, two
subframes occur: the beacon header interval (BHI) and the data transmission inter-
val (DTI). Besides during the BHI two tasks are also performed: beacon transmission
interval (BTI) and association beamforming training (A-BFT).

During the BTI, the AP sends out beacon frames in all directions to announce its
presence in the network and be detectable by the clients. These beacon frames are sent
over a predefined set of directions using beamforming. Then, the clients that receive
any of the beacon frames can use it to identify the presence of the AP. In a situation
where multiple users are simultaneously calculating their own received beam SNRs cor-
responding to each of the transmitted beam patterns, a quasi-omnidirectional receiving
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beam pattern is employed. This process supposes a significant overhead. Consequently,
it is desirable to limit the number of directional beam patterns within a beacon, lead-
ing to a condition of sparsely sampled beam measurement. We here spot one of the
challenges of using these measurements for localization: sparsity.

After the BTI, the A-BFT takes place. At this moment, the clients that have
identified the AP can request an association with it. They can start a beam training
procedure by sending a short sequence of sector sweep (SSW) frames to the AP. Multiple
responders randomly select a slot that could lead to contention over the wireless channel.
As a result, this can lead to beam SNR measurements to be irregular in time, which is
another of the challenges of using these features for localization.

Finally, the DTI is used for the exchange of data frames. These data frames are sent
using the beamforming directions that were determined during the BHI. We will not
use anything of these frames for localization.

4.2 Neural Ordinary Differential Equations
As mentioned throughout the thesis, using beam training measurements is a challenging
task due to the intermittency of its beam training measurements. Here, we will provide
some basis to further understand the framework proposed in papers G and H to tackle
RQ2.

Neural ODEs basics

First of all, we try to give an explanation of the continuous nature of Neural ODEs and
why it suits irregularly sampled data learning, as our target beam training measure-
ments. The hidden state of a Neural ODE evolves according to the following ordinary
differential equation:

dh(t)
dt

= f(h(t), t; θ), (3.5)

where h(t) represents the hidden state at any time t, f is a function parameterized
by θ (a neural network) which determines the rate of change of the hidden state, and t
indicates any point in continuous time. This is a significant change w.r.t traditional deep
learning models, which involve discrete transformations of hidden states corresponding
to the number of layers.

To solve this differential equation, we usually employ numerical ODE solvers. The
solver starts at the initial time t0 with the initial state h(t0) = h0 (usually set to the
input data), and it integrates the ODE to find the final state h(t1) at some later time
t1, which is considered as the output of the model.

In this way, solving the ODE provides us with a continuous path of the hidden states
h(t) for t0 ≤ t ≤ t1. We can query the state at any point in time within this interval,
giving us the ability to construct models with continuous depth. This enables a big
range of possibilities, as we are not restricted to the sampling of the data.
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In the context of irregularly sampled data, the timestamps of the data points are
spread unevenly over time. Standard models, such as RNNs, struggle with this kind
of data because they are designed to handle sequences with fixed intervals. On the
other hand, the flexibility provided by the continuous-time framework of Neural ODEs
allows the model to handle data at any arbitrary time point, making it a natural fit for
irregularly sampled data. We can use this principle to handle the measurements beam
SNR data.

ODE-RNN framework

We now show the benefits of both RNNs and Neural ODEs in a single model, resulting
in what is known as an ODE-RNN.

An ODE-RNN combines the strengths of RNNs and Neural ODEs. The model
architecture includes a recurrent unit that updates the hidden state whenever a new data
point arrives and an ODE solver that evolves this hidden state in between observations.

This hybrid architecture allows the model to deal with irregularly sampled data
more effectively. The RNN component ensures that the model can handle sequences and
can update the state with new information when it becomes available. Meanwhile, the
Neural ODE component ensures that the model can accurately and efficiently interpolate
the hidden state between observations, regardless of the gap between timestamps.

In mathematical terms, whenever a new data point x(ti) arrives at time ti, the RNN
updates the hidden state as

h(ti) = RNN(h(ti−1), x(ti); θRNN ), (3.6)

where θRNN are the parameters of the RNN, and ti−1 and ti are two consecutive times-
tamps. Then, in between observations, the hidden state evolves according to the Neural
ODE:

dh(t)
dt

= f(h(t), t; θODE), (3.7)

where θODE are the parameters of the Neural ODE.

Latent Neural ODEs

To further understand our papers G and H, we here provide an overview of a latent neural
ODE [85] framework. Inspired by latent-variable models based on Autoencoders [86],
it can be proposed a latent-variable time series model, where the generative model is
defined by an ODE. The latent state z0 would then determine the entire trajectory:

z0 ∼ p(z0) (3.8)

z0, z1, ..., zN = ODESolve(f(z0, (t0, t1, ..., tn); θODE) (3.9)
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Fig. 3.5: The latent ODE model with an ODE-RNN encoder [85].

each xi ∼ p(xi|zi) i = 0, 1, ..., N, (3.10)
where N represents the number of time steps in a sequence.

By following a variational autoencoder framework, it is required to estimate the
approximate posterior q(z0|{xi, ti}N

i=0). In this way, a variable length-sequence is en-
coded into a fixed dimensional embedding that is later on decoded into another variable
length-sequence.

An ODE-RNN network can be used as the encoder for a latent ODE model, resulting
then in a fully ODE-based sequence-to-sequence approach. Usually, the mean and the
standard deviation of the approximate posterior q(z0|{xi, ti}N

i=0) are a function of the
final hidden state of an ODE-RNN encoder:

q(z0|{xi, ti}N
i=0) = N (µz0 , σz0) where µz0 , σz0 = g(ODE−RNN({xi, ti}N

i=0; ϕODE),
(3.11)

where g is a simple multilayer perceptron (MLP) translating the final hidden state of
the ODE-RNN encoder into the mean and the variance of z0. Then this model is jointly
training the encoder and the decoder by maximizing the evidence lower bound (ELBO):

LELBO = Eq(z0|{xi,ti}N
i=0)[log p(x0, ..., xN )]−KL[q(z0|{xi, ti}N

i=0)||p(z0)], (3.12)

where KL denotes the Kullback–Leibler divergence term. The first terms correspond
to the reconstruction loss of the input sequence data and the second term acts as a
regularizer of the latent space. We can see the idea of this model seems suitable to
tackle irregularly-sampled data. More details of our proposed framework, which follows
a latent neural ODE principle, will be provided in their respective sections related to
the papers of these groups. Figure 3.5 illustrates the framework.

4.3 Paper summaries
There are 2 papers in this category:
Paper G: (published) Cristian J Vaca-Rubio, Pu Wang, Toshiaki Koike-Akino, Ye



28 Chapter 3. Background and Contributions

Wang, Petros Boufounos, Petar Popovski, “mmWave Wi-Fi trajectory estimation with
continuous-time neural dynamic learning,” IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pp. 1-5, 2023.
Paper H: (submitted) Cristian J Vaca-Rubio, Pu Wang, Toshiaki Koike-Akino, Ye
Wang, Petros Boufounos, Petar Popovski, “Object trajectory estimation with continuous-
time neural dynamic learning of millimeter-wave Wi-Fi,” IEEE Journal of Selected Top-
ics in Signal Processing (JSTSP), 2023.

Paper G proposes our first framework entitled dual decoder neural dynamic learning
(DDND). We aim to tackle the problem of intermittent beam training measurements by
providing a framework that handles the evolution of the beam SNRs data in a continuous
fashion for indoor localization over a trajectory. Besides, we want to exploit the object
dynamics of the moving target and we aim to learn this behavior with a neural ODE
in the latent space. In this paper, we provide the first steps to solve this problem
comparing them to frame-based methods in the literature as well as sequence regression
models based on RNN, which are not suitable to handle the irregular time samples. We
show exceptional improvement in performance against all the baseline methods.

Paper H further extends the dual decoder neural dynamic framework. We derive
instead a loss function from the original ELBO of VAE to perform the localization
task. Besides, we provide again a comparison against a range of baseline methods
outperforming them significantly in a trajectory estimation task. We also provide an
extensive set of simulations to perform an ablation study of the proposed framework and
show its immense flexibility in supervision during training that improves significantly
the performance. Besides, we show its generalization capabilities testing in different
days of data collection sessions.

In short, we provide a flexible and dynamic framework that can be easily integrated
into the communication standards of mmWave MIMO Wi-Fi, achieving the integration
of sensing and communication.

5 Dynamic sensing and communication
This group focuses on RQ3. We provide an overview of the 5G fixed slot vision for allo-
cating resources for data transmission and beam sweeping/tracking (sensing) in cellular
networks. We then provide a high-level idea description of our proposed method based
on proximal policy optimization, an RL framework. To finish, we close this section with
a summary of the paper within this group.

5.1 Beam tracking and communications periodicity in 5G
In 5G networks that operate in mmWave bands, the necessity of beam tracking (sens-
ing) and beamforming are essential to ensure a reliable connection between the user
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equipment (UE) and the BS. Due to these high frequencies, these connections can be
disrupted by physical objects or sudden changes in the environment.

Beam tracking is a mechanism to try to keep the quality of the beam to adapt the
best possible connection according to the changes in the environment. This means, it
entails continuously adjusting the direction of the formed used beam to follow the UE
and compensate for these changes.

With this in mind, the periodicity of beam tracking is a critical aspect. There is a
trade-off between ensuring a reliable connection (which requires high beam tracking fre-
quency) and reducing unnecessary signaling to perform more data transmission (which
requires less frequent beam tracking).

The periodicity is defined by the 3GPP standards. Typically, the standard defines
some fixed periodicity according to different scenarios and use cases. Once a periodicity
is set it is kept for the whole time. It might change if the network detects the situa-
tion changes, but this is not a dynamic solution but changing between a set of fixed
periodicity cases.

Furthermore, we aim to provide a smart AI-based solution that does dynamic allo-
cation of both: resources for communication and sensing (beam tracking).

5.2 Proximal policy optimization for dynamic resource alloca-
tion and sensing

As mentioned before and trying to answer RQ3, we aim to provide a dynamic solution
for sensing and communications.

On the SoA we highlighted how RL solutions were useful to solve the problems of
beam alignment/tracking and resource allocation when framing the requirements and
tradeoff as an optimization problem. Following this line of thought, in this thesis,
we propose a solution based on PPO. In paper I a more in-depth description of this
framework will be provided, while here we will provide a high-level overview of the
problem to solve.

We assume time-slotted resources and that we can serve one user at a time. Our
PPO algorithm can just take one action: sensing (beam tracking for a user), scheduling
downlink traffic, or scheduling uplink traffic. In this way, this can be modeled as a
markov decision process (MDP) illustrated in Figure 3.6.

Furthermore, our simplistic representation of the scenario tries to serve multiple users
in a completely dynamic fashion, i.e., no fixed periodicity for beam tracking operations
but adaptive. In short, Figure 3.7 shows an exemplary representation of a simplified
frame structure. The slots are allocated either for sensing, uplink or downlink for a
specific user.

To give a better understanding of the high-level functioning of the PPO procedure,
we can take a look at Figure 3.8. Our method is implemented as an Actor-Critic that
interacts with the environment gathering a set of experience tuples that are stored in
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Fig. 3.6: MDP dynamic sensing and communications.

Fig. 3.7: MDP dynamic sensing and communications.

the memory. After that, both networks are trained to maximize the rewards. A more
detailed explanation is given in paper I.

5.3 Paper summaries
This group has only one paper:
Paper I: (submitted) Cristian J Vaca-Rubio, Carles Navarro Manchón, Ramoni Adeo-
gun, Petar Popovski, “Proximal policy optimization for integrated sensing and commu-
nication in mmWave systems,” IEEE Wireless Communication Letters (WCL), 2023.

Paper I proposes a method based on PPO to perform dynamic allocation slots for
both sensing and communications with the goal of minimizing the total average packet
error rate (PER). We frame the problem in a vehicular network context in which re-
liability and slot allocation efficiency are key aspects to ensure a safe operation. Our
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Fig. 3.8: MDP dynamic sensing and communications.

approach is compared against a range of baselines that mimics 5G fixed periodicity
structure for different values. The results show a PER reduction with respect to the
baselines as well as a significant beam tracking reduction and consequent slot allocation
efficiency while exhibiting great generalization performance.
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Chapter 4

Concluding remarks

This chapter is meant to wrap up the main contributions of the thesis by revising
the key benefits of the methods and ideas employed and introduced throughout this
work. Besides, a discussion about different future applications and research directions
is provided.

1 Conclusions
In this section, we start with a general review of the findings of the thesis. Next, we
revise the research questions asked at the beginning to show our studies answer and/or
pave the initial ways towards solving them.

This thesis focuses on mainly providing AI-empowered methods for MIMO and be-
yond massive MIMO systems in a sensing context. It shows that in terms of LIS sensing,
we pay the way and shed some light on the ability of beyond massive MIMO systems
to perform sensing through radio map reconstruction. Besides, the thesis deviates from
the idea that sequence-based solutions for mmWave indoor localization based on RNN
are useful for new mmWave Wi-Fi standards integrated sensing and communications.
Finally, the thesis also disagrees with the fixed periodicity of 5G beam tracking stan-
dards. In this way, for these two claims, this thesis studies and provides some methods
to combat the challenges.

With the goal of answering RQ1, the proposed radio map methods using LIS use
signal processing techniques to create radio maps of the environment as images. This
thesis is the first in the literature to make the first steps into this approach and provides
some insights about how to improve radio mapping, through extensive validation and
simulation of LIS parameters and their impact on performance. It also makes use of CV
and AI methods to take advantage of these radio images. This work also sheds some light
on possible applications enabled by these methods and leverages its performance against

33



34 Chapter 4. Concluding remarks

pure sensing systems such as mmWave radars. In short, in response to RQ1, this thesis
provides brand-new methods, analyzes parameters to understand its potential, leverages
some applications, and compares against other sensing systems.

With respect to RQ2, our studies first analyze the current mmWave Wi-Fi standards
and then make use of the already-established communication protocols in favor of in-
tegrating sensing into it seamlessly. Works in the literature were focused on tackling
this indoor localization problem by developing either frame-based or sequenced-based
RNN solutions to perform indoor localization based on beam training measurements.
However, this thesis is looking into a more fundamental way of modeling machine learn-
ing solutions to address the issue of irregularity and sparsity measurements for Wi-Fi
data. After analyzing all these aspects, the thesis aims to utilize this information to
provide a continuous-time solution that overcomes such challenges. Besides, the results
of this work, are experimentally evaluated in a real testbed, which guarantees its direct
applicability to the real world. As a related note of these promising results, a patent
was applied for the proposed method in this thesis.

In response to RQ3, our method can provide dynamic scheduling and communication
and sensing to be more reliable, and efficient in mmWave MIMO systems. One of the
main problems of fixed periodicity for beam tracking is its lack of immediate response
to the changes in the network as well as excessive signaling. In this thesis, we provide
a more adaptable and efficient solution.

Up to now, we have mentioned about all the advantages of the methods provided
in this thesis. Now here we mention some disadvantages of these methods that can be
seen as motivation to pursue further work.

One of the main problems of the LIS sensing methods is the fact that the arrays
are huge in aperture, and the amount of antenna elements, and assuming one RF chain
per antenna makes them difficult to manufacture right now. Besides, some physical
phenomena degradation as mutual coupling should be taken into account. One way
to compensate for these problems is composing the LIS by small sub-patches of arrays
that are more feasible. Related to the RF chain and hybrid architecture could be also
analyzed.

For the mmWave Wi-Fi localization framework provided the main disadvantage
would be its heavy computational expense during training. However, this could be
addressed by leveraging simpler architectures that still capture the dynamics of the
motion in the latent space and provide good performance.

For the dynamic sensing and communication method scenarios with a higher number
of users should be leveraged to assess its scalability performance. A way to tackle this
drawback is to go into solutions that exploit multi-agent reinforcement learning.
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2 Applications
In this section, we try to give some application examples of the methods developed
throughout the thesis for current and future MIMO 6G systems. The first obvious ap-
plication would be leveraging the joint communication and sensing capabilities of LIS
by extracting information from radio environmental maps. Besides, 3D scene recon-
struction could also be an interesting application for LIS-based systems. With regards
to mmWave MIMO Wi-Fi, proper integration into the communication standard is the
most direct application of the method, enabling new advantages that could be even used
to enhance the beam training procedure assisted by localization prediction. Finally, for
the dynamic sensing and communication a direct application would be in the 5G uses
cases, trying to unify a method that consistently and smartly adapts to the network
conditions.

3 Future work directions
There are many ways to extend the work done in the thesis:

With respect to LIS, advanced modeling and simulation can be developed. Includ-
ing more physical phenomena like scattering, polarization and mutual coupling would
offer a deeper understanding of LIS’ behavior. Research into quantum materials as an
alternative for excessive RF chains might also open new horizons that can be exploited
to further develop radio map sensing techniques. Further research on interoperability
and standardization might also be addressed in the future. Research on how LIS can be
integrated into existing and emerging standards, ensuring compatibility accross differ-
ent devices and technologies. Finally, providing and designing a protocol for integrated
sensing and communication control message exchange is of major interest to fully exploit
its integrated sensing and communication capabilities.

For mmWave Wi-Fi it can be extended to multimodal sensing applications. The
applications can be extended beyond to human detection, tracking and environmental
sensing. Besides it can be used as an integration with other sensing modalities. The
collaborative use of mmWave with other sensors as optical, thermal or acoustic can
lead to an enhance in reliability and accuracy. What is more the localization features
explored in this thesis could be further expanded to impact on communication perfor-
mance, leading to improve traffic routing, congestion management and so on. Another
interesting direction could be exploiting the framework to leverage its performance over
different rooms and essentially new scenarios not seen during training.

For dynamic sensing and communication, a possible and interesting research direc-
tion is the development of a learned protocol design. Developing an AI solution that can
learn the interaction between BSs and UEs to coordinate all these scheduling procedures
and associated signaling could be a really interesting topic that could go beyond current
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by-hand-developed protocols. Also, cross-layer design can be studied across multiple
layers of the networking stack.
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Abstract
One of the beyond-5G developments that is often highlighted is the integration of wireless
communication and radio sensing. This paper addresses the potential of communication-
sensing integration of Large Intelligent Surfaces (LIS) in an exemplary Industry 4.0
scenario. Besides the potential for high throughput and efficient multiplexing of wireless
links, an LIS can offer a high-resolution rendering of the propagation environment. This
is because, in an indoor setting, it can be placed in proximity to the sensed phenomena,
while the high resolution is offered by densely spaced tiny antennas deployed over a large
area. By treating an LIS as a radio image of the environment, we develop sensing
techniques that leverage the usage of computer vision combined with machine learning.
We test these methods for a scenario where we need to detect whether an industrial robot
deviates from a predefined route. The results show that the LIS-based sensing offers high
precision and has a high application potential in indoor industrial environments.

1 Introduction
Massive Multiple-input Multiple-output (MIMO) is a fundamental technology in the 5th
generation of wireless networks (5G), with the addition of a large number of antennas
per base station as its key feature [1]. Looking towards post-5G, researchers are defin-
ing a new generation of base stations that are equipped with an even larger number of
antennas, giving raise to the concept of LIS. Formally, an LIS designates a large contin-
uous electromagnetic surface able to transmit and receive radio waves [2], which can be
easily integrated into the propagation environment, e.g., placed on walls. In practice, an
LIS is composed of a collection of closely spaced tiny antenna elements. Whilst the per-
formance of LIS in communications has received considerably attention recently [2–5],
the potential of these devices could go beyond communications applications, e.g., envi-
ronment sensing. Indeed, such large surfaces contain many antennas that can be used
as sensors of the environment based on the Channel State Information (CSI).

Sensing strategies based on electromagnetic signals have been thoroughly addressed
in the literature in different ways, and applied to a wide range of applications. For
instance, in [6], a real-time fall detection system is proposed through the analysis of the
communication signals produced by active users, whilst the authors in [7] use Doppler
shifts for gesture recognition. Radar-like sensing solutions are also available for user
tracking [8] and real-time breath monitoring [9], as well as sensing methods based on
radio tomographic images [10, 11]. Interestingly, whilst some of these techniques resort
solely on the amplitude (equivalently, power) of the receive signals [8, 11], in those cases
where sensing small scale variations is needed, the full CSI (i.e., amplitude and phase
of the impinging signals) is required [9, 10].

On a related note, Machine Learning (ML) based approaches are gaining popularity
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in the context of massive MIMO systems, providing suitable solutions to optimization
problems [12–15]. Due to the even larger dimensions of the system in extra-large ar-
rays, deep learning may play a key role in exploiting complex patterns of information
dependency between the transmitted signals.

The popularization of LIS as a natural next step from massive MIMO gives rise to
larger arrays and more degrees of freedom, providing huge amounts of data which can
feed ML algorithms. Hence, deep learning arises as a potential solution to exploit the
performance of LIS.

In this work, we aim to pave the way to the combined use of both deep learning algo-
rithms and the aforementioned large surfaces, exploring, for first time in the literature,
the potential of such a joint solution to sense the propagation environment. Specifically,
the contribution of this work is twofold:

• We propose an image-based sensing technique based on the received signal power
at each antenna element of an LIS. These power samples are processed to generate
a high resolution image of the propagation environment that can be used to feed
computer vision algorithms to sense large-scale events.

• A computer vision algorithm, based on transfer learning and support vector ma-
chine (SVM), is defined to process the radio images generated by the LIS in order
to detect anomalies over a predefined robot route.

The performance of the proposed solution is tested in an indoor industrial scenario,
where the impact of the array aperture, sampling period and the inter-antenna distance
is thoroughly evaluated. We show that both larger apertures and smaller separations
between the LIS elements render higher resolution images, improving the performance
of the system.

2 Problem formulation
We consider an industrial scenario where a robot is following a fixed route, and assume
that, due to arbitrary reasons, it might deviate from the predefined route and follow
an alternative (undesired) trajectory. Hence, our goal is, based on the sensing signal
transmitted by the target device, being able to detect whether the robot is following
the correct route or not.

In order to perform the anomalous route detection, we assume that an LIS (i.e., a
large array of M closely spaced antennas), is placed in the scenario. Therefore, the sens-
ing problem reduces to determine, from the received signal at each of the LIS elements,
if the transmission has been made from a point at the desired route, denoted by pc ∈ R3,
or from an anomalous one, denoted by pa ∈ R3. For the sake of simplicity in a real
system implementation, and because we are interested in sensing large scale variations,
we resort to the received signal amplitude (equivalently, power). This assumption may
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lead to simpler system implementations, avoiding the necessity of performing coherent
detection.

A classical approach for the aforementioned problem would be performing a hypoth-
esis test based on the received power signal vector. To that end, consider the received
complex signal from either pc or pa to be

yk = hkx + nk, k = {c, a}, (A.1)

with x the transmitted (sensing) symbol, hk ∈ CM×1 the channel vector from each point
and nk ∼ CNM (0, σ2I) the noise vector. Assume, without loss of generality, that x = 1.
Hence, the received power vector is given by

wk =
(
∥y1,k∥2, . . . , ∥yM,k∥2)T

, (A.2)

where yi,k for i = 1, . . . , M are the elements of yk. The hypothesis test is therefore
formulated as

fwc(w|pc)
fwa

(w|pa)
pc

≷
pa

Pa

Pc
, (A.3)

where fwk
(·) for k = {c, a} is the joint probability function of the received signal from

each point, w is the observation vector, and Pa and Pc denote the probability of receiving
a signal from pa and pc, respectively. To obtain an optimal estimator, we would need to
characterize the joint distribution of the received vector over all the possible anomolaous
points, which implies knowing all the possible states of the channels for each path. Also,
even in the most simple case, i.e., assuming a pure Line of Sight (LoS) propagation, we
would still be unable to distinguish if the two points are in different trajectories or at
distinct positions of the same route. Moreover, the a priori probabilities Pa and Pc are
needed, which is a non-trivial task.

In a realistic environment, the complexity of the propagation paths is considerable,
and the theoretical analysis becomes cumbersome and site-dependent. Hence, in order
to gain insight into how the propagation paths between different positions translate into
differences in the received signals, we have to resort on machine learning algorithms.
This, together with the use of LIS, can provide the necessary information about the
propagation environment in order to perform the anomalous route detection.

3 Holographic sensing
A hologram is a recorded interference pattern as a result of constructive and destructive
combinations of the superimposed light-wavefronts, i.e., a photographic recording of a
light field [16]. In a wireless context, an LIS could be described as a structure which uses
electromagnetic signals impinging in a determined scatterer in order to obtain a profile
of the environment. That is, we can use the signal power received at each of the multiple
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(a) LoS, noiseless. (b) Real scenario, noiseless.

Fig. A.1: Holographic images for LOS and Industry scenarios.

elements of the LIS to obtain a high resolution image of the propagation environment.
Using this approach, the complexity of the multipath propagation is reduced to using
information represented as an image. This provides a twofold benefit: i) the massive
number of elements that composed the LIS leads to an accurate environment sensing
(i.e. high resolution image), and ii) it allows the use of computer vision algorithms and
image processing techniques to deal with the resulting images.

As an illustrative example, Fig. A.1 shows the holographic images obtained from
different propagation environments (x and y correspond to the physical dimension of the
LIS). Specifically, Figs. A.1a correspond to a LoS propagation (no scatterers), whilst
Fig. A.1b is obtained from an industrial scenario with a rich scattering. Note that, in
the case in which different scatterers are placed, their position and shapes are captured
by the LIS and represented in the image. To the best of the authors’ knowledge, this is
the first time that imaged-based sensing is proposed in the literature.

4 Machine learning for holographic sensing

4.1 Model description
We here propose the use of a machine learning model to perform the anomalous route
classification task, based on the holographic images obtained at the LIS. In our consid-
ered problem, the training data is obtained by sampling the received power at certain
temporal instants while the target device is moving along the route. In order to reduce
both training time and scanning periods, we resort on transfer learning [17]. Thus, a
small dataset can be used, improving the flexibility of the system in real deployments.
Among the available strategies for this matter, we will use feature representation.
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Fig. A.2: Proposed model. White and blue blocks refer to VGG19 re-used original architecture and
to the additional blocks for our task, respectively.

One of the main requirements for transfer learning is the presence of models that
perform well on already defined tasks. These models are usually shared in the form of a
large number of parameters/weights the model achieved while being trained to a stable
state [18]. The famous deep learning Python library, Keras [19], provides an easy way
to reuse some of these popular models. We propose the use of a SVM binary classifier,
which has been proved to perform correctly when using a large number of features [20].
In our case, we choose the VGG19 architecture [21].

The model is detailed in Fig. A.2. In order to perform the feature extraction, we
remove the last fully connected layer (FC) that performs the classification for the pur-
pose of VGG19 and modify it for our specific classification task (anomaly/not anomaly
in robot’s route). We note that the architecture has been frozen for our case, i.e., the
weights and biases in VGG19 are fixed and re-used to generate the features to feed
the SVM classifier while the regularization parameter C is tuned to prevent overfitting
along the training process.

4.2 Dataset format
The dataset is obtained by sampling the received signal power at each element of the LIS
while the robot moves along the trajectories. Formally, we can define the trajectories
as the set of points in the space Pt ∈ RNp×3 being Np the total number of points in the
route. Let assume the system is able to obtain Ns samples at each channel coherence
interval ∀ pj ∈ Pt, being pj for j = 1, . . . , Np an arbitrary point of the route. Hence,
the dataset is conformed by T = Np × Ns samples (monocromatic holographic image
snapshots of received power). Each sample is a gray-scale image which is obtained by
mapping the received power into the range of [0, 255]. To that end, we apply min-max
feature scaling, in which the value of each pixel mi,j for i = 1, . . . , M and j = 1, . . . , Np

is obtained as
mi,j =

⌈
mmin + (wi,j − wmin,j)(mmax −mmin)

wmax,j − wmin,j

⌉
, (A.4)

where wi,j are the elements of wj in (A.2), i.e. wi,j = ∥hi,j + ni,j∥2, mmax = 255 and
mmin = 0, and

wmax,j = max
{i=1,...,M}

wi,j , wmin,j = min
{i=1,...,M}

wi,j (A.5)

are the maximum and minimum received power value from a point pj along the surface.
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(a) Use case scenario.

LIS

40 cm
10 cm

Correct route
Anomalous route

(b) Correct robot route (blue) vs anomalous
routes (orange).

Fig. A.3: Simulated scenario.

The input structure supported by VGG19 is a RGB image of nc = 3 channels. Due
to our monocromatic measurements, our original gray-scale input structure is a one-
channel image. To solve this problem, we expand the values by copying them into a
nc = 3 channels input structure.

Once the feature extraction is performed, the output is nc = 512 channels of size
nw = 7 and nh = 7 pixels. Since SVM works with vectors, the data is reshaped into
an input feature vector formed by 7× 7× 512 = 25088 features, meaning our dataset is
{x(i), y(i)}T

i=1, where x(i) is the i-th n-dimensional training input features vector (being
n = 25088), x

(i)
j is the value of the j-th feature, and y(i) is the corresponding desired

output label vector.

5 Model validation
In order to validate the proposed method, we carried out an extensive set of simula-
tions to analyze the performance of the system. To properly obtain the received power
values, we use a ray tracing software, therefore capturing the effects of the multipath
propagation in a reliable way. Specifically, we consider Altair Feko Winprop [22].
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5.1 Simulated scenario
The baseline set-up is described in Fig. A.3a, a small size industrial scenario of size
484 m2. We address the detection of the deviation of the target robot (highlighted in
red color) when following a fixed route parallel to the bottom wall, in which the LIS
is deployed. The distance between the LIS and the desired trajectory is 13.9 m. For
the anomalous routes, a separation of 50/10 cm have been simulated to analyze the
performance of the system when ∆d >> λ and ∆d ≈ λ respectively, as detailed in Fig.
A.3b.

Table A.1: Parameters

Frequency
(GHz)

Tx
Power
(dBm)

Nray
paths

Antenna
type

Antenna
Spacing (cm)

Propagation
model

3.5 20 20 Omni λ
2 /λ/2λ Free Space

For these routes, we simulate in the ray tracing software Np points, which corre-
sponds to different positions of the robot in both the correct and anomalous routes.
Then, Ns holographic image snapshots of the measurements are taken at every pj ,
j = 1, . . . , Np. The most relevant parameters used for simulation are summarized in
Table A.1.

In our simulations, we set Np = 367 and Ns = 10, thus the dataset is composed of
T = Np×Ns = 3670 radio propagation snapshots containing images of both anomalous
and non-anomalous situations, as described in Section 4.2. The dataset is split into
a 80% training set and 20% for the test set. During the training phase, the obtained
optimum regularization value is C = 0.001, which was identified by using a 5-fold cross-
validation strategy [23].

5.2 Received power and noise modeling

The complex electric field arriving at the i-th antenna element at sample time t, Ẽi(t),
can be regarded as the superposition of each path, i.e.1,

Ẽi(t) =
Nr∑

n=1
Ẽi,n(t) =

Nr∑
n=1

Ei,n(t)ejϕi,n(t), (A.6)

where Nr is the number of paths and Ẽi,n(t) is the complex electric field at i-th antenna
from n-th path, with amplitude Ei,n(t) and phase ϕi,n(t). From (A.6), and assuming

1Note that the electric field also depends on the point pj . However, for the sake of clarity, we drop
the subindex j throughout the following subsections.
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isotropic antennas, the complex signal at the output of the i-th element is therefore
given by

yi(t) =

√
λ2Zi

4πZ0
Ẽi(t) + ni(t), (A.7)

with λ the wavelength, Z0 = 120π the free space impedance, Zi the antenna impedance,
and ni(t) is complex Gaussian noise with zero mean and variance σ2. Note that (A.7) is
exactly the same model than (A.1); the only difference is that we are explicitly denoting
the dependence on the sampling instant t. For simplicity, we consider Zi = 1∀ i. Thus,
the power wi(t) = ∥yi(t)∥2 is used at each temporal instant t to generate the holographic
image, as pointed out before. Finally, in order to test the system performance under
distinct noise conditions, the average Signal-to-Noise Ratio (SNR) over the whole route,
γ, is defined as2

γ ≜
λ2

4πZ0MTσ2

T∑
t=1

M∑
i=1
|Ẽi(t)|2, (A.8)

where M denotes the number of antenna elements in the LIS.

5.3 Noise averaging strategy
Noise is critical in image classification performance [24]. Normally, in the image pro-
cessing literature, noise removal techniques assume additive noise in the images [25],
which is not the case in our system.

Referring to (A.1) and (A.7), since we are considering only received powers, the
signal at the output of the i-th antenna detector is given by

wi =

∥∥∥∥∥∥
√

λ2Zi

4πZ0
Ẽi + ni

∥∥∥∥∥∥
2

, (A.9)

where we have dropped the dependence on t. Also, let assume the system is able to
obtain S extra samples at each channel coherence interval ∀ pj ∈ P. That is, at each
point pj , the system is able to get N ′

s = Ns × S samples. Since the algorithm only
expects Ns samples from each point, we can use the extra samples to reduce the noise
variance at each pixel. To that end, the value of each pixel mi,j is not computed using
directly wi,j as in (A.4) but instead

w′
i,j = 1

S

S∑
s=1

wi,j,s, (A.10)

2This is equivalent to average over all the points pj of the trajectory P.
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where wi,j,s denote the received signal power at each extra sample s = 1, . . . , S. Note
that, if S →∞, then

w′
i,j

∣∣
S→∞ = E[wi,j |hi,j ] = ∥hi,j∥2 + σ2, (A.11)

meaning that the noise variance at the resulting image has vanished, i.e., the received
power at each antenna (conditioned on the channel) is no longer a random variable.
Observe that the image preserves the pattern with the only addition of an additive
constant factor σ2. This effect is only possible if the system would be able to obtain a
very large number S of samples within each channel coherence interval.

5.4 Performance metrics
To evaluate the prediction effectiveness of our proposed method, we resort on common
performance metrics that are widely used in the related literature. Concretely, we are
focusing on the F1-Score which is a metric based on the Precision and Recall metrics [26]
and is described as:

• Positive F1-Score (PF1) and Negative F1-Score(NF1) as the harmonic mean of
precision and recall:

PF1 = 2 · PP · RP
PP + RP , NF1 = 2 · PN · RN

PN + RN . (A.12)

Where PP and RP stand for Precision and Recall of the positive class (anomaly) while
PN and RN stand for Precision and Recall of the negative class (not anomalous situa-
tion).

6 Numerical results and Discussion
Generally, in the considered industrial setup, it would be more desirable to avoid unde-
tected anomalies (which may indicate some error in the robot or some external issue in
the predefined trajectory) than obtaining a false positive. Hence, all the figures in this
section shows the algorithm performance in terms of the PF1 metric.

6.1 Impact of sampling and noise averaging
To evaluate the impact of both sampling and noise averaging, we consider an LIS com-
pounded by M = 128 × 128 antennas and a spacing ∆s = λ/2 for the ∆d = 50 cm
anomalous route.

For our particular case, N ′
s ∈ {1000, 500, 100}. Then ∀ pj we use S = N ′

s

Ns
samples for

obtaining Ns S-averaged samples for training the algorithm, being still T = Np ×Ns =
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Fig. A.4: P F1 score averaged noise vs non-averaged.

3670. Note that the number of samples N ′
s would depend on the sampling frequency

and the second order characterization of the channel, i.e., the channel coherence time
and its autocorrelation function.

Figure A.4 shows the performance of the system when using non-averaged sam-
ples and averaged ones respectively. The blue line represents the system when non-
averaged data is being used. When the noise contribution is non-negligible in the in-
terval γ ∈ [10 dB, 0 dB], the detection performance presents a significant drop. Thanks
to the averaging, results are significantly improved, even in the critical interval. As
expected, when noise level is higher, more samples are needed to preserve the pattern
by averaging, being N ′

s = 1000 the one which yields a better performance. For the fol-
lowing discussions, this sampling strategy will be used, meaning we are using S = 100
extra samples.

6.2 Impact of antenna spacing
To evaluate the impact of inter-antenna distance, we fix the aperture to 5.44× 5.44 m,
we assess the performance in both ∆d = 50/10 cm, and we analyze different spacings
with respect to the wavelength (λ/2, λ and 2λ).

The performance results for the distinct configurations are depicted in Fig. A.5. As
observed, the spacing of 2λ — which is far from the concept of LIS — is presenting
really inaccurate results showing that the spatial resolution is not enough. We can
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conclude that the quick variations along the surface provide important information to
the classifier performance. Besides, this information becomes more important the lower
the distance between the routes is. The performance drop due to the closer distances
among the routes is related to the pattern classification. The closer the routes are, the
more similar the pattern is making more challenging to perform the detection. However,
reducing the antenna spacing even more can improve the performance when routes are
even closer. What is more, the effect of antenna densification for a given aperture is
highlighted and it can be seen that the lowest spacing leads to the best results.

6.3 LIS aperture comparisons
In this case LIS with different apertures have been evaluated. The spacing is fixed to
λ/2.

Looking at Fig. A.6, the aperture plays a vital role in the sensing performance.
Increasing the number of antennas leads to a higher resolution image, being able to
capture the large-scale events occurring in the environment more accurately. Note the
usage of incoherent detectors is yielding to a good performance when the aperture is
large enough. The key feature for this phenomena is the LIS pattern spatial consistency,
i.e., the ability of representing the environment as a continuous measurement image.



60 Paper A.

30 20 10 0
 (dB)

60

70

80

90

100

Po
sit

iv
e 

F1
-S

co
re

 (%
)

LIS apertures

128x128 Avg 100 d = 50cm
64x64 Avg 100 d = 50cm
32x32 Avg 100 d = 50cm
128x128 Avg 100 d = 10cm
64x64 Avg 100 d = 10cm
32x32 Avg 100 d = 10cm

Fig. A.6: Different LISs apertures comparison

7 Conclusions
We have shown the potential of LIS for sensing the environment, being able to provide
high resolution radio images of the propagation environment that can be processed
by existing and versatile solutions in the context of computer vision algorithms. This
sensing technique, which we consider appropriate to refer to as holographic sensing,
arises as a robust solution to capture the large scale events of a target scenario, with the
inherent advantage that the received signal phase does not need to be estimated. The
combined usage of both LIS and machine learning algorithms may be potentially used
in the context of cognitive radio and multiuser massive MIMO as a support technology
to enhance the performance of these systems.
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Abstract
Sensing capability is one of the most highlighted new feature of future 6G wireless networks.
This paper addresses the sensing potential of Large Intelligent Surfaces (LIS) in an exemplary
Industry 4.0 scenario. Besides the attention received by LIS in terms of communication aspects,
it can offer a high-resolution rendering of the propagation environment. This is because, in an
indoor setting, it can be placed in proximity to the sensed phenomena, while the high resolution
is offered by densely spaced tiny antennas deployed over a large area. By treating an LIS as
a radio image of the environment relying on the received signal power, we develop techniques
to sense the environment, by leveraging the tools of image processing and machine learning.
Once a radio image is obtained, a Denoising Autoencoder (DAE) network can be used for
constructing a super-resolution image leading to sensing advantages not available in traditional
sensing systems. Also, we derive a statistical test based on the Generalized Likelihood Ratio
(GLRT) as a benchmark for the machine learning solution. We test these methods for a scenario
where we need to detect whether an industrial robot deviates from a predefined route. The results
show that the LIS-based sensing offers high precision and has a high application potential in
indoor industrial environments1.

Keywords— Computer vision, Industry 4.0, large intelligent surfaces, machine learning,
sensing

1 Introduction
MassiveMIMO is one of the essential technologies in the 5G [2]. Compared with traditional
multiuser MIMO systems, the base station of a massive MIMO system is equipped with a large
number of antennas, aiming to further increase spectral efficiency [3]. Looking towards the 6th
generation of wireless networks (6G), there are some significant breakthroughs on the design
of reprogramable metamaterials [4], giving raise to new concepts such as holographic MIMO
surfaces (HMIMO) [5], LIS [6] and reconfigurable intelligent surface (RIS) [7]. While HMIMO
and LIS originally refer to the use of continuous radiating surfaces where the received electro-
magnetic field is recorded and ultimately reconstructed [8], in practice an LIS is envisioned
and regarded as a collection of closely spaced tiny antenna elements. On the other hand, RIS
are composed by small passive reflectors embedded in a surface, allowing to arbitrarily modify
the phase of the impinging electromagnetic waves and thus enabling a smart control of the
propagation environment [9–11].

The performance analysis of LIS and RIS assisted systems has attracted considerable atten-
tion in the recent years, and many works have studied the applicability of these technologies.
For instance, the use of RIS to control the signals propagation has been analyzed in the con-
text of communications through the so-called passive beamforming [7, 12–14], in location and
positioning systems [15–17], and in physical layer security [18, 19]. The combination of Deep
Learning (DL) and RIS elements efficient reconfiguration has also been studied in [20]. In

1A preliminary version of this work has been accepted to 15-th EAI International Conference on
Cognitive Radio Oriented Wireless Networks (CROWNCOM 2020) [1]
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turn, LIS are considered as a natural extension of massive MIMO, and their potential for data
transmission [6, 21] and positioning [22, 23] has been also addressed.

However, the potential of LIS could go beyond communications applications. Indeed, such
large surfaces contain many antennas that can be used as sensors of the environment based on
the CSI.

Sensing strategies based on electromagnetic signals have been thoroughly addressed in
the literature in different ways, and applied to a wide range of applications. For instance,
in [24], a real-time fall detection system is proposed through the analysis of the communication
signals produced by active users, whilst the authors in [25] use Doppler shifts for gesture
recognition. Radar-like sensing solutions are also available for user tracking [26] and real-
time breath monitoring [27], as well as sensing methods based on Radio Tomographic Image
(RTI) [28, 29]. Interestingly, whilst some of these techniques resort solely on the amplitude
(equivalently, power) of the receive signals [26, 29], in the cases where sensing small scale
variations is needed, the full CSI (i.e., amplitude and phase of the impinging signals) is required
[27, 28].Moreover, in terms of power-based radio maps generation, some indoor positioning
strategies leverage the use of ML solutions [30] based on the Received Signal Strength (RSS)
of several beforehand known anchors for localization purposes.

On a related note, ML based approaches are gaining popularity in the context of massive
MIMO, mainly due to the inherent complexity of this type of systems and their sensitivity
to hardware impairments and channel estimation errors. Hence, DL techniques arise as a
promising solution to deal with massive MIMO, and several works have shown the advantages
of ML solutions in channel estimation and precoding [13, 31–36]. Due to the even larger
dimensions of the system in extra-large arrays, DL may play a key role in exploiting complex
patterns of information dependency between the transmitted signals. Also, the popularization
of LIS as a natural next step from massive MIMO gives rise to larger arrays and more degrees
of freedom, providing huge amount of data which can feed ML algorithms.

Despite all the available works dealing with beyond massive MIMO and sensing, both
topics have been addressed rather separately. This has motivated the present work, where the
objective is to assess the potential of the combined use of DL algorithms and large surfaces for
the purpose of sensing the propagation environment. To that end, the received signal along
with the LIS is treated as a radio image of the propagation environment, giving raise to the use
of image processing techniques to improve the performance of sensing systems beyond purely
radio-based approaches. Also, we analyze the pros and cons of this image sensing proposal,
comparing it to alternative solutions based on classical post-processing of the received radio
signal. Specifically, the contributions of this work are summarized as follows:

• We propose an image-based sensing technique based on the received signal power at
each antenna element of an LIS. These power samples are processed to generate a high
resolution image of the propagation environment that can be used to feed ML algorithms
to sense large-scale events. The usage of received signal power would lead to simple
deployments, since there is no need of coherent receivers.

• A ML algorithm, based on transfer learning and local outlier factor (LOF), is defined
to process the radio images generated by the LIS in order to detect anomalies over a
predefined robot route.

• We show the advantage of representing the radio propagation environment as an im-
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(a) LoS, noiseless. (b) Real scenario, noiseless.

Fig. B.1: Radio images for LoS and Industry scenarios.

age, allowing us to use a denoising autoencoder network (DAE) for augmenting image
resolution and significantly increasing the performance of the system.

• We derive a statistical test, based on the classical generalized likelihood ratio test (GLRT),
to carry out the same sensing task, and perform a comparison with the ML solution in
terms of generality, performance and further potential applications.

To evaluate the capabilities for sensing of LIS, we consider a simple problem of route
anomaly detection in an indoor industrial scenario. Hence, we analyze the feasibility of this
proposal to determine whether a robot has deviated from its predefined route, and compared
it with the here derived statistical solution.

The reminder of the paper is organized as follows. Section 2 introduces the concept of
sensing based on radio images. Then, Section 3 presents the problem of robot deviation de-
tection in an industrial setup. The classical solution based on hypothesis testing is derived
and characterized in Section 4 and the proposed ML algorithm is detailed in Section 5. With
the ML solution presented, the model validation is carried out in Section 6, whilst simulated
results are discussed in Section 7. Finally, some conclusions are drawn in Section 8.

2 Radio image-based LIS sensing
In a wireless context, a LIS could be described as a structure which uses electromagnetic
signals impinging in a determined scatterer in order to obtain a profile of the environment.
That is, we can use the resulting signal of the superposition of all the involved paths that
imping into every of the antenna elements conforming the surface. Then, the power of the
resulting superimposed signal is used to obtain a high resolution image of the propagation
environment. Note the LIS elements are using the CSI information as envelope detectors, as no
phase estimation is needed but the recieved signal power. Using this approach, the complexity
of the multipath propagation is reduced to using information represented as an image. This
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provides a twofold benefit: i) the massive number of elements that compose the LIS leads to an
accurate environment sensing (i.e. high resolution image), and ii) it allows the use of computer
vision algorithms and ML techniques to deal with the resulting images.

As an illustrative example, an LIS is deployed in a wall along a 22 × 8 m physical aperture,
containing antenna elements separated λ

2 cm while an arbitrary robot is transmitting a sensing
signal. Fig. B.1 shows the LIS radio images obtained from different propagation environments
under this setup. Specifically, Fig. B.1a corresponds to an LoS propagation (no scatterers),
whilst Fig. B.1b is obtained from an industrial scenario with a rich scattering. Note that, in
the case in which different scatterers are placed, their position and shapes are captured by the
LIS and represented in the image. Beyond that, LIS-based imaging does not need of a previous
calibration period as well as no scatterers need to be modelled to be captured in the radio
image, contrary to other wireless image reconstruction techniques that rely on the received
signal power, such as RTI [28, 29]. To the best of the authors’ knowledge, this is the first time
that LIS image based wireless sensing is proposed in the literature.

3 System Model and Problem Formulation
We stick to a simple baseline problem in order to analyze, for first time in the literature, the
sensing potential of LIS. To that end, let consider an industrial scenario where a robot is
supposed to follow a fixed route. Assume that, due to arbitrary reasons, it might temporarily
deviate from the predefined route and follow an alternative (undesired) trajectory. The goal
is to be able to detect whether the robot is following the correct route or not, based on the
sensing signal transmitted by the target device.

In order to perform the detection, we assume that a LIS, consisting of M antenna elements,
is placed along a wall. The sensing problem reduces to determine, from the received signal at
each of the M LIS elements, whether the transmission has been made from a point at the
desired route or from anomalous ones. Formally, if we define the correct trajectory as the set of
points in space Pc ∈ RNp×3 = (p1, . . . , pNp ), and the received complex signal from an arbitrary
point, pk ∈ R1×3, as yk ∈ CM×1, then the problem reduces to estimating whether pk ∈ Pc

based on yk. Note that this formulation can be generalized to any anomalous detection based
on radio-waves in an arbitrary scenario.

The complex baseband signal received at the LIS from point p (the subindex is dropped
for the sake of clarity in the notation) is given by

y = hx + n, (B.1)

with x the transmitted (sensing) symbol, h ∈ CM×1 the channel vector from point p to each
antenna-element, and n ∼ CN M (0, σ2IM ) the noise vector. Moreover, we consider a static
scenario where the the channel h only depends on the user position, neglecting the impact of
time variations.

In order to reduce deployment costs, and because we are interested in sensing large scale
variations, we consider the received signal amplitude (equivalently, power). This assumption
may lead to cheaper and simpler system implementations, avoiding the necessity of performing
coherent detection.



4. Statistical Approach: Likelihood Ratio Test 69

4 Statistical Approach: Likelihood Ratio Test

4.1 Decision rule
Let us consider that the system is able to obtain several samples from each point pk belonging
to the correct route Pc during a training phase. Then, once the system is trained, the problem
can be tackled from a statistical viewpoint by performing a generalized hypothesis test, as
shown throughout this section.

To start with, let us assume that the value of σ2 in (B.1) is perfectly known and, without
loss of generality, that x = 1. Since we are considering only received powers, the signal at the
output of the i-th antenna detector is given by

wi = ∥yi∥2 = ∥hi + ni∥2, (B.2)

where yi, hi and ni for i = 1, . . . , M are the elements of y, h and n, respectively. When
conditioned on hi, wi follows a Rician distribution (in power) [37], and due to the statistical
independence of the noise samples, the joint conditioned probability density function (PDF) of
the vector w = (w1, . . . , wM )T is given by the product of the individual PDFs.

Consider also that, during the training phase, Nt samples of w0, namely w0,j for j =
1, . . . , Nt, are obtained from a correct (trained) point p0. The samples w0,j are then jointly
Rician distributed with vector parameter2 g0 = (∥h0,1∥2, . . . , ∥h0,M ∥2)T . Then, from w0,j , the
system obtains an estimation ĝ0 = (ĝ0,1, . . . , ĝ0,M )T of g0.

Once trained (evaluation phase), the LIS receives another set of samples wk for k =
1, . . . , Nv from an arbitrary point p. Therefore, the objective is, based on w0,j and wk, to
determine whether p = p0 or not. To that end, we formulate a binary hypothesis test as{

H0 : ĝ = ĝ0

H1 : ĝ ̸= ĝ0
, (B.3)

where ĝ = (ĝi, . . . , ĝM )T is the channel vector estimated from wk. The test is hence
formulated based on the GLRT, but replacing the knowledge of the null hypothesis by its
estimated counterpart, i.e.,

logΛ =
Nv∑
k=1

M∑
i=1

logI0

(
2ĝ0,i

√
wi,k

σ2

)
+

Nv∑
k=1

M∑
i=1

ĝi − ĝ0,i

σ2 −
Nv∑
k=1

M∑
i=1

logI0

(
2ĝi

√
wi,k

σ2

)
H0
≷
H1

η,

(B.4)

where wi,k denote the i-th entry of wk. Replacing the true value of g0 by its estimation
introduces a non-negligible error in the test that has to be considered in the threshold design,
as we will see in the following subsections.

2Note that, due to the circular symmetry of the noise, the distribution of w does not depend on the
complex channel hi but on its squared modulus gi = ∥hi∥2.
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4.2 Estimator for g
In conventional likelihood ratio tests, the estimation of the involved parameters is carried out
through maximum likelihood. However, since in our problem the distribution of the received
power signal wk ∀ k is a multivariate Rician, the maximum likelihood estimation implies solving
a system of M non-linear equations [38]. This may lead to a considerable computational effort
taking into account the large number of antennas (M) that characterizes the LIS. To circumvent
this issue, we proposed a suboptimal — albeit unbiased — estimator based on moments.

Since E[nnH ] = IM , the estimation of the channel at each antenna element can be solved
separately. Then, we can estimate gi in both the training and evaluation phases as

ĝ0,i = 1
Nt

Nt∑
j=1

w0,i,j − σ2, ĝi = 1
Nv

Nv∑
k=1

wi,k − σ2, (B.5)

where w0,i,j are the elements of w0,j . It is easily proved that the estimators in (B.5) are
unbiased with normally distributed error for relatively large number of samples.

4.3 Threshold design
Although the asymptotic properties of logΛ have been well studied in the literature (see, e.g.,
[39]), these general results are not valid in our case because i) we are replacing the true value of
g0 by its estimation, and ii) we are using moment-based estimators instead of the optimal one.
A more general result, which is the starting point of our derivation, is that the the limiting
distribution of −2logΛ, under the null hypothesis, is given by [40, eq. (4.3)]

− 2log Λ|H0

p→ (ĝ0 − ĝ)T NvJ(ĝ0 − ĝ), (B.6)

where we have replaced g0 by ĝ0. In (B.6), p→ stands for convergence in probability and
J ∈ RM×M is the Fisher information matrix of wk with respect to g0 [41]. In our case, J is a
diagonal matrix whose i-th element is given by

Ji(gi) = e−gi/σ2

σ6gi

∫ ∞

0
wie

−wi/σ2 I2
1
(

2
σ2 gi

√
wi

)
I0
(

2
σ2 gi

√
wi

) dwi − 1
σ4 . (B.7)

Eq. (B.6) can be rewritten as

− 2log Λ|H0

p→ (ϵ0 − ϵ)T NvJ(ϵ0 − ϵ), (B.8)

where ϵ0 = (ϵ0,1, . . . , ϵ0,M )T and ϵ = (ϵ1, . . . , ϵM )T are the error vectors of estimators in (B.5).
Note that both error vectors are Gaussian distributed, but they vary at very different time
scales. The true channel g0 is estimated during the training phase, and thus the error ϵ0, albeit
random, remains constant during the whole evaluation phase until the system is retrained. In
turn, each time the system evaluates a point, ϵ takes a different (random) realization. With that
in mind, we propose choosing η based on a worst case design, i.e., we consider an estimation
error ϵ0 that overestimates the true error at 1 − α0 percent of the time. That is,

ϵ′
0,i = F −1

ϵ0,i
(1 − α0/2), (B.9)
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where Fϵ0,i stands for the cumulative distribution function (CDF) of a Gaussian variable with
zero mean and variance σ2

Nt
(σ2 + 2ĝ0,i). Note that we have replaced the true channel value by

its estimation in the calculation of the aforementioned percentile.
Finally, conditioned on ϵ′

0,i, the distribution of the test for large number of samples is given
by

− 2log Λ|H0,ϵ′
0

p→ D =
M∑

i=1

NvJi(gi)(ϵi − ϵ′
0,i)2, (B.10)

which corresponds to a non-central Gaussian quadratic form. Therefore, given a predefined
false alarm probability α, the test finally reads as

− 2logΛ
H1
≷
H0

−2η = F −1
D (1 − α|ĝ0), (B.11)

where FD is the CDF of D, which can be obtained by Monte-Carlo simulations or by using some
of the approximations given in the literature for Gaussian quadratic forms (see, e.g., [42–44]).
Note that, in (B.11), we have again replaced the true channel values by their estimations. In
our proofs, this seems to have a negligible impact on the threshold distribution unless the
number of samples is very low (in which case the asymptotic analysis here presented does no
longer hold). A summary of the proposed statistical test is provided in Algorithm 1, where the
here presented pointwise comparison is performed along the whole route Pc.

Algorithm 1: Statistical test for sensing
Training phase:
for each p ∈ Pc do

I. Estimate ĝ0 using (B.5)
II. Compute ϵ′

0,i for i = 1, . . . , M from (B.9) for a confidence value α0
III. Compute J(ĝ0,i) for i = 1, . . . , M from (B.7)
IV. Compute −2η using (B.11) for a confidence value α

end
Evaluation phase: Received wj for j = 1, . . . , Nv, do
for each p ∈ Pc do

I. Estimate ĝ using (B.5)
II. Compute −2logΛ using (B.4)
III. Reject H0 if −2logΛ > −2η

end
The point does not belong to Pc if H0 is rejected ∀ p
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Fig. B.2: Proposed model. White and blue blocks refer to VGG19 re-used original architecture and
to the additional blocks for our task, respectively.

5 Machine learning for radio image-based LIS sens-
ing

In the previous section, we have presented a statistical method to sense the environment based
on the received power signal at the different antenna elements of the LIS, and hence detecting
route deviations from a predefined correct trajectory. This approach exploits the large number
of antennas in the LIS in the same way as in massive MIMO systems. However, the high spatial
density of antennas and the large array aperture of LIS can be exploited in an alternative way.
The basis of this novel technique is using the power of the received signal across the surface as
a radio image of the environment, as stated in Sec. 2.

5.1 Model description
We introduce a ML model to perform the anomalous route classification task based on the
radio-based images obtained at the LIS. The main advantage of this proposal, as we will
see, is that it is independent on the data distribution, and no assumptions are needed to its
implementation. This is in contrast with section 4 where we considered the noise is Gaussian
distributed with noise variance known for the sake of simplicity in the analytical derivations.
In reality, these assumptions may not hold.

In our considered problem, the training data is obtained by sampling the received power
at certain temporal instants while the target device is moving along the correct route. In
order to reduce both training time and scanning periods, which may be heavy tasks for large
trajectories, we resort on transfer learning [45]. Because of this matter, the risk of overfitting
due to our constraint of short scanning periods is quite significant, being transfer learning
also a proper way to tackle it. This allows using a small dataset and therefore improving
the flexibility of the system in real world deployments. In our case, we choose the VGG19
architecture [46]. Due to our specific use case, and the training data constraints, we propose
the use of an unsupervised ML algorithm named as LOF which identifies the outliers presents
in a dataset (i.e., the anomalous positions of the target robot) [47].

The proposed model is detailed in Fig. B.2, where, in order to perform the feature extrac-
tion, we remove the last FC that performs the classification for the purpose of VGG19 and
modify it for our specific classification task (anomaly/not anomaly in robot’s route).
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A
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D

BE

Fig. B.3: Illustration of Reachability Distance with K = 3. Manhattan distance used for illustration
purposes.

5.2 Local Outlier Factor
LOF is an unsupervised ML algorithm that relies on the density of data points in the distri-
bution as a key factor to detect outliers (i.e., anomalous events). In the context of anomaly
detection, LOF was proposed in [47] as a solution to find anomalous data points by measuring
the local deviation of a given point with respect to its neighbors.

LOF is based on the concept of local density, where the region that compounds a locality is
determined by its K nearest neighbors. By comparing the local density of a point to the local
densities of its neighbors, one can identify regions of similar density, and points that have a
substantially lower density than their neighbors (the latter are considered to be outliers). This
approach can be naturally applied to the anomalous trajectory deviation detection as deviated
points that are really close to the correct trajectory could be really close in distance, but they
would have a lower density compared with the points that actually belong to the correct one,
being accurately detected as deviations. Hence, the points belonging to the correct route are
used to learn the correct clusters. The strength of the LOF algorithm is that it takes both
local and global properties of datasets into consideration, i.e., it can perform well even in
datasets where anomalous samples have different underlying densities because the comparison
is carried out with respect to the surrounding neighborhood. For the reader’s convenience, a
brief description of the LOF theory is provided in the following3.

The algorithm is based on two metrics, namely the K-distance of a point A, denoted by
DK(A), and its K-neighbors, which is the set NK(A) composed by those points that are in
or on the circle of radius DK with respect to the point A. Note that K is a hyperparameter
to be chosen and fixed for computing the clusters. Also note that this implies |NK(A)| ≥ K,
where |NK(A)| is the number of points in NK(A). With these two quantities, the reachability

3For a more detailed description, the reader is gently referred to [47].
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distance between two arbitrary points A and B is defined as

RDK(A, B) = max{DK(A), d(A, B)}, (B.12)

where d(A, B) is the distance between points A and B. Figure B.3 illustrates the RDK concept.
This means that if a point B lies within the K-neighbors of A, the reachability distance will
be DK(A) = 3 (the radius of the circle containing points C, D and E), else the reachability
distance will be the distance between A and B. In the example, RDK(A, B) = 6.

Note that the distance measure is problem-specific, being in our case the Euclidean dis-
tance between the different features extracted by the VGG19 network. From (B.12), the local
reachability density (LRD) of a point A is defined as the inverse of the average reachability
distance of A from its neighbors, i.e.,

LRDK(A) =

 ∑
B∈NK (A)

RDK(A, B)
|NK(A)|

−1

. (B.13)

According to the LRD, if neighbors are far from the point (i.e. more the average reachability
distance), less density of points are presented around a particular point. Note this would be
the distance at which the point A can be reached from its neighbors, meaning this measures
how far a point is from the nearest cluster of points, acquiring low values of LRD when the
closest cluster is far from the point. This finally give rise to the concept of LOF, which is given
by

LOFK(A) =

∑
B∈NK (A) LRDK(B)

LRDK(A)|NK(A)| . (B.14)

Observe that, if a point is an inlier, the ratio is approximately equal to one because the
density of a point and its neighbors are practically equal. In turn, if the point is an outlier, its
LRD would be less than the average LRD of neighbors, and hence the LOF would take large
values. In our specific problem, we propose using the LOF values to determine whether a point
belong to the correct trajectory or from any other point due to a robot deviation.

5.3 Dataset format
With the algorithm and the model introduced, the remaining component to fully characterize
the proposed ML solution is the dataset. In our considered problem, the dataset is obtained
by sampling the received signal power at each element of the LIS while the robot moves along
the trajectories. Formally, we can define the possible trajectories (including those composed
by both correct and anomalous points) as the set of points in the space Pt ∈ RNp×3 being Np

the total number of points in the route. Let us assume the system is able to obtain Ns samples
at each channel coherence interval ∀ pj ∈ Pt, being pj for j = 1, . . . , Np an arbitrary point
of the route. Hence, the dataset consists of T = Np × Ns samples (monocromatic radio image
snapshots of received power). Each sample is a gray-scale image which is obtained by mapping
the received power into the range of [0, 255]. To that end, we apply min-max feature scaling,
in which the value of each pixel mi,j for i = 1, . . . , M and j = 1, . . . , Np is obtained as

mi,j =
⌈

mmin + (wi,j − wmin,j)(mmax − mmin)
wmax,j − wmin,j

⌉
, (B.15)
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(a) Use case scenario.
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40 cm
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Correct route

Anomalous route

(b) Parallel deviation.
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Correct route

Anomalous route

(c) Normal deviation.

Fig. B.4: Simulated scenario.

where wi,j are the elements of wj , i.e. wi,j = ∥hi,j + ni,j∥2, mmax = 255 and mmin = 0, and

wmax,j = max
{i=1,...,M}

wi,j , wmin,j = min
{i=1,...,M}

wi,j (B.16)

are the maximum and minimum received power value from a point pj along the surface.
The input structure supported by VGG19 is a RGB image of nc = 3 channels. Due to our

monocromatic measurements, our original gray-scale input structure is a one-channel image.
To solve this problem, we expand the values by copying them into a nc = 3 channels input
structure.

Once the feature extraction is performed, the output is nc = 512 channels of size nw = 7
and nh = 7 pixels. Since LOF works with vectors, the data is reshaped into an input feature
vector formed by 7 × 7 × 512 = 25088 dimensions, meaning our dataset is {x(i)}T

i=1, where x(i)

is the i-th n-dimensional training input features vector (being n = 25088) and x
(i)
j is the value

of the j-th feature.

6 Model validation
In order to validate both sensing solutions, namely the statistical hypothesis testing and the
radio-based image sensing algorithm, we carried out an extensive set of simulations to analyze
the performance of the systems in a simple, yet interesting, industrial scenario. To properly
obtain the received power values, we use a ray tracing software, therefore capturing the effects of
the multipath propagation in a reliable way. Specifically, we consider Altair Feko Winprop
[48].

6.1 Simulated scenario
The baseline set-up is described in Fig. B.4a, a small size industrial scenario of size 484 m2.
We address the detection of the deviation of the target robot (highlighted in red color) in 2
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cases: i) it follows a fixed route parallel (Fig. B.4b), and ii) the correct route is normal to the
bottom wall, in which the LIS is deployed (Fig. B.4c). To evaluate the performance in the
detection of anomalies, we consider that the robot may deviate from the correct route at any
point, and we test the ability of both systems to detect potential deviations at a distance of,
at least, ∆d = 50 cm and ∆d = 10 cm. These two distances correspond to the cases ∆d ≫ λ
and ∆d ≈ λ, respectively, denoting λ the wavelength.

Table B.1: Parameters

Frequency
(GHz)

Tx
Power
(dBm)

Nray
paths

Antenna
type

Antenna
Spacing (cm)

Propagation
model

3.5 20 10 Omni λ
2 Free Space

For the aforementioned cases, we simulate in the ray tracing software Np points, which
correspond to different positions of the robot in both the correct and anomalous routes. Then,
Ns radio image snapshots of the measurements are taken at every pj , j = 1, . . . , Np. The most
relevant parameters used for simulation are summarized in Table B.1.

In our simulations, we set Np = 367 and Ns = 10, thus the dataset is composed of T =
Np × Ns = 3670 radio propagation snapshots containing images of both anomalous and non-
anomalous situations, as described in Section 5.3. Out of Np = 367, Nc = 185 are the snapshots
corresponding to the correct route, meaning we have Tc = Nc×Ns = 1850 correct data samples,
while the remaining are anomalous points. To train the algorithm with the correct points, we
split the correct dataset into a 80% training set 10% validation set and the remaining 10% for
the test set. During the training phase, the optimum value of K = 3 (the LOF parameter) is
obtained by maximizing the accuracy score in the correct validation set. The training procedure
was performed in an Intel Xeon machine with 32 CPUs taking around 15 seconds in the offline
scanning period.

6.2 Received power and noise modeling

The complex electric field arriving at the i-th antenna element at sample time t, Ẽi(t), can be
regarded as the superposition of each path, i.e.4,

Ẽi(t) =
Nr∑

n=1

Ẽi,n(t) =
Nr∑

n=1

Ei,n(t)ejϕi,n(t), (B.17)

where Nr is the number of paths and Ẽi,n(t) is the complex electric field at i-th antenna from
n-th path, with amplitude Ei,n(t) and phase ϕi,n(t). From (B.17), and assuming isotropic
antennas, the complex signal at the output of the i-th element is therefore given by

yi(t) =
√

λ2Zi

4πZ0
Ẽi(t) + ni(t), (B.18)

4Note that the electric field also depends on the point pj . However, for the sake of clarity, we drop
the subindex j throughout the following subsections.
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with λ the wavelength, Z0 = 120π the free space impedance, Zi the antenna impedance,
and ni(t) is complex Gaussian noise with zero mean and variance σ2. Note that (B.18) is
exactly the same model than (B.1); the only difference is that we are explicitly denoting the
dependence on the sampling instant t. For simplicity, we consider Zi = 1 ∀ i. Thus, the power
wi(t) = ∥yi(t)∥2 is used at each temporal instant t both to perform the hypothesis testing in
(B.4) and to generate the radio image, as pointed out before. Finally, in order to test the
system performance under distinct noise conditions, the average SNR over the whole route, γ,
is defined as5

γ ≜
λ2

4πZ0MT σ2

T∑
t=1

M∑
i=1

|Ẽi(t)|2, (B.19)

where M denotes the number of antenna elements in the LIS.

6.3 Noise averaging strategy
The statistical solution presented in Section 4 has been derived taking into account the presence
of noise, and consequently it has implicit mechanisms to reduce its impact in the performance.
However, the presence of noise may be more critical in the radio image sensing, since it impacts
considerably the image classification performance [49].

Referring to (B.2) and (B.18), since we are considering only received powers, the signal at
the output of the i-th antenna detector is given by

wi =

∥∥∥∥∥
√

λ2Zi

4πZ0
Ẽi + ni

∥∥∥∥∥
2

, (B.20)

where we have dropped the dependence on t. Also, let us assume the system is able to obtain
S extra samples at each channel coherence interval ∀ pj ∈ Pt. That is, at each point pj , the
system is able to get N ′

s = Ns × S samples. Since the algorithm only expects Ns samples from
each point, we can use the extra samples to reduce the noise variance at each pixel. To that
end, the value of each pixel mi,j is not computed using directly wi,j as in (B.15) but instead

w′
i,j = 1

S

S∑
s=1

wi,j,s, (B.21)

where wi,j,s denote the received signal power at each extra sample s = 1, . . . , S. Note that, if
S → ∞, then

w′
i,j

∣∣
S→∞

= E[wi,j |hi,j ] = ∥hi,j∥2 + σ2, (B.22)
meaning that the noise variance at the resulting image has vanished, i.e., the received power

at each antenna (conditioned on the channel) is no longer a random variable. Observe that
the image preserves the pattern with the only addition of an additive constant factor σ2. This
effect is only possible if the system would be able to obtain a very large number S of samples
within each channel coherence interval.

5This is equivalent to averaging over all the points pj of the trajectory P.
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Fig. B.5: Denoising autoencoder architecture

6.4 Stacked Denoising Autoencoder for image Super-Resolution
An autoencoder is a type of neural network which tries to learn a representation (denoted as
encoding) from the data given as input, usually for dimensionality reduction purposes. Along
with the encoding side, a reconstructing side is learnt, where the autoencoder tries to recon-
struct from the reduced encoded data a representation as close as possible to its original input.
There are several variations of the basic model in order to enforce the learned representation
to fulfill some properties [50]. Among all of them, we are interested in the DAEs [51].

The goal of the denoising autoencoder is to reconstruct a "clean" target version from a
corrupted input. In our context, let us assume that we can obtain a target image t ∈ N ∩
[0, 255]N and a corrupted input c ∈ N∩[0, 255]M result of the received power mapping explained
in (B.15). Also, consider N ≫ M and that t was obtained from a less noisy environment, i.e.,
the average SNR γt is greater than that of c, denoted by γt ≥ γc. Then, we can perform
a resizing of both images such as R : [0, 255]d → R ∩ [0, 1]R, meaning we resize both images
towards the same dimension R and we normalize the values dividing by 255, being tr = R(t)
and cr = R(c) the target and corrupted input used to train our DAE. Note that, although the
two images (tr and cr) are identical in dimension (R pixels) after the resizing procedure, the
resolution of the target one is higher because it is obtained in a more favorable scenario (larger
SNR) and from an initially higher number of pixels N .

To illustrate the approach, a one hidden layer explanation is made for simplicity. The
denoising autoencoder can be split into two components: the encoder and the decoder, which
can be defined as transformations Φ and Ψ such that Φ : R ∩ [0, 1]R → F , Ψ : F → R ∩ [0, 1]R.
Then, the encoder stage of the DAE takes the input cr and maps it into e ∈ Rl = F as

e = ρ(Wcr + b), (B.23)

being l the dimension of the compressed representation of the data, known as the latent space,
ρ the element-wise activation function, W the weight matrix and b the bias vector. These
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weights and biases are randomly initialized and updated iteratively through backpropagation.
After this process, the decoder stage maps e to the reconstruction c̃r of the same shape as cr

c̃r = ρ(W′e + b′), (B.24)

being ρ the activation function, and W′ and b′ the parameters used in the decoder part of the
network. In our specific case, the reconstruction error, also known as loss, is given by the mean
squared error (MSE) of the pixel values of the target image and the reconstructed image (R
pixels), that is6

L(tr, c̃r) =
∑

∥tr − c̃r∥2

R

=
∑

∥tr − σ(W′σ(Wcr + b) + b′)∥2

R
. (B.25)

For the sake of reproducibility, a detailed summary of the proposed architecture is provided
in Figure B.5. We have used the Keras [52] library, so the description of the layers corresponds
to its notation. The ADAM optimizer with a learning rate α = 0.001, exponential decay for
the 1st and 2nd moment estimates β1 = 0.9 and β2 = 0.999 and ϵ = 10−7 have been used
for updating the gradient, minimizing the MSE loss function. For the encoder part, Conv2D
layers with filter size 64 and 32 have been used, kernel sizes of 3x3 and stride = 2. The
activation function LeakyReLU has been used with a slope coefficient β = 0.2. Then, a Batch
Normalization layer has been used to maintain the mean output close to 0 and the output
standard deviation close to 1. The Flatten layer is used to reshape the output into a vector
to feed the Dense layer with a number of neurons l = 16 which corresponds to the dimension
of the latent space. The dimension l was determined by analyzing the learning curves in the
training procedure.

In the decoder part, a Dense layer is used again to recover the previous size of the feature
vector while the reshaping recovers the initial 2D input structure. Then, Conv2DTranspose
layers have been used to perform the reconstruction of the input structure, having an identical
configuration than in the encoder side but changing the order of the filters (32 and 64). The
LeakyReLU activations and the Batch Normalization are identical. The last layer is composed
by 1 filter, kernel size of 3x3 and stride = 1. This last layer is for recovering completely the size
as the input structure. Furthermore, the DAE network trains itself to augment the resolution of
the input image, because it will remove artifacts resulting from a lower resolution, by learning
from a high resolution target. Then, this reconstructed image will be used for our anomaly
detection algorithm. This is advantageous for our problem, leading to a strategy for improving
the performance of the system.

6.5 Performance metrics
To evaluate the prediction effectiveness of our proposed method, we resort on common perfor-
mance metrics that are widely used in the related literature. Concretely, we are focusing on
the F1-Score which is a metric based on the Precision and Recall metrics. First, we need to

6Note that the summation is made along all the pixel values. However, for the sake of clarity, we
drop the subindex in this expression.



80 Paper B.

describe what we consider as a positive or negative event. In our problem, TP and FP stand
for True and False Positive (anomalous event) while TN and FN for True and False Negative
(correct event). In this way, the applied metrics are defined as follows:

• Precision positive (PP) and negative (PN) as the proportion of correct predictions of a
given class

PP = TP
TP+FP , PN = TN

TN+FN . (B.26)

• Recall positive (RP) and negative (RN) as the proportion of actual occurrences of a given
class which has been correctly predicted.

RP = TP
TP+FN , RN = TN

TN+FP . (B.27)

• Positive F1-Score (P F1) and Negative F1-Score (NF1) as the harmonic mean of precision
and recall:

P F1 = 2 · PP · RP
PP + RP , NF1 = 2 · PN · RN

PN + RN . (B.28)

Note that although the training procedure is fully unsupervised, for our specific evaluation we
know the labels of the data samples, meaning we can calculate these metrics, well-known in
the supervised learning literature.

7 Numerical results and Discussion
We here present some numerical results in order to analyze the performance of both propos-
als (statistical test and radio image sensing) in our evaluation setup described in Section 6.
Generally, in the considered industrial setup, it would be more desirable to avoid undetected
anomalies (which may indicate some error in the robot or some external issue in the predefined
trajectory) than obtaining a false positive. Hence, all the figures in this section shows the
algorithm performance in terms of the P F1 metric.

Also, we mainly focus our results on the radio image sensing algorithm since it is the
proposal with a larger number of tunable parameters, whilst the statistical hypothesis testing
is used as a benchmark of the ML based solution.

7.1 Impact of sampling and noise averaging
First, we evaluate the impact of both available number of samples and the noise averaging
technique in the radio image sensing algorithm. To that end, we consider a LIS compounded
by M = 32 × 32 antennas and a spacing ∆s = λ/2 for a ∆d = 10 cm parallel deviation.

We evaluate two approaches: i) using the S extra samples directly as input to the algorithm,
being T c = Nc × Ns × S, and ii) using the S extra samples for averaging. For this particular
case, N ′

s ∈ {1000, 100}. Then ∀ pj we use S = N′
s

Ns
samples for obtaining Ns S-averaged

samples for training the algorithm, being still T c = Nc × Ns = 1850. Note that the number of
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Fig. B.6: P F1 score for radio image sensing with M = 32 × 32 antennas, inter-element distance of
∆s = λ/2, correct route parallel to the LIS, anomalous points placed at ∆d = 10 cm, and different
numbers of samples.

samples N ′
s would depend on the sampling frequency and the second order characterization of

the channel, i.e., the channel coherence time and its autocorrelation function.
Figure B.6 shows the performance of the system when using S extra samples and S averaged

ones respectively. As highlighted previously, noise contribution is critical in image classification
performance, leading to not achieving a valuable improvement when augmenting the number
of samples presented to the algorithm. However, when performing the averaging, results are
significantly improved due to the noise variance reduction. As expected, when noise level is
higher, more samples are needed to preserve the pattern by averaging, being N ′

s = 1000 the
one which yields a better performance. For the following discussions, this sampling strategy
will be used, meaning we are using S = 100 extra samples.

7.2 Impact of antenna spacing
The next step is evaluating the impact of inter-antenna distance in the ML sensing solution.
We fix the aperture to 5.44 × 5.44 m and S = 100 averaged samples. Then, we assess the
performance in both ∆d = 50/10 cm for the parallel deviation, and we analyze different spacings
with respect to the wavelength (λ/2, λ and 2λ).

The performance results for the distinct configurations are depicted in Fig. B.7. As ob-
served, the spacing of 2λ — which is far from the concept of LIS — is presenting really
inaccurate results showing that the spatial resolution is not enough. We can conclude that the
quick variations along the surface provide important information to the classifier performance.
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Fig. B.7: P F1 score for radio image sensing with fixed LIS aperture of 5.44 × 5.44 m, correct route
parallel to the LIS, anomalous points placed at ∆d = 10 and ∆d = 50 cm, S = 100 samples, and
different number of antennas and spacings.

Besides, this information becomes more important the lower the distance between the routes
is. Specially in the range of γ ∈ [10, 4] for λ/2 where the detection is almost identical regardless
of the extra precision needed to detect the deviation when the routes are closer. Furthermore,
the effect of antenna densification for a given aperture is highlighted and it can be seen that
the lowest spacing leads to the best results.

7.3 LIS aperture comparisons
In this case, LIS with different apertures have been evaluated. The spacing is fixed to λ/2,
S = 100 averaged samples are used while the deviation is ∆d = 10 cm parallel.

Looking at Fig. B.8, the aperture plays a vital role in the sensing performance. Increasing
the number of antennas leads to a higher resolution image, being able to capture the large-scale
events occurring in the environment more accurately. Note the usage of incoherent detectors
is yielding to a good performance when the aperture is large enough. The key feature for
this phenomena is the LIS pattern spatial consistency, i.e., the ability of representing the
environment as a continuous measurement image.

7.4 DAE for image Super-resolution evaluation
In this case, the impact on performance by using DAE is evaluated and compared to the
hypothesis test in (B.4). We fix the aperture to M = 32 × 32, for a parallel deviation of



7. Numerical results and Discussion 83

10 8 6 4 2 0
 (dB)

0

20

40

60

80

100
Po

sit
iv

e 
F1

-S
co

re
 (%

)

Aperture comparison d = 10cm

LIS 128x128 Avg S=100
LIS 64x64 Avg S=100
LIS 32x32 Avg S=100

Fig. B.8: P F1 score for radio image sensing with variable aperture, inter-antenna distance of λ/2,
correct route parallel to the LIS, anomalous points placed at ∆d = 10 and S = 100 samples.

∆d = 10 cm and an antenna spacing of λ/2.
For this evaluation, the performance is analyzed in 4 cases: i) no pre-processing of images

performed, ii) S = 100 averaging strategy, iii) image resolution augmentation using DAE, and
iv) The hypothesis test proposed in Algorithm 1. For the DAE, we assume we have access
to a target reference image t ∈ N ∩ [0, 255]N |N=128×128 with γ = 10 dB and our corrupted
input is c ∈ N ∩ [0, 255]M |M=32×32 with γ ∈ [10, −10] dB. Then, we finally resize both images
R : [0, 255]d → R ∩ [0, 1]R|R=224×224, obtaining images of tr ∈ N ∩ [0, 1]224×224 and cr ∈
N ∩ [0, 1]224×224 pixels.

Regarding Fig. B.9, one can see the raw-data (blue line) is yielding to a really poor
performance. This is expected taking into account noise can interfere significantly in the local
density of the clusters, leading to wrong results. Also, the noise averaging strategy is good
enough when noise contribution is negligible, meaning that for improving the results in lower
SNR scenarios we would need to obtain a higher S which would be unpractical. Finally,
the usage of DAE for image super-resolution outperforms both methods, allowing to improve
the system performance and even work in quite unfavourable SNR scenarios. In turn, the
hypothesis test derived in Section 4 provides in general the best performance.

However, we must take into account that the statistical test is built based on some key a
priori knowledge, namely Gaussian noise with known variance. In the context of estimation, the
radio image sensing solution can be seen as a non-parametric approach, which is valid for any
baseline distribution and no further assumptions are required. Nevertheless, the performance
of the ML solution (when DAE is employed), presents almost no difference with respect to the
ad-hoc test up to 2 dB of average SNR. This is a promising result, since the application of more
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Fig. B.9: Comparison between radio image sensing and the statistical solution in (B.4) for M = 32×32
antennas, correct route parallel to the LIS, spacing of λ/2 and different processing techniques.

refined image processing techniques may lead to an increase in performance. Also, note that
here we are considering a rather simple scenario, where the scatterers do not move. In a more
realistic environment, with the rapid changes in the channel and the temporal dependencies due
to the relative positions between users and scatterers in movement, ML-based sensing seems a
promising solution to learn temporal dependencies in those scenarios where classical solutions
become impractical.

7.5 Route deviations evaluation
We evaluate now the impact of the separation of deviations and different types of routes in both
radio image sensing and the statistical test. To that end, we fix the aperture to M = 32 × 32,
and a antenna spacing of λ/2. We will be using all the improvements in the preprocessing of
the images to leverage the performance of the ML system.

In Fig. B.10, we can see the performance of the system under different deviations and SNR
conditions. We can see the system works better the closer the deviation of the routes are. This
is an advantage of our proposed approach, the closer the routes are, the more accurate the
reconstruction of the DAE is, taking into account the corrupted image cr will be more similar
to the target image tr, allowing a better augmentation of the image resolution, so the correct
clusters can be learned more accurately. In this way, the ML proposed algorithm works better
in the cases a standard wireless sensing system would be more prone to failure. Also, the
parallel deviations are easier to detect than the normal deviations. The path loss of the points
in the parallel routes remains almost identical regardless of the specific point, making it easier
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Fig. B.10: Comparison between radio image sensing and the statistical solution in (B.4) for M =
32 × 32 antennas, different correct routes and spacing of λ/2.

to detect. It is important to highlight the SNR definition presented in (B.19) can influence in
the pattern acquisition in the normal deviation cases when points are far from the LIS, which
will have a significantly lower instantaneous SNR leading to a more difficult detection.

Note that the abrupt decrease on performance for the hypothesis test is due to the fact that
we are using a pointwise test to perform a detection over a whole route (collection of points),
as shown in Algorithm 1. Whilst the ML algorithm performs an anomaly detection over the
whole correct route, the proposed statistical test is a pointwise comparison, i.e., it checks the
validity of the null-hypothesis for each point in the correct route separately. This implies that,
in order to detect a point as anomalous, the test has to reject H0 on all the correct points.
Consequently, failing in a single point is equivalent to fail in all the points.

7.6 Performance evaluation under changing environment
Finally, we here evaluate the performance of our system when a major change in the scenario
occurred, i.e., the relative positions between the scatterers and the transmitter has changed
considerably and thus the pattern capture in the radio image no longer matches the original
one used in the training phase. Note that, although the considered scenario for testing was
assumed to be fixed, we may be interested in extrapolate the performance of the proposed
solutions when dealing with environmental changes. To that end, we evaluate the anomaly
detection accuracy of both the hypothesis test and the ML solution. We fix the aperture to
M = 32 × 32, for a parallel deviation of ∆d = 10 cm and an antenna spacing of λ/2. Again, we
will use all the improvements in the preprocessing of the images to leverage the performance of
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Fig. B.11: Performance of radio image sensing and the statistical solution in (B.4) for M = 32 × 32
antennas, correct route parallel to the LIS, anomalous points placed at ∆d = 10 and spacing of λ/2 in
a changing environment.

the ML system. Fig. B.11 shows the performance of the system under a changing environment.
The hypothesis test is robust to an environmental change, as its performance remains similar as
the static case. With respect to the ML solution, in the range of γ ∈ [0, −4] drops significantly.
However, in the proposed scenario, we assume a change in the environment is a really unlikely
event, leading to a worsening in the performance in some SNR cases.

8 Conclusions
We have made the first step towards the use of LIS for sensing the propagation environment,
exploring and proposing two different solutions: i) an statistical hypothesis test based on a
generalization of the likelihood ratio, and ii) a ML based algorithm, which exploits the high
density of antennas in the LIS to obtain radio-images of the scenario. We provide a complete
characterization of the statistical solution, and also pave the way to the use of ML technique
to improve the performance in the second case. As an example, we have shown that the use
of denoising autoencoders considerably boosts the performance of the ML algorithm. Both
proposals are tested in an exemplary industrial scenario, showing that, up to relatively low
values of SNR, the performance of the two presented techniques is rather similar. The ML
solution implies a larger computational effort than the statistical test, but in turn does not
require any a priori knowledge, as is the case of the test in which the variance of the noise
is assumed in order to reduce analytical complexity. Finally, the results obtained in this
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system motivate a further study with more complex detectors of I/Q components to quantify
the potential performance gain obtained from using I/Q receivers, i.e., analyzing the trade-off
between the system complexity and its performance.
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Abstract
This paper leverages the potential of Large Intelligent Surfaces (LIS) for radio sensing in 6G
wireless networks. By taking advantage of arbitrary communication signals occurring in the
scenario, we apply direct processing to the output signal from the LIS to obtain a radio map
that describes the physical presence of passive devices (scatterers, humans) which act as virtual
sources due to the communication signal reflections. We then assess the usage of machine
learning and computer vision methods including clustering, template matching and component
labeling to extract meaningful information from these radio maps. As an exemplary use case,
we evaluate this method for passive multi-human detection in an indoor setting. The results
show that the presented method has high application potential as we are able to detect around
98% of humans passively even in quite unfavorable Signal-to-Noise Ratio (SNR) conditions.

1 Introduction
Sensing can be regarded as the ability of wireless systems to process the signals with the aim
of describing the physical environment. There are different methodologies to perform sensing
using wireless signals. Essentially, some of these methods use dedicated signals and/or specific
hardware [1–8], while others use communication signals of commodity devices to perform the
sensing task [9–15]. As an example of the first type, in [3–6] they employ RTI, which is a
RSS-based technology for rendering physical objects in wireless networks. They create a radio
map based on the RSS variations due to objects presence in the scenario by deploying nodes
around the room conforming a Wireless Sensor Network (WSN). In turn, by making use of
the communication signals occurring in an environment and avoiding dedicated transmissions
[9, 10], one can rely on properties of the wireless channel such as the CSI using commodity
Wi-Fi devices, to perform sensing tasks as human gesture recognition or fall detection. Works
like the ones presented in [1, 2, 7, 8] capture the reflections of wireless signals, similar to the
radar principle.

In the context of communications, the MIMO technique is a fundamental technology in
5G with the main purpose of increasing area spectral efficiency [16, 17]. Intending to push
their benefits to the limit and look towards post-5G, researchers are defining a new generation
of base stations that are equipped with an even larger number of antennas. The concept of
LIS gained a lot of attraction. It designates a large continuous electromagnetic surface able
to transmit and receive radio waves. While the potential for communications of LIS is being
investigated, these devices offer possibilities that are not being understudied accurately, i.e.,
environmental sensing based on radio images [18].

Due to the increasing interest in both sensing and LIS, and motivated by their future inte-
gration in communication systems, in this work, we are focusing on LIS sensing capabilities. We
make use of a method that enables reconstructing a radio map of the propagation environment
using an indoor LIS deployment in the ceiling [19, 20]. This radio map shows the presence of
active and passive (scatterers/humans) users in the environment by piggybacking the commu-
nication signals. We solve a problem of passive multi-human detection in the scenario using the
reconstructed radio maps. Detecting passive humans is of great interest as we are relying on
environmental radio signals and do not need dedicated devices. This could be quite to optimize
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beamforming towards the passive human enabling the access phase with an optimized radiation
pattern, for Electromagnetic (EM) avoidance and Physical Layer Security (PLS), where the
detection of the passive target is mandatory to perform beamforming. The solution is based
on the k-means clustering of the radio maps, followed by the application of image processing to
enhance the quality and computer vision to perform the detection. We measure the detection
accuracy as the number of users detected while also verifying the positioning accuracy.

2 Problem Formulation and System Description
Let us consider an indoor scenario where U users are randomly deployed in a room. Within
the U users, a subset Ua are commodity wireless devices fulfilling their communication tasks,
while Up = U − Ua users are just passive human beings. The objective is, hence, sensing the
position of both the Ua active and the Up passive humans from the signals radiated by the
former. For the sake of simplicity, we assume the Ua users transmit at the same frequency
— representing, e.g., Wi-Fi signaling or transmissions at some cellular frequency band. To
perform the sensing, we assume that an LIS of M antenna elements is placed along the ceiling,
whose physical aperture comprises its whole area. The sensing problem reduces to determine,
from the superposition of the received signals from each of the Ua users at every of the M LIS
elements, the (x, y) coordinates of the Up passive humans. The superposed complex baseband
signal received at the LIS is given by

y =
Ua∑

u=1

huxu + n, (C.1)

with xu the transmitted (sensing) symbol from user u, hu ∈ CM×1 the channel vector from
a specific position of user u to each antenna-element, and n ∼ CN M (0, σ2IM ) the noise vec-
tor. Please note we are considering a narrowband transmission, avoiding frequency selectivity
effects.

3 LIS radio map generation
Due to the large physical aperture of the deployment in comparison with the distance between
the transmitters and the LIS, spherical wave propagation needs to be taken into account, and
thus the channel coefficient hs,i at the LIS i-th element from an arbitrary user transmission is
proportional to [21]

hs,i ∝ 1
di

e−j 2π
λ

di , (C.2)

where di =
√

(xi − xu)2 + (yi − yu)2 + (zi − zu)2 denotes the distance between the active
device u and the i-th antenna, and λ is the wavelength. We are interested in determining the
spherical steering vector by using (2). For that we define an array of N × N m aperture with
an antenna spacing of ∆s = λ

2 resulting in Nf = N
∆s

× N
∆s

antennas and we set a f . We then
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Fig. C.1: Phase representation of the designed filter based on (C.2).

emulate a transmitter in the center position of the filter (xu, yu, zu) = ( N
2 , N

2 , 6.2) m1. Next,
we compute eq (2) with respect to all the antenna elements from the designed array, obtaining
hs. Figure C.1 shows the expected spherical pattern hs. We are not interested in the absolute
phase values but in their variation along the space. In this way, describing the surface in a
vectorized notation, we can derive a Matched Filter (MF) such that:

yf = hs ∗ y, (C.3)

where ∗ denotes the convolution operator. This convolution is performed along all the LIS
dimension. Then, hs ∈ CNf ×1 denotes the expected spherical pattern (steering vector) for Nf

antennas LIS deployment on (C.2), y the received signal from (C.1) and yf ∈ CM×1 the filtered
output that represents the radio map. To guarantee the same output dimension (due to the 2D
convolution along the LIS), we zero-pad y such that the output yf ∈ CM×1. To obtain a radio
map, we just need to compute the energy at the output of the MF procedure |yf | ∈ RM×1. We
then map the values to the RGB scale using the function F : RM×1 → {[0, 255] ∩ N}M×3 such
that ym = F (|yf |). Fig. C.2 shows an exemplary radio map. In the exemplary scenario, one
active transmitter Ua = 1 is used, while three static scatterers are present in the environment.
We see the three scatterers in the environment (the cylindric-like shapes) while we can also
identify the highest peak representing the user transmission. The scatterers are captured
because from the receiver LIS viewpoint, they act as virtual sources that are equivalent to LoS
components, i.e., in (C.2) the different reflections are equivalent to a LoS path.

1The distance zu = 6.2 is a parameter for the filter design. This does not imply that in the evaluation,
all the transmitters or scatters are fixed at this distance. In our work, we set f = 3.5 GHz and N = 4
m.
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Fig. C.2: Exemplary radio map obtained in a noiseless scenario with Ua = 1 users by using the MF
design represented in Figure C.1.

4 Passive multi-human detection based on LIS radio
map

4.1 Offline scanning phase
We first take advantage of an offline scanning period phase in which we measure different trans-
missions of any Ua active devices to scan the static features of the propagation environment.
We then obtain Ua measurements of the environment for different random active user positions
when no passive humans are in the scenario. Figure C.2 shows that we have mainly two dom-
inant ranges of pixel values, either low energy at the output of the MF (the background) or
high energy (the active transmitter and scatterers). This leads us to apply a k-means clustering
w.r.t. the pixel values of the radio map (with k = 2) to enhance the radio map through its
binarization. We then define the clusterization as K : {[0, 255] ∩ N}M×3 → {[0, 255] ∩ N}M×1

such that yc = K(ym).
Figure C.3a shows a clusterized version of the radio map presented in Figure C.2. It shows

the enhanced areas of the static features of the environment as well as the active transmitter.
We use a computer vision technique called Template Matching [22], which detects parts in an
image that matches a template image, to remove the expected active transmitter pattern from
the clusterized map yc. By combining different active transmissions along the scenario, we
can combine several radio maps to obtain an enhanced version that highlights the scatterers
presence in the scenario, as shown in Figure C.3b. These multiple transmission positions
illuminate the scatterers from different angles. Furthermore, these map pixel values are either
0 (black) or 1 (white), being white the representation of the scatterers. We will denote this
processed map as positive masking map, y+

T M .
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Fig. C.3: Radio map processing

By having this representation of the static elements of the environment, we can now store
y+

T M locally at the LIS to process new maps and remove the static elements of it when trying
to detect humans passively.

4.2 Detection phase
For this purpose, when there are passive humans in the room, we can follow the same procedure
as before but obtaining a negative masking map y−

T M (meaning scatterers are now black) for
every temporal radio map snapshot s ∈ S. Figure C.3c shows an example of a negative masking
map y−

T M when there is Up = 10 passive humans in the scenario. We see now the scatterers and
the humans are represented in black (0 value). Next, We will use it to perform a logical OR
operation (+) with the locally stored masking map y+

T M . Formally, we denote this operation
as yOR = y+

T M +y−
T M . Furthermore, we obtain the OR map yOR, shown in Figure C.3d, which

eliminates the static scatterers of the scenario and highlights the passive humans reflections. We
can see in the map that there are some artifacts (salt-pepper noise) as a result of this process.
To alleviate it, we define a sliding window algorithm of size Kc × Kc that set all the pixel
values comprising the window size to 1 (white) if the number of black pixels in that window
is lower than a defined threshold Th. In this way, we can reduce significantly this salt-pepper
noise. Figure C.4b shows the removal of the artifacts thanks to this procedure. Finally, we
are interested in detecting these shapes associated to the passive human positions in the radio
maps. For that, we adopt a computer vision algorithm named Component Labeling [23] which
compares neighboring pixels to detect a shape that is assigned to the same label. Figure C.4a
shows the exemplary groundtruth scenario in which these maps are computed while Figure
C.4b shows the result of detecting the Up = 10 passive humans. They are assigned to different
colors (labels) for illustration purposes. Hence, we can infer the passive human positions by
obtaining the center pixel coordinates of these shapes cp = (xp, yp). To infer the real position,
we just compute c = cp × ∆s, where ∆s denotes the antenna spacing.

Algorithm 1 further summarizes the procedure.
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Algorithm 2: Passive multi-human localization
Offline Scanning Phase:
I. Measure the Ua superposed complex baseband signal at the LIS, y, as shown
in (1)
II. K-means clustering with K = 2 is applied to the processed map ym such
that we obtain yc

III. Obtaining y+
T M through Template Matching to eliminate the Ua active

transmitters
IV. Store locally y+

T M at the LIS
Detection phase: Passive multi-human detection
for each s ∈ S do

I. Follow same procedure I-II from Offline Scanning Phase
II. Obtaining y−

T M through Template Matching to eliminate the Ua active
transmitters
III. Computing the OR map yOR

IV. Filtering salt-pepper noise with sliding window Kc ×Kc and threshold
Th

V. Applying Component labelling to detect the shapes of the Up passive
humans
VI. Compute c to infer the locations

end
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(a) Exemplary groundtruth
scenario with Up = 10 repre-
sented as rectangles.

(b) Component Labeling ap-
plied to Figure C.3d.

Fig. C.4: Groundtruth position of the Up humans vs the Component Labeling result.

5 Simulation, numerical results and discussion

5.1 Simulated scenario
We conducted simulations via ray tracing [24] to simulate the multipath in a reliable way. We
simulate a scenario of size 10.34 × 10.34 × 8 m. We deploy an LIS with 259 × 259 elements
separated λ/2. Each Ua active device transmits an arbitrary narrowband signal of 20 dBm
at 3.5 GHz. The distance from which the MF is calibrated is zu = 6.2. The active Ua

are assumed to be ≥ 1.8 m height, being this value randomnly selected. The scatterers are
modeled as metallic (with conductivity s = 19444 S/m, relative permittivity ϵ = 1 and relative
permeability µ = 20)2 cylinders of 1 m diameter and 2 m height. The passive Up humans
are model as rectangles of dimensions 0.3x0.5x1.7 m (average human dimensions obtained
from [25]) with s = 1.44 S/m, ϵ = 38.1 and µ = 1 [26].

5.2 Received signal and noise modeling
From the ray-tracing simulation, the received signal in (C.1) is obtained as the complex electric
field arriving at the i-th antenna element, Ẽi, which can be regarded as the superposition of
each ray path from every u ∈ Ua user. Then, the complex signal at the output of the i-th
element is therefore given by

yi =
√

λ2Zi

4πZ0
Ẽi + ni, (C.4)

2These values are provided by the software manual [24].
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Fig. C.5: Average human detection percentage (%) and positioning errors (cm) with fixed LIS aperture
of M = 259 × 259, in a γ = 0 dB condition, with S = 100 averaging strategy and Up = 10 humans in
the scenario.

with Z0 = 120π the free space impedance and Zi the antenna impedance. For simplicity, we
consider Zi = 1 ∀ i. We define the average SNR, γ, is defined as

γ ≜
λ2

4πZ0Mσ2

M∑
i=1

|Ẽi|2. (C.5)

We assume the system can obtain S extra samples at each channel coherence interval to perform
an S-averaging, diminishing the noise variance contribution.

5.3 Passive human detection
We here leverage the performance for passive human detection in the scenario using the method
described in Section 4.1. We consider Up = 10 humans at arbitrary positions in the scenario.

The detection of passive humans is highly impacted by the Ua active devices positions. For
the sake of generalization, we perform Monte Carlo simulations for obtaining our results under
different random configurations. Figure C.5 shows the average, maximum and minimum posi-
tioning errors of the correctly detected passive humans as well as the average detected humans
by using a different number of active users Ua. Please note, we are not using dedicated active
transmissions for this task, but we take advantage of the wireless communications occurring
from these active devices in the scenario. The results show that the number of active users
does not really impact on the positioning performance as it remains similar when using a lower
and a higher number of active users Ua. However, by increasing Ua, the number of passive
humans detected increases. This is because the more the transmissions, the more reflections we
obtain from the human body reflections leading to an easier detection of the passive humans.
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Fig. C.6: Exemplary human detection with fixed LIS aperture of M = 259 × 259, in a γ = 0 dB
condition, with S = 100 averaging strategy, Ua = 20 active users and Up = 10 humans in the scenario.

Furthermore, the detection of this system is quite accurate, as we can detect a minimum of
around 80% humans in all the configurations and the average error is around 28 cm. Figure
C.6 shows an illustration of the inferred positions w.r.t. the groundtruth positions. It shows
the positioning accuracy is quite high even with 10 people passively sensed.

5.4 Passive human detection distance evaluation
Finally, we here evaluate the accuracy of the detection of passive humans by comparing per-
formance under different separations among them. As we are interested in checking the dis-
tance at which the performance may decrease significantly, we set Up = 2 humans separated
25/50/75/100 cm apart, respectively. We test different separations and we evaluate the detec-
tion performance of the Up = 2 passive humans. Figure C.7 shows the average detection of the
humans. We can see the system achieves around 1.5/2 detections in the most challenging case
(25 cm) while obtaining around 1.8/2 in the most favorable (100 cm). This shows the potential
of the system, even when the separation among humans is quite small.

6 Conclusions
The presented use case shows machine learning and computer vision algorithms are a powerful
tool to take into account when using an image-based LIS sensing approach. Moreover, we note
that LIS is one of the technologies being considered for future 6G systems, which may change
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Fig. C.7: Average human detection with fixed LIS aperture of M = 259×259, in a γ = 0 dB condition,
with S = 100 averaging strategy, Ua = 20 active users and Up = 2 humans in the scenario.

the relevant cost/benefit analysis in that any sensing functionality is then expected to be added
onto the system rather than requiring explicit investment on extra dedicated hardware.
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Fig. D.1: Schematic comparison of the two systems (a) LIS-based, (b) radar-based

Abstract
Since electromagnetic signals are omnipresent, Radio Frequency (RF)-sensing has the poten-
tial to become a universal sensing mechanism with applications in localization, smart-home,
retail, gesture recognition, intrusion detection, etc. Two emerging technologies in RF-sensing,
namely sensing through Large Intelligent Surfaces (LISs) and mmWave Frequency-Modulated
Continuous-Wave (FMCW) radars, have been successfully applied to a wide range of applica-
tions. In this work, we compare LIS and mmWave radars for localization in real-world and
simulated environments. In our experiments, the mmWave radar achieves 0.71 Intersection
Over Union (IOU) and 3cm error for bounding boxes, while LIS has 0.56 IOU and 10cm
distance error. Although the radar outperforms the LIS in terms of accuracy, LIS features
additional applications in communication in addition to sensing scenarios.

Keywords— Sensing, machine learning, LIS, mmWave, radar, FMCW

1 Introduction
Recently, with the advance of robots, remote controlled and autonomous vehicles (UAVs, ve-
hicles), localization and positioning has become a key support capability. RGB cameras [1],
lidars [2], and RF sensors [3] are common approaches used for localization. Lidars are capa-
ble of providing an accurate 3D model of an environment. Their performance is affected by
weather conditions though [4]. This is similar for RGB cameras, which also have a reduced
performance in challenging lighting conditions [5]. RF-based sensors and LIS are resilient to
lighting and weather conditions [5].

Wireless sensing is becoming integrated into future communication systems [6]. Specifically,
with the increasing count of antennas added to Base Stations (BSs), researchers have exploited
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first Multiple-Input-Multiple-Output (MIMO), then massive MIMO, and now LIS, a continuous
electromagnetic surface, comprising a large number of tightly spaced small antenna elements,
capable of transmitting and receiving electromagnetic signals. LIS are capable to support
communication as well as sensing [7]. Likewise, mmWave radars have been widely used in
many sensing applications from gesture recognition [8–10] to localization [3].

In this work, we compare, for the first time in the literature, these two technologies to
solve a sensing-based localization task as it is shown in Fig. D.1. We perform experimental
measurements using an FMCW radar, namely IWR1443, operating in the 77-81 GHz RF-band.
Since no LIS prototypes exist yet in the market, we perform a comprehensive simulation based
on ray-tracing, mimicking the experimental environment. In particular, we will reconstruct the
radio map of the propagation environment using an indoor LIS deployment in the ceiling, as
also described in [11].

2 System Models and Problem Formulation
In this section, we discuss the configurations of the two systems. The LIS system is implemented
in a simulation environment, while the radar system has a real-world test-bed.

2.1 LIS System Model
We consider an indoor setting in which Da active devices are present. The devices transmit for
communication. Sensing with the LIS is then subsequently performed by piggybacking these
signals.

A LIS of A antenna elements is placed at the room’s ceiling. We assume an ideal LIS made
up of isotropic antennas. Therefore, physical effects such as mutual coupling are neglected. The
sensing task is to create a radio map that captures a person in the environment by superim-
posing the received signals from each of the d ∈ Da elements at each of the A LIS components.
The superposed complex baseband signal received at the LIS is given by

y =
Da∑
d=1

hdxd + n. (D.1)

Here, xd is the transmitted symbol from device d (without loss of generality, we consider
xd = 1), hd ∈ CN×1 is the channel vector from a specific position of device d to each antenna-
element, and n ∼ CN N (0, σ2IN ) is the noise vector. For simplicity, we consider narowband
transmissions and this removes the effect of frequency selectivity.

The large physical dimensions of the LIS, compared with the distance from the transmitters
to the ceiling, lead to a spherical-wave propagation condition. The spherical-wave channel
coefficient hsp,a at the a-th element from an arbitrary active device transmission is proportional
to [12]

hsp,a ∝ 1
da

e−j 2π
λ

da , (D.2)
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Fig. D.2: A radio map obtained for an M = 118 × 118 antenna elements λ
2 spaced LIS in a noiseless

scenario with Da = 5 active devices by using a MF design for f = 3.5 GHz, d = 3.2 m and Nf = 100×100
antenna elements λ

2 spaced.

where da denotes the distance between the active device and the a-th antenna. To compute
the radio map, we can derive a Matched Filter (MF) such that [11]

ymf = hsp ∗ y. (D.3)

In eq D.3, ∗ denotes the convolution operator, hsp ∈ CNf ×1 is the expected spherical pattern
(steering vector) for Nf filter-antennas LIS deployment on (D.2), y is the received signal from
(D.1) and ymf ∈ CA×1 is the filtered output that represents the radio map. We zero-pad y
such that we guarantee ymf ∈ CA×1 dimension to perform the convolution. To obtain the
radio map, we compute the energy at the output of the MF. In this way, we are measuring
the energy of the signals reflected from the target. In order to design the filter, we assume
knowledge of the frequency f and the distance d (the z coordinate, since the LIS is deployed
at the ceiling) between the transmitter and the LIS1. Figure D.2 shows the detection of the
target on the LIS processed radio map.

Simulated scenario

We perform simulations via ray tracing [13] in a 4.7 × 4.7 × 3.2 m simulated area. We deploy
a LIS with 118 × 118 elements separated by λ/2. The Da active devices transmit narrowband
signals of 20 dBm at 3.5 GHz and they are randomly deployed in the space (x, y, z). The

1A detailed explanation of the radio maps is given in [11]. The distance d is a parameter for the
filter design and may differ from the actual distance to the transmitter in the evaluation.
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distance from which the MF is calibrated is d = 3.2, as we set a kernel for the procedure such
that it scans the entire height of the room. The human is modeled as a rectangle of dimensions
0.3x0.5x1.83 m (reasonable human dimensions obtained from [14]) with conductivity s = 1.44
S/m, relative permittivity ε = 38.1 and relative permeability µ = 1 [15]. To be fair with the
experimental setup, the positions of the passive human (x, y, z = 1.83) m are randomly selected
in a circle of radius 2.5 m.

Received signal and noise modeling

From the ray-tracing simulation, the received signal in (D.1) is obtained as the complex electric
field arriving at the a-th antenna element, Ẽa, which can be regarded as the superposition of
each ray path r ∈ Nr from every d ∈ Da device, i.e.,

Ẽa =
Da∑
d=1

Nr∑
r=1

Ẽa,r,d =
Da∑
d=1

Nr∑
r=1

Ea,r,dejϕa,r,d . (D.4)

The complex signal at the output of the a-th element is therefore given by

ya =
√

λ2Za

4πZ0
Ẽa + na. (D.5)

Here, λ is the wavelength, Z0 = 120π os the free space impedance and Zn is the antenna
impedance. For simplicity, we consider Za = 1 ∀ a. Finally, we define the average Signal-to-
Noise Ratio (SNR), γ, as

γ ≜
λ2

4πZ0Aσ2

A∑
a=1

|Ẽa|2, (D.6)

where A denotes the number of antenna elements in the LIS.

2.2 Radar System Model
We utilize the IWR1443 mmWave FMCW radar operating at 77GHz with 4GHz bandwidth.
We further process the point cloud data generated by the radar to perform localization.

Point Cloud Generation

The radar evaluation kit performs a four step processing pipeline to generate point cloud data
from Analog to Digital Converter (ADC) data as shown in Fig. D.3.a.

Range Fast Fourier Transform (FFT) (1D): A chirp signal, i.e. a sinusoidal signal with
increasing frequency through time, is generated by the radar. Then the mixing operation
produces an intermediate frequency signal using transmitted and reflected chirps. The range
of the system is linearly proportional to the intermediate signal’s frequency, computed through
FFT operations.

Doppler FFT (2D): The radial velocity of the target is proportional to the phase difference
of multiple chirps at the range-FFT peak. To generate a peak at the velocity of target, a FFT
is applied on the signal range (i.e., a 2D-FFT or a Doppler-FFT).
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Fig. D.3: (a) Overview structure of the radar-based localization system. The radar transforms the
IQ samples into a point cloud through the radar processing pipeline. Then, the point cloud processing
pipeline predicts a bounding box using as the localization output. (b) Overview structure of the LIS-
based localization system. The LIS processes the reflected complex signal by applying the MF procedure
to obtain the radio map. Then, the radio map processing part predicts a bounding box around the
target user. The random Da active devices are piggybacked to perform the sensing.

Constant False Alarm Rate (CFAR): For each virtual antenna, a pre-detection matrix is
formed through summation of Doppler-FFT matrices. The CFAR algorithm [16] then filters
the pre-deteciton matrix to produce peaks corresponding to targets.

Angle-FFT: For each target, an angle-FFT is applied on corresponding CFAR peaks across
multiple Doppler-FFTs. Velocity-induced phase changes are Doppler-corrected before angle-
FFT calculation.

Point Cloud Processing

We follow a three-step point cloud processing tool-chain to localize the target.
Time Decay: We configured the radar to sample 33 point clouds per second2. Since points

in each frame are sparse (≈ 5 per frame), we apply time decay to increase density. Empirically,
a time-window of size 5 (≈ 151 ms) is used to slide through time frames to increase the number
of points in each frame.

Graph Generation: From the time-decayed point cloud, we then build a graph. Consider
a point cloud X = {x1, ..., xn} ⊆ RF where each point xi is represented by a feature set
{f1

i , ..., fF
i }. A graph-K-Nearest Neighbor (KNN) algorithm is exploited to produce the KNN-

graph G = {X, E} where E ⊆ X × X is the set of directed edges between each point and its
nearest neighbours in the Euclidean space.

Graph Processing using Message Passing Neural Network (MPNN): Following a similar
approach as [17], each node’s representation is updated using the proposed MPNN layer. In
each layer, an aggregation function is applied to the representation of the node itself and to its
neighbors’ features:

2we will refer to the points generated from a single chirp as frames in the following
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h0
i = xi,

hl
i = Γ

j:(i,j)∈E
(∆θ(hl−1

i , hl−1
j )), (D.7)

in which, hl
i is point i’s representation in layer l, message function ∆θ : RF × RF → RF ′

is a learnable function with parameters θ which is implemented using Multi Layer Perceptron
(MLP), and Γ is a channel-wise symmetric aggregation operator (e.g. Σ, max, or mean) applied
on the messages of the edge emanating from each neighbor. To capture not only local but also
global structures of the input point cloud, we use ∆θ(hi, hj) = ∆̄θ(hi, hj − hi) meaning that
for each edge, we concatenate the features of the incident node of the edge with the difference
between the two nodes connected by the edge.

The details of the localization model is shown in Fig. D.3. We empirically use the proposed
layer in Eq.D.7, PointLoc, twice in the architecture of the model. Then we concatenate the
output of the two layers followed by an MLP to achieve a vector representation of the input
point cloud with length of 1024. Finally, after applying a few layers of MLP to extract fine-
grained features, we use a linear layer with 4 neurons and without activation function to output
the four dimensions of the bounding box. The loss function is Mean Squared Error (MSE).

2.3 Main Assumptions
The main assumptions for both approaches are as follows. With respect to LIS, we assume
that mutual coupling is ignored. It is commonly represented using a coupling matrix that takes
into account the influence of nearby antennas [18] but the influence can be compensated after
estimation, and hence does not affect any conclusion drawn. Radar and LIS have a Line-of-
Sight (LOS) to the target. Also, to design the filter we need to assume a-priori the frequency
f and the distance from a transmitter to the LIS d. However, this last parameter is not a very
strong assumption (cf. Section 2.1). We therefore set it to be the distance as if the transmitter
were on the floor. This means that the transmitters can be at different distances and are not
limited by the filter design.

The field of view of the radar is -55◦ to +55◦.

3 Implementation and Evaluation
In this section, we explain the way we collected data in the real-world environment for the
mmWave radar and simulation environment for LIS. Then, we elaborate on the model training
process, evaluation metrics, and finally the localization performance comparison between the
radar and the LIS.

3.1 Dataset
To collect the radar data (cf. Fig. D.4a), we marked a circular area with 2.5m radius on the
floor and asked participants to walk arbitrarily inside the circle. A IWR1443 radar and a GoPro
camera were mounted in 3m height over the center of the circle record ground truth point cloud
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Fig. D.4: (a) The experiment environment which is a circle with 2.5m radius marked on the ground.
(b) An IWR1443 radar and a GoPro camera installed on the ceiling with 3m height.

and video data (Fig. D.4b). We labelled the video using the Ground Truth Labeler application.
The radar data was labeled manually by matching the bounding boxes from the video with the
point cloud data. Three subjects participated in the experiment and 15,000 samples have been
collected. Training, validation and testing is performed following a 60/10/30 split.

For the LIS, we simulated the same circular area with 2.5m radius and simulated random
positions of the target. The positions are processed by obtaining radio maps using Da = 5
active devices randomly deployed in the room. 15,000 samples were recorded.

3.2 Radar Model Training Process
We used a computer with 32GB of RAM and an Nvidia GeForce 940MX GPU for training and
inference. The model for the radar pipeline is implemented based on PyTorch and PyTorch
Geometric [19] frameworks. An early stopping scheme with a patience of 100 epochs is exploited
to prevent from over-fitting. In other words, if no improvement is observed on the validation
set within the patience period, we stop the training process and save the best model.

MSE is used as the loss function to train the model, Adam Optimizer [20] with step-decay
strategy to train the network:

Lr = Li · d
⌊ e

er
⌋

r . (D.8)
Here, Lr is the learning, Li is the initial value of the learning rate, dr is the drop rate after
every er epochs, e is the current epoch and ⌊·⌋ is the floor operator. In our experiments Li,
dr, and er are 0.001, 0.5, and 20, respectively.
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3.3 LIS Radio Map Based Localization
We process the radio map by obtaining the indices of the maximum peak value to infer the
human position, i.e.

(xc, yc) = arg max
xp,yp

|ymf | × ∆s, (D.9)

In this equation, xc and yc denote the inferred position, xp and yp the position in the pixel
domain and ∆s the antenna spacing.

3.4 LIS Bounding Box Creation
As we are not using a learning algorithm, but want to compare LIS and radar systems, we
compute manually a bounding box considering the center the inferred positions.

As we know the dimensions of our target (detailed in Section 2.1) we can compute a
bounding box from the center position such that

(xmin, ymin) = (xc − L

2 , yc − W

2 ), (D.10)

(xmax, ymax) = (xc + L

2 , yc + W

2 ), (D.11)

with L = 0.5 m and W = 0.3 m (cf. Section 2.1).

3.5 Evaluation Metric
To evaluate the performance of the models we use IOU and the Euclidean distance between the
center of the ground truth bounding box and the predicted bounding box. The IOU is defined
by:

IOUi = |Pi ∩ Gi|
|Pi ∪ Gi|

, (D.12)

where Pi and Gi are predicted and ground truth bounding boxes for sample i. We report the
average IOU and Euclidean distance between the centers of the ground truth and the predicted
bounding boxes on the test set for each of the approaches.

3.6 Localization Comparison
As shown in Fig. D.5, the average IOU for the LIS in localization is 0.56 while the Radar
it is 0.71. This result suggests that the radar is more accurate in estimating the bounding
box for the target. We have a similar result for the average distance error of the bounding
boxes. The radar outperforms the LIS with only 3cm in contrast to 10cm average error. These
results suggest that mmWave radars are more accurate than LIS, but in scenarios where the
accuracy of sensing can be compromised, LIS can provide simultaneous communication and
sensing capabilities without a need for a third-party device. Also, there might be potential
scenarios in which LIS would outperform the radar. For example, decreasing the inter-antenna
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Fig. D.5: Average IOU and distance error for radar and LIS

spacing would lead to more accurate localization results for the LIS. However, we showed the
common inter-antenna distance design ( λ

2 ) to provide a close comparison to the radar.

4 Conclusion
So far, mmWave radars have been considered the standard de facto for indoor localization given
their incredibly cheap components and localization accuracy. However, the breakthroughs in
communications systems are leading to devices that can integrate both sensing and communi-
cations. LISs arise as a brand-new device which communications capabilities are expected to go
beyond massive MIMO. However, their sensing functionality is still under investigation. In this
paper, we have shown a comparison among LIS and mmWave radars in an indoor sensing-based
localization task. Results show that LIS is not that different from mmWave radars in localiza-
tion accuracy, with the advantage of leading to a new system that can integrate both sensing
and communications. In most scenarios there is no need to have a very accurate localization,
including but not limited to industrial localization systems or localizing users for beamforming.
In those scenarios, LIS can also act as a sensing device providing communications and sensing
capabilities at the same time.
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Abstract
Environmental scene reconstruction is of great interest for autonomous robotic applications,
since an accurate representation of the environment is necessary to ensure safe interaction with
robots. Equally important, it is also vital to ensure reliable communication between the robot and
its controller. Large Intelligent Surface (LIS) is a technology that has been extensively studied
due to its communication capabilities. Moreover, due to the number of antenna elements, these
surfaces arise as a powerful solution to radio sensing. This paper presents a novel method to
translate radio environmental maps obtained at the LIS to floor plans of the indoor environment
built of scatterers spread along its area. The usage of a Least Squares (LS) based method, U-
Net (UN) and conditional Generative Adversarial Networks (cGANs) were leveraged to perform
this task. We show that the floor plan can be correctly reconstructed using both local and global
measurements.

Keywords— Sensing, Computational Imaging, LIS, Machine Learning for Communica-
tion.

1 Introduction
Mobile robots with mapping devices have been used to estimate indoor floor plans. The state-
of-the-art methods are usually based on optical sensors to obtain the indoor maps in detail. For
instance, Light Detection and Ranging (LIDAR) [1], depth cameras [2] and RGB cameras [3].
Although these methods achieve acceptable accuracy, they have some limitations. LIDAR
might not be able to capture all types of materials meanwhile approaches based on cameras
are dependent on the lighting conditions. To circumvent this, acoustic-based approaches such
as microphones [4] and ultrasonic sensors [5] are robust to lighting conditions. However, they
have a limited sensing range and might malfunction in noisy environments.

On a related note, radar devices such as millimeter Wave (mmWave) radars have become
popular for indoor sensing applications. They actively transmit RF signals to monitor the
reflections to sense nearby scatters’ parameters such as range, speed or angle. Hence, they
can be used indoors in poor lighting conditions. These radars have been used in applications
such as human sensing [6] and floor-plan reconstruction [7]. However, mmWave radars work
in high frequency bands, leading to short wavelengths. This leads to high energy attenuation
over distance and weak penetrability through walls.

In the context of 6G, sensing has become a fundamental feature. For instance, the authors
in [8] explore this sensing-style capabilities of a mMIMO BS to jointly learn an antenna selection
and a range-azimuth map of a beamforming gain. With the increasing number of receivers, LIS
becomes a natural extension of the massive MIMO technology which designates a continuous
electromagnetic surface able to transmit and receive radio waves. In practice, they are planar
arrays conformed by a huge amount of closely spaced tiny antenna elements. There is a vast
range of studies analyzing its application in communications [9]. However, very little has been
studied regarding its sensing capability [10]. Consequently, in [11] we presented a method
that enables reconstructing a radio map of the propagation environment using an indoor LIS
deployment in the ceiling. This allows for tracking both active and passive users.
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Motivated by these results and on the increasing interest in both sensing and LIS, in
this work, we further explore the capabilities of LIS and provide a floor plan reconstruction
based on the LIS received signal. We leverage the usage of Deep Generative Model (DGM)
to learn a map from the complex-valued received signals at the LIS to the RGB image of the
corresponding floor plan. Differently from previous works [1, 4, 7], we are mainly concerned with
enabling sensing capabilities in a system primarily designed for communication. Consequently,
such applications further exploit the usability of already deployed hardware. We assess the
reconstruction performance with the original (ground-truth) floor plan composed of multiple
elements representing, for example, robots, furniture and appliances

2 System and Problem Formulation
Consider an indoor factory scenario in which Ka active devices are deployed. These devices can
be anything using a transmitter such as robots, smartphones or IoT devices. More importantly,
since they are active devices, we can assume these devices to be communicating with a receiver
through a wireless channel. In a real-world scenario, this communication often assists with the
task at hand, e.g., sending commands to the robots. In our scenario, this receiver is a LIS
placed on the factory’s roof and, apart from assisting with the communication task, the LIS
also tries to map the current environment of this factory. This environment sensing can be
divided into two steps:

1. Mapping from the environmental signals into a radio map of the environment from the
LIS viewpoint, similar to [11]. This allows converting the complex-valued data into a
RGB real-valued data which is more natural to neural networks.

2. Translation of the radio map into its current floor plan pattern, i.e., the disposition
of the elements in this environment. In summary, based on the raw complex-valued
signals received at the LIS, we aim to reconstruct the current arrangement of the passive
(non-active) elements present in the environment.

For the second step, we rely on conditional Generative Adversarial Networks (cGANs) which
has been widely used in the literature for the task of image-to-image reconstruction [12].

Moreover, we assume this LIS to be equipped with N = Nx × Ny antenna elements and
its physical aperture comprises its whole area. Concretely, we consider a square LIS composed
of isotropic antennas and physical effects such as mutual coupling are ignored. A bit more
formally, the sensing problem consists in obtaining a radio map that describes the environment
from the superposition of the received signals from each of the 1 < k ≤ Ka users at every
element of the LIS. This map contains information on the Ka active devices involved in the
scenario as well as the Kp passive objects/scatters.

The superposed complex baseband signal received at the LIS is given by

y =
Ka∑
k=1

hkxk + n, (E.1)

with xk the transmitted (sensing) symbol from user k (we consider xk = 1 without loss of
generality), hk ∈ CN×1 the channel vector from a specific position of user k to each antenna-
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element, and n ∼ CN N (0, σ2IN ) the noise vector. To avoid frequency selectivity, we consider
a narrowband transmission.

As a consequence of the large physical dimensions of the LIS in comparison with the distance
from the transmitters to the roof, we need to account for spherical wave propagation during
the modeling. The spherical-wave channel coefficient hsp,n at the LIS n-th element from an
arbitrary active device transmission is proportional to [13]

hsp,n ∝ 1
dn

e−j 2π
λ

dn , (E.2)

where dn =
√

(xn − xk)2 + (yn − yk)2 + (zn − zk)2 denotes the distance between the active
device k and the n-th antenna. To obtain the radio map, expressing the LIS in a vectorized
version for ease of notation, we can derive a MF procedure such that [11]

ymf = hsp ∗ y, (E.3)

denoting ∗ the spatial convolution operator, hsp ∈ CNf ×1 the expected spherical pattern
(steering vector) for Nf antennas LIS deployment on (E.2), y the received signal from (E.1) and
ymf ∈ CN×1 the filtered output signal. As the convolution operator would reduce the output
dimension (Due to the 2D convolution along the received signal at the LIS), we zero-pad y such
that we guarantee ymf ∈ CN×1 dimension. To obtain a radio map, we just need to compute
the energy at the output of the MF procedure |ymf | ∈ RN×1. We then map the values to the
RGB scale such that F : RN×1 → {[0, 255] ∩ N}N×3

ym = F (|ymf |) (E.4)

that represents the radio map. Please note, we have to know the frequency f and assume a
distance z from the transmitter to the LIS to design the filter1. In our work, we design a filter
for f = 3.5 GHz, z = 8 m and Nf = 100 × 100 antenna elements λ

2 spaced2. Let us assume we
can obtain S samples at each channel coherence interval. In this way, we can use these extra
samples to perform an S-averaging of the received signal measurements at the LIS viewpoint,
reducing the noise variance contribution and enhancing the quality of the obtained radio map.
Figure E.1(a) shows a ground-truth floor plan. Looking at Figure E.1(b)-(d) we can see three
exemplary radio maps representing the ground-truth floor plan. The radio map captures the
reflections of the scatters (rectangular and square shapes representing walls/objects) that act
as virtual sources. The S-averaging effect in reducing the noise contribution leads to an en-
hancement in the radio map quality. The target of our model will be translating these radio
maps to the ground-truth floor plan.

2.1 Received signal and noise modeling
In order to simulate the propagation environment in the most reliable way, we resort to ray
tracing [14]. From the ray-tracing simulation, the received signal in (E.1) is obtained as the

1For a more detailed explanation of the radio maps, we gently refer the readers to [11]. The distance
z is a parameter for the filter design. This does not imply that in the evaluation, all the transmitters
or scatters are fixed at this distance.

2Note we use a fixed kernel with z = 8 m which corresponds to the height of the building. We do
not need to calibrate the MF to specific distances.
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(a) Floor Plan (b) S = 1 (c) S = 100 (d) S = 1000

Fig. E.1: Radio maps with its corresponding floor plan obtained over S-averaging channel samples
acquired by LIS in a γ = −10 dB SNR condition.

complex electric field arriving at the n-th antenna element, Ẽn, which can be regarded as the
superposition of each ray path r ∈ Nr from every k ∈ Ka user, i.e.,

Ẽn =
Ka∑
k=1

Nr∑
r=1

Ẽn,r,k =
Ka∑
k=1

Nr∑
r=1

En,r,kejϕn,r,k . (E.5)

Then, the complex signal at the output of the n-th element is therefore given by

yn =
√

λ2Zn

4πZ0
Ẽn + nn, (E.6)

with λ the wavelength, Z0 = 120π the free space impedance and Zn the antenna impedance.
For simplicity, we consider Zn = 1 ∀ n. Finally, we define the SNR, γ, as

γ ≜
λ2

4πZ0Nσ2

N∑
n=1

|Ẽn|2, (E.7)

where N denotes the number of antenna elements in the LIS.

3 Reconstruction learning

3.1 Least Squares
This method tries to naively find the best linear mapping W∗ ∈ RN×N from the i-th radio
map y(i)

m ∈ RN into the ith floor plan x(i) ∈ RN by minimizing the average least square error

W∗ = arg min
W

1
T

T∑
i=1

(
x(i) − Wy(i)

m

)2
(E.8)
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over the T training samples. Prediction is then performed on a new sample by x̂(j) = Wy(j)
m .

Despite its simplicity, similar solutions have been widely applied in many signal-to-image recon-
struction, such as medical applications [15] and synthetic aperture radars sensing [16]. In our
scenario, LS method often returns a noisy version of the environment reconstruction. Hence,
to simulate the best possible set of post-processing operations that improve the LS estimator,
we redefine x̂(j) = min(x(j), x̂(j)) with the entry-wise minimum operator, i.e., we remove the
noise area that is present outside of the area of interest.

3.2 U-Net
U-nets are essentially autoencoder networks with skipped connections [17]. At the encoder side,
we learn the feature mapping of an image while converting it to a vector. U-Net extends this
vector to a segmented picture, utilizing the same feature maps as were used for compression at
the encoder side (i.e. skipped connections). This would keep the image’s structural integrity
and provide information to the decoder to perform the segmentation. Image segmentation can
be applied to our specific problem. We can see the groundtruth floor plan x as the segmentation
of the radio map ym composed of two classes, background and shapes. To reduce training time
and prevent overfitting, we will use a pre-trained model for the encoder, the mobileNet-v2 [18],
while for the decoder we will use the up-sampling block of Pix2Pix [12]. Finally, the U-Net
minimizes the Binary Cross-Entropy (BCE) loss.

3.3 Conditional Generative Adversarial Network
We design our problem as a cGANs learning procedure by designing a generator for the dis-
tribution pg over the floor plan data of the environment x, given as conditional information
the radio map ym from (D.3). The generator models a mapping function from a prior noise
distribution pz(z) to the floor plan space G(z|ym; θg). Similarly, we design a discriminator
D(x|ym; θd) that outputs a scalar value representing the probability that x came form training
data instead of pg. The target min-max cost function is given by

LcGANs = min
G

max
D

Ex∼pdata(x)[log D(x|ym)] + Ez∼pz(z)[1 − log D(G(z|ym))]. (E.9)

More specifically, we re-implement a well-known model used in the field of image-to-image
translation [19]. The main difference with respect to the general cGANs framework resides in
the loss function. The authors of [19] improve the adversarial loss by incorporating a feature
matching loss. It works by extracting features from several layers of the discriminator, trying
to match these in-between representations among the real and the fake data. The new loss
function can be expressed as

L∗
cGANs = min

G
max

D
LcGANs + λEx,ym,z

L∑
l=1

1
Nl

[∥D(l)(x|ym) − D(l)(z|ym)∥1], (E.10)

where L denotes the number of layers, Nl denotes the number of elements in each layer and λ
is an hyper-parameter that controls the weight of the terms. The model will learn a mapping
between the wireless environmental signals and its corresponding floor plan, i.e., it will perform
a translation from the radio map ym to the floor plan x.
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(a) Scenario 1 - Original (c) Scenario 1 - LS (e) Scenario 1 - U-Net (g) Scenario 1 - cGANs

(b) Scenario 2 - Origi-
nal

(d) Scenario 2 - LS (f) Scenario 2 - U-Net (h) Scenario 2 - cGANs

Fig. E.2: Visual representation of the two original (a)-(b) floor plans and their and reconstructions
(c)-(h) using the three different methods. Reconstructions are highlighted in purple and the original
floor plans in black.

4 Dataset description
In the ray-tracing simulation, we consider two scenarios of size 10.34×10.34×8 m with different
scatters arrangement. We deploy an LIS with 259 × 259 elements separated λ/2 apart. Every
Ka active device transmits a narrowband signal of 20 dBm at 3.5 GHz. The distance from
which the MF is calibrated is z = 8 m (building height). The scatters are modeled as metallic
(with conductivity s = 19444 S/m, relative permittivity ϵ = 1 and relative permeability µ = 20)
and the walls as brick (with s = 0.078 S/m, ϵ = 4 and µ = 1)3. Figure E.2(a)-(b) show the
distribution of the metallic elements in the two floor plans considered in this work. The dataset
is obtained by sampling the received signal at each element of the LIS from all the different
active Ka in the scenario. Then the resulting signal is processed following the process described
in Section II to generate the radio map.

To guarantee generalization, we conform a dataset composed by a selection of S ∈ [1, 100, 1000]
and Ka ∈ [5, 20] for the two scenarios presented. Finally, we are primarily interested in poor
signaling conditions, hence, we set γ = −10 dB which means that there is much noise in the
communication between the active transmitters and the LIS. Then, formally, the dataset is
denoted as {y(i)

m , x(i)}T
i=1, where y(i)

m is the i-th N -dimensional training input features vec-
3These values are provided by the software manual [14].
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Fig. E.3: Comparison of floor plan reconstruction quality based on the Average Peak Signal-to-Noise
Ratio (PSNR) metric along the test set for varying number of S.

tor (radio map) and x(i) is the i-th N -dimensional target vector (floor plan). Our dataset is
composed of 2400 samples which are split into 70/10/20 for training, validation and test set,
respectively.

5 Numerical results and Discussion
In order to validate the proposed methodology, we rely on standard image quality metrics,
to evaluate the performance of the reconstructed environment using the three methods con-
sidered in this work (LS, U-Net and cGANs), specifically, we evaluate these methods using
PSNR and Structural Similarity Index Measure (SSIM) [20] as quality metrics. They provide
a general evaluation of how similar the reconstruction is to the original floor plan. However,
this evaluation is performed based on the whole image. Hence, we also calculate the distance
(in centimeters) between the centres of the scatters in the original and predicted environment.
This further provides us with a way to assess local spatial predictions.

Let us first analyse the general reconstructions capability of each of these methods. Fig-
ure E.3 compares the average PSNR obtained on the test set by the three methods considering
different S-averaging of the received signal. As expected, the original signal S = 1 provides
little information and hence makes it unfeasible to obtain good quality reconstruction (perfect
reconstruction would lead to a maximum PSNR of 48 dB). Moreover, we notice that specifically
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Method PSNR SSIM Error distance (cm)
Ka = 5 Ka = 20 Average

LS 12.71± 1.29 0.19± 0.03 - - -
Scenario 1 U-Net 21.51± 0.24 0.93 5.68± 5.67 3.51± 3.50 4.59± 4.59

cGANs 31.77± 0.3 0.95 4.58± 4.50 1.96± 1.95 3.27± 3.27
LS 11.896± 1.09 0.232± 0.04 - - -

Scenario 2 U-Net 21.51± 0.17 0.94 5.27 3.64± 8.02 4.45± 4.01
cGANs 32.66± 0.24 0.95 7.99 +±8.9 7.89 7.94± 4.45

Table E.1: Average qualitative comparison of LS, U-Net and cGANs in terms of PSNR, SSIM and
scattering centroids error distance.

for the linear mapping (LS), the quality of the reconstruction drastically decays as S-averaging
increases. This happens despite the post-processing mechanisms performed (see Sec. 3) and
the quality of the data used for training - we also considered training different models for spe-
cific scenarios, i.e., S-averaging and number of active transmitters, but obtained similar results.
Consequently, it is reasonable to assume that it is extremely hard to find a direct linear map-
ping from the input radio map to the desired output. This further motivates the application
of machine learning to this problem. In fact, for U-Net and cGANs, we notice the opposite
behaviour, i.e., the larger S, the larger the PSNR obtained. In all scenarios the best results
are obtained using cGANs. The overall generalisation of the methods is compared by consider-
ing the average reconstruction results over all different signal configurations S ∈ [1, 100, 1000],
Ka ∈ [5, 20] and for the two different scenarios. Table E.1 contains the PSNR, SSIM and
average distance error of the predicted scattered objects4. The best results are highlighted.
Indeed, the average quantity of these metrics is consistent with what is explained above. More
interesting, though, is the error distance (in centimetres) between the central position of the
scattered objects and their reconstruction. For the original floor plan, these centres are the
middle point of each rectangle. In the reconstructed images, we obtain these central positions
by approximating polygons to the scatter. The cGANs exhibit the best performance in most of
the comparative analyses. It obtains the highest PSNRs and SSIM in both scenarios and the
smallest average distance for Scenario 1. Specifically, for Scenario 2, U-Net obtains smaller er-
ror distances among the true and the predicted position of the scatters. However, in real-world
space, this difference is almost negligible. An exemplary visual reconstruction for S = 100
is provided in Figure E.2(e)-(h) for both U-Net and cGANs. Finally, since LS provides little
information (see Figure E.2(c)-(d) for a visual comparison) on the reconstructed scenario, it
is impossible to perform any analysis on the error distance between the true location of the
scatters and their predicted locations.

4We do not denote the variance of the results when it is negligible.
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6 Conclusion
We have demonstrated a proof-of-concept that it is possible to learn an environmental scene
reconstruction using signals received at a LIS while it is performing communication. This
sensing procedure can be done in parallel and without interfering with the communication task.
We have shown that using both U-Net and cGANs it is possible to accurately (with less than
16 cm error) estimate the central position of the scatters present in the environment directly
from these image reconstructions. In future work, we plan to explore real-world environments
as well as explore the learning environment to enhance communication performance.
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Abstract
We introduce OnRMap, an online radio mapping (RMap) approach for the sensing and local-
ization of active users (AUs), devices that are transmitting radio signals, and passive elements
(PEs), elements that are in the environment and are illuminated by the AUs’ radio signals.
OnRMap processes the signals received by a large intelligent surface and produces a radio map
(RM) of the environment based on signal processing techniques. The method then senses and
locates the different elements without the need for offline scanning phases, which is important
for environments with spatial layouts that change frequently. Empirical results demonstrate that
OnRMap presents a higher localization accuracy than an offline method, but the price paid for
being an online method is a moderate reduction in the detection rate.

Keywords— Large intelligent surface (LIS), sensing, localization, radio mapping (RM).

1 Introduction
LIS is an important concept on the evolution path of wireless multi-antenna systems. It origi-
nally refers to a continuous electromagnetic surface able to transmit and receive radio waves [1].
In practice, a LIS is envisioned as a collection of closely-spaced antenna elements deployed across
a large 2D surface, which can be easily integrated into the propagation environment, e.g., placed
on walls or ceilings. In addition to its well-investigated communication capabilities [1, 2], LIS
also holds potential for radio sensing and localization [3], with applications in self-driving ve-
hicles, unmanned aerial vehicles, or autonomous robots. These use cases normally require the
construction of radio maps (RMs), whose process can exploit the RF signals emitted by the
wireless devices in the environment of interest, termed active users (AUs). Moreover, static
and/or dynamics objects that are not transmitting RF signals, termed passive elements (PEs),
can also be detected/sensed and located by exploiting the multipath components of the RF
signals transmitted by the AUs. We refer to radio mapping (RMap) as the process of obtaining
RMs, which is the main subject of this paper.

In [4, 5], the authors used a LIS to obtain RMs, treating the received signals at the LIS
as a digital image and creating an RMap method based on techniques from digital image
processing and computer vision. Despite the good detection performance of AUs and PEs,
digital image processing requires offline processing, which is not suitable for environments with
frequently-changing spatial layouts. Other previous RMap methods rely on the discretization
of outdoor [6] and indoor [7] static environments, evaluating the path between AUs and PEs in
a pixel-like manner. The critical problem with pixel-based approaches is that good detection
performance requires increased pixel granularity, resulting in exponential complexity. In con-
trast, the authors of [8, 9] used the related concept of radio tomographic imaging (RTI) that
allowed them to obtain an RM of moving PEs (humans) by imaging their attenuation in a wire-
less sensor network (WSN) comprised of fixed-located sensors in a square area. However, this
demands dedicated sensors, making it more expensive than methods that exploit widespread
wireless AUs.

This work proposes OnRMap, an online RMap approach based on classical signal processing
techniques. In contrast to [4, 5], OnRMap eliminates the need for offline scanning phases,
being more robust to dynamic environments at the cost of a reasonably lower detection rate in
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LoS

NLoS

AU k

n-th LIS element

PE 1

PE 2
axis

Fig. F.1: Indoor communication scenario with a LIS installed on the ceiling. The LOS (AU-to-LIS)
and non-line-of-sight (NLoS) (AU-to-PEs-to-LIS) rays from a single AU are depicted. PEs can be
different objects characterized by different parameters σr.

comparison to [4]. The numerical results indicate that OnRMap provides a higher localization
accuracy of the PEs.

2 System Model
Consider the indoor communication system within an enclosed room and where a LIS is placed
on the ceiling, as illustrated in Fig. F.1. The LIS covers the whole room beneath it and is
composed of a uniform planar array (UPA) containing N = Nx · Ny antenna elements equally
spaced by λ/2, where λ is the carrier wavelength. Within the room, there are R PEs and K
AUs.

2.1 Channel Model
Assume that when the K AUs transmit uplink (UL) signals, those impinge at the LIS either as
a result of LOS and/or as NLoS propagation. The latter occurs due to reflections of the trans-
mitted signals on the PEs present in the room. For mathematical tractability, we ignore the
NLoS components resulting from reflections on the wall and floor in the formulation; besides,
we assume one reflection per PE. Let hk ∈ CN×1 denote the channel vector of the k-th AU to
the LIS. Considering an indoor scenario, we use the spherical wavefront assumption and adopt
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the Saleh-Valenzuela model [10] with one ray per PE, where the n-th entry of hk is

hk,n = β0
k,ne−j 2π

λ
dk,n

︸ ︷︷ ︸
LoS

+
R∑

r=1

βr
k,ne−j 2π

λ
dr

k,n︸ ︷︷ ︸
NLoS

, (F.1)

where superscript [·]r denotes the r-th multipath component from a total of R +1 components;
specially, β0

k,n ∈ R+ denotes the LOS component. The Euclidean distance from the AU to the
n-th LIS antenna is denoted by d0

k,n, while dr
k,n denotes the distance of the n-th LIS’ element

to the r-th PE. The channel gain of the r-th multipath component can be modeled as [11]:

βr
k,n = λ

4π

√
σre−j∆ϕr,n

(dr
k + dr

k,n) (F.2)

with dr
k representing the distance between the k-th AU and the r-th PE, σr denoting the

reflection loss by the r-th PE, and ∆ϕr,n = 2π(dr
k + dr

k,n − d0
k,n)/λ is the phase difference

(Doppler shift) between the LOS and the r-th NLoS components. The parameter σr models
a random variable subject to conductivity, relative permittivity, and permeability of the PEs,
whose value can differ for different types of PEs.

3 Radio Mapping: An Overview
Suppose the channel estimation (CHEST) phase of a LIS system. The K AUs transmit using
K orthogonal pilots such that the received signal Y ∈ CN×K at the LIS is:

Y = pH + W, (F.3)

where p is the UL transmit power, which is assumed to be equal to all the AUs, H =
[h1, h2, . . . , hK ] ∈ CN×K is the channel matrix, and W ∈ CN×K is the receiver noise ma-
trix whose entries are independent and identically distributed (i.i.d.) according to CN (0, σ2

w).
To exploit Y for RMap, a spatial MF ĥ ∈ CNf ×1 was proposed in [4, 5], whose filter coefficients
are computed as:

ĥn = tne−j 2π
λ

dn , ∀n ∈ {1, . . . , Nf }, (F.4)

where tn is the n-th element of a weighting vector t ∈ R+
Nf ×1, e−j 2π

λ
dn defines a spherical wave

phase-matching component, adjusted to the Euclidean distance dn = (d2
x,n + d2

y,n + d2
z,n)1/2

between a reference (x, y, z) point in space and the n-th LIS antenna, and Nf ≤ N is the
number of taps of the filter. Let denote the k-th column of Y in Eq. (F.3) as Yk ∈ CNx×Ny

with yk = (Yk). We also let ĥ = [ĥ, 0] ∈ CN×1 be the MF after zero-padding according to
max (Nf , N). Then, the contribution Υk ∈ CNx×Ny to the primary RM from the k-th AU is
obtained as follows:

Υk = Ĥ⊗Yk, (F.5)
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Fig. F.2: RMs showing one drawback of the MF used in [4] in the indoor scenario specified in Appendix
8 with K = 9 AUs and R = 13 PEs, where Robj = 3 are metallic objects and Rhum = 10 are humans.
Left: ground-truth. Center : single-AU K = 1; Right: superposed K = 9 AUs. When the signals are
superposed, it is noticeable that PEs with higher reflection loss (humans w/ violet line) get occluded,
while the others (objects w/ green line) got enhanced.

where ĥ = (Ĥ). The primary RM Υ ∈ CNx×Ny is [4]:

Υ =

(
K∑

k=1

Yk

)
⊗Ĥ. (F.6)

When designing the filter, the authors of [4] considered the components dx,n and dy,n of dn to
be the distances of each n-th LIS element to the center of the room, while the focal height dz,n

is a parameter subject to design. Further processing can be cast over Υ to perform sensing
and localization.

We highlight two main drawbacks in the pre-processing from [4]. First, by using the com-
bination in Eq. (F.6), the orthogonality among the signals from different AUs is lost. Thisnon-
orthogonal superposition may incur loss of relevant information, as the PEs are being irradiated
from different angles. This can produce different Dopplers’ shifts, as indicated by Eq. (F.2),
which can in turn mitigate the contribution of the NLoS components of interest. In other words,
the contribution of the PEs can be overshadowed in the RMs. Second, the filter structure is
capable of matching the phase of the LOS components, but outputs some distortion, especially
in the neighborhood where the LOS ray impinges.

To illustrate the drawbacks, we consider the scenario described in Appendix 8, where we
have K = 9 AUs and R = 13 PEs with Robj = 3 of them being cylindrical metallic objects
and Rhum = 10 humans. Fig. F.2 contains (a) the ground truth RM, where the AUs are
represented by red crosses, while the PEs by the geometrical forms – metallic objects by the
circles and the humans by the rectangles – (b) the RM of a single AU; and (c) the RM of
the superposed signals from the K = 9 AUs. The MF filter used was the same as in [4], with
tn = 1/dn computed as in (F.4). Fig. F.2(b) exposes the effect of the distortion around the
LOS components with power as high as the rays reflected by PEs.From Fig. F.2(c), we see how
the metallic objects are highlighted while the humans get occluded, making it more difficult to
correctly detect the latter.
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Fig. F.3: OnRMap architecture.

4 OnRMap
Here we present OnRMap, an online RMap approach based on classical signal processing theory,
which removes the need for offline scanning phases from [4, 5]. We detail the four stages that
comprise OnRMap until we sense and locate the AUs and PEs, with an emphasis on the PEs,
which are the most challenging to be detected.

4.1 OnRMap: An Overview
OnRMap consists of four steps, illustrated in Fig. F.3.
Step 0. Signal Acquisition and Primary RM. In this initial step, we obtain the contributions
Υk from the AUs ∀k ∈ {1, 2, . . . , K} to the primary RM by filtering the signals Yk with the MF
given in Eq. (F.5). Different from [4] and based on the discussion made in Section 3, we empiri-
cally chose the weight vector t using a two dimensional (2-D) Taylor window [12]. This selection
was motivated by the empirical reduction of filtering distortion and numerical improvement in
the ratio between the NLoS components. The output of this step is the matrix Ῡ ∈ RN×K

containing the K primary RMs stacked in columns, i.e., Ῡ = [|(Υ1)|, |(Υ2)|, . . . |(ΥK)|], where
| · | here denotes element-wise absolute value.
Step 1. Estimation of the LOS and NLoS Components. Through this step, the primary RM
in Ῡ is the input to the robust principal component analysis (RPCA) algorithm [13], which
outputs the matrices ˆ̄ΥLoS and ˆ̄ΥNLoS corresponding to the estimations of the LOS and NLoS
components of Ῡ, respectively. We employ this method based on the observation that the NLoS
components have similarities among themselves, e.g., the range of the power gain and location.
In contrast, LOS components are a few data points with high power gains that are normally
far apart. Hence, we can interpret the NLoS components to be low-rank components of Ῡ,
whereas the LOS elements are sparse. Thus, RPCA becomes useful, since it is a low-complexity
method for estimating the low-rank components of a matrix. Based on the special focus on
sensing and locating the PEs, this block outputs the low-rank estimation, Υ̃NLoS ∈ RNy×Nx .
Step 2. Separation of the NLoS Components. This step translates the NLoS estimation from
the previous step into data points for the inference step. To do so, we input (Υ̃NLoS) in k-
means clustering [14], which separates the data in two clusters that represent foreground (high
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power) and background (low power) classes differentiated by their power levels. The foreground
forms shapes in the 2-D space and their perimeters are estimated with the Moore-Neighbor
boundaries estimation algorithm [15]. The points that enclose the perimeters are stored in
subsets that compound the set B and the total power levels each shape comprises in Υ̃NLoS are
stored in the set E , constituting the output of this step.
Step 3. Sensing and Localization Inference. In this final block, we use the data in B and E
to infer whether each subset in B is a type of PE or just noise. If it is a PE, we can further
identify which type of object it is, e.g., a human or a metallic object, and their positions are
also inferred. To do so, we employ Density-based spatial clustering of applications with noise
(DBSCAN) clustering method [16] to cluster the data in B based on the distance between
samples. It is also assigned to each cluster its total power by looking at the set E . The
classification of each cluster on which type of PE (metallic object or human) follows a decision
rule based on the power each cluster has, that is, lower and upper bounds are defined, and
the clusters that fit in between are considered humans, those above are considered as objects,
while the rest is noise.

4.2 OnRMap: Detailed Description
Below, we give further details on the other steps apart from Step 0, which was already detailed
in (F.5).

Estimation of the LoS and NLoS Components

RPCA solves the following optimization problem [13]:

min ∥L∥∗ + λRPCA∥S∥1

s.t. L + S = M, (F.7)

where M is the observation matrix, L and S are estimations of the low-rank and sparse compo-
nents of M, respectively, ∥ · ∥∗ and ∥ · ∥1 are the nuclear and ℓ1 norm of a matrix, respectively,
and λRPCA is a scalar. In our case, from Step 0 we have the matrix Ῡ ∈ RK×N , which is
obtained by stacking and normalizing the (Υk), ∀k ∈ {1, 2, . . . , K}. Then, we decompose it as:

Ῡ = ῩNLoS + ῩLoS. (F.8)

Define ˆ̄ΥNLoS and ˆ̄ΥLoS as estimations of ῩNLoS and ῩLoS, respectively. Then, substituting
in Eq. (F.7), we have

min ∥ ˆ̄Υ
NLoS

∥∗ + λRPCA∥ ˆ̄ΥLoS∥1

s.t. ˆ̄ΥNLoS + ˆ̄ΥLoS = Ῡ, (F.9)

placing the separation of LOS and NLoS components as equivalent to the optimization problem
in (F.7). The output of the algorithm ˆ̄ΥNLoS ∈ RK×N is summed row-wise and reshaped to
Υ̃NLoS ∈ RNy×Nx ; the same for the LOS-related matrix.
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Fig. F.4: RPCA output. Left: low-rank matrix ˆ̄ΥNLoS denoting the NLoS components. Right: sparse
matrix ˆ̄ΥLoS denoting the LOS components. We set the parameter λRPCA = 3N−1/2 based on [13]
and experimentation.

To illustrate how well RPCA performs, Fig. F.4 shows the recovered low-rank (left) and
sparse matrix (right). As can be seen, RPCA can estimate satisfactorily the NLoS (left) and
LOS (right) components. On the other hand, we can point out two disadvantages of this
technique. First, although there is a reference value for λRPCA, it may have to be tuned
according to the scenario. Second, the problem of estimating low-rank and sparse components
of matrices is NP-hard. RPCA solves a convex relaxed problem, incurring some information
loss. However, most of the time, this method estimates satisfactory the components within less
than twenty iterations. Despite that, for some realizations, part of the PEs was outputted in
the sparse (LOS) component.

Separation of the NLoS Components

First, let’s define the binary k-means clustering operation as K : RN×1 7→ {0, 1}N×1. Then,
we perform entry-wise (Υkm) = K((Υ̃NLoS)), with Υkm ∈ {0, 1}Ny×Nx being the matrix with
the class of each data point in Υ̃NLoS. In particular, we name class 0 as background containing
points with null to very low power and class 1 as foreground containing components above
a certain power threshold. We illustrate the output of the k-means Υkm on the left side of
Fig. F.5. Note the creation of certain regions that can be interpreted as geometrical shapes.
Visually inspecting and comparing the shapes with the ground truth in Fig. F.2(a), we can
infer that components that represent the metallic objects are more likely to be clustered in a
larger and denser area, while the humans’ ones are smaller and sparser.

Based on the last observation, we employ the Moore-Neighbor boundaries estimation al-
gorithm [15] to leverage these regions to detect the PEs. The boundary estimation algorithm
works in the following way. First, a random point with value ’1’ (foreground) in Υkm is picked
up, it is then defined as a central point, and its eight-point neighborhood values are checked.
Then, the neighbors that have value ’1’ to this central point are considered to be in the same
region as the central point. The algorithm continues by looking for other points considering the
neighborhood of the newly found points. Finally, a shape is defined when there are no other
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Fig. F.5: Graphic representation of left: the output of the binary k-means clustering, Υkm and right:
the estimated boundaries set B obtained via Moore-Neighbor boundaries estimation.

points left with the value ’1’ around the perimeter, where the outermost points are retrieved
as a perimeter. Both perimeter and internal points are defined by (x, y) tuples representing
the column and row in which they are allocated in the Υkm matrix. The perimeter points are
assigned to a subset Bs ⊂ B and all the points that define a shape in As ⊂ A, where s indexes
a shape. Then, we associate a value Es to each region s depicting the total power level within
that region, which is calculated as:

Es =
∑
i∈As

(
Υ̃NLoS[xi, yi]

)2
. (F.10)

The values Es’s are further stored in the set E . The boundaries for this scenario can be seen
on the right side of Fig. F.5.

Sensing and Localization Inference

This block receives the sets B and E and does the inference process. First, the data is clustered
with DBSCAN [16]. This method randomly chooses a core point by observing the data in B
and maps the neighborhood subject to minPts and ϵ constraint parameters, representing the
minimum number of points in a cluster and the search radius, respectively. Starting from the
core point, the algorithm calculates the distances to all points in the data and assigns as a
cluster those that satisfy the parameter constraints. The process is repeated until all the data
have been clustered. Points that are sparsely distributed are considered noise. The indexes of
the shapes that compound each cluster are assigned to the i-th cluster Ii ⊂ I that maps both
B and E sets.

We perform a test of the described algorithm on the illustrative scenario in Appendix 8
with minPts = 2 and ϵ = 2. The algorithm outputs 63 identified clusters, which is much
higher than the true number of PEs in the environment. To overcome an excessive number of
clusters, we exploit the lower reflection loss of metal objects than humans, |σr|≪|σr′ |, so we
can infer that clusters with high power are objects, while clusters with low powers are noise or
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Inferred Ground truth

Fig. F.6: Inference step of OnRmap. Left: identified clusters by DBSCAN. The colors represent each
cluster; the large ones are more likely to represent PEs, while the clusters with very few elements are
likely noise. Right: inferred positions comparison against ground truth.

background distortion; consequently, clusters in the middle represent human positions. Thus,
the i-th cluster is considered to be of a human class if it satisfies the following rule over E :

D(i) =

{
1, if thmin <

∑
s∈Ii

Es ≤ thmax,

0, otherwise.
(F.11)

where thmin and thmax are the minimum and maximum threshold parameters, respectively.
If the cluster passes the threshold rule, then the cluster centroid is stored in a new set of
detected humans H.

To evaluate how reasonable the inference is, we let a ∈ R+Rhum×1 be the vector containing
the differences between the inferred and the ground truth localization of the humans, giving
the localization accuracy per human. Its r-th entry is calculated as:

ar = min
({

∥Hj − Hgt
r ∥ < dth, j = 1, 2, . . . ,|H|

})
, (F.12)

where Hj denotes the j-th element of H and Hgt is the set of ground-truth humans with
the r-th element denoted as Hgt

r and whose cardinality is |Hgt| = Rhum. Furthermore, ∥ ·
∥ is the Euclidean norm. We adopt as dth = 1m the distance threshold for detection via
experimentation. The value of the accuracy ar can be null in case the distance is higher than
the one defined by the threshold; in this case, we assume ar = 0. We define the localization
accuracy, LA, and the detection rate, DR, as:

LA = 1
Rhum

Rhum∑
i=1

ai, and DR = 1
Rhum

Rhum∑
i=1

⊮(ai > 0), (F.13)

where ⊮ is the indicator function.
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Fig. F.7: Exemplary application of OnRMap in the simulation environment from [4]. In Step 4: ⋆ is
inferred position and ■ ground-truth.

By empirically setting set thmin = 0.03 1
S

∑
E and thmax = 0.8 max(E), Fig. F.6 shows how

the data were clustered for the illustrative example of Appendix 8. Overall, it was identified
67 clusters, where three have very high energy, corresponding to the metallic objects, ten with
low to medium energy, corresponding to humans, and the rest with shallow energy, considered
noise. To visually assess the quality of the results, we re-plot on the right side of the figure the
ground truth points together with the inferred points. The algorithm was capable of inferring
the human’s positions with localization accuracy from 0.1m (best case) to 0.62m (worst case)
and the average of 0.22m in this single realization. The overall complexity of the method, in
terms of Big-O is upper bounded by O(N2(Nf + K2 + Ik−means + 2)), where Ik−means is the
number of iterations to the convergence of k-means, which is typical 10 to 20.

5 Numerical results
We now evaluate the effectiveness of OnRMap and compare it with the previous works [4, 5].
For a better evaluation, we consider a more complex indoor scenario as provided by Feko by
Altair Engineering ray tracing, as used in [4]. Different from the system model and toy example
presented, this scenario includes more reflections from the PEs and reflections from the ground
and walls. Despite that, the other parameters are the same as in Appendix 8 with Robj = 3
metallic objects and Rhum = 10 humans. Throughout this section, we focus on showing results
for human detection since the detection of AUs and metallic objects is less challenging.

We start by illustrating a step-by-step realization of OnRMap in Fig. F.7 with K = 20 AUs.
From the figure, we can note that OnRMap can perform well even in this more unfavorable
scenario, given the increase in multipath components. In Fig. F.8, we better evaluate the
performance of OnRMap by considering 1000 Monte Carlo simulations (MCSs). Fig. F.8a
shows the average localization accuracy and the average detection rate of the humans when
considering different numbers of AUs. We compare these results with the ones presented in [4].
The trade-off in the comparison is that we can achieve higher localization accuracy for all
numbers of AU configurations (K) at the cost of lower detection rates on average. It is possible
to point out two causes of the lower detection performance compared to [4]. First, some
information of the signals is filtered after RPCA and does not enter in the inference process, as
opposed to [4] that treats the signals from all AUs. Second, when the boundaries among PEs
from different classes are too close, DBSCAN classifies them as one cluster and the decision
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Fig. F.8: Performance evaluation for the sensing (detection) and localization of Rhum = 10 humans
(PEs).

rule considers both as just one type of PE. These are considered the costs of the proposed
online method in view of the offline approach. The lack of a priori information to compensate
static PEs as in [4], compromises the DR to some extent. However, we argue that the high
applicability and the significant improvement in the overall LA justify the novelty of this work.

To better understand the impact of the number of AUs in the detection rate, Fig. F.8b
shows the complementary cumulative distribution function (CCDF) of the detection in terms of
the number of correctly detected humans for different numbers of AUs K. Note that the effect
of increasing K is to lower the variance on how many humans Rhum we can detect. However,
the opposite occurs at the points of nine to ten correctly detected humans, highlighted in Fig.
F.8b. For K = 20, the probability of a perfect detection (ten humans) is 0.4%, and when K = 5
it achieves 3.2%. A reason for this is that higher K implies more signals reflecting on PEs that
can be possibly distributed next to the center of the room, while the PEs next to the walls are
less exposed, and those reflections start to be interpreted as background (distortion/noise) by
the method.
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6 Conclusions
In this paper, we proposed OnRMap, an online method for sensing and localization in indoor
environments equipped with LIS systems. The greatest advantages of OnRMap are due to the
fact that it is based on signal processing techniques, making it an online method, that is, it
does not rely on offline scanning phases. This makes the method more robust for applications
where the environment is constantly changing. However, the online feature comes with the
cost of an average lower detection rate. But even so, OnRMap turns out to have a fairly good
location accuracy. Future works may improve the design of OnRMap to cover the observed
weakness and better study its performance. Moreover, the study of methods that overcome
the major drawback of having the LIS covering the whole room.
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8 Appendix: An Illustrative Indoor Scenario
The parameters of the simulation scenario are summarized in Table F.1. Note that we consider
a scenario with two types of PEs: i) Robj = 3 cylindrical metal objects with polished surfaces
σr ∼ U [−10, −15] dB and Rhum = 10 humans σr′ ∼ U [−30, −75] dB, totaling R = 13 PEs.
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Abstract
We leverage standards-compliant beam training measurements from commercial-of-the-shelf (COTS)
802.11ad/ay devices for localization of a moving object. Two technical challenges need to be
addressed: (1) the beam training measurements are intermittent due to beam scanning overhead
control and contention-based channel-time allocation, and (2) how to exploit underlying object
dynamics to assist the localization. To this end, we formulate the trajectory estimation as a
sequence regression problem. We propose a dual-decoder neural dynamic learning framework
to simultaneously reconstruct Wi-Fi beam training measurements at irregular time instances
and learn the unknown dynamics over the latent space in a continuous-time fashion by enforc-
ing strong supervision at both the coordinate and measurement levels. The proposed method
was evaluated on an in-house mmWave Wi-Fi dataset and compared with a range of baseline
methods, including traditional machine learning methods and recurrent neural networks.

1 Introduction
Wi-Fi fingerprinting is one of the popular approaches for indoor localization, driven by open
firmware releases, WLAN domain knowledge for waveform calibration and preprocessing, as
well as recent advances in deep learning-based feature extraction [1–3].

With commercial-of-the-shelf (COTS) Wi-Fi devices, one can fingerprint the following Wi-
Fi measurements:

• coarse-grained received signal strength indicator (RSSI) [4];
• mid-grained beam training measurements at 60 GHz [5–11]
• fine-grained channel state information (CSI) at sub-7 GHz [12–15];

Refer to [10, Section II] for detailed discussions on all three types of Wi-Fi channel measure-
ments. Traditional machine learning and advanced deep learning methods have been applied
to all Wi-Fi fingerprinted measurements [16–21]. For instance, DeepFi exploits 90 CSI ampli-
tudes from all the subcarriers at three antennas for feature extraction using an autoencoder
architecture [12, 22]. More recently, a pretrained fusion network between the CSI at sub-7
GHz and the beam training measurements at 60 GHz was proposed for both localization and
device-free sensing tasks [10]. Nevertheless, the majority of these approaches are frame-based;
that is, the coordinate is inferred from the current Wi-Fi frame, without integration of past
measurements or previous trajectory history.

On the other hand, sequence-based approaches take consecutive Wi-Fi frames as the input,
and state estimation (e.g, Kalman filter-like approaches [23, 24]) and recurrent neural networks
(e.g., GRU and LSTM [25]) can be applied for trajectory estimation with the RSSI [21] and CSI
[26] at sub-7 GHz. However, the sequence-based formulation has NOT been applied to mmWave
Wi-Fi localization due to the intermittent nature of the mid-grained beam measurement:

1) Low beam training rate: In Fig. G.1, during the beacon header interval (BHI),
mmWave Wi-Fi of 802.11ad/ay uses directional beacons for sector level sweep (SLS) to train
both initiator/responder beampatterns for subsequent data transmission. This mandatory
beam training results in significant overhead to the Wi-Fi network and it is desired to limit the
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Fig. G.1: Beam training measurements (Beam SNRs) during the mandatory Sector Level Sweep (SLS)
in 802.11ad/ay standards.

number of directional beampatterns within a beacon and the total number of beacons, resulting
in sparsely sampled beam measurements than Wi-Fi at sub-7 GHz.

2) Irregular sample intervals: Consider a scenario where the access point (AP) is the ini-
tiator and the users are responders. When the responder trains its (transmitting or receiving)
beampatterns, a sequence of M sector sweep (SSW) frames is sent via different beampat-
terns to the initiator and the initiator can compute M corresponding SNRs, b1, b2, · · · , bM ,
within a responder channel time. When multiple users exist, each user needs to contend the
next responder channel time and one contending user is randomly selected. As a result, the
contention-based channel access results in irregularly beam SNR measurements at AP for a
given user.

To address the above challenges and inspired by recent advances in neural ordinary dif-
ferential equation (NODE) [27], this paper proposes a dual-decoder neural dynamic learning
framework that learns a consistent ODE, via strong supervisions from both coordinate and
measurements levels at two separate decoders, to describe unknown, continuous-time latent
dynamics of the intermittently-sampled mmWave Wi-Fi measurements. Compared with the
original single-decoder NODE, we show that the additional supervision at the coordinate level
leads to strong performance gain. The proposed method was evaluated on an in-house mmWave
Wi-Fi dataset and compared with a range of baseline methods.
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Fig. G.2: Dual-Decoder Neural Dynamic Learning framework.

2 Problem Formulation
We formulate the indoor localization as a sequence regression of beam training measurements
within a period of ∆Tw seconds for trajectory estimation. Specifically, stacking the M beam
SNRs during one responder channel time ti as bi = [b1, b2, ..., bM ]T ∈ RM×1, the problem
of interest is to utilize beam SNR measurements {bi}N

i=0 at time steps {ti}N
i=0 with irregular

sample intervals to localize the object,

{bi, ti}N
i=0 → {ci}N

i=0, s.t. ∆ti = ti − ti−1 ̸= ∆ti+1 (G.1)

where ci = [xi, yi]T consists of corresponding two-dimensional coordinates (xi, yi) at ti. This
is illustrated in Fig. G.2 where the trajectory estimation is to convert the set of beam SNRs
{bi}N

i=0 at intermittently-sampled steps {ti}N
i=0 (shown in the left bottom part) to the set of

{ci}N
i=0 over a continuous trajectory (shown in the right bottom part).

3 Dual-Decoder Neural Dynamic Learning
We frame our method as a latent-variable model, that we denominate as dual-decoder neural
dynamic (DDND). We present our framework in Fig. G.2. Corresponding Fig. G.2 from left
to right, in the subsequent sections, we introduce the encoder structure for successive {bi}N

i=0
sequences, the process of learning the latent trajectory, and the learning method empowered
by strong supervision to enhance the continuous trajectory learning.

Notation: θ denotes the learnable parameters in neural networks. For simplicity, we use
θe to denote the joint parameters of all the networks comprising the encoder. We use θoe and
θod to denote the parameters of the networks comprising the encoder and decoder ODE parts,
respectively. We also use θr, θm, θb and θc to denote the parameters of the Recurrent Neural
Network (RNN), the MLP that outputs the mean and standard deviation of the encoded signal,
and the two linear decoders. S denotes an arbitrary ODE solver.
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3.1 Waveform Temporal Information Encoding
Denote a sequence of beamSNR measurements within ∆Tw as {bi}N

i=0 ∈ RN×B and its cor-
responding coordinates {ci}N

i=0 ∈ RN×2. We present the input as a temporal sequence to
encode the underlying dynamics of the variation of the mmWave Wi-Fi signal with regard to
the physical trajectory. We obtain the encoded temporal information of every measurement by
forwarding the described temporal inputs through an ODE-RNN network [27]. The ODE and
RNN blocks are modeled as neural networks Oθe (.) and Rθe (.), respectively. When forwarding
a beamSNR temporal sequence, we reverse the time sequence from tN to t0. In this way, the
encoder network learns the approximate posterior at time t0. These Neural ODE [28] blocks
are used in the encoder network to model the evolution of the hidden states h ∈ RE , where E
denotes the dimension of the hidden states. This behavior is modeled in a continuous fashion
h(t), as a solution to an ODE initial-value problem:

dh(t)
dt

= Oθoe
(h(t), t), (G.2)

Oθoe
(.) defines the time-reversed evolution of the observed beamSNR states as the solution of

an ODE:
h′

i−1 = S(Oθoe
, hi, (ti, ti−1)), (G.3)

then, the hidden state is updated for each observation as a standard RNN update:

hi−1 = Rθr (h′
i−1, bi−1). (G.4)

In our approach, we want to characterize z0 that represents the latent initial state of the encoded
trajectory. For that purpose, the mean and the standard deviation of the approximate time-
reversed posterior qθoe

(z0|{bi, ti}0
i=N ) are a function of the final hidden state of the encoder:

qθe (z0|{bi, ti}0
i=N ) = N (µz0 , σz0 ), (G.5)

where
µz0 , σz0 = Mθm (Oθoe

({bi, ti}0
i=N )), (G.6)

where Mθm (.) is a neural network translating the last hidden state of the encoder into the
mean and variance of the latent initial state z0.

3.2 Latent Dynamics
Once estimating the approximate posterior qθe (z0|{bi, ti}0

i=N ), the beamSNR variable-length
input sequence {bi}N

i=0 is encoded into a fixed-dimensional latent space embedding z ∈ RL,
where L denotes the dimension of the latent space. The latent trajectory is obtained by first
sampling z0 ∼ qθe (z0|{bi, ti}0

i=N ) from the estimated posterior. Then, on the decoder side,
another ODE Oθod

is modeled as a neural network. During the training, Oθod
will learn the

latent trajectory dynamics that relate the variation of the signal and the physical trajectory
while during the forward pass, it will query the latent trajectory at the specified time instants.
For these matters, z0 is used as the initial value for the ODE solver on the decoder side:

z0, ..., zN = z0 +
∫ tN

t0

Oθod
(zt, t)dt = S(Oθod

, z0, (t0, ..., tN )). (G.7)
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Up to this part, the beamSNR input sequence has been decoded into the latent trajectory
{bi}N

i=0 → {zi}N
i=0.

3.3 Dual Decoder
In order to guarantee a suitable latent trajectory learning dynamics, we propose to condition the
learning by including two linear decoders in the decoder side: waveform reconstruction Bθb (.),
and trajectory regression Cθc (.). These two heads will take as input the latent trajectory, in
order to perform the reconstruction of the input signal

b̂i = Bθb (zi) = Wbzi + vb, (G.8)

and its corresponding trajectory regression

ĉi = Cθc (zi) = Wczi + vc, (G.9)

where Wb, Wc denotes the weight matrices and vb, vc the bias vectors, respectively. Note
that the input for both decoder heads is the predicted latent trajectory by the decoder ODE.
Also, the proposed decoders use shared weights for the input sequences. In this way, we are
imposing strong supervision for every time instant in the latent trajectory by using the real
trajectory and the variation of the signal as conditions to modify the learning dynamics of the
latent trajectory. This leads to an enhancement in learning the continuous dynamics of the
trajectory from the latent space.

3.4 Dual-Decoder Neural Dynamic Loss
We propose to train in an end-to-end encoder-decoder structure to minimize the dual-decoder
loss which is given by

L =

[
α∥ĉ0 − c0∥1 + 1

N

N∑
i=1

∥ĉi − ci∥1

]
+ β

[
1
N

N∑
i=0

∥b̂i − bi∥1

]
(G.10)

where the first term corresponds to the trajectory regression, and the second term to the wave-
form reconstruction. We also have two hyperparameters α and β to balance their importance
during the learning. In the first term, we are weighting the first coordinate of the trajectory on
its own with the α factor. This is done to enhance the trajectory learning, as we are solving an
ODE initial-value problem, being the first point of the trajectory determinant for the trajectory
regression.

3.5 Complexity Analysis
The time complexity of an ODE-RNN depends on the number of hidden units in the recurrent
layer H and the number of time steps in the input sequence T . Then, the time complexity of
the forward pass of the ODE-RNN can be approximated as O(T H2). Similarly, for the linear
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layers, an input dimension N and an output dimension M will be expressed as O(NM + M).
In this way, our proposed framework has approximately a time complexity:

O
(
T (H2

e + H2
d + (L + 1)(B + C))

)
, (G.11)

where the sub-indexes represent the encoder and decoder ODEs, respectively, L is the dimension
of the latent space, and B and C are the dimensions of the output linear decoders, respectively.

Remark: Recurrent Neural Networks (RNNs) are not the best solution to learning irregularly-
sampled dynamics. Although some tricks have been performed to address this problem, such
as inputting the time difference information as a feature or computing an exponential decay
between observations [29], they are still not modeling the underline continuous dynamic of an
irregular time series data. This highlights the difficulty of intermittent-sampled data. That is
why we propose this end-to-end structure that first tries to encode the continuous dynamics
of the signal along the trajectory into a latent distribution. This latent distribution represents
the encoded dynamics of the motion up to the first location of the trajectory, regardless of
the intermittency due to the NODE. Modeling ODEs as neural networks in both the encoder
and the decoder side enables learning the continuous behavior of the data and provides great
flexibility to design the decoder side.

4 Performance Evaluation
In the following, we present a performance evaluation using real-world mmWave Wi-Fi data
from COTS 802.11ad devices.

4.1 mmWave Wi-Fi Localization Dataset
We use 802.11ad-compliant TP-Link Talon AD7200 routers to collect beam SNRs at 60 GHz [30].
A small in-house mmWave Wi-Fi dataset for moving object localization is collected with one
router placed on a fixed stand and the other on a TurtleBot as the moving object. The Turtle-
Bot is equipped with a LiDAR and wheel encoder for mapping and gathering location labels.
For each responder channel time ti, the Talon AD7200 router uses 36 directional beampatterns
to train the beam, and, hence, we have M = 36 for b.

4.2 Implementation
We use a sequence time window of ∆Tw = 5 seconds to group the raw mmWave Wi-Fi beam
SNR dataset into sequences with varying numbers of samples, due to the irregular sampling of
the beam SNR. We split the sequences into training, validation, and test sets, respectively, with
a ratio of [0.8, 0.1, 0.1]. We also standardize each entry bm in the beam SNR by subtracting the
mean and normalizing it with the standard deviation. The time vector {ti}N

i=0 within each ∆Tw

is normalized into [0, 1]. We implement the proposed method in the Pytorch framework with
a hidden state dimension of E = 20 and a latent dimension of L = 20. We use the 5th-order
Runge-Kutta ODE solver for the decoder. We train the network using the Adamax optimizer
with a learning rate of 0.01 and no weight decay. The model is trained with a mini-batch size
of 32 sequences, and the loss weighting terms are α = 0.5 and β = 0.1.
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(a) (b) (c) (d)

Fig. G.3: Visualization of trajectory estimation over selected test sequences: (a) SVR (b) RNN
Expdecay (c) RNN ∆t (d) DDND

Fig. G.4: Cumulative distribution function (CDF) of localization errors.

4.3 Comparison to Baseline Methods
We evaluate the following baseline methods and variants of our framework for the ablation
study:

• Frame-based: 1) support vector regressor (SVR); 2) A fully connected neural network
regressor (FCNNR);

• Sequence-based: 3) An RNN with exponential decay; 4) RNN with ∆ti attached to the
beam SNR;

• Variants of the proposed framework: 5) single-decoder neural dynamic (SDND); 6)
DDND with KL divergence (DDND+KL); 7) DDND without KL divergence (DDND).

For the frame-based methods (i.e., 1) and 2)), the coordinate is estimated only from the current
frame. The sequenced-based baseline methods (i.e., 3) and 4)) are standard RNNs with the
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following modifications to handle the irregularly sampled beam SNRs. For the RNN with
exponential decay, it applies an exponential decay from one hidden state to the next h′

i =
e−∆ti hi. For the RNN ∆t, the input is the concatenation of the beam SNR bi and the
sample interval ∆ti. For 5), we first design a single head decoder model without the waveform
reconstruction Bθd (.) decoder, while, for 6), we include an additional KL divergence term to
our loss function of (G.10). The localization error is computed as the root mean-squared errors
(RMSE) between the estimated ĉ and the ground truth c.

Fig.G.3 shows the estimated trajectories over test sequences for selected methods. For the
frame-based SVR method, the point-like coordinate estimates are scattered within the square
trajectory in Fig.G.3 (a). This is slightly improved by the sequence-based RNN expdecay
method in Fig.G.3 (b) and RNN ∆t in Fig.G.3 (c) as more trajectory estimates are pushing
towards the square trajectory. By comparing Fig.G.3 (d) to Fig.G.3 (a)-(c), it is clear to see
that the proposed DDND is able to learn the underlying dynamics and have more clustered
trajectory estimates around the true square trajectory.

Fig.G.4 compares the baseline methods against the proposed solution in terms of the cumu-
lative distribution function (CDF) of the localization error. It shows that proper learning and
modeling of the latent dynamics and trajectory motion of the moving object from irregularly-
sampled Wi-Fi data can improve the localization performance over the frame-based and tra-
ditional sequence-based methods. The proposed method and its variants (5), 6) and 6)) are
seen to have significantly fewer large localization errors in Fig.G.4. For instance, the proposed
DDND method has 10% fewer localization errors that are larger than 0.6 m than all baseline
methods.

Table G.1 further summarizes quantitative performance in terms of the mean, median,
and location error corresponding to the 90th percentile of the CDF. It further confirms that
the proposed DDND can better deal with the irregularly sampled beam SNRs and model the
underlying dynamics of the latent space in a continuous-time fashion. Compared with the
modified RNN methods, the DDND method almost reduces the localization error by half for
all three performance metrics.

Table G.1: Localization errors (m) on beamSNR localization dataset.

Mean Median CDF@0.9

SVR 0.42 0.15 1.05
FCNNR 0.46 0.11 1.43

RNN Expdecay 0.40 0.18 1.12
RNN ∆t 0.33 0.13 1.09

SDND (ours) 0.34 0.11 0.88
DDND+KL (ours) 0.26 0.11 0.74
DDND (ours) 0.17 0.09 0.52
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5 Conclusion
This paper tackles the problem of intermittently-sampled mmWave Wi-Fi beam training mea-
surements for localization. Specifically, we proposed the dual-decoder neural dynamic frame-
work that learns the continuous inherent latent dynamics. Performance comparison confirms
the performance gain of the proposed method. We plan to scale up the mmWave Wi-Fi dataset
by including localization scenarios over multiple trajectories, considering the usage of multiple
devices as well as the fusion of multi-band measurement features.
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Abstract
In this paper, we leverage standard-compliant beam training measurements from commercial
millimeter-wave (mmWave) Wi-Fi communication devices for object localization and, specifi-
cally, continuous trajectory estimation and prediction. The main challenge is that the sampling
of beam training measurements is intermittent, due to the beam scanning overhead and the
uncertainty of the transmission instant caused by the contention over the wireless channel. In
order to cope with this intermittency, we devise a method to assist the localization by exploiting
the underlying object dynamics. The method consists of a dual-decoder neural dynamic learning
framework that reconstructs Wi-Fi beam training measurements at irregular time intervals and
learns the unknown latent dynamics in a continuous-time fashion powered by the use of an
ordinary differential equation (ODE). Utilizing the variational autoencoder (VAE) framework,
we have derived a modified evidence lower bound (ELBO) loss function for the dual-decoder
architecture that balances the unsupervised waveform reconstruction and supervised coordinate
estimation tasks. To evaluate the proposed method, we build an in-house testbed consisting
of commercial 802.11ad routers, with a TurtleBot as a mobile user, and collect a real-world
mmWave Wi-Fi beam training dataset. Our results demonstrate substantial performance im-
provements over a list of baseline methods, further validated through an extensive ablation
study1.

Keywords— WLAN sensing, Wi-Fi, 802.11ad/ay, 802.11bf, localization, fingerprinting,
beam training, dynamic learning.

1 Introduction
Wi-Fi sensing has been an integral part of emerging integrated sensing and communications
(ISAC), as corroborated by the establishment of a new 802.11bf WLAN Sensing task group
for robust and reliable sensing in September 2020. It aims to make greater use of 802.11
Wi-Fi signals for reliable and secure wireless sensing towards new industrial and commercial
applications in home security, entertainment, energy management (HVAC, light, device power
savings), elderly care, and assisted living.

The scope of 802.11bf covers both sub-7 GHz and millimeter (mmWave) Wi-Fi sensing
above 45 GHz, built on 802.11g/n/ac/ax/be and, respectively, 802.11ad/ay standards. For the
mmWave Wi-Fi sensing or Directional Multi-Gigabit (DMG) sensing, the new 802.11bf opens
up possibilities of reusing beam training measurements for sensing applications. Our work is to
leverage such sensing-supported beam training measurement for indoor localization of moving
objects such as a robot or a mobile user; see an illustration in Fig. H.1.

Along with coarse-grained received signal strength indicator (RSSI) [2–5] and fine-grained
channel state information (CSI) at sub-7 GHz [6–14], mid-grained mmWave beam training
measurements have been previously explored in [15–23]2. Most of existing approaches are
frame-based. That is, the object location is inferred from the current Wi-Fi frame, without

1Part of this paper was presented on ICASSP 2023 [1]
2Please refer to [21, Section II] for detailed discussions on all three types of Wi-Fi channel measure-

ments.
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Fig. H.1: Trajectory estimation of moving objects using mmWave Wi-Fi beam training measurements.

integration of past measurements or previous trajectory history. For the frame-based setting,
traditional machine learning and advanced deep learning methods have been applied to all
Wi-Fi fingerprinted measurements [2, 5, 24–27]. For instance, the k-nearest neighbor (kNN),
support vector machine (SVM), and decision trees (DT) were applied to the RSSI-based fin-
gerprinting method [2, 3]. DeepFi exploits 90 CSI amplitudes from all the subcarriers at three
antennas for feature extraction using an autoencoder architecture [6, 7]. More recently, a pre-
trained fusion network between the CSI at sub-7 GHz and the beam training measurements at
60 GHz was proposed for both localization and device-free sensing tasks [21].

On the other hand, sequence-based approaches take consecutive Wi-Fi frames as the input,
and state estimation (e.g, Kalman filter-like approaches [28, 29]) and recurrent neural networks
(e.g., GRU and LSTM [30]) can be applied for trajectory estimation with the RSSI and CSI
[5, 9–12] at sub-7 GHz; More detailed discussion on sequence-based solutions in Section. 2.
However, the sequence-based formulation has NOT been applied to mmWave Wi-Fi beam
training measurements due to the following fundamental technical challenges:

1) Low beam training rate: mmWave Wi-Fi such as 802.11ad/ay organizes access to the
medium in beacon intervals (BIs), usually in the order of 100ms. A unique feature of mmWave
Wi-Fi at 60 GHz is the use of directional beamforming to compensate for path loss and identify
unassociated stations at a further distance. As shown in Fig. H.2, a BI consists of two main
access periods: beacon header interval (BHI) and data transmission interval (DTI). While DTI
is mainly used for data transmission, mmWave Wi-Fi (802.11ad/ay) devices are required to
perform beam training during the BHI to initiate the data transmission. The BHI is further
subdivided into three sub-intervals: beacon transmission interval (BTI), association beamform-
ing training (A-BFT), and announcement transmission interval (ATI) for management frame
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Fig. H.2: MmWave Wi-Fi beam training protocol during the mandatory beacon transmission interval
(BTI) and association beamforming training (A-BFT) in 802.11ad/ay standards.

exchange between the AP and beam-trained stations.
During the BTI sub-interval, an access point (AP) sends directional beacon frames to train

its transmission sector-level beampatterns, also referred to as the downlink BTI beam training.
Multiple users can simultaneously compute their own received beam SNRs corresponding to
each of the transmitted beampatterns using a quasi-omnidirectional receiving beampattern.
This mandatory beam training results in significant overhead to the Wi-Fi network and it is
desired to limit the number of directional beampatterns within a beacon and the total number
of beacons, resulting in sparsely sampled beam measurements than Wi-Fi at sub-7 GHz.

2) Irregular sample intervals: At the A-BFT subinterval, the users or responders (e.g.,
mobile devices) can train its (transmitting or receiving) beampatterns by sending a sequence
of (short) sector sweep (SSW) frames to the AP, as shown in Fig. H.2. Compared with the
downlink BTI beam training for multiple users simultaneously, the uplink A-BFT beam training
is reserved for one responder at a time. Specifically, A-BFT is slotted up to 8 slots in 802.11ad
and 40 in 802.11ay. Multiple responders randomly choose one of the slots for transmitting
SSW frames. Consequently, when multiple responders exist, each responder needs to contend
the channel time, and one responder is randomly selected. As a result, such contention-based
channel access results in irregularly sampled beam SNR measurements at AP for a given user.

To address the above challenges and inspired by recent advances in neural ordinary dif-
ferential equation (ODE) [31–37], this paper proposes a dual-decoder neural dynamic learning
framework that learns consistent latent dynamics described by a unified ODE for both wave-
form reconstruction and coordinate estimation. Compared with the original neural ODE, our
dual-decoder structure enforces that the learned latent dynamics not only recover the input
sequences in the waveform domain but also map to the object trajectory, thus grounding the
latent dynamic learning into the physical (coordinate) space. This dual-decoder structure is
further enhanced by the introduction of a modified evidence lower bound (ELBO) loss function
to couple the losses from the dual decoder. It is worth noting that a conference version of
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the proposed method was published in [1] with limited derivation and performance evaluation.
This paper significantly expands [1] with the following contributions:

1. We propose the first-of-its-kind sequence-to-sequence object trajectory estimation work-
flow that can handle a set of consecutive Wi-Fi measurements at irregular sample in-
stances and directly output the whole trajectory over the same time interval.

2. We present a dual-decoder neural network that learns the underlying latent dynamics in
a continuous-time fashion by exploring the neural ODE framework. The dual-decoder ar-
chitecture regularizes the learnable neural ODE function in the latent space by grounding
it to the coordinate-level measurable space.

3. We derive a customized cost function by extending the ELBO for the sequence-to-
sequence formulation and the dual decoder structure.

4. We build an in-house mmWave Wi-Fi testbed consisting of commercial 802.11ad-compliant
Wi-Fi routers and a moving robot with coordinates labels. The mmWave Wi-Fi trajec-
tory estimation dataset was collected continuously over several hours in a span of days3.

5. We benchmark our proposed method against a list of baseline methods including frame-
based and sequence-based approaches using classic machine learning and state-of-art
deep learning pipelines.

6. We shed more light on the representation capacity of the proposed method via compre-
hensive ablation studies on 1) sequence length, 2) supervision intensity (regular versus
dense) at the coordinate decoder, 3) day-to-day generalization, 4) varying tasks (trajec-
tory estimation versus extrapolation), and 5) inspection of latent space.

The remainder of this paper is organized as follows. The problem formulation is described
in Section 2 where existing solutions are also briefly reviewed. Section 3 introduces our dual-
decoder neural dynamic learning framework, the derivation of a customized cost function, and
an analysis of computational complexity. Section 4 describes the data collection system and
the mmWave Wi-Fi trajectory estimation dataset collected over multiple days. Simulation and
experimental results are given in Section 5, followed by conclusions in Section 6.

2 Problem Formulation and Existing Solutions

2.1 Problem Formulation
We formulate the indoor localization as a sequence-to-sequence regression problem using the
mmWave Wi-Fi beam training measurements over a period of ∆Tw seconds. Specifically, stack-
ing a set of Nb beam SNRs computed at AP over an A-BFT slot ti as bn = [b1, b2, ..., bNb ]T ∈
RNb×1, the problem of interest is to utilize beam SNR measurements {bn}N

n=0 at time steps
{tn}N

n=0 with irregular sample intervals to localize the object,

{bn, tn}N
n=0 → {cn}N

n=0, s.t. ∆tn = tn − tn−1 ̸= ∆tn+1 (H.1)
3We plan to open release our mmWave Wi-Fi trajectory estimation dataset when the paper is

public. We open released our earlier mmWave Wi-Fi localization dataset at fixed locations at
https://www.merl.com/demos/mmBSF.

https://www.merl.com/demos/mmBSF
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where cn = [xn, yn]T consists of corresponding two-dimensional coordinates (xn, yn) at tn.
This is illustrated in Fig. H.3 where the trajectory estimation is to convert the set of beam
SNRs {bn}N

n=0 at intermittently-sampled steps {tn}N
n=0 (shown in the top left part) to the set

of {cn}N
n=0 over a continuous trajectory (shown in the right bottom part).

Like fingerprinting-based Wi-Fi localization methods, we collect beam SNR measurements
and corresponding two-dimensional coordinate labels. As detailed in Section 4, the beam
SNR data is continuously collected over several hours each day and spanning over multiple
days. We then divide the beam SNRs into non-overlapping sequences and split the sequences
into training and test datasets without any data leakage. The learning-based approach is to
extract time-dependent features from the sequence of beam SNR measurements {bn, tn}N

n=0
and regress these features to a trajectory or a sequence of coordinate {cn}N

n=0 from the training
dataset. Once the model is trained, the trajectory estimation performance is evaluated in the
test dataset.

2.2 Existing Solutions
The frame-based approach takes the beam SNR measurement bn at a time step tn and directly
estimates the corresponding coordinate ĉn. Specifically, we have

{bn} → cn = {xn, yn}. (H.2)

As we mentioned earlier, classic machine learning methods such as support vector regression
(SVR) [38] and Gaussian processing (GP) [39] and deep learning pipelines such as multi-layer
perceptron (MLP) [40, 41] and convolution neural network (CNNs) [42, 43] can be applied.

Similar to our formulation, sequence-based approaches take multiple consecutive beam
training measurement and estimate a trajectory

{bn}N
n=0 → {cn}N

n=0, (H.3)

with or without time sampling instances tn. In the case of regularly sampled data, ∆t1 =
∆t2 = · · · = ∆tN is constant in both the training and test datasets such that tn becomes
irrelevant. In this case, standard RNN can be used to utilize historic Wi-Fi data [5, 10, 12] and
learn time-dependent features for trajectory estimation. Particularly, an LSTM is to estimate
the conditional probability [30]

p(cn|{bi}n
n=n−N+1). (H.4)

where each LSTM unit is trained to sequentially update time-dependent latent (hidden) vari-
ables hn using previous latent variable hn−1 and the current mmWave beam training measure-
ment bn

h′
n = hn−1,

hn = R(h′
n, bn; θ), n = 0, 1, · · · , N, (H.5)

where we introduce an auxiliary variable h′
n for a unified interpretation and R represents

an LSTM unit with trainable parameters θ. The detailed implementation of R is shown in
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Appendix 8. The updated latent variable hn can be used to infer the coordinate sequentially
and, hence, estimate the trajectory.

When the input signal is irregularly sampled, one can augment the beam SNR with corre-
sponding sampling interval ∆tn and feed the augmented beam SNR to the LSTM unit as

h′
n = hn−1, b̃n =

[
bT

n , ∆tn

]T
, (H.6)

hn = R(h′
n, b̃n; θ), n = 0, 1, · · · , N.

We refer to the above as RNN-∆ for baseline comparison in Section 5.
Furthermore, one can further damp the latent variable with an exponential decaying factor

to decide the amount of hidden state should be kept from the previous time step to the current
time step:

h′
n = hn−1e−∆tn−1 , (H.7)

hn = R(h′
n, bn; θ), n = 0, 1, · · · , N,

which is referred to as RNN-Decay.

3 Dual-Decoder Neural Dynamic Learning
As opposed to the above existing solutions, we propose a dual-decoder neural dynamic (DDND)
framework that explicitly utilizes the continuous-time ODE function and its numerical solver to
propagate the time-dependent latent feature from one time instance to the next time instance
with an irregular time interval and regularizes the learning of latent ODE by grounding it to
both waveform and observable coordinate spaces.

More specifically, Fig. G.2 shows our DDND framwork that takes a sequence of beam SNR
measurements {bn}N

n=0 to the encoder (Left) and reconstructs the beam SNR measurement in
one of the decoders (Top right) and outputs a sequence of coordinate estimates in the other
(Bottom right). On the encoder side, the latent dynamic learning is achieved by solving a shared
ODE function over the union of two sets of time instances (Center right): one for waveform
reconstruction and the other for trajectory estimation. In the following, we introduce the main
blocks in order.

3.1 Encoder
Our encoder follows the unrolled RNN architecture but in a reverse-time order from tN to t0;
that is, at a time instance n, the beam SNR measurement bn and a time-dependent latent
feature h′

n, properly propagated from the previous time step hn+1, are fed into a standard
LSTM unit to an updated latent feature hn of dimension Lh as

hn = Re(h′
n, bn; θr), n = N, N − 1, · · · , 0, (H.8)

where Re is a standard LSTM update step with associated learnable parameters θr defined in
Appendix 8. Note that θr is shared over all time steps in the encoder.
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Fig. H.3: Object trajectory estimation using mmWave Wi-Fi beam training measurements with neural
dynamic learning. Left: Encoder maps a sequence of irregularly sampled Wi-Fi beam SNRs into a
continuous-time latent space and infers its initial condition z0. Top right: Waveform Decoder maps
latent dynamic states in the same sampling time instances back to the original measurement space for
waveform reconstruction. Middle right: Numerical ODE solvers compute latent states at any queried
time instances (e.g., original sampling time instances tn or time instances with coordinate labels tc

n) with
a trainable ODE function and sampled initial condition z0. Bottom right: Coordinate Decoder maps
latent dynamic states into observable coordinate space at asynchronous/new queried time instances to
regularize the learning of latent dynamic ODE function.

Different from RNN-∆ and RNN-Decay, we adopt a continuous-time ODE function to
explicitly describe the evolving of hn+1 at time tn+1 to the auxiliary latent h′

n at time tn.
Mathematically, the continuous-time ODE function is given as [31, 32]

dh(t)
dt

= Oe(h(t), t; θo), (H.9)

where Oe is represented by a neural network, e.g., an MLP, parameterized by θo. Given the
latent variable hn+1 at time tn+1 and Oe, one can numerically solve the propagated auxiliary
variable h′

n at time tn as

h′
n = hn+1 +

∫ tn

τ=tn+1

Oe(h(τ), τ ; θo)dτ, (H.10)

In most cases, the above integration is implemented using a numerical ODE solver, e.g., Euler
and Runge-Kutta solvers:

h′
n = S(Oe, hn+1, (tn+1, tn)), (H.11)
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where S represents a specific ODE solver.
By comparing (H.10) and (H.7), it is clear that the ODE-based latent propagation from

tn+1 to tn can be more representative for different modes in the latent space and different time
intervals ∆tn, while the decay-based propagation is only exponentially monotonic from the
starting point hn+1.

By iterating the latent propagation step (H.10) and the RNN unit (H.8), the input sequence
{bn}N

n=0 can be represented by the latent variable h0 at time t0, as shown in the left side of
Fig. G.2. We then use h0 of dimension Lh to generate z0 of dimension L to represent the
initial state of the latent trajectory of the input sequence via an approximate posterior. More
specifically,

qθm (z0|h0) = qθe (z0|b0, · · · , bN ) = N (µ, σ2), (H.12)

where θe = {θr, θo, θm} groups all learnable parameters in the encoder, and the mean and
standard deviation are mapped from h0 as

µ, σ = Me(h0; θm), (H.13)

where Me is a neural network, e.g., MLP, with learnable parameters θm that converts the
last hidden state of the encoder into an output of dimension 2L for the mean and standard
deviation vectors.

3.2 Latent Dynamics Learning
Following the variational autoencoder (VAE) [44], we first sample z0 ∼ qθe (z0|b0, · · · , bN )
according to the approximate posterior in (H.12) via the reparameterization trick,

z0 = µ + σ ⊙ ϵ, ϵ ∼ N (0, I) (H.14)

where µ and σ are given in (H.13) from the encoder output and ⊙ denotes an element-wise
product4.

Given the sampled initial value in the latent space z0, we would like to learn a unified
continuous-time latent dynamic trajectory z(t) that can be mapped into the original sampled
waveform, i.e., beam SNRs, and the labeled trajectory coordinates. The latent dynamics
learning of z(t) is achieved by using another continuous-time ODE function Od modeled by a
neural network with parameters θl; see the middle right portion of Fig. G.2,

dz(t)
dt

= Od(z(t), t; θl)

→z(t) = z0 +
∫ t

τ=t0

Od(z(τ), τ ; θl)dτ, (H.15)

where z0 = z(t)|t=t0 . Consequently, we can resort to the numerical ODE solver to compute the
latent variables at the original beam SNR sampling instances {tn}N

n=0 and at new (potentially
4An alternative reparameterization is to generate log σ2, the logarithm of the variance, at the output

of MLP Me and sample the initial condition as z0 = µ + e0.5 log σ2 ⊙ ϵ.
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asynchronous) queried time instances {tc
n}Nc

n=0 for grounding the latent dynamic learning into
the physical coordinate space. For the original set of beam SNR sampling instances T =
{t0, t1, · · · , tN }, the latent variables at tn can be numerically solved as

zn = z(t)|t=tn = z0 +
∫ tn

t0

Od(z(t), t; θl)dt (H.16)

= S(Od, z0, (t0, tn); θl), n = 1, · · · , N,

where S is a specific numerical ODE solver like the one used in the encoder. For the new,
potentially asynchronous time instances Tc = {tc

0, tc
1, · · · , tc

Nc
}, we have

zc
n = z(t)|t=tc

n
= z0 +

∫ tc
n

tc
0

Od(z(t), t; θl)dt (H.17)

= S(Od, z0, (tc
0, tc

n); θl), n = 1, · · · , Nc,

where t0 = tc
0 as the same initial time instance for both encoders. Note that (H.16) and (H.17)

share the same ODE function parameters θl and the same initial condition z0 for a unified
latent dynamic representation.

3.3 Dual Decoder
For the decoder, we propose to use a mixture of two decoding branches: one is for unsupervised
waveform reconstruction Mw and the other for supervised trajectory estimation Mc. Our
presented framework exploits the fact that, once Od(z(t), t; θl) is learnt, the latent dynamic
learning can be used to query any arbitrary time instant (i.e., tn for waveform reconstruction
and tc

n for supervised trajectory estimation) within the trained time horizon. Then, the unified
latent dynamic representation Od(z(t), t; θl) is enforced not only to recover the waveform in
an unsupervised fashion but also to be grounded to a two-dimensional trajectory dynamics via
labelled object coordinates at asynchronous time instances. Specifically, the waveform decoder
takes the computed latent variables at tn as input and output the sequence of original beam
SNRs at tn,

b̂n = Mb(zn; θb), n = 1, 2, · · · , N, = Wb2 ReLU(Wb1 zn + vb1 ) + vb2 ,

where θb = {Wb1/b2 , vb1/b2 } groups the weight matrices and bias terms and ReLU(x) =
max(0, x) is the rectified linear unit (ReLU) activation function. Similarly, the coordinate
decoder

ĉn = Mc(zc
n; θc), n = 1, 2, · · · , Nc, = Wc2 ReLU(Wc1 zc

n + vc1 ) + vc2 ,

where θc = {Wc1/c2 , vc1/c2 } groups the weight matrices and bias terms. For both decoders,
the parameters θw and θc are shared over time instances tn and, respectively, tc

n.
Combining (H.18) and (H.16), we can directly decode b̂n from the sampled latent variable

z0 as
b̂n = Mw(S(Od, z0, (t0, tn); θl); θw) = B(z0, t0, tn; θdb),
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Fig. H.4: Illustration of different supervision tasks (trajectory estimation and trajectory extrapola-
tion).

where B stands for the integrated waveform decoder (the latent dynamic learning and waveform
decoder) for beam SNRs and θdb = {θl, θb} groups all trainable parameters to decode b̂n.
Similarly, we have

ĉn = Mc(S(Od, z0, (t0, tc
n); θl); θc) = C(z0, t0, tc

n; θdc),

where C stands for the integrated coordinate decoder (the latent dynamic learning and co-
ordinate decoder) for coordinates and θdc = {θl, θc}. In this way, we are imposing strong
supervision for every time instant in the latent trajectory by using the real trajectory and the
variation of the signal as conditions to modify the learning dynamics of the latent trajectory.
This leads to an enhancement in learning the continuous dynamics of the trajectory from the
latent space.

For the supervised coordinate decoder, we can have two levels of supervision intensity,
• Regular Supervision: the coordinate decoder maps the continuous-time latent dy-

namics onto the exact same time instants of the input beam SNR sequences. i.e., tn = tc
n

and N = Nc.
• Dense Supervision: the coordinate decoder maps the latent dynamics onto more

densely queried time instances with respect to those instances in the waveform decoder,
i.e., t0 = tc

0, tN = tc
Nc

, and N ≪ Nc. In other words, we enforce the latent dynamic
learning to be consistent over more queried time instances within the same time window.

In terms of the time horizon of latent dynamics learning, we can have two supervision tasks,
• Trajectory Estimation: In the trajectory estimation task, we condition the encoder

on the subset of points (t0, ..., tN ) and reconstruct the same set of points in the same
time interval in the decoder side for both the waveform reconstruction and the trajectory
regression, i.e., tn = tc

n and N = Nc. This is illustrated in Task 1 of Fig. H.4.
• Trajectory Extrapolation: For the trajectory extrapolation, we predict the object

trajectory over the time window ∆Tw immediately after the time window ∆Tw of the
input beam SNR sequences; see Task 2 of Fig. H.4. In other words, we extend the time
horizon of the latent dynamics twice as that of Task 1. Particularly, we have tN = tc

0.
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3.4 Customized Loss Function
In the following, we propose a customized loss function that is modified from the VAE-based
loss function for the dual decoder architecture. Grouping the input sequence of beam SNRs b =
{bn}N

n=0 (and similarly c = {cn}Nc
n=0), we can simplify the approximate posterior distribution of

(H.12) as qθe (z0|b). The original loss function is to maximize the marginal likelihood function
p(b). However, due to its intractability, one can instead maximize an evidence lower bound
(ELBO) [44] modified for the dual decoder

ELBO =E[log p(b|z0)] + λE[log p(c|z0)]
− KL(qθe (z0|b)||p(z0)),

(a)
≈ 1

M

M∑
m=1

log p(b|z(m)
0 ) + λ

M

M∑
m=1

log p(c|z(m)
0 )

+ 0.5
L∑
l

(
1 + log σ2

l − µ2
l − σ2

l

)
, (H.18)

where λ is the regularization parameter on the coordinate likelihood function in addition to
the original KL divergence, p(z0) is the prior of z0 which is assumed to be [44]

p(z0) = N (0, I), (H.19)

the expectation is with respect to the posterior distribution qθe (z0|b) and (a) holds since we
replaces the posterior mean by the its sample mean over M samples z(m)

0 according to (H.12)
and due to the fact that the KL divergence can be analytically derived between the Gaussian
prior p(z0) and the approximate Gaussian posterior distribution in (H.12). In addition, µl and
σl denote the posterior mean and, respectively, standard deviation of the l-th element of z0
given the input sequence b.

To compute the likelihood functions log p(c|z0) for the coordinate decoder (similarly log p(b|z0)
for the waveform decoder), we invoke an independent assumption over the elements of the de-
coder output c = {c0, c1, · · · , cN }. This is similar to the pixel-wise independence at the decoder
output used in the VAE. This implies that

log p(c|z(m)
0 ) = log p(c0, · · · , cN |z(m)

0 )

=
∑

n

log p(cn|z(m)
0 )

=
∑

n

∑
d

log p(cn,d|z(m)
0 ), (H.20)

where d = {1, 2} denotes the 2D coordinate and cn,d denotes the x- and y-coordinate at time n.
The element-wise likelihood function p(cn,d|z0) of the (x- or y-) coordinate follows a Laplace
distribution as

p(cn,d|z(m)
0 ) = 1

2ac
e

−

∣∣cn,d−Cd(z(m)
0 ,t0,tc

n;θdc)
∣∣

ac , (H.21)
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where ac is a scaling parameter, and Cd(z(m)
0 , t0, tc

n; θdc) is the d-th element of the output at
the integrated coordinate decoder of (H.18) at time tc

n. Then, it is easy to see that

E[log p(c|z(m)
0 )] ∝ − 1

ac

Nc∑
n=0

∥∥∥cn − C(z(m)
0 , t0, tc

n; θdc)
∥∥∥

1
, (H.22)

where ∥ · ∥1 denotes the ℓ1 norm. Similarly, we have

E[log p(b|z(m)
0 )] ∝ − 1

ab

N∑
n=0

∥∥∥bn − B(z(m)
0 , t0, tn; θdb)

∥∥∥
1

, (H.23)

where ab is a scaling parameter for the Laplace distribution of the beam SNR bn. As a result,
considering ab = ac = 1, we aim to minimize the negative customized ELBO of (H.18) for the
dual decoder as

− ELBO ∝
N∑

n=0

∥b̂n − bn∥1 + λ

Nc∑
n=0

∥ĉn − cn∥1 − 0.5
L∑
l

(
1 + log σ2

l − µ2
l − σ2

l

)
.

In implementation, the following cost function is used

L =
N∑

n=0

∥b̂n − bn∥1 + λ

Nc∑
n=0

∥ĉn − cn∥1 + (η − λ)∥ĉ0 − c0∥1

=
N∑

n=0

∥b̂n − bn∥1 + λ

Nc∑
n=1

∥ĉn − cn∥1 + η∥ĉ0 − c0∥1 (H.24)

where we replace the explicit KL divergence term in (H.24) by an implicit regularization term of
(η − λ)∥ĉ0 − c0∥1 with η > λ. Our motivation is to amplify the significance of the initial latent
dynamic state z0 and its mapping to the physical coordinate space c0 in the loss function,
rather than through the KL divergence term. The two hyperparameters λ and η play the
tradeoff roles from the physical coordinate reconstruction

∑Nc

n=1∥ĉn − cn∥1 and, respectively,
the implicit regularization term

∑N

n=0∥ĉ0 − c0∥1 to the waveform (beam SNR) reconstruction
error of

∑N

n=0∥b̂n − bn∥1.

3.5 Complexity Analysis
We describe the time complexity of the proposed method by following Fig. G.2. Assuming
the time complexity for the numerical ODE solvers is k at both encoder and decoder sides,
the time complexity for the forward pass of the encoder (at the left side of Fig. G.2) can be
approximated as O(N(k + L2

h + NbLh)), where N is the number of time steps in the input
sequence of beam SNRs and (L2

h + NbLh) is from matrix products used in the LSTM update
step in Appendix 8 with Nb is the input dimension and Lh the hidden state dimension.

Then for the initial latent state z0 of (H.13) using an MLP with one hidden layer of
dimension Mz, the time complexity is approximately O(Mz(Lh + 2L)), where 2L is the MLP
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output dimension. Following that, for the neural dynamic learning block on the middle right
portion of Fig. G.2, the time complexity is approximately O(kN) and O(kNc), respectively,
for the two sets of queried time instances {tn}N

n=0 and {tc
n}Nc

n=0.
Finally, for the waveform decoder Mb of (H.18) using an MLP with one hidden layer of

dimension Mb, the time complexity is O(N(LMb + 2Mb + MbNb + Nb)) ≈ O(NMb(L + Nb)),
where L is the latent dimension in the decoder and Nb is the output dimension of beam SNRs.
Similarly for the coordinate decoders Mc of (H.18) using an MLP with one hidden layer of
dimension Mc, its complexity is approximated as O(NcMc(L + 2)) where 2 is the dimension of
the coordinate output. With all combined, the overall time complexity of the proposed method
is approximately

O(k(N + Nc) + Mz(Lh + 2L) + NcMc(L + 2) + N(L2
h + NbLh + Mb(L + Nb))). (H.25)

4 mmWave Wi-Fi Testbed and Data Collection
To evaluate the proposed DDND framework and baseline comparison, we built a mmWave Wi-
Fi testbed consisting of multiple commercial-of-the-shelf (COTS) 802.11ad devices to collect
real-world mmWave Wi-Fi beam SNR data. Particularly, we used a pair of TP-Link AD7200
routers to acting as an AP fixed at a standing post and a mobile user; see the TurtleBot photo
in the left plot of Fig. H.5 (a). The TurtleBot is equipped with a 2D scanning LiDAR sensor
and a wheel encoder to map the environment and localize itself in a 2D floorplan with an
accuracy of less than 1 cm. The 2D localization results are considered as the labels for training
and groundtruth for test.

M
ER

L

TP-LINK AD7200 

LIDAR
APClient

(a) A TurtleBot mobile user, trajectory con-
figuration, and floorplan.

(b) A photo of data collection campaign.

Fig. H.5: An in-house mmWave Wi-Fi testbed with TP-Link AD7200 routers and a TurtleBot as a
mobile user and a campaign of multi-day data collection in a conference room.

To access the raw beam SNR measurements from the COTS routers, we followed the
methods described in [15] and utilized an open-source software package introduced in [45].
Specifically, we employed the Nexmon firmware patching framework [46], which allows the de-
velopment of binary firmware extensions using the C programming language. By analyzing the
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patterns of IEEE 802.11ad beam training frames stored in the chip’s memory, we were able
to identify the firmware components responsible for handling these frames. Consequently, we
extracted the beam SNR measurements from the corresponding memory addresses. For the
TP-Link AD7200 router, an analog phased array of 32 antenna elements is used to sequentially
scan over Nb = 36 predefined directional beampatterns for one air time for a given responder
in Fig. G.1.

For data collection, we place the pair of TP-Link AD7200 routers in a corner conference
room as shown in Fig. H.5 (b). The AP router is fixed at a standing post during the data
collection, while the TurtleBot with the other router moves along a rectangular trajectory
marked in a dash-dotted line in Fig. H.5 (a). In total, we collected two separate data sessions
over two separate days with each data session lasting for multiple consecutive hours, resulting
in:

• Day 1: 11.5K samples of beam SNR
• Day 2: 10K samples of beam SNR

with each beam SNR vector of dimension Nb = 36. The frame rate of the coordinate labels is
10 Hz and about 1 ∼ 2 Hz on average for the beam SNR measurements.

To preprocess the raw beam SNRs, we employ a sequence time window of ∆Tw = [2, 5, 8]
seconds. This allows us to group the dataset into non-overlapping sequences, accommodating
the irregular sampling of the beam SNR. The sequences are divided into training (0.8), vali-
dation (0.1), and test (0.1) sets, respectively. We standardize each entry bn, n = 1, · · · , 36 of
the beam SNR by subtracting its mean and normalizing it with the corresponding standard
deviation. Furthermore, we normalize the time vectors {tn}N

n=0 and {tc
n}Nc

n=0 within each ∆Tw

seconds to the range [0, 1].

5 Performance Evaluation
In the following, we evaluate the localization performance using the above datasets. We first
quantify the performance against a list of baseline methods including both frame-based and
sequence-based methods. Later on, we aim to provide a comprehensive ablation study of the
proposed method against sequence length, supervision intensity (regular N = Nc versus dense
(N < Nc)) at the coordinate decoder, day-to-day performance generalization, and varying tasks
(estimation versus extrapolation). Finally, we provide an interpretation of the learned latent
dynamics.

5.1 Model Training
Our implementation of the proposed method is built using the PyTorch framework. The model
incorporates a hidden state dimension of Lh = 20 and a latent dimension of L = 20. For the
encoder and decoder, we utilize the 5th-order Runge-Kutta ODE solver. During training, we
employ the Adamax optimizer with a learning rate of 0.01 and no weight decay. To form mini-
batches, the model is trained using a batch size of 32 sequences. The proposed loss function
performs an adaptive weighting strategy, to ensure stability during the training with respect
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Fig. H.6: Visualization of trajectory estimation over selected test sequences: (a) SVR (b) RNN-Decay
(c) RNN-∆ (d) DDND-DS

to the amount of time samples. In this way, λ = (N+1)
β(Nc+1) , and η = αλ(Nc + 1) being α = 0.5

and β = 0.1. For an exemplary case of N = Nc = 4, λ = 10 and η = 25.

5.2 Baseline Comparison
We here provide a performance comparison for the object trajectory estimation. We evaluate
the following baseline methods and variants of our framework:

• Frame-based methods:

1. Support Vector Regressor (SVR)
2. Fully Connected Neural Network Regressor (FCNNR)

• Sequence-based methods (Section 2)

1. RNN-∆
2. RNN-Decay

• Our DDND framework with variants:

1. DDND-Regular Supervision + KL (DDND-RS + KL) of (H.24)
2. DDND-Regular Supervision (DDND-RS) of (G.10)
3. DDND-Dense Supervision + KL (DDND-DS + KL) of (H.24)
4. DDND-Dense Supervision (DDND-DS) of (G.10)

For this baseline comparison, we set ∆Tw = 8 seconds for all considered sequence-based
methods.

Fig. H.6 illustrates the estimated trajectories over test sequences for the selected methods.
In the frame-based SVR method (Fig. H.6 (a)), the coordinate estimates appear scattered
within the square trajectory. However, there is a slight improvement observed in the sequence-
based methods. In Fig. H.6 (b) and (c), which correspond to the RNN expdecay and RNN
∆t methods, respectively, more trajectory estimates are pushing towards the square trajectory.
A noticeable difference can be observed when comparing Fig. H.6 (d) to (a)-(c). It is evident
that the proposed DDND-DS method is capable of learning the underlying dynamics, leading
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to more clustered trajectory estimates around the true square trajectory. The DDND-DS
method demonstrates superior performance in capturing the trajectory patterns, indicating its
effectiveness in trajectory estimation tasks.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Localization Error (m)
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DDND-RS + KL
DDND-RS
DDND-DS + KL
DDND-DS

Fig. H.7: Cumulative distribution function (CDF) of localization errors.

Table H.1: Localization errors (m) on mmWave Wi-Fi dataset

Mean Median CDF@0.9

SVR 0.82 0.25 2.64
FCNNR 0.92 0.05 3.04

RNN-Decay 0.74 0.16 2.19
RNN-∆ 0.76 0.11 2.36

DDND-RS + KL (ours) 0.58 0.11 1.57
DDND-RS (ours) 0.52 0.03 1.98
DDND-DS + KL (ours) 0.30 0.03 0.76
DDND-DS (ours) 0.28 0.01 0.66

Fig. H.7 presents a comparison of the baseline methods with the proposed solution in
terms of the Cumulative Distribution Function (CDF) of root mean squared errors (RMSEs).
The results highlight the impact of proper learning and modeling of latent dynamics and
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trajectory motion from irregularly-sampled Wi-Fi data on improving localization performance
compared to frame-based and traditional sequence-based methods. The proposed method and
its variants exhibit a notable reduction in large localization errors. These findings underscore
the effectiveness of the proposed method in enhancing localization accuracy by capturing the
underlying dynamics and motion patterns of the moving object based on irregularly-sampled
Wi-Fi data. Table H.1 further quantifies the performance.
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Fig. H.8: CDF curves of localization errors for different sequence lengths ∆Tw.

5.3 Impact of Sequence Length
In the following, we evaluate the impact of the sequence length ∆Tw on the trajection estimation
performance.

Fig. H.8 show the CDF curves of the localization errors in terms of RMSE for different
sequence lengths. It shows that although they exhibit similar performance in terms of median
values or up to the 70-th percentile, the longer sequences are more suitable for learning the
dynamics and present a lower variance in the results. Concretely, the sequence length of ∆Tw =
8 seconds gives the best performance. Table H.2 further lists the quantitative localization
performance for different sequence lengths ∆Tw.

Fig. H.9 shows a visual representation of the estimated trajectories over the test data
for different configurations. It clearly shows our framework is capturing the dynamics of the
motion of the square trajectory.

In summary, the presented results show the clear advantage of long-sequence learning for
the trajectory estimation task. When using longer sequences, more information can be ob-
tained leading to more complex dynamics that can be captured and learned in the latent
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Fig. H.9: Visualization of trajectory estimation over selected test data: (a) ∆Tw = 2s, (b) ∆Tw = 5s,
(c) ∆Tw = 8s.

trajectory. This enables the model to better understand and predict future dynamics based on
past information and translate into a significant increase in performance.

Table H.2: Localization errors (m) for different sequence lengths ∆Tw.

Mean Median CDF@0.9

∆Tw = 2 sec 1.04 0.05 3.64
∆Tw = 5 sec 0.81 0.03 2.95
∆Tw = 8 sec 0.52 0.03 1.98

5.4 Comparison between Regular and Dense Supervision
We leverage the flexibility of the design of our framework to condition the learning dynamics in
the latent space and we evaluate the trajectory estimation. Due to the intermittent sampling
of the beam SNR measurements, result in irregular samples within a ∆Tw. However, we can
perform stronger supervision to enhance the latent ODE dynamics, as we have the flexibility
of conditioning the learning with whatever physical information we have. In our setup, the
LiDAR has a fixed sampling frequency of 10 Hz that gives us way more coordinate points
within a ∆Tw.

We perform this study again on ∆Tw = [2, 5, 8] seconds to assess the dense supervision
enhancement with respect to the sequence length.

Fig. H.10 shows the localization errors for regular and dense supervision training. The
results show when doing dense supervision the errors are decreased, incrementing the difference
the longer the sequences due to the enhanced learning. In this way, we can see how dense
supervision is beneficial. We further quantify this improvement by looking at Fig. H.11. It
shows the enhancement in sequence length is bigger than in the previous case.

Fundamentally, dense supervision provides more accurate learning. Having more points
within the sequence can provide a more accurate and detailed picture of the system dynamics.
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Fig. H.10: Regular vs dense supervision: quantitative performance comparison for different sequence
lengths ∆Tw.
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Fig. H.11: CDF curves of localization errors with dense supervision training.

The model can thus learn more accurately from the temporal dependencies, patterns, and
nuances that might not be apparent or might be lost with fewer points. Also, more densely
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Table H.3: Localization errors (m) for different ∆Tw seconds with dense supervision training.

Mean Median CDF@0.9

Regular ∆Tw = 2 sec 1.04 0.05 3.64
Regular ∆Tw = 5 sec 0.81 0.03 2.95
Regular ∆Tw = 8 sec 0.52 0.03 1.98

Dense ∆Tw = 2 sec 0.99 0.06 3.43
Dense ∆Tw = 5 sec 0.47 0.03 1.50
Dense ∆Tw = 8 sec 0.28 0.01 0.66
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Fig. H.12: CDF curves of localization errors over separate days.

supervised sequences can enable the model to handle more complex systems and patterns.

5.5 Day-to-Day Generalization
We assess the generalization capabilities of the dense-trained model with a sequence length of
∆Tw = 8 seconds by evaluating its performance on a different day of data collection. Specifi-
cally, we aim to test the model’s ability to make accurate predictions when exposed to a new
set of data collected on a different day. By conducting this evaluation, we can gain insights
into the model’s performance under varying environmental conditions. To accomplish this, we
maintain the same model that was trained on the original dataset and evaluate its predictive
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performance on a new day’s data. This allows us to analyze how well the model generalizes to
unseen instances and adapts to changes in the environment. By examining the model’s per-
formance in this context, we can assess its robustness and effectiveness in real-world scenarios
beyond the training data.

Fig. H.12 shows the CDF of localization error between the testing on the same day (day
1) and testing on a different day (day 2). Table H.4 further quantifies this performance. By
looking at the results, we can see an acceptable performance regardless of the change in the
environment. Also, if we compare to the results in Table H.3 we show the longer sequences
are also beneficial for generalization, as even with the worsening in performance it does better
than ∆Tw = 2 or ∆Tw = 5 seconds on the same day for the regular cases.

Table H.4: Localization errors (m) for ∆Tw = 8 seconds with dense supervision training for two
different days.

Mean Median CDF@0.9

Day 1 0.28 0.01 0.66
Day 2 0.61 0.05 2.21

5.6 Extrapolation Performance
We aim to assess the flexibility of our decoder by evaluating its performance on an extrapolation
task. To measure its effectiveness, we compare the performance of the model trained specifically
for prediction and test it on extrapolation, against training the model directly for extrapolation.
Additionally, we investigate the influence of different sequence lengths, specifically ∆Tw =
[2, 5, 8] seconds, to examine their impact on the extrapolation results. By conducting this
evaluation, we can gain insights into the decoder’s ability to generalize beyond the observed
data and generate accurate extrapolations. The comparison between prediction-trained and
extrapolation-trained models, along with the analysis of different sequence lengths, will provide
valuable information on the decoder’s flexibility and performance in extrapolation tasks.

Fig. H.13 shows the CDF of the localization error for the different configurations. It shows
when training prediction models and testing them for extrapolation they become worse the
longer the sequence length. This shows it is difficult to perform extrapolation if just training
in a prediction fashion, especially when the time window increases because the extrapolation
task becomes harder. However, when we train for extrapolation, we have a huge improvement
in the performance. This highlights the flexibility of our framework that can be trained for
different specific tasks, thanks to the querying freedom due to the use of neural ODE on the
decoder side. Table H.5 further quantifies this analysis. It shows our extrapolation method for
the longest sequence exhibits quite good performance, comparable to dense prediction tasks.

Our framework models the latent dynamics for the input sequence of beam SNRs in a
continuous-time fashion. This provides a more robust and accurate representation of the sys-
tem dynamics, leading to an enhancement in extrapolation. Besides, the presented method
continuity is well-suited to capture long-term dependencies in the data. This is particularly
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Fig. H.13: CDF curves of localization errors between trajectory estimation and extrapolation tasks.

beneficial for extrapolation tasks, where understanding long-term trends and dynamics is often
crucial.

Table H.5: Localization errors (m) for extrapolation task.

Mean Median CDF@0.9

Non-extrapolation ∆Tw = 2 seconds 1.36 0.23 4.89
Extrapolation ∆Tw = 2 seconds 0.82 0.02 3.02

Non-extrapolation ∆Tw = 5 seconds 1.51 0.68 3.96
Extrapolation ∆Tw = 5 seconds 0.72 0.02 2.84

Non-extrapolation ∆Tw = 8 seconds 2.15 1.20 6.63
Extrapolation ∆Tw = 8 seconds 0.62 0.03 1.89

5.7 Interpretation of Learned Latent Dynamics
Here we inspect the learned latent trajectories by plotting the first three dimensions of the
latent space. In this case, we fix the sequence length as ∆Tw = 8 seconds. The top row
of Fig. H.14 shows estimated and ground truth trajectories for three sequences from the test
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Fig. H.14: Visualization of the learned latent dynamics for the proposed method.

data. It is seen that the estimation results follow relatively well the object coordinates in
various motion patterns. On the other hand, the bottom row of Fig. H.14 shows corresponding
learned dynamics in the first three dimensions of the latent space at the decoder side, i.e.,
z(t) = z0 +

∫ t

τ=t0
Od(z(τ), τ ; θl)dτ of (H.15). Specifically, we sample an initial value for the

latent dynamics z0 for each input sequence, and the learned latent dynamics are computed
using the sampled z0 and the same learned latent ODE function Od(z(τ), τ ; θl) in (H.15).
From the visualized results, it appears that the learned dynamics show sufficient capacity of
modeling distinct patterns using the same continuous latent ODE functions.

6 Conclusion
This paper tackled the challenging task of localizing objects using intermittently sampled
mmWave Wi-Fi beam training measurements. We proposed a novel solution called the dual-
decoder neural dynamic framework. Through extensive performance comparisons, we demon-
strated notable performance gains against baseline methods and provided a comprehensive
study of the proposed method. Our method is directly compatible with upcoming Wi-Fi
sensing standards, allowing seamless integration between communication and sensing of Wi-Fi
devices in practical deployments.
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8 Appendix: LSTM Update Step
Given the beam SNR bn at time step n and the auxiliary variable h′

n, one can use a standard
LSTM unit to update the latent variable

hn = R(h′
n, bn; θ), n = 0, 1, · · · , N, (H.26)

where R(·, ·|θ) is implemented with the following process (with abuse of notation)

c̃n = tanh
(
Wrcbn + Whch′

n + bc

)
, (H.27)

fn = σ
(
Wrf bn + Whf h′

n + bf

)
, (H.28)

in = σ
(
Wribn + Whih′

n + bi

)
. (H.29)

The above process consists of three gates:
• a memory gate of (H.27) uses the tanh function to combine the auxiliary hidden state

h′
n and the current input bn into a value range of (−1, 1).

• a forget gate of (H.28) also acts on (h′
n, bn) but compresses the value into (0, 1) with

the sigmoid function σ(·) to determine how much of the old memory should retain.
• an input gate of (H.29) compresses (h′

n, bn) into another value in between 0 and 1 and
decides how much information we should take from the new input bn,

along with weight matrices Wrc/rf/ri/hc/hf/hi and bias terms bc/f/i. Then new hidden state
hn in (H.26) is updated as

hn = tanh (ĉn) ⊙ on, (H.30)

where the new memory variable ĉn updates its “old" memory ĉn−1 passing through the “cur-
rent" forget gate output fn and adds new memory cell c̃n weighted by the “current" input gate
output in:

ĉn = fn ⊙ ĉn−1 + in ⊙ c̃n, (H.31)

and the output gate on is computed as

on = σ
(
Wrobn + Whoh′

n + Wco ⊙ ĉn + bo

)
. (H.32)

It is seen that the parameters θ in the LSTM update step is given as
θ = {Wrc/rf/ri/hc/hf/hi/ro/ho/co, bc/f/i/o}.



References 187

References
[1] C. J. Vaca-Rubio, P. Wang, T. Koike-Akino, Y. Wang, P. Boufounos, and P. Popovski,

"mmWave Wi-Fi Trajectory Estimation with Continuous-Time Neural Dynamic Learning,"
in ICASSP 2023, 2023, pp. 1-5.

[2] M. Youssef and A. Agrawala, "The Horus Location Determination System," Wireless Net-
works, vol. 14, no. 3, pp. 357-374, June 2008.

[3] Z.-L. Wu, C.-H. Li, J. K.-Y. Ng, and K. Leung, "Location Estimation via Support Vector
Regression," IEEE Transactions on Mobile Computing, vol. 6, no. 3, pp. 311-321, 2007.

[4] K. Wu, J. Xiao, Y. Yi, D. Chen, X. Luo, and L. M. Ni, "CSI-based indoor localization,"
IEEE Transactions on Parallel and Distributed Systems, vol. 24, no. 7, pp. 1300-1309,
2013.

[5] M. T. Hoang, B. Yuen, X. Dong, T. Lu, R. Westendorp, and K. Reddy, "Recurrent Neural
Networks for Accurate RSSI Indoor Localization," IEEE Internet of Things Journal, vol.
6, no. 6, pp. 10639-10651, Dec. 2019.

[6] X. Wang, L. Gao, S. Mao, and S. Pandey, "DeepFi: Deep learning for indoor fingerprinting
using channel state information," in WCNC, March 2015, pp. 1666-1671.

[7] X. Wang, L. Gao, S. Mao, and S. Pandey, "CSI-Based Fingerprinting for Indoor Localiza-
tion: A Deep Learning Approach," IEEE Transactions on Vehicular Technology, vol. 66,
no. 1, pp. 763-776, Jan. 2017.

[8] H. Chen, Y. Zhang, W. Li, X. Tao, and P. Zhang, "ConFi: Convolutional Neural Networks
Based Indoor Wi-Fi Localization Using Channel State Information," IEEE Access, vol. 5,
pp. 18066-18074, 2017.

[9] J. Ding and Y. Wang, "WiFi CSI-Based Human Activity Recognition Using Deep Recur-
rent Neural Network," IEEE Access, vol. 7, pp. 174257-174269, 2019.

[10] M. T. Hoang et al., "A CNN-LSTM quantifier for single access point CSI indoor localiza-
tion," arXiv preprint arXiv:2005.06394, 2020.

[11] H. Sun et al., "WiFi based fingerprinting positioning based on Seq2seq model," Sensors,
vol. 20, no. 13, p. 3767, 2020.

[12] J. Yu, H. M. Saad, and R. M. Buehrer, "Centimeter-Level Indoor Localization using
Channel State Information with Recurrent Neural Networks," in IEEE/ION Position,
Location and Navigation Symposium (PLANS), 2020, pp. 1317–1323.

[13] H. Xia, P. Wang, T. Koike-Akino, Y. Wang, P. V. Orlik, and Z. Ding, "Adversarial Bi-
Regressor Network for Domain Adaptive Regression," in International Joint Conference
on Artificial Intelligence (IJCAI), 2022, pp. 3608-3614.

[14] J. Yu, P. Wang, T. Koike-Akino, and P. V. Orlik, "Multi-Modal Recurrent Fusion for
Indoor Localization," in IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), 2022.

[15] G. Bielsa, J. Palacios, A. Loch, D. Steinmetzer, P. Casari, and J. Widmer, "Indoor local-
ization using commercial off-the-shelf 60 GHz access points," in IEEE INFOCOM, 2018,
pp. 2384-2392.



188 References

[16] M. Pajovic, P. Wang, T. Koike-Akino, H. Sun, and P. V. Orlik, "Fingerprinting-Based
Indoor Localization with Commercial MMWave WiFi–Part I: RSS and Beam Indices," in
GLOBECOM, Dec. 2019.

[17] P. Wang, M. Pajovic, T. Koike-Akino, H. Sun, and P.V. Orlik, "Fingerprinting-Based
Indoor Localization with Commercial MMWave WiFi–Part II: Spatial Beam SNRs," in
GLOBECOM, Dec 2019.

[18] T. Koike-Akino, P. Wang, M. Pajovic, H. Sun, and P. V. Orlik, "Fingerprinting-Based
Indoor Localization With Commercial MMWave WiFi: A Deep Learning Approach," IEEE
Access, vol. 8, pp. 84879-84892, 2020.

[19] P. Wang, T. Koike-Akino, and P. V. Orlik, "Fingerprinting-Based Indoor Localization with
Commercial MMWave WiFi: NLOS Propagation," in GLOBECOM, Dec. 2020.

[20] J. Yu, P. Wang, T. Koike-Akino, and P. V. Orlik, "Human Pose and Seat Occupancy
Classification with Commercial MMWave WiFi," in GLOBECOM Workshop on Integrated
Sensing and Communication (ISAC), Dec. 2020.

[21] J. Yu, P. Wang, T. Koike-Akino, Y. Wang, P. V. Orlik, and R. M. Buehrer, "Multi-Band
Wi-Fi Sensing with Matched Feature Granularity," IEEE Internet of Things Journal, vol.
1, pp. 1-1, 2022.

[22] A. Blanco, P. J. Mateo, F. Gringoli, and J. Widmer, "Augmenting mmWave localization
accuracy through sub-6 GHz on off-the-shelf devices," in Proceedings of the 20th Annual
International Conference on Mobile Systems, Applications and Services, 2022, pp. 477–490.

[23] T. Koike-Akino, P. Wang, and Y. Wang, "Quantum Transfer Learning for Wi-Fi Sensing,"
in IEEE International Conference on Communications (ICC), May 2022.

[24] S. Mazuelas, A. Bahillo, R. M. Lorenzo, P. Fernandez, F. A. Lago, E. Garcia, J. Blas, and
E. J. Abril, "Robust Indoor Positioning Provided by Real-Time RSSI Values in Unmodified
WLAN Networks," IEEE Journal of Selected Topics in Signal Processing, vol. 3, no. 5, pp.
821-831, 2009.

[25] X. Wang, L. Gao, and S. Mao, "CSI Phase Fingerprinting for Indoor Localization With a
Deep Learning Approach," IEEE Internet of Things Journal, vol. 3, no. 6, pp. 1113-1123,
Dec. 2016.

[26] X. Wang, L. Gao, and S. Mao, "BiLoc: Bi-Modal Deep Learning for Indoor Localization
With Commodity 5GHz WiFi," IEEE Access, vol. 5, pp. 4209-4220, 2017.

[27] C. Hsieh, J. Chen, and B. Nien, "Deep Learning-Based Indoor Localization Using Received
Signal Strength and Channel State Information," IEEE Access, vol. 7, pp. 33256-33267,
2019.

[28] J. Wang and J. G. Park, "An Enhanced Indoor Ranging Method Using CSI Measurements
with Extended Kalman Filter," in PLANS, 2020, pp. 1342-1348.

[29] A. S. Paul and E. A. Wan, "Wi-Fi based indoor localization and tracking using sigma-point
Kalman filtering methods," in PLANS, 2008, pp. 646-659.

[30] S. Hochreiter and J. Schmidhuber, "Long Short-Term Memory," Neural Computation, vol.
9, no. 8, pp. 1735-1780, Nov. 1997.



References 189

[31] R. Chen et al., "Neural ordinary differential equations," Advances in Neural Information
Processing Systems (NeurIPS), vol. 31, 2018.

[32] Y. Rubanova, R. Chen, and D. K. Duvenaud, "Latent Ordinary Differential Equations for
Irregularly-Sampled Time Series," in Advances in Neural Information Processing Systems
(NeurIPS), vol. 32, 2019.

[33] J. Kelly et al., "Learning differential equations that are easy to solve," in Advances in
Neural Information Processing Systems (NeurIPS), vol. 33, 2020, pp. 4370–4380.

[34] C. Finlay et al., "How to train your neural ODE: the world of Jacobian and kinetic regular-
ization," in International Conference on Machine Learning (ICML), 2020, pp. 3154–3164.

[35] A. Zhu et al., "On numerical integration in neural ordinary differential equations," in
International Conference on Machine Learning (ICML), 2022, pp. 27527–27547.

[36] H. H. N. Nguyen et al., "Improving Neural Ordinary Differential Equations with Nesterov’s
Accelerated Gradient Method," in Advances in Neural Information Processing Systems
(NeurIPS), vol. 35, 2022, pp. 7712–7726.

[37] C. Challu et al., "NHITS: Neural Hierarchical Interpolation for Time Series Forecasting,"
in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, no. 6, pp. 6989–
6997, 2023.

[38] G. M. Mendoza-Silva et al., "Environment-aware regression for indoor localization based
on WiFi fingerprinting," IEEE Sensors Journal, vol. 22, no. 6, pp. 4978–4988, 2021.

[39] W. Sun et al., "Augmentation of fingerprints for indoor WiFi localization based on Gaus-
sian process regression," IEEE Transactions on Vehicular Technology, vol. 67, no. 11, pp.
10896–10905, 2018.

[40] M. Nowicki and J. Wietrzykowski, "Low-effort place recognition with WiFi fingerprints
using deep learning," in Automation 2017: Innovations in Automation, Robotics and Mea-
surement Techniques, 2017, pp. 575–584.

[41] R. Zhou et al., "Device-free localization based on CSI fingerprints and deep neural net-
works," in 2018 15th Annual IEEE International Conference on Sensing, Communication,
and Networking (SECON), 2018, pp. 1–9.

[42] X. Song et al., "A novel convolutional neural network based indoor localization framework
with WiFi fingerprinting," IEEE Access, vol. 7, pp. 110698–110709, 2019.

[43] X. Wang, X. Wang, and S. Mao, "Deep convolutional neural networks for indoor localiza-
tion with CSI images," IEEE Transactions on Network Science and Engineering, vol. 7,
no. 1, pp. 316–327, 2018.

[44] D. P. Kingma and M. Welling, "Auto-encoding variational Bayes," arXiv preprint
arXiv:1312.6114, 2013.

[45] D. Steinmetzer, D. Wegemer, and M. Hollick, "Talon tools: The framework for practical
IEEE 802.11ad research," 2017.

[46] M. Schulz, D. Wegemer, and M. Hollick, "Nexmon: The C-based firmware patching frame-
work," Res. Gate, 2017.



190 References



Paper I

Proximal policy optimization for integrated sensing and
communication in mmWave systems

Cristian J Vaca-Rubio, Carles Navarro Manchón, Ramoni Adeogun, Petar
Popovski

The paper has been submitted in the
IEEE Wireless Communication Letters (WCL), 2023.



© 2023 IEEE
The layout has been revised.



1. Introduction 193

Abstract
In wireless communication systems, mmWave beam tracking is a critical task that affects both
sensing and communications, as it is related to the knowledge of the wireless channel. We
consider a setup in which a Base Station (BS) needs to dynamically choose whether the re-
source will be allocated for one of the three operations: sensing (beam tracking), downlink,
or uplink transmission. We devise an approach based on the Proximal Policy Optimization
(PPO) algorithm for choosing the resource allocation and beam tracking at a given time slot.
The proposed framework takes into account the variable quality of the wireless channel and
optimizes the decisions in a coordinated manner. Simulation results demonstrate that the pro-
posed method achieves significant performance improvements in terms of average packet error
rate (PER) compared to the baseline methods while providing a significant reduction in beam
tracking overhead. We also show that our proposed PPO-based framework provides an effective
solution to the resource allocation problem in beam tracking and communication, exhibiting a
great generalization performance regardless of the stochastic behavior of the system.

Keywords— mmWave, sensing, beam tracking, resource allocation.

1 Introduction
Beamforming and resource allocation methods have significantly improved as a result of the
rising demand for fast and dependable wireless communication networks. A crucial task in
wireless communication systems is beam alignment, which entails directing antenna arrays
to maximize throughput and improve signal-to-noise ratio (SNR). Traditional beam sweeping
in 5G allocates sensing resources for all users at fixed-slots periodicity. This might lead to
inefficient (low-mobility scenarios) and insufficient (high-mobility) to track the necessity of
beam changes. These operations are not typically adapted at short time-scales [1], and the
division between uplink (UL) and downlink (DL) slots is usually kept fixed over long time
frames. To address this, we aim to find a way to decide the allocation of resources between
sensing, uplink, and downlink transmissions that is adaptive on a short time-scale according
to the particular network situation.

In recent years, beam alignment issues in wireless networks have been successfully resolved
using reinforcement learning (RL) techniques [2, 3], as well as pure deep learning (DL) solutions
[4, 5]. The latter rely on the one-shot interaction with the channel, making it more prone to
generalization issues, while the former do not consider the joint problem of resource allocation
and beam alignment. Similarly, resource allocation is a critical task in wireless communication
systems, and it has been traditionally formulated as an optimization problem [6]. However, the
increasing complexity of wireless networks requires techniques beyond traditional optimization,
such as Reinforcement learning (RL). For instance, RL-based methods have been proposed for
joint power and radio resource allocation in 5G networks [6, 7].

Motivated by the encouraging findings of previous works, we propose a Proximal Policy
Optimization (PPO) [8] solution for joint resource allocation and beam tracking in a mmWave
wireless communication context. By coordinating the optimization of the resource allocation
and beam tracking parameters, our system intends to mitigate the wireless channel’s dynamic
nature and its fluctuating channel quality. Simulation results show that, when compared to
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UE
BS

Fig. I.1: Illustration of the scenario

baseline approaches, the suggested method significantly outperforms them in terms of average
packet error rate (PER), learning a more dynamic policy of slots allocation for efficient beam
tracking and data transmission.

2 System Model and Problem Formulation
Consider a vehicular wireless network as depicted in Figure I.1, using a time division duplex
(TDD) scheme. A mmWaveBase Station (BS) equipped with a uniform linear array (ULA)
with Mt transmitting antennas communicates with U single-antenna User Equipment (UEs)
in a time-slotted network with K = {1, ..., K} orthogonal channel uses per frame. In each time
slot, only one user u can be scheduled. Each user u has a buffer of size Bu

UL for uplink packets,
while the base station has U buffers (with size Bu

DL for the user u) for downlink traffic. At
each slot k ∈ K, the BS performs one action: Su (sensing/beam tracking), DLu (transmission
of downlink packet), or ULu (reception of uplink packet) with u = 1, ..., U .

2.1 Channel Model
Due to the high directivity of mmWave systems, we assume a geometrical Line-of-Sight (LoS)
channel model for this work. In this way, the narrowband channel for the user u is given by

hu =
√

Mt

du
βa†

t (θu), (I.1)

where † denotes conjugate transposition, hu ∈ CMt denotes the channel vector for user u, du

denotes the distance between the BS and the u−th user and β ∼ CN (0, σ2
u) is the complex

fading gain with variance σ2
u. Also, θu denotes the Angle of Departure (AoD) with respect to
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the BS array axis and the u user position. As we are considering a ULA BS, the ideal isotropic
array responses are given by

at(θu) = 1√
Mt

[
1, e−jπ cos(θu), ..., e−jπ(Mt−1) cos(θu)]T

. (I.2)

For the dynamics of the system [3], given the user position in a given time slot cu
k = [xu

k , yu
k ], its

velocity v = [vlinear, vangular], where vlinear ∼ Exp(1) and vangular ∼ N (0, 1) and a slot duration
of ∆t, the user new position can be calculated as follows: i) compute the angular displacement,
ω = vangular∆t, ii) compute the direction vector: d = [cos ω, sin ω], iii) compute the linear
displacement: ∆c = vlineard∆t, and iv) compute the user’s new position: cu

k+1 = cu
k + ∆c.

This will change the AoDs and consequently make the channel vary along our time-slotted
resources. For simplicity, we assume a 2D geometric layout.

2.2 Beam Codebook
In this work, we assume a codebook-based analog beamforming architecture to beamform
signals with a single RF chain at the BS. We denote by F = {f1, ..., fMt } the codebook used
for analog beamforming at the BS, with Mt beams. We use the common Discrete Fourier
Transform (DFT)-based codebooks [9], with precoders fi given by

fi = 1√
Mt

[
1, e

−jπ
2i−1−Mt

Mt , ..., e
−jπ(Mt−1) 2i−1−Mt

Mt

]T

, (I.3)

where i ∈ {1, ..., Mt}. Then on each time slot, given the selected precoder f u
i ∈ F , the received

signal power Ru
i ∈ R for the u-th user can be described as

Ru
i = |

√
PthT

u f u
i s + nu|2, (I.4)

where T denotes transposition, Pt, s ∈ C, and nu denote the transmission power, the known
training symbol with normalized power, and the zero mean complex Gaussian noise vector with
variance σ2

n.

2.3 Traffic model
Each user follows an independent Bernoulli process with probability P u for generating packets
in downlink and uplink in every time slot k.

[pu
dl, pu

ul] ∼ Bernoulli(P u), (I.5)

where pu
dl, pu

ul denote 0 or 1 to determine if a packet was generated for the user u in downlink
and uplink for a time slot k.

2.4 Optimization Problem
We perform the allocation of slots for a specific user u with the goal of minimizing the average
PER, defined as:

P ER = LostP ackets

T otalP ackets
(I.6)
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within an episode K. The optimization problem is formulated as follows:

min
k∈K

1
UK

U∑
u=1

K∑
k=1

P ERuk (I.7)

s. t.
U∑

u=1

suk +
U∑

u=1

duk +
U∑

u=1

uuk = 1, ∀k = 1, 2, ..., K

suk, duk, uuk ∈ {0, 1}, ∀u = 1, 2, ..., U, k = 1, 2, ..., K

where the constraints denote that just one user can be allocated in every slot k for sensing suk,
downlink dukor uplink uuk, respectively.

3 PPO Fundamentals
PPO is an actor-critic algorithm [8] that models both the policy and value functions as a neural
network, with parameters denoted as θ, and ϕ. It aims to learn a policy πθ(a|s) that maximizes
the expected cumulative reward in an environment. The algorithm utilizes a value function
Vϕ(s) to estimate the expected total reward from a given state s, and an advantage function Ak

to measure the quality of an action in a specific state. At each time step k, the agent observes
the current state sk of the environment and samples an action ak from the policy distribution
πθ(ak|sk). The action is then executed, resulting in a reward rk and a new state sk+1. The
agent stores these experiences to update its policy and value functions after accumulating N
tuples of experience for a given policy. From here, we will denote the equations for a single
time step k for simplicity. The advantage function Ak measures the advantage of taking action
ak in state sk compared to the expected value from the current state. It is computed as the
sum of the discounted future rewards minus the value function at the current state:

Ak =
N∑

i=k

γi−kri − Vϕ(sk), (I.8)

where N is the maximum number of time steps per experience memory. Next, the value
function Vϕ(sk) estimates the expected cumulative reward from the current state sk onwards.
It is updated by minimizing the mean squared error between the estimated value and the target
value:

L
(k)
critic(ϕ) = 1

2 (Vϕ(sk) − (rk + γVϕ(sk+1)))2 , (I.9)

where γ is the discount factor that balances immediate and future rewards.
The policy is updated using the PPO objective, which aims to maximize the expected

advantage while avoiding large policy changes. The PPO loss function for a single time step is
given by:

L
(k)
PPO(θ) = min (rk(θ)Ak, clip(rk(θ), 1 − ϵ, 1 + ϵ)Ak) , (I.10)

where the clip operation restrict the values from 1 − ϵ to 1 + ϵ, rk(θ) = πθ(ak|sk)
πold(ak|sk) is the ratio

of the updated policy probabilities to the old policy probabilities, and ϵ is a hyperparameter
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that controls the magnitude of the policy change. To further improve the stability of training,
an entropy regularization term is included. The entropy S[πθ(ak|sk)] measures the uncertainty
or randomness in the policy distribution:

S[πθ(ak|sk)] = −
∑

a

πθ(ak|sk) log πθ(ak|sk). (I.11)

This term encourages exploration by discouraging overly deterministic policies. Finally, the
total loss function for PPO combines the policy loss, value function loss, and entropy regular-
ization over the entire N experiences:

Ltotal(θ, ϕ) = 1
N

N∑
k=1

(
L

(k)
PPO(θ) − c1L

(k)
critic(ϕ) + c2S[πθ(ak|sk)]

)
(I.12)

where c1 and c2 are hyperparameters that control the trade-off between the value function loss
and the entropy regularization. The policy and value networks are then updated jointly by
minimizing the total loss.

4 PPO for joint beam alignment and resource allo-
cation

To solve the problem in equation (7), the PPO framework is used, with the BS as the agent. To
do so, the environment, state space, action space, and reward signal are defined. Algorithm 1
provides a summary of the training procedure.

4.1 State space
The state space of this environment is characterized by four parameters:

• Current beam indexes iu ∈ I for the u ∈ U users.
• Current amount of packets of downlink buffer P u

DL for the u ∈ U users.
• Current amount of packets of uplink buffers P u

UL for the u ∈ U users.
• Current received power for every selected beam for the u ∈ U users, Ru

p .
In this way, the state in time slot k can be represented as

Sk = {{i1, . . . , iU }, {P 1
DL, . . . , P U

DL},

{P 1
UL, . . . , P U

UL}, {R1
p, . . . , RU

p }},
(I.13)

We normalize the beam indexes and buffer values dividing by the number of total beams in
the codebook and the buffer sizes, respectively.
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4.2 Action space
The action space is the set of all possible actions that the BS agent can choose from at each time
slot. While the method presented here can be applied to the selection of any wireless resource,
we consider the allocation of time slots. In this way, the possible actions are a discrete variable
with U × 3 possible values

ak ∈ A = {(a, u), a = 0, 1, 2, u = 1, 2, ..., U}, (I.14)

with the first element a denoting the action (0 for sensing, 1 for UL transmission, 2 for DL
transmission) and the second element u denoting the target user. Once in a sensing slot suk,
we assume we select the best neighboring beam (beam tracking) such that

arg max
fu
i

∈{fu
i−1,fu

i
,fu

i+1}
|
√

PthT
u f u

i s + nu|2. (I.15)

If the sensing variable suk is active (i.e., suk = 1), the beam selection for either downlink
transmission (duk) or uplink transmission (uuk) in slots will be based on the beam selected
during the last sensing slot.

4.3 Reward signal
The objective stated in equation (7) is to minimize the average PER. In our problem, packets
can be dropped due to different reasons: either encountering a full buffer (P u

DL > Bu
DL or

P u
UL > Bu

UL), or transmitting with a poor quality beam (i.e., using an outdated beam f u
i

obtained from equation (I.15) during suk). A beam is considered outdated, if f u
i is no longer

the optimal beam. To encourage the reduction of these packet drops, we assign a reward in
each time slot k based on the selected action. To understand our reward, let’s first define
Gu

b (k) as an indicator that equals 1 if, at the end of time step k, the buffer size P U
b for user u

(where b can be DL or UL) is such that P U
b < Bu

b . This indicates that the buffer is not full.
Additionally, we use the factor ρ(k) to represent the impact of beam tracking on the beam.
When beam tracking is performed and it results in a change to the beam, ρ(k) is greater
than zero (ρ(k) > 0). Conversely, when beam tracking is unnecessary and the beam remains
unchanged, ρ(k) is less than zero (ρ(k) < 0). The purpose of ρ(k) is to encourage the use of
sensing to recover the best beam when it is beneficial, and to penalize unnecessary sensing. If
it is not a sensing slot, ρ(k) is set to zero (ρ(k) = 0). Finally, we denote D(k) as the amount
of packets dropped in a time slot k. Furthermore, the reward rk is defined as

rk = 1
U × 2

U∑
u=1

∑
b∈{DL,UL}

Gu
b (k) + ρ(k) − D(k). (I.16)

5 Simulation environment and evaluation description
The algorithm is trained for a fixed number of episodes Etrain, with some randomly selected
initial positions for the UEs with varying speeds, small variations, and arrived packet prob-
abilities for each user. The results are evaluated on Etest randomly initialized episodes to
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Fig. I.2: ECDFs over Etest episodes

demonstrate generalization capability. Simulation and PPO parameters are listed in Tables I
and II, respectively. The baselines used to evaluate the results are described below:

1. Random: The policy of the agent is to allocate slots uniformly at random among all
possible actions.

2. X-TDMA (X Time Division Multiple Access) is a slot allocation policy where slots are
divided into sensing (S), uplink (UL), and downlink (DL) categories. The value of X
represents the number of consecutive UL/DL slots before transitioning to the next sensing
slot. Specifically:

(a) For X = 1: The pattern is S-UL-DL, repeating cyclically for each user.
(b) For X = 3: The pattern is S-UL-DL-UL-DL-UL-DL, repeating cyclically for each

user
(c) For X = 6: The pattern is S-UL-DL-UL-DL-UL-DL-UL-DL-UL-DL-UL-DL, repeat-

ing cyclically for each user.

In each case, X-TDMA follows TDMA principles and allows users to take turns using the
channel resources for uplink and downlink communication. These patterns are allocated
for every user u.

6 Results
We compare our proposed solution with the baselines in terms of average PER and normalized
throughput across the evaluation episodes (Etest). Figure I.2 presents the empirical cumulative
distribution function (ECDF) of the average PER and normalized throughput. Our method
demonstrates effective policy learning compared to random allocation. It outperforms the
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baselines in terms of PER, even though 1-TDMA is the safest option on average, presenting
a lower variance in the results. When reducing the number of sensing slots (3/6-TDMA), the
variance of results increases significantly. Moreover, our method exhibits improved throughput
performance. To provide a better understanding of our solution’s effectiveness, Figure I.3a
illustrates the maximum, minimum, and average PER. The allocation policy of our method
efficiently reduces the number of required sensing slots, as depicted in Figure I.3b. Despite this
reduction, our method achieves lower PER compared to the baselines, as observed in Figures I.2
and I.3a. Furthermore, we analyze the efficiency in Figure I.3c, which reveals that our dynamic
allocation policy prioritizes transmitting packets to reduce the full buffer drop rate, rather than
increasing sensing to minimize total PER but not as much as 6-TDMA does. In comparison
to 1/3-TDMA, the dynamic allocation of transmissions provides flexibility to improve overall
performance, as evidenced by the average PER results.

7 Conclusion
The proposed approach for joint resource allocation and beam alignment in mmWave wire-
less communication networks performs significantly better than baseline methods in terms of
average packet error rate (PER). It provides an effective solution to the resource allocation
problem and exhibits great generalization performance, regardless of system stochasticity. The
approach is promising for integrated sensing and communications networks and we plan to
explore a learned protocol design in future work.
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Algorithm 3: PPO Training Procedure
Input: The policy network πθ(a, s), the value network Vϕ(s) with weights θ

and ϕ, episodes, learning rate α, discount factor γ, weighting factor λ,
number of time steps per episode K, environment env, clipping
parameter ϵ

Output: Policy function πθ, value function Vϕ

Initialize θ and ϕ weights
for i← 1 to episodes do

Initialize environment: s1 ← env.reset()
Initialize empty lists for log probabilities, values, rewards, and old policy
probabilities

Initialize counter c← 0
while c < K do

for k ← (1 + c) to (N + c) do
Compute action probabilities πθ(ak|sk) and value estimate Vϕ(sk)
from neural network

Sample action ak ∼ πθ(ak|sk) and compute log probability
log πθ(ak|sk)

Compute old policy probability πold(ak|sk)
Take action ak and observe reward rk and next state sk+1
Append log probability log πθ(ak|sk), value estimate Vϕ(sk), reward
rk, and old policy probability πold(ak|sk) to their respective lists

Update state to sk+1
end
for k ← (1 + c) to (N + c) do

Compute advantages Ak

Compute ratio rt(θ) = πθ(ak|sk)
πold(ak|sk)

Compute surrogate objective
L̂PPO(θ) = min (rt(θ)Ak, clip(rk(θ), 1− ϵ, 1 + ϵ)Ak)

Compute value function loss L
(k)
critic = 1

N

∑N+c
k=1+c(Gk − Vϕ(sk))2

Compute entropy regularization term S[πθ(ak|sk)]
Compute total loss
Ltotal(θ, ϕ) = 1

N

∑N+c
k=1+c L

(k)
PPO(θ)− c1L

(k)
critic(ϕ) + c2S[πθ(ak|sk)]

Update neural network parameters by minimizing Ltotal using the
optimizer

end
c← (N + c)

end
end
return πθ, Vϕ
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Table I.1: Simulation Parameters

Parameter Symbol Value

BS antennas Mt 32
Frequency fc 28 GHz
Tx Power Pt 5 W

Signal-to-Noise Ratio SNR 20 dB
Scenario dimensions SD [100 x 100]

Number of UEs U 3
Packet arrival probability P u [0.6, 0.4, 0.3]
Packet dl/ul probability [pu

DL, pu
UL] [0.5, 0.5]

UEs initial positions [(x, y) permute] [[xu
0 , yu

0 ]] [[0, 80], [0, 40], [0, 27]]
Size of downlink buffers Bu

DL 5
Size of uplink buffers Bu

UL 5
Number of time slots K 1000

Number of training episodes Etrain 3000000
Number of testing episodes Etest 6000
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Table I.2: Training Algorithm Parameters

Parameter Value

Number of layers for actor and critic 3
Neurons of actor layers [{state_size, 64}, {64, 64}, {64, action_size}]
Neurons of critic layers [{state_size, 64}, {64, 64}, {64, 1}]

Activation function all layers tanh
Actor probability mapping softmax

Memory size N 80
Learning rate actor αa 0.0003
Learning rate critic αa 0.001

Discount factor γ 0.99
Beam tracking factor ρ(k) [3, 0, -1]

Loss weighing c1 0.5
Loss weighing c2 0.01

Clipping parameter ϵ 0.2
Optimizer Adam
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