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Abstract 

Bac kgr ound: Mac hine learning (ML) tec hnologies, especiall y dee p learning (DL), hav e gained incr easing attention in pr edicti v e mass 
spectr ometr y (MS) for enhancing the data-processing pipeline from raw data analysis to end-user predictions and rescoring. ML mod- 
els need large-scale datasets for training and r e purposing, which can be obtained from a range of public data repositories. However, 
appl ying ML to pub lic MS datasets on larger scales is challenging, as they v ar y widel y in terms of data acquisition methods, biological 
systems, and experimental designs. 

Results: We aim to facilitate ML efforts in MS data by conducting a systematic analysis of the potential sources of variability in public 
MS r e positories. We also examine how these factors affect ML performance and perform a compr ehensi v e transfer learning to evaluate 
the benefits of current best practice methods in the field for transfer learning. 

Conclusions: Our findings show significantly higher levels of homogeneity within a project than between projects, which indicates 
that it is important to construct datasets most closel y r esemb ling futur e test cases, as tr ansfer a bility is sev er el y limited for unseen 

datasets. We also found that transfer learning, although it did increase model performance, did not increase model performance 
compared to a non-pretrained model. 

Ke yw or ds: mac hine learning, deep learning, data mining, statistics, bioinformatics, proteomics, mass spectr ometr y, transfer learning 
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Bac kgr ound 

Large-scale studies of proteomes are essential to our understand- 
ing of the biological processes within an organism. The lead- 
ing technology for characterizing thousands of proteins is liq- 
uid c hr omatogr a phy–mass spectr ometry (LC-MS), whic h enables 
high-throughput quantification of protein abundances in a bio- 
logical sample [ 1 , 2 ] (Fig. 1 ). 

LC-MS has become the standard within proteomics procedures 
and continues to generate vast amounts of data, which, due to in- 
cr easing demands fr om journals and r e vie wers, ar e often made 
publicl y av ailable in data repositories . T his change has led to 
numerous public datasets being registered in online repositories 
such as the ProteomeXchange (PX) consortium [ 3 ]. The PXC con- 
tains r efer ences to ov er 17,000 pr ojects, and its lar gest member,
PRIDE, has more than a million raw files. Each raw file contains 
an av er a ge of 6.778 MS1 and 32.016 MS2 spectr a, whic h amounts 
to over 39 billion mass spectra. These data repositories provide an 

inv aluable r esource for data r epur posing to addr ess nov el biologi- 
cal questions or to benchmark new computational techniques for 
proteomics data analysis. 

While efforts in harmonizing data accessibility within PX and 

standardizing the computational pipelines are ongoing [ 3 ], repur- 
posing data from these repositories comes with a significant entry 
barrier, as they do not yet have any systematic criteria for meta- 
data or data types. 
Recei v ed: April 12, 2023. Re vised: A ugust 23, 2023. Accepted: October 11, 2023 
© The Author(s) 2023. Published by Oxford Uni v ersity Pr ess GigaScience. This is an
Attribution License ( https://cr eati v ecommons.org/licenses/by/4.0/ ), which permits 
the original work is pr operl y cited. 
Due to the advancements in machine learning (ML) model de-
 elopment, ther e is now an increasing interest in repurposing
hese rich LC-MS data to train complex ML models that can pro-
uce new insights and results not achievable by previous compu-
ational methods [ 4 ]. Ho w e v er, the lar ge div ersity of experimental
r ocedur es and biological systems r equir es car eful consider ation
hen a ppl ying bioinformatics methods to lar ger extr acts of pub-

icl y av ailable data, as ML r elies on car eful balancing to r eac h op-
imal and correct performance. 

Multiple ML algorithms and methods have been applied to 
S data, suc h as r egr ession models [ 5 ], r andom for est [ 6 ], and,
or e r ecentl y, neur al networks [ 7 ]. Mac hine learning a pplications

n proteomics are primarily focused on 2 aspects: (i) improving
urr ent methodologies suc h as database searc hes or de novo se-
uences or (ii) pr edicting physicoc hemical peptide properties such
s LC-MS/MS spectr a, r etention time, or posttr anslational mod-
fications (PTMs) [ 8–10 ]. Deep learning (DL) a ppr oac hes function
y generalizing the data, thereby generating distributions of the 
raining data. Ho w ever, due to the high complexity and large noise
ound in LC-MS data, many of the current approaches suffer from
imited tr ansfer ability, as they utilize synthetic, limited, or heav-
l y str atified datasets for the pur pose of tr aining and testing their

odels [ 8 , 11 , 12 ]. These issues are further exacerbated by techni-
al advances in the field, such as ion mobility [ 13 ], which further
ncreases the complexity and diversity of the data. The majority 
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Figure 1: Simplified workflow of a mass spectrometry–based proteomics experiment. First, proteins are extracted from the biological samples, after 
which they are digested into peptides using enzymes, most often trypsin. Next, peptides are chromatographically separated and injected into the 
mass spectr ometer, wher e they ar e measur ed according to the mass ov er c har ge ( m/z ) and abundance (MS1). MS1 spectr a fr om all peptide pr ecursor 
ions are reported, and certain peptides are chosen for tandem mass spectrometry (MS2), where they are fragmented along their amino acid backbone 
and identified by having their MS2 spectrum matched to a database of theoretical spectra. Lastly, peptides are quantified and summarized into 
pr oteins [ 14–16 ]. Cr eated with BioRender.com. 
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f current ML methods within computational proteomics also rely
n unique and complex postprocessing pipelines, such as peptide-
pecific indexed retention time (iRT) calculations, rendering the
ethods difficult to replicate and reducing their application range

utside the original publication. 
One of the biggest shortcomings in machine learning, particu-

arly deep learning, is the problem of under- and o verfitting. T hese
efer to situations in which a model performs too well on the train-
ng data (overfitting) and generalizes poorly on unseen test data
r not well enough on the training data (underfitting) and subse-
uently also on unseen test data. Despite multiple attempts and
he breadth of available data, these problems are still present in
he field of pr edictiv e pr oteomics. 

In this article, we investigate the general reusability of pub-
ic mass spectrometry data for machine learning applications,
pecifically focusing on potential pitfalls that could result in poor
ranslatability to independently sampled data sets. We will do so
y performing statistical analyses on the effect of the experimen-
al setups on the variability of the generated data and see how
hese effects impact the pr edictiv e ca pabilities of state-of-the-art
eep learning models . T his work is expected to ha ve an impact
n the data selection process in predictive proteomics, elevating
he capabilities of current and future models, as well as highlight-
ng the necessity for a ppr opriate pr epr ocessing and algorithmic
hoices. 

ata description 

or a compr ehensiv e r epr esentation of publicl y av ailable MS data,
e analyzed data from ∼60,500 raw files across ∼820 PRIDE
rojects, totaling ∼60 TB of raw files and metadata. In total, 546
rojects containing 33.426 raw files were used for neural net-
ork testing. All selected data had been pr e viousl y anal yzed with
axQuant [ 17 ]. 
The full dataset was gathered from randomly sampled projects

n PRIDE using MS2AI [ 18 ]. We restricted the retrieval to data
rom standard bottom-up proteomics experiments. We also did
ot hav e an y initial queries on experimental or sample pr epar a-
ion, resulting in data from a wide breadth of sources from which
e have subsampled smaller datasets for in-depth analyses

Table 1 ). In total, we gathered spectra and metadata for ∼151 M
ndividual unmodified peptides (Fig. 2 ). 

esults and Discussion 

e performed a thorough statistical assessment of the data and
r ained m ultiple neur al netw orks in or der to gauge the variability
nd e v aluate the tr ansfer able ca pabilities of state-of-the-art mod-
ls. Ho w e v er, in the field of pr edictiv e pr oteomics, especiall y in re-
ention time prediction, it is common to apply transfer learning
o pr etr ained models . T his is done as a r esult of the poor tr ansfer-
bility of the original networks, as the models do not ac hie v e setup
ndependence by being constrained to the experimental settings
f the training data. Ho w ever, transfer learning requires a large
mount of data in a format suitable for machine learning, as well
s significant computational expense, making it both data and
omputationall y intensiv e. Additionall y, it also r equir es expertise
n both machine learning and programming. To test the effec-
iveness of transfer learning in predictive proteomics, we exhaus-
iv el y tr ansferr ed all of the tr ained models to e v ery other dataset
n the same section to assess the impact of transfer learning on
erformance. 

All models were measured with several metrics—namely, re-
ention time error (RT �), mean squared error (MSE), and mean
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Table 1: Ov ervie w of datasets used in model training or testing. All subset datasets are randomly sampled from the full ∼151 M peptide 
dataset, with Andr omeda scor e and subset filters described in the “Minimal score” and “Description” columns, r espectiv el y. No other 
filters were added when sampling. We also annotated the size of the subset dataset in the “Peptide counts” column, with a 2 M peptide 
count limit for each dataset. 

Name Section Minimal score Peptide counts Description 

PT17 1 100 750,000 Dataset constructed from PXD004732 
PT19 1 100 750,000 Dataset constructed from PXD010595 
Limit 1 100 750,000 750,000 peptides, excluding PXD004732 and PXD010595 
Wide 1 150 2,000,000 2,000,000 peptides, excluding PXD004732 and PXD010595 
Long 2 150 2,000,000 Gradient length equal to or above 100 minutes 
Short 2 150 2,000,000 Gradient length equal to or below 60 minutes 
Lower 3 100 125,000 Peptides with m/z values below 360 
Upper 3 100 125,000 Peptides with m/z values above 1,300 
Human Supp. 150 2,000.000 “Human ( Homo sapiens )” from PRIDE metadata 
Mouse Supp. 150 2,000,000 “Mus musculus (mouse)” in PRIDE metadata 

Figure 2: Andromeda score (MaxQuant) distribution plot of the ∼151 M 

unmodified peptides in the complete data. 
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absolute error (MAE)—and the performance for all metrics can 

be found in the supplementary e v aluation_metric_r eport.pdf file.
Ho w e v er, when anal yzing the model performances, we observ e 
near-identical metric ratios between tr aining, v alidation, and test- 
ing across various evaluation metrics . T his suggests that the out- 
comes r emain inv ariant acr oss metrics and do not alter the con- 
clusions drawn from the models’ performance. For this reason, we 
hav e decided onl y to r eport the RT � v alues and r efer to the e v alu-
ation metric report for further metric comparison. RT � measures 
the av er a ge time differ ence between pr edicted RT v alues and ac- 
tual values and is the proprietary metric used by the DLOmix 
pac ka ge. DLOmix is a softwar e integr ation of popular DL mod- 
els used in pr oteomics, whic h we used to construct the Prosit 
model. 

In this article, we use the tr ansfer ability of model predictions as 
a measure of data variability by training models to predict the elu- 
tion times of identified peptides based on a range of measurable 
factors. While we try to stratify datasets to k ee p certain parame- 
ters constant, there is a range of underreported and unextractable 
information that we are incapable of controlling, which is often 

intr oduced fr om the sample pr epar ation or the LC system. 
During sample pr epar ation, the efficiency of protein digestion 

can cause incomplete digestion or nonspecific cleav a ge, whic h 

can result in the presence of partially digested peptides . T hese 
altered peptide species can significantly influence the elution be- 
havior, adding complexity and variability to the analysis. Addi- 
ionall y, sample cleanup pr otocols ar e emplo y ed to r emov e inter-
ering impurities like salts and deter gents, whic h, based on the
fficiency of the pr ocedur e , ma y lea v e behind r esidual impurities
hat can affect the peptide elution pr ocess. Mor eov er, the sample

atrix composition introduces the matrix effect, which can im- 
act peptide ionization and detection. 

In the LC system, column chemistry determines the interac- 
ions between peptides and the stationary phase, while column 

imensions affect separation efficiency and resolution. Modify- 
ng either the mobile or stationary phase composition can al-
er the peptide’s polarity, ionic strength, binding affinity, and so
n, altering the elution time and profile . T he use of tr a ps or pr e-
olumns in the LC system introduces variability by selectively re-
aining peptides or interfering with separ ation. LC temper atur e
nfluences molecular interactions, including solvent viscosity,
e ptide conformation, and pe ptide–solv ent inter actions, ther eby
ffecting peptide elution and separation. 

These are just some of the unextractable factors that can con-
ribute to the variability and affect the elution times of peptides.
nfortunatel y, we ar e unable to measur e or contr ol these fac-

ors. Ho w e v er, by having a sufficiently large dataset and randomly
rawing data points from a range of thousands of raw files, we
im to mitigate their impact on the model predictions and con-
lusions, also by assuming that the majority is based on standard
C setups. 

ingle- vs. multiproject variability 

n our model comparisons, we found that the models trained on
he PT17 and PT19 datasets performed significantly better than 

hose models trained on the Limit and Wide datasets during both
raining and validation (Fig. 3 ). Interestingly, the PT models also
utperformed the Wide model and performed compar abl y to the
imit model when testing on the wide and limited datasets. 

While we expected the training and validation of the PT mod-
ls to outperform the Wide and Limit model, we did not expect
he PT models to outperform the Wide and Limit models on the

ide and Limit test datasets . Furthermore , we also found that
he Limit model outperformed the Wide model for all test cases,
uggesting that increasing the amount of data and using stricter
coring criteria does not necessarily improve the performance 
f trained models and may even cause the models to underfit.
ne possible explanation for this is that longer and more com-
lex peptides, which are easier to detect and generally receive
igher peptide identification scores, also exhibit more variability 

n their elution times. We tested this and found that the peptides



4 | GigaScience , 2023, Vol. 12, No. 1 

Figure 3: General variability model performance comparison. Each 
model was trained and validated on its original source datasets and 
then cross-tested for all test datasets. We compared the training and 
validation for all models, as well as cross-testing datasets and their 
r espectiv e model performance in terms of RT �. 
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n both PT datasets have av er a ge peptide lengths of ∼12, with the
imit dataset containing a longer av er a ge peptide length of ∼13
nd the Wide dataset containing an e v en longer av er a ge length of
14. 
The reduced performance observed in the randomly sam-

led datasets is also possible due to the presence of multiple
ariability-inducing factors in the experimental setup. These fac-
ors, such as the type of MS instrument or the selected species,
re often difficult or impossible to account for when relying on
arge bulks of public data. Changing these could result in consid-
r abl y differ ent model performances ( Supplementary Fig. S1 ). In
ontrast, the PT datasets were measured under the same condi-
ions on synthetic peptides, which reduces the presence of such
 ariability-inducing factors. Additionall y, the PT datasets hav e the
dv anta ge of using one single gradient length, while the limited
nd wide datasets use multiple different gradient lengths. 

In order to e v aluate their tr ansfer ability, we a pplied tr ansfer
earning to all 4 models and found that, while some of the mod-
ls impr ov ed performance compar ed to pr e vious external test-
ng, they mostly performed similarly to nontransferred models
n the same dataset (Fig. 4 ). In the case of the Wide dataset,
ransfer learning actually resulted in reduced performance for
ll tr ansferr ed models . T his suggests that the Wide dataset had
ignificantl y higher le v els of heter ogeneity between tr aining and
esting data compared to the other datasets. While these results
how that transfer learning can be beneficial in certain scenar-
os, they also sho w ed that most of the models simply improved or
 egr essed to the transfer dataset. Ho w ever, even if transfer learn-
ng did not provide significant pr edictiv e benefits, it did reduce the
ime needed to train the models by an average of 5.5% by converg-
ng faster ( Supplementary Table S2 ). 

radient lengths 

he interactions between the peptide and the stationary and mo-
ile phases of the liquid c hr omatogr a phy system determine the
etention time of a peptide in an LC-MS/MS system. In identical
etups, the retention time of a peptide is considered reproducible
 5 ]. 

Plotting the distribution of gradient length for all raw files with
n ov erlaid cum ulativ e distribution function (Fig. 5 A), we observ e
ignificant peaks at 60, 90, and 120 minutes, with ∼60% of all gra-
ients being 0–120 minutes in length and the longest gradient be-

ng 800 minutes. While we did find single projects with as many as
5 differ ent gr adients, we also found that 70% of the 820 projects
 e pt the same gradient length for all files, while only ∼5% em-
lo y ed more than 2 unique gradients (Fig. 5 B), indicating high lev-
ls of consistency in instrument configurations within individual
rojects. 

The results of our deep learning use case sho w ed that the Short
radient model performed significantly better than the Long gra-
ient model ( Supplementary Fig. S2 ). This is further supported by

ts decreased performance on the Long gradient test dataset com-
ared to the Short model. 

These findings suggest that peptides from longer gradients
ener all y expr ess higher v ariability compar ed to peptides fr om
horter gr adients, e v en after attempted peptide normalization. It
lso indicates that our normalization method for the effective
r adient, whic h aims to mimic the linear iRT calculations used
n the original Prosit study, may not be effective for all gradients
nd raw files, r eiter ating the necessity of targeted postprocessing
ipelines. 

Performing inference dropout on all models in the previous sec-
ion shows that all of the models exhibit significantly higher un-
ertainty for the earliest and latest eluted peptides compared to
hose eluted closer to the middle of the gradient (Fig. 6 ). Addition-
ll y, we observ e that the PT models show a mor e linear pr ediction
radient than the Limit and Wide models, further suggesting the
ontr olled natur e of the Pr oteomeTools dataset output peptides in
 more linear gradient, which fits better for our first–last peptide
radient normalization. We also observe less overall uncertainty
n the PT models, likely because they wer e tr ained on datasets
ith few er peptides, lo w er av er a ge peptide retention times of ap-
r oximatel y 32 minutes, and unified gr adients, wher eas the av-
r a ge r etention times of the limit and wide datasets were signifi-
antly higher at 60 + minutes fr om m ultiple gr adient lengths . T his
uggests that longer gradients lead to an increase in data variabil-
ty and model uncertainty. 

Performing transfer learning on the gradient length models
 Supplementary Fig. S3 ), we observe that refining the Long model
o the Short dataset resulted in a significant performance impr ov e-

ent. Ho w e v er, r efining the Short model to the Long dataset did
ot result in any significant change in performance, although it
till outperformed its nontr ansferr ed counter part. Unlike what
e observed in the previous section, transfer learning of the gra-
ient length models came at an increase or a stagnation in per-
ormance, indicating that the models retained information from
he initial training datasets. We also note that transferred models
ook, on av er a ge, 25% longer to train compared to nontransferred

odels ( Supplementary Table S3 ). 

ass-to-charge range filter 
S instruments have a range of setup parameters that can tailor

he experiment to the needs of r esearc hers . T he m/z range filter is
ne of those parameters, as it restricts peptide data acquisition to
 given m/z range. Ho w ever, for data repurposing, this range can
lso lead to a biased dataset for machine learning, as the sample
ight have contained a large range of peptides not reported by

he instrument. While the filter settings do exclude certain data
oints, it should be noted that most database searches also have
utoffs for shorter peptides due to noise at the lo w er end of m/z ,
aking peptide identifications in this space mor e unlikel y e v en
hen peptides are present. 

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad096#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad096#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad096#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad096#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad096#supplementary-data
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Figure 4: General variability transfer model performance comparison. Each model was transferred to each of the external datasets and retested on 
all 4 datasets. Datasets are separated by plots, denoting the performance difference of each model when trained on or transferred to identical 
datasets. Each bar has the original test metric in blue, and the transfer learning test metric is overlaid in orange. 
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When plotting the m/z filters of the mass acquisition range 
(Fig. 7 ), we observe significantly more variability in the upper 
bound compared to the lo w er bound, meaning that our upper 
bound is highly correlated to the length of the filter. All violin plots 
exhibit a peak at 1 specific value, 350 for the lo w er bound and 

1,500 for the upper bound, with a corresponding peak at 1,150 for 
the filter lengths . T hese peaks correspond to the most commonly 
used filter, which accounts for 33.9% of all raw files. 

We also observed that 47% of all projects applied a single filter 
acr oss all r a w files , 43% of pr ojects a pplied 2 filters, and only 10% 

of the projects applied more than 2 unique filters. Consequently,
there is significant homogeneity within a project, while between 

projects, the filters can differ consider abl y. If datasets ar e con- 
structed using only 1 or a few unique filters, large portions of the 
ata space may ne v er be used for tr aining, potentiall y limiting the
r ansfer ability of the models ( Supplementary Fig. S4 ). 

We also tested the model performance of the PT17 and PT19
odels on peptide datasets only containing peptides outside of 

he original filter bounds (out-of-bounds [OOB], Supplementary 
ig. S5 ) and found that model performance was significantly
orse when compared to the source test datasets . T he OOB testing
erformance is also significantly worse when compared to Limit 
nd Wide testing (see Results and Discussion), which also con-
ained peptides in the OOB r ange. Inter estingl y, the models per-
ormed slightly worse on heavier OOB peptides than on lighter
OB peptides (Fig. 8 ), despite lighter peptides exhibiting higher in-
ividual variability and the distribution of lighter peptides being 
or e concentr ated at one end of the distribution compared to the

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad096#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad096#supplementary-data
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Figure 5: Gradient length distribution and unique gradient per project. We illustrated the gradient distribution of all 60,000 + raw files overlaid with 
the cum ulativ e distribution (A). Also illustr ated is the number of unique gr adients found within an y of the 820 pr ojects (B). 

Figur e 6: Ba yesian model uncertainty estimates of single- vs. m ultipr oject v ariability models. For eac h of the models, we conducted model infer ence 
25 times with layer dropouts applied at original r ates. Eac h data point is an av er a ge of the infer ence r esults, with the colorization of the dots indicating 
the normalized r elativ e v ariability of eac h peptide. For eac h of the datasets , we o v erlaid a distribution plot of the dataset r etention time v alues as a 
solid line and a linearity assessment (y = x) to facilitate a comparison of the model predictions with perfect alignment as a dotted line. 
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Figure 7: Illustration of the variability of m/z range filters found in different projects. Violin plots depicting the m/z filter bound distributions, with 
the lo w er bound plotted in blue (A), upper bounds plotted in red (B), filter length plotted in y ello w (C), and a histogram of the total number of unique 
filters found within projects (D). 

Figur e 8: Ba yesian model uncertainty estimates for out-of-bounds peptides. For PT17 (A) and PT19 (B), we conducted model inference 25 times with 
layer dropouts applied at original rates. Each data point is an average of the inference results, with the colorization of the dots indicating the 
normalized r elativ e v ariability of eac h peptide. For eac h of the datasets , we o v erlaid a distribution plot of the dataset r etention time v alues as a solid 
line and a linearity assessment (y = x) to facilitate a comparison of the model predictions with perfect alignment as a dotted line. 
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heavier peptides ( Supplementary Fig. S6 ). Similarly to Fig. 6 , we 
observ e significantl y mor e model uncertainty tied to earlier and 

later eluted peptides. 
The significant reduction in performance we observed in 

the OOB testing suggests that the models do not learn the 
underl ying natur e of amino acid (AA) weights, folding, and 

physicoc hemical pr operties, factors that impact R T as w ell 
as the ionization and detectability of peptides, as m uc h as 
they memorize the retention times of certain peptide sequence 
patterns [ 12 ]. 

Fr agmenta tion pa tterns 

We also investigated the variability and content of fragmentation 

spectra in public data. In this case, as fr a gmentation does not in- 
fluence peptide retention time, we will only consider the theoret- 
ical impact on deep learning applications like fr a gmentation pat- 
tern predictions and rescoring. 
A perfect peptide fr a gmentation spectrum is a theor etical con-
ept that consists of a discrete set of all characteristic peaks
efined only by the peptide sequence. In reality, fragmentation 

pectr a onl y contain subsets of these theor etical peaks with pat-
erns based on the bac kgr ound contaminants fr om the instru-

ent, fr a gmentation tec hnique, collision ener gy, and mor e. In
rder to understand the challenges and limitations of the MS2
pectr a for mac hine learning algorithms, we anal yzed MS2 spec-
r a peaks fr om 86 r andoml y sampled r aw files containing mor e
han 768 million peaks, allowing us to visualize the peak distribu-
ions found in MS2 spectra. 

When looking at the distribution of all m/z values found in
he 86 r andoml y sampled files, we observe a clear bimodal dis-
ribution independent of peak selection or bin sizes; 1 distribu-
ion is located at ∼50 to 250 m/z and the second distribution at
250 to 2,000 m/z . The distribution at the lo w er m/z range dis-

upts the expected normally distributed peptide fr a gment ions

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad096#supplementary-data
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ound at 250 to 2,000 m/z and consists of clearly distinguish-
ble high-density peaks corresponding almost exclusively to sin-
le amino acid residues (Fig. 9 E, F) and some bac kgr ound noise.
he cum ulativ e distribution plots in Fig. 9 show the singl y c har ged
mino acid r esidues, wher e amino acids are annotated if the m/z
f the peak matches the collision ions a , b , or y or the electron-
ransfer ions c or z . The most abundant amino acid peaks are
ighlighted in Supplementary Table S1 , and we observe that these
eaks become mor e fr equent at higher le v els of peak selection
 Supplementary Figs. S7 –S8 ). It should be noted that the exact
A contribution to some peaks is uncertain, as multiple AA ions
atch the same m/z peaks. 
One thing not taken into consideration in this analysis is the

ethod and energies used during fragmentation. The fragmenta-
ion tec hnique, suc h as collision-induced dissociation (CID), high-
ner gy C-tr a p dissociation (HCD), or electr on-tr ansfer dissocia-
ion (ETD), has a significant impact in determining the patterns
f peptide fr a gmentations . T his is due to each technique apply-
ng varying amounts and types of energy to the precursor ions,
eading to distinct bond cleav a ge pathways and producing spe-
ific fr a gment ions [ 8 ]. Along with the fr a gmentation tec hnique, it
s also essential to discuss the fr a gmentation ener gy, often called
ormalized collision energy (NCE) for CID and HCD, and c har ge
tate-dependent reaction time for ETD. The stability of the cre-
ted fr a gment ions depends primaril y on the size, polarity, and
 har ge on either side of the cleav a ge, and the ener gy with whic h
he fr a gmentation occurs determines whic h bonds can be br o-
en [ 19 , 20 ]. This also means that higher energy fragmentations
r e mor e likel y to cr eate single AA ions [ 21 , 22 ]. Utilizing the
r a gmentation-specific ion patterns, either by inclusion or strat-
fication, has already been proven successful for both top-down
nd bottom-up pr edictiv e pr oteomics [ 7 , 8 , 23 , 24 ]. Due to the com-
lexity of LC-MS/MS fr a gmentation patterns across fragmenta-
ion techniques and energy, some projects utilize project-specific
eptide libraries to increase the identification of desired peptides.
ven though the usage of peptide libraries will not dir ectl y af-
ect the variability of peptide patterns in LC-MS or LC-MS/MS,
hey can still affect identified variability by having a significantly
igher probability of identifying peptides in the library while not

dentifying a large number of otherwise present peptides. Re-
ent de v elopments in DL methods have enabled enhanced or
ibr ary-fr ee peptide identifications, which, with future improve-

ents, could increase efficacy without biasing the identification
 25 , 26 ]. 

onclusions 

ass spectrometry remains a po w erful tool to quantify thousands
f protein abundances in biological samples. Analysis of the raw
xperimental data is incr easingl y dependent on suitable compu-
ational methods [ 27 ], with a major focus on algorithms for pep-
ide identifications and protein quantifications. Ho w e v er, despite a
 ariety of differ ent statistical, conceptual, and gr a ph a ppr oac hes,
ethods such as database search engines still suffer from lim-

tations in both accuracy and runtime . No v el mac hine learning
ethods hold the promise of advancing the analysis of upcoming

ata, as well as having a high potential for r epur posing the am-
le body of public data for the r etrie v al of valuable new biological

nformation. 
In this article, we have investigated and highlighted some of

he main sources of variability found within the high-throughput
S data. We identified a range of factors that increase variabil-
ty in the data-gener ating pr ocess and analyzed the homogene-
ty of the variability within a project when comparing different
rojects. Our main finding from the statistical analyses was that
lobal v ariability, whic h is found between pr ojects, is significantl y
arger than internal variability, which is found between files in the
ame projects . T his is exhibited through instrument settings, sam-
le pr epar ation, and experimental c hoices, all of whic h ar e sig-
ificantl y mor e homogeneous within an y giv en pr oject compar ed
etween pr ojects. Furthermor e, w e also w anted to see ho w these
ources of variability impacted ML capabilities by training Prosit
etention time predictors on each source individually, whenever
pplicable. 

We trained 9 Prosit models, tested these models on 27 datasets,
nd performed transfer learning 14 times. An alternative ap-
r oac h would hav e involv ed performing m ultiple r andomized
ata splits for each model and averaging the results to provide
 more comprehensive assessment of model performance. How-
 v er, we c hose not to pursue this option due to their compu-
ational costs. Our findings show that training models on data

ost closely resembling real-life test cases are crucial, as the
odels’ ability to generalize outside the training data confine-
ents was se v er el y limited. This was illustr ated by the PT mod-

ls outperforming any other model during training and valida-
ion while having considerable performance drops when tested
n r andoml y acquir ed data or peptides not in the original m/z
ange. 

Our results also found evidence that transfer learning can oc-
asionall y impr ov e the performance of a pr etr ained model. How-
 v er, the most common scenario we observed was that models
nded up mimicking nontransferred models for the same dataset
hile not reducing the average amount of epochs needed for con-
 er gence . T his tendency resulted in model r egr ession in 5 of the
4 cases and only resulted in model improvement in 1 of 14 cases.
hile our findings do indicate that models need to be trained

n datasets from re presentati ve sources, the y do not indicate
hat transfer learning outperforms training a new model in terms
f accuracy or computational needs ( Supplementary Tables S4
nd S5 ). 

Since a r epr esentativ e dataset is needed, we argue that a re-
earc h envir onment either has to tr ain specialized models to their
ata collection methods or generate an unbiased dataset from
ublicl y av ailable data sources that attempt to mimic the in-
ended posttr aining a pplication thr ough softwar e suc h as MS2AI
 18 ]. 

We further found that fr a gmentation spectr a ar e ric h in yet
eglected information. Given the abundant single-residue frag-
ent ions, particularly at higher activation energies, consider-

ble amounts of internal ions should be present. This informa-
ion has been so far mostly untapped due to the complexity of
ncluding internal ions in database search and spectrum predic-
ion. Adv anced mac hine learning methods might be ca pable of

aking sense of these ions despite their noisy and ubiquitous
ature. 

We note that a pr e v ailing issue with the current data reposito-
ies is the missing or mislabeling of metadata. With the ongoing
tandardization efforts in lar ge r epositories suc h as PRIDE [ 28 ],
his issue should fade over time. Through the analysis, we also
dentified the need to r eport mor e details about the experimental
esign, the data acquisition, and the postprocessing in a compre-
ensive and standardized way to make them amenable as addi-
ional input for machine learning applications and thus allow for
he direct training of the confounding factors. 

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad096#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad096#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad096#supplementary-data
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Figure 9: Illustration of how peak picking and peak binning affect the MS2 peak density plot and single amino acid density. The density distributions 
of peak m/z values shown were obtained without peak picking (C, D) and with the top 50 peaks (A, B). The spectra were then imposed into 50 (A, C) 
and 500 (B, D) bins. E,F: for each value of peak picking, we also illustrated the cumulative distribution plot of the peaks in 50 to 250 m/z with single 
AA residues overlaid. No stratification on the fragmentation method or its settings has been considered during this analysis. 
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Methods 

We use different methods to e v aluate the v ariability caused by dif- 
ferent setup parameters of the LC-MS experiments and their ef- 
fect on ML tr ansfer ability to unseen data. To assess the impact of 
biases and experimental heterogeneity, we trained identical deep 

learning models over a range of data properties and compared 

their results. We used the Prosit retention time model with peptide 
sequence and retention time as input and output, r espectiv el y.
The Prosit model architecture consists of a sequence embedding 
layer, a bidirectional GRU layer, and an attention lay er, follo w ed 

by fully connected dense la yers . T he retention time of all peptides 
in a raw file has been linearly normalized to an effective gradi- 
ent, spanning between the first (0) and last (1) identified peptide 
to mimic the iRT calculations performed in the original study. No 
further data refinement or reannotation has been applied to the 
files. Initially, w e follo w ed the hyper par ameter setup described in 

the Prosit study but found that 32 epochs were not sufficient for 
model tr aining conv er gence. As a r esult, we incr eased the tr aining 
to 100 epochs and applied a 20-epoch patience for early stopping 
instead. All other parameters were identical to those described in 

the original study [ 8 ]. The Prosit deep learning arc hitectur e was 
implemented by using the DLOmix fr ame work [ 29 ], and all modi- 
fied peptides were removed due to DLOmix constraints. 

For all trained netw orks, w e sampled 10% of each dataset 
as a hold-out test set on which all testing was conducted.
The remaining data was split into training and validation sets 
with a ratio of 80:20. For datasets composed of multiple PRIDE 
i  
 RRID:SCR _ 003411 ) projects, the hold-out datasets consist of sep-
r ate pr ojects that wer e r andoml y sampled, wher eas for datasets
onsisting of a single project, the hold-out dataset consists of ran-
omly sampled ra w files . T his pro vided the most accurate het-
rogeneous test scenarios without overlap across projects or MS 
uns . Furthermore , the training and validation datasets were split
y peptide sequences, meaning that no peptide will be present

n either the training or the validation datasets. Ho w ever, since
he testing data were randomly split at the project or file level,
hese may contain sequences that are also present in the training
atasets. 

The data acquisition, filtering, model training, and testing 
er e mana ged using MS2AI with MongoDB ( RRID:SCR _ 021224 ) in
ython 3.8 with an NVIDIA v100 GPU. The data wer e acquir ed in
ovember 2021 with the extractor API with the options “-p -mo

t 128,” which allows for en masse data acquisition from PRIDE
-p) while onl y fetc hing MaxQuant ( RRID:SCR _ 014485 ) informa-
ion (-mo) and increasing thread counts to 128 to allow for faster
untime (-t 128). This r equir es the current version of the PRIDE
etadata, which is downloaded using the scraper API and the -db

ption. The filtering was performed using the filter API using the
q option with MongoDB or string filters available in the GitHub
epository. The model training and testing were performed using 
he network API with “-t prosit -e 100 -sos -s n ” to train a Prosit

odel for 100 epochs, with training and validation being split
ased on unique sequences and a given seed for consistent train-

ng, validation, and test splitting. When performing transfer learn- 
ng, the only difference is “-t pr osit-ID,” whic h uses the weights of

https://scicrunch.org/resolver/RRID:SCR_003411
https://scicrunch.org/resolver/RRID:SCR_021224
https://scicrunch.org/resolver/RRID:SCR_014485
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he trained model with the same ID. Model training times varied
rom 4 to 10 hours based on the dataset size and epochs needed
o conv er ge. All code and seeds for the runs are available in the
itHub repository. 
We utilized a Bayesian a ppr oximation of the model uncertainty

y performing model inference with dropout enabled [ 30 , 31 ]. The
 eal r etention time v alues ar e then plotted a gainst the mean pr e-
icted values, with the color of the data point corresponding to
he normalized variances of the predicted values . T he dropout for
nference testing was applied to all layers where dropout was orig-
nall y a pplied, with original dr opout r ates . T his allo w ed us to not
nl y e v aluate the models on their metric performances but also
etermine the retention time ranges where the models are least
ertain of their predictions . T his method is available in MS2AI net-
ork API using the “-id n ” option to run n dropout tests and auto-
aticall y gener ate the data visualization plots. 

ingle- vs. multiproject variability 

n order to measure the difference in variability not caused by in-
ividual factors but instead caused by systemic changes in ex-
erimental protocol, we compared the model performance of 2
ingle-project models to the performance of 2 m ultipr oject mod-
ls. We did this by training 4 Prosit models on data from 4 dif-
erent sources: 2017 [ 32 ] and 2019 [ 33 ] ProteomeTools ( RRID:SCR _
18535 ) datasets ( PT17 and PT19 , r espectiv el y) and 2 sets of ac-
uir ed data fr om r andoml y sampled PRIDE pr ojects—one limited
o the 750,000 peptides filtered at 100 Andr omeda scor e thr esh-
ld, which is the score reported by MaxQuant ( Limit ), and one
ith 2,000,000 peptides filtered at 150 Andromeda score thresh-
ld ( Wide ). Alongside the initial training and testing, we also per-
ormed transfer learning on all models for all nonsource datasets
o compare their initial performance to posttransfer learning
erformance. 

pectra and gradient lengths 

o compare and analyze the variability in gradient lengths, we ex-
racted the metadata from each raw file (found in the files.bson.gz )
nd the gradient lengths of all runs individually, which we plotted
n a histogr am a gainst the probability of each gradient length. We
hen calculated the cum ulativ e distribution function of the gradi-
nt lengths for all files, which is overlaid on the histogram. Then,
e calculated the number of unique gradients across all files from

he same PRIDE accession, allowing us to visualize the variability
ound within projects when plotting the number of unique gra-
ients in a histogram against the probability of each number of
nique gradients. 

Along with gradient length visualizations, we also trained 2
rosit models to evaluate the effect of gradient length on model
erformance . T he models were trained datasets that were divided

nto 2 groups based on their gradient lengths: short ( ≤60-minute
radients) and long ( > 100-minute gradients). The data were ran-
omly sampled from the entire 151 M peptide dataset, and only
eptides with ≥150 Andromeda scores were k e pt. We also per-
ormed transfer learning of both gradient models to the opposing
atasets . Furthermore , to test model uncertainty across the gra-
ient, we performed model inference with dropout enabled on all
 models, as described above. 

/z range filter 
o visualize and compare m/z filters across files and projects, we
xtracted the m/z filter bounds from each raw file and plotted the
o w er bounds , upper bounds , and the difference between the up-
er and lo w er bounds to get the lengths. We then visualized these
alues in a violin plot in order to see possible patterns or k e y val-
es in the distributions. 

In order to e v aluate the impact of m/z filters on model perfor-
ance, we created 2 subsets of data, this time m uc h smaller due

o low peptide count: one in which all peptides lie below 360 m/z
 lower ) and one in which all peptides lie above > 1,300 m/z ( Upper ).
hese bounds were chosen as we are going to reuse the PT17 and
T19 models , which ha ve m/z filter bounds of 360 to 1,300 m/z,
nd using these datasets allo w ed us to e v aluate peptides that are
utside original filter bounds. As we did not train new models for
his section, no transfer learning was applied. Again, we also per-
ormed model inference with dropout enabled in order to assess
he model uncertainty for these OOB peptides. 

r agmenta tion pa ttern 

o analyze the distribution of MS2 peaks, we extracted every peak
rom 86 raw files [ 34 ], where we compared the raw spectra with
ll peaks pr eserv ed to spectr a filter ed by top n peaks based on in-
ensity for 3 values of n : 50, 100, and 200. MS2 spectr a ar e often
nnotated or binned to make them fit into typical ML architec-
ur es. To illustr ate how this type of binning affects the outcome
istribution, we also binned each of the combined peak selected
pectra at 50, 100, 200, and 500 total bins from 0 to 2,000 m/z .
e then calculated the collision ions a , b , and y as well as the

TD ions c and z for all amino acids separ atel y. This w as done b y
dding −27, 1, 19, 18, and 2 mass to their single c har ged molecu-
ar residue weights for a , b , y , c , and z ions, r espectiv el y using the
eb tools "Amino acid residues molecular masses" ( http://www2.

iken.jp/ BiomolChar/ Aminoacidmolecularmasses.htm ) and "Pro-
eomics Toolkit" ( http:// db.systemsbiology.net/ proteomicsToolkit/
r a gIonServlet.html ), both accessed 2023, March 20. 

ource Code and Requirements 

roject name: MS Review Paper 
r oject homepa ge: https:// gitlab.com/ tjobbertjob/ ms-r e vie w- 
aper
perating system(s): Platform independent 
r ogr amming langua ge: Python 

ther r equir ements: Python 3.8, MongoDB 

icense: e.g., GNU AGPLv3 
RID:SCR _ 024531 . 

dditional Files 

. DOME-ML Registry File 

. Evaluation metric report 

. Supplementary figures 
upplementary Fig. S1. Species model performance compari-
on. Each model was trained and validated on individual inter-
al datasets and cross-tested on all external datasets as a basis
or model comparisons . T he x-axis denotes datasets , and the bars
enote model performance on the given dataset. 
upplementary Fig. S2. Gradient model performance compari-
on. Each model was trained and validated on individual inter-
al datasets and cross-tested on all external datasets as a basis
or model comparisons . T he x-axis denotes datasets , and the bars
enote model performance on the given dataset. 
upplementary Fig. S3. Gr adient-based r efinement model perfor-
ance comparison. Each model was refined on all previous exter-

al datasets and retested on both datasets. Datasets are separated

https://scicrunch.org/resolver/RRID:SCR_018535
http://www2.riken.jp/BiomolChar/Aminoacidmolecularmasses.htm
http://db.systemsbiology.net/proteomicsToolkit/FragIonServlet.html
https://gitlab.com/tjobbertjob/ms-review-paper
https://scicrunch.org/resolver/RRID:SCR_024531
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by plots, denoting the performance difference of each model when 

trained on, or refined to, identical datasets. Each bar has the orig- 
inal test metric in blue and the refinement test metric overlaid in 

orange. 
Supplementary Fig. S4. Illustration of the unseen data space 
caused by limited search space filters. Illustrated are 3 theoreti- 
cal search spaces superimposed on top of a theoretical MS1 chro- 
matogr am, with unr e ported pe ptides at both ends of the data 
space. 
Supplementary Fig. S5. Out-of-bounds performance comparison 

of PT models . T he PT17 and PT19 model comparison for their in- 
dividual internal datasets (initial), peptides with m/z below 360 
(lo w er), and above 1,300 (upper). 
Supplementary Fig. S6. Bayesian model uncertainty estimates for 
out-of-bounds peptides split into 2 datasets . T he out-of-bounds 
datasets are split into 2 datasets: peptides with m/z below 360 (left) 
and above 1,300 (right). Models are separated into rows with PT17 
in the first row (A, B) and PT19 in the last row (C, D). 
Supplementary Fig. S7. Density distribution of MS2 peaks with 

differ ent le v els of peak pic king imposed at 50 and 100 bins. For 
eac h v alue of peak pic king, we also illustr ated the cum ulativ e dis- 
tribution plot of the peaks in 50 to 250 m/z with single AA fr a gmen- 
tations overlaid. 
Supplementary Fig. S8. Density distribution of MS2 peaks with 

differ ent le v els of peak pic king imposed at 200 and 500 bins. For 
eac h v alue of peak pic king, we also illustr ated the cum ulativ e dis- 
tribution plot of the peaks in 50 to 250 m/z with single AA fr a gmen- 
tations overlaid. 
Supplementary Table S1. Corresponding single amino acid peak 
table. m/z , amino acid, and fr a gmentation type of MS2 peaks in 

Fig. 9 . “∗” does not meet the threshold of 1% in the given n and is 
not annotated on the CDF. Note that 129.1 and 129.2 have been 

merged to 1 peak, due to rounding error. 
Supplementary Table S2. Model epochs for training convergence 
ov ervie w of transfer learning models. 
Supplementary Table S3. Model epochs for training convergence 
ov ervie w of gradient-length models.. 
Supplementary Table S4. Model epochs for training convergence 
ov ervie w of models trained for organisms. 
Supplementary Table S5. Model epochs for training convergence 
ov ervie w of models trained for instruments. 

Da ta Av ailability 

The database files, r efer ence texts, and tr ained mod- 
els supporting the results of this article are available 
in the FigShare repository [ 34 ]. The DOME-ML Registry 
file containing annotations supporting this work is avail- 
able as a supplementary file attached with this article.
Snapshots of our code are archived in Software Heritage,
https://arc hiv e.softwar eherita ge.or g/br owse/ origin/ directory/ 
?orig in _ url=https://g itlab.com/tjobbertjob/ms-r e vie w-pa per. 
git&snapshot=1246a52f5717c414df138b746e6d54a2712673a1 . 
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