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EFITA 2003 Conference 5-9. July 2003, Debrecen, Hungary

DIAGNOSTIC TESTING: MODEL ESTIMATION AND
DECISION SUPPORT USING GRAPHICAL MODELS.

Erik Jorgensen, Erik.Jorgensen@agrsci.dk,
Michael Hohle & Saren Hojsgaard
Danish Institute of Agricultural Sciences, PO - Box 50 DK-8830 Tjele, Denmark

Many agricultural decision problems can be treated within the framework of diagnostic
testing. Test observations are made sequentially in to order to classify a production unit as
normal/unnormal, diseased/healthy etc. The central design problem is to find the optimal
classification based on the outcome of a test. As in other decision support systems a major
aspect is how to specify the relevant parameter values to be used for finding the optimal
classification Using pregnancy testing on sows as an illustration, the paper demonstrates
how graphical modeling and Influence Diagrams offers a coherent framework for solving
this specification problem. The same structured stochastic model is used for estimation of
model parameters and for optimisation of the decisions concerning the diagnostic testing.

The uncertainty in the knowledge of the model parameters is readily incorporated.

1. Introduction

Diagnostic testing 1s often carried out without adequate consideration concerning the cost in-
volved and the potential benefit. Such tests are usually performed in order to make some treat-
ment decision, where the outcome of each test serves as decision criteria. The test indicates the
most likely state of the animal and thus the optimal treatment of the animal. However, the tests
are seldom perfect indicators of the underlying state, and precision and test setup regarding
calibration of device, dependency between repeated testing etc. are important, when optimal
decisions are considered.

Usually, the test is based on a measurement of some characteristic on a continuous scale,
and the result is transformed to a binary test outcome based on some threshold or cut-off value.
Ideally, the threshold value is chosen such that the resulting test outcome obtains the optimal
combination of false negatives and true positive. Note, that visual assessment of traits in cat-
egorical classes, e.g., behaviour category or disease severity, may be considered within the
same framework. Typically, the final diagnostic decision will be based on a sequence of such
tests, e.g., a visual inspection by the farmer, a more precise clinical evaluation by a veteri-
naran, and in some cases a precise confirmatory laboratory test. Thus, we need to specify a
model containing all these observations, as well as their dependency to the underlying state,
and the dependency between the different observations. Parameter estimation in models of

such structured stochastic systems have recently become much easier, due to methodological
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developments in graphical modelling and Markov Chain Monte Carlo estimation (Gilks et al.,
1996)

The test sequence as well as the choice of threshold influence the risk of selecting the wrong
treatment. Depending on the cost of this, the expected income of the decisions will vary. The
optimal threshold value i1s the value with maximal expected income. Thus, to optimise the de-
cision we need to take into account both the uncertainty related to the outcome of the decision
and the uncertainty related to our lack of knowledge of the test in question. The optimal char-
acteristics of each of these tests can not be considered individually, but every test need to be
considered simultaneously. Smith & Slenning (2000) presents a general introduction to deci-
sion analysis within veterinary diagnostic testing but using decision trees as the framework to
describe the problem. We will pursue a more recent representation of such decision problems,
namely Influence Diagrams, see e.g., Jensen (2001). Apart from being a much more compact
representation of the decision problem, the advantage is that it is closely related to graphical
modelling.

The focus of the present paper is to illustrate how the use of Influence Diagrams and related
graphical models establishes a coherent link between data analysis and subsequent decision
analysis. We have chosen to illustrate the methodology using the pregnancy testing problem,

becanse it contains several of the important elements that needs to be considered.

2. Pregnancy testing

Successful matings that results in pregnancy is a key figure for successful pig production, and
the pregnancy state of the animal is an important parameter in production management. We
will not discuss the problem in detail but will refer to Meredith (1989), who presents further
aspects related to the pregnancy testing.

The use of pregnancy testing in modern pig production may be summarised as follows.
Three weeks after mating sows are inspected with respect to recurrence of oestrus. If they
show oestrus they will be mated, and if they do not show oestrus, they will be inspected using a
pregnancy test device, approximatel y a week later. Depending on the outcome of this test, the
sow 18 either culled, kept or selected for later re-testing with the test device. This repeated test
(e.g. a week later) leads to decisions concerning keeping or culling.

The test devices measure certain physical characteristics of the sow. These characteristics
are also influenced by other factors than pregnancy state, introducing dependencies between
repeated tests. In addition, it is well-known that the test outcome depends on the skill of the

operator,

3. 'The estimation problem

From the description above it is obvious that the precision of the pregnancy test devices is

an important parameter when selecting decision strategies. Fortunately, this precision may be
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studied experimentally.

3.1. Data material

Data used in this study originates from a Danish investigation by the National Pig Committee
performed in order to compare different devices for pregnancy testing of sows. The experi-
mental design allowed for estimation of the precision of different test devices as well as the
repeatability of the test with respect to sow and operator. A total of 44 sows were tested, by
6 persons (operators) each using 6 different test devices, 1.e., a total of 1584 tests. Dueto a
coding error the outcome 1s missing for one sow for device 2 used by operator 2. Thus, the
data set consists of 1583 observations with sow number {1,... 44}, operator id {1,-.- ,6},
device id {1, - , 6}, true pregnancy state {pregnant, not pregnant}, test outcome {negative,
positive}, and days from mating to testing [30, 38]. A total of 28 sows were pregnant. The
sows were selected for the study according to pregnancy state, that is the pregnancy rate is not

representative.

3.2, Model

We will agsume that the testing device measures a latent continuous response, ¢.g. hormonal

level, or ultrasonic reading. The model of the latent continuous response is:
Vi =ppDi + 5+ O

where 1ip is the effect of pregnancy state ¢, D; € {0, 1} indicates the pregnancy state of sow ¢,
S; 18 effect of the 2th sow, and O; 1s the effect of the jth operator. The effect of sow and operator
were treated as random, S; ~ N0, 0%) and O; ~ N(0,0%). The binary outcome of the test
T 1s 1,18 Vi, + v > Ay and O otherwise, where v, follows the logistic distribution with

mean 0 and device dependent variance o3,,, and \;, is the device dependent threshold value.

1

PI‘(I/@;;; + Vil = )\Ic) = PI‘(I/@;;‘;C = )\Ic — 1/@3) = m?
ik

where ¥, = %ﬁ follows the standardised logistic distribution. '

1o = b was assumed and non-informative prior distributions were selected for the param-
eters. The prior distribution of the variance parameters were specified using the distribution of
the corresponding precision parameters (7,, = 1/02). These parameters {7s, 70, Tart, - - -, Tare b
were assumed gamma distributed with parameters (0.001,0.001). The prior distribution of )
where assumed uniform in the interval from -2 to 10, 1.¢., in the relevant interval. The estima-

tion of the posterior distribution of model parameters were performed using the Markov Chain

! Alternatively the normal distribution might have been chosen for vy;. However, this causes numeric insta-
bility in the estimation procedure
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Monte Carlo (MCMC) approach via the program WinBUGS (Gilks et al., 1993). The estima-
tions were based on 10000 iterations of the MCMC chain, following a bum-in period of 5000
iterations. In Fig. 1 the model is shown as a graphical model, a so called doodle. The doodle
corresponds to a WinBUGS program.

Sow ¢ ¢in (1 : 44)

i

@D @03
—®
@ kin (1 :6)

Operator 7 jin(l:86)

Figure 1: BUGS doodle representing the threshold model

3.3, Results

The results showed marked difference between sows and test devices and only a slight variation
in the effect of the operator of the device.

The estimated value of the standard deviation between sows g = 0.85 is more than three
times as large as the standard deviation between operators, oo = 0.26. However, the credibility
intervals overlaps so ¢ is not significantly larger than ¢. The precision of the different devices
varies markedly. Expressed as standard deviations, s, varies from 1.2 (device 4) to 2.9
(device 3). Similarly, the threshold values of the 6 devices differed. Kernel density estimates
of the distribution is shown in the left part of Fig. 2 in left part of the figure. Especially, device
6 differed from the rest with a markedly higher threshold value. This resulted in very different
values for the sensitivity (Se— conditional probability of positive test results given pregnancy)
and specificity (Sp— conditional probability of negative test results given no pregnancy) of the
test device. While the precision or the device specific standard deviation ¢, is usually specific
to the device components and physical characteristic used in the measurement, the threshold
value 18 a simple matter of adjusting the alarm threshold to a desired value. The estimated Se
and Sp values can be used to calculate so-called ROC curves (Hanley, 1998) that shows the
dependency between Se and Sp when the threshold value varies (Fig. 2 right).

Even though device 1 and 6 differ markedly in Se and Sp, ((0.96,0.68) vs. (0.87,0.86)) the
difference may in fact be due to different adjustment of the threshold for alarm, as the standard
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Figure 2: Posterior distribution the threshold parameters 7, of the 6 devices(left), and ROC- curves
based on model estimates (right). The markers indicate estimated Se and Sp

deviation were comparable (g3;1 = 2.1 and g6 = 2.2). Device 4 18 obviously the best and
device 3 the poorest of the 6 devices tested. Note that the Se of machine 3 (0.94) 1s actually
higher than the Se for device 6 (0.87). Another observation is that the producers of the test
devices (except device no. 6) put a higher priority on Se rather than Sp.

This naturally leads to the questions such as: is this adjustment of the test devices sensible,
how much more can I pay for the different types of test devices?

These questions are discussed in the next section.

4. 'The decision problem

In this section, the evaluation of different strategies for use of pregnancy testing devices will be
discussed from decision theoretic point of view.

The decision framework is the usual one in modern pig production as described in section
2. The decision problem can be modeled using a so-called Influence Diagram, as illustrated in
Fig. 3.

The central part of the problem replicates the statistical model in Fig. 1. The D node
18 the (unobservable) pregnancy state of the sow, V' is the latent pregnancy signs of the sow
(and the person/operator performing the test) and 73 and 7% are test outcomes (oval nodes
indicates stochastic variables). In addition, the outcome of the test depends on the device
specific standard deviation ¢,;. The figure represents the use of the same device for the two
tests,

In the statistical model the threshold values A were treated as a stochastic variable to be
estimated. In the decision context, the A nodes represent the decision concerning the threshold
value to use in each of the two tests. (Decisions are indicated using rectangular node). The
arrow between H and Xy indicates that the outcome of the heat detection 1s known when the

decision 1s made.
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Figure 3: Influence Diagram representing the decisions related to pregnancy testing. The enclosed area
corresponds to the statistical model

The remaining nodes are additions compared to the statistical model. The P node indicates
the herd pregnancy rate, and the H node the heat observation. '} and 5 are the decisions
related to the outcome of the pregnancy tests. The altemative decisions in C'; is to keep the
sow, to cull the sow or to perform the second pregnancy test. (7 is based on the second test and
the alternatives are keep or cull. For each test a cost is implied (&/; and U/;) (Rhombic nodes
indicates cost or utility). The nodes [y and D, models the pregnancy state of the sow after it
18 affected by the decisions ¢ and (%, 1.e., the decision cull results in the nonpregnant state.
Finally, a reward Us; is obtained depending on the state of D,. If the animal is pregnant the
reward corresponds the marginal return of a litter of pigs, if not, the reward is zero. We will
restrict the analysis to the case of a negative outcome of heat detection.

The quantification of the network is relatively standard based on the parameter estimates
from the statistical analysis. In addition, the utility nodes needs to be specified. In the following
calculations reasonable costs in Danish Kroner (DKK) have been chosen, of course these cost
should be adapted to the conditions in each herd.

The program Hugin (http://www.hugin.com) was used for specification of the Influence
Diagram (ActiveX library ver. 5.3). A user interface programmed in Borland Delphi 5.0 was

used for calculation of optimal strategies for different scenarios.

4.1, Resuits of decision analysis

The maximum yield that may be obtained using the testing devices can be calculated rather
easily. The perfect information in this case is certain knowledge of the animal ’s pregnancy state.
If we obtain perfect information, only the pregnant amimals need to bed fed until farrowing, 1f
we obtain no information we have to feed all the sows, which has not shown oestrus, Of

course this figure depends on the pregnancy rate as well as the precision of the heat detection.
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The higher the pregnancy rate, the lower the potential value of the test device. (Note, that
replacement costs is not included in the calculations, so it is a rather optimistic figure). For
example, a pregnancy rate of 0.90 results in amaximum value of 13 DKK, whereas a pregnancy
rate of 0.80 results in approx. 30 DKK. Similarly, with an increase to 0.80 of heat detection
rate 17.1 DKK, and a decrease to 0.70, 26 DKK. The average value is 21.5 DKK. Thus, the
value of the pregnancy testing is in that interval.

In Fig. 4 the expected marginal return from using the 6 different devices is shown with a
single testing. Furthermore the optimal Se and Sp settings. Note that the values are based on
a free test, 1.¢., no labour, machine cost etc. is included. In the right part of the figure, similar
values are shown in relation to the precision of each device. In addition, the figure show the

value using two repeated tests with each device.

Device  Marginal return, DKK ~ Se Sp S
No Test 1405.5 ol &0
1 1411.6 0.97 0.65 g g
2 1415.0 0,97 075 % = % Double test | = 4
2 1406.9 097 0.38 g n : Z
4 1420.0 097 088 G \‘2;
5 1414 .4 0.97 074 N 5
6 1410.5 0.97 0.60 ] DN
Perfect 1427.0 1.00 1.00 .| Singletest . T

T T T T T T T T
00 05 1.0 15 20 25 El EN

Std, Dev, devies

Figure 4: Expected return from optimal strategy, free test, machine precision known

As shown, the optimal value for Se is identical (97 %) for every device, and is a little
higher but rather closely to the observed values shown in Fig. 2, except for device 6. The
optimal values for Sp are surprisingly low in some cases. These values refer to single testing
for the average heat detection rate and pregnancy rate. Using the Influence Diagram it is easy
to calculate the optimal use of the pregnancy test, under different conditions. Furthermore, the
optimal combination of two test devices may be considered, ¢.g., a cheap first test, followed by
a more elaborate and expensive test. From an economic point of view the main problem is that
very few sows that has not already shown heat are non-pregnant.

Of course, it is of interest to explore several other aspects, but hopefully, the few examples

mentioned illustrates the potential of the approach.

5. Discussion

As indicated in the previous pages, graphical modeling offers a comprehensive framework for
both data and decision analysis. Because the stochastic nature of the problem is inherent in
the modeling, the inclusion of parameters and background knowledge with different precision

introduces no further complications. The graphical structure gives a natural representation of
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1ssues such as repeated measurements and other kinds of dependent measurements, as illus-
trated with the latent " variable which models the underlying physical characteristic measured
by the test devices (Fig. 3). Even though the decision tree approach are still suggested as the
method for solving these problems e.g., Smith & Slenning (2000), it should be realised that In-
fluence Diagrams 1s a far better choice because of the more compact representation. Actually,
the original motivation for the Influence Diagram was to make a more compact representation
of decision trees (Howard & Matheson, 1984). The differences in the algorithms for finding
optimal solutions are a later development.

We have used the pregnancy test problem to illustrate the method. However, a very wide
range of problems within agricultural production may be handled within the same framework.
Problems like estimation of disease prevalence, early warning using automatic registration
equipment, BSE-testing schemes etc.

Thus, the necessary framework exists for handling these common decision problems, both
concerning quantification and optimisation. However, surprisingly few applications are avail-
able. The reason may be that sequential decision problems is inherently complex to solve, if
they become much larger than the example used. But because of current research within in ex-
ample artificial intelligence, it is reasonable to expect that at least finding approximate solutions
to far more complicated problems will be feasible in the future, see e.g., Lauritzen & Nilsson
(2001).
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