

Aalborg Universitet

GInRec

A Gated Architecture for Inductive Recommendation using Knowledge Graphs

Jendal, Theis Erik; Lissandrini, Matteo; Dolog, Peter; Hose, Katja

Published in:
KaRS 2023 Knowledge-aware and Conversational Recommender Systems 2023

Creative Commons License
CC BY 4.0

Publication date:
2023

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Jendal, T. E., Lissandrini, M., Dolog, P., & Hose, K. (2023). GInRec: A Gated Architecture for Inductive
Recommendation using Knowledge Graphs. In V. W. Anelli, P. Basile, G. De Melo, F. M. Donini, A. Ferrara, C.
Musto, F. Narducci, A. Ragone, & M. Zanker (Eds.), KaRS 2023 Knowledge-aware and Conversational
Recommender Systems 2023: Proceedings of the Fifth Knowledge-aware and Conversational Recommender
Systems Workshop co-located with 17th ACM Conference on Recommender Systems (RecSys 2023) (pp. 80-
89). CEUR Workshop Proceedings. https://ceur-ws.org/Vol-3560/long6.pdf

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 30, 2024

https://vbn.aau.dk/en/publications/a7f25c86-74b9-48b9-98ab-ead128b26551
https://ceur-ws.org/Vol-3560/long6.pdf

GInRec: A Gated Architecture for Inductive
Recommendation using Knowledge Graphs
Theis E. Jendal1, Matteo Lissandrini1, Peter Dolog1 and Katja Hose1,2

1{tjendal,matteo,dolog,khose}@cs.aau.dk – Aalborg University (AAU), Denmark
2katja.hose@tuwien.ac.at – Technische Universität Wien (TU Wien), Austria

Abstract
We have witnessed increasing interest in exploiting KGs to integrate contextual knowledge in recommender systems in
addition to user-item interactions, e.g., ratings. Yet, most methods are transductive, i.e., they represent instances seen
during training as low-dimensionality vectors but cannot do so for unseen instances. Hence, they require heavy retraining
every time new items or users are added. Conversely, inductive methods promise to solve these issues. KGs enhance
inductive recommendation by offering information on item-entity relationships, whereas existing inductive methods rely
purely on interactions, which makes recommendations for users with few interactions sub-optimal and even impossible
for new items. In this work, we investigate the actual ability of inductive methods exploiting both the structure and
the data represented by KGs. Hence, we propose GInRec, a state-of-the-art method that uses a graph neural network
with relation-specific gates and a KG to provide better recommendations for new users and items than related inductive
methods. As a result, we re-evaluate state-of-the-art methods, identify better evaluation protocols, highlight unwarranted
conclusions from previous proposals, and showcase a novel, stronger architecture for this task. The source code is available
at: https://github.com/theisjendal/kars2023-recommendation-framework.

1. Introduction
In Recommender Systems (RSs), an item is recommended
to a user based on their preferences. Usually, these pref-
erences are extracted from a user’s historic interactions
with items, such as clicks or purchases. A RS can either
recommend based on user-item interactions, based on
descriptive features of the items, or both. In the first
case, for example in the movie domain, the system would
assume that users that watch the same movies are likely
to do so also in the future; this approach is commonly
referred to as Collaborative Filtering (CF) [1, 2, 3, 4, 5]. In
the second case, instead, the system would assume that
the user is likely to watch movies of similar genres and
plots of movies they watched in the past, i.e. a content-
based method. Challenges arise for the former approach
when, for a given user, only very few interactions are
known; a similar challenge arises when information de-
scribing items is scarce. The idea is then to combine both
kinds of information. In this regard, recently, RSs have
been proposed to model knowledge about items derived
from a KG [6, 7, 8, 9, 10, 11, 12]. A KG represents entities
and their attributes as nodes and edges within a graph
model, e.g., taxonomies, item descriptions, or categories
attached to items. These models further integrate user-
item interactions into the graph, obtaining in this way a
Collaborative KG (CKG), as in Figure 1.A. Allowing for
recommendations to users that have only a few ratings
or with newly added items that have none at all.

Fifth Knowledge-aware and Conversational Recommender Systems
(KaRS) Workshop @ RecSys 2023, September 18–22 2023, Singapore.

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

Inception

American
Hustle

Christian Bale
Joseph

Gordon-LevittChristopher
Nolan

Don Jon

The Prestige

Heist

Action

Sci-Fi Fiction

Tragedy

Drama

Crime
Fiction

Alex

Aiden

Max

Max

GInRec
GNN (;) =

The Prestige

GInRec
GNN

(;) =
× = likes?

A

B

Figure 1: Item recommendation over a CKG: Part A shows a
CKG in the movie domain, with users, movies, and connected
entities; Part B illustrates the recommendation task.

For example, in Figure 1.B, we are making predictions
for a user for whom we do not have any information
(empty the embedding vector) except for a few rated
items. The KG connects directors, genres, and actors to
the rated movies, where some of these entities are de-
scribed by textual information, e.g., bios and synopses.
We can use the connections and data to infer user prefer-
ences beyond the collaborative signals.

Many existing methods only work in a transductive
setting; that is, it is assumed that all users and items have

1

https://github.com/theisjendal/kars2023-recommendation-framework
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org

Theis E. Jendal et al. CEUR Workshop Proceedings 1–10

been seen during training [13, 14], meaning transductive
models require retraining whenever new users or items
are introduced. Instead, some models try to offer induc-
tive capabilities [13, 15, 14]. In an inductive setting, users
and items exist that are not in the training set ; therefore,
they extract information from the data to incorporate
local structures to obtain an inductive bias. Nonetheless,
existing methods usually model only user-item interactions,
ignoring the KG [16, 13, 14, 17]. Our analysis of existing
works (see Section 3) identified four important limita-
tions: (i) the reliance on user metadata [17, 18], (ii) the
tendency to rely exclusively on collaborative informa-
tion and to bias preference over popular items [13, 15, 14],
(iii) the poor scalability of methods that create user-item
subgraphs for every rating [19, 15], and (iv) the missed
opportunity to exploit item metadata and KG structure.

Hence, we first propose a new architecture for induc-
tive recommendation using KGs. In our design, we strive
for simplicity by adopting the efficiency and expressivity
of Graph Neural Networks (GNNs) to aggregate struc-
tural information of each node’s neighborhood, but going
beyond trivial extensions of the GraphSAGE architecture
as well as any other existing inductive method [16, 19, 20,
17, 15, 14, 21] due to its gated architecture that more ef-
fectively extrapolates inductive biases from the semantic
and structural information encoded in the CKG. Further-
more, by reviewing the experimental evaluation of exist-
ing works, we have identified problematic methodologies
on which we report here together with our results. Thus,
we propose the Gated Inductive Recommendation (GIn-
Rec), a new architecture that fully exploits the semantic
information of real-world KGs for inductive predictions
in a scalable way.

2. Problem Formulation
Formally, we define a KG as a directed labeled multigraph
identified by the triple ⟨𝒩 ,ℛ,ℒ⟩, where 𝒩 is the set of
entities (nodes) in the graph, ℒ, ℒ∩𝒩=∅, is the set of
labels for the relations, and the edges between entities
are represented as ℛ⊆𝒩×ℒ×𝒩. Consider, for instance,
the top-right portion of the example in Figure 1. Here,
nodes represent movies, actors, directors, and a taxon-
omy of genres, while edges represent how nodes are
connected, e.g., in the triple (Inception, hasGenre, Heist).
As common in the literature [22], we split entities into
two sets: the set of recommendable entities ℐ⊂𝒩, being
the entities that the system can recommend to a user (e.g.
movies); and the set of descriptive entities ℰ𝑑𝑒𝑠𝑐⊂𝒩 (e.g.,
actors, genres, classes), such that 𝒩=ℐ∪ℰ𝑑𝑒𝑠𝑐.

Furthermore, we adopt the concept of a CKG [6], i.e. a
KG augmented with users’ interactions with items, also
shown in Figure 1. Formally, given the set of users 𝒰,
the interaction matrix I∈{0, 1}|𝒰|×|ℐ | is a matrix of size
|𝒰|×|ℐ |, having I𝑢,𝑖=1 if user 𝑢∈𝒰 has liked the item

𝑖∈ℐ and I𝑢,𝑖=0 if we do not have any information about
the specific pair, e.g., if the user has never interacted
with the item. Then, given the matrix I and the KG
𝒢, the CKG 𝒢c∶⟨𝒩c,ℛc, ℒc⟩, is an extension of 𝒢, hav-
ing 𝒩c=𝒩∪𝒰, ℒc=ℒ∪{Likes}, and ℛc=ℛ∪{(𝑢, Likes, 𝑖) |
∀𝑢∈𝒰, 𝑖∈ℐ s.t. I𝑢,𝑖=1}.

Finally, every node 𝑛∈𝒩c is associated with a set of
node features, assuming a function 𝒳∶𝒩c↦ℝ𝑑 exists,
called the feature function, assigning to each node a fea-
ture vector of dimension 𝑑. Typically, this vector provides
a 𝑑-dimensional encoding of the node’s contents, e.g., in
this and other works [13] the word embedding of the tex-
tual description obtained by literal values attached to the
nodes are used. However, since we do not want to use, or
have, any user information, with the exception of their
ratings, then we have ∀𝑢∈𝒰 .𝒳(𝑢) = 0⃗. Therefore, given
an interaction matrix I, a KG 𝒢 with feature function
𝒳, a user 𝑢, and an item 𝑖 such that I𝑢,𝑖=0, we model the
recommendation problem as the problem of predicting
the likelihood of I𝑢,𝑖=1 if we present the item 𝑖 to the user
𝑢. In practice, we model our task as a top-k recommen-
dation problem. Thus, we aim at learning a model Θ to
parametrize a transformation function ℱ∶𝒰×ℐ↦[0, 1],
such that ℱΘ(𝑢, 𝑖) ≥ ℱΘ(𝑢, 𝑗), imposes a partial order on
ℐ for every user in 𝒰, if it is more likely that the user 𝑢
would like 𝑖 over 𝑗 than vice versa.

Finally, in the recommendation setting, we define two
types of users: those for which preferences across some
items in ℐ were known when learning Θ, i.e., at training
time, and those for which no item rating was known
during training, but for which some rating is known at
inference time. We refer to the former as to the warm-
start users𝒰𝑤 and to the latter as cold-start users𝒰𝑐, with
𝒰=𝒰𝑐 ∪𝒰𝑤. Transductive methods can only recommend
for users in the warm-start set, while inductive methods
can recommend for users in both sets. Typically, when
a new user joins a platform, it is common practice to
present themwith an initial set of items to be rated. Thus,
we consider cold-start users for which, at inference time,
we have some ratings, even though those ratings are
usually few and sparse [18, 23, 20].

3. Related Work
Most existing recommendation methods either only use
bipartite graphs of user interactions with items [3, 5, 16]
or are transductive [6, 7]. Instead, inductive learning
models generate predictions for unseen nodes by directly
reasoning over the features that describe them, but exist-
ing methods do not exploit KG data. Here, we provide an
overview of inductive methods, detailing their limitations
compared to our proposal (as summarized in Table 1) and
describe the advantages of relational gates.

Inductiveness. GraphSAGE [13] was the first inductive
GNN capable of efficiently generating embeddings for

2

Theis E. Jendal et al. CEUR Workshop Proceedings 1–10

unseen nodes by leveraging pretrained node features for
node classification. It was later expanded to a scalable
item-item recommendation method, meaning no explicit
modeling of user-item ratings [16].

Other methods have been proposed for inductive ma-
trix completion by extracting subgraphs around each
user-item pair to obtain the necessary representations [24,
25, 19, 15]. These approaches are designed for the sin-
gle rating prediction task and not for the ranking task.
Generating these sub-graphs is prohibitively space- and
time-consuming. Thus, they cannot efficiently produce
user-item rankings, since a subgraph is generated for
all user-item pairs [20]. Furthermore, these methods
do not use KG information; thus, they cannot provide
predictions for new items with no interactions. There-
fore, instead of constructing subgraphs, GInRec employs
subsampling of neighboring nodes to obtain a scalable
prediction mechanism [16, 13] and uses KGs to gain infor-
mation about items with few user interactions. Several
methods exploit user metadata, e.g., gender and age infor-
mation [17, 18]. Yet, this information is rarely available,
making it impossible to use these methods in practice.
Hence, in ourmethod, we assume no usermetadata, learn-
ing instead how to aggregate information. Some methods
are made for sequential recommendations [26], or can-
not recommend for new users or for new items [14, 27],
and in general cannot capture high-order connectivities
between users, making them less relevant for our study.

Additionally, some methods are quasi-inductive since
they consist of two parts: (1) a transductive part to obtain
some initial embeddings and (2) an inductive part where
the method learns to generate embeddings for new users
or items [21, 20]. GInRec is fully inductive since it uses
the extracted node textual features instead and thus does
not need to learn the initial embeddings. Finally, many
methods target the prediction of a user rating, which
underperforms in the ranking task, even compared to
non-personalized methods [2]. Thus, existing works (Ta-
ble 1) either: (i) create subgraphs, which do not scale in
the ranking task; (ii) use personal user data, which is al-
most never available; or (iii) solve a rating-prediction task
that offers sub-optimal performances in practice. There-
fore, we select GraphSAGE [13] and PinSAGE [16] as
the only inductive recommenders fitting our recommen-
dation setting and select IDCF [20] as a representative
baseline for quasi-inductive methods.

Gates. Gates were originally used in Recurrent Neu-
ral Networks (RNNs) to learn long-term dependencies
in time series [29, 30]. A gate limits the amount of in-
formation passed by learning a scalar in [0, 1], for each
dimension in a vector. On the contrary, the attention
mechanism, which is often used in GNN aggregators,
learns a single scalar for the entire vector [6, 8, 16]. Hence,
the gates allow for differentiation at the dimension level

Table 1
Related methods, whether they use User Metadata, whether
they handle Relational information (i.e., KG), the Task they
support among (C) Node Classification, (R) Ranking, and (P)
Rating Prediction, and whether the method constructs a Sub-
graph from user-item pairs.

Inductive User
Model User Item Metadata Relational Task Subgraph
NGCF [5] 7 7 7 7 R 7
KGAT [6] 7 7 7 4 R 7
KPRN [7] 7 7 7 4 R 7
KGCN-LS [8] 7 7 7 4 R 7
MeLU [18] 7 7 4 7 R 7
RuleRec [28] 7 7 7 4 R 7
MGAT [9] 7 7 7 4 R 7
LGCN [3] 7 7 7 7 R 7

GraphSAGE [13] (4) 4 7 7 C 7
PinSAGE [16] (4) 4 7 7 R 7
BERT4Rec [26] 4 7 7 7 R 7
IGMC [19] 4 4 7 7 P 4
IDCF [20] 4 7 7 7 P 7
PGD [17] 4 4 4 7 R 7
ICP [14] 7 4 7 7 R 7
GIMC [15] 4 4 7 7 P 4
ReBKC [27] 4 7 7 4 P 7

GInRec 4 4 7 4 R 7

rather than the vector level.
For KGs, gates have been used to capture long-term

path relations [7] and for aggregating neighbors for multi-
model graphs [9]. Multi-modal information and relations
in KGs differ in both semantic meaning and practical
application, requiring different aggregation techniques.
Therefore, GInRec adopts new relational-specific gates
as an addition to the neighborhood aggregation.

Thus, GInRec proposes a scalable inductive method for
user-personalized recommendation that learns to extract
knowledge from a KG using relational gates without re-
quiring any user metadata.

4. Methodology
We now present our model Gated Inductive Recommenda-
tion (GInRec). The model consists of three components
(as shown in Figure 2): (i) embedding layer, where we
compress node feature information to create node em-
beddings (Figure 2 A); (ii) gated propagation layer, which
chooses which information to propagate from the em-
beddings of neighboring nodes in a CKG to produce a
high-order representation of each node and its neighbors
(Figure 2 C and E); and (iii) prediction layer, creating a
user and an item embedding given all propagation layers,
outputting a ranking score (Figure 2 D). Hence, our ar-
chitecture learns to recommend for users based on their
interactions alone, introducing a gating mechanism to
adaptively select information during aggregation along
with an autoencoder regularization measure.

4.1. Embedding Layer
GInRec is designed as an inductive relational graph neu-
ral network. Therefore, given a target node 𝑛∈𝒩c, and

3

Theis E. Jendal et al. CEUR Workshop Proceedings 1–10

Encode Decode

X' ∈ REncoded features: |E'|×d'

X ∈ R|E'|×d

Extracted features

∈ RX
|E'|×d

i0

i3
i2

i1

r0

r1

r1 r0

r0

e1

r0

r2

r3
r3 r3

e0 e2

r4
r6

r5

r6

r2

L

h1
i0

h2
i0

h3
i0

concatenate

h1
u0

h2
u0

h3
u0 concatenate

∈ Ry
u ,i0 2

Gated
propagation

Gated
propagation

u1

u0

Initial CKG embeddings Gated propagation layers Prediction Gated propagation

Predicted features

u2

r0 r1

h ∈ R
l
e
() dl

h ∈ R
l-1
e
() d l-1()

h ∈ R
l
u
()

0

dl

g
g

f

u0

u0 i0 i1

A

B

C

E

D

Feature autoencoder

Figure 2: Illustration of GInRec, where the left side shows the model framework and the left is the gated propagation layer.

given a fixed number of steps 𝐿, we define 𝒩 ′ as the set
of all nodes reachable with an undirected path of length
at most 𝐿 from 𝑛, including 𝑛 itself. Then, our initial input
is the output of the feature function 𝒳 for each node in
𝒩 ′. The embeddings 𝒳 is a combination of the textual
descriptions of entities with their structural data (e.g.,
node degree). Specifically, we assume that each node in
the KG 𝒢 has a small set of descriptive sentences, e.g.,
movie plot or biography of the actor. Similar to semi-
nal works [31], we use Sentence-BERT [32] to process
the textual description of each entity and produce sen-
tence embeddings such that sentences of similar semantic
meaning are close to each other in a vector space. For
multi-sentence descriptions, the average sentence embed-
ding is used. When textual descriptions for descriptive
entities are not available, we use ComplEX [33] to train
entity embeddings for the descriptive entity in the KG,
since these are static or very slowly changing. The initial
vector is a concatenation of the textual embedding and
the structural data, e.g., node degree. We standardize
the features by removing the mean and scaling to unit
variance as in other works [13]. Our approach can be
extended to include additional features, such as item pic-
tures for multi-modal descriptions, but we leave their
study as future work. Thus, defining the initial matrix
as X∈ℝ|𝒩

′|×𝑑, where the 𝑖’th entity has the embedding of
the 𝑖’th row and users are initialized as zero vectors in the
embedding. As such, we only require a few interactions
to represent users and textual descriptions for items.

The size of the initial feature vectors are usually large
(in our model, we have 𝑑 > 756), making subsequent
computations infeasible. Therefore, we introduce an Au-
toEncoder (AE) layer to reduce the dimensionality [34]
(shown in Figure 2 A). The loss of the AE is defined as:

L𝐴𝐸 = MSE(X,AEde(AEen(X))) (1)

where AEen:ℛ|𝒩 ′|×𝑑↦ℛ|𝒩 ′|×𝑑′ , with 𝑑′≪𝑑, is the encod-
ing function mapping the initial feature vector for each
node to a set of lower dimensionality vectors through
multiple fully connected layers with the Leaky ReLU ac-
tivation [35]. Analogously, AEde:ℛ|𝒩 ′|×𝑑′↦ℛ|𝒩 ′|×𝑑 is a
decoding function mapping the lower dimension embed-
dings back to the original vectors. Therefore, we produce
a matrixX′ = AEen(X) of low dimensionality embedding
for the initial nodes in 𝒩 ′. Moreover, in our architec-
ture, AE is jointly learned with the final ranking loss (as
described later in subsection 4.4). Thus, X′ provides a
fine-tuned compressed representation of the extracted
features. Since the initial embedding has no range limits,
no activation is used for the final decode layer.

4.2. Gated Propagation Layer
The core of GNNs is the ability to aggregate information
from its neighborhood. Relation types could allow the
model to differentiate between the relation interactions
and aggregate information dependent upon the combina-
tions of edges in the CKG. Thus, we explore the effect of
gates in our GNN’s architecture and extend these with
relation-specific weights [9, 36]. In the following, we
first describe the individual parts for a single step, i.e.,
relation-specific gating, information propagation, and
aggregation, and then how to generalize the process to
high-order propagations.

Relation-specific gates: Wedesign two relation-specific
gates that control the information flow during message
passing: (i) Inner Product and (ii) Concatenation. The In-
ner Product gate uses the inner product of the ℎ and
𝑡 entities as the gate, making the gate dependent on
the affinity between the two. We take into account dif-
ferent relations (similar to TransR [37]) by first trans-
forming the entities’ embeddings into a relation-specific
vector space before finding the affinities: 𝑔𝑖(ℎ, 𝑟 , 𝑡) =

4

Theis E. Jendal et al. CEUR Workshop Proceedings 1–10

𝜎 ((W𝑟eℎ)⊤W𝑟e𝑡). where 𝜎 is the sigmoid activation func-
tion, W𝑟 is a relation-specific transformation matrix, and
(ℎ, 𝑟 , 𝑡) ∈ 𝒢. The Concatenation gate works as the origi-
nal reset and update gate mechanisms used by GRU [30].
Here, we utilize a relation-specific linear transforma-
tion, which learns which parts of the tail entity’s em-
bedding are important in the aggregation step given
both the head and the tail with ‖ being concatenation
as: 𝑔𝑐(ℎ, 𝑟 , 𝑡)=𝜎(W𝑟(eℎ‖e𝑡)).
Information Propagation: Given the direct neighbors
of entity ℎ as 𝒩ℎ={(ℎ, 𝑟 , 𝑡)|(ℎ, 𝑟 , 𝑡)∈𝒢 }, also called its ego-
network [38], we can define the neighborhood aggrega-
tion vector of ℎ as:

e𝒩ℎ =
1

|𝒩ℎ|
∑

(ℎ,𝑟 ,𝑡)∈𝒩ℎ

𝑔(ℎ, 𝑟 , 𝑡)e𝑡. (2)

In contrast to other gated networks [36, 9], our model’s
gates are relation-specific, allowing it to propagate dif-
ferent information from different parts of an entity’s em-
bedding based on the relation to it. This fine-grained in-
formation propagation is vital for GInRec’s performance,
especially when not relying on the initial user features.

Aggregation: The final part combines an entity’s cur-
rent embedding eℎ with the aggregated ego embedding
e𝒩ℎ , formally defined as e′ℎ=𝑓 (eℎ, e𝒩ℎ), where 𝑓 is an
aggregator function. We identify four common aggrega-
tors used in other architectures, namely: Bi-interaction
aggregator [6], GCN aggregator [39], GraphSAGE ag-
gregator [13], and LightGCN aggregator [3], finding the
LightGCN aggregator to be the best performing through
hyperparameter tuning. The LightGCN aggregator can
be defined as 𝑓𝐿𝐺𝐶𝑁 = e𝒩ℎ , not having any transforma-
tions or non-linear activations.

High-order propagation: To propagate information
from n-hop neighbors and utilize high-order connectivity
information, we stack the model in layers [6, 9, 13]. As
illustrated by the arrow fromA to B in Figure 2, we use the
output of the embedding layer X′ ∈ ℝ|𝒩 |×𝑑′ as the initial
embedding in the propagation layers. We thus define
the next representation layer 𝑙 + 1, recursively using the
previous layer 𝑙 and the neighborhood representation as:
e(𝑙)ℎ = 𝑓 (e(𝑙−1)ℎ , e(𝑙)𝒩ℎ

).
The weight matrices in the aggregator functions are in

the space ℝ𝑑
(𝑙+1)×𝑑(𝑙) , defining the embedding dimension

for the next layer. We define the information propagated
from the ego-network as:

e(𝑙)𝒩ℎ
= 1

|𝒩ℎ|
∑

(ℎ,𝑟 ,𝑡)∈𝒩ℎ

𝑔(ℎ, 𝑟 , 𝑡)(𝑙−1)e(𝑙−1)𝑡 (3)

where the elements of the gates are the entities e(𝑙−1)ℎ ,

e(𝑙−1)𝑡 , and the relation matrix is either W(𝑙)
𝑟 ∈ℝ𝑛×𝑑

(𝑙−1)
or

W(𝑙)
𝑟 ∈ℝ𝑑

(𝑙−1)×2𝑑(𝑙−1) depending on whether they refer to
the 𝑔𝑖 or 𝑔𝑐 gate, respectively.

4.3. Prediction
At each layer, information from increasingly distant enti-
ties is aggregated, and we, therefore, have multiple rep-
resentations of the entities after 𝐿 layers of propagation.
Figure 2 C shows the information from multiple layers
as it is passed to the prediction step. Similar to previous
apporaches [39, 6, 9], we concatenate the output after
each layer for a user 𝑢 and item 𝑖 as:

e∗𝑢 = e1𝑢‖ … ‖e𝐿𝑢 , e∗𝑖 = e1𝑖 ‖ … ‖e𝐿𝑖 (4)
This approach is able to retain information of the dif-
ferent representations at all steps. For the final predic-
tion, learned, non-linear similarity measures are usually
outperformed by a simple inner product [40] that also
reduces complexity. Hence, our prediction is computed
as follows: ̂𝑦𝑢𝑖=e∗⊤𝑢 e∗𝑖 .

4.4. Optimization
We use Bayesian Personalized Ranking (BPR) as the col-
laborative loss function, assuming previously interacted
items should be ranked higher than others [9, 6] as:

L𝐶𝐹 = ∑
(𝑢,𝑖,𝑗)∈ℬ

−ln 𝜎(̂𝑦𝑢𝑖 − ̂𝑦𝑢𝑗) (5)

where ℬ = {(𝑢, 𝑖, 𝑗) | I𝑢𝑖 = 1 and I𝑢𝑗 ≠ 1} is a set
of training triples with item 𝑖 being rated higher than
𝑗 and 𝜎 is the sigmoid function. The final loss func-
tion is a combination of autoencoder loss in Equation 1
and the BPR loss in Equation 5, so to learn an encoded
embedding suitable for recommendation while contain-
ing enough information to reconstruct, computed as:
L = L𝐶𝐹+𝜆L𝐴𝐸+𝛾‖Θ‖22 with Θ={W(𝑙)

𝑟 ,W(𝑙)|∀𝑙∈{1, ..., 𝐿}}∪
{W(𝑙′)

𝑒 ,W(𝑙′)
𝑑 |∀𝑙′∈{1, ..., 𝐿𝑎𝑒}} is the set of learnable param-

eters, 𝛾 is a parameter for tuning the 𝐿2 regularization,
and 𝜆 is a parameter to tune the autoencoder loss. The
autoencoder loss also works as a regularizer while also
being recommender-specific. Generating embeddings for
all nodes, with MovieLens Subsampled (ML-S) shown in
Table 2 took 0.48s, and ranking items for all users took
0.078s, compared to PinSAGE’s 0.446s and 0.966s, with a
RTX 2070 Super and Intel i9-9900, averaged over 5 runs.

Training: We use mini-batch training sampled from ℬ
of size 1024, limiting the computation graph by having
a fixed size ego-network of 10 and starting construction
from the last layer [13]. The entities used in the first layer
of the gated propagation are used for the autoencoder
loss, such that we learn to represent not only users and
items but also entities like genres and actors.

Scalability. In our embedding approach, both the cal-
culation of the aggregation (e𝑙+1ℎ) and of the prediction
(̂𝑦) are all bounded by the number of nodes in the graph,
while the calculation of the ego-network (e(𝑙+1)𝒩ℎ

) is bounded
by the number of edges. As these steps are applied se-
quentially and |𝒱 |≪|ℰ|, we know that the complexity of
our method is bounded by the ego-network aggregation

5

Theis E. Jendal et al. CEUR Workshop Proceedings 1–10

Table 2
Dataset (top) and KG (bottom) statistics.

ML-20m ML-S AB AB-S
Users 132,287 12,500 70,679 60,000
Items 4725 4438 24,841 24,841
Ratings 11,376,533 1,106,000 847,733 720,111
Density 0.018 0.019 0.00048 0.00048

Entities Edges Labels Density
MindReader [22] 13,767 201,438 8 1.06e-3
Amazon Book [6] 88,572 2,555,995 39 3.26e-4

complexity, more specifically, the linear transformation
of the gate calculation. When naïvely applying the gates
over all edges, the complexity is 𝑂(|ℰ|𝑑), where 𝑑 is the
largest dimension utilized during graph convolutions
– we note that |ℰ | is bounded by 𝑂(|𝒱 |2|ℛ|). Yet, as
W𝑟(eℎ‖e𝑡) is equivalent to W1

𝑟 eℎ +W2
𝑟 e𝑡 we only need to

compute the transformation for each unique (ℎ, 𝑟) and
(𝑟 , 𝑡) pair instead of each unique (ℎ, 𝑟 , 𝑡) triple. Therefore,
we can apply a MapReduce computation [16] to have
at most 2|𝒱 ||ℛ| calculations, leading to the complex-
ity 𝑂(|𝒱 ||ℛ|𝑑)≪𝑂(|ℰ|𝑑). Finally, our prediction is a dot
product after graph convolutions; hence, our method can
predict in 𝑂(|e∗𝑢 | ⋅ |ℐ |) for a single user as the vector dot
product complexity is 𝑂(|e∗𝑢 |), which we do |ℐ | number
of times, which is less than existing architectures with
comparable approaches, e.g., PinSAGE.

5. Experiments
Inductive approaches are designed to provide recommen-
dations in a cold-start setting, where ratings for new
users are only known at inference time. Yet, as we will
show, these baselines do not perform in this setting due
to poor selection of learning metrics, evaluation method-
ologies, or other complexities. In the following, we aim at
answering the questions: RQ1) Which design decisions
affect the prediction performance compared to state of
the art? RQ2)What is the effect of the negative sampling
strategy in the evaluation? RQ3) How does relational
gates affect performance?, and finally RQ4) How do the
structure and data of the KG affect performance?
Datasets. Weadopt two real-world datasets: (i) MovieLens-
20m (ML-20m) [41], a dataset with ratings on movies and
(ii) Amazon-Book (2014) (AB) [42], a dataset with reviews
on books. Neither dataset has an associated KG.We there-
fore use the MindReader KG [22] for the ML-20m dataset,
and for the AB dataset the KG constructed to evaluate
KGAT [6]. These two graphs link reviewed items to
nodes in popular open-domain KGs such as DBpedia and
WikiData. In both cases, we keep only items mapped to
the KG leading to the statistics shown in Table 2. We
adopt splitting ratios 0.8∶0.1∶0.1 for train, validation, and
test sets, respectively. We note that different versions
of the AB dataset exist, and results cannot necessarily
be directly compared between related works and our
dataset [20, 6, 3, 5, 43]. In our cold-start experiments, as

defined in Section 4, we sampled 12,500 users from ML-
20m and 60,000 users from AB for training, named ML-S
and Amazon-Book Subsampled (AB-S), respectively. We
sample more users for AB-S due to few ratings per user.
We then created two cold-start scenarios on ML-S: one
adding 10% new users (i.e., 1250); and one where we treat
all users not in ML-S as cold-start users, being ∼90% of
the users in the original ML-20m dataset, allowing us to
test the scalability of the inductive methods. For AB-S,
we create one scenario adding the remaining users from
the original dataset, corresponding to an additional ∼15%
of the total number of users.

Methods. We compare to five methods: TopPop [2],
a non-personalized common baseline [10] that recom-
mends the most popular items; GraphSAGE [13], mod-
ified to recommend using cosine similarity between a
user’s rated items and new items; PinSAGE[16], with a
semi-supervised objective, i.e., items co-rated should be
similar, analogous to the pin / board setting; IDCF [20], a
two-step learning method, using key user embeddings to
initialize new users; and BPR-MF [4], which we report as
a reference transductive method retrained on the dataset
including also the cold-start users, since it is fast to train
and is competitive to state-of-the-art methods without
requiring sequential data and shown to outperform the
standard kNN method.

All models are implemented in PyTorch and optimized
using the Adam optimizer . We save the best-performing
state based on the validation set and stop after 50 succes-
sive epochs without improvement. For hyperparameter
tuning of all models, we employ Asynchronous Succes-
sive Halving (ASHA) [44], all hyperparameter options
and ASHA parameters available in our source code. We
know that compared to PinSAGE, GInRec has only one
extra hyperparameter, in the form of 𝜆, for which we
tune, as in subsection 4.4.

Evaluation metrics. Following other evaluation meth-
ods [6], for each user in the test set, we rank all items not
interacted with in the train and validation sets, only treat-
ing ratings in the test set as positive items. We measure
NDCG, recall, precision, and coverage at 20 for each user,
reporting the average performance over all users. Let ℐ𝑢
to be the top-k items recommended to a user 𝑢, then we
can define coverage as: 𝐶𝑜𝑣@𝑘 = |⋃𝑢∈𝒰ℐ𝑢|/|ℐ |.
Hence, a naive recommender as TopPop is expected to
perform poorly due to recommending the same set of
items each time [45]. We further include I-NDCG [20]
which is the metric used to evaluate IDCF in the original
work, where X negative items (X=5 in IDCF) are sampled
per positive item in the test set instead of all possible
negative items as for NDCG. For all metrics, we remove
items seen by the user during training from the set of
negative samples. We use ‘*’ to represent a statistically
significant increase in performance using student t-test.

6

Theis E. Jendal et al. CEUR Workshop Proceedings 1–10

Table 3
Results on the different dataset. ‘*’ represents statistical significant increase over the best baseline. NDCG, Recall and Precision
is performed at 20, while I-NDCG is the calculation method used in [20] for the full subsampled list.

MovieLens Subsampled + 1250 users MovieLens Subsampled + 90% Amazon Book Subsampled + 15%
NDCG Recall Precision I-NDCG NDCG Recall Precision I-NDCG NDCG Recall Precision I-NDCG

TopPop 0.11182 0.14351 0.05256 0.85136 0.10916 0.14426 0.05147 0.85350 0.01552 0.03496 0.00273 0.78715
BPR-MF 0.13221 0.16920 0.06504 0.88250 0.10743 0.13961 0.05120 0.85350 0.01724 0.03630 0.00304 0.78715
GraphSAGE 0.07862 0.10637 0.04336 0.84262 0.07281 0.10356 0.04164 0.84345 0.00667 0.01695 0.00149 0.76845
PinSAGE 0.14129 0.18745 0.06396 0.88378 0.13592 0.18622 0.06280 0.88496 0.05398 0.11764 0.00927 0.89937
IDCF 0.11042 0.14155 0.05244 0.81959 0.10875 0.14394 0.05113 0.85388 0.03033 0.06674 0.00531 0.85204

GInRec 0.18085* 0.24618* 0.08460* 0.92200* 0.18411* 0.24482* 0.08365* 0.92208* 0.06472* 0.14055* 0.01144* 0.91769*

RQ1 As Table 3 shows, GInRec is able to outperform
all methods on all metrics with statistical significance.
We also see contrasting results w.r.t. the original IDCF
evaluation. IDCF was originally evaluated in a ranking
setting; however, the learned embeddings of IDCF are
learned towards Cross-Entropy, a non-ranking, point-
wise learning objective. Such learning methodologies
have been shown to perform poorly, with a similar or
worse ranking than TopPop [2, 46]. Yet, IDCF uses the
Cross-Entropy loss [47]. In the original work, IDCF out-
performs PinSAGE by a small margin, yet we observe the
opposite in our evaluation. PinSAGE’s increased perfor-
mance in our evaluation is due to (i) a more appropriate
early stopping based on the evaluation metric instead of
the loss function and (ii) our evaluation adopting a better
learning objective for PinSAGE.

Figure 3 also shows GInRec outperforms all models in
different user splits, we leave out the result on AB-S for
brevity, noting we get similar results. We demonstrate
that using KG information and relational gates provides
superior predictive power in all cases; given the improved
performance over all popularity and sparsity groups.

To study the method’s ability to make personalized
recommendations, we utilize coverage [45]. We note
that we are not able to perform statistical significance
testing with coverage as we only generate a single score
per dataset instead of one score per user. The metric is
not useful by itself; a random model would have close to
1 in coverage. Having higher coverage but a far lower
ranking indicates more random recommendations while
having low coverage but a high ranking score means
low personalization and a popularity-biased dataset. In
Table 4, we can see a clear improvement over all other
methods. Only GraphSAGE gets higher performance, yet,
it is unable to make high-quality recommendations. Its
performance is therefore more random. IDCF performs
poorly on all datasets w.r.t. coverage; this is correlated
as to why it performs better on NDCG-I compared to
NDCG as we will discuss later. We also test with the Gini
Coefficient on the ML-S+1250 dataset, where 0 would be
an equal (uniform) distribution, and 1 is unequal. Here
GInRec get 0.959, BPR-MF 0.989, PinSAGE 0.991, Top-
Pop 0.993, and random having 0.241. Thus using this
metric GInRec gets ≥3% more diverse distribution over
PinSAGE and BPR-MF. While BPR-MF performs better

than TopPop on both ML-S dataset with 1250 new users
and the AB-S dataset, its performance decreases when
adding a large number of users to the ML-S dataset. We
find our method to have similar increase in performance
over all k’s in set {1, 5, 10, 20, 50}, but these results are not
included here due to space constraints.

RQ2. When evaluating ranking performance, NDCG
is the metric commonly adopted, but there are two al-
ternatives on which set of items to rank: either rank
all items in the dataset or just a subset. In other eval-
uations [20, 1, 2], instead of ranking all items, only 𝑋
negative items are randomly sampled per each positive.
While this would aim at making it equally hard to rank
positive items for all test users, it has been proven to
produce unreliable comparisons of performances across
methods [47]. This has also been witnessed when other
works re-evaluated BERT4Rec [26], which also utilized
negative subsampling, though using popularity-biased
sampling instead of uniform sampling. Also in this ver-
sion, negative sampling leads to unreliable results [48]
finding even simple baselines outperforming this state-
of-the-art method. Yet, in the original IDCF evaluation,
this faulty method (here labeled I-NDCG) is adopted. Thus,
hard-to-rank items are often missing from the evaluation
when subsampling negative items, and thus I-NDCG does
not test the actual performance of the method as if all
possible negative items are available. This presents an
issue when considering the experimental evaluation of
previous works. Therefore, here we once more compare
the two evaluation techniques: (a) ranking all items, (b)
subsampling negative items, and verify once more that
the latter methodology should be avoided since it produces
biased results. In Table 3, we see GraphSAGE outper-
forms IDCF on I-NDCG in ML-S+1250, though clearly
performing worse in the appropriate NDCG@20. Hence,
this negative subsampling (I-NDCG) unfairly favors Top-

Table 4
Coverage at 20 for all datasets.

ML-S + 1250 ML-S + 90% AB-S + 10%
TopPop 0.01587 0.02222 0.00125
BPR-MF 0.07534 0.03217 0.00624
GraphSAGE 0.06307 0.31471 0.14243
PinSAGE 0.02857 0.04169 0.12439
IDCF 0.01566 0.02201 0.04348

GInRec 0.18540 0.42646 0.21460

7

Theis E. Jendal et al. CEUR Workshop Proceedings 1–10

Figure 3: Comparison on ML-S + 90% (top) on NDCG@20. Figure a illustrates binning users based on number of ratings, b
are based on percentage of popular ratings, and c binning user based on number of ratings with each bin having equal total
amount of ratings as in [6]. The grey bars are the number of users in each bin. The legend applies to all plots.

[0-25] (25-50] (50-75] (75-100]
User Sparsity Group

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

N
D

C
G

@
2

0

a

[0-25] (25-50] (50-75] (75-100]
User Popularity Group

0

10000

20000

30000

40000

50000

60000

#
U

se
rs

0.05

0.10

0.15

0.20

0.25

0.30

0.35

N
D

C
G

@
2
0

Bipartite
PinSAGE
IDCF
GS-R
BPR-MF
TopPop

GInRec
b

<=60 <=134 <=264 <=1973
User Group

0

20000

40000

60000

80000

#
U

se
rs

0.05

0.10

0.15

0.20

0.25

N
D

C
G

@
2
0

c

Table 5
Effect of the gating mechanism and KG measured at 20.

MovieLens Subsampled + 1250 users MovieLens Subsampled + 90% Amazon Book Subsampled + 15%
NDCG Recall Precision Cov NDCG Recall Precision Cov NDCG Recall Precision Cov

Bipartite 0.17990 0.24356 0.08392 0.18307 0.09353 0.19029 0.06455 0.37757 0.04193 0.09271 0.00770 0.29254
Inner Product 0.12798 0.17291 0.05968 0.04254 0.11336 0.15324 0.05143 0.04593 0.03453 0.07328 0.00605 0.06465
W/o relations 0.17720 0.24193 0.08288 0.18243 0.17799 0.23688 0.08140 0.34519 0.06451 0.13395 0.01106 0.18465
W/o gates 0.12482 0.17000 0.05848 0.08148 0.09416 0.13479 0.04331 0.05122 0.03653 0.00634 0.00927 0.07673

GInRec 0.18085 0.24618 0.08460 0.18540 0.18411* 0.24482* 0.08365* 0.42646 0.06472 0.14055 0.01144 0.21460

Pop even above IDCF and IDCF over other methods. In-
stead, when appropriately considering all items (NDCG)
as recommended [47], then GInRec, and other methods,
perform up to 3x times better than TopPop.
RQ3 & RQ4. The method’s results with different gat-
ing mechanisms can be seen in Table 5. In the table,
‘w/o relation’ is the gating mechanism without relation
type, i.e., effectively ignoring edge types, and ‘w/o gates’
is the method without the gating mechanism. Overall,
the gating mechanism improves performance, as it adap-
tively selects information from neighboring nodes, and
it outperforms the two other models in all metrics. Dis-
regarding relation types leads to worse performance on
all datasets, and completely removing the gates leads
to dramatically lower performance. Thus, it is vital to
design models that can exploit the semantic information
modeled by KGs. The Inner Product gate scales its neigh-
bors’ embeddings instead of selecting different parts as
the Concatenate gate and thus limits the flow from cer-
tain nodes. Yet, it is not able to select which part of the
neighbor’s embeddings to propagate, thereby achieving
a similar performance to the ’w/o gates’ method. Having
the ability to limit flow for each dimension of the neigh-
bor’s embedding is, therefore crucial for our method.
GInRec without gates is worse than PinSAGE, though
still better than IDCF. Hence, only using the user’s inter-
actions without a gating mechanism is still better than
the reconstruction used in IDCF. Even without relation
types, we see a large and statistically significant increase
in performance. When looking at Figure 3, we see in
all cases that GInRec performs better than the bipartite
version. In the first bin of all plots (i.e., the bins with
fewer or less popular ratings), we see a large performance

increase when using the semantic information carried by
KG, both over the bipartite model, but also related works.

Summarised, our gated aggregators can exploit the
relational information, as either removing the KG or the
relational information lead to a decrease in performance.
When adding many users, we even see a large decrease
in performance for the bipartite method, illustrating the
scalability of our method and gated aggregation.

6. Conclusion and future work
In this work, we devise a scalable gated GNN architecture
to perform inductive recommendation, with the ability
to utilize high-order connectivities in CKGs. We show
that our method outperforms existing approaches. Fur-
ther, we showcase methodological limitations in previous
evaluations. We conclude that this kind of architecture
deserves further study, especially given its ability to: (1)
scale to large graphs and large numbers of users (easily
extensible to distributed frameworks), and (2) maintain
good prediction with new users and items despite its
lightweight inference methodology.

Acknowledgments
Matteo Lissandrini is supported by the European Union’s
Horizon 2020 Research and Innovation Programme under
the Marie Skłodowska-Curie grant agreement no. 838216.
Katja Hose and Theis Jendal are supported by the Poul
Due Jensen Foundation and the Independent Research
Fund Denmark (DFF) under grant agreement no. DFF-
8048- 00051B.

8

Theis E. Jendal et al. CEUR Workshop Proceedings 1–10

References
[1] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, T.-S. Chua,

Neural collaborative filtering, in: TheWebConf’17,
2017.

[2] P. Cremonesi, Y. Koren, R. Turrin, Performance of
recommender algorithms on top-n recommenda-
tion tasks, in: RecSys’10, 2010.

[3] X. He, K. Deng, X. Wang, Y. Li, Y. Zhang, M. Wang,
Lightgcn: Simplifying and powering graph convo-
lution network for recommendation, in: SIGIR’20,
2020.

[4] S. Rendle, C. Freudenthaler, Z. Gantner, L. Schmidt-
Thieme, Bpr: Bayesian personalized ranking from
implicit feedback, in: UAI’09, 2009.

[5] X. Wang, X. He, M. Wang, F. Feng, T.-S. Chua, Neu-
ral graph collaborative filtering, in: SIGIR’19, 2019.

[6] X. Wang, X. He, Y. Cao, M. Liu, T.-S. Chua, Kgat:
Knowledge graph attention network for recommen-
dation, in: SIGKDD’19, 2019.

[7] X. Wang, D. Wang, C. Xu, X. He, Y. Cao, T.-S. Chua,
Explainable reasoning over knowledge graphs for
recommendation, in: AAAI’19, 2019.

[8] H. Wang, F. Zhang, M. Zhang, J. Leskovec, M. Zhao,
W. Li, Z. Wang, Knowledge-aware graph neural
networks with label smoothness regularization for
recommender systems, in: SIGKDD’19, 2019.

[9] Z. Tao, Y. Wei, X. Wang, X. He, X. Huang, T.-S.
Chua, Mgat: Multimodal graph attention network
for recommendation, Information Processing &
Management (2020).

[10] E. Palumbo, D. Monti, G. Rizzo, R. Troncy, E. Baralis,
entity2rec: Property-specific knowledge graph em-
beddings for item recommendation, Expert Systems
with Applications (2020).

[11] H. Wang, F. Zhang, J. Wang, M. Zhao, W. Li, X. Xie,
M. Guo, Ripplenet: Propagating user preferences
on the knowledge graph for recommender systems,
in: CIKM’18, 2018.

[12] Z. Yang, S. Dong, Hagerec: hierarchical atten-
tion graph convolutional network incorporating
knowledge graph for explainable recommendation,
Knowledge-Based Systems (2020).

[13] W. L. Hamilton, R. Ying, J. Leskovec, Induc-
tive representation learning on large graphs, in:
NeurIPS’17, 2017.

[14] C. Zhang, H. Yao, L. Yu, C. Huang, D. Song, H. Chen,
M. Jiang, N. V. Chawla, Inductive contextual rela-
tion learning for personalization, ACM Transac-
tions on Information Systems (2021).

[15] C. Zhang, H. Chen, S. Zhang, G. Xu, J. Gao, Geomet-
ric inductive matrix completion: A hyperbolic ap-
proachwith unifiedmessage passing, in: WSDM’22,
2022.

[16] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L.

Hamilton, J. Leskovec, Graph convolutional neural
networks for web-scale recommender systems, in:
SIGKDD’18, 2018.

[17] S.Wang, K. Zhang, L.Wu, H.Ma, R. Hong, M.Wang,
Privileged graph distillation for cold start recom-
mendation, in: SIGIR’21, 2021.

[18] H. Lee, J. Im, S. Jang, H. Cho, S. Chung, Melu:
Meta-learned user preference estimator for cold-
start recommendation, in: SIGKDD’19, 2019.

[19] M. Zhang, Y. Chen, Inductive matrix completion
based on graph neural networks, in: ICLR’19, 2019.

[20] Q. Wu, H. Zhang, X. Gao, J. Yan, H. Zha, Towards
open-world recommendation: An inductive model-
based collaborative filtering approach, in: ICML’21,
2021.

[21] Y. Wu, Q. Cao, H. Shen, S. Tao, X. Cheng, INMO: A
model-agnostic and scalable module for inductive
collaborative filtering, in: SIGIR’22, 2022.

[22] A. H. Brams, A. L. Jakobsen, T. E. Jendal, M. Lissan-
drini, P. Dolog, K. Hose, Mindreader: Recommen-
dation over knowledge graph entities with explicit
user ratings, in: CIKM’20, 2020.

[23] K. Zhou, S.-H. Yang, H. Zha, Functional matrix
factorizations for cold-start recommendation, in:
SIGIR’11, 2011.

[24] M. Xu, R. Jin, Z.-H. Zhou, Speedup matrix comple-
tion with side information: Application to multi-
label learning, in: NeurIPS’13, 2013.

[25] P. Jain, I. S. Dhillon, Provable inductive matrix
completion, arXiv preprint arXiv:1306.0626 (2013).

[26] F. Sun, J. Liu, J. Wu, C. Pei, X. Lin, W. Ou, P. Jiang,
Bert4rec: Sequential recommendation with bidirec-
tional encoder representations from transformer,
in: CIKM’19, 2019.

[27] B. Hui, L. Zhang, X. Zhou, X. Wen, Y. Nian, Person-
alized recommendation system based on knowledge
embedding and historical behavior, Appl. Intell.
(2022).

[28] W. Ma, M. Zhang, Y. Cao, W. Jin, C. Wang, Y. Liu,
S. Ma, X. Ren, Jointly learning explainable rules
for recommendation with knowledge graph, in:
TheWebConf’19, 2019.

[29] S. Hochreiter, J. Schmidhuber, Long short-term
memory, Neural computation (1997).

[30] K. Cho, B. van Merriënboer, C. Gulcehre, D. Bah-
danau, F. Bougares, H. Schwenk, Y. Bengio, Learn-
ing phrase representations using RNN encoder–
decoder for statistical machine translation, in:
EMNLP’14, 2014.

[31] S. Liu, I. Ounis, C. Macdonald, Z. Meng, A hetero-
geneous graph neural model for cold-start recom-
mendation, in: SIGIR’20, 2020.

[32] N. Reimers, I. Gurevych, Sentence-bert: Sen-
tence embeddings using siamese bert-networks, in:
EMNLP-IJCNLP’19, 2019.

9

Theis E. Jendal et al. CEUR Workshop Proceedings 1–10

[33] T. Trouillon, J. Welbl, S. Riedel, É. Gaussier,
G. Bouchard, Complex embeddings for simple link
prediction, in: ICML’16, 2016.

[34] M. A. Kramer, Nonlinear principal component anal-
ysis using autoassociative neural networks, AIChE
journal (1991).

[35] R. H. Hahnloser, R. Sarpeshkar, M. A. Mahowald,
R. J. Douglas, H. S. Seung, Digital selection and
analogue amplification coexist in a cortex-inspired
silicon circuit, Nature 405 (2000).

[36] Y. Li, D. Tarlow, M. Brockschmidt, R. S. Zemel,
Gated graph sequence neural networks, in: ICLR’16,
2016.

[37] Y. Lin, Z. Liu, M. Sun, Y. Liu, X. Zhu, Learning en-
tity and relation embeddings for knowledge graph
completion, in: AAAI’15, 2015.

[38] J. Qiu, J. Tang, H. Ma, Y. Dong, K. Wang, J. Tang,
Deepinf: Social influence prediction with deep
learning, in: SIGKDD’18, 2018.

[39] T. N. Kipf, M. Welling, Semi-supervised classifica-
tion with graph convolutional networks (2017).

[40] S. Rendle, W. Krichene, L. Zhang, J. Anderson, Neu-
ral collaborative filtering vs. matrix factorization
revisited, in: RecSys’20, 2020.

[41] F. M. Harper, J. A. Konstan, The movielens datasets:
History and context, Acm transactions on interac-
tive intelligent systems (tiis) (2015).

[42] J. Ni, J. Li, J. McAuley, Justifying recommendations
using distantly-labeled reviews and fine-grained
aspects, in: EMNLP-IJCNLP’19, 2019.

[43] J. Zhu, Q. Dai, L. Su, R. Ma, J. Liu, G. Cai, X. Xiao,
R. Zhang, BARS: towards open benchmarking for
recommender systems, in: SIGIR’22, 2022.

[44] L. Li, K. Jamieson, A. Rostamizadeh, E. Gonina,
M. Hardt, B. Recht, A. Talwalkar, Massively parallel
hyperparameter tuning (2018).

[45] G. Adomavicius, Y. Kwon, Improving aggregate rec-
ommendation diversity using ranking-based tech-
niques, IEEE Trans. Knowl. Data Eng. (2012).

[46] J. Wu, X. Wang, X. Gao, J. Chen, H. Fu, T. Qiu,
X. He, On the effectiveness of sampled softmax
loss for item recommendation, arXiv preprint
arXiv:2201.02327 (2022).

[47] W. Krichene, S. Rendle, On sampled metrics for
item recommendation, in: SIGKDD’20, 2020.

[48] S. Latifi, D. Jannach, A. Ferraro, Sequential rec-
ommendation: A study on transformers, nearest
neighbors and sampled metrics, Inf. Sci. 609 (2022)
660–678.

10

	1 Introduction
	2 Problem Formulation
	3 Related Work
	4 Methodology
	4.1 Embedding Layer
	4.2 Gated Propagation Layer
	4.3 Prediction
	4.4 Optimization

	5 Experiments
	6 Conclusion and future work

