

Aalborg Universitet

Gotta catch ’em all

A Multistage Framework for Honeypot Fingerprinting

Srinivasa, Shreyas; Pedersen, Jens Myrup; Vasilomanolakis, Emmanouil

Published in:
ACM Digital Threats: Research and Practice

DOI (link to publication from Publisher):
10.1145/3584976

Creative Commons License
CC BY-NC 4.0

Publication date:
2023

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Srinivasa, S., Pedersen, J. M., & Vasilomanolakis, E. (2023). Gotta catch ’em all: A Multistage Framework for
Honeypot Fingerprinting. ACM Digital Threats: Research and Practice, 4(3), 1-28. Article 42.
https://doi.org/10.1145/3584976

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 18, 2024

https://doi.org/10.1145/3584976
https://vbn.aau.dk/en/publications/b900ab6a-5b94-4958-88f2-6aaac158379c
https://doi.org/10.1145/3584976

42
Gotta Catch ’em All: A Multistage Framework for Honeypot
Fingerprinting

SHREYAS SRINIVASA and JENS MYRUP PEDERSEN, Aalborg University

EMMANOUIL VASILOMANOLAKIS, Technical University of Denmark

Honeypots are decoy systems that lure attackers by presenting them with a seemingly vulnerable system. They provide an

early detection mechanism as well as a method for learning how adversaries work and think. However, over the past years,

several researchers have shown methods for fingerprinting honeypots. This significantly decreases the value of a honeypot;

if an attacker is able to recognize the existence of such a system, they can evade it. In this article, we revisit the honeypot

identification field, by providing a holistic framework that includes state-of-the-art and novel fingerprinting components. We

decrease the probability of false positives by proposing a rigid multi-step approach for labeling a system as a honeypot. We

perform extensive scans covering 2.9 billion addresses of the IPv4 space and identify a total of 21,855 honeypot instances.

Moreover, we present several interesting side findings such as the identification of around 355,000 non-honeypot systems that

represent potentially misconfigured or unpatched vulnerable servers (e.g., SSH servers with default password configurations

and vulnerable versions). We ethically disclose our findings to network administrators about the default configuration and

the honeypot developers about the gaps in implementation that lead to possible honeypot fingerprinting. Last, we discuss

countermeasures against honeypot fingerprinting techniques.

CCS Concepts: • Security and privacy→ Network security; Intrusion detection systems;

Additional Key Words and Phrases: Honeypots, fingerprinting, honeypot attacks, honeypot detection, honeypot

evasion

ACM Reference format:

Shreyas Srinivasa, Jens Myrup Pedersen, and Emmanouil Vasilomanolakis. 2023. Gotta Catch ’em All: A Multistage Frame-

work for Honeypot Fingerprinting. Digit. Threat. Res. Pract. 4, 3, Article 42 (October 2023), 28 pages.

https://doi.org/10.1145/3584976

1 INTRODUCTION

Honeypots are decoy systems whose only value lies in being probed, attacked, and compromised. They attempt
to lure attackers in, to provide an early warning system, and act as a method for understanding the adversaries’
mindset and determining new attack trends [38]. Honeypots are not a stand-alone security mechanism but rather
important supplements to existing infrastructure (e.g., firewalls and intrusion detection systems). Nevertheless,
they offer a unique attack understanding and perspective while exhibiting a very low number of false positives.

This research was supported as part of COM3, an Interreg project supported by the North Sea Programme of the European Regional Devel-

opment Fund of the European Union.

Authors’ addresses: S. Srinivasa and J. M. Pedersen, Aalborg University, A. C. Meyers Vænge 15, 2450 København, Denmark; emails: {shsr,

jens}@es.aau.dk; E. Vasilomanolakis, Technical University of Denmark, Anker Engelunds Vej 1 Bygning 101A, 2800 Kgs. Lyngby, Denmark;

email: emmva@dtu.dk.

$

This work is licensed under a Creative Commons Attribution-NonCommercial International 4.0 License.

© 2023 Copyright held by the owner/author(s).

2576-5337/2023/10-ART42 $15.00

https://doi.org/10.1145/3584976

Digital Threats: Research and Practice, Vol. 4, No. 3, Article 42. Publication date: October 2023.

https://orcid.org/0000-0002-5720-5504
https://orcid.org/0000-0002-1903-2921
https://orcid.org/0000-0001-5068-9158
https://doi.org/10.1145/3584976
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1145/3584976
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3584976&domain=pdf&date_stamp=2023-10-06

42:2 • S. Srinivasa et al.

The latter is due to the fact that any communication toward a honeypot is considered hostile—that is, benign
users have no reason to contact a honeypot.

Honeypots are commonly classified based on the interaction level they offer to the adversary. This results in
low, medium, and high-interaction honeypots [29]. The first two categories offer different levels of emulation
of protocols, whereas the latter (i.e., high interaction) describes real-world systems. High-interaction honeypots
are too expensive to maintain and significantly less used than low/medium interaction; hence, we consider them
outside the scope of this article. Over the years, low and medium interaction honeypots have been designed
and developed to emulate the majority of commonly used protocols. These include SSH (e.g., Kippo [10] and
Cowrie [30]), Telnet (e.g., Cowrie [30]), HTTP (e.g., Glastopf [34]), FTP, SMB (e.g., Dionaea [42] and HosTaGe
[44]), and also Industrial Control System (ICS) protocols like Modbus and S7 (e.g., Conpot [35] and HosTaGe
[45]). Other research-based honeypots include AmpPot [25] that simulates UDP-based protocols like NTP and
SSDP, which can be abused for DRDoS attacks, and RIoTPot [40] a modular and hybrid interaction honeypot
that aims at operating a honeypot at ternary interaction levels.

One of the key success criteria for a honeypot is that it is indistinguishable from a real system. This can be trans-
lated to the following axiom: if a honeypot can be easily identified as such, then its value is significantly decreased.
The reason for this is that an adversary can potentially either evade honeypots (e.g., perform reconnaissance and
add a blocklist of IP addresses into their malware, to avoid honeypots and reduce the risk of detection [54]) or at-
tempt to take them down (e.g., via a Distributed Denial of Service (DDoS) attack). Note that modern malware
(e.g., Hide ’n Seek [6]) already include hard-coded IP addresses (e.g., belonging to known security agencies) that
are blocklisted from all communications. Honeypot fingerprinting is the process of revealing that a seemingly
vulnerable system is, in fact, a honeypot.

In this article, we perform a comprehensive analysis of honeypot fingerprinting techniques. For this, we
present a holistic framework that includes several novel fingerprinting methods along with all major state-of-
the-art techniques. Among others, we propose a new protocol handshake fingerprinting component, a static
Transport Layer Security (TLS) certificate method and a Fully Qualified Domain Name (FQDN) check.
Furthermore, we present the results of extensive honeypot identification scans over the Internet for nine promi-
nent honeypot implementations. Our results come as an independent confirmation of previous studies [28, 47]
but also as a step forward to a more holistic study of honeypots. In particular, due to the multistage checks that
our framework performs, we argue that the presented results have a very low probability for false positives.
Moreover, we present several insights for IP addresses that are not marked as honeypots but are likely to be real
vulnerable systems. Last, we discuss ethical considerations and possible countermeasures against fingerprinting.
The core contributions of this article can be summarized as follows:

• We present novel methods for active honeypot fingerprinting (so-called probe based). These are combined
with a number of state-of-the-art and third-party (so-called metascan) fingerprinting techniques in the
form of a multistage fingerprinting framework. We scan 2.9 billion IP addresses of the IPv4 space, discover
187 million IP addresses with relevant open ports, and identify a total of 21,855 honeypots.
• We showcase that out of the 21,855 identified honeypots, third-party techniques can only reveal 33.9% of

the total honeypot population. On the contrary, we show that most of the honeypots can be identified via
our probe-based methodology with fewer false positives.
• As a side finding, we identify more than 355,000 potentially vulnerable entities (i.e., SSH and FTP servers)

that are not honeypots and appear to use trivial passwords and/or are susceptible to high-severity
vulnerabilities.

The rest of the article is structured as follows. We propose our framework for honeypot fingerprinting in Sec-
tion 2. Section 3 presents our evaluation. Section 4 discusses ethical considerations, fingerprinting countermea-
sures, and the limitations. In addition, in Section 5, we discuss countermeasures against fingerprinting. Section 6
presents the related work on honeypot fingerprinting research. We conclude the article in Section 7.

Digital Threats: Research and Practice, Vol. 4, No. 3, Article 42. Publication date: October 2023.

Gotta Catch ’em All: A Multistage Framework for Honeypot Fingerprinting • 42:3

2 MULTISTAGE HONEYPOT FINGERPRINTING FRAMEWORK

Researchers classify fingerprinting techniques as active and passive, based on attacker-honeypot interaction [37].
Active fingerprinting involves creating specific probes and using them to querying the target system to collect
as much data as possible. On the contrary, passive fingerprinting makes use of available data about the target
system for further analysis to determine information about the target.

In the following, we attempt to examine methods in both the active and passive spectrum in Section 2.1. On
the one hand, we assume that attackers prefer passive methods since they come with multiple benefits. Mainly,
they are stealthier (i.e., no direct communication to the honeypot is needed) and easier to use (e.g., systems
like Shodan [36] already exist and offer an Application Programming Interface (API) for such purposes).
On the other hand, our hypothesis is that active approaches can identify a much broader set of honeypots. We
propose the novel framework (see Section 2.2) that utilizes both active (probe-based fingerprinting) and pas-
sive fingerprinting (metascan-based fingerprinting) techniques to fingerprint honeypots deployed on the Inter-
net. The aim of the proposed framework is to systematically fingerprint honeypots with multiple sequential
checks to reduce false positives. In comparison to the state of the art (c.f. Section 6), we employ novel prob-
ing methods that include certificate checks, protocol handshake, and metascan methods that check for Inter-

net Service Provider (ISP) and cloud hosting information. The framework is further automated for all the
checks involved in each fingerprinting technique that helps in automated transition to stages during the scanning
process.

2.1 Overview

This section provides an overview of the proposed multistage fingerprinting framework and the detection
techniques.

2.1.1 Probe-Based Fingerprinting. Probe-based fingerprinting involves the creation of queries to derive fin-
gerprinting information and involves direct interaction with a system. These methods focus on leveraging the
data from responses and classifying the target machine based on fingerprinting identifiers. The information may
include system-specific unique identifiers like the Initial Congestion Window (ICW) or the Retransmission Time
Out (RTO). Several fingerprinting tools like NMap [26], XProbe2 [3], Metasploit [21], and Hydra [43] utilize
probe-based methods to determine the Operating System (OS) and the protocol versions of the target systems.
For example, these tools rely on banners advertised and the TCP (Transmission Control Protocol) information
to determine the underlying OS. The database of the scanning tool stores the identifiers that are specific to some
OS. The identifiers help compare parameter values obtained through probing for determining the OS. The finger-
printing probes derive multilevel system information at network level, application level, and system level. The
integration of the information received from different levels improves detection accuracy.

2.1.2 Metascan-Based Fingerprinting. Metascan-based fingerprinting is a form of passive fingerprinting that
leverages the known information about the target system without direct interaction. The technique uses the
IP address and performs a search on Internet mass-scan engines (e.g., Shodan [36] and Censys [12]) to obtain
attributes like hosting provider and the ISP. The data obtained through metascan can be leveraged for finger-
printing purposes. For example, if the target system has the TCP port 502 (i.e., the Modbus protocol default port)
open and the IP address is attached with a network assigned to a university or research facility, this might act
as an indication that the target system is a research honeypot. Similarly, if a cloud provider hosts the aforesaid
system, it is likely a honeypot because ICSs are physical devices that are deployed in an industrial network and
are unlikely to be hosted by a cloud provider.

Mass-scan engines like Shodan and Censys crawl the Internet IP space daily to find vulnerable systems
exposed to the Internet. They also store system- and network-specific information about the exposed systems
like banners, HTTP content, certificate, open ports, and services. Furthermore, they provide metadata like the

Digital Threats: Research and Practice, Vol. 4, No. 3, Article 42. Publication date: October 2023.

42:4 • S. Srinivasa et al.

Fig. 1. Multistage framework for honeypot fingerprinting.

ISP, Autonomous Systems (AS), and geo-location of the systems. Metascan fingerprinting techniques rely
on essential information about target systems for the fingerprinting process. Such information can be obtained
through the APIs offered by Shodan and Censys. Hence, the mass-scan engines can act as a substitute for the
probe-based checks and provide the information required without interacting with the target systems.

2.2 Framework

We construct a framework that combines both probe- and metascan-based methodologies. The framework is
automated for the sequential checks for the probe-based and the metascan-based techniques. The probe-based
technique uses methods that involve direct interaction with the target machine to fetch fingerprinting infor-
mation, whereas the metascan-based techniques use methods that involve no direct interaction with the target
systems. In particular, the latter uses information derived from the Shodan and Censys mass-scan engines. Some
mass-scan engines employ banner-based fingerprinting to fingerprint device types. For example, Censys [12]
uses the Recog engine [33] to detect device types using the information received by probing. The methods used
in the proposed metascan pipeline are novel specifically toward honeypot fingerprinting. The novel methods of
using the information about the ISP and checking if the instance is on a cloud environment assist us in gathering
additional information that can be leveraged for the fingerprinting process. In addition, these methods help in
reducing false positives from the results. We term the target system considered for fingerprinting as an instance
for the rest of our article.

Figure 1 shows the proposed multistage fingerprinting framework. The framework contains two independent
main pipelines of probe-based and metascan-based techniques. The probe-based pipeline has multiple stages
that are represented as boxes in the figure, with each stage aiming at fingerprinting the instance at various
levels (i.e., network level, application level, system level, protocol level, implementation level, and configuration
level). The boxes are color coded to gray and green for further classification. The gray boxes denote that the
stages refer to the state of the art, whereas the green boxes represent the novel methods. The novel methods
are composed of persistent checks that enrich the likelihood of the instance to be a honeypot. In the metascan-
based pipeline, the stages represent systematic checks referring to passive fingerprinting techniques and data
analysis. Overall, an instance is only labeled as a honeypot if all (relevant) components of the respective pipeline
concur.

Digital Threats: Research and Practice, Vol. 4, No. 3, Article 42. Publication date: October 2023.

Gotta Catch ’em All: A Multistage Framework for Honeypot Fingerprinting • 42:5

2.2.1 Probe-Based Fingerprinting Pipeline. The probe-based fingerprinting pipeline consists of seven probing
stages. The instances under evaluation transition into the next stage, based on the underlying application service
protocol. The probes from each stage fetch information that is then analyzed to derive whether the instance is a
honeypot.

Portscan. The pipeline begins by performing a scan on the Internet for open ports specific to the services emu-
lated by the honeypots. Our framework utilizes ZMap [13] for this process (alternatively one could use Masscan
[17]). The search results consist of a list of instances having these ports open to the Internet. Recent research
reveals faster Internet services across all ports by running a predictive network that learns from extremely small
sample sizes [24]. Augmenting such frameworks could improve this stage and, as a result, the pipeline.

Banner Check. The results of the portscan are further processed in the banner check stage. In this stage, the
probes check the banner advertised by the end system with static banners offered by honeypot implementations.
Honeypot implementations offer a limited set of banners or even static banners that, in some cases, do not match
the actual banners advertised by the services running on the underlying OS. As these banners are hard coded,
they can be matched against a list of known honeypot banners. We use the extended banner grab utility offered
by ZMap to fetch banners from instances [53]. State-of-the-art honeypot fingerprinting techniques by Vetterl and
Clayton [47] and Morishita et al. [28] employ banner-based fingerprinting to detect honeypots. We combine this
knowledge (see Table 10 in the appendix) to construct a holistic banner list for our framework. The results of this
stage provide us with a list of instances and their banners. The instances that match the banners advertised by
honeypots progress into the next stage based on the underlying protocol. For the instances that do not match the
banners, we perform a vulnerability check that determines the number of vulnerable systems on the Internet with
specific protocol versions (see Section 3.3.4 in the evaluation). Fingerprinting honeypots only with banner checks
is prone to false positives, and therefore we subject the instances to further protocol- and system-level checks.

HTTP Static Response. The filtered instances with HTTP and HTTPS service identified in previous stages are
checked for static HTTP content in their response. Honeypots emulating the web services offer limited content
by default that can be identified. The instances are queried with an HTTP GET request to fetch the content
and then match the static default content offered by the honeypots. Table 11 in the appendix shows the HTTP
response returned by honeypots. Upon match of static content, the instance continues to the next stage. This
technique was adapted from other works [28, 47] for fingerprinting HTTP-based honeypots.

SSL/TLS Certificate Check. This stage compares certificate-specific attributes to known values from default
certificates provided by honeypots. Some honeypots offer hard-coded TLS certificates that can be leveraged to
fingerprint honeypot instances. Although there is a change of fingerprint on each certificate, attributes like issuer
and provider remain static. We add this stage particularly for honeypots that use any certificates. During our
study, we observe that the Dionaea honeypot contains a certificate issued by a provider name that is consistent
in all its deployments [31]. The SSL/TLS Certificate check component stage checks the attributes certificate issuer
and the common subject name of the certificate retrieved from web servers to identify Dionaea honeypots on the
Internet. The stage can be extended further to include other honeypots that use any certificates. Algorithm 1,
in the appendix, represents the pseudo-code block that checks an instance for Dionaea’s default certificate
parameters.

Protocol Handshake. The communication of systems over any network is established upon the negotiation
of various communication parameters, before building a channel. Honeypots offer limited emulation and com-
munication preferences. This limitation is caused due to the honeypot design or the utilization of certain pro-
tocol emulation libraries. We exploit this limitation of deviated behavior, in the protocol negotiation process,
to identify honeypots. First, we observe the deviation in the negotiation process and the limited availability of
parameters by establishing communication with in-house lab honeypots (see Section 3.2). We develop probes

Digital Threats: Research and Practice, Vol. 4, No. 3, Article 42. Publication date: October 2023.

42:6 • S. Srinivasa et al.

Table 1. Protocol Handshake Deviation

Honeypot Protocol Request Response

Kippo SSH SSH-2.0-OpenSSH \n\n\n\n\n\n\n\n\n\n
“bad packet length *” or
“protocol mismatch\n”

Cowrie SSH
1. SSH-2.0-OpenSSH_6.0p1 Debian-4+deb7u2 \n
2. SSH-2.0-OpenSSH_6.0p1 Debian-4+deb7u2 \n

“protocol mismatch\n”

Gaspot Telnet I30100 9999FF1B

Conpot S7
“H”, “0300002102f0803207000000000008 \n
00080001120411440100ff09000400110001”\n

0 × 32

Conpot Modbus
“function_code”: None, “slave_id”: 0, \n
“request”: “000000000005002b0e0200” \n

Disconnection

Glastopf HTTP GET /HTTP/1.0 Server: BaseHTTP/0.3 Python/2.5.1

Dionaea HTTP GET /HTTP/1.0 Server: nginx

Amun HTTP GET HTTP/1.1 Server: Apache/1.3.29

MTPot Telnet WILL (251) Linemode Won’t (252) Linemode

Table 2. Library References in Honeypots

Honeypot Protocol Library Updated

Kippo SSH TwistedConch May 2015

Cowrie SSH TwistedConch May 2018

MTPot Telnet Telnetsrv Dec. 2012

Cowrie Telnet TwistedConch May 2018

Dionaea HTTP Custom Sept. 2016

Glastopf HTTP BaseHTTPServer Oct. 2016

Conpot HTTP BaseHTTPServer March 2018

that attempt to establish a connection through limited parameters and observe the response for deviation for all
emulated services. Table 1 summarizes the responses for certain negotiations of protocols. We observe protocol
handshake deviations that cause the acceptance of malformed request packets, return limited options for negoti-
ation, or disconnect the session with an arbitrary message that is different from non-honeypot implementations.
Algorithm 4 in the appendix describes the protocol handshake checks. The algorithm accepts a list of instances
with their IP address and port. For each instance, a request is sent for session initiation with specific parameters.
The response is analyzed for deviations that match the response from honeypots. Upon match, the flag isDeviated
is set and such instances progress to the next framework stage.

Library Dependency Check. Emulations in low- and medium-interaction honeypots are often developed by
referring to external libraries. Libraries offer limited emulation capabilities based on their design and frequently
return static values in certain queries. Furthermore, some libraries referred by honeypots have not been well
maintained. Vetterl and Clayton [47] have leveraged the use of libraries in honeypots to craft specific probes
that return static values. This static information can be used to fingerprint the honeypots. Table 2 shows the
libraries used by many well-known honeypots for the service emulation and their last update. Leveraging the
aforementioned static implementation and limited emulation, we develop the probes based on the work of Vetterl
and Clayton [47] that request for specific information from the end systems. We compare the response to known
static responses from the honeypots. We proceed in case of a match. In honeypots, the protocol handshake is also
dependent on the library used for emulation purposes and hence these two stages are intertwined. Nevertheless,
we use this check to check for additional dependencies that can signal static behavior.

Digital Threats: Research and Practice, Vol. 4, No. 3, Article 42. Publication date: October 2023.

Gotta Catch ’em All: A Multistage Framework for Honeypot Fingerprinting • 42:7

Static Command Response. Due to the nature of honeypots, developers are compelled to implement some ser-
vices with static responses or disconnect the communication for specific command requests. For instance, some
honeypots attempt to overcome such issues via a static response (e.g., “Invalid Command”) or disconnect with
the user. We leverage this gap in implementation for having probes request systems with commands to expect
known static responses from the end systems. Later, Table 14 shows the static response returned by honeypots
for specific commands by our probes.

2.2.2 Metascan-Based Fingerprinting Pipeline. Metascan-based techniques aim at honeypot detection using
passive fingerprinting techniques. Our framework uses information available through Shodan and Censys to
determine if an instance is a honeypot. The metascan-pipeline consists of four stages based on the underlying
protocol. Although some state of the art (e.g., [28]) have used mass-scan engines to search for honeypot signa-
tures, we use persistent checks in our stages to assure that the instance is a honeypot. We use checks to determine
if the network belongs to a research facility, has an identified domain attached to it, or if the instance is on a cloud
infrastructure. This information helps to further distinguish the honeypots by analyzing operational parameters.

Shodan and Censys Search. Contrary to the probe-based scanning that requires us to use a tool to perform
the scan, we leverage the available data from Shodan and Censys that perform the scans daily. We search the
platforms for systems with open ports concerning the services emulated by honeypots in our tests. The result
of the search provides a list of instances that undergo further fingerprinting process. Both Shodan and Censys
provide APIs for querying their databases. Algorithm 3 in the appendix shows the procedure for the search
performed on Shodan and Censys. The search results return an IP address and port for the identified instances.

Keyword Search. Shodan and Censys store information about the systems exposed to the Internet that include
banners, web content, protocol negotiation parameters, and more. In addition to system-specific information,
they provide metadata about the IP address allocated to the system like geo-location, ISP/AS, and the hosting
provider. The degree of information and the format available on these databases vary based on the techniques
followed by the mass-scan engine. We leverage such information to filter the instances obtained in the previous
step. The search is performed with keywords identified from the probe-based stages like static content, banners,
and protocol negotiations. Table 13 in the appendix shows the used keyword parameters for filtering instances
in Shodan and Censys. The resulting data contains a list of instances of systems with specific ports and matching
filtered criteria.

ISP and AS Check. Honeypots are also classified based on their usage in research and production environments.
Research organizations deploy honeypots to gather attack data for threat intelligence research. Enterprise sys-
tems deploy honeypots for proactive attack detection. Following the previous stages, we examine whether the
instance is part of a research organization or an institute. It is also possible that an enterprise company may be
hosting a production honeypot with an unassigned domain. For instance, the honeypots deployed in our lab lie
under the university AS while they do not have a domain registered to them. To cope with this, this component
checks the WHOIS database to search for information about the network to which the system is attached to.

Cloud Hosting Check. Cloud infrastructure enables defenders to set up and deploy honeypots on cloud environ-
ments to easily gather attack data. Many honeypot developers offer a container-based configuration of honeypots
for easy installation and deployment. As a result, many honeypot instances can be found in cloud instances. We
argue that many honeypots are deployed in cloud environments even though they are logically invalid for the
emulated infrastructure. For example, we find many instances of Conpot, an ICS-based honeypot, which emu-
lates industrial cyber-physical systems. However, it is improbable to find ICS devices on cloud networks. This
component checks whether instances related to specific ICS protocols (i.e., Modbus and S7) are deployed on a
cloud infrastructure.

Digital Threats: Research and Practice, Vol. 4, No. 3, Article 42. Publication date: October 2023.

42:8 • S. Srinivasa et al.

2.2.3 FQDN Check. An FQDN is allocated to an Internet-facing system to avoid memorization of the IP ad-
dresses. We perform a check to examine whether the identified instances from both pipelines have an assigned
Domain Name Service (DNS) domain. Honeypot systems, by design, are fake systems and are unlikely to
have domain names allocated, as it is risky for the organizations deploying them. For instance, an attacker may
claim to have found a vulnerable or compromised system belonging to an enterprise domain, resulting in nega-
tive publicity for an organization. Therefore, administrators, in principle, avoid assigning a domain/DNS for the
honeypots. We utilize this understanding of the administrators and filter the IP addresses received from the IP
pool to find systems without domain names assigned. The reverse DNS lookup is performed using DomainTools,
which provides an extensive database for WHOIS information [11]. The IP addresses that do not have a DNS are
transitioned to the next state. The FQDN check differs from the AS check, in a way that it checks for any domain
associated with the IP address, whereas the AS check performs a lookup of the IP address allocation by the AS
to an entity. The information about the AS and the ISP helps in identifying the type of entity—for example, a
research organization or honeypot instance in a production network of an organization.

2.2.4 Framework Output. The output state of the framework provides a list of instances that are inferred as
honeypots from our fingerprinting framework. The list contains instances from both the probe- and metascan-
based honeypots.

3 EVALUATION

We evaluate the ability of the proposed multistage honeypot fingerprinting framework in discovering honeypots.
The evaluation considers nine honeypot implementations and specifically focuses on nine protocols as listed in
Table 3. The choice of honeypots is based on several factors. First, these honeypots are considered some of the
most popular ones and most frequently deployed (e.g., see the ENISA recommendations in the work of Grudziecki
et al. [18]). Moreover, these represent the honeypots examined in the majority of the related work (cf. Section 6),
which provides us the ability to make some comparisons (e.g., [28, 47, 52]). Last, all of the selected honeypots
are open source implementations.

Our main goal is to examine how many honeypots the framework can identify. We highlight here that the
absence of ground truth data for honeypots is a known problem in the field. However, we argue that the multi-
stage nature of the framework highly reduces the probability for false positives (we further discuss this issue in
Section 3.5). In addition, we want to determine the relation between the probe- and metascan-based detection.
Our hypothesis is that the probe-based pipeline should produce significantly better results. Still, the question of
whether the metascan pipeline can identify honeypots beyond the ones already identified via the probe-based
methods is an open question that we will attempt to answer. Last, we are interested in further examining encoun-
ters with IP addresses that pass some, but not all, of our tests. We believe that these systems might be vulnerable
ones, which can easily be exploited by adversaries.

3.1 Lab Environment Tests

First, we deploy all the honeypot implementations (see Table 3) in a lab environment and test all probes that
are implemented to collect state-specific information like banners, static content, protocol handshake, and static
command responses. We confirm that honeypots test positive for all the different modules (see Figure 1) of the
probe-based phase. Following these tests, we evaluate the multistage framework against the known honeypot
instances in the lab environment. All honeypot instances were successfully detected by our framework.

3.2 Evaluation Setup

After performing the aforesaid experiments, we are now ready to perform an Internet-wide scan. We use the
ZMap tool as our scanning tool [13] to scan a total of 2.9 billion IP addresses.1 Our tests follow the flow of

1ZMap excludes a number of IP addresses from its scan by default; these include reserved and unallocated IP space.

Digital Threats: Research and Practice, Vol. 4, No. 3, Article 42. Publication date: October 2023.

Gotta Catch ’em All: A Multistage Framework for Honeypot Fingerprinting • 42:9

Table 3. Honeypots Tested in Our Internal Lab Environment

Honeypots Ports and Services Version

Kippo
Ports:22/2222
Services: SSH

0.9

Cowrie
Ports: 22/2222 23/2323
Services: SSH, Telnet

2.1.0

Glastopf
Ports: 80, 8080
Services: HTTP

3.1.2

Dionaea
Ports: 80, 443, 21
Services: HTTP, FTP

0.9.0

Nepenthes
Ports: 21
Services: FTP

0.2.2

Amun
Ports: 23,21,80,36,143
Services: Telnet, FTP, HTTP, SMTP, IMAP

0.2.3

Conpot
Ports: 80, 502, 102
Services: HTTP, Modbus, S7

0.5.2

Gaspot
Ports: 100001
Services: ATG

Base [51]

MTPot
Ports: 23
Services: Telnet

Base [8]

Figure 1. In other words, we first perform a probe-based scan and afterward perform an independent metascan
by making use of Shodan and Censys [12, 36]. Our experiments were conducted in a period of 6 months. The
experiment is carried out as three scanning periods, for the entire framework. The metascan-based approach
was relatively faster to perform the search and analysis, although Shodan and Censys enforce rate limiting
on the API requests. Over a period of 6 months, we conducted three iterations. The results depicted in the
following sections provide a summation of all the unique honeypot instances identified from the three scan
iterations.

We, once more, highlight that this article does not take into account high-interaction honeypots. This is due
to the very different characteristics of high-interaction honeypots (i.e., real systems instead of emulated ones);
in fact, this is the case with all state of the art (e.g., [28, 47, 52]). Hence, both our article and all existing related
works are prone to false negatives.

3.3 Results

By first performing a ZMap scan, we derive Table 4, which shows the number of identified systems (not neces-
sarily honeypots) on the Internet that exhibit relevant open ports. Subsequently, the framework performs the
various checks shown in Figure 1.

3.3.1 Honeypot Identification. Overall, the framework detected a total of 21,855 honeypots. Figure 2 shows
the honeypot instances detected over three sequential scans over a period of 6 months. Figure 2 also depicts the
change in honeypot instances detected over the three scans. The instances of honeypots Gaspot, Conpot, and
Amun (HTTP) were detected more in the third scan, whereas the others remained constant or reduced. This
could be because of honeypots instances undergoing a churn or because they were simply blocked/offline. IP
churn is the rate at which a networked host changes its IP address as a result of a changed configuration by the
ISP or the network administrator of the organization. We discuss this further in Section 3.5. The metascan-based
technique has identified 7,410 unique honeypots, and the remaining 14,246 were detected by the probe-based

Digital Threats: Research and Practice, Vol. 4, No. 3, Article 42. Publication date: October 2023.

42:10 • S. Srinivasa et al.

Table 4. Number of Identified Instances and

Protocols/Ports

Protocol Port
No. of Systems on the

Internet (in Millions)

HTTP
80,8080,

8888
67.31

HTTPS 443 56.06

SSH 22 18.65

FTP 21 10.39

SMTP 25 7.71

Telnet 23 5.27

Fig. 2. Honeypots detected per scan.

technique. Figure 3 summarizes the honeypots detected by probe- and metascan-based approaches for each
honeypot. The numbers on the bars indicate the unique instances detected by the approaches and scans. An
interesting finding is that all IP addresses identified as honeypots by the metascan-based approach were already
detected by the probe-based approach. This is important, as it confirms our hypothesis that probe based is superior
to the metascan. In fact, this suggests that the metascan pipeline can be ignored without any loss of information.

Figure 4 compares our findings with the state-of-the-art measurements from Vetterl and Clayton (Bitter Har-
vest) [47], Morishita et al. (Detect Me) [28], and Zamiri-Gourabi et al. (Gas What?) [52]. The figure shows the total
honeypot instances detected by the state of the art in comparison to our approach. We note that the honeypots
Nepenthes and Amun were not evaluated by Vetterl and Clayton [47]; in addition, Zamiri-Gourabi et al. [52]
only evaluated Gaspot and Conpot honeypots. We want to highlight that the value of this figure does not lie
within the improved results on the majority of the honeypots. Direct comparison with previous measurements
is not adequate due to the different time frame. Instead, we argue that these results suggest several interesting
findings. First, they independently confirm previous studies’ conclusions with regard to the global (poor) state of
honeypot deployments [47]. Second, our results come more than 1 year after the aforesaid studies: this provided

Digital Threats: Research and Practice, Vol. 4, No. 3, Article 42. Publication date: October 2023.

Gotta Catch ’em All: A Multistage Framework for Honeypot Fingerprinting • 42:11

Fig. 3. Honeypots detected by type and technique.

Fig. 4. Comparison to previous measurements in related work.

a relatively long period for honeypot administrators to react, whereas many honeypots (e.g., Conpot) have been
updated to fix relevant vulnerabilities. Last, the multistage nature of our framework suggests that, in contrast to
related work, we should encounter a very small number of false positives. In other words, IP addresses are only
marked as honeypots when all (relevant) stages are confirmed.

3.3.2 Honeypot Versions. We determine the versions of the instances detected as honeypots by examining
specific changes added to the honeypots through patches released by the developers. However, versions could

Digital Threats: Research and Practice, Vol. 4, No. 3, Article 42. Publication date: October 2023.

42:12 • S. Srinivasa et al.

Table 5. Detected Honeypot Versions

Honeypot
Deployed

Version
#Instances

Conpot
0.5.2∗

0.5.2
0.5.0
0.4.0

221
496
167

Cowrie
2.1.0∗

2.1.0
1.5.3
1.5.1

17
232
2,925

Glastopf
3.1.2∗

3.1.2
0.2.0

4
3,416

Dionaea
0.8.0∗

0.8.0
0.6.0

2,259
1,782

∗Latest Version.

Table 6. Detected Honeypots Running on Default Configuration

Honeypots
#Instances with

Default Configuration

#Instances Without

Default Configuration

Gaspot 925 40

MTPot 215 0

Conpot 777 107

Nepenthes 531 58

Kippo 773 23

Cowrie 3,149 25

Amun 7,455 57

Glastopf 3,416 4

Dionaea 4,064 37

Total 21,305 351

not be determined for some honeypots that do not maintain releases (i.e., MTPot and Gaspot). We find that the
majority of the honeypots detected have not been updated by the administrators even though there were patches
released by the honeypot developers (e.g., for certain fingerprinting attacks). Furthermore, we detect instances
running on honeypots that are no longer maintained by the developers. The developers of these honeypots
disclose that the project has been discontinued and also suggest newer honeypots under active maintenance. We
list the instances with the identified deployed versions in Table 5.

3.3.3 Honeypots with Default Configuration. The honeypots considered in our tests can be deployed with a
default configuration. Nevertheless, for some honeypots, the developers explicitly provide additional templates
and guidelines to change the default settings. The usage of default honeypot configuration can be problematic,
as it makes fingerprinting significantly easier.

To determine this, we compare the cumulative results from the framework’s HTTP Static Response and the
Static Command Response stages to the default configuration of the deployed honeypots in our lab environment
(see Section 3.2). Therefore, upon matching, we can infer that the instance is a honeypot deployed with its default
configuration. We observe that the majority of the detected honeypots are running with default configurations
that make primitive fingerprinting techniques like static HTTP content quite successful. We list the number of
honeypot instances running with default configurations in Table 6.

Digital Threats: Research and Practice, Vol. 4, No. 3, Article 42. Publication date: October 2023.

Gotta Catch ’em All: A Multistage Framework for Honeypot Fingerprinting • 42:13

Table 7. Vulnerable Instances of Identified

Non-Honeypot Instances

Vulnerability #Instances

Default Passwords (SSH)

root, root
admin, admin
root, 1234
admin, 1234
root, 123456
root, (no password)
admin, (no password)

216
124
23
43
21
18
28

Default Passwords (FTP)

root, root
admin, admin
root, 1234
admin, 1234

94
29
19
8

Vulnerable Banners (SSH)

SSH-2.0-ROSSSH
SSH-2-0-libssh-0.7.0(5)

263,516
196

Vulnerable Banners (FTP)

220 ProFTPD 1.3.5 Server
220 ProFTPD 1.3.1 Server
220 Serv-U FTP Server v6.2

53,873
15,823
21,023

Total 355,054

3.3.4 Non-Honeypot Encounters. As a result of multistage checks from the framework, instances are filtered
out at each stage when they fail the matching criteria. We further analyze the non-honeypot instances that were
filtered out at multiple stages to determine the cause of filtration at a particular stage and/or the success in other
stages. Table 12 in the appendix shows the non-honeypot instances determined at stages in our framework based
on honeypot types. Furthermore, we find a total of 355, 054 vulnerable systems (Table 7) with unpatched ver-
sions and default passwords among the non-honeypot systems identified. Based on this, we derive the following
findings.

SSH and FTP Instances with Default Passwords. We find SSH instances running on default passwords that met
the initial criteria for SSH honeypot detection in our framework but failed in other stages (e.g., static command
and library checks). These instances’ credentials match the ones of the default passwords accepted by Kippo
and Cowrie honeypots. Our conclusion is that these are either vulnerable devices with default logins or high-
interaction honeypots. We list the number of vulnerable SSH instances found with default passwords in Table 7.

SSH and FTP Instances with Vulnerable Versions. From the instances that were filtered out of the banner check
stage (in the probe-based pipeline), we identify the number of instances that appear to contain vulnerable ver-
sions in their banners. In particular, we take into account banners that have a high severity vulnerability (by
making use of the National Vulnerability Database [5]). We identify a total of 263,712 instances with vulnerable
versions as per the advertised banners. The banners and the number of instances identified are listed in Table 7.

3.3.5 Experiment Repetition: Gain and Blocked/Offline Instances. Due to the nature of our experiments (i.e.,
long time windows and rather aggressive fingerprinting scans), we expect following: (1) we will observe some

Digital Threats: Research and Practice, Vol. 4, No. 3, Article 42. Publication date: October 2023.

42:14 • S. Srinivasa et al.

Table 8. Identification Gain vs. Blocked/Offline Instances

Honeypot
Scan-2

New Instances

Scan-2

Blocked/Offline

Scan-3

New Instances

Scan-3

Blocked/Offline

Gaspot 567 12 387 11

MTPoT 0 1 0 23

Nepenthes 0 3 573 16

Conpot 367 33 110 23

Kippo 0 4 0 13

Amun 0 3 63 51

Cowrie 0 4 0 98

Glastopf 3 2 0 13

Dionaea 0 0 0 0

fluctuation in our results, (2) we will have some gain as new honeypots are introduced on the Internet, (3) we
expect some of the networks to blocklist our scanners, and (4) we anticipate some honeypots not to be responsive
due to them being taken down, maintenance, and/or network errors.

We scan the Internet with a different scanning host that has a different IP address and subnet. We compare
the results from the different scanning periods to identify new and existing honeypot instances. In the next
step, we analyze the IP address of the new honeypot instances detected against our framework and check the
IP address for their subnet and their AS. If the IP address belongs to a different subnet but belongs to the same
AS, and further matches to the properties of the honeypot identified in the previous period, we infer that the
honeypots are the same but had some churn-related effects. Moreover, we further examine the gain vs. blocked
tradeoff by trying to connect to the new IP address of the honeypot instance from our previous scanning host.
If the honeypot instance blocks the connection from the first connected host but was connected by the second
scanning host, then it is very likely that the honeypot administrator has blocklisted the IP address of the first
scanning host.

Table 8 shows the number of new honeypot instances detected in the scans and the instances that were either
blocked or offline. There was a significant number of new Nepenthes honeypot instances detected in the third
scan. On tracing the IP addresses of the new instances, we find that all the new detected honeypots were hosted
by a hosting provider that was traced earlier hosting Nepenthes instances on another subnet. We can infer that
either the honeypots were configured to undergo some IP rotation logic or were simply offline for a certain
period. Overall, we find that only 2.3% of the honeypot instances have changed their IP and only 1% are not
offline after the first scan.

3.4 Shodan Honeyscore

The Shodan Honeyscore is a proprietary algorithm used to determine whether a crawled instance is a honeypot
or not [36]. Shodan offers an API that provides a score for IPs detected as probable honeypots. The score ranges
from [0, 0.3, 0.5, 0.8, 1], with 0 denoting that the IP is not a honeypot and 1 that it is. The API also returns the
value NA when no information is available for a specific IP address. Since the Honeyscore is not open source,
not many conclusions can be derived by examining its output. In fact, it is not disclosed which honeypots can
be identified by Shodan’s Honeyscore. Nevertheless, we expect that there is some overlap with regard to the
fingerprinting techniques used by our framework and Shodan’s Honeyscore.

We fetch the Honeyscore for all honeypot IP’s determined by our framework and compare the results with
Shodan. Figure 5 depicts the Honeyscore assigned to honeypot instances detected through our framework (for the
combination of both metascan- and probe-based results). We observe that Shodan returns 0 as the Honeyscore for

Digital Threats: Research and Practice, Vol. 4, No. 3, Article 42. Publication date: October 2023.

Gotta Catch ’em All: A Multistage Framework for Honeypot Fingerprinting • 42:15

Fig. 5. Comparison with Shodan’s Honeyscore.

many of the IPs. This suggests that the Honeyscore is not taking into account as many checks as our framework.
Moreover, the high deviations observed with regard to Glastopf and Amun suggest that Shodan is not very
effective in identifying such honeypots.

3.5 Validation

The absence of ground truth knowledge regarding honeypots creates a challenging landscape for measuring
metrics such as precision or possible false positives. This is a fundamental problem in the area of honeypot
fingerprinting that cannot be solved in its entirety. Hence, in the following, we attempt to provide indications
on why false positives are not a significant issue in our approach.

First, in contrast to the state of the art, we propose a framework that requires multiple steps to be confirmed
until an IP address is marked as a honeypot. These steps include a multitude of independent checks that, we
argue, significantly decrease the probability of false positives. Looking at the state of the art, Vetterl and Clayton
[47] measure the detection accuracy using the responses received from the honeypots by generating a cosine
similarity score, and Morishita et al. [28] use the matching of honeypot signatures in four datasets. In contrast,
our approach relies on multiple checks at each stage to minimize false positives.

Second, we replicate and extend the ground truth validation proposed by Morishita et al. [28] and Vogt et al.
[49]. Morishita et al. [28] argue that a honeypot IP address cannot be present in IP spaces that are known for
their commercial usage. This argument obviously does not solve the absence of ground truth but rather provides
a minor indication that the identified IP addresses are not clear false positives. Vogt et al. [49] also use a similar
validation in their evaluation to check if the domain identified by their model is listed on sources providing web
statistics like the top 1 million domains [49]. In this context, we evaluate our results by comparing the identified
honeypot IP addresses with the top 1 million domains from Alexa [2], Majestic [27], and Cisco Umbrella [7]
with known benign FTP servers, as well as known university SMTP domains. For this evaluation, we fetch the
Alexa top 1 million domains from Alexa, perform a DNS lookup, and examine whether our results match them.
Similarly, we fetch the top 1 million domains from the Majestic and the Cisco Umbrella websites. We confirm

Digital Threats: Research and Practice, Vol. 4, No. 3, Article 42. Publication date: October 2023.

42:16 • S. Srinivasa et al.

that none of IP address from these domains are found in our results. We note that the IP addresses for some of
the domains change based on the geo-location of resolution due to the Content Delivery Network (CDN). Hence,
we repeated the experiments by connecting to many different geo-locations by using a Virtual Private Network
(VPN) provider. Moreover, we fetch the list of official FTP mirrors from GNU [16], Apache [15], Ubuntu [14], and
Debian [9] and find 1,231 unique domain names. Upon performing a DNS lookup, we get 2,784 IP addresses. Once
more, none of the identified honeypots match these IP addresses. Furthermore, we retrieve the list of university
domain names from GitHub [20] for evaluating the Amun (SMTP) honeypot. Upon performing a DNS lookup, we
find 12,012 IP addresses. There were no honeypots detected in the domains from this list. To sum up, although
the state of the art uses a singular method to deal with false positives, our approach utilizes multiple stages.
Moreover, we further test our results with an adaption and extension of the techniques employed by Morishita
et al. [28] to address the absence of ground truth knowledge.

4 DISCUSSION

The evaluation of the multistage framework involved an experimental setup to reduce false positives and help
in classification of honeypot instances. In this section, we discuss the ethical considerations and experimental
setup considered during the experimentation phase.

4.1 Ethical Considerations

This section takes into account the various ethical considerations we had during our research.

4.1.1 Experiments. First, we inform the IT administrators of our organization about the ongoing research and
seek their assistance for providing an approved setup for scanning the Internet. This is important, as organiza-
tions tend to blocklist the IP addresses of sources that appear to be scanning them. Second, we set up a website
on the IP address of our scanner that provides a disclosure/explanation of our research purpose. This assists in
limiting the effects of blocklisting the IP addresses of our organization.

4.1.2 Results Disclosure. The list of honeypot instances obtained through our framework is not publicly
shared. We only present here aggregated statistics and do not share any identifiers of the honeypot instances.
We seek guidance from the privacy department of our organization for guidelines on storing the results of our
experiments and being compliant to GDPR. We followed the GDPR compliance by anonymizing the IP addresses
after 3 months following the completion of our research.

4.1.3 Ethical Disclosure: Notifying Honeypot Developers. We contact the honeypot developers of all of the ac-
tive honeypot implementations and provide them with the specifics of the honeypot fingerprinting methods that
can be used against them. Moreover, we contacted members of the Honeynet Project [32], an international secu-
rity research organization that focuses on honeypot research, to further disclose the fingerprinting mechanisms
that we have identified.

4.1.4 Ethical Disclosure: Notifying Honeypot Administrators. We take all 21,855 IP addresses that were iden-
tified as honeypots and perform a WHOIS scan to find relevant contact information. Based on this, we identify
939 email addresses that correspond to all the IP addresses we managed to find information about. We note that
in many cases, one email address corresponds to hundreds of honeypot instances deployed in the same network.
There are multiple benefits from this procedure. First and foremost, we notify honeypot administrators that their
deployments are vulnerable to our fingerprinting methods. Second, we ask administrators to contact us in case
they are confident that our finding is a false positive and no honeypot deployment has taken place in their net-
works. This acts as an additional false positive sanity check. Until the time of submission, we did not receive any
false positive claim from the contacted administrators.

Digital Threats: Research and Practice, Vol. 4, No. 3, Article 42. Publication date: October 2023.

Gotta Catch ’em All: A Multistage Framework for Honeypot Fingerprinting • 42:17

4.2 Limitations

As discussed in Section 3.5, the research field of low- and medium-interaction honeypot fingerprinting has the
fundamental limitation that there is no global ground truth knowledge with regard to honeypot deployment.
This translates to potential false positives. Our work is also influenced by this: although our findings come as
the result of multiple stages and checks, there may still be cases in which an instance is incorrectly labeled as a
honeypot.

The proposed multistage framework leverages multiple checks to determine if the end instance is a honeypot.
As part of the failed checks from the framework, 355,000 non-honeypot instances have been detected. Although
we argue that the majority of these are most likely vulnerable/misconfigured devices, it might be that some are
high-interaction honeypots. Ideally, one could perform manual tests on a sample of these systems by logging into
them and attempting to understand the presence of a honeypot environment. However, this would be illegal, and
therefore we could not perform such an action. Moreover, fingerprinting high-interaction honeypots requires
extensive probing and analysis. Hence, this is considered to be outside the scope of this article.

Las, although direct comparisons to the state of the art is considered the default evaluation methodology in
many fields of cybersecurity, this is not possible in our setting. The combination of the aforementioned ground
truth knowledge problem, along with the different time frames of the experiments, make direct comparisons
unreliable. We argue that our work and results are not competing with the state of the art. This is amplified
by the fact that we are dealing with IP addresses, and therefore topics such as static vs. dynamic IP addresses,
Network Address Translation (NAT), and churn need to be taken into account.

5 COUNTERMEASURES AGAINST FINGERPRINTING

This section discusses potential countermeasures against fingerprinting. First, we want to emphasize that, due to
their nature, low- and medium-interaction honeypots can always be identified upon continuous interaction and
response analysis. Instead, we argue that the emphasis should be to reduce as much as possible the fingerprinting
vulnerabilities that can easily be automated.

5.1 Metascan Countermeasures

Metascan-based methods rely on data that is obtained without interaction from the target system. This can be
translated to a scenario in which malware uses Shodan’s API to ask whether an IP address is a honeypot before
contacting it (e.g., for propagation reasons). We argue that Shodan, Censys, and other scanners must introduce
limitations to their honeypot identification services. From the honeypot deployment and implementation per-
spective, Moving Target Defense techniques could be employed by honeypot implementations to avoid a static
IP identification. We also discourage the usage of cloud hosting providers for honeypots based on ICS protocols.
Honeypots like RIoTPot [40] maintain an active list of IP addresses from known scanning services and label all
the traffic from these sources. This list can be further used to block all traffic from scanning services and hence
limit fingerprinting attempts.

5.2 Probe-Based Countermeasures

For probe-based methods, we suggest that the honeypots are made self-aware and dynamic each time an attack
has been detected. Fingerprinting methods can be less effective if the honeypots contain non-static parameters
while also choosing selective services periodically. In addition, honeypots rely heavily on protocol emulation
libraries. It is important to refer to libraries that are regularly maintained. Furthermore, we suggest making addi-
tional tweaks to the references to modify default static responses by comparing the responses to an actual system.
Default configurations must be avoided, and dynamic configuration based on the attack and the environment is
recommended.

Digital Threats: Research and Practice, Vol. 4, No. 3, Article 42. Publication date: October 2023.

42:18 • S. Srinivasa et al.

5.2.1 Dynamic Responses. Honeypot fingerprinting techniques exploit the limited exploitation capabilities
of low-interaction honeypots for indicators of deception. The limited simulation entails reduced support and
hard-coded responses for commands. Automated fingerprinting checks can be deceived by introducing dynamic
response patterns and a degree of randomness. For example, the date command could respond with current
date and time, or return changing time on sequential requests. Fingerprinting techniques could either check the
response for the date command for static values or sophisticated techniques can compare the response with the
timestamp received in the packet. We acknowledge that this is beyond the scope for low-interaction honeypots
for enabling dynamic responses. However, we suggest to implement dynamic response for common commands
used by bots and malware.

5.2.2 Maintenance and Library Support. Low-interaction honeypots use libraries for simulation of services.
For example, Cowrie uses the Twisted library for implementing the SSH protocol simulation. However, most of
the libraries used in honeypot implementations are not maintained. This entails that the honeypot implementa-
tions are vulnerable to any bugs affecting the libraries. Honeypot implementations must be periodically revised
and maintained to prevent staleness. Fingerprinting research by Vetterl and Clayton [47] suggests that limited
protocol emulation in honeypots that use poorly maintained libraries can be fingerprinted by examining the
responses and calculating the effective deviation. The authors suggest short- and long-term countermeasures
from identification of fingerprinting probes to the development of new-generation honeypots that are similar
in actual protocols.

5.2.3 High-Interaction Components. High-interaction honeypots are actual or real systems that run a vulner-
able service and log all the traffic. With high-interaction honeypots, the deceptive layer is the actual vulnerable
service with the underlying system and hence provides the attacker with full interaction capabilities. High-
interaction honeypots address some limitations of low-interaction honeypots like limited simulation and low
resources. However, as high-interaction honeypots run on actual systems, there is a risk of them getting ex-
ploited to perform attacks on systems on the Internet. Such risks can be addressed by configuring network rules
and using containerized, ephemeral instances.

6 RELATED WORK

This section focuses on honeypot-specific fingerprinting research. We note here that besides honeypots, there
has been research in the identification of intrusion detection systems and network telescope sensors (e.g., [4, 46]).
However, we consider this outside the scope of this article. Similarly, we will not discuss here fingerprinting of
honeypot-like systems (e.g., honeytoken identification) [39]. We also note all works in the state of the art exclude
high-interaction honeypots from their analysis.

Techniques for fingerprinting honeypots were first proposed early in 2005 by Holz and Raynal [22]. The au-
thors state that limited simulation and virtualization cause restricted interaction on the honeypot system that
leads to fingerprinting possibilities. Holz et al. [22] propose fingerprinting techniques to detect User-mode Linux
(UML) kernels by observing the process id’s, virtualized environments by analyzing the ping response time, and
debuggers by using ptrace(). The presented techniques are focused more on fingerprinting at the process and OS
level. This is mainly due to the limited availability of honeypots at the time of research.

Wang et al. [50] present an approach to detect honeypots in advanced botnet attacks. Their work is based on
the assumption that security professionals deploying honeypots have a liability constraint; they cannot allow
their honeypots to participate in attacks. Hence, botmasters can detect honeypots by checking whether compro-
mised machines in their botnet can successfully send out unmodified malicious traffic. This approach is based
on monitoring the traffic that is transmitted by the infected system through the bots. For example, the use of
the iptables command on Linux environments to list the port forwarding helps in the identification of honeypots

Digital Threats: Research and Practice, Vol. 4, No. 3, Article 42. Publication date: October 2023.

Gotta Catch ’em All: A Multistage Framework for Honeypot Fingerprinting • 42:19

because of outbound traffic rules. This information is transmitted by the bot to the botmaster. The authors also
present fingerprinting techniques involving ping response time.

Vetterl and Clayton [47] propose the detection of nine well-known open source honeypots by constructing
probes to fetch specific data and observe the deviation between the response from actual honeypots. The devi-
ation is measured as a cosine coefficient. This approach provides a good insight into the state of open source
honeypots and their vulnerability to fingerprinting attacks. The methodology is evaluated, and the authors iden-
tify 7,605 honeypots on the Internet. In comparison, although our framework employs an approach to observe
deviation in responses, we further extend the framework to include additional checks to reduce false positives.

Moreover, Morishita et al. [28] propose honeypot fingerprinting through signature-based detection. The au-
thors develop signatures for 15 open source honeypots offering multiple services. The signatures are then
matched against responses obtained through probes and mass-scan engines to determine if the system is a hon-
eypot. The approach is evaluated, and the authors detect 19,208 honeypots. Our approach checks for known
honeypot banners returned by the instances, although it does not rely solely on the banner check to flag the
instance as a honeypot.

In addition, Zamiri-Gourabi et al. [52] detect GasPot [51], an ATG-based ICS honeypot through probes de-
signed to fetch information about the default configuration and limited emulation of the protocols. The authors
study ICS honeypots (specifically of Conpot and GasPot) list features (e.g., limited emulation static responses)
and identify the underlying OS to eventually fingerprint them. They perform an Internet-wide scan to detect 17
GasPot and 240 Conpot instances.

Huang et al. [23] probe remote systems and label the response data to train a machine learning model to
classify systems as honeypots. The method follows a recursive probing process to obtain featured data for classi-
fication. The features include application-, network-, and system-layer properties. The authors train the model
for classification by providing data from known honeypot systems. However, the authors do not classify the
responses from widely recognized honeypots like Kippo, Cowrie, or Dionaea.

Papazis and Chilamkurti [31] attempt to exploit some of the virtual network layers implemented in honeypots,
using tools like NMap, to fingerprint them. In addition, they demonstrate the identification of network and
service anomalies like link latency and limited emulation that may also lead to honeypot detection. The authors
discuss detection vectors for honeypots like Sebek, Artillery, BearTrap, KFSensor, HoneyD, Kippo, and Dionaea.

Last, Sun et al. [41] propose a fuzzing-based technique for fingerprinting honeypots in industrial cyber-
physical systems. The technique is inspired by vulnerability mining and utilizes error handling to distinguish
honeypots and real devices. The technique follows a two-step approach. In the first step, mutation rules and
security rules are set up to generate effective and secure probe packets. Then, these probe packets are used for
scanning and identification in the second step. The authors test the method with a dataset and do not scan the
Internet with the created probes.

Table 9 summarizes the fingerprinting-related work. We note that the majority of related work does not eval-
uate their proposed techniques by performing an active search for honeypots on the Internet. This is mainly
due to the fact that Internet-wide scanning was not trivial until the emergence of ZMap [13]. That said, the
fingerprinting techniques suggested by some authors [28, 47, 48, 52] include a thorough evaluation. However,
their core limitation is that they focus on a limited number of techniques for fingerprinting. In this article, we
propose a multistage framework that combines probe-based techniques (targeting multiple system layers) with
data available from Internet mass-scan search providers to systematically detect honeypots.

7 CONCLUSION

Honeypots are unique mechanisms for understanding attack methodologies, for discovering new attack trends,
and for early warning systems. In this article, we proposed a framework for honeypot fingerprinting that includes
new and state-of-the-art components and is able to identify thousands of honeypot instances for nine of the

Digital Threats: Research and Practice, Vol. 4, No. 3, Article 42. Publication date: October 2023.

42:20 • S. Srinivasa et al.

Table 9. Overview of the Related Work

Authors and Year
Fingerprinting

Technique
IPv4 Scan

Holz and Raynal, 2005 [22]
Static command
response check

No

Wang et al., 2010 [50]
Static command
response check

No

Hayatle et al., 2012 [19]
Static command
response check

No

Aguirre-Anaya et al., 2014 [1]

Library dependency
check, static command
response check

No

Vetterl and Clayton, 2018 [47]

Banner check, protocol
handshake check,
library dependency
check, static command
response check

Yes

Vetterl et al., 2019 [48]
Banner check,
library dependency
check

Yes

Huang et al., 2019 [23]
Banner check, static
command response
check

No

Morishita et al., 2019 [28]
Banner check, HTTP
static response

Yes

Zamiri-Gourabi et al., 2019 [52]

Default config,
static response,
protocol handshake

Yes

Papazis and Chilamkurti, 2019 [31]
Banner check, HTTP
static response, static
command check

No

Sun et al., 2021 [41] Fuzzing, limited response No

most popular honeypot implementations. Our work reduces false positives by the utilization of multiple checks
before determining that an instance is a honeypot. Our results also suggest that probe-based fingerprinting
techniques are significantly more effective in detecting honeypots than the metascan techniques that utilize
third-party systems like Shodan. Although metascan techniques are less invasive, using them exclusively could
result in higher false positives. We once more highlight that our work is in the direction of improving honeypots
rather than arguing against them. With the availability of open honeypot identification APIs, such as Shodan’s
Honeyscore, it is only a matter of time that we see honeypot-evading malware. In this context, we contacted both
developers and administrators of the honeypots to make them aware of potential fingerprinting issues. However,
based on the experience of previous work, we are not overly optimistic with regard to the patching/updating
of such systems. Instead, we argue that novel components must be added in new/old honeypots that are in the
direction of Moving Target Defense schemes. We plan to further investigate fingerprinting countermeasures in
our future work.

Digital Threats: Research and Practice, Vol. 4, No. 3, Article 42. Publication date: October 2023.

Gotta Catch ’em All: A Multistage Framework for Honeypot Fingerprinting • 42:21

APPENDICES

A MULTISTAGE FRAMEWORK FOR HONEYPOT FINGERPRINTING

Table 10 shows the banners advertised by honeypots in our evaluation. Most honeypot implementations offer
limited banners or custom banners.

Table 10. Banners Advertised by Honeypots (adapted from Vetterl and Clayton [47] and

Morishita et al. [28]; see Banner Check in Section 2.2.1)

Honeypot Protocol Banner

Kippo SSH

Default: SSH-2.0-OpenSSH_5.1p1 Debian-5
SSH-1.99-OpenSSH_4.3
SSH-1.99-OpenSSH_4.7
SSH-1.99-Sun_SSH_1.1
SSH-2.0-OpenSSH_4.2p1 Debian-7ubuntu3.1
SSH-2.0-OpenSSH_4.3
SSH-2.0-OpenSSH_4.6
SSH-2.0-OpenSSH_5.1p1 Debian-5
SSH-2.0-OpenSSH_5.1p1 FreeBSD-20080901
SSH-2.0-OpenSSH_5.3p1 Debian-3ubuntu5
SSH-2.0-OpenSSH_5.3p1 Debian-3ubuntu6
SSH-2.0-OpenSSH_5.3p1 Debian-3ubuntu7
SSH-2.0-OpenSSH_5.5p1 Debian-6
SSH-2.0-OpenSSH_5.5p1 Debian-6+squeeze1
SSH-2.0-OpenSSH_5.5p1 Debian-6+squeeze2
SSH-2.0-OpenSSH_5.8p2_hpn13v11 FreeBSD-20110503
SSH-2.0-OpenSSH_5.9p1 Debian-5ubuntu1
SSH-2.0-OpenSSH_5.9

Cowrie SSH Debian GNU/Linux 7

Cowrie Telnet \xff\xfd\x1flogin:

Glastopf HTTP Apache httpd

Dionaea FTP 220 Welcome to the ftp service

Amun(SMTP) SMTP 220 mail\.example\.com SMTP Mailserver

Amun(IMAP) IMAP a001 OK LOGIN completed

Amun(FTP) FTP 220 Welcome to my FTP Server

Conpot SSH SSH-2.0-OpenSSH_6.7p1 Ubuntu-5ubuntu1.3

Conpot Telnet Connected to [00:13:EA:00:00:0]

Gaspot ATG Linux 3.X|4.X

Nepenthes FTP 220 —freeFTPd 1\.0—warFTPd 1\.65—

MTPot Telnet
\xff\xfb\x01\xff\xfb\x03\xff\xfc’\xff\xfe\x01
\xff\xfd\x03\xff\xfe\"\xff\xfd’\xff \xfd\x18\xff\xfe\x1f

Digital Threats: Research and Practice, Vol. 4, No. 3, Article 42. Publication date: October 2023.

42:22 • S. Srinivasa et al.

Table 11 shows the static content received as an HTTP response from honeypots for specific requests.
The static responses are either due to limited emulation or due to honeypots being deployed with a default
configuration.

Table 11. HTTP Response from Honeypots (see HTTP Static Response in Section 2.2.1)

Honeypot
HTTP

Request
HTTP Response Contents

Glastopf GET/HTTP/1.0

1. <h2>My Resource</h2>
2. <h2>Blog Comments</h2>\n <label for=\"comment\">Please post your comments
for the blog</label>\n
\n <textarea name=\"comment\" id=\"comment\" rows=\"4
\" columns=\"300\"></textarea>\n
\n <input type=\"submit
\" name=\"submit\" id=\"submit_comment\" value=\"Submit\" />\n

Amun GET/HTTP/1.0

<!DOCTYPE HTML PUBLIC \"-//IETF//DTD HTML 2\.0//EN\"><html><head><title>
It works!</title></head><html><body><h1>It works!</h1>
tim\.bohn@gmx\.net

johan83@freenet\.de</body></html>\n\n

Dionaea GET/HTTP/1.0
<!DOCTYPE html PUBLIC \"-//W3C//DTD HTML 3\.2 Final//EN\"><html>\n<title>
Directory listing for /</title>\n<body>\n<h2>Directory listing for /</h2>\n

Conpot
GET/HTTP/1.0/
index.html

1. Last-Modified: Tue, 19 May 1993 09:00:00 GMT
2. Technodrome
3. Mouser Factory

Table 12 shows the non-honeypot instances determined at stages in our framework based on honeypot types.
Limited emulation in honeypots causes identification at different levels that are determined by the stages in our
framework.

Table 12. Non-Honeypot Encounters by Stage (also see Section 3.3.4)

Honeypot Portscan
Failed

Banner

Failed

Static HTTP

Response

Failed

SSL/TLS

Certificate Check

Failed Protocol

Handshake

Failed

Library

Dependency

Check

Not a

Honeypot

Kippo 4,361,857 4,324,502 NA NA 34,887 1,656 4,361,045

Cowrie 4,361,857 4,318,645 NA NA 37,836 2,100 4,358,581

Glastopf 57,062,712 56,385,819 673,462 NA 0 0 57,059,281

Dionaea 43,944,853 43,890,588 49,963 201 0 0 43,940,752

Nepenthes 10,391,953 10,391,645 NA NA 3 0 10,391,648

Conpot 29,950 28,693 NA NA 732 333 29,758

Gaspot 222,593 222,393 NA NA 0 0 222,393

MTPot 2,923,651 2,923,412 NA NA 0 0 2,923,412

Amun(SMTP) 6,020,828 6,018,931 NA NA 0 0 6,018,931

Amun(IMAP) 4,152,084 4,150,278 NA NA 0 0 4,150,278

Amun(FTP) 10,391,953 10,389,555 NA NA 0 0 10,389,555

Amun(HTTP) 43,944,853 43,942,485 NA NA 0 0 43,943,476

Total 187,809,144 186,986,946 724416 201 73,458 4,089 187,789,110

Digital Threats: Research and Practice, Vol. 4, No. 3, Article 42. Publication date: October 2023.

Gotta Catch ’em All: A Multistage Framework for Honeypot Fingerprinting • 42:23

Table 13 denotes the keywords used in Shodan and Censys to retrieve honeypots. The keywords are derived
from banners and static content advertised by honeypots.

Table 13. Honeypot Keywords Search (also see Keyword Search in Section 2.2.2)

Honeypot Shodan Censys

Glastopf <h2>My Resource</h2> 80.http.get.body: “<h2>My Resource</h2>/”

Dionaea ssl:“Nepenthes”
443.https.tls.certificate.parsed.subject.common_name:
“Nepenthes Development Team”

Conpot port:“102” product:“Conpot” 80.http.get.body: “Technodrome”

Nepenthes
product:“Nepenthes HoneyTrap
fake vulnerable ftpd”

21.ftp.banner.banner: “220 —freeFTPd 1\.0—warFTPd ”

Amun “220 Welcome to my FTP Server”

“80.http.get.body: tim.bohn@gmx.net”
21.ftp.banner.banner: “220 Welcome to my FTP Server”
25.smtp.starttls.banner: “220 mail\.example\.com SMTP Mailserver”
143.imap.starttls.banner: “OK LOGIN completed”

Gaspot I20100 port: “10001” “I20100”

Table 14 shows the static response returned by honeypots for specific commands requested by our probes.
Limited emulation or default configuration leads to static response from the honeypots.

Table 14. Overview of Honeypot Static Responses

Honeypot Command Response

Conpot
S7_ID
station name
unit name

88111222
“STATOIL STATION”
“Technodrome”

Kippo
nano
vi

E558: Terminal entry not found in terminfo

Cowrie arp
IP address HW type Flags HW address Mask Device
192.168.1.27 0x1 0x2 52:5e:0a:40:43:c8 * eth0
192.168.1.1 0x1 0x2 00:00:5f:00:0b:12 * eth0

Amun(FTP) quit 221 Quit. 221 Goodbye!

Gaspot I30100 9999FF1B
In reference to Section 2.2.1.

Digital Threats: Research and Practice, Vol. 4, No. 3, Article 42. Publication date: October 2023.

42:24 • S. Srinivasa et al.

Table 15 provides an overview of the number of honeypot types and instances detected over the three scanning
periods.

Table 15. Honeypots Detected per Scan

Honeypot Scan 1 Scan 2 Scan 3 Total
Total

(Active)

Dionaea 4,101 4,101 4,101 4,101 4,101

Glastopf 3,431 3,433 3,420 3,433 3,420

Cowrie 3,276 3,272 3,174 3,276 3,174

Amun(FTP) 2,398 2,388 2,379 2,398 2,379

Amun(SMTP) 1,897 1,897 1,883 1,897 1,883

Amun(IMAP) 1,806 1,806 1,795 1,806 1,795

Amun(HTTP) 1,377 1,375 1,455 1,455 1,455

Kippo 812 809 796 812 796

Conpot 399 751 884 884 884

Nepenthes 305 302 589 589 589

MTPoT 239 238 215 239 215

Gaspot 200 755 965 965 965

B FRAMEWORK SPECIFIC CHECKS AND PIPELINE

Algorithm 1 represents the pseudo-code block that checks an instance for Dionaea’s default certificate parame-
ters. In lines 3 through 5, the algorithm retrieves the certificate from the web server by accepting the IP and port
of the instance and checks for common attributes like subject organization, country, and issuer. These attributes
have static values assigned by the honeypot developers. In lines 7 through 9, the algorithm checks if the values
match the Dionaea honeypot certificate’s static values. Upon match, the algorithm returns that the instance is a
Dionaea honeypot.

ALGORITHM 1: Certificate Check
input :ip, port
output : isDionaea /* True if certificate from Dionaea */

begin

1 checkCert(ip,port)

2 isDionaea = false

3 cert = ssl.get_server_cert(ip, port)

4 X509 = Crypto.X509.load_cert(cert)

5 org = X509.subject.org

6 if cert then

7 if org= "dionaea.carnivore.it" then

8 isDionaea = true

9 Return isDionaea

10 end

Algorithm 2 shows the checks done in the metascan-based pipeline. The algorithm checks or open ports,
and performs a keyword-based check to list instances that match the static content delivered by honeypots.
Furthermore, additional checks like FQDN and cloud hosting checks are performed for determining specific
honeypot types.

Digital Threats: Research and Practice, Vol. 4, No. 3, Article 42. Publication date: October 2023.

Gotta Catch ’em All: A Multistage Framework for Honeypot Fingerprinting • 42:25

ALGORITHM 2: Metascan-Based Pipeline

input :ports /* ports */

output : findHoneypot /* Honeypots on the Internet */

begin

1 ip← metasearch(ports)

/* Shodan and Censys Search */

2 foreach ip do

3 kw = keywordSearch(ip)

4 if kw then

5 foreach ip do

6 if checkfqdn(ip) then

7 return hasFqdn = f alse

8 if !hasfqdn & port=502|102 then

9 if cloudCheck(ip) then

10 return isHoneypot = true

11 isHoneypot

12 if !hasfqdn then

13 if isResearch(ip) then

14 return isResearch = true

15 isHoneypot

16 endIf

17 endFor

18 end

Algorithm 3 represents the metascan search performed to determine instances with specific ports exposed to
the Internet. The algorithm performs a search on Shodan and Censys mass-scan engines for specific ports that
are open on honeypots in our test.

ALGORITHM 3: Metascan Search

input :port /* search parameter */

output : instanceIP /* Instances with open ports */

begin

1 instances[] = null

2 shodanSearch(port)

3 foreach ip do

4 instances[].append(ip, port)

5 return instances[]

6 endFor

7 censysSearch(port)

8 foreach ip do

9 instances[].append(ip, port)

10 return instances[]

11 endFor

12 end

Digital Threats: Research and Practice, Vol. 4, No. 3, Article 42. Publication date: October 2023.

42:26 • S. Srinivasa et al.

Last, Algorithm 4 represents the protocol handshake check procedure described in Section 2.2.1. The algorithm
checks for a deviated response from the instances for specific negotiation parameters and response based on the
port and the service of the instance.

ALGORITHM 4: Protocol Handshake Check

input :instance[], /* Instance [ip, port, protocol, isDeviated] */

output :instance[isDeviated] /* Handshake is deviated */

begin

1 CheckHandshake(instance[])

/* For each instance */2 foreach ip in Instance[] do

3 if port=22/2222 & protocol="SSH" then

4 request("SSH-2.0-OpenSSH\n\n\n\n\n\n\n\n\n\n")

5 if response = "bad Packet length" or "protocol mismatch"

6 return Instance[isDeviated] = true

7 else request("SSH-2.0-OpenSSH_6.0p1 Debian-4+deb7u2\n")

8 if response = "protocol mismatch\n"

9 return Instance[isDeviated] = true

10 elseif port=102 & protocol="S7" then

11 request(H,0300002102f08032070000...)

12 if response = "0x32"

13 return Instance[isDeviated] = true

14 elseif port=502 & protocol="Modbus" then

15 request(function_code:None, slave_id:0, request:0000000000050..)

16 if session.state = "Disconnected"

17 return Instance[isDeviated] = true

18 elseif port=25 & protocol="SMTP" then

19 request(PASS:Test)

20 if response = "220 OK"

21 return Instance[isDeviated] = true

22 elseif port=143 & protocol="IMAP" then

23 request(RCPT TO:TEST)

24 if response = "221 Bye Bye"

25 return Instance[isDeviated] = true

26 elseif port=21 & protocol="FTP" then

27 request(ftp (ip))

28 if packet.windowSize=4096 & session.disconnect.timeout=45

29 return Instance[isDeviated] = true

30 elseif port=23/2323 & protocol="Telnet" then

31 request(telnet (ip))

32 if packet.response= "You have connected to the telnet server"

33 return Instance[isDeviated] = true

34 elseif port=80/8080/443/8443 & protocol="HTTP/HTTPS" then

35 request(GET /HTTP/1.0 (ip))

36 if response.packet.header.server= "nginx" or "Apache/1.3.29" or "BaseHTTP/0.3 Python/2.5.1" or

"Microsoft-IIS/5.0"

37 return Instance[isDeviated] = true

Digital Threats: Research and Practice, Vol. 4, No. 3, Article 42. Publication date: October 2023.

Gotta Catch ’em All: A Multistage Framework for Honeypot Fingerprinting • 42:27

REFERENCES

[1] E. Aguirre-Anaya, G. Gallegos-García, Nicolás Solano Luna, and Luis A. Villa Vargas. 2014. A new procedure to detect low interaction

honeypots. International Journal of Electrical and Computer Engineering 4 (2014), 848–857.

[2] Amazon. 2020. Alexa—An Amazon Company. Amazon. https://www.alexa.com/topsites.

[3] Ofir Arkin, Fyodor Yarochkin, and Meder Kydyraliev. 2003. The Present and Future of Xprobe2—The Next Generation of Active Operating

System Fingerprinting. SYS-Security Groups.

[4] John Bethencourt, Jason Franklin, and Mary Vernon. 2005. Mapping Internet sensors with probe response attacks. In Proceedings of the

14th USENIX Security Symposium (USENIX Security’05). USENIX Association, Baltimore, MD. https://www.usenix.org/conference/14th-

usenix-security-symposium/mapping-internet-sensors-probe-response-attacks.

[5] Harold Booth, Doug Rike, and Gregory Witte. 2013. The National Vulnerability Database (NVD): Overview. Technical Report. National

Institute of Standards and Technology.

[6] Bogdan Botezatu. 2018. New Hide’n Seek IoT Botnet Using Custom-Built Peer-to-Peer Communication Spotted in the Wild. Re-

trieved March 1, 2023 from https://www.bitdefender.com/blog/labs/new-hide-n-seek-iot-botnet-using-custom-built-peer-to-peer-

communication-spotted-in-the-wild/.

[7] Cisco. 2020. Umbrella Popularity List. Cisco. Retrieved March 1, 2023 from https://umbrella-static.s3-us-west-1.amazonaws.com/index.

html.

[8] Cymmetria. 2016. MTPot. Retrieved March 1, 2023 from https://github.com/Cymmetria/MTPot.

[9] Debian. 2020. Debian Project. Debian Project. Retrieved March 1, 2023 from https://www.debian.org/mirror/list.

[10] Decester. 2000. An SSH Honeypot. Retrieved March 1, 2023 from https://github.com/desaster/kippo.

[11] DomainTools. 2022. DomainTools Whois Lookup. Retrieved March 1, 2023 from https://whois.domaintools.com/.

[12] Zakir Durumeric, David Adrian, Ariana Mirian, Michael Bailey, and J. Alex Halderman. 2015. A search engine backed by Internet-wide

scanning. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security (CCS’15). ACM, New York, NY,

542–553. https://doi.org/10.1145/2810103.2813703

[13] Zakir Durumeric, Eric Wustrow, and J. Alex Halderman. 2013. ZMap: Fast Internet-wide scanning and its security applications. In

Proceedings of the 22nd USENIX Conference on Security (SEC’13). USENIX Association, 605–620.

[14] Ubuntu. 2020. Official Archive Mirrors for Ubuntu. Retrieved March 1, 2023 from https://launchpad.net/ubuntu/+archivemirrors.

[15] The Apache Foundation. 2020. The Apache Software Foundation. Apache.org. https://apache.org/history/mirror-history.html.

[16] GNU.org. 2020. GNU Operating System. GNU.org. Retrieved March 1, 2023 from https://www.gnu.org/prep/ftp.en.html.

[17] Robert David Graham. 2014. MASSCAN: Mass IP Port Scanner. Retrieved March 1, 2023 from https://github.com/robertdavidgraham/

masscan.

[18] T. Grudziecki, P. Jacewicz, Ł. Juszczyk, P. Kijewski, and P. Pawliński. 2012. Proactive Detection of Security Incidents, Report. ENISA.

https://www.enisa.europa.eu/publications/proactive-detection-report.

[19] Osama Hayatle, Amr Youssef, and Hadi Otrok. 2012. Dempster-Shafer evidence combining for (anti)-honeypot technologies. Information

Security Journal: A Global Perspective 21, 6 (2012), 306–316.

[20] Hipo. 2020. GITHUB. Hipo. Retrieved March 1, 2023 from https://github.com/Hipo/university-domains-list.

[21] Filip Holik, Josef Horalek, Ondrej Marik, Sona Neradova, and Stanislav Zitta. 2014. Effective penetration testing with metasploit frame-

work and methodologies. In Proceedings of the 2014 IEEE 15th International Symposium on Computational Intelligence and Informatics

(CINTI’14). IEEE, Budapest, Hungary, 237–242.

[22] T. Holz and F. Raynal. 2005. Detecting honeypots and other suspicious environments. In Proceedings from the 6th Annual IEEE SMC

Information Assurance Workshop. IEEE, West Point, NY, 29–36. https://doi.org/10.1109/IAW.2005.1495930

[23] Cheng Huang, Jiaxuan Han, Xing Zhang, and Jiayong Liu. 2019. Automatic identification of honeypot server using machine learning

techniques. Security and Communication Networks 2019, 5 (2019), 1–8.

[24] Liz Izhikevich, Renata Teixeira, and Zakir Durumeric. 2022. Predicting IPv4 services across all ports. In Proceedings of the ACM SIGCOMM

2022 Conference (SIGCOMM’22). ACM, New York, NY, 503–515. https://doi.org/10.1145/3544216.3544249

[25] Lukas Krämer, Johannes Krupp, Daisuke Makita, Tomomi Nishizoe, Takashi Koide, Katsunari Yoshioka, and Christian Rossow. 2015.

AmpPot: Monitoring and defending against amplification DDoS attacks. In Proceedings of the International Symposium on Recent Ad-

vances in Intrusion Detection. 615–636.

[26] Gordon Lyon. 2021. NMap Network Mapper. Retrieved March 1, 2023 from https://nmap.org/.

[27] Majestic. 2021. The Majestic Million. Majestic. Retrieved March 1, 2023 from https://majestic.com/reports/majestic-million.

[28] Shun Morishita, Takuya Hoizumi, Wataru Ueno, Rui Tanabe, Carlos Gañán, Michel J. G. van Eeten, Katsunari Yoshioka, and Tsutomu

Matsumoto. 2019. Detect me if you... oh wait. An Internet-wide view of self-revealing honeypots. In Proceedings of the 2019 IFIP/IEEE

Symposium on Integrated Network and Service Management (IM’19). IEEE, Arlington, VA, 134–143.

[29] Marcin Nawrocki, Matthias Wählisch, Thomas C. Schmidt, Christian Keil, and Jochen Schönfelder. 2016. A survey on honeypot software

and data analysis. arXiv:1608.06249 [cs.CR] (2016).

[30] Michel Oosterhof. 2016. Cowrie SSH/Telnet Honeypot. Retrieved March 1, 2023 from https://github.com/micheloosterhof/cowrie.

Digital Threats: Research and Practice, Vol. 4, No. 3, Article 42. Publication date: October 2023.

https://www.alexa.com/topsites
https://www.usenix.org/conference/14th-usenix-security-symposium/mapping-internet-sensors-probe-response-attacks
https://www.bitdefender.com/blog/labs/new-hide-n-seek-iot-botnet-using-custom-built-peer-to-peer-communication-spotted-in-the-wild/
https://umbrella-static.s3-us-west-1.amazonaws.com/index.html
https://github.com/Cymmetria/MTPot
https://www.debian.org/mirror/list
https://github.com/desaster/kippo
https://whois.domaintools.com/
https://doi.org/10.1145/2810103.2813703
https://launchpad.net/ubuntu/+archivemirrors
https://apache.org/history/mirror-history.html
https://www.gnu.org/prep/ftp.en.html
https://github.com/robertdavidgraham/masscan
https://www.enisa.europa.eu/publications/proactive-detection-report
https://github.com/Hipo/university-domains-list
https://doi.org/10.1109/IAW.2005.1495930
https://doi.org/10.1145/3544216.3544249
https://nmap.org/
https://majestic.com/reports/majestic-million
http://arxiv.org/abs/1608.06249
https://github.com/micheloosterhof/cowrie

42:28 • S. Srinivasa et al.

[31] Kon Papazis and Naveen Chilamkurti. 2019. Detecting indicators of deception in emulated monitoring systems. Service Oriented Com-

puting and Applications 13, 1 (2019), 17–29.

[32] The Honeynet Project. 2021. The Honeynet Project. Retrieved March 1, 2023 from https://www.honeynet.org.

[33] Rapid7. 2021. Recog. https://github.com/rapid7/recog.

[34] L Rist. 2009. Glastopf project. The Honeynet Project. Retrieved March 1, 2023 from https://www.honeynet.org/projects/old/glastopf/.

[35] Lukas Rist, Johnny Vestergaard, Daniel Haslinger, A. Pasquale, and J. Smith. 2013. CONPOT ICS/SCADA Honeypot. The Honeynet

Project. Retrieved March 1, 2023 from http://conpot.org/.

[36] SHODAN. 2021. Honeypot or Not? Retrieved March 1, 2023 from https://honeyscore.shodan.io.

[37] Lance Spitzner. 2000. Passive Fingerprinting. Tech Solvency.

[38] L. Spitzner. 2003. The Honeynet Project: Trapping the hackers. IEEE Security Privacy 1, 2 (2003), 15–23.

[39] Shreyas Srinivasa, Jens Myrup Pedersen, and Emmanouil Vasilomanolakis. 2020. Towards systematic honeytoken fingerprinting. In

Proceedings of the 13th International Conference on Security of Information and Networks (SIN’20). ACM, New York, NY, Article 28,

5 pages. https://doi.org/10.1145/3433174.3433599

[40] Shreyas Srinivasa, Jens Myrup Pedersen, and Emmanouil Vasilomanolakis. 2021. RIoTPot: A modular hybrid-interaction IoT/OT hon-

eypot. In Proceedings of the 26th European Symposium on Research in Computer Security (ESORICS’21). Springer, Darmstadt.

[41] Yanbin Sun, Zhihong Tian, Mohan Li, Shen Su, Xiaojiang Du, and Mohsen Guizani. 2021. Honeypot identification in softwarized indus-

trial cyber-physical systems. IEEE Transactions on Industrial Informatics 17, 8 (2021), 5542–5551. https://doi.org/10.1109/TII.2020.3044576

[42] Dino Tools. 2010. Web Honeypot. Retrieved March 1, 2023 from https://github.com/DinoTools/dionaea/.

[43] Hauser Van and Kessler Roland. 2021. Kali Tools. THC.org. Retrieved March 1, 2023 from https://www.thc.org/thc-hydra/.

[44] Emmanouil Vasilomanolakis, Shankar Karuppayah, Max Mühlhäuser, and Mathias Fischer. 2014. HosTaGe: A mobile honeypot for

collaborative defense. In Proceedings of the 7th International Conference on Security of Information and Networks (SIN’14). ACM,

New York, NY, 330–333. https://doi.org/10.1145/2659651.2659663

[45] Emmanouil Vasilomanolakis, Shreyas Srinivasa, Carlos Garcia Cordero, and Max Mühlhäuser. 2016. Multi-stage attack detection and

signature generation with ICS honeypots. In Proceedings of the 2016 IEEE/IFIP Network Operations and Management Symposium. IEEE,

Los Alamitos, CA, 1227–1232. https://doi.org/10.1109/NOMS.2016.7502992

[46] E. Vasilomanolakis, M. Stahn, C. G. Cordero, and M. Mühlhäuser. 2016. On probe-response attacks in collaborative intrusion detection

systems. In Proceedings of the 2016 IEEE Conference on Communications and Network Security (CNS’16). IEEE, Florence, 279–286.

[47] Alexander Vetterl and Richard Clayton. 2018. Bitter harvest: Systematically fingerprinting low- and medium-interaction honeypots at

Internet scale. In Proceedings of the 12th USENIX Workshop on Offensive Technologies (WOOT’18). USENIX Association, Baltimore, MD.

https://www.usenix.org/conference/woot18/presentation/vetterl.

[48] Alexander Vetterl, Richard Clayton, and Ian Walden. 2019. Counting outdated honeypots: Legal and useful. In Proceedings of the 2019

IEEE Security and Privacy Workshops (SPW’19). IEEE, San Francisco, CA, 224–229. https://doi.org/10.1109/SPW.2019.00049

[49] Ryan Vogt, John Aycock, and Michael J. Jacobson Jr. 2007. Army of botnets. In Proceedings of the Network and Distributed System Security

Symposium (NDSS’07). NDSS, San Diego, CA.

[50] Ping Wang, Lei Wu, Ryan Cunningham, and Cliff C. Zou. 2010. Honeypot detection in advanced botnet attacks. International Journal

of Information and Computer Security 4, 1 (2010), 30–51.

[51] Kyle Wilhoit and Stephen Hilt. 2015. The GasPot Experiment: Unexamined Perils in Using Gas-Tank-Monitoring Systems. Black Hat.

[52] Mohammad-Reza Zamiri-Gourabi, Ali Razmjoo Qalaei, and Babak Amin Azad. 2019. Gas what? I can see your gaspots. Studying the

fingerprintability of ICS honeypots in the wild. In Proceedings of the 5th Annual Industrial Control System Security Workshop (ICSS’19).

ACM, New York, NY, 30–37. https://doi.org/10.1145/3372318.3372322

[53] GitHub. 2020. ZMap: Sample Applications. Retrieved March 1, 2023 from https://github.com/zmap/zmap/wiki/Sample-Applications.

[54] C. C. Zou and R. Cunningham. 2006. Honeypot-aware advanced botnet construction and maintenance. In Proceedings of the International

Conference on Dependable Systems and Networks (DSN’06). IEEE, Los Alamitos, CA, 199–208. https://doi.org/10.1109/DSN.2006.38

Received 6 July 2022; revised 21 October 2022; accepted 15 December 2022

Digital Threats: Research and Practice, Vol. 4, No. 3, Article 42. Publication date: October 2023.

https://www.honeynet.org
https://github.com/rapid7/recog
https://www.honeynet.org/projects/old/glastopf/
http://conpot.org/
https://honeyscore.shodan.io
https://doi.org/10.1145/3433174.3433599
https://doi.org/10.1109/TII.2020.3044576
https://github.com/DinoTools/dionaea/
https://www.thc.org/thc-hydra/
https://doi.org/10.1145/2659651.2659663
https://doi.org/10.1109/NOMS.2016.7502992
https://www.usenix.org/conference/woot18/presentation/vetterl
https://doi.org/10.1109/SPW.2019.00049
https://doi.org/10.1145/3372318.3372322
https://github.com/zmap/zmap/wiki/Sample-Applications
https://doi.org/10.1109/DSN.2006.38

