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Microgrid Energy Management with Energy Storage
Systems: A Review

Xiong Liu, Senior Member, IEEE, Tianyang Zhao, Senior Member, IEEE, Hui Deng, Peng Wang, Fellow, IEEE,
Jizhen Liu, Member, IEEE, and Frede Blaabjerg, Fellow, IEEE

Abstract—Microgrids (MGs) are playing a fundamental role
in the transition of energy systems towards a low carbon future
due to the advantages of a highly efficient network architecture
for flexible integration of various DC/AC loads, distributed re-
newable energy sources, and energy storage systems, as well as a
more resilient and economical on/off-grid control, operation, and
energy management. However, MGs, as newcomers to the utility
grid, are also facing challenges due to economic deregulation
of energy systems, restructuring of generation, and market-
based operation. This paper comprehensively summarizes the
published research works in the areas of MGs and related energy
management modelling and solution techniques. First, MGs and
energy storage systems are classified into multiple branches and
typical combinations as the backbone of MG energy management.
Second, energy management models under exogenous and en-
dogenous uncertainties are summarized and extended to transac-
tive energy management. Mathematical programming, adaptive
dynamic programming, and deep reinforcement learning-based
solution methods are investigated accordingly, together with their
implementation schemes. Finally, problems for future energy
management systems with dynamics-captured critical component
models, stability constraints, resilience awareness, market oper-
ation, and emerging computational techniques are discussed.

Index Terms—Architecture, energy management, energy
storage systems, microgrids, optimization, uncertainty models.

I. INTRODUCTION

Amicrogrid (MG) is a group of interconnected loads
and distributed energy resources (DERs) within clearly

defined electrical boundaries that acts as a single controllable
entity for grid operating in grid-tied and islanded modes [1].
An MG is initially designed for critical loads and remote
areas, to improve power system reliability and accelerate the
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electrification process of other industry sectors. AC, DC, and
hybrid AC/DC MGs are being recognized as promising plat-
forms to nourish further power system architectures. Owing
to the evolution of power electronics and energy storage
system (ESS) technologies, more and more MG variations are
emerging recently, e.g., clustering MGs [2], community MGs,
interconnected MGs [3], multiple MGs [4], networked MGs
(NMGs) [5], marine/aerospace MGs [6]. These variations may
further increase efficiency of on-shore distribution systems [7]
and reduce emissions of off-shore and aerospace MGs, e.g.,
all-electric ships (AESs) [8], [9], offshore platforms [10] and
hybrid electrical propulsion aircraft [11]. The recent trend in
multi-energy integration also leads to multi micro-energy MGs
(MMGs) [12]. These architectures might shed light on the
ultimate question, i.e., “What will the coming power systems
be like more AC or DC, more electromechanical or power
electronics?”

Besides structural evolution of MGs, MG infrastructure
is strongly influenced by an upgrade in the energy storage
domain. To enable islanded operation, MGs are born with
ESSs. Various types of ESSs, e.g., mechanical, electrical,
chemical, thermal, electrochemical [13], and their hybridiza-
tions [14], have been integrated into MGs, dispersedly or
centrally. These ESSs can provide versatile power and energy
services to MGs [15]. For grid-tied MGs, ESSs can be used
for energy arbitrage [16], load shifting [17] and ancillary
services provision [15]. These ancillary services can not only
increase power system reliability but also benefit MG operators
and end users [4]. For islanded MGs, ESSs play central
roles on MG stability [18] and reliability [19]. Evolution of
MG architectures results in hybrid ESSs [14], community
ESSs, mobile ESSs (MESSs) [13], and virtual ESSs [20].
They indicate that ESSs have been the cornerstone of MG
infrastructures, introducing many challenges, especially their
cost [14], safety [21], and mobility [22], [23].

To accommodate architecture and infrastructure develop-
ment for MGs, energy management functions are developed
to realize optimal operation of MGs under various operat-
ing conditions. These functions fall under the umbrella of
decision-making problems, generally including monitoring,
forecasting, and optimization. These problems are to optimize
both active and reactive power generation and consumption,
while providing ancillary services and participating in the
energy market and/or utility system operation [24]. To ad-
dress uncertainties from DERs, loads, component failures,
etc., tremendous energy management models have been for-
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mulated under different energy market economics [25]–[27].
These models have been further reformulated into tractable
counterparts under data-driven or model-driven assumptions.
These reformulations might be decomposed into smaller size
problems and distributed computation with attracting features,
e.g., information preservation [10] and computational cost
reduction [28]. These techniques have enabled MGs to become
powerful and ancillary sharing or trading platforms for users
and distribution systems [4]. Despite improvement of energy
management problem formulations and solution algorithms,
there are research gaps in problem formulations for low
carbon applications and resilience management, and solution
methods for efficient computation considering information
security [29], [30].

By implementing the energy management functions in
diverse schemes, MG controllers have been treated as the
brain of MG automation [24], [31]. An MG controller is an
advanced control system, potentially consisting of multiple
components and subsystems, capable of sensing grid con-
ditions, monitoring and controlling operation of an MG to
maintain electricity delivery to critical loads during all MG
operating modes (grid-tied, islanded, and transitions between
the two) [31]. To realize inter-operation among different DERs,
MGs, and external systems, real-time control, and energy
management functions of MG, controllers are specified in
IEEE Std 2030.7™-2017 [24]. To further test performance of
MG controllers, standard testing procedures, including verifi-
cation and performance quantification, are given in IEEE Std
2030.8™-2018 [32]. Notwithstanding the increasing maturity
of MG controllers, limitations still exist in communication [33]
and control structures [34].

This paper summarizes the recent development on the
MG energy management with ESSs, from architectures and
energy storage utilization to their inter-operation within energy
management models. The focus is on the following areas:

• Architectures for MGs with stationary and mobile appli-
cations in accordance with grid-tied and isolated opera-
tion modes.

• Energy storage system models for different energy man-
agement applications.

• Short-term energy management problems under exoge-
nous and endogenous uncertainties, and system deregu-
lation.

• Mathematical programming, adaptive dynamic program-
ming (ADP), and deep reinforcement learning (DRL)
algorithms that can realize energy management in hierar-
chical, distributed, and decentralized manners.

II. MICROGRID ARCHITECTURES

Various MGs have been playing important roles in current
and future power systems because of their high efficiency
doing power transfer and conversion, flexibility of renewable
connection, and high reliability and resilience of on/off grid
operation. Current MGs can be divided into AC, DC, hybrid
AC/DC, and MMGs. Within these architectures, different types
of conversion, distribution, energy storage, and consumption
techniques are combined, resulting in specific component

level models and system level models in energy management
problem formulations.

A. AC Microgrids

Thanks to the matured AC power system analysis theory,
AC MGs are still the main used architecture in the field, as
shown in Fig. 1. Many design and analysis theories of AC MGs
can be inherited from the conventional power system, which
will face less challenges for new project implementation.

Grid

AC Loads

Wind turbine generator 1

Energy storage 1

Photovoltaic 1

Wind turbine generator N

Photovoltaic N

Energy storage N

DC Loads

AC bus

Fig. 1. General AC MG architectures.

However, as the high penetration of renewable energy gen-
eration using power electronics technologies, power sources in
AC MGs will be inverter dominated rather than based on syn-
chronous generators (SGs). This will pose new challenges such
as reduced system inertia and limited fault current capability.
The inertia support is critical for system frequency stability
while inverters and SGs coexist in AC MGs. ESSs are playing
critical roles in AC grid forming functions to support system
voltage and frequency including black start. More details for
controlling the inverter as a virtual synchronous generator
(VSG) for easy synchronization and system frequency support
in AC MG will be elaborated in later sections. When a
fault happens, the AC MG system level protection shall also
coordinate properly with inverters’ own protection methods for
power semiconductors [35]. The dynamics of low inertia AC
MGs should be taken care of by MG energy management via
proper modelling.

Another application area of AC MGs is for transportation
electrification, e.g., hybrid electrical propulsion system for ma-
rine and aerospace systems, as shown in Fig. 2. Architectures
for marine and aerospace MGs are the same, which include
diesel/turbo-electric, all-electric, series/parallel hybrid electric
(hybrid shaft generator), etc. The key difference is that the
onboard components, i.e., machines, inverters, batteries for
aerospace systems, have much higher power/energy density
than their marine counterparts. For example, the target en-
ergy density for aerospace propulsion batteries is to achieve
500 Wh/kg by 2030. To achieve high power density, the
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Fig. 2. Typical AC MG architectures for marine and aerospace systems.

machine/inverter operation fundamental frequency is around
1000∼2000 Hz in an aerospace system while the marine sys-
tem rated frequency is the same as a land-based power system
50/60 Hz. From system integration and operation perspective,
marine and aerospace propulsion systems have a lot of com-
monalities for energy storage usage and battery/power/energy
management strategies, which are also similar to a land-based
power system.

Operation of a marine hybrid electrical propulsion system
must meet the requirements of classification rules set by
societies like DNV GL, ABS, CCS, Lloyd’s Register, etc.
Operation of aerospace hybrid electrical propulsion systems
will be governed by rules from organizations like FAA, CAAC,
EASA, etc. For example, a marine DP2 operation requires all
generators should stay online and the bus-tie breaker should be
kept open regardless of the load conditions if there is no ESS
installed. With ESS installed, it can serve as an alternative
to a diesel generator for reserve and backup power. ESS
has four main roles in marine MG, namely strategic loading,
spinning reserve, generator capacity extension and full electric
for silent and zero emission operation. These roles are realized
by energy storage models in MG energy management models,
as shown in Section III.B

B. DC Microgrids

The main advantage of DC MG is its friendly power elec-
tronics integration feature, as shown in Fig. 3. To connect AC
or DC type of sources and loads to AC grid, two-stage energy
conversions are required in most cases, for example: AC-DC-
AC or DC-DC-AC for source and AC-DC-AC or AC-DC-DC
for loads. There exists an intermediate DC-link for the source
and load converter interfaces. It is evident that using a common
DC-link can help to reduce equipment cost and conversion
loss and the main advantages and driving forces for land-
based DC MG. In DC MG, a common DC-link voltage can
be treated as a communication carrier to ensure power sharing
among DGs and ESSs to achieve decentralized control. In this
control scheme, the tolerance band of common DC-bus voltage
is divided into several regions so the priorities of all converter

Grid

DC Loads

Wind turbine generator 1

Energy storage 1

Photovoltaic 1

Wind turbine generator N

Photovoltaic N

Energy storage N

AC Loads

DC bus

Fig. 3. General DC MG architectures.

units can be differentiated. Operation modes of all converters
are controlled by the threshold value of each voltage region.
For example, if the DC-link voltage is higher than its rated
value during high solar radiation periods, the PV converter will
switch to DC bus regulation mode and the battery converter
operates at maximum current charging mode. If the DC-link
voltage is lower than its rated value, the PV converter will
switch to maximum power point tracking (MPPT) mode and
the battery converter operates in discharging mode to regulate
DC bus voltage.

For applications with limited space like data centers and
marine/aerospace electrical propulsion systems, the DC MGs
have been commercialized successfully and are continuously
growing to replace AC architecture. Recent popularized DC
MG for ship power systems is mainly to vary engine speed and
improve engine specific fuel consumption efficiency whose
purpose is quite different from land-based DC MG sys-
tems [36].
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A typical DC MG for series hybrid aerospace electrical
propulsion system is shown in Fig. 4, and the E-Fan X project
was trying to replace one gas turbine engine by an electrial
propulsor using series hybrid architecture [37]. Installation of
ESS can help reduce the size of a gas turbine engine, whose
main function is to provide short-term boost power during
flight takeoff and participate in system power dispatch during
cruising mode. An ESS together with an engine interfacing
generator can also be used to start the engine by controlling a
generator working in motoring mode. However, DC MGs for
land-based applications are still at laboratories or pilot project
stages. Bottlenecks for field application of DC MGs are key
equipment performance such as DC circuit breaker, DC fault
current limiter (FCL), solid-state transformer (SST), etc. These
types of equipment are still in development stage, where for
example the cost, efficiency, and reliability performances of
SST are still catching up with traditional transformers in AC
systems.

G3 G4

M3 M4

G2G1

M2M1

DC bus

Variable speed
generators 

Motor driven
propulsion loads 

AC/DC
rectifiers

DC/AC
inverters

Non-prop
load1 

Non-prop
load 2

ESS ESS

Diesel/turbo
engine for

marine/aero  

Fig. 4. Typical DC MG architectures for marine and aerospace systems.

C. Hybrid AC/DC Microgrids

As a mixture of AC MGs and DC MGs, hybrid AC/DC
MGs can further reduce the number of conversions within
MGs, optimizing investment cost and efficiency [38], [39],
as illustrated in Fig. 5. Hybrid AC/DC MGs have been the
fundamental architecture for land-based distribution systems,
e.g., zero and net-zero buildings [40], transportation, and en-
ergy integration [12], [41], ranging from utility, municipality,
to military applications.

In hybrid AC/DC MGs, ESSs are critical to achieve both
AC and DC sub-grids forming capability to support AC bus
voltage/frequency and DC bus voltage. Modularized design
can be implemented for easy expansion of multiple hybrid
AC/DC MGs connection. As shown in Fig. 5, a hybrid AC/DC
module for a micro power park (MPP) that can adapt to
different renewable energy sources and variable speed diesel
generators has been developed in Nanyang Technological
University (NTU), which serves primarily as emergency power
sources for critical functions in disaster zones and battlefields,
as well as doubling as a smart micro-grid for peace time
deployment in remote areas and islands. Technically, a hybrid
grid system is more efficient compared with conventional AC
grids. This is particularly important in remote and emergency
deployments where energy should be used as efficiently as

possible. A comparison summary and recent projects for AC,
DC and hybrid AC/DC MGs are listed in Tables I and II,
respectively.

D. Multi Micro-energy Grids

With clearly defined boundaries, MGs can also interact
with other MGs using integrated energy networks [42], in-
cluding electrical networks1, fluid networks [43], thermal net-
works [44], transportation networks with electrified vehicles
(EVs) [45], etc. Electrical networks can be single-phase or
three-phase AC networks [46], DC networks [47], and hybrid
AC/DC networks as discussed previously. Using micro-turbine
and heat ventilation air conditioning (HVAC) techniques, MGs
can share gas and thermal with others interconnected to the
same gas and thermal networks. EVs can further realize energy
sharing between MGs via spatial movement on the transporta-
tion networks. These interconnected energy networks result in
formulation of MMGs.

An MMG is defined as a cluster of MGs, interconnected by
electrical, thermal, gas or transportation networks. MMGs have
been recognized as powerful platforms to increase efficiency
and reliability of land-based distribution systems, especially
through transactive energy management [4], [46]. Along with
electrification of ships [9], ports [6], islands, offshore plat-
forms, MMGs are reducing emissions of offshore and shipping
industry significantly, under restrictions on greenhouse gas
imposed by International Maritime Organization. MMGs are
a promising architecture to depict interaction between AESs
and electrified ports during their cold ironing processes [15].

When electrical boundaries of each MG can be adjusted
using boundary switches, the NMGs, as a kind of MMGs,
can further enhance resilience of MMGs, through optimal re-
configuration of interconnected networks [7]. Reconfiguration
can re-balance the supply and demand of given MGs, under
multiple faults induced by extreme events [5]. One step further,
mobile energy resources, e.g., mobile distributed generators
(DGs) [48], MESSs [22], can be integrated into spatially
distributed MGs, which can enhance stability [49], security,
reliability, and resilience of the overall power system.

E. Possible Further Microgrid Architectures

A future MG is a power electronics dominated power
system, which offers flexible integration of AC and DC
networks, sources, loads and further versatile interaction with
multi-energy systems. However, a power electronics domi-
nated system may suffer from wide frequency oscillations
if not carefully designed. MG system operation efficiency
may be decreased by Braess Paradox, calling for proper
management of conversion, consumption, transmission and
storage processes within MGs. MG system flexibility can be
explored by perceptive management of redundancy induced by
power electronics control and multi-energy within MGs. This
flexibility may further enhance local energy reliability [50] in
the long run and local energy market economics in the short
run.

1If the utility grid is part of this electrical network, MMGs are in grid-tied
mode, otherwise MMGs are isolated.
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●  Fully integrated
●  50–200 kW
●  Modular and scalable via Daisy-Chain
●  Ease of operation and delopment
●  Adaptive EMS
●  Plug and play
●  Save fuel and enable extended operation

Main Grid
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Critical
installation
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Residential

Critical installation
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Adaptive hybrid AC/DC micro-grid (One Unit)

Portable wind turbine

Diesel genset Energy storage Foldable solar PV
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DC BusAC Bus
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Fig. 5. Adaptive hybrid AC/DC MG power parks.

TABLE I
COMPARISONS FOR AC, DC AND HYBRID AC/DC MGS

Architecture Advantages Limitations Application cases
AC MGs 1. Easy implementation based on the existing

infrastructure
2. Protection schemes and devices are available
3. Easy to connect with different voltage levels
using transformer

1. Synchronization issue, both frequency and
voltage stability issue with cross-coupling effects
2. Less efficient due to large number of
conversion stages

1. When diesel generator is one of
the main sources, e.g., islands
2. Propulsion system for ships

DC MGs 1. Renewable energy resources friendly due to
reduced number of conversion stages
2. The true DC loads are increasing though
they are still with AC terminals
3. Only DC voltage stability issue which is
relatively easy

1. Solid state transformer is required for larger
DC distribution area, which is costly, less efficient
2. Protection schemes and devices are immature
3. The ecosystem for DC loads is not well
established yet
4. Need to build new infrastructure

1. Data centers
2. Zero-emission buildings
3. Charging stations
4. Propulsion systems forships and
aircraft

Hybrid
AC/DC

MGs

1. Advantages inherited from both AC and DC
MGs which are more efficient to connect
various sources and loads
2. Flexible operation and control schemes to
handle power exchange through the
interlinking AC/DC converter

1. Stability issue is relatively complex due to the
coupling effect between AC and DC buses
2. Protection schemes are complex

1. Zero-emission buildings
2. Electrification for rural areas
3. Emergency power supply
modules

AC high-frequency link type of MG architecture as shown
in Fig. 6 could be a promising solution to integrate various
types of resources and loads in a future MG. There are
applications for integrating different DC voltage levels, e.g.,
10 kV for medium voltage distribution level, and 400 V for low
voltage utilization level. To integrate different voltage levels
together, a transformer with a properly designed turns ratio is
required. Moreover, it can also provide galvanic isolation. To
increase power density, a multi-winding-transformer-coupled
multiport converter [51], [52] can be designed in Fig. 6.
Different terminals can be connected to energy resources,
ESSs, and loads, which can either be voltage source or current
source. The functions required from a solid-state transformer
are inherently incorporated by using this architecture. A high-
frequency AC link has the same frequency, e.g., 10 kHz, but

with different phase angles, whereas power flows from the
module with a leading voltage phase angle to the one with a
lagging voltage phase angle.

III. ENERGY STORAGE SYSTEMS AND MODELS

Energy storages play a central role in the reliable and stable
operation of MGs. There are many types of ESSs suitable
for MG applications under different disturbances from DERs,
loads, component failures, etc. These ESSs are typically serial
combinations of power conversion systems (PCSs) and energy
storages. The distinct physical characteristics of energy storage
materials admit specific electrical patterns, which should be
properly modelled to enable safe and optimum utilization of
ESSs. In this section, ESSs models are summarized from their
roles in MG energy management.
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TABLE II
RECENT PROJECTS FOR AC, DC AND HYBRID AC/DC MGS

Architecture Recent Projects
AC microgrid 1. China-Singapore Tianjin Eco-city microgrid with PV, WTG, and ESS

AC voltage level 380 V with VSG grid-forming technology demonstration
2. Kongsberg Maritime’s Electrical Power SAVe Line AC system for ships
3. The Canadian Renewable Energy Laboratory (CANREL) for design validation of microgrids with high penetration of
renewable energy, low-voltage (600 V) AC microgrid connected to a local utility grid (Guelph Hydro) through a power
transformer [53]

DC microgrid 1. MW level Jinwutong DC microgrid consisting of PV, battery, ultra-capacitor and charging station using segmented DC bus
architecture in Jinzhai, Anhui Province, China
2. 25 MW Shenzhen Baolong Industrial Park DC distribution grid with 10 kV and 400 V DC voltage levels
3. Salisbury Square DC microgrid for an affordable housing community in Randolph, Vermont, United States
DC voltage levels 380 V/48 V/24 V with 157 kW solar capacity, and 980 kWh battery capacity [54]
4. Kongsberg Maritime’s Electrical Power SAVe Cube DC system for ships; ABB’s on board DC Grid system for ships
5. E Fan-X series hybrid aerospace system based on 3 kV DC bus between Rolls-Royce and Airbus which was launched in
2017, and terminated in April, 2020 [55]

Hybrid AC/DC
microgrid

1. Renewable Energy Integration Demonstrator–Singapore (REIDS) MW level hybrid AC/DC microgrid in Semakau island; AC
voltage level 400 V, DC voltage level 800 V
2. Zhuhai Tangjiawan’s world’s first multi-voltage, multi-terminal flexible AC/DC hybrid distribution network, Zhuhai, China;
AC voltage level 110/10 kV, DC voltage levels ±10 kV, ±375 V
3. 50 kVA hybrid AC/DC multi-port energy router from Shanghai Gcevolution Informational Tech, AC voltage level 380 V, DC
voltage level 380 V
4. RHYTHM: Resilient Hybrid Technology for High-value Microgrids project in Imperial College London, UK

TABLE III
SUMMARY OF ESSS APPLICATIONS IN MGS

ESS type Examples Stability Efficiency Reliability Resilience
Inertia Primary Secondary Operating cost/Benefit/Losses

Mechanical

Flywheel ✓ ✓ ✓
Pumped Hydropower ✓ ✓
Compressor Air ✓ ✓
Gravity Energy Storage ✓

Thermal Heat and Cold Storage ✓ ✓ ✓
Electrochemical Battery ✓ ✓ ✓ ✓ ✓ ✓
Chemical Hydrogen ✓

Electrical Super-capacitor ✓ ✓
Superconducting Magnetic ✓ ✓

High frequency
AC linkVdc1 Vdc2

Vdc3 Vdc4

T
er

m
in
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Fig. 6. Further MG architectures with high frequency AC link.

A. Energy Storage Systems for Microgrids

ESSs can be classified into mechanical, thermal, electro-
chemical, chemical, and electrical systems, based on their
formations and composition materials. They can be adopted for
different types of MGs, based on their technical characteristics
and MG application requirements, as shown in Table III.
Requirements are typically event driven, including expected
events and unexpected events. Within expected events, they
can be classified into short-term and middle-term disturbances,
e.g., random failure of components, renewable output in-

termittency, and load variation, calling for multi-time scale
responses, including inertia, primary, secondary, etc. For un-
expected events, e.g., extreme weather events, reconfiguration
of ESSs is required to support electrical boundary adjustment
of MGs.
1) Mechanical ESSs

Energy storage function is realized by bi-directional conver-
sion between electrical and mechanical energy in mechanical
ESSs, including kinetic and potential ESSs. Kinetic energy
is relocated to an electrical machine rotor by flywheel ESSs.
With numerous life cycles, fast response, and low environ-
mental impacts, flywheel ESSs have first been used as an
uninterruptible power supply (UPS) for critical users, and
later incorporated into MGs under short-term and middle-
term disturbances. Pumped hydro and compressed air are also
representative potential ESSs, suitable for long-term and large-
scale energy storage. As the most matured energy storage
techniques, pumped hydro ESSs have been adopted for power
systems operation since 1882 and a sewage treatment plant
as an MG in Wuhan, China, 2022. When it comes to MGs,
pumped hydro ESSs have the potential to be deployed in
mountainous areas with rich run-of-river resources [56], e.g.,
Guizhou and Yunan provinces of China. Compressed air ESSs
(CAESs) can realize energy storage in a safe, efficient, and
cost-effective manner. They can be deployed for MGs close to
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caves with fewer construction constraints in comparison with
pumped hydro ESSs, e.g., pelagic islands [57]. Gravity energy
storage is a novel technology for large-scale and fast energy
storage, which is gaining more and more attention.
2) Thermal ESSs

Latent heat, sensible heat, and thermo-chemical sorption are
typical variations of thermal ESSs. The latent heat ESSs have
high energy density and efficiency at a constant temperature,
which is suitable for building MGs [17]. Using solid and liquid
mediums, sensible heat ESSs are widely used in daily life.
With higher energy density, thermo-chemical sorption ESSs
are promising energy storage techniques for MMGs.
3) Electrochemical ESSs

Energy is stored by the bi-directional conversion between
electricity and chemical energy in an electrochemical storage
system, and the chemical reactions are highly likely to reduce
system life. Secondary batteries and flow batteries are two
main branches of electrochemical storage systems. Exhibiting
high energy density, power density, negligible memory effect,
and wide operating temperatures, secondary batteries are dom-
inating the portable energy storage market. They have been
widely deployed for mobile MGs, e.g., electric vehicles and
AESs. The redox flow battery (RFB) is an example of a flow
battery, admitting high life cycle stability, high efficiency, and
high power. RFBs are suitable for grid-scale applications [58].
4) Chemical ESSs

Energy, stored in the form of chemical fuels, can be readily
converted to electrical energy in chemical ESSs. Hydrogen-
based ESSs are popular and available in the market. With a
combination of hydrogen and oxygen to produce electricity,
hydrogen-based fuel cells (FCs) are carbon-free with high ef-
ficiency. They can generate electricity and heat simultaneously,
apt for mobile MGs, e.g., vehicles, building MGs, and MMGs.
5) Electrical ESSs

Different from other ESSs, the energy is stored in an electric
field by separating charges or magnetic fields by flux in
electrical ESSs. Super-capacitors (SCs) and superconducting
magnetic ESSs are typical electrical ESSs. With high power
capacity, efficiency, and long life cycles, SCs can provide rapid

response to external systems with limited energy capacity, and
are attractive solutions for power quality improvement and hy-
bridization with other ESSs. Superconducting magnetic ESSs
exhibit higher efficiency, longer life cycle, and millisecond
scale response, which are fit for military MG applications and
fast power demand applications.

B. Energy Storage Models

Energy storage models are to capture and utilize techni-
cal and economic characteristics of ESSs for MG energy
management, as summarized in Table IV. These technical
characteristics are depicted by an electrical circuit, electro-
thermal, and spatial models. Economic features are always
preserved in degradation models.
1) Electrical Circuit Models of Energy Storage Systems

Electrical circuit models define the relationship between the
electrical parameters of ESSs and services provided to ESSs.
These electrical parameters cover voltage, current, power, and
energy. Power and energy services have been widely discussed
in the grid codes [67] and technical standards, e.g., IEEE Std
1547.9™-2021 and IEC TS 62933-3-1. When treating ESSs as
black boxes, they can provide power, energy, and combination
services to MGs, as summarized in Table IV.
2) Electro-thermal Models of Energy Storage Systems

Thermal management is critical to the safety of ESSs.
Several standard testing procedures have been proposed for
SESSs, e.g., cell, module, and system-level test in UL-9540 se-
ries standards [21]. Inappropriate voltage and current can lead
to thermal runaway of ESSs and can be depicted by electro-
thermal models of ESSs [44], [68]. Thermal models can be de-
picted as partial differential equations (PDEs), including heat
generation and transfer, e.g., convection, conduction, thermal
radiation, and evaporative cooling. Heat is typically generated
by power losses or abuse of ESSs. Thermal dynamics of a
battery module are captured by a deep neural network to depict
a thermal runaway process in [69].
3) Degradation Models of Energy Storage Systems

Degradation is one main factor for the long-term reliability
of ESSs, including power capacity degradation and energy

TABLE IV
SUMMARY OF ESS MODELLING IN MG ENERGY MANAGEMENT

Ref. Type of ESS Functionalities Type of MG Applications Models Cost functions
[59] BESS Intermittent resource integration AC MG Pelagic islands Linear –
[57] CAES Intermittent resource integration AC MG Pelagic islands Linear –
[56] Pumped hydro Intermittent resource integration AC MG Rural areas Nonlinear –
[44] Thermal ESS Load shifting AC MG Buildings Linear (ODE) –
[60] BESS/FC Load shifting AC MG AESs Linear Nonlinear (degradation)
[20] Virtual ESS Load shifting AC MG Water-electricity networks Linear (ODE) –
[61] BESS Load shifting AC MG – Nonlinear Nonlinear (degradation)
[62] BESS Power quality enhancement AC MG Commercial buildings Linear –
[63] BESS Energy/Inertia AC MG – Linear –
[64] BESS/SC Voltage regulation DC MG – Nonlinear –
[41] BESS/Thermal ESS Energy arbitrage Hybrid AC/DC MG Energy hubs Linear Linear
[65] BESS Capacity firming Hybrid AC/DC MG Commercial buildings Linear –
[25] BESS Load shifting MMG – Linear Quadratic
[46] BESS Energy/Reserve MMG – Linear Linear
[13] MESS Spatial energy sharing MMG Linear Linear
[47] BESS Load shifting MMG – Linear Linear
[66] BESS Energy arbitrage MMG – Linear –
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capacity degradation. It is one core factor to link control, op-
eration, and planning processes within MGs. Capacity degra-
dation is generally depicted by linear and nonlinear functions
depending on several critical variables, e.g., discharging rate,
depth of discharge (DOD), and depth of charge (DOC) [14],
[45], [61], [70]. These functions have been widely depicted
as nonlinear cost functions in existing energy management
problems, as shown in Table IV.
4) Mobility-aware Models of Energy Storage Systems

Emerging MMGs and NMGs introduce spatial dimension
flexibility to coordinate operation between ESSs and MGs.
Mobility-aware ESSs generally cover a pure transportation
purpose MESSs and EVs, where EVs can be classified into
plug-in EVs [71] and battery-swapping EVs [72], [73]. The
MESSs are train [74] or truck [13], [75] mounted ESSs. To
fully harness the flexibility of MESSs, transportation networks,
including road, railway, etc., should be properly modelled
to capture the temporal and spatial movements of MESSs.
Similar to traffic flow analysis, the mobility features of MESSs
can be depicted as microscopic [74], [76], mesoscopic [13],
[22], and macroscopic models.

C. Discussion on Energy Storage Models for Microgrid En-
ergy Management

Energy storage models are the bridge between the roles of
ESSs within MGs and MG energy management. They can be
classified into algebra, ordinary differential equations (ODEs),
and PDEs, according to their mathematical properties. As
shown in Table IV, linear constraints have been widely adopted
to capture the relationship between charging rates, discharging
rates, state of charge, DOD, DOC, vehicle routine in the
electrical circuit, and mobility-aware models. Linear ODEs
are used to depict the thermal and fluid dynamics of thermal
ESSs and virtual ESSs. Nonlinear algebra functions have been
proposed to quantify the impacts of discharging, DOD, and
DOC on degradation. Pros of existing linear and nonlinear
models are they can be easily embedded in existing MG energy
management models as constraints or objective functions, and
formulated problems can be solved with low computational
cost via piece-wise approximation, finite difference, etc. Cons
are they can not capture the electro-thermal dynamic of ESSs,
resulting in safety issues that can not be tackled with existing
MG energy management. If safety issues of ESSs are to be
addressed in MG energy management, accuracy and compu-
tational cost balanced electro-thermal models, e.g., reduced
order PDEs or some deep networks, should be proposed.

IV. MICROGRID ENERGY MANAGEMENT PROBLEM
FORMULATIONS AND SOLUTION METHODS

Along with evolution of MG architectures and inter-
operation between ESSs, energy management problems are
formulated to realize efficient, reliable, environmentally
friendly, and resilient operation of MGs under both grid-tied
and isolated modes, by optimally scheduling DERs, ESSs,
etc., under uncertain operating conditions. Conditions range
from uncertain output of renewable energy sources, loads,
etc., to random failure of critical components within MGs.

They can be predicted using multiple forecasting techniques
and depicted by distinct mathematical models as the input of
energy management problems. Towards reliability, resilience,
and efficiency, energy management problems are formulated as
uncertain optimization problems. Energy management models
are further summarized under different energy market eco-
nomics. Energy management problems are solved by off-the-
shelf algorithms via reformulation, including mathematical
programming techniques, ADP, and DRL.

A. Uncertainty Models for Microgrid Energy Management

Uncertainty models are to determine how likely certain
outcomes are if some aspects of the system are not exactly
known [77], and they are always the first step to realize
optimal energy management of MGs [78]. Uncertainties can
be classified into exogenous and endogenous models [79].
Depicting natural variation, exogenous uncertainties typically
refer to loads, renewable energy source outputs, prices, and
contingencies that have been extensively addressed by arti-
ficial intelligence-based methods, e.g., deep networks [79],
[80]. Due to limited knowledge, endogenous uncertainties are
also known as model uncertainties, including parameters and
structure uncertainties in energy management models, e.g.,
parameter of demand response models [81], [82], reserve
called [83] and trained deep networks [84].
1) Exogenous uncertainty models

Uncertainties within energy management problems have
been long formulated as exogenous uncertainties, i.e., uncer-
tainties are independent of decisions. They can be formulated
as probability distribution functions (PDFs), robust uncertainty
sets, and distributionally robust ambiguity sets.

Uncertainty factors, e.g., loads, PV output, and contingen-
cies, within energy management problems, can be treated as
a random vector ξ : Ξ −→ Ω ∈ Rn, where n is the length
of vector ξ and n ≥ 1. Further assume ξ ∼ P , where P
is the probability measure on (Ξ,F). When n > 1, P is a
multivariate PDF, and correlation between uncertain factors
can be depicted by covariance matrix Σ. Ξ can be a set of
discrete events or continuous events. Oriented from traditional
point forecast techniques, P can be derived using probabilistic
prediction, along with the increasing penetration of renewable
energy sources. P can be depicted as a parametric and non-
parametric [85] PDF using predictive distribution following
a pre-defined shape and kernel density estimation method,
respectively. For ease of stochastic optimization, trajectories,
i.e., scenarios of support set Ω := P ◦ ξ−1, can be generated
using the Markov chain [86], Gaussian copula, sample aver-
age approximation (SAA) [87], and other techniques while
preserving interdependence between uncertainty factors, e.g.,
Taguchi’s orthogonal array testing (TAOT) [26].

A robust uncertainty set U is to quantify uncertainties by
polyhedra, i.e., U := {Cξ ≤ f}. Using interval prediction in
probabilistic forecasting techniques, multivariate uncertainties
can be depicted as [ξ̄i − ∆ξi, ξ̄i + ∆ξi], i = 1, · · · , n, un-
der statistical guarantee [47]. Accounting for interdependence
among uncertainties, a budget constraint is introduced [26]. To
further support decision-making in a worst case, i.e., extreme
points of Cξ ≤ f , the coherent risk measures can be used to
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construct this polyhedron [88]. Various uncertainty sets have
been used to capture the aleatoric nature of loads, renewable
energy output, and contingencies. These uncertainty sets are
used for robust, two-stage robust [26], [47], multi-stage robust,
and interval [61] MG energy management.

Addressing uncertainty on support Ω and moment informa-
tion of P , i.e., an epistemic, the ambiguity set P is proposed,
bridging PDFs and uncertainty sets. Shapes and sizes are
two main factors to construct an ambiguity set as small
as possible and contain the unknown true distribution with
certainty [89]. Some representative shapes have been adopted
endogenously by an MG operator, e.g., Markov, Chebyshev,
Gauss, median-absolute deviation, mixture [90]. The size of
P is typically calculated in a data-driven fashion. Ambiguity
sets can be classified into discrepancy-based, moment-based,
shape-preserving, and kernel-based variations [91].
2) Endogenous uncertainty models

For decision-dependent uncertainties in MGs, e.g., demand
response [81], [82], reserve called [83], endogenous uncertain
models are introduced to capture the interaction between
uncertainties and decisions, extending PDFs, uncertain sets,
and ambiguity sets. For PDFs, the event space Ξ and P can
be affected by the decision variables x, i.e., Ξ(x) and P (x).
It results in stochastic endogenous uncertainties, first defined
in [92]. Real-time reserve called [83], cold load pickups [82],
and demand response [81] have been treated as representative
applications. For robust uncertain sets, a typical extension
has been given as U(x) := {Cξ + Dx ≤ f}, indicating
decisions can affect the worst-case realization in two-stage
and multi-stage decision making processes [93]. Ambiguity set
P can depend on x, ranging from Ω(x), P (x), to statistical
distances [94]. It should be noted that endogenous uncertainty
sets and endogenous ambiguity sets have not been adopted
in MG energy management problems, with data shortage and
high computational cost.
3) Relation among uncertainty models

Relations among uncertainty models is the premise for re-
alizing conversion among different uncertainty models, under

data-driven and non-data-driven approaches [91]. For data-
driven uncertainty models, the main concern is asymptotic
convergence of the function value, affected by uncertainties,
to the known and true unknown distribution. When the PDF
is known, the SAA is used to approximate this value. Under
ambiguity sets, a robust-SAA algorithm can be used [95].
For non-data-driven uncertainty models, especially when the
further ξ does not follow P , coherent risk measures [88], price
of optimism and pessimism [96], etc., can be used to calibrate
the parameters in uncertainty sets and ambiguity sets, and
further quantify correlation among different uncertainty sets.

B. Energy Management Problem Formulations Under Uncer-
tainties

To optimally manage resources within MGs under given
operating and control requirements, deterministic optimization
problems are formulated as unit commitment (UC), optimal
power flow (OPF) [104], economic dispatch (ED), and optimal
control problems, with distinctive decision variables, objective
functions, and constraint sets, given as the following optimiza-
tion problem:

min
x

f(x, ξ)

s.t.x ∈ X (ξ)
(1)

where x is the decision variable vector, f(x, ξ) is the objective
function, X (ξ) := {gi(x, ξ) ≤ 0,∀i ∈ C}

⋂
{hi(x, ξ) ≤

0,∀i ∈ S}
⋂
{ki(x, ξ) ≤ 0,∀i ∈ D} is the constraint set under

different control and operation requirements, gi(x, ξ) refers to
component level constraints, hi(x, ξ) refers to the MG level
constraints, and ki(x, ξ) represents for multi energy level and
local energy sharing constraints. Energy management problem
formulations are summarized in Table V.

As shown in (1), uncertainties ξ in MGs can affect both
objective functions and constraint sets. These impacts can
be assessed and addressed using uncertainty energy manage-
ment problem formulations, including stochastic optimization,
robust optimization, distributionally robust optimization, and
Markov decision process (MDP) models.

TABLE V
SUMMARY OF ENERGY MANAGEMENT PROBLEM FORMULATIONS FOR MICROGRIDS

Ref. Objective function f(x, ξ) Decision variables x Constraints X(ξ) Uncertainties ξ

Cost/benefit Emission Reliability Resilience DGs Lines ESSs DSRs Security Stability Stochastic Uncertainty Ambiguity
[14] ✓ ✓ ✓ ✓
[16] ✓ ✓ ✓ ✓ ✓ ✓
[22] ✓ ✓ ✓ ✓ ✓ ✓ ✓
[23] ✓ ✓ ✓ ✓ ✓ ✓
[27] ✓ ✓ ✓ ✓ ✓ ✓
[46] ✓ ✓ ✓ ✓ ✓
[47] ✓ ✓ ✓ ✓ ✓ ✓
[48] ✓ ✓ ✓ ✓ ✓ ✓
[89] ✓ ✓ ✓ ✓
[60] ✓ ✓ ✓ ✓ ✓ ✓
[97] ✓ ✓ ✓ ✓ ✓ ✓
[98] ✓ ✓ ✓ ✓ ✓ ✓
[99] ✓ ✓ ✓ ✓
[100] ✓ ✓ ✓ ✓ ✓ ✓ ✓
[101] ✓ ✓ ✓ ✓ ✓ ✓
[102] ✓ ✓ ✓ ✓ ✓
[103] ✓ ✓ ✓ ✓
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1) Stochastic energy management problem formulations
Assuming ξ ∼ P , a general stochastic energy management

optimization problem is shown as follows:

min
x

EP[f(x, ξ)]

s.t.Pr{x ∈ X (ξ)} ≥ 1− α
(2)

where α is the given confidence level. If α = 0, problem (2) is
always feasible. As the frequency response rate is affected by
ξ, a chance constraint is formulated in [105]. When multiple
constraints are affected by ξ, a joint chance constraint can
be adopted to guarantee quality of service within MGs [85].
Problem (2) has been widely adopted for single-stage real-time
MG energy management [105].

For a two-stage stochastic energy management, problem (2)
is extended as follows:

min
y

g(y) + EP[Q(y, ξ)] (3)

where Q(y, ξ) := {minx f(x, ξ)|x ∈ X (ξ)
⋂
Z(y, ξ)}, y

is the first-stage decision variable, x is the second-stage
decision variable, Z(y, ξ) refers to the coupling constraints
between the first-stage and second stage variables. If a chance
constraint Pr{x ∈ X (ξ)

⋂
Z(y, ξ)} ≥ 1 − α is used as a

replacement of constraint x ∈ X (ξ)
⋂
Z(y, ξ) in problem (3),

a two-stage joint chance constraint programming problem is
formulated [41]. Under the uncertainties of renewable energy
and loads, a condition value at risk (CVaR) is adopted to
approximate the value of EP[Q(y, ξ)]. Problem (3) admits
the here-and-now and wait-and-see structure, which is suitable
to represent the sequential decision making between the day-
ahead and real-time energy management of MGs [25], [43],
[106]. This problem can be extended for multi-stage stochastic
energy management of MGs [107].

When it comes to stochastic endogenous uncertainties,
EP[f(x, ξ)] and EP[Q(y, ξ)] in equations (2)–(3) should be
extended to consider the impacts of decisions on P (x).
Responding to the joint impacts of control signals, e.g., prices,
and exogenous factors on the power consumption processes,
the demand response has been managed by stochastic opti-
mization under both exogenous and endogenous uncertainties,
to improve operational efficiency [81] and reliability [82].
Grid-tied MGs can provide regulation reserves to power sys-
tems. Its real-time power output is affected by the reserve
called signal and reserve capacity provided, and a two-stage
stochastic programming problem under both exogenous and
endogenous uncertainties is formulated to manage risks within
the day-ahead market [83].
2) Robust energy management problem formulations

When uncertainty is depicted by an uncertainty set U , a
general two-stage robust optimization problem is given as
follows:

min
y∈Y

g(y) + max
ξ∈U

Q(y, ξ) (4)

Under the convex assumption on the second-stage con-
straint set w.r.t. x, the worst-case ξ∗ is always the extreme
point of U [108]. This propriety can guarantee worst-case
performance while resulting in over-conservation of energy

management solutions. Problem (4) has been adopted for day-
ahead management of single MGs [109], cooperative energy
sharing among MMGs [26], and dynamic energy management
of NMGs [47].
3) Distributionally robust energy management problem formu-
lations

For ambiguity sets, a widely used two-stage distributionally
robust optimization (DRO) problem with chance constraints is
given as follows:

min
y∈Y

g(y) + max
P∈P

EP[Q′(y, ξ)] (5)

where

Q′(y, ξ) =min
x

f(x, ξ)

s.t.min
P∈P

Pr{x ∈ X (ξ)
⋂

Z(y, ξ)} ≥ 1− α
(6)

Ambiguity sets P can be formulated using data-driven
approaches with fewer samples, in comparison with exact
PDFs. Problem (5) has been extensively adopted for MG
energy management problem formulations under data-driven
conditions. Responding to the ambiguity of wind power
output, a dynamic ED problem with distributionally robust
chance constraint is formulated for isolated MGs [110]. To
minimize energy procurement and battery degradation cost,
a two-stage DRO problem is proposed for MMGs, where
an optimal transportation-based ambiguity set is formulated
for the aggregated uncertainty of loads and renewable energy
output [27]. To improve reliability of MGs under uncertain line
failures, a two-stage DRO problem is proposed to optimally
formulate MGs within distribution systems in [111].
4) Markov decision process based problem formulations

MG energy management is typically a sequential decision-
making process within a discrete time environment. When
uncertainties are stochastic, including both exogenous and
endogenous, MG energy management has extensively formu-
lated a MDP recently. To efficiently manage resources within
diverse MG architectures as shown in Section II, various MDP
problems have been formulated.

A MDP is a particular sequential decision model under un-
certainties, including a set of decision time T , states S, actions
A, rewards R, and transition probabilities P depend only on
the current state and action, i.e., {T ,S,A,P,R} [112]. When
T is finite, the MDP is a finite-horizon problem. When states S
can not be fully observed, a partial observable MDP (POMDP)
can be adopted, suitable for limited information or communi-
cation applications, e.g., privacy preservation, communication
failures [113]. A recent review on MDP-based models within
building MGs has been conducted in [114].

For AC MGs, DC MGs, and hybrid AC/DC MGs, MDP-
based problems have been formulated to realize optimal energy
management under isolated [115] and grid-tied [116], [117]
modes. When MGs are isolated, a finite-horizon POMDP is
formulated for isolated industry MGs, where transition prob-
abilities are estimated using historical data [115]. A POMDP
platform has been further employed to manage communication
failures within MGs, where a multi-agent Bayesian MDP is



LIU et al.: MICROGRID ENERGY MANAGEMENT WITH ENERGY STORAGE SYSTEMS: A REVIEW 493

introduced [113]. Different from the traditional reward func-
tion only depending on current state and action, an interesting
multi-stage reward function is proposed to improve energy
balance, economic cost, and reliability, simultaneously, where
metrics within the forecasting horizon are included in the
reward function [117].

When multiple MGs are interconnected as MMGs, game
theoretical approaches have been widely adopted to realize
energy sharing within and among MGs, including internal and
external markets with distribution systems and transmission
systems. Rational behavior of MGs [118], [119] or market
clearing process [120] can be treated as a MDP. A two-
step energy trading platform is proposed for NMGs, where
internal trading prices are optimized based on a Stackelberg
game-based MDP [118]. To realize energy trading privately, an
MDP-based energy management problem is proposed for the
distribution system operator (DSO), realizing energy trading
among multiple MGs [120]. A three-stage optimization is
proposed for NMGs, where demand response within each MG
is realized using the MDP, while the interaction among MGs
and the external system is depicted as a potential game [119].

C. Transactive Energy Management Models

Energy management models under different energy market
economics are summarized in Table VI. Deployment of local
energy resources has accelerated deregulation of power mar-
kets on the demand side. Consumers, suppliers, and prosumers

can trade energy within single MGs, MMGs, and NMGs, and
transactive energy comes out. Transactive energy is commonly
referred to as a system of economic and control mechanisms
that allows a dynamic balance of supply and demand, using
value as a key operational parameter [132]. As an internal
market for MGs, transactive energy can be shared with or
without prices, as shown in Table VI.

For pricing-based transactive energy management,
community-based [127], [128] and peer-to-peer [16],
[27], [129], [131] are two-widely adopted mechanisms,
where game theory and optimization techniques can be
used. Non-cooperative game approaches have been adopted
to realize energy and reserve trading of players within
MGs [133]. Capturing the hierarchical property between
players, the Stackelberg game has been adopted to depict
interaction between prosumers within MGs [131], MGs
and distribution networks [89], [106], [128], MGs and
transmission networks [46], [66], [106], and day-ahead and
real-time operation [16]. Optimization methods provide an
alternative to quantifying prices. In [27], a day-ahead peer-
to-peer trading scheme is proposed for NMGs interconnected
by SNOPs. The trading problem is formulated as a DRO
problem, where a shadow pricing mechanism is adopted.
In [127], real-time energy trading for prosumers within NMGs
is formulated as a risk minimization pairing problem. In [25],
a real-time energy trading problem among grid-tied NMGs is
formulated as a MDP problem. When MGs can interact with

TABLE VI
SUMMARY OF ENERGY MANAGEMENT MODELS UNDER DIFFERENT ENERGY MARKET ECONOMICS AND SOLUTION METHODS

Ref. Type of MG Services Markets Uncertainty
models Trading mode Problem formulations Solution methods

[16] AC MG Electricity Transactive Stochastic Peer-to-peer Bi-level risk-constrained
stochastic programming

MILP solver

[106] AC MG Electricity Day-ahead Stochastic Community Two-stage stochastic
(Stackelberg game)

MILP solver

[117] AC MG Electricity Transactive Stochastic Community MDP Deep Q network
[115] AC MG Electricity Transactive Stochastic Community POMDP FH-DDPG
[121] AC MG Electricity Real-time Stochastic – Mixed-integer SOCP MuZero
[122] AC MG Electricity Day-ahead

and real-time
Stochastic – MDP ADP (value iteration)

[123] AC MG Electricity Real-time Stochastic – MDP ADP (value iteration)
[124] AC MG Electricity Real-time Stochastic – MDP ADP (value iteration)
[125] AC MG Electricity Real-time Stochastic – MDP ADP (policy iteration)
[126] AC MG Electricity Real-time Stochastic – MDP ADP (mixed iteration)
[59] AC MG Electricity Day-ahead Robust Community Robust optimization

(Stackelberg game)
Decentralized bi-level iterative
algorithm

[127] MMG Electricity Real-time – Community Matching Long short-term memory
[128] MMG Electricity Day-ahead Stochastic Community Stochastic dynamic

programming (Stackelberg
game)

Distributed robust DDPG

[27] MMG Electricity Day-ahead Ambiguity Peer-to-peer DRO ADMM
[129] MMG Electricity/

Heat
Transactive Stochastic Peer-to-peer Multi-agent POMDP DDPG

[46] MMG Electricity/
Reserve

Day-ahead Robust Community Two-stage robust (convex
game)

ADMM

[130] MMG Electricity Real-time – Community Stackelberg game MIQCQP
[119] MMG Electricity Transactive Stochastic Community MDP/Potential

game/Multi-objective
DDPG/Distributed/Gradient

[83] MMG Electricity Day-ahead Stochastic
(Endogenous)

– Stochastic adaptive robust
optimization

Benders decomposition

[89] NMG Electricity Transactive Ambiguity Community DRO Iterative algorithm
[118] NMG Electricity Transactive Stochastic Community MDP/Cooperative game Reinforcement learning
[131] Virtual MG Electricity Real-time Stochastic Peer-to-peer Stackelberg game Distributed iterative algorithm
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gas networks, a risk-averse transactive energy management
strategy is proposed for MG operators to participate in
day-ahead wholesale and gas market in [134].

If there is no price signal, e.g., within regulated mar-
kets [135], cooperative game-theoretic and optimization ap-
proaches can be used, including convex game [46], coalitional
game [130], Nash bargaining [136], Vickrey–Clarke–Groves
auction [137], two-stage robust optimization [138], etc. In [46],
day-ahead optimal operation of NMGs is formulated as a
convex game, where uncertainties are managed by the affine
robust optimization scheme. A grand coalition is formulated
for cost allocation among MMGs [130]. A two-settle trans-
active energy management problem is formulated for MG
operators and aggregators of DERs within MGs [138].

D. Solution Methods of Energy Management Problem Formu-
lations

1) Tractable reformulation of energy management problems
under uncertainties

Uncertainty energy management problems are typically in-
tractable, due to existence of uncertain variables in objective
functions or constraints, as shown in Problem (1). To fully
utilize existing or coming, e.g., mathematical programming,
ADP, and DRL toolboxes as summarized in Table VI, the
energy management problems under uncertainties are to be
reformulated into their tractable counterparts.

Deterministic reformulation is to approximate uncertainty
energy management problems, e.g., (2)–(5), by their tractable
counterparts. For stochastic optimization problems, continu-
ous PDFs can be approximated by independent identically
distributed scenario sets using SAA, with strong asymptotic
performance guarantees [87]. Uniform convergence property
requires that cardinality of the scenario set can be infinite,
resulting in high computational cost of the reformulated prob-
lem. To reduce cardinality of scenario sets, an optimal scenario
reduction method can be used to minimize the discrepancy
distance [139]. The confidence level of obtained solution can
be quantified by a replications procedure.

For robust optimization problems, the relationship between
the ξ and x can be treated as a zero-sum game. If Q(y, ξ) is
convex, the Lagrange dual based method has been widely used
to reformulate maxξ∈U Q(y, ξ) as a non-convex quadratic
programming problem [108]. It can be reformulated into a
mixed-integer linear programming (MILP) problem when the
worst scenario is an extreme point of U .

A dual method is a general approach to reformulate
DRO energy management problems, including Lagrange du-
ality [89], Fenchel duality, conic duality, etc. These problems
may admit strong duality properties, under some conditions,
e.g., existence of P in P [91]. For discrepancy-based ambiguity
sets, a Lagrange duality is adopted to reformulate the energy
trading problem within MMGs in [89]. For moment-based
ambiguity sets, a duality theory of infinite-dimensional convex
problems can be used to derive semi-infinite programming
problems [110], [111]. Apart from duality, a uniform conver-
gent robust SAA is proposed for DRO problems in [95].
2) Decomposition algorithms

By exploring the coupling variable and constraint nature

of the deterministic counterpart for energy management prob-
lems, decomposition algorithms can solve them in a decen-
tralized or distributed manner, realizing decentralized and dis-
tributed energy management. (Augmented) Lagrangian decom-
position [140], (generalized) Benders decomposition [141],
progressive hedging [142], alternating direction multiplier
method (ADMM) [47], [143], [144], convex-concave proce-
dure (CCP) [145], analytical target cascading (ATC) [146],
column & constraint generation (C&CG) [108] are popular
algorithms to solve MG energy management problems.

Decomposition algorithms admit distinct convergence prop-
erties with specific assumptions. Convergence of decompo-
sition algorithms may always be guaranteed under convex
assumptions. What is more, a classical ADMM can only
converge in a two block structure [47]. Benders decomposition
can converge in finite iterations when the recourse problem
Q(y, ξ) is convex. C&CG can converge in finite iterations
when finite extreme points exist in U and can be recorded in
the master problem.
3) Adaptive dynamic programming algorithms

In recent years, ADP algorithms are gaining increasing
attention to solve MDP-based energy management problems,
which are also known as approximated dynamic programming
algorithms. These problems can be treated as dynamic pro-
gramming models, suffering from the widely known “curse of
dimension”. Using Bellman’s equation and function approx-
imation, an original MDP problem can be solved efficiently
using iterative approaches.

Value iteration [122], [123], policy iteration [125], [147],
and mixed iteration [126] are three main branches of ADP
algorithms to solve MG energy management problems. Two
novel look-up tables are constructed to approximate the value
functions around a post-decision state with linear [122] and
nonlinear system constraints [123]. When state space is of
high dimension, a deep recurrent neural network is adopted to
approximate the value function in [124]. Four typical policies,
which are suitable for MG energy management, are given
in [147]. A customer policy is proposed to accelerate value
function approximation progress in [125]. A mixed iterative
algorithm is presented to manage batteries within residential
MGs [126].
4) Deep reinforcement learning algorithms

Sharing the same theoretical root as ADP, reinforcement
learning further employs deep neural networks to enhance its
approximation capabilities among state, action, and reward, as
DRL [116], [118]. Model-free and model-based DRLs are two
main variations to solve MDP-based problems.

For model-free MDP-based problems, deep Q net-
works [113], [117], [120], deep deterministic policy gradient
(DDPG) [119], [129], proximal policy optimization (PPO),
and advantage actor-critic [115] can be used to solve discrete,
continuous, and hybrid discrete-continuous action space MDP
problems. In [119], a rule based DDPG algorithm is proposed
to realize a demand response of consumers within MMGs.

When reversible access to the MDP dynamics is used
as a model, typically known or learned R and P [148],
multiple model-based DRL algorithms have been proposed,
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e.g., MuZero [121], LSTM-DDPG [149], MPC-PPO. In [121],
an interesting application of MuZero to solve an online MG
energy management problem as a mixed-integer second-order
conic programming (MI-SOCP) problem is proposed, where
planning is performed over a learned model. In [149], the
LSTM is adopted to learn the transition and reward functions.

E. Discussion on Solution Methods of Microgrid Energy Man-
agement Problems

Solution methods are the purposeful application of mathe-
matical tools to solve MG energy management problems. Clas-
sical mathematical programming algorithms, e.g., stochastic,
robust, and distributionally robust optimization, and decom-
position techniques, are serving as benchmarks for emerging
ADP and DRL algorithms. Even though model-free DRL
algorithms have shown considerable success in solving dis-
crete and some continuous action MDP problems, model-based
DRL algorithms [121] might be a promising platform to fully
utilize domain knowledge of existing mathematical program-
ming algorithms and data-driven techniques. However, higher
computational cost during training and planning, memory and
potential instability of model-based DRL algorithms should be
addressed properly [148].

V. MICROGRID ENERGY MANAGEMENT SCHEMES

Using different schemes, energy management functions can
be implemented in centralized, distributed, decentralized, and
hierarchical approaches, as shown in Table VII. Consumers,
producers, and prosumers are the players in local energy
markets within MGs. MGs, DSOs, and independent system
operators (ISOs) are the players in energy markets within
MMGs and NMGs. MGs are always acting as the price
taker in local energy markets, and local energy markets are
playing the role of price marker in wholesale markets. In
this section, hierarchical, distributed, and decentralized energy
management schemes are summarized.

A. Hierarchical Energy Management Schemes

Hierarchical energy management architecture for MG, in-
cluding primary, secondary, and tertiary control, is widely
accepted by the industry [34], and it is shown in Fig. 7.
Bottom level primary control of DG is to sense local voltage
and current information without any communication with
other DGs to achieve autonomous power management system
(PMS) function. Secondary level control is to restore AC grid
frequency and DC grid voltage and update information on
resources, storage, and loads. Tertiary control is the AC and
DC power flow control among different MGs. Secondary and
tertiary controls are implemented by local EMS and universal
EMS (UEMS) respectively, which need communication links
inside the MG, and among MGs and external systems, e.g.,
distribution systems and power markets [66], [128].

A Stackelberg game-based scheme is proposed for mixed
strategic and normal users in AC MGs [131]. To quantify the
relationships among energy, reserve, and frequency derivation
within isolated MGs, a hierarchical scheme is proposed, where
the tertiary control acts as the leader and the primary control
acts as the followers [101]. A three-level energy management
scheme is proposed for MMGs connecting distribution systems
in [151], where energy coordination between MMGs and
DSOs is depicted as the upper level, energy balance is guar-
anteed in the middle level, and real-time power balancing is
implemented as the bottom level. In [66], a hierarchical energy
management scheme, i.e., a single leader multi follower game,
is proposed to depict the strategic interaction between MMGs
and DSOs in the real-time balancing market. To explore the
coordination potential between isolated MMGs and virtual
power plants, a three-stage hierarchical management scheme
is proposed, where the service area, MG energy, and virtual
power plant management are implemented in consecutive
stages [107].

Secondary and tertiary level energy management functions
can always be implemented in a distributed [28], [152], [153]
or decentralized [59], [105] manner. It indicates that power and

TABLE VII
SUMMARY OF MICROGRID ENERGY MANAGEMENT SCHEMES FOR LOCAL ENERGY MARKETS

Ref. Local energy
market players Architecture Pricing mechanism model Role of MGs in local

energy markets
Role of local energy market
in transmission systems Schemes

[16] MGs AC MG Stackelberg Game Price taker – Centralized
[106] DSO/ISO/MGs MMG Stackelberg Game Price taker Price maker Centralized
[66] DSO/ISO/MGs MMG Stackelberg Game Price taker Price maker Centralized
[134] MGs AC MG Distributionally robust

chance constrained
programming

– Price taker Centralized

[118] MGs/Retailers NMG Stackelberg Game Price taker – Hierarchical
[131] Producers/

consumers
Virtual MG Stackelberg Game – – Hierarchical

[66] MGs/DSO MMG Stackelberg Game Price taker – Hierarchical
[119] MGs MMG Potential game – – Distributed
[46] MGs MMG Convex game – Price taker Distributed
[130] MGs MMG Coalitions game Price taker – Distributed
[137] Prosumers AC MG Vickrey–Clarke–Groves

auction
– – Distributed

[138] MGs/Aggregators AC MG Two-stage robust
optimization

Price taker – Distributed

[129] MGs MMG Multi-agent DRL – – Decentralized
[150] Producers/

consumers
AC MG Quadratic programming – – Decentralized
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Fig. 7. Example of hierarchical energy management scheme for MGs.

energy characteristics within MGs can be captured properly by
the multi-level nature of hierarchical management.

B. Distributed Energy Management Schemes

With high penetration of DERs, which can be owned
by different entities, distributed schemes are emerging as a
promising solution to realize coordination among them. There
exist multiple controllers in SCADA, where each can commu-
nicate with its neighbors. With the help of distributed com-
munication [10] and distributed computation algorithms [28],
distributed schemes can further avoid single-point commu-
nication failures and reduce communication cost. This fea-
ture can be enhanced by asynchronous [152] and resilient
distributed optimization and control algorithms [153]. Apart
from fault-tolerance, distributed schemes bring other merits,
e.g., transparency, security, and scalability, in comparison with
centralized schemes.

A real-time distributed energy management scheme is pro-
posed for DC MGs in [28], with plug-and-play capability and
it has been verified by hardware-in-loop simulation results. To
avoid single-point failure and reduce communication require-
ments of centralized EMS, a two-stage energy management
strategy is proposed for remote area MGs in [154]. In [105], a
distributed risk-limit energy management scheme is proposed
to accelerate restoration of NMGs. Distributed multi-stage
energy management is proposed for large-scale MGs, real-
izing power balance at each node along the scheduling hori-
zon [155]. To mitigate risks from cyber anomalies, blockchain
has been used for distributed transactive energy management
discussed in [156], [157].

C. Decentralized Energy Management Schemes

There are multiple controllers in communication networks,
i.e., SCADA, where each controller acts as an agent to control

predefined devices, e.g., DGs, converters under deregulated
market environment. Only part of the controllers can com-
municate with other controllers, which provides a suitable
platform to realize coordination of MMGs and NMGs while
preserving information privacy within local MGs. Decentral-
ized control can reduce the risk of single-point failures, and
increase scalability of centralized ones.

A dynamic Stackelberg game based decentralized en-
ergy management scheme is proposed for pelagic islanded
MGs [59]. To guarantee secure trading within MGs, a de-
centralized voltage management scheme is proposed in [150].
In [143], a decentralized energy management scheme is pro-
posed for MMGs under a mixed-stage framework, including
day-ahead UC and real-time online adjustment.

D. Discussion on Energy Management Schemes

Information privacy and network security are two main
issues addressed by recent energy management schemes, par-
ticularly on transactive energy sharing within local energy
markets. Distributed and decentralized energy management
schemes are the aboriginal of the transitive energy man-
agement regime, which are mathematical programming or
DRL based approaches, as shown in Table VII. Mathemati-
cal programming-based approaches can be implemented effi-
ciently with network security constraints, while can not always
realize information security. DRL based approaches have been
widely adopted to address information privacy issues among
multi entities owned MGs [113] and MMGs [120], [129],
including distributed implementation. Along with the maturity
of information privacy solutions, network security issues,
i.e., physical laws on the multi-energy networks intercon-
necting MGs, are gaining increasing attention in DRL-based
schemes, e.g., voltage security [150], [158] and frequency
security [159].
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VI. FURTHER RESEARCH WORKS

Towards a low carbon society, MG energy management sys-
tems should be more interoperable, foresightful, and resilient,
using novel grid converter control strategies, ESSs, power
market tools, and decision-making techniques.

A. Dynamics-captured Models of Critical Components

Models are always the first step to realizing energy man-
agement functionalities of MGs. Traditional models are for
static analysis, which are insufficient for coming low carbon
MGs. Further MGs are using more inverter-dominated systems
with more complex dynamic characteristics. In addition to
droop control function emulation, mechanical inertia shall also
be emulated by the inverter control to reduce RoCoF during
system transient events. Virtual inertia control can be achieved
by adding a low pass filter to the power control loop without
modifying the droop control structure as shown in Fig. 8 [160].
The highlighted low pass filter part in Fig. 8 represents
the mechanical swing equation of a synchronous generator,
where the inertia constant H and damping coefficient D,
i.e., reciprocal of frequency droop slope, can be optimized
in energy management. The virtual inertia concept was also
adopted in a DC MG using the analogy principle as explained
in [161].

To realize bi-directional inter-operation between control-
lable inverters and external systems by optimizing H , D,
etc., precise and computational-friendly virtual inertia models
should be proposed for MG energy management.

B. Stability Constrained Microgrid Energy Management

In the coming low carbon MGs, distributed renewable
generators are integrated via a grid-tied inverter, and lacking of
inertia as compared with a conventional synchronous generator
having rotating masses. This may jeopardize system stability
due to the increased RoCoF. One relevant accident is reported

as the 2016 Australia blackout caused by the extensive de-
ployment of power-electronic converters without inertia [162].
Therefore, it is of great importance to properly control a grid-
tied inverter in energy management problems [163].

To achieve this target, a virtual synchronous generator
(VSG) or grid-forming converter is proposed to operate the in-
verter similar to a conventional synchronous generator. Unlike
a grid-following converter, which is controlled in current mode
using a phase-lock-loop (PLL) to extract grid voltage vector
angle, a grid-forming converter is controlled in voltage mode
without using PLL. Fig. 9 shows a typical wind turbine gen-
erator working in grid forming mode, whereas filter capacitor
voltage rather than grid side current is controlled. For power
electronics-dominated systems installed with multiple DGs,
how to configure the inertia constant H from each DG and
optimize the size of distributed ESS to accommodate system
frequency support requirements, i.e. RoCoF, nadir should be
considered in future MG EMS.

C. Resilience-aware Energy Management under Uncertainties
Local renewable energy sources are injecting more and more

wind and solar energy into MGs, enhancing interdependence
between MGs and climate conditions. Extreme climate condi-
tions, e.g., unexpected or even disastrous climate and weather
events, can highly impact renewable energy generation, trans-
mission assets, electrical demand, power market progress, and
other grid elements. It calls for preparedness, survivability, and
recoverability of renewable energy-dominated MGs against
extreme events by using energy management techniques. As
extreme weather events and their impacts are both uncer-
tain, energy management should address both exogenous and
endogenous uncertainties, when extreme events impose sig-
nificant impacts on users within MGs and joint impacts of
proactive actions.

COVID-19 has tortured the world for years, together with
extreme weather events, e.g., typhoons and floods in ur-
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ban cities. Their combinational advent imposes impacts on
physical, cyber, and social domains of MGs, as shown in
Fig. 10. It expands resilience from engineering to social-
ecological, introducing transferability requirements to MGs
between multiple extreme events. One fundamental feature of
these extreme events is data shortage, which makes it challeng-
ing to predict the impacts of these events on infrastructure
and their further operating status. Construction of disaster
scenarios for resilience-aware energy management of MGs
will be a fundamental research problem in the further.

D. Market Operation of Microgrids with Distribution and
Transmission Systems

To further increase local energy market efficiency and re-
silience, it is inevitable to clarify the roles of MGs, distribution
systems, and transmission systems, under expected events and
unanticipated events. In normal conditions, security of power
systems and information privacy of MGs are to be balanced
by transactive energy management and emerging techniques,
e.g., multi-agent DRL.

Under unanticipated extreme conditions, secure transmis-
sion and distribution systems are of higher priority. Apart

from existing energy and ancillary services, some emergence
services, e.g., emergence resource and repair crews, might be
introduced to enhance resilience of distribution and transmis-
sion systems with active participation of MGs and other critical
infrastructure, e.g., transportation systems. Repair crews and
emergence resources can be shared among electricity, trans-
portation, gas, building, and other sectors within smart cities
using proper market mechanisms.

E. Efficient Solution Algorithms for Energy Management
Problems

Integrated energy networks have augmented inter-operation
between coming low-carbon MGs and extended energy sys-
tems. On one side, MGs can improve their operating efficiency,
reliability, and resilience. On the other side, energy dynamics
should be incorporated into energy management problems.
Dynamics are widely approximated by mixed-integer program-
ming problems as recourses, making it challenging to derive
the zero-gap duality functions, and decreasing efficiency of
energy management solutions. Co-positive programming is
treated as a possible approach to realize zero duality reformu-
lation of MILP problems [164]. Surrogate model-based anal-
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ysis and optimization are promising directions to harmonize
analytical models and computational requirements, especially
interpretable deep networks to depict electro-thermal dynamics
of ESSs.

Existing decomposition and DRL algorithms can solve
some convex or small-scale problems efficiently. Using virtual
inertia from converters, stability constraints under extreme
operating conditions, climate, and social-ecological resilience
requirements, MG energy management problems will be non-
convex and even with differential algebra equations. It may
make a decomposition algorithm difficult to converge and will
bring in significant computation and communication costs.

VII. CONCLUSION

Local renewable energy resources and energy storage sys-
tems are driving the microgrid transition towards a low carbon
future. Zero inertia and uncertain nature of renewable energy
resources ask for novel architectures, energy storage utiliza-
tion, energy management models, and solution methods for
management. Hybrid AC/DC, multi micro-energy grids are
enhancing interoperability between electricity and other energy
systems within local areas, including both grid-tied and iso-
lated applications. The multi-physics characteristics of energy
storage systems have been embedded into energy management
models under uncertainties. Considering the mathematical
properties of uncertainties, these models can be further solved
by mathematical programming, adaptive dynamic program-
ming, and deep reinforcement learning algorithms, with proper
reformulation. Hierarchical energy management schemes are
nourishing multiple types of decentralized and distributed
energy management schemes, under different energy market
economics. The challenges from dynamic-captured models,
stability constraints, resilience, market operation, and efficient
computation methods are discussed and need to be further
analyzed in the future.
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