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Simple Summary: Homologous recombination deficiency (HRD) originates from genomic mutations
or alterations in the homologous recombination repair pathway. Various promising tests have been
developed to detect HRD. Some of these tests have shown good ability to predict response to Poly
(ADP-ribose) polymerase inhibitors in cancer patients. However, a standardized way to define HRD
has yet to be established. In this systematic review an overview of available HRD tests is provided.
Important factors to consider are highlighted when planning clinical trials and studies involving
HRD tests.

Abstract: Homologous recombination deficiency (HRD) can arise from germline or somatic pathogenic
variants as well as other genomic damage and epigenetic alterations in the HR repair pathway. Pa-
tients with tumors presenting with an HRD phenotype can show sensitivity to Poly (ADP-ribose)
polymerase inhibitors (PARPis). Several promising tests to detect HRD have been developed based
on different HRD definitions, biomarkers, and algorithms. However, no consensus on a gold stan-
dard HRD test has been established. In this systematic review, a comprehensive list of tests for
the detection of HRD was identified and compared regarding HRD definition, biomarkers, and
algorithms. PubMed’s Medline and Elsevier’s Embase were systematically searched, resulting in
27 eligible articles meeting the inclusion criteria. The primary challenge when comparing HRD tests
lies in the lack of a consensus definition of HRD, as the HRD definition influences the proportion of
samples being classified as HRD and impacts the classification performance. This systematic review
provides an overview of available HRD tests that can inspire other researchers in searching for a
gold standard HRD definition and highlights the importance of the factors that should be considered
when choosing an HRD definition and tests for future planning of clinical trials and studies.

Keywords: homologous recombination deficiency; HRD; bioinformatics; cancer; algorithm

1. Background

Genomic profiling of tumors can be useful for understanding defects in DNA damage
repair mechanisms and identifying patients who are candidates for targeted treatment [1–4].
Homolog recombination repair (HR) is a DNA damage repair mechanism that facilitates
the repair of double-stranded breaks in DNA using a sister chromatid as template, thereby
mediating an almost error-free repair of the double-stranded break [5]. Deficiency of
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the homologous recombination repair mechanism has been reported as a promoter of
tumorigenesis as cells with HRD utilize more error-prone DNA repair mechanisms and
accumulate mutations leading to genome instability [6–9]. HRD can be a result of germline
or somatic pathogenic variants in genes involved in the HR repair pathway, primarily in the
two key genes, Breast cancer 1 (BRCA1) and Breast cancer 2 (BRCA2) [10]. In addition, tumors
can present with an HRD phenotype without identifiable germline or somatic HR variants.
This HRD phenotype has yet to be fully characterized since HRD represents a broader
phenomenon caused by abnormalities in the HR repair pathway, epigenetic alterations, or
instability of the genome [11,12].

Patients with tumors presenting with an HRD phenotype show sensitivity to Poly
(ADP-ribose) polymerase inhibitors (PARPis), which are targeted treatments inhibiting
single-strand break repair, causing the phenomenon called synthetic lethality [2–4,13].

HRD-related genomic damage, often referred to as genomic scars, consists of differ-
ent genomic aberrations which have been used in HRD tests as circumstantial evidence
for HRD. The three most described genomic scars are loss of heterozygosity (LOH) [6],
large-scale transition (LST) [7], and telomeric allelic imbalance (TAI) [8]. LOH is a genetic
event where one of the alleles is missing [6], LST is chromosomal breaks between genomic
regions [7], and TAI provides a measure for telomeric allelic imbalance [8]. Other measures
of genomic scars providing an HRD phenotype are mutational signatures, originally de-
scribed by Alexandrov et al. [14]. Mutational signatures are extracted by unsupervised
clustering of point substitutions while considering adjacent sequence bases. BRCA1 and
BRCA2 mutations have been described to be strongly associated with Signature 3 [14].
In addition, some tumors have shown a large contribution of Signature 3 without harboring
BRCA1 and BRCA2 mutations, which might indicate that other genes with abnormalities
might trigger similar mutational profiles [14].

Methylation of genes or pathogenic variants in genes in the HR repair pathway have
also been used as biomarkers for HRD, as well as functional assays such as estimations of
nuclear RAD51 foci [11,15–18].

Several promising tests to detect HRD have been developed based on different
biomarkers and algorithms. Some HRD tests have been used in clinical trials to better
define which cancers are most likely to have HRD. In the SOLO1 clinical trial, patients
recently diagnosed with ovarian cancer showed benefits from PARPis harboring pathogenic
BRCA variants [18]. The PRIMA and VELIA clinical trials have shown that ovarian cancer
patients with HRD based on the HRD test myChoice from Myriad Genetics could benefit
from a treatment combining platinum chemotherapy and PARPis [12,19]. However, one of
the main challenges is the lack of consensus and a clear definition of HRD. This makes a
direct comparison between HRD tests challenging as they are based on various definitions
of HRD, biomarkers, and algorithms [11].

To our knowledge, a systematic review of tests for the detection of HRD has not
yet been conducted. This systematic review assessed studies in which an HRD test was
developed. The review was limited to HRD tests based on genomic/genetic data, including
RNA profiling, but excluding HRD detection by functional assays and tests based solely
on pathogenic variants, such as BRCA1/2 variants. The aim of the review was to compare
and evaluate the current HRD tests used for stratifying patients into HR groups while also
addressing HRD definition and biomarkers used.

2. Materials and Methods

A systematic literature review was conducted following the Preferred Reported Items
for Systematic Reviews and Meta-Analysis (PRISMA) guidelines [20].

2.1. Literature Search

PubMed’s Medline and Elsevier’s Embase databases were systematically searched
for eligible articles. The full search strings for PubMed and Embase are presented in
Supplementary Table S1. The search strings included three search groups with multiple
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search terms that represented the search group topic. The three search group topics were
(1) homologous recombination deficiency, (2) HRD test, and (3) data type/method. The
initial search was conducted on 13 October 2021, and a second search was conducted on
11 May 2022. The second search included seven search terms (see in Supplementary Table S1)
identified as missing during the initial search as well as a relocation of a misplaced search
term into its correct search group. Moving the misplaced search term into the correct
search group did not add any relevant records compared to the initial search. Both searches
were conducted with no limitation on the date of publication. Additional studies were
identified by assessment of reviews and the bibliography of included articles. Two authors
(LRM and SKT), independently and blinded to each other, screened titles and abstracts as
well as full texts for assessment of eligibility using Covidence systematic review software
(https://support.covidence.org/help/how-can-i-cite-covidence (accessed on 21 September
2022)) [21].

2.2. Inclusion and Exclusion Criteria

Studies were included in the review if fulfilling the following inclusion criteria: (1) con-
cerning homologous recombination deficiency or BRCAness, (2) developing or training an
algorithm/classifier for stratifying patients into HRD groups based on a threshold, (3) ana-
lyzing patient samples, (4) articles published in English, and (5) original research articles.

Articles were excluded if they used functional assays to stratify patients into HRD
groups. Any discrepancies regarding article suitability were solved by consulting two other
authors (MB and ISP).

2.3. Data Extraction

Two authors (LRM and SKT) critically reviewed included articles and independently
extracted data manually into an Excel spreadsheet. Data concerning study type, disease,
cohort size, sample material, HRD definition, algorithm description, and algorithm input
were extracted. Studies were grouped according to their algorithm or classifier type. Key
findings were also retrieved when available, including any available sensitivities, specifici-
ties, positive and negative predictive values (PPV and NPV), accuracies, or areas under the
receiver operating characteristic (ROC) curve.

3. Results
3.1. Study Selection

An overview of the study selection process is illustrated by a PRISMA flowchart in
Figure 1. A total of 6276 records were identified, with 6233 records identified through
searches in PubMed and Embase and 43 by assessment of reviews and the bibliography of
the included articles. Automatic removal of 3453 duplicates was conducted using Covidence
systematic review software, resulting in 2823 records left for the title and abstract screen. In
the title and abstract screening, 2464 records were excluded, leaving 359 records available
for full-text assessment of eligibility. Full-text screening of records resulted in 27 articles
meeting the inclusion criteria.

The 332 full-text records which failed to meet the inclusion criteria were excluded
for several reasons. Eighty-nine articles did not present a novel HRD test, and twenty-
two records did not stratify patients into HR groups or only examined variants in HR-
related genes. Five records used functional assays for HRD assessment, three records
were identified as reviews, and two records were not original research. In addition, two
records did not analyze patient samples and one record was identified as a duplicate
that the automatic removal process in the Covidence systematic review software had not
removed. The remaining records excluded were abstracts and, therefore, not eligible for
full-text assessment.

https://support.covidence.org/help/how-can-i-cite-covidence
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Figure 1. A PRISMA flowchart displaying the identification, screening, and inclusion process. The
flowchart illustrates the filtration of identified records to the final number of articles included in the
analysis, as well as exclusion reasons.

3.2. Study Characteristics

The studies that are included in this review are based on different premises. These are
things such as data origin, pre-analytical methods, and biological tissue types. This section
will outline these various aspects. Table 1 displays the characteristics of the 27 included
studies published between 1 January 2009 and 11 May 2022. Several types of cancers have
been studied across the 27 studies, with the majority focusing on breast or ovarian cancer
(Table 1).

Almost all studies included a training and a validation cohort, except for five studies
which only included a training or analysis cohort. The number of validation cohorts
included in each study ranged from one to four. The size of the training cohorts varied
substantially from 21 to several thousand patients. Similar variation in cohort size was
observed in the validation cohorts (for details see Table 1).
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Table 1. Characteristics of the eligible studies, including cancer type, cohort size, tissue sample type,
methods, and a description of the developed algorithms.

Author
(et al.) Year Algorithm Cancer Type Cohort Cohort

Size
Tumor

Tissue Type Method Algorithm
Description

Joosse [22] 2009 BRCA1
classifier Breast

gBRCA1 mutated 34 T

FFPE Array-CGH Shrunken
centroid modelSporadic 48 T

HBOC 48 V

Lips [23] 2011
BRCA1-like
MLPA
classifier

Breast

NKI-clinical
genetics series

34 T
18 V FFPE

MLPA
Nearest
shrunken
centroid model

NKI-AVL
neoadjuvant
chemotherapy

50 T
8 V Frozen

Randomized trial
series 46 V FFPE

Deventer series 69 A FFPE

Abkevich [6] 2012 HRD-LOH Ovarian

Gynecology Cancer
Banks at MDACC
and UCSF

152 T

Frozen SNP array Sum of LOH
segment countsMagee-Womens

Hospital of UPMC 53 V

TCGA ovarian
cancer 435 V

Joosse [24] 2012 BRCA2
classifier Breast

gBRCA2 mutated 28 T
19 V

FFPE Array-CGH Shrunken
centroid model

Sporadic 28 T
19 V

HBOC 89 V

gBRCA1 mutated
(Joosse et al. 2009) 34 A

Popova [7] 2012 LST Breast BLC 80 T
60 V Frozen SNP array

Two-step
decision rule.
First, segregate
tumors based on
ploidy and
second, segregate
according to
number of LST
counts.

Lu [25] 2014
Hypothesized
HR-deficiency
score (HRDS)

Breast
Ovarian

TCGA ovarian
cancer

167 T
141 V Frozen

WES
Score based on
gene expression
levels

TCGA breast
cancer 127 A Frozen

Bonome dataset 185 A Frozen

Yoshihar dataset 300 A Frozen

Tothill dataset 285 A Frozen

Zhang [26] 2014
Genomic
instability
score

Ovarian TCGA ovarian
cancer 325 T Frozen NGS panel

SNP array

Score based on
CNC regions and
somatic
mutations

Watkins [27] 2015

Scores of
chromosomal
instability
scarring
(SCINS)

Breast
Ovarian

Guy’s Hospital
King’s College
London TNBC

142 A Frozen
SNP array

Gene
expression
microarray

Four scores
based on
different types of
allele-specific
copy-number
profiles

METABRIC TNBC 115 A Frozen

TCGA TNBC 80 A Frozen

PrECOG TNBC 80 A Frozen

TCGA HGSC 299 A Frozen
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Table 1. Cont.

Author
(et al.) Year Algorithm Cancer Type Cohort Cohort

Size
Tumor

Tissue Type Method Algorithm
Description

Telli [16] 2016

Combined
homologous
recombination
deficiency
score
(HRD score)

Breast
Ovarian

Breast cancer:
TCGA
Timms et al. 2014
cohort

497 T Frozen

Microarray
SNP array

WES
Capture

panel NGS

Numeric sum of
LOH, LST, and
TAI counts

Ovarian cancer:
TCGA
Hennesy et al. 2010

561 T Frozen

Breast cancer:
PrECOG 0105 93 A FFPE Frozen

Breast cancer:
Neoadjuvant
cisplatin trials

79 A FFPE Frozen

Davies [28] 2017 HRDetect
Breast
Ovarian
Pancreatic

Nik-Zainal et al.
2016 cohort 560 T Frozen

WGS
LASSO logistic
regression model

Low coverage
simulated
Nik-Zainal et al.
2016 cohort

560 V N/A

Breast cancer 80 V N/A

Pancreatic cancer 96 V Frozen

Breast cancer 3 V FFPE

Ovarian cancer 73 V Frozen

TNBC 9 A Needle
biopsy

Severson
[29] 2017

BRCA1ness
signature Breast

RATHER cohort 128 T
Frozen Array Nearest centroid

modelI-SPY 2 trial 116 V

Wang [30] 2017 10-miRNA-
score Ovarian

TCGA ovarian
cancer 319 A

Frozen

miRNA
microarray
miRNA-Seq Score based on

miRNA
expression levels

TCGA ovarian
cancer samples 136 A miRNA-Seq

TCGA breast
cancer 657 A miRSeq

Diossy [31] 2018 WES-
HRDetect

Breast
Brain
metastases

Matched primary
breast cancer and
brain metastasis

21 T FFPE
Frozen WES

LASSO logistic
regression model

17 V FFPE

Smyth [32] 2018 Genomic LOH Esophagogastric REAL3 cohort 158 T FFPE NGS panel

Sum of the
lengths of
included LOH
segments
divided by the
length of the
interrogated
genome.

Chen [33] 2019 BRCA1-like
classifier

Breast

GSE9021
GSE9114 74 T FFPE

Array-CGH Support vector
machine

GSE18626 106 V FFPE

TCGA breast
cancer 957 A Frozen

METABRIC breast 1968 A Frozen
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Table 1. Cont.

Author
(et al.) Year Algorithm Cancer Type Cohort Cohort

Size
Tumor

Tissue Type Method Algorithm
Description

Gulhan [34] 2019

Signature
Multivariate
Analysis
(SigMA)

Breast
Osteosarcoma
Ovarian
Pancreatic
Prostate

TCGA Breast
cancer 730 T Frozen WGS

Likelihood-
based measure
combined with
clustering using
non-negative
matrix
factorization

Down-sampled
TCGA breast
cancer

730 T Simulated
Down-

sampled
WGS

Breast cancer
(MSK-IMPACT
data)

878 V FFPE Capture
panel NGS

Nik-Zainal et al.
2016 cohort 560 V Frozen WGS

Eeckhoutte
[35] 2020 ShallowHRD Breast

Ovarian

Primary breast and
ovarian cancer 26 T Frozen Shallow

WGS

Sum of LGA
counts

Primary breast and
ovarian cancer 4 T FFPE Shallow

WGS

Patient-derived
xenografts 39 T Frozen Shallow

WGS

TCGA-BRCA

108
normal T
79 tumor

V

N/A
Down-

sampled
WGS

Lips [36] 2020

BRCA1-like
digitalMLPA
classifier
BRCA2-like
digitalMLPA
classifier

Breast

Cohort for
BRCA1-like
digitalMLPA
classifier

71 T
70 V

FFPE
Frozen

digitalMLPA Shrunken
centroid model

Cohort for
BRCA2-like
digitalMLPA
classifier

55 T
56 V

The Dutch
high-dose trial 122 A

Nguyen [37] 2020

Classifier of
HOmologous
Recombination
Deficiency
(CHORD)

Pan-cancer

Metastatic
Pan-cancer (HMF
Priestley)

3824 T

Frozen WGS
Random-forest-
based
model

Primary
pan-cancer
(PCAWG)

1854 V

Nik-Zainal et al.
2016 cohort 560 V

Barenboim
[38] 2021

DNA-
methylation-
based RF
classifier

Osteosarcoma Osteosarcoma 43 T
20 V Frozen RNA-seq Random forest

model

Chen [39] 2021
Genomic scar
algorithm
(GSA)

Breast
Ovarian

Breast and ovarian
cancer 195 T FFPE MGI panel

sequencing

Numeric sum of
LST, TAI, LOH
subtracted by
correction
coefficient
multiplied a
ploidy value
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Table 1. Cont.

Author
(et al.) Year Algorithm Cancer Type Cohort Cohort

Size
Tumor

Tissue Type Method Algorithm
Description

Schouten
[40] 2021

Ovarian cancer
BRCA1-like
classifier
Ovarian cancer
BRCA2-like
classifier

Ovarian

NKI and EMI
cohort 73 T FFPE Array-CGH

Shrunken
centroids
classifierAGO-TR1 523 A FFPE blood

Low-
coverage

WGS

Zhuang [41] 2021
24 gene pairs
(24-GPS) Pancreatic

TCGA 147 T Frozen,
blood RNA-seq

LASSO
regression model

ICGC-AU 95 V N/A Gene
expression

array
GSE17891 27 V FFPE

GSE57495 63 V Frozen

Kang [42] 2022
Transcriptional
HRD (tHRD)

Breast
Ovarian

TCGA-BRCA
272 T

Frozen

RNA-seq
WGS
WES

Random-forest-
based model

116 V

TCGA-OV
130 T

32 V

NAC 27 A

Frozen
FFPE

PR 36 A

OM 24 A

OS 33 A

Leibowitz
[43] 2022

HRD-DNA

Pan-cancer

Breast cancer

483 T

FFPE
Blood

NGS panel gwLOH

64 V

1511 A

Ovarian cancer

289 T

69 V

858 A

HRD-RNA

Pancreatic cancer

1375 T

RNA-seq
panel

Logistic
regression model

301 D

165 V

1927 A

Prostate cancer

925 T

204 D

119 V

1536 A

Other

9921 T

2125 D

1113 V

20772 A
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Table 1. Cont.

Author
(et al.) Year Algorithm Cancer Type Cohort Cohort

Size
Tumor

Tissue Type Method Algorithm
Description

Liao [44] 2022 Transcriptomic
HRD score Breast

TCGA 1084 T Frozen

WES
Gene

expression
array

LASSO logistic
regression model

GSE25055 114 A
Fine-needle
aspiration

core biopsy

Gene
expression

array

GSE25065 64 A
Fine-needle
aspiration

core biopsy

Gene
expression

array

GSE41998 140 A Frozen
Gene

expression
array

METABRIC 299 A Frozen
Gene

expression
array

Nik-Zainal et al.
2016 cohort 75 V Frozen

WGS
Gene

expression
array

Qu [45] 2022

Tandem
duplications
score
(TD-score)

Breast Nik-Zainal et al.
2016 cohort 266 T Frozen RNA-seq

WGS
Score of
TD counts

Abbreviations: A: Analysis cohort; BLC: Basal-like breast carcinomas; BRCA1: Breast cancer 1; BRCA2: Breast can-
cer 2; CGH: Comparative genomic hybridization; CHORD: Classifier of HOmologous Recombination Deficiency;
CNC: Copy number counts; D: Discovery cohort; FFPE: Formalin fixed Paraffin Embedded; GPS: Gene pairs
(24-GPS); GSA: Genomic Scar algorithm; gwLOH: Genome wide LOH; HGSC: High-grade serous carcinoma; HRD:
Homologous recombination deficiency; HRDS: Hypothesized HR-deficiency score; LASSO: Least absolute shrink-
age and selection operator; LGA: Large-scale genomic alterations; LOH: Loss of heterozygosity; LST: Large-scale
transitions; MIP: Molecular Inversion Probe; miRNA: MicroRNA; MLPA: Multiplex ligation-dependent probe
amplification; mRNA: Messenger RNA; N/A: Not available; NGS: Next generation sequencing; RF: Random
Forest; SCINS: Scores of chromosomal instability scarring; Seq: Sequencing; SigMA: Signature Multivariate
Analysis; SNP: Single nucleotide polymorphism; T: Training cohort; TAI: Telomeric allelic imbalance; TCGA:
The Cancer Genome Atlas; TD: Tandem duplications; tHRD: Transcriptional HRD; TNBC: Triple negative breast
cancer; V: Validation cohort; WES: Whole exome sequencing; WGS: Whole genome sequencing.

The studies included several cohorts, of which data accessibility differs, with publicly
accessible cohorts and cohorts needing approved permission for access. Twelve stud-
ies included cohorts from The Cancer Genome Atlas (TCGA) database [46], three used
METABRICS data [47], and nine used data from Gene Expression Omnibus (GEO) [48].
Five studies used data from the Nik-Zainal et al. [49] cohort that analyzed 560 breast cancer
patients, and two used data from the PrECOG cohort [50]. In addition, some studies
included internal cohorts, which are not directly available but only used and described in
the given study (Table 1).

Data were obtained using different sample materials, and the analysis platforms dif-
fered substantially between the studies (Table 1). Fifteen studies included data obtained
from arrays. Of these, nine studies included single-nucleotide polymorphism (SNP) ar-
rays conducted on frozen tumor tissue. Four studies included a comparative genomic
hybridization array (arrayCGH) conducted on formalin-fixed paraffin-embedded (FFPE)
tumor tissue. A gene expression array was used by four studies conducted on frozen tumor
tissue, with one study also using FFPE tumor tissue (Table 1). Five studies used microarrays
without elaborating on the array type, with analyses conducted on frozen tumor tissue.

Nineteen studies used a next-generation sequencing (NGS) approach to obtain data
for their algorithm input (Table 1). Six studies conducted whole-exome sequencing (WES)
using frozen or FFPE tumor tissue. Whole-genome sequencing (WGS) was conducted by
six studies, of which three used frozen tumor tissue and three used frozen and FFPE tumor
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tissue. Low coverage/shallow WGS was performed on frozen tumor tissue in two studies,
with one of the studies also using FFPE tumor tissue. Seven studies used panel sequencing,
of which five used FFPE tumor tissue and three used frozen tumor tissue. RNA sequencing
(RNA-seq) was used in five studies, and microRNA sequencing (miRseq) was performed
in one study, with all studies using frozen tumor tissue and two studies also using FFPE
(Table 1)

Other platforms were also used for obtaining data, with one study using digital
multiplex ligation-dependent probe amplification (digitalMLPA) on FFPE tumor tissue and
another using MLPA on FFPE and frozen tumor tissue (Table 1).

3.3. Definition of HRD

In the included studies, different measures, either alone or in combination, have been
used to define a gold standard for samples being either non-HRD or HRD (Table 2). These
gold standards are used as class labels in the development of the HRD tests. These measures
have been categorized into ten categories (Figure 2). Methylation, somatic, and germline
variants in BRCA1 and BRCA2 were the most used gold standard measures of HRD and
have been used in 15 studies. Nine studies used a measure of LOH as the definition of
HRD, and five used an already-established HRD algorithm as the gold standard. LST and
TAI were used as the gold standard in three studies, and a commercial HRD assay was
used in one study. Gene expression, copy number, and mutational signatures were each
used in two studies as the gold standard for HRD, and methylation, somatic, or germline
variants in HR genes were used in one study.

Table 2. An overview of algorithm input, study type, performance measures, and HRD gold standard.
Internal validation is defined as validation primarily conducted on training data. This also includes
cross-validation if no external data have been used. External validation is defined as validation
conducted on external data or if a part of the dataset has been held out from training with the main
purpose to use as a validation set.

Author
(et al.) Algorithm Algorithm Input Study Type a Validation Performance Gold Standard

of HRD

Joosse [22] BRCA1 classifier Copy number Predictive External

Sensitivity: 88%
Specificity: 94%
PPV: 93%
NPV: 88%

BRCA1 germline
variants

Lips [23] BRCA1-like
MLPA classifier Copy number Predictive

Explanatory External
Sensitivity: 85%
Specificity: 87%
Accuracy: 86%

Algorithm
developed by
Joosse et al. [22]

Abkevich [6] HRD-LOH LOH Explanatory No validation N/A

BRCA1/2
methylation,
germline, and
somatic variants
LOH
BRCA1
expression

Joosse [24] BRCA2 classifier Copy number Predictive External

Sensitivity: 89%
Specificity: 84%
PPV: 85%
NPV: 89%

BRCA2 germline
variants

Popova [7] LST LST
Ploidy Predictive External

Validation:
Sensitivity: 100%
Specificity: 54%

BRCA1/2
germline and
somatic variants
BRCA1 promoter
methylation

Lu [25] HRDS Gene expression Descriptive
Explanatory No validation N/A BRCA1/2 variants
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Table 2. Cont.

Author
(et al.) Algorithm Algorithm Input Study Type a Validation Performance Gold Standard

of HRD

Zhang [26] Genomic
instability score

Copy number
Point mutation
Indels

Explanatory No validation N/A
BRCA1/2 variants
BRCA1
methylation

Watkins [27] SCINS Copy number Descriptive
Explanatory No validation N/A Copy number

measure

Telli [16] HRD score
LOH
LST
TAI

Explanatory External

PrECOG 0105:
Sensitivity: 100% a

Specificity: 41.6% a

Neoadjuvant
cisplatin trials
cohort:
Sensitivity: 87.5% a

Specificity: 51.3% a

BRCA1/2 variants
LOH
BRCA1
methylation

Davies [28] HRDetect

Mutational
signatures
LOH
Indels

Predictive External

Breast cancer
cohort:
Sensitivity: 86%
Low-coverage WGS
breast cancer cohort:
Sensitivity 86%
Ovarian and
pancreatic cancer
cohort:
Sensitivity:
approaching 100%

BRCA1/2 variants

Severson [29] BRCA1ness
signature Gene expression Predictive

Explanatory Internal

Sensitivity: 96.7%
(T)
Specificity: 73.1%
(T)

Algorithm
developed by
Lips et al. [23].

Wang [30] 10-miRNA-score miRNA
expression

Descriptive
Explanatory No validation N/A Expression in HR

genes

Diossy [31] WES-HRDetect

Mutational
signatures
LOH
Indels

Predictive/
Descriptive External Sensitivity 76.6%

AUC: 96%

LOH
LST
TAI
BRCA1/2 variants

Smyth [32] Genomic LOH Percentage of
genomic LOH Explanatory No validation N/A Genomic LOH

Chen [33] BRCA1-like
classifier Copy number Predictive External AUC: 75% MLPA assay

(MRC-Holland)

Gulhan [34] SigMA Mutational
signatures

Predictive
Explanatory Internal b Accuracy: 84%

Sensitivity: 74%
Mutational
Signature 3

Eeckhoutte [35] ShallowHRD
Large-scale
genomic
alterations (LGA)

Predictive External Sensitivity: 87.5%
Specificity: 90.5%

Variants or LOH
in BRCA1/2,
RAD51C, PALB2
Methylation of
BRCA1 and
RAD51C

Lips [36]

BRCA1-like
digitalMLPA
classifier
BRCA2-like
digitalMLPA
classifier

Copy number Predictive External

BRCA1-like
digitalMLPA
classifier:
Sensitivity: 93%
Specificity: 90%
Accuracy: 91%
BRCA2-like
digitalMLPA
classifier:
Sensitivity: 75%
Specificity: 89%
Accuracy: 82%

Algorithms
developed by
Joosse et al. [24]
and Joosse et al.
[22]
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Table 2. Cont.

Author
(et al.) Algorithm Algorithm Input Study Type a Validation Performance Gold Standard

of HRD

Nguyen [37] CHORD

Single-base
substitution
Indels
Structural
variants

Predictive External

Cohort 1:
AUC: 98.7%
Cohort 2:
AUC: 99.5%

BRCA1/2
complete copy
number loss
LOH
Germline or
somatic variants
in BRCA1/2

Barenboim [38]

DNA-
methylation
based RF
classifier

Methylation copy
number Predictive External

Sensitivity: 93%
Specificity: 83%
AUC: 87%
Accuracy: 90%

Percent of
genome change
(PCG) score based
on CNA, TAI, and
LOH

Chen [39] GSA

LOH
LST
TAI
Ploidy

Predictive Internal

Sensitivity: 95.2%
(T)
Specificity: 78.4%
(T)
AUC: 88.3 (T)

BRCA1/2 variants
LOH
BRCA1
methylation

Schouten [40]

Ovarian cancer
BRCA1-like
classifier

Ovarian cancer
BRCA2-like
classifier

Copy number Predictive External

Ovarian cancer
BRCA1-like
classifier:
Sensitivity: 96.2%
Specificity: 40%
Ovarian cancer
BRCA2-like
classifier:
Sensitivity: 77%
Specificity: 41%

BRCA1/2
germline and
somatic variants
BRCA1
methylation

Zhuang [41] 24-GPS Gene expression Predictive
Explanatory Internal AUC: 98% (T) Gene expression

Kang [42] tHRD Transcript usage Predictive
Explanatory External

OC model:
Accuracy: 72%
BC model:
Accuracy: 84%

LOH
LST
TAI
Mutation
Signature 3

Leibowitz [43] HRD-DNA
HRD-RNA

LOH
Gene expression

Predictive
Explanatory External

HRD-DNA: Breast
Sensitivity: 100%
Specificity: 96.3%
AUC: 100%
F1: 98.3%
HRD-DNA:
Ovarian
Sensitivity: 92.1%
Specificity: 100%
AUC: 99.3%
F1: 95.9%
HRD-RNA: prostate
cancer
Sensitivity: 85%
Specificity: 98%
AUC: 98%
F1: 88%
HRD-RNA:
pancreatic cancer
Sensitivity: 53%
Specificity: 100%
AUC: 98%
F1: 69%

Biallelic loss of
BRCA 1/2
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Table 2. Cont.

Author
(et al.) Algorithm Algorithm Input Study Type a Validation Performance Gold Standard

of HRD

Liao [44] Transcriptomic
HRD score Gene expression Predictive

Explanatory External AUC: 79%

LOH
LST
TAI
Deleterious
BRCA1/2 variants

Qu [45] TD-score Tandem
duplications

Predictive
Explanatory Internal

AUC: 87% (T)
Sensitivity: 88.2%
(T)
Specificity: 64.7%
(T)

BRCA1-type
HRD phenotype
by CHORD [37]

Abbreviations: AUC: Area under the ROC curve; BC: Breast cancer; BRCA1: Breast cancer 1; BRCA2: Breast
cancer 2; CHORD: Classifier of HOmologous Recombination Deficiency; GPS: Gene pairs (24-GPS); GSA: Ge-
nomic scar algorithm; HR: Homologous recombination; HRD: Homologous recombination deficiency; HRDS:
Hypothesized HR-deficiency score; Indels: Insertion–deletion; LGA: Large-scale genomic alterations; LOH: Loss
of heterozygosity; LST: Large-scale transitions; miRNA: MicroRNA; MLPA: Multiplex ligation-dependent probe
amplification; N/A: Not available; NPV: Negative predictive value; OC: Ovarian cancer; PCG: Percent of genome
changed; PPV: Positive predictive value; RF: Random forest; SCINS: Scores of chromosomal instability scarring;
SigMA: Signature Multivariate Analysis; TAI: Telomeric allelic imbalance; TD: Tandem duplications; tHRD:
Transcriptional HRD; WES: Whole-exome sequencing. a: Studies have been categorized into three different study
types, based on the study objective and purpose being explanatory, predictive, and/or descriptive studies, as
outlined in [25]. Explanatory studies cover studies such as causal inference, etiological, and association studies.
Predictive studies cover studies such as prognostic, data mining, and machine learning studies, and descriptive
studies aim to represent or describe data in a compact generalized way. b: The study used simulated panel data
from down-sampled WGS data, which also acted as the gold standard.
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Figure 2. Overview of gold standards for definition of HRD, either alone or in combination, and
their frequencies in the included studies. Defect/inactivated BRCA1/2 covers biallelic or monoallelic
methylation, somatic, and germline variants in BRCA1 and BRCA2. Defect/inactivated homologous
recombination repair (HRR) genes cover biallelic or monoallelic methylation, somatic, and germline
variants in genes involved in the homologous recombination repair pathway in addition to BRCA1
and BRCA2. Loss of heterozygosity (LOH) covers measures of LOH, ranging from LOH in individual
genes to genome wide LOH. HRD algorithms cover HRD defined from an HRD algorithm developed
in another study.

3.4. HRD Detection Algorithms

In 16 studies, the development of HRD tests has been based on existing classification
algorithms for classifying samples into non-HRD and HRD groups with an HRD definition
used as a class label. The additional 11 studies have developed a novel classification
algorithm to classify samples into non-HRD and HRD groups (Table 2). The algorithm input
data have been stratified into categories, displayed in Figure 3, with structural variants
being the most utilized algorithm input, followed by SNV or small indels and expression.
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Figure 3. Overview of algorithmic input and number of studies that are included. Structural variants
include measures such as copy number, loss of heterozygosity (LOH), large-scale transitions (LST),
ploidy, percentage of genomic LOH, large-scale genomic alterations (LGA), structural variants, and
methylation copy number. Expression includes gene expression and miRNA expression. SNV and
small indels include point mutations, single-base substitution, and smaller indels. Some HRD tests
have been based on more than one algorithm input.

Two studies used a nearest centroid classifier for discriminating non-HRD and HRD
groups, with Lips et al. 2011 [23] reporting the BRCA1-like MLPA classifier to classify
BRCA1-like breast cancers based on copy number input. Severson et al. 2017 [29] presented
the BRCA1ness signature of breast cancer based on gene expression. The nearest centroid
classifier finds the centroid for all predictors per class, being the mean value of each
predictor, and new samples are then assigned a class based on the closest centroid [51].

Four studies based their HRD test on a shrunken centroid model, which is based
on the same concept as a nearest centroid but includes an additional step, shifting class-
based centroids towards the centroid of all features. If a feature is shrunken down to
the centroid of all features, it can be excluded as the feature does not add any dis-
criminating information. This additional step in the shrunken centroid model acts as
a feature selection for the model [52]. Of the four studies using a shrunken centroid
model, Joosse et al. 2009 [22] reported the BRCA1 classifier, which was developed to clas-
sify BRCA1-like breast cancers. In the study by Joosse et al. 2012 [24], a similar classifier
was developed, the BRCA2 classifier, for the classification of BRCA2-like breast cancers.
Lips et al. 2020 extended the two algorithms from Joosse et al. [22,24] to a new platform
and presented the BRCA1-like digitalMLPA classifier and BRCA2-like digitalMLPA classifier
also based on copy number. Schouten et al. [40] applied the same methodological approach
as Joosse et al. [22,24] to develop two HRD tests that were specific for ovarian cancer, the
Ovarian cancer BRCA1-like classifier and Ovarian cancer BRCA2-like classifier, which both are
based on copy numbers as input.

Chen et al. [33] reported the BRCA1-like classifier that was developed to classify BRCA1-
like breast cancers based on a support vector machine (SVM) classifier using copy number
as input. An SVM classifier finds a hyperplane in the feature space, which can be used
to separate the classes of data points. The optimum hyperplane is the plane with the
maximum margin between points from separate classes. The classifier can then be applied
to new samples and assign a class label [53].

Leibowitz et al. [43] reported the HRD-RNA for pan-cancer using a logistic regression
model. Logistic regression models the probability of classifying a sample into possible
outcomes with a number of dependent variables [51]. Leibowitz et al. [43] also included
the HRD-DNA based on genome-wide LOH.

Four studies based their HRD test on a least absolute shrinkage and selection operator
(LASSO) regression model, a regression analysis used as a technique to reduce model com-
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plexity. LASSO selects and shrinks the model to use the optimum number of features based
on regularization [54]. Of the four studies using LASSO, Zhuang et al. [41] reported the
24 gene pair (24-GPS) classifier that provided an HRD signature for pancreatic cancer based
on gene expression input. Davies et al. [28] developed HRDetect to classify BRCA1/BRCA2-
deficient breast, ovarian, and pancreatic cancer based on a LASSO logistic regression model
that included mutational signatures, LOH, and indels from WGS as input. Diossy et al. [31]
extended the HRDetect from Davies et al. [28] to use mutational signatures, LOH, and
indels from WES data of breast cancer and brain metastases. They presented the retrained
WES-HRDetect based on a LASSO logistic regression model. The study by Liao et al. [44]
also used a LASSO logistic regression model for their Transcriptomic HRD score for breast
cancer, which was based on gene expression input.

Three studies used a random forest (RF) model, which is an ensemble method con-
structed by a large number of independently trained decision trees where features for
each decision tree are selected randomly [55]. Of the three studies using RF-based models,
Nguyen et al. [37] reported the pan-cancer Classifier of HOmologous Recombination Deficiency
(CHORD)I based on single-base substitutions, indels, and structural variants. Barenboim
et al. [38] reported the DNA-methylation-based RF classifier providing a BRCAness signa-
ture for osteosarcoma using methylation copy numbers from array data. Kang et al. [42]
reported transcriptional HRD (tHRD) based on transcript usage.

Gulhan et al. [34] developed Signature Multivariate Analysis (SigMA), which uses an
approach based on mutational signatures extracted by non-negative matrix factorization
(NMF). NMF is an unsupervised machine learning algorithm that factorizes the original
dataset into a feature set and a coefficient set. Each feature set has an associated weight in
the coefficient set. The feature and coefficient set can be used to select, reduce, or analyze
individual features of data [56].

Most of the 11 studies with a novel classification algorithm to classify samples into
non-HRD and HRD groups were based on genomic scar measures.

Popova et al. [7] reported LST as a classifier of HRD in breast cancer. The LST test
consists of a two-step decision rule with segregation of tumors based on ploidy followed
by segregation according to the number of LST counts. Large-scale genomic alterations
(LGA), which are reported to correspond to LST, were used by Eeckhoutte et al. [35], who
developed ShallowHRD for breast and ovarian cancer based on the sum of LGA counts
from WGS at low coverage (~1X coverage).

Abkevich et al. [6] reported HRD-LOH as a classifier of HRD in ovarian cancer based
on the sum of LOH segment counts. Smyth et al. [32] also included a measure of LOH,
the genomic LOH, for HRD classification in esophagogastric cancer. The genomic LOH test
was based on the sum of the lengths of included LOH segments divided by the length of
the interrogated genome.

Telli et al. [16] reported the combined homologous recombination deficiency score (HRD
score) for breast and ovarian cancer, which consists of the numeric sum of LOH, LST, and
TAI counts. Similar to the HRD score, Chen et al. [39] reported a genomic scar algorithm
(GSA) to provide a measure of HRD for breast and ovarian cancer. The GSA consists of the
numeric sum of LST, TAI, and LOH, which then is subtracted by a correction coefficient
multiplied by a ploidy value.

The study by Watkins et al. [27] reported scores of chromosomal instability scarring
(SCINS) for breast and ovarian cancer, consisting of four scores based on different types of
allele-specific copy-number profiles.

Zhang et al. [26] developed a genomic instability score for ovarian cancer based on
the sum of the number of copy number changes and somatic mutations multiplied by
a constant.

Tandem duplications as a genomic scar that provided a measure of HRD in BRCA1-
type breast cancers were reported by Qu et al. [45], who developed the tandem duplications
score (TD-score) based on the counts of small (<10 kb) tandem duplications.
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Two studies based their HRD test on other measurements of HRD than genomic
scars, with Lu et al. [25] reporting the hypothesized HR-deficiency score (HRDS) classifying
breast and ovarian cancer based on gene expression levels and Wang et al. [30] developing
the 10-miRNA-score for HRD prediction of ovarian cancer based on the expression levels
of miRNA.

3.5. HRD Test Performance

The included studies provided a variety of performance measures and validation
results (Table 2) based on a study-individual gold standard of HRD. Sixteen studies re-
ported the sensitivity of their HRD test, of which five studies reported more than one
sensitivity due to multiple validations. Corresponding specificities were only reported in
13 studies, of which four provided more than one specificity. An overview of the sensitivity
and specificity of the different HRD tests is displayed in Figure 4 and Table 2. The sensi-
tivity ranged from 53% to 100%, and the specificity ranged from 40% to 100%. The HRD
test with the highest sensitivity and corresponding specificity was HRD-DNA [43], fol-
lowed by BRCA1-like digitalMLPA classifier [36], BRCA1 classifier [22], ShallowHRD [35],
BRCA1-like MLPA classifier [23], DNA-methylation-based RF classifier [38], and BRCA2
classifier [24]. The HRD score [16], LST [7], BRCA1ness signature [29], and Ovarian cancer
BRCA1-like classifier [40] had high sensitivity, but the corresponding specificities were
relatively low (Figure 4). HRDetect [28] also had a high sensitivity but did not report a
corresponding specificity.
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Nine studies provided an area under the curve (AUC) ranging from 75% to 100%
(Table 2), with AUC being highest for HRD-DNA [43], HRD-RNA [43], CHORD [37],
24-GPS [41], and WES-HRDetect [31].

The accuracy was reported in five studies ranging from 72 to 91% (Table 2), with
accuracy being highest for the BRCA1-like digitalMLPA classifier [36].

4. Discussion

This systematic literature review identified 27 studies in which an HRD test was
developed or trained to stratify patients into HR groups, with all HRD tests being based on
genomic or RNA profiling.

In the included studies, the definition of HRD was rather heterogeneous and lacked
consensus between the studies. The definition of HRD was based on multiple measures
used either alone or in combination (Figure 2), with defect BRCA1/2 and LOH being the
most frequently used measures of HRD.

Most of the HRD tests included in this review were developed to predict HRD in breast
and ovarian cancer, followed by prostate and pancreatic cancers (Table 1). The rationale
for developing HRD tests for these cancer types could be that more than 15% of breast,
ovarian, and pancreatic cancers and 14% of prostate cancer have mutations in HR-related
genes [57]. In addition, mutations in BRCA1/2 are associated with an increased lifetime
risk of developing breast, ovarian, prostate, and pancreatic cancers [58]. Furthermore,
early studies of PARPis showed promising results in BRCA1/2-deficient cells, which built
the foundation for clinical trials investigating PARPi response in ovarian cancer. Later,
clinical trials with PARPis were expanded to breast, prostate, and pancreatic cancers [59].
As the majority of HRD tests included in this review are developed for HRD detection
in ovarian and breast cancer, it is important to recognize that other cancer types might
include different HRD patterns. For instance, Diossy et al. [31] found that brain metastases
from breast cancer tend to have a higher HRD score than primary breast cancer, which
should be considered in a clinical context. The studies included in this review have used
a variety of different tissue types in the development of the HRD test. It is important to
recognize that HRD measures generated from various tissue types might produce different
results and should be validated accordingly. Furthermore, there might be several important
considerations when implementing an HRD test in clinical practice, such as the stability of
the material used, cost of running the analysis, and the turnaround time.

The lack of consensus on the HRD definition and a gold standard measure of HRD
provides a growing problem when developing HRD tests. This became evident during the
PRIMA and VELIA clinical trials, where patients with HRD-positive tumors, defined by the
myChoice HRD test based on LOH, LST, and TAI, responded to combination treatment with
PARPis. However, the response to PARPis was not at the same magnitude as for patients
with HRD defined by somatic or germline pathogenic variants in BRCA1/2 [12,19]. This
highlights that defects in BRCA1/2 are one of the most robust measures of HRD, although
it does not cover all phenotypes of HRD. In addition, secondary or reversion mutations
in BRCA1/2 have been found to restore the functionality of the HR mechanism [60,61].
Hence, genomic scars, such as LOH, LST, and TAI, provide an imperfect measure of the
HR function, as these measures are results of prior HRD exposure [62,63]. HRD tests based
on functional assays can assess the HR mechanism’s functionality, potentially providing a
more precise and clinically relevant measure of HRD. Unfortunately, such functional assays
are in the early stages of development and are prone to a similar lack of consensus on HRD
definition as other HRD tests, making clinical implementation difficult [64].

Most HRD tests were trained with HRD defined as various measures specific to BRCA1
and/or BRCA2. There is, however, evidence that HRD can arise based on variants in a
wider set of genes related to the HR pathway [10,11]. Interestingly, only ShallowHRD was
developed based on an HRD definition, including more HR-related genes than BRCA1 and
BRCA2 [35]. HRD definitions mainly based on variants in BRCA1/2 or genes related to the
HR pathway have been referred to be the etiology or origin of HRD, as these variants are
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the main reason that a given gene is inactivated or defective [11]. HRD tests such as tHRD,
SigMA, SCINS, WES-HRDetect, genomic LOH, DNA-methylation-based RF classifier, and
transcriptomic HRD score defined HRD as various measures of structural variants across
the genome, which have been referred to as genomic scars or prior HRD exposure. HRD
tests based on genomic scars aim to detect a genomic pattern resulting from prior HRD
exposure without detecting the underlying reason [11].

The performance of the included HRD tests varied substantially (Figure 4 and Table 2),
with the HRD tests HRD-DNA [43], BRCA1 digitalMLPA classifier [36], and BRCA1 classi-
fier [22] having average sensitivities and specificities above 90%. In common for these HRD
tests is the use of copy number as an algorithmic input and a definition of HRD as biallelic
loss or variants in BRCA1 and/or BRCA2. The BRCA1 digitalMLPA classifier, however,
indirectly defines HRD as variants in BRCA1 by using the BRCA1 classifier as the HRD
definition, which makes interpreting this algorithm somewhat difficult. Although these
HRD tests perform well when predicting samples with biallelic loss or variants in BRCA1
and/or BRCA2, their utility might be limited by their HRD definition.

Some studies evaluated the HRD tests’ performance by AUC, with HRD-DNA, HRD-
RNA, CHORD, 24-GPS, and WES-HRDetect all having AUCs above 96%. However, the
24-GPS was not evaluated in an external dataset, which is why this test needs further eval-
uation to validate the performance. Interestingly, for these five HRD tests, their individual
input biomarkers were also included in their individual HRD class label definition, contrary
to most of the other studies using various biomarkers to predict an HRD class label defined
as, for instance, BRCA mutations.

Prediction models are usually validated using sensitivity and specificity [65]. A high
sensitivity describes a model’s ability to predict true positives, and specificity describes
the model’s ability to predict true negatives. Hence, a model having both high sensitivity
and specificity minimizes false positives and false negatives [65]. However, many of
the included studies used a non-classical approach to assess performance in which they
suggested that false-positive samples, impacting the specificity, might not be misclassified
samples but instead samples which harbor similar patterns as HRD-positive samples.
Thereby, the false-positive samples are suggested to be true HRD samples that do not
comprise the measures used as the HRD definition. This complicates the comparison of
performance for the HRD tests even further. For instance, Davies et al. [28] found that
one-third of tumors with a high HRDetect score could not be verified as BRCA mutated,
but they argued that these tumors seem biologically comparable to BRCA-mutated tumors
and might respond similar to PARP inhibitors.

A way to empirically compare the performance of the HRD tests could be based on
drugs targeting HRD, such as PARPis and platinum chemotherapy, with drug response
being used as a surrogate marker for HRD. Although the response to PARPis might be
affected by other mechanisms, the approach could be useful for the comparison of various
HRD tests and support the clinical utility of the tests [11,64].

In a clinical context, it is important to be aware of the HRD definition and how it
influences the proportion of patients selected as HRD-positive. For instance, in the VELIA
clinical trial, the percentage of patients eligible for PARPi treatment when considering
HRD as BRCA mutations were 26% compared to 55% when considering HRD as either
BRCA mutations or a measure of genomic scars defined by the myChoice HRD test [19].
This further highlights the importance of the HRD definition as it can highly influence
the proportion of patients with HRD-positive tumors and, thereby, patients eligible for
treatment. When summarizing the issues concerning HRD definition and the non-classical
approach to specificity, it is intuitive to believe that there will be some potential limitations
in identifying the group of patients who have functional HR repair and, thereby, likely not
to benefit from treatments targeting HRD. This issue has been raised elsewhere in several
studies [11,64].

The main limitation of this review was the limited opportunity to compare HRD tests
based on their performance measures, as many HRD tests lacked information regarding
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performance and/or did not conduct an external validation of the HRD test, as well as
the lack of consensus of HRD definitions. Furthermore, the studies were reported in a
rather heterogeneous manner, which hindered a clear interpretation of the effects of, e.g.,
analysis platform, data input, or disease on the performance of the HRD tests. However,
this systematic review provides a detailed summary of the numerous parameters included
in the HRD detection algorithms and addresses the challenges of choosing a suitable HRD
test due to the heterogeneity of the parameters. Although we conducted the systematic
literature search using two widely used databases and assessed reviews of relevant topics
and the bibliographies of the included articles, we cannot exclude having missed relevant
articles. Studies published in languages other than English and those without available full
text were not included in the review, so we cannot exclude a publication bias. In addition,
the review was limited to including HRD tests based on genomic and RNA profiling and
excluding HRD detection by functional assays and HRD tests based solely on HR-related
pathogenic variants. The decision to exclude HRD tests based on functional assays and
studies based solely on HR-related pathogenic variants was based on a large number of
studies eligible for full-text review when including these HRD tests too. Furthermore,
we limited inclusion to studies that developed or trained a novel HRD test. Studies that
evaluated an HRD test in additional cohorts without training or modifying the HRD test
were excluded due to the significant addition of studies eligible for full-text screening.
Therefore, we cannot exclude that this limitation on the HRD tests included can bias our
evaluation of the HRD tests’ performance.

5. Conclusions

This systematic review provided an overview of the HRD tests that have been devel-
oped and summarized the variety of different biomarkers, algorithms, and HRD definitions
used. The primary challenge for the comparison of HRD tests lies in the definition of HRD.
The performance of the included HRD test varied with some performing better than others.
However, this review also highlights that the HRD definition influences the proportion of
samples classified as HRD and impacts the classification performance.

With this systematic review comparing HRD tests, we have provided an overview that
can inspire other researchers in searching for a gold standard HRD definition, as this field
requires one such to most suitably classify tumors as HRD or non-HRD. In addition, we
have highlighted the importance of the factors that should be considered when choosing
an HRD definition and HRD test for future planning of clinical trials and studies, as a
consensus definition of HRD is truly needed.
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