Aalborg Universitet

Effect of Zn/Co node ratio on the glass transition in the high-density amorphous ZIF-4

Du, Z.J.; Qiao, A.; Zhou, H.M.; Tao, H.Z.; Yue, Yuanzheng

Creative Commons License Unspecified

Publication date: 2023

Document Version Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):

Du, Z. J., Qiao, A., Zhou, H. M., Tao, H. Z., & Yue, Y. (2023). Effect of Zn/Co node ratio on the glass transition in the high-density amorphous ZIF-4. Abstract from International Commission on Glass Annual Meeting 2023, Hangzhou, China.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal -

Take down policy

If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Effect of Zn/Co node ratio on the glass transition in the high-density amorphous ZIF-4

Zijuan Du^{1*}, Ang Qiao¹, Hemin Zhou¹, Haizheng Tao¹, Yuanzheng Yue²

¹ State Key Laboratory of Silicate Materials for Architectures (Wuhan University of Technology), Wuhan 430070, China.

² Department of Chemistry and Bioscience, Aalborg University, DK-9220 Aalborg, Denmark. *Email: zijuan.du@ucl.ac.uk

Abstract: Zeolitic imidazolate frameworks (ZIFs) are an important subset of Metalorganic framework (MOF) glasses, which have been utilized for various applications. Upon heating, ZIF-4 crystals experience a polyamorphic transition, i.e., the transformation of a super-strong (i.e., very low liquid fragility in Angell's sense) lowdensity liquid into a relatively "fragile" high-density liquid.[1] Upon cooling, the latter transforms into the high-density amorphous phase (HDA). Understanding the connection between the glass transition temperature (T_g) and structural factors is crucial for processing the ZIF liquid phase with desired properties. By reheating the quenched HDA, the glass-to-liquid transition occurs. Despite notable progress in studying ZIF glasses, the nature of the HDA of ZIFs remains to be revealed. Particularly, the influence of metal node substitution on $T_{\rm g}$ of the ZIF-4 HDA has not yet been investigated. Here, we report the preparation of bimetallic Zn/Co-ZIF-4 HDAs and their $T_{\rm g}$ values [2]. The temperature dependence of the isobaric heat capacity ($C_{\rm p}$) of ZIF-4 HDAs was measured to determine the T_g . The T_g non-linearly decreases with the molar ratio R, where R is Co/(Co+Zn), indicating the presence of a mixed-metal node effect [3]. The mixed-metal node effect on T_g is attributed to the difference in the degree of configurational freedom owing to the difference in tetrahedral symmetry. The degree of configurational freedom is influenced by the electronic structure and metal-nitrogen bonding nature [2]. Our study provides insight into the mixed-metal node effect on the glass transition in the HDA of ZIFs. The insight also helps design meltable ZIFs.

Key words: Zeolitic imidazolate frameworks; Mixed-metal node effect; High-density amorphous phases; Glass transition

Fig. 1 (a) Isobaric heat capacity (C_p) curve for Zn_{0.94}Co_{0.06}-HDA at the heating rate of 10 °C min⁻¹ in argon. (b) The molar ratio *R* dependence of T_g and $C_{p,conf}$. Dotted lines: guide for the eyes. Dashed lines: Linear lines connecting the two end-member compositions.

References:

[1] ANGELL C A, Science, 1995, 267, 1924-1935.

[2] DU Z, QIAO A, ZHOU H, et al. Chem. Commun., 2023, DOI: 10.1039/D3CC02492J.

[3] MADSEN R S K, STEPNIEWSKA M, YANG Y, et al. RSC Adv., 2022, 12, 10815-10824.