

Aalborg Universitet

MAES

a ROS 2-compatible simulation tool for exploration and coverage algorithms

Andreasen, Malte Z.; Holler, Philip I.; Jensen, Magnus K.; Albano, Michele

Published in:
Artificial Life and Robotics

DOI (link to publication from Publisher):
10.1007/s10015-023-00895-7

Creative Commons License
CC BY 4.0

Publication date:
2023

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Andreasen, M. Z., Holler, P. I., Jensen, M. K., & Albano, M. (2023). MAES: a ROS 2-compatible simulation tool
for exploration and coverage algorithms. Artificial Life and Robotics, 28(4), 757-770.
https://doi.org/10.1007/s10015-023-00895-7

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: May 24, 2024

https://doi.org/10.1007/s10015-023-00895-7
https://vbn.aau.dk/en/publications/c38d38f8-6484-4b46-b1a3-6d8cc0e43fc7
https://doi.org/10.1007/s10015-023-00895-7

Vol.:(0123456789)1 3

Artificial Life and Robotics (2023) 28:757–770
https://doi.org/10.1007/s10015-023-00895-7

ORIGINAL ARTICLE

MAES: a ROS 2‑compatible simulation tool for exploration
and coverage algorithms

Malte Z. Andreasen1 · Philip I. Holler1 · Magnus K. Jensen1 · Michele Albano1

Received: 26 March 2023 / Accepted: 14 July 2023 / Published online: 21 September 2023
© The Author(s) 2023

Abstract
With the aim of allowing the efficient and realistic simulation of swarm algorithms for exploration and coverage, we present
the tool Multi-Agent Exploration Simulator (MAES), which is an open-source physics-based discrete step multi-robot
simulator. MAES features movement in a continuous 2D space, realistic physics based on the Unity framework, advanced
visualization techniques such as heatmaps, custom wireless signal degradation, both randomly generated and custom user-
provided maps, and a ROS (Robot Operating System) interface. This latter characteristic could allow to port the simulated
algorithms to real-world robots. We present performance tests, conducted with rather modest hardware, showing that MAES
is able to simulate up to 5 robots in ROSMode (using the ROS integration) and up to 120 robots in UnityMode (development
performed directly into the C# Unity Editor). A usability test was conducted which hinted that the target audience of robotics
researchers and developers is able to quickly install, setup, and use MAES for implementing simple robot logic.

Keywords  Robot operating system · Continuous space · Autonomous robots · Swarm robotics · Multi-agent · Nav2

1  Introduction

Testing implementations of swarm robotics can be an expen-
sive and difficult task. For this reason, many developers look
to simulations as they offer a cheaper and easier solution for
testing an algorithm or swarm behavior. Popular simulation
solutions include Argos [1] and Gazebo [2]. Even simula-
tions, however, can be difficult to set up and configure. This
difficulty is usually caused by the simulation tools having a
heavy emphasis on modularity and customizability, which
often comes at the cost of increased complexity for the user.
Additionally, some simulation software has heavy require-
ments in terms of CPU power, which can necessitate using

high-end computers or computing clusters, and limit the size
of the swarm to be simulated.

One significant domain for swarm robotics is online collec-
tive terrain exploration and coverage, where online refers to
the terrain being initially unknown and, thus, explored while
the swarm algorithm is executed [3]. Practical application of
terrain exploration spans from search & rescue to surveil-
lance, while terrain coverage algorithms can be used, for
example, for floor cleaning and smart farming [4, 5]. This set
of problems has arguably a strong need for simulation tools,
especially for online algorithms, since the latter must be tested
against a large number of plausible terrain configurations to
evaluate if an algorithm behaves as required. These require-
ments raise the need for a simulation platform that is not only
realistic, but also computationally efficient.

This paper presents the simulation tool Multi-Agent
Exploration Simulator (MAES). Previous work [6] has intro-
duced a preliminary version of MAES, which was a simple
implementation of a realistic simulation framework (move-
ment space represented as a continuous 2D plane rather than
a grid of cells—see Fig. 1—and hardware capabilities of
robots from different state-of-the-art algorithms mapped
onto a common ground) implemented on top of the Unity
physics engine [7]. However, the tool was oriented at com-
puter scientists, and in fact it required to develop algorithms

 *	 Michele Albano
	 mialb@cs.aau.dk

	 Malte Z. Andreasen
	 malte@mza.dk

	 Philip I. Holler
	 philipholler94@gmail.com

	 Magnus K. Jensen
	 magnjensen@gmail.com

1	 Department of Computer Science, Aalborg Universitet,
Selma Lagerlöf Vej 300, 9220 Aalborg, Denmark

http://crossmark.crossref.org/dialog/?doi=10.1007/s10015-023-00895-7&domain=pdf

758	 Artificial Life and Robotics (2023) 28:757–770

1 3

directly in the C# programming language in the Unity Edi-
tor, it was not compatible with the workflow of many robot-
ics researchers and developers, and the algorithms devel-
oped were not easily ported to real robots since the simulator
interface had very little overlap with existing approaches
used in robotics.

This paper focuses on a new iteration (namely, 2.0) of
MAES1 that introduces a number of technical improvements
as well as a new interface for controlling the robots using
Robot Operating System version 2 (ROS2) [8], which allows
robotics researchers and developers to use existing libraries
and solutions when developing control algorithms in MAES,
and it eases adapting the developed controllers to real world
robots.

MAES allows for visual inspection for easier debugging
and comparison of implemented algorithms. MAES has
two modes: UnityMode with support for C# development
directly into the C# Unity Editor, and ROSMode which
enables the ROS integration. The main contributions of this
paper include:

–	 With the aim of a self-contained work, a discussion of
ROS 2, as well as a quick summary of existing simulation
platforms (Sect. 2);

–	 The description of the MAES tool (Sect. 3);
–	 A detailed discussion on how the ROS interface was

implemented into the MAES architecture (Sect. 4);
–	 Results of performance and usability tests, to ensure that

MAES has better performance than existing systems
and still is a good fit with the competencies of robotics
researchers and students (Sect. 5);

–	 Proposals for future work to apply MAES to new use
cases and scenarios (Sect. 6).

2 � Background information

2.1 � Simulation of exploration and coverage
algorithms

Realistic simulation of swarm exploration and coverage
algorithms is a relatively unexplored research area. In fact,
even though many works introduce novel algorithms, we
argue that most simulation settings are far from realistic. In
fact, existing works consider one or more of the following:
(i) the environment as grid-like structure that can be
maneuvered by moving from cell to cell [9, 10] where (ii)
the robots cannot suffer from colliding with each other; (iii)
communication between robots has unlimited range and
is not blocked by walls [11, 12]; (iv) robots know always
each other’s location [13], and are provided with real-
time distributed Simultaneous Localization And Mapping
(SLAM) [14].

A few works aimed at providing a common—and more
realistic—framework to compare existing algorithms. A
comparison of coverage performance for existing algorithms
with reduced communication range can be found in [15].
Moreover, the authors of [16] extend the comparison by
implementing the algorithms using hardware FireBird V
robots on a small plane. However, contrary to MAES, both
works consider movement in a grid-based environment (see
Fig. 1).

2.2 � ROS and robotics simulators

Multiple simulation tools exists for robotics, such as Argos
[1], Gazebo [2], Player/Stage [17], and NVIDIA’s Isaac [18].
All of the aforementioned simulators are general purpose,
and include some kind of ROS support, for either ROS 1 or
ROS 2 interface [19].

As of writing, the most popular simulator for use with
ROS appears to be Gazebo, as it is a first party simulator,
developed by the Open Robotics Foundation, which ROS
also belongs to. Gazebo is highly modular and customizable.
For example, the user can specify the physical structure of
the robots through Unified Robot Description Format files.
This type of flexibility allows it to support most use cases
but comes at the cost of increased complexity, a cumbersome
setup process, and high computational overhead.

The work in [20] describes a recent simulator based on
Unity. The scenario targeted by the simulator is focused
on the Jackal unmanned ground vehicle from ClearPath
Robotics, as the robot navigates autonomously through
differing environments. The simulator focuses on a single

Fig. 1   Left: An agent moving in continuous space in MAES. Right:
a traditional grid-based simulation, with the red and blue dots repre-
senting agents and the black dots representing walls

1  A video demonstration of MAES can be found at https://​youtu.​be/​
lgUNr​TfJW5g. MAES is open source and the source code can be
found at https://​github.​com/​DEIS-​Tools/​MAES.
2  Unless otherwise specified, in this paper, the term ROS refers to
ROS version 2

https://youtu.be/lgUNrTfJW5g
https://youtu.be/lgUNrTfJW5g
https://github.com/DEIS-Tools/MAES

759Artificial Life and Robotics (2023) 28:757–770	

1 3

robot, on navigation only, and it is hardly applicable to
swarm algorithms.

Given their high level of modularity and general purpose,
the aforementioned simulation tools present a steep learning
curve and high computational load. On the other hand, our
proposed MAES is intended as an alternative simulator to
be used only in a limited number of use cases, namely multi-
robot exploration and coverage. Thus, MAES can focus on
a higher level of usability and performance, as it will be
discussed in this paper.

2.3 � ROS definitions

ROS is a set of libraries and tools for building robotics
systems [8]. ROS is developed and maintained by Open
Robotics [21]. One of the main ideas behind ROS is that
developed software can be used both with real-world robots
and in simulated environments.

Throughout this article, we will use several ROS-specific
terms. As no formal definitions are provided in the ROS
2 documentation, the following definitions are summaries
of the explanations from the ROS 2 documentation. [8] A
node is a fundamental ROS element that serves a single,
modular purpose in a robotics system. Nodes communicate
via either Services, which implement a request-and-response
communication method, or by publishing messages over
topics, which allow any number of other nodes to subscribe
to and access the messages’ content.

Message formats and executable code are defined inside
ROS workspaces, which are locations in the file system
that contains a number of ROS related development files.
A launch file is a file with a definition of how to execute
one or more nodes with a specific configuration. A launch
file can be called from the ROS 2 Command Line Interface
(CLI). Actions are a communication type in ROS intended
for long running tasks, and consist of three parts: a goal,
feedback, and a result. A costmap is a grid-like structure
of cells (an occupancy grid), representing the surrounding
environment in terms of the cost of moving from the current
location to the location represented by the cell. A low or zero
value means a cell is free and a high value means a cell is
occupied.

3 � The MAES tool

This section describes the MAES simulation tool. MAES
is a 2D discrete time-step continuous-space physics-based
simulation, visualized in 3D. The simulation progresses
in steps of 0.01 seconds, and each agent receives a state
update and executes its own algorithms every tick, i.e., 0.1
seconds, which is, thus, the reaction time of an agent. The
simulator uses the Unity Engine [7] for visualization and

physics simulation. The simulated robots are mapped onto
a common hardware model, which allows to add or remove
hardware capabilities to provide insights into the benefit of
integrating specialized hardware into the robots.

MAES features a map generator for dynamically
generating cave type and building type maps Sect. 3.1
given a random seed and some parameters. MAES allows
for a standardized interface for the interaction between a
controller and a robot Sect. 3.2, a realistic physical model for
agents’ movement Sect. 3.2.1 , sensing and communication
via either broadcast wireless communication or environment
tagging Sect. 3.2.2, simulated SLAM Sect. 3.2.3, and
advanced visualization features Sect. 3.3. MAES allows
many of its features to be configured, and it takes parameters
for agent constraints, for physics simulation, and for map
generation. A list of all possible parameters for the simulator
can be seen on the MAES public code repository.

3.1 � Environment maps

MAES provides automated map generation for building
and cave-map types with configurable parameters, see
Fig. 2. Moreover, MAES allows to specify a custom map
by providing an image in the ’Portable Gray Map’ format
(.pgm). PGM is also the format exported by the Nav2 Map
Saver node, meaning that ROS generated SLAM maps can
be imported into MAES. When provided with an image, the
MAES map generator creates wall tiles for every completely
black pixel and open tiles for every other pixel. Figure 3
shows an example of an image that has been converted into
a map.

3.2 � Agents

Within MAES, an agent’s capabilities can vary depending
on the parameters that describe the simulation at hand, e.g.,
limited vision, broadcasting range, etc. Figure 4 shows the
3D model of an agent, inspired by the MONA robots [22].

Fig. 2   Example of generated cave and building maps of 50x50 tiles.
The red squares on the top left show the size of a tile

760	 Artificial Life and Robotics (2023) 28:757–770

1 3

MAES is intended to support the implementation of many
different algorithms. For this reason we expose interfaces for
the algorithms to control the agents and provide access to
sensor information. In particular, we expose a native inter-
face to be used in UnityMode, and a ROS interface, further
explained in Sect. 4, for the ROSMode.

3.2.1 � Movement

An agent is able to rotate in place and move straight ahead,
and the agent is not able to rotate while moving forwards.
Movement is simulated through the Unity 2D Physics
Engine by applying force at the position of each wheel.
This simulation accounts for inertia, drag, and collisions
with obstacles and other agents. The agents of the MAES
simulator can reach a top speed of 3 tiles/second (or 0.3 tiles/
tick). The tile size can vary depending on the scale of the

map. Drag is a function of speed, which in combination with
inertia results in non-constant acceleration, leads to an agent
reaching half its top speed (1.5 tiles/second) after 4 ticks.

3.2.2 � Sensors and communication

Agents are able to sense other agents at a given distance,
specified by a simulation parameter. To accommodate a
variety of scenarios with differing hardware capabilities,
the capability of sensing other agents can be configured to
be blocked by walls, i.e., line of sight requirement. Agents
detect collisions with walls and with other agents, and can
detect a nearby wall and the angle to said wall. This could,
for example, be achieved in the real world using a Light
Detection and Ranging (LiDAR) scanner.

Agents can communicate through broadcasting, for
example by means of the /maes_broadcast topic
when in ROSMode, and both communication range and the
capability to pass walls is defined via simulation parameters.
Line of sight is determined using ray tracing, and user can
either provide a maximum communication range or a custom
function, which is used to calculate communication success.
This latter capability is available at initialization time
(execution of the SimulationScenario function), by
passing it a custom calculateSignalTransmission
function, which takes as arguments the total distance
traveled for the signal, and the distance traveled through
solid walls, and must return a Boolean value indicating
whether the signal can be received. The advantage of this
approach is that the user can control the model used for
signal degradation. If a stochastic model is desired, the user
can factor random number generation into the signal success
function.

Finally, agents can drop tags on the ground to deposit
information in the environment and communicate indirectly
with other agents, for example by means of the /maes_
deposit_tag topic when in ROSMode, as required for
example by the Local Voronoi Decomposition algorithm
[23]. Tags can only be dropped at an agent’s current position,
but data can be written to and read from at a configurable
distance.

3.2.3 � Simulated SLAM

SLAM is simulated by performing a series of ray traces from
the position of the agent, and measuring the distance that the
rays traveled before a collision. This emulates the behavior
of technologies such as LiDAR scanners.

The agent continuously constructs a “SLAM map” using
the ray tracing information when it becomes available. If any
object is detected within the region of a tile, then that entire
tile is marked as solid. If a ray trace is sent in the direction
of a tile, and no object is found, the tile is assumed to be

Fig. 3   Example of a custom map. MAES converts the input image
of 50x50 pixels (a) into a map of 50x50 tiles (b) with walls for each
black pixels. The red squares on the top left show the size of a pixel/
tile

Fig. 4   The 3D model of the MONA-inspired agent used in MAES

761Artificial Life and Robotics (2023) 28:757–770	

1 3

open, unless previous traces indicate that it is solid. The
agent has access to an approximation of its location within
the SLAM map. The simulation can be configured to auto-
matically synchronize SLAM maps of agents that are within
communication range of each other.

3.3 � Visualization and debugging features

As MAES should function as a testbed for many diverse
algorithms featuring a potentially large number of agents,
such as most swarm algorithms, we include a wide variety
of visualization and debugging tools.

The user interface of MAES (see Fig. 5, or the full sized
image on the Github repository of MAES [24]) includes
several panels for controlling the simulation. The user interface
adapts to whether it is run in ROSMode or UnityMode. For
example, the visualization of the ROS connection in the top
left corner is not present when running in UnityMode. The
fast forward buttons are hidden in ROSMode, due to timing
issues in the nodes when fast forwarding with ROS—some
Nav2 nodes have some assumptions about the robot speed,
which can be violated if MAES is sped up.

A menu is included for controlling the camera view
over the simulation, as well as changing the simulation
speed. Additionally, agents can be individually selected,
which makes the camera follow the agent as well as reveal
debugging information in a side bar regarding the selected
agent.

When a simulation is running, the surface of the map is
highlighted in green if any agent at any point has explored
it. If an agent is selected, the surface reveals in blue the
tiles included in the SLAM map for said agent. The SLAM
map can also include sections of the map revealed by other
agents, if SLAM synchronization is enabled and the two
agents have been within communication distance of each
other. Environment tagging is visualized using colored boxes
on the ground where an agent has tagged the environment.

It is possible to hover or click on a tag to inspect the
information contained in it.

To allow better analysis of algorithm behavior, MAES
features two heatmap visualization modes (see Fig. 6), one
for the exploration measure and one for coverage. This
could, for example, be useful for testing patrolling algo-
rithms. The heatmaps display a color at each tile of the map,
indicating how recently it has been explored/covered by an
agent. Tiles that have been explored/covered recently have
a red tint. A tile progressively changes to a blue tint as time
passes without a robot exploring/covering the tile.

4 � Integration of ROS interface within MAES

This section describes how ROS is integrated into MAES.
Section 4.1 discusses which version of ROS is used and why.
Section 4.2, 4.3 and 4.4 describe in detail the architecture
and communication of MAES with ROS. Finally, Sect. 4.5
discusses how controllers must be implemented and provide
an example.

4.1 � ROS1 or ROS2?

As of writing, ROS exists in two major versions, ROS1 and
ROS2, where ROS2 is a complete remake created based on
observations and lessons learned from ROS1. The latest
release for ROS1 is ROS Noetic Ninjemys, which came out
in May 2020 and has end-of-life in May 2025. No further
releases for ROS1 are planned. The first version of ROS2
was released as alpha1 in August 2015 and the first official
release came out in 2017. The currently newest version
of ROS2 is Galactic Geochelone, which came out in May
2021 [25]. Galactic is, however, not a long-term support
(LTS) version. The first LTS version of ROS2, Humble
Hawksbill, came out on the 23rd of May 2022 and will have

Fig. 5   A screenshot from MAES with an environment tag visualized
with the hover menu containing sender and content of the tag

Fig. 6   a Shows the heatmap visualization for coverage and b shows
the heatmap for exploration. Red areas have been explored/covered
recently, blue areas earlier, beige areas have not yet been explored/
covered at all

762	 Artificial Life and Robotics (2023) 28:757–770

1 3

support until May 2027. As of the time of writing, Humble
Hawksbill does not yet support some of the navigation
functionalities, thus the descriptions in this document refer
to the non-LTS ROS2 (Galactic Geochelone) release.

The downside of using ROS2 is that a large amount of
existing libraries are written for ROS1 and many of them do
not have a version compatible with ROS2. However, due to
the end-of-life of ROS1 in 2025 and the continued support
for ROS2, we chose to target ROS2 for the MAES simulator.

4.2 � Architecture

MAES is intended to be used as an importable library, and
it exposes an interface that allows full configuration without
needing to manipulate MAES code. This interface exposes
methods for simulator instantiation, injection of algorithms
and scenarios, and allows for extraction of performance
metrics. MAES also contains a Unity Package definition,
which allows it to be used in the official Unity Package
Manager tool by pasting the Github repository URL into its
user interface.

Code snippet 1 shows an example of how a simulation
can be set up using the MAES framework. This code can
be attached to an empty Unity GameObject (the base-
objects used in the Unity Editor) so that the simulator gets
instantiated and run.

Listing 1: Example of MAES usage in a unity project

void Start(){

// Get/instantiate simulation

var simulator = Maes.Simulator.GetInstance();

// Configure the scenario

var caveConfig = new CaveMapConfig(123,

widthInTiles: 75, heightInTiles: 75);↪→

var scenario = new SimulationScenario(123,

mapSpawner: generator =>

generator.GenerateCaveMap(caveConfig));

↪→

↪→

simulator.EnqueueScenario(scenario);

simulator.StartSimulation();

}

One of the goals of MAES is to allow for easier
development and less setup and configuration efforts
compared to using ROS with other simulators. This is
achieved partly by having a single configuration file
maes_config.yaml, where all customization is done.
As an alternative, it is possible to feed the configuration
parameters programmatically to the configuration classes
(i.e., SimulationScenario, CaveMapConfig,

RobotConstraints, and BuildingMapConfig).
All the parameters are described in the documentation in the
public repository. [24]

The size and complexity of the MAES architecture
increase significantly when in ROSMode with respect to
UnityMode, due to the large amount of ROS nodes running
alongside MAES. When using MAES in ROSMode, the
user must first launch the ROS components, and then
subsequently launch MAES. All ROS nodes for all robots
are launched from a single custom ROS Launch file called
maes_ros2_multi_robot_launch.py. An abstract
overview of the ROS nodes launched from this launch file
can be seen in Fig. 7. The overview is abstract in the sense,
that the internal sub nodes created by the Nav2 and Slam_
toolbox packages are excluded from the graph for the sake
of readability. A full picture containing all nodes and topics
can be seen on the public code repository. [24]

Unity, on which MAES is based, already supports both
ROS 1 and ROS 2 communication through the ROS TCP
Connector and ROS TCP Endpoint plugins. These
plugins work in tandem to facilitate communication between
Unity and an external ROS system. The TCP Endpoint
is a ROS node that relays communication from Unity to
the ROS system and vice versa. The TCP Connector
is responsible for establishing a connection between Unity
and the TCP Endpoint node. In our configuration, the
maes_ros2_multi_robot_launch.py script
initially launches the default_server_endpoint
node from the ROS TCP Endpoint script. This node
is not namespaced,3, and a single default_server_
endpoint node is launched for all robots. After launching
that node, maes_ros2_multi_robot_launch.py
starts launching namespaced nodes.

To know how many robots, i.e., namespaces, to create,
maes_ros2_multi_robot_launch.py reads from
the same configuration file as MAES, which ensures that
they are synchronized. In addition to the number of robots,
maes_ros2_multi_robot_launch.py reads
parameters such as the raytrace range from the configuration
file and injects it into the parameter file of each robot. This
approach allows for a single parameter file to be modified
and used for all robots, which enables easier development
and debugging. A disadvantage of this approach is that all
robots have the exact same configuration, which can reduce
realism and flexibility.

After successfully reading and injecting the parameters,
maes_ros2_multi_robot_launch.py launches for
each robot a maes_robot_controller node, which

3  Namepace refers to a prefix, e.g., /robot0/ which is prepended
to all topic names used by the node, as well as the node name itself,
to allow to distinguish between the robots.

763Artificial Life and Robotics (2023) 28:757–770	

1 3

is the node containing the robot logic. Additionally, a
namespaced launch file called maes_bringup_launch
is called for each robot, which further launches the nodes
slam_toolbox and Nav2 inside the given namespace, used
for navigation and mapping purposes respectively.

4.3 � Publishing robot state through ROS

Many nodes in the MAES ROS workspace depend on input
from MAES to function. To supply the needed input MAES
publishes data to the topics /tf, /scan and /maes_
state. The /tf topic is used for the transforms, i.e., the
position and rotation of a given robot including the relative
positions of sub-components of the robot. As of writing,
the transforms published by MAES do not contain any
inaccuracies, which reduces realism, as a position derived
through odometry would likely be imprecise due to sensor
inaccuracies. However, in the future this could be adapted to
use the positional inaccuracy variable that already exists for
SLAM when MAES is executed in UnityMode [6].

Once per tick (10 times each second), data for the /scan
topic are created and sent by performing a series of ray
casts from the current position of the robot. Every message
consists of distance information for 180 ray casts performed
at a 2-degree interval around the robot.

The /maes_state topic uses a custom ROS message
called StateMsg that contains information regarding the
current simulation tick, the current status of the given robot
(e.g., rotating or moving), whether the robot is colliding with
something, incoming broadcast messages, environment tags

nearby as well as information about other nearby robots. The
information received through this topic can then be used in
the logic controller for the robot, in a manner similar to what
is provided to the UnityMode algorithms.

As mentioned in Sect. 4.2, we use the ROS TCP
Connector package from Unity in order to publish the
messages to the ROS topics [26]. The ROS TCP Connector
allows for generating serializable C# classes from message
definitions found in a ROS workspace. The generated
classes can then be instantiated as objects in the C# code,
populated with values, serialized, and then published to the
corresponding topic. The messages are sent through the ROS
TCP Connector to the ROS TCP Endpoint, [27] which relays
all messages as if they came from a regular ROS node. A
representation of this approach can be seen in Fig. 8.

4.4 � Mapping Nav2 commands to MAES

Nav2 is the ROS package used for navigation [28]. Nav2
contains several nodes that depend on the /tf topic for
information regarding current position. Additionally,
Nav2 constructs costmaps from the /scan topic used for
navigation.

Moreover, Slam_toolbox [29] uses the /scan topic for
creating the map, and the /tf topic for positioning the robot
within the map. Slam_toolbox, however, differs from Nav2
by having a higher resolution and the ability to export the
map for later use.

For MAES, we initially wanted to be able to merge
maps for both the slam_toolbox as well as the Nav2 cost-
map, to mirror the map merging feature that is available

Fig. 7   Visualization of how nodes are launched from our ROS launch script

764	 Artificial Life and Robotics (2023) 28:757–770

1 3

to UnityMode algorithms and allow cooperative navigation
in Nav2. This is, however, not possible using the official
slam_toolbox and nav2 packages, since this capability has
not yet been ported officially to ROS 2.

Whenever a robot is instructed to navigate to some
point using Nav2, the Nav2 nodes publish movement
instructions on the cmd_vel topic. These instructions
consist of a desired force application for each wheel of the
robot. The standard Nav2 configuration assumes that dif-
ferential steering is possible, i.e., that the robot can rotate
while moving.

Fig. 8   A visualization of how MAES publishes to ROS nodes on
ROS topics

4.5 � Controlling the robot in MAES

As discussed in Sect. 4.2, when executed in ROSMode,
MAES launches a number of robot specific nodes, such as
maes_robot_controller, which allows for control
functionality. When the node is initialized, all of the sub-
scriptions and clients for the topics, services, and action
servers are created in the given namespace, including call-
back functions. The services and action servers include func-
tionality for navigation, broadcasting messages, and depos-
iting environment tags. The user can use this information
to implement the robots’ logic. The logic controlling the
behavior of the robot is written in the python programming
language in the main function of the maes_robot_con-
troller.py file, and can make use of the services, infor-
mation received on topics, and action servers.

In MAES UnityMode, the code must be developed
using C#, and the robot controller must implement the
IRobotAlgorithm interface. This interface contains
an update function called every logic tick of the simulation
as well as a start method for bootstrapping. The algorithms
are then compiled alongside the simulator itself. To avoid
the computational overhead introduced by the ROS TCP
Endpoint and TCP Connector plugins, the global settings
configuration contain a Boolean value that toggles these
plugins, such that they no dot consume resources when
they are actually not needed.

When developing the algorithms, it must be taken into
account that unlike the C# algorithm implementations,
the Ros2Algorithm is nondeterministic because it is
dependent on the timing of network messages, while the
simulator is deterministic when in UnityMode.

Code Snippet 2 shows a simple frontier algorithm,
which exemplifies the usage of the interfaces for logging,
getting the state of the robot, and using the costmap for
navigation exposed by maes_robot_controller.

Additionally, maes_robot_controller exposes
methods for using the asynchronous navigation server such
as nav_to_pos. nav_to_pos makes the robot navigate
to an (x,y) coordinate asynchronously. Since actions servers
in ROS can be canceled, we allow for checking the status of
the current goal with a goal_handle, and we also pro-
vide utility functions such as cancel_nav, which simply
cancels the current goal using the navigation action client.

765Artificial Life and Robotics (2023) 28:757–770	

1 3

5 � Performance and usability tests

As mentioned in Sect. 1, existing simulating tools have
heavy requirements in terms of computing power, even
when simulating just a single robot. As robots in real
life are more and more likely to act as a part of a swarm

Listing 2: Example of a Frontier Algorithm implemented in the maes robot controller in Python

def main(args=None):

rclpy.init(args=args)

robot = RobotController()

robot.wait_for_maes_to_start_simulation()

next_goal: Coord2D = None

next_goal_costmap_index: int = None

Returns true if the tile is not itself unknown, but has 2 neighbors, that are unknown

def is_frontier(map_index: int, costmap: MaesCostmap):

-1 = unknown, 0 = certain to be open, 100 = certain to be obstacle

It is itself unknown

if costmap.costmap.data[map_index] == -1: return False

It is itself a wall

if costmap.costmap.data[map_index] >= 65: return False

return costmap.has_at_least_n_unknown_neighbors(index=map_index, n=2)

while rclpy.ok():

rclpy.spin_once(robot) # Allow callback execution

If no goal found or current nav complete

if next_goal is None or robot.is_nav_complete():

Find index of first tile in costmap that is a frontier

goal_index = next((index for index, value in enumerate(robot.global_costmap.costmap.data) if

is_frontier(index, robot.global_costmap)), None)↪→

No more frontiers found, just continue

if goal_index is None:

robot.logger.log_info("Robot {0} has no more

frontiers".format(robot._topic_namespace_prefix))↪→

continue

next_goal = robot.global_costmap.costmap_index_to_pos(goal_index)

next_goal_costmap_index = goal_index

Deposit tag when a new target/goal is found

robot.deposit_tag("From tick {0}".format(robot.state.tick))

robot.nav_to_pos(next_goal.x, next_goal.y)

If goal present but not yet reached

elif is_frontier(next_goal_costmap_index, robot.global_costmap):

Logging feedback from action server

continue

If goal is explored

else:

next_goal_costmap_index = None

next_goal = None

robot.cancel_nav()

rather than as a single isolated agent, the simulating tools
must be able to simulate more than one robot in the same
environment.

To investigate on the feasibility of using MAES for
swarm algorithms, we orchestrated a performance test,
see Sect. 5.1, which gives insights on the current state of

766	 Artificial Life and Robotics (2023) 28:757–770

1 3

performance, and can act as a baseline for benchmarking
future performance upgrades to MAES.

The ROS MAES integration was made in cooperation
with the Robotics Lab at AAU, which provided us with
continuous feedback during development. Regardless, we
designed and performed usability tests (see Sect. 5.2) to
confirm the usability of MAES in ROSMode for the target
audience, i.e., robotics researchers and students.

5.1 � Performance test

The tests were conducted on a thin and light laptop with
an AMD 4500U CPU (6 cores @2.3GHz) and 8 GB of
DDR4 memory running Ubuntu 20.04 LTS as its operating
system. A logging-script was constructed which enabled
us to log the CPU and memory utilization, with data points
being logged once per second. Each log entry would be
labeled with a timestamp, making alignment of the data
easier. While the logging-script was running, it was
possible to type in events in the terminal, which would
also be labeled with a timestamp, making it easier to
determine which event triggered specific data point.

Tests were run in both ROSMode and UnityMode, with
the goal of evaluating the performance of the simulator when
supporting a given number of robots as well as different map
sizes. The robots were running the simple frontier algorithm
example found in the MAES ROS workspace.

During each test, a number of events were recorded.
Each event is represented in the figures by a green verti-
cal line with a label. The list of events is as follows: “ROS
start” and “ROS start with RViz” for ROSMode MAES
only, to specify at which point in time the ROS subsystem
was started; “MAES start” and “stop” to specify when
MAES was actually started and when the simulation
ended; “set to fastest speed” to indicate that UnityMode
MAES was set to maximum speed.

5.1.1 � Map sizes

Both ROSMode and UnityMode were tested with map sizes
30x30, 40x40, and 50x50. For UnityMode MAES, the map
size did not notably impact the memory usage or CPU utili-
zation. On the other hand, ROSMode MAES appeared to be
quite sensible with regards to the map size, especially when
enabling the RViz plugin, as seen in Figs. 9b and 9d.

5.1.2 � Number of robots

For each map size considered in Sect. 5.1.1, both ROSMode
and UnityMode were tested with one, three, and five robots.

The different number of robots produced no significant
performance impacts in UnityMode. In ROSMode, however,
resource utilization suffered an increment.

Figure 9a–c shows a run on the same 50x50 cave-map,
with their respective number of robots. The results show that
the CPU power required by MAES in ROSMode grows with
the number of simulated robots, and this is the only resource
reaching its limit during the run with five robots on a 50x50
size map with RViz enabled (i.e., the heaviest configuration
identified with the tests for ROSMode MAES). If RViz is not
enabled, the tests show that running with up to five robots
is possible on the computer system used in the test. If RViz
is needed, the test system was unable to run more than three
robots without suffering from the CPU limitations.

These limits are, of course, highly dependent on the char-
acteristics of the computer running MAES in ROSMode, and
we purposely chose not to run these tests on a high-perfor-
mance computer to cement the fact that MAES is a relatively
lightweight simulator compared to other ROS compatible
simulators. Figure 9e further backs up the claim of MAES
being lightweight. Here, MAES is run in UnityMode with
the same number of robots, with the same map size as the test
in Fig. 9c. The resource demands were significantly lower,
demonstrating the overhead of running the ROS interface.

As a final set of tests, we also tried pushing the limits of
MAES in UnityMode with respect to the number of robots.
Figure 9f shows that MAES is able to perform a real-time
simulation of 120 robots in a cave-map of size 75x75. In the
experiment, we noticed that the frame rate was reduced to 4–5
frames per second when trying to simulate these many robots,
but the underlying physics simulation was not affected. As
Fig. 9f also shows, the computer still had a surplus of CPU
resources, but the increased number of robots still had an
impact on the computational resources. This result hints at
MAES not being able to fully utilize multiple CPU cores,
which is an optimization that is left as future work.

5.2 � Usability test

The goal of the usability test is to test whether or not the
target audience can setup and use MAES in ROSMode
only using the guides and documentation from the readme
included in the GitHub repository. Since the primary func-
tion of MAES is to simulate multi-robot behavior, we
determined the target audience to be robotics developers
and researchers. Given their background, we made some
assumptions about their domain knowledge. For example,
we assumed that they have at least some knowledge of ROS.

5.2.1 � Setup of the usability test

The test consisted of a short interview, followed by three
phases of tasks, and then finally a small closing interview

767Artificial Life and Robotics (2023) 28:757–770	

1 3

with room for open discussions. We had an interviewer
guidelines to ensure a similar experience for all subjects.

The initial interview, driven by a questionnaire, is
meant to get an understanding of the subject’s current
knowledge of ROS, MAES, Gazebo, and Python. This
latter aspect was particularly important, since some of the
tasks require some knowledge of Python.

The tasks are divided into the Setup Phase, the Configure
Phase, and the Use Phase, and in particular there were 3
tasks each for the first and second phases, and 4 tasks for
the Use Phase. We considered that a subject could struggle
with MAES setup and still have a good experience using it,
once it is set up and configured. For this reason, we included
a limit of 20 min for each phase, after which the interviewer

helps the subject to finish the current task and moves on to
the next phase.

The Setup Phase included tasks for setting up a Docker
subsystem and running MAES in its default configuration.
The Configuration Phase revolved around changing the sys-
tem parameters in MAES. The Use Phase included tasks that
alter the maes_robot_controller python script to control the
behavior of the robots, as well as tasks for using the ROS
services exposed by MAES, such as depositing environment
tags.

The closing interview is meant as an open discussion.
Both the initial and the closing interviews were driven by
questionnaires, more information can be seen in [30]

(a) Performance metrics of one robot in a 50x50 cave-type map
in ROSMode

(b) Performance metrics of three robots in a 50x50 cave-type
map in ROSMode

(c) Performance metrics of five robots in a 50x50 cave-type
map in ROSMode

(d) Performance metrics of three robots in a 30x30 cave-type
map in ROSMode

(e) Performance metrics of five robots in a 50x50 cave-type
map in UnityMode

(f) Performance metrics of 120 robots in a 75x75 cave-type
map in UnityMode

Fig. 9   Performance experimental results

768	 Artificial Life and Robotics (2023) 28:757–770

1 3

5.2.2 � Results of usability test

The usability test was completed by five subjects, which we
will refer to as S1 through S5. The subjects are anonymized
except for their title and experience using ROS, Python, and
Gazebo.

The Setup Phase involved building and starting ROS
with RViz running in a Docker container (Task 1), starting
MAES from the precompiled MAES package (Task 2) and
stopping ROS and closing MAES (Task 3). The Configure
Phase included changing the number of robots to 1 using the
MAES config file (Task 1), changing map type from building
to cave using the MAES config file (Task 2), and launching
first ROS and then MAES and confirm new number of robots
and map type from the user interface (Task 3). Finally,
the Use Phase comprised changing programmatically the
behavior of a robot to make it move to coordinate (0, 0)
(Task 1), make the robot cancel its movement (Task 2), make
the robot deposit an environment tag (Task 3) and use the
user interface to access the maes_state topic of the robot.

Figure 10 shows the time spent on each task for all sub-
jects. The subjects spent time in the range of 22–37 min
completing all the tasks. Phase 1 Task 1 (P1T1) includes
building the Docker image and the ROS workspace, and
for this reason, a lot of the time spent was waiting for the
computer to complete the build. This is probably also the
reason why, the subjects were so close in terms of time spent
completing P1T1. All tasks in Phase 1 were completed by
all subjects. The target audience thus appears to be able to
set up MAES in ROSMode.

In Phase 2, four out of five subjects finished all tasks. S3,
however, accidentally changed the map type to custom map
and not cave-map, and thus did not finish P2T2. Regarding
P2T3, S1 tried to build the ROS workspace from the wrong
directory once, but managed to build it correctly later.
Configuration of MAES in ROSMode, i.e., Phase 2, appears
to be possible for the target audience.

In Phase 3, i.e., the Use Phase, the subjects had some
difficulties. P3T1 is to implement some very simple logic
into the controller of the robot. S1 finished this task without
difficulties. S2, S3 and S4 all tried to put it into the main
function of the robot controller Python script. This made
sense to the subjects, since many ROS nodes are controlled
this way. For the version of MAES used for testing, however,
the logic of the robot had to be written in the logic_loop_
callback function, which is continuously called whenever
the controller receives a state update from MAES, which
happens every 0.1 s with default settings. (Note: This
has since been changed as a result of this usability test.)
Subject S2, S3, S4 eventually did either read the readme
describing this behavior or found the instructions, but it took
significantly longer to complete P3T1 in this way.

P3T2 was finished by S1, S3, S4, and S5 without major
issues. S2, however, did not complete P3T2. P3T3 and P3T4
were finished without major issues by all subjects.

6 � Conclusion

The simulation tool MAES can be used for simulating, and
developing, the logic behind swarm robots in a 2 dimen-
sional environment. MAES includes UnityMode for C#
development as well as ROSMode, which allows for devel-
oping the logic of the robot directly as a ROSNode, and thus
bridging the gap to real-world robot programming. Perfor-
mance tests showed that MAES can be run in real time on
modest hardware with up to 5 robots in ROSMode, with up
to 120 robots in UnityMode. A usability test was conducted,
that shows that MAES can be setup, configured, and used
by target audience of robotics researchers and developers
within 60 min.

MAES is an ongoing open-source project, released under
the GPL-3 license, with a small but growing community
around its GitHub code repository. Planned future work
include headless runs in ROSMode and position inaccuracies
when running in ROSMode. Another interesting feature for
the future is that of multiple robot types, since currently
MAES only supports a single robot type in each simulation
run. Another more complex extension of MAES would be
allowing the robots to cover and explore 3D environments,
such as underground caves and sewage systems.

MAES is aimed to terrain exploration and coverage.
We plan to cover other use cases involving robot move-
ment, such as simulation of a smart factory floor. The main
changes would involve the computation of how well an algo-
rithm is behaving, but most other MAES subsystem could
be kept like they are.

Unity, which is used to construct MAES, has built-in
systems to support safe, high performing multi-threaded
code and very efficient memory management called

Fig. 10   Comparison of time used for the 3 tasks of the Setup Phase
and Configure Phase, and for the 4 tasks of the Use Phase, for all sub-
jects. X axis is phase and task and y axis is time spent in seconds

769Artificial Life and Robotics (2023) 28:757–770	

1 3

Data-Oriented Technology Stack (DOTS) [31]. Upgrading
MAES with Unity DOTS would likely increase MAES’ per-
formance greatly, but we predict it will be a significant feat
to accomplish as it would require redesigning and rewrit-
ing a lot of MAES’ internal workings. However, this would
likely only notably affect algorithms running in UnityMode,
as the ROS system appears to be the main bottleneck when
in ROSMode.

Acknowledgements  We thank Simon Bøgh and Casper Schou from
the Robotics and Automation department at AAU for their support in
the development of the ROS 2 interfaces for MAES. Additionally, we
want to thank all of who participated in the usability test. This work
was partly funded by the Villum Investigator Project “S4OS: Scalable
analysis and Synthesis of Safe, Small, Secure and Optimal Strategies
for Cyber-Physical Systems”.

Funding  Open access funding provided by Aalborg University Library.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 ARGoS (2022) Argos - large-scale robot simulations. https://​www.​
argos-​sim.​info. Accessed 29 Aug 2023

	 2.	 Open Robotics (2022a) Gazebo - simulate before you build.
https://​gazeb​osim.​org/​home. Accessed 29 Aug 2023

	 3.	 Agmon N, Hazon N, Gal KA (2008) The giving tree: construct-
ing trees for efficient offline and online multi-robot coverage.
Annals Mathemat Artif Intell 52(2):143–168

	 4.	 Dorigo M, Guy T, Vito T (2021) Swarm robotics: past, present,
and future [point of view]. Proc IEEE 109(7):1152–1165

	 5.	 Schranz M, Di Caro GA, Thomas S, Wilfried E, Farshad A,
Ahmet Ş, Micha S (2021) Swarm intelligence and cyber-physical
systems: concepts, challenges and future trends. Swarm Evolut
Comput 60:100762

	 6.	 Andreasen M, Holler P, Jensen M, Albano Mi (2022a) Compari-
son of online exploration and coverage algorithms in continuous
space. In: Proceedings of the 14th International Conference on
Agents and Artificial Intelligence - Volume 1: SDMIS,, pages
527–537. INSTICC, SciTePress, ISBN 978-989-758-547-0.
https://​doi.​org/​10.​5220/​00109​75900​003116

	 7.	 Unity Technologies (2021) Unity Real-Time Development Plat-
form | 3D, 2D VR & AR Engine. https://​unity.​com/. Accessed 29
Aug 2023

	 8.	 Open Robotics (2022b) Ros - robot operating system. https://​www.​
ros.​org. Accessed 29 Aug 2023

	 9.	 Cheraghi AR, Abdelgalil A, Graffi K (2020) Universal 2-dimen-
sional terrain marking for autonomous robot swarms. In: 2020 5th
Asia-Pacific Conference on Intelligent Robot Systems (ACIRS),
pages 24–32. IEEE

	10.	 Albani D, Manoni T, Arik A, Nardi D, Trianni V (2019) Field cov-
erage for weed mapping: toward experiments with a uav swarm. In
International Conference on Bio-inspired Information and Com-
munication, pages 132–146. Springer

	11.	 Kambayashi Y, Ugajin M, Sato O, Tsujimura Y, Yamachi H,
Takimoto M, Yamamoto H (2009) Integrating ant colony cluster-
ing method to a multi-robot system using mobile agents. Ind Eng
Manag Syst 8(3):181–193

	12.	 Oikawa R, Takimoto M, Kambayashi Y (2015) Distributed forma-
tion control for swarm robots using mobile agents. In: 2015 IEEE
10th Jubilee International Symposium on Applied Computational
Intelligence and Informatics, pages 111–116. IEEE

	13.	 Kegeleirs M, Grisetti G, Birattari M (2021) Swarm slam: chal-
lenges and perspectives. Front Robot AI 8:23

	14.	 Gonzalez E, Gerlein E (2009) Bsa-cm: A multi-robot coverage
algorithm. In: 2009 IEEE/WIC/ACM International Joint Confer-
ence on Web Intelligence and Intelligent Agent Technology, vol-
ume 2, pages 383–386. IEEE

	15.	 Gautam A, Richhariya A, Shekhawat VS, Mohan S (2018)
Experimental evaluation of multi-robot online terrain coverage
approach. In: 2018 IEEE International Conference on Robot-
ics and Biomimetics (ROBIO), pages 1183–1189, 10.1109/
ROBIO.2018.8665196

	16.	 Gautam A, Soni A, Singh SV, Mohan S (2021) Multi-robot online
terrain coverage under communication range restrictions - an
empirical study. In: 2021 IEEE 17th International Conference on
Automation Science and Engineering (CASE), pages 1862–1869,
10.1109/CASE49439.2021.9551390

	17.	 Player/Stage (2022) The player project. http://​playe​rstage.​sourc​
eforge.​net

	18.	 NVIDIA (2022) Nvidia isaac sim. https://​devel​oper.​nvidia.​com/​
isaac-​sim

	19.	 Pitonakova L, Giuliani M, Pipe A, Winfield A (2018) Feature and
performance comparison of the v-rep, gazebo and argos robot
simulators. In: Annual Conference Towards Autonomous Robotic
Systems, pages 357–368. Springer

	20.	 Platt J, Ricks K (2022) Comparative analysis of ros-unity3d and
ros-gazebo for mobile ground robot simulation. J Intell Robotic
Syst 106(4):80

	21.	 Open Robotics (2022c) Powering the world’s robots. https://​www.​
openr​oboti​cs.​org

	22.	 Farshad A, Jose E, Benjamin B, West A, Watson S, Barry L
(2019) Mona: an affordable open-source mobile robot for educa-
tion and research. J Intell Robot Syst 94(3):761–775. https://​doi.​
org/​10.​1007/​s10846-​018-​0866-9

	23.	 Fu James GM, Bandyopadhyay T, Ang MH (2009) Local voro-
noi decomposition for multi-agent task allocation. In: 2009 IEEE
International Conference on Robotics and Automation, 1935–
1940, 10.1109/ROBOT.2009.5152829

	24.	 Andreasen MZ, JensenMagnus K, Holler PI (2023) Maes. https://​
github.​com/​DEIS-​Tools/​MAES. Accessed 29 Aug 2023

	25.	 Open Robotics (2022d) Ros - robot operating system. https://​docs.​
ros.​org/​en/​galac​tic/​Relea​ses.​html. Accessed 29 Aug 2023

	26.	 Unity-Technologies (2022a) Ros tcp connector. https://​github.​
com/​Unity-​Techn​ologi​es/​ROS-​TCP-​Conne​ctor

	27.	 Unity-Technologies (2022b) Ros tcp endpoint. https://​github.​com/​
Unity-​Techn​ologi​es/​ROS-​TCP-​Endpo​int

	28.	 Macenski S, Martín F, White R, Ginés CJ (2020) The marathon 2:
A navigation system. In: 2020 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). URL https://​github.​
com/​ros-​plann​ing/​navig​ation2

	29.	 Steve M, Ivona J (2021) Slam toolbox: Slam for the dynamic
world. J Open Source Soft 6(61):2783. https://​doi.​org/​10.​21105/​
joss.​02783

http://creativecommons.org/licenses/by/4.0/
https://www.argos-sim.info
https://www.argos-sim.info
https://gazebosim.org/home
https://doi.org/10.5220/0010975900003116
https://unity.com/
https://www.ros.org
https://www.ros.org
http://playerstage.sourceforge.net
http://playerstage.sourceforge.net
https://developer.nvidia.com/isaac-sim
https://developer.nvidia.com/isaac-sim
https://www.openrobotics.org
https://www.openrobotics.org
https://doi.org/10.1007/s10846-018-0866-9
https://doi.org/10.1007/s10846-018-0866-9
https://github.com/DEIS-Tools/MAES
https://github.com/DEIS-Tools/MAES
https://docs.ros.org/en/galactic/Releases.html
https://docs.ros.org/en/galactic/Releases.html
https://github.com/Unity-Technologies/ROS-TCP-Connector
https://github.com/Unity-Technologies/ROS-TCP-Connector
https://github.com/Unity-Technologies/ROS-TCP-Endpoint
https://github.com/Unity-Technologies/ROS-TCP-Endpoint
https://github.com/ros-planning/navigation2
https://github.com/ros-planning/navigation2
https://doi.org/10.21105/joss.02783
https://doi.org/10.21105/joss.02783

770	 Artificial Life and Robotics (2023) 28:757–770

1 3

	30.	 Andreasen M, Holler P, Jensen M (2022b) Maes 2.0: A ros com-
patible simulation tool for multi robot exploration and coverage.
Master’s thesis, Aalborg University. available online at https://​
proje​kter.​aau.​dk/​proje​kter/​en/​stude​ntthe​sis/​maes-​20-a-​ros-​compa​

tible-​simul​ation-​tool-​for-​multi-​robot-​explo​ration-​and-​cover​
age(03d7a​67b-​05d4-​470e-​882d-​a5a4d​a1e1e​75).​html

	31.	 Unity-Technologies (2022c) Unity dots. https://​unity.​com/​dots.
Accessed 29 Aug 2023

https://projekter.aau.dk/projekter/en/studentthesis/maes-20-a-ros-compatible-simulation-tool-for-multi-robot-exploration-and-coverage%2803d7a67b-05d4-470e-882d-a5a4da1e1e75%29.html
https://projekter.aau.dk/projekter/en/studentthesis/maes-20-a-ros-compatible-simulation-tool-for-multi-robot-exploration-and-coverage%2803d7a67b-05d4-470e-882d-a5a4da1e1e75%29.html
https://projekter.aau.dk/projekter/en/studentthesis/maes-20-a-ros-compatible-simulation-tool-for-multi-robot-exploration-and-coverage%2803d7a67b-05d4-470e-882d-a5a4da1e1e75%29.html
https://projekter.aau.dk/projekter/en/studentthesis/maes-20-a-ros-compatible-simulation-tool-for-multi-robot-exploration-and-coverage%2803d7a67b-05d4-470e-882d-a5a4da1e1e75%29.html
https://unity.com/dots

	MAES: a ROS 2-compatible simulation tool for exploration and coverage algorithms
	Abstract
	1 Introduction
	2 Background information
	2.1 Simulation of exploration and coverage algorithms
	2.2 ROS and robotics simulators
	2.3 ROS definitions

	3 The MAES tool
	3.1 Environment maps
	3.2 Agents
	3.2.1 Movement
	3.2.2 Sensors and communication
	3.2.3 Simulated SLAM

	3.3 Visualization and debugging features

	4 Integration of ROS interface within MAES
	4.1 ROS1 or ROS2?
	4.2 Architecture
	4.3 Publishing robot state through ROS
	4.4 Mapping Nav2 commands to MAES
	4.5 Controlling the robot in MAES

	5 Performance and usability tests
	5.1 Performance test
	5.1.1 Map sizes
	5.1.2 Number of robots

	5.2 Usability test
	5.2.1 Setup of the usability test
	5.2.2 Results of usability test

	6 Conclusion
	Acknowledgements
	References

