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Abstract
With the aim of allowing the efficient and realistic simulation of swarm algorithms for exploration and coverage, we present 
the tool Multi-Agent Exploration Simulator (MAES), which is an open-source physics-based discrete step multi-robot 
simulator. MAES features movement in a continuous 2D space, realistic physics based on the Unity framework, advanced 
visualization techniques such as heatmaps, custom wireless signal degradation, both randomly generated and custom user-
provided maps, and a ROS (Robot Operating System) interface. This latter characteristic could allow to port the simulated 
algorithms to real-world robots. We present performance tests, conducted with rather modest hardware, showing that MAES 
is able to simulate up to 5 robots in ROSMode (using the ROS integration) and up to 120 robots in UnityMode (development 
performed directly into the C# Unity Editor). A usability test was conducted which hinted that the target audience of robotics 
researchers and developers is able to quickly install, setup, and use MAES for implementing simple robot logic.

Keywords  Robot operating system · Continuous space · Autonomous robots · Swarm robotics · Multi-agent · Nav2

1  Introduction

Testing implementations of swarm robotics can be an expen-
sive and difficult task. For this reason, many developers look 
to simulations as they offer a cheaper and easier solution for 
testing an algorithm or swarm behavior. Popular simulation 
solutions include Argos [1] and Gazebo [2]. Even simula-
tions, however, can be difficult to set up and configure. This 
difficulty is usually caused by the simulation tools having a 
heavy emphasis on modularity and customizability, which 
often comes at the cost of increased complexity for the user. 
Additionally, some simulation software has heavy require-
ments in terms of CPU power, which can necessitate using 

high-end computers or computing clusters, and limit the size 
of the swarm to be simulated.

One significant domain for swarm robotics is online collec-
tive terrain exploration and coverage, where online refers to 
the terrain being initially unknown and, thus, explored while 
the swarm algorithm is executed [3]. Practical application of 
terrain exploration spans from search & rescue to surveil-
lance, while terrain coverage algorithms can be used, for 
example, for floor cleaning and smart farming [4, 5]. This set 
of problems has arguably a strong need for simulation tools, 
especially for online algorithms, since the latter must be tested 
against a large number of plausible terrain configurations to 
evaluate if an algorithm behaves as required. These require-
ments raise the need for a simulation platform that is not only 
realistic, but also computationally efficient.

This paper presents the simulation tool Multi-Agent 
Exploration Simulator (MAES). Previous work [6] has intro-
duced a preliminary version of MAES, which was a simple 
implementation of a realistic simulation framework (move-
ment space represented as a continuous 2D plane rather than 
a grid of cells—see Fig. 1—and hardware capabilities of 
robots from different state-of-the-art algorithms mapped 
onto a common ground) implemented on top of the Unity 
physics engine [7]. However, the tool was oriented at com-
puter scientists, and in fact it required to develop algorithms 
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directly in the C# programming language in the Unity Edi-
tor, it was not compatible with the workflow of many robot-
ics researchers and developers, and the algorithms devel-
oped were not easily ported to real robots since the simulator 
interface had very little overlap with existing approaches 
used in robotics.

This paper focuses on a new iteration (namely, 2.0) of 
MAES1 that introduces a number of technical improvements 
as well as a new interface for controlling the robots using 
Robot Operating System version 2 (ROS2) [8], which allows 
robotics researchers and developers to use existing libraries 
and solutions when developing control algorithms in MAES, 
and it eases adapting the developed controllers to real world 
robots.

MAES allows for visual inspection for easier debugging 
and comparison of implemented algorithms. MAES has 
two modes: UnityMode with support for C# development 
directly into the C# Unity Editor, and ROSMode which 
enables the ROS integration. The main contributions of this 
paper include:

–	 With the aim of a self-contained work, a discussion of 
ROS 2, as well as a quick summary of existing simulation 
platforms (Sect. 2);

–	 The description of the MAES tool (Sect. 3);
–	 A detailed discussion on how the ROS interface was 

implemented into the MAES architecture (Sect. 4);
–	 Results of performance and usability tests, to ensure that 

MAES has better performance than existing systems 
and still is a good fit with the competencies of robotics 
researchers and students (Sect. 5);

–	 Proposals for future work to apply MAES to new use 
cases and scenarios (Sect. 6).

2 � Background information

2.1 � Simulation of exploration and coverage 
algorithms

Realistic simulation of swarm exploration and coverage 
algorithms is a relatively unexplored research area. In fact, 
even though many works introduce novel algorithms, we 
argue that most simulation settings are far from realistic. In 
fact, existing works consider one or more of the following: 
(i) the environment as grid-like structure that can be 
maneuvered by moving from cell to cell [9, 10] where (ii) 
the robots cannot suffer from colliding with each other; (iii) 
communication between robots has unlimited range and 
is not blocked by walls [11, 12]; (iv) robots know always 
each other’s location [13], and are provided with real-
time distributed Simultaneous Localization And Mapping 
(SLAM) [14].

A few works aimed at providing a common—and more 
realistic—framework to compare existing algorithms. A 
comparison of coverage performance for existing algorithms 
with reduced communication range can be found in [15]. 
Moreover, the authors of [16] extend the comparison by 
implementing the algorithms using hardware FireBird V 
robots on a small plane. However, contrary to MAES, both 
works consider movement in a grid-based environment (see 
Fig. 1).

2.2 � ROS and robotics simulators

Multiple simulation tools exists for robotics, such as Argos 
[1], Gazebo [2], Player/Stage [17], and NVIDIA’s Isaac [18]. 
All of the aforementioned simulators are general purpose, 
and include some kind of ROS support, for either ROS 1 or 
ROS 2 interface [19].

As of writing, the most popular simulator for use with 
ROS appears to be Gazebo, as it is a first party simulator, 
developed by the Open Robotics Foundation, which ROS 
also belongs to. Gazebo is highly modular and customizable. 
For example, the user can specify the physical structure of 
the robots through Unified Robot Description Format files. 
This type of flexibility allows it to support most use cases 
but comes at the cost of increased complexity, a cumbersome 
setup process, and high computational overhead.

The work in [20] describes a recent simulator based on 
Unity. The scenario targeted by the simulator is focused 
on the Jackal unmanned ground vehicle from ClearPath 
Robotics, as the robot navigates autonomously through 
differing environments. The simulator focuses on a single 

Fig. 1   Left: An agent moving in continuous space in MAES. Right: 
a traditional grid-based simulation, with the red and blue dots repre-
senting agents and the black dots representing walls

1  A video demonstration of MAES can be found at https://​youtu.​be/​
lgUNr​TfJW5g. MAES is open source and the source code can be 
found at https://​github.​com/​DEIS-​Tools/​MAES.
2  Unless otherwise specified, in this paper, the term ROS refers to 
ROS version 2

https://youtu.be/lgUNrTfJW5g
https://youtu.be/lgUNrTfJW5g
https://github.com/DEIS-Tools/MAES
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robot, on navigation only, and it is hardly applicable to 
swarm algorithms.

Given their high level of modularity and general purpose, 
the aforementioned simulation tools present a steep learning 
curve and high computational load. On the other hand, our 
proposed MAES is intended as an alternative simulator to 
be used only in a limited number of use cases, namely multi-
robot exploration and coverage. Thus, MAES can focus on 
a higher level of usability and performance, as it will be 
discussed in this paper.

2.3 � ROS definitions

ROS is a set of libraries and tools for building robotics 
systems [8]. ROS is developed and maintained by Open 
Robotics [21]. One of the main ideas behind ROS is that 
developed software can be used both with real-world robots 
and in simulated environments.

Throughout this article, we will use several ROS-specific 
terms. As no formal definitions are provided in the ROS 
2 documentation, the following definitions are summaries 
of the explanations from the ROS 2 documentation. [8] A 
node is a fundamental ROS element that serves a single, 
modular purpose in a robotics system. Nodes communicate 
via either Services, which implement a request-and-response 
communication method, or by publishing messages over 
topics, which allow any number of other nodes to subscribe 
to and access the messages’ content.

Message formats and executable code are defined inside 
ROS workspaces, which are locations in the file system 
that contains a number of ROS related development files. 
A launch file is a file with a definition of how to execute 
one or more nodes with a specific configuration. A launch 
file can be called from the ROS 2 Command Line Interface 
(CLI). Actions are a communication type in ROS intended 
for long running tasks, and consist of three parts: a goal, 
feedback, and a result. A costmap is a grid-like structure 
of cells (an occupancy grid), representing the surrounding 
environment in terms of the cost of moving from the current 
location to the location represented by the cell. A low or zero 
value means a cell is free and a high value means a cell is 
occupied.

3 � The MAES tool

This section describes the MAES simulation tool. MAES 
is a 2D discrete time-step continuous-space physics-based 
simulation, visualized in 3D. The simulation progresses 
in steps of 0.01 seconds, and each agent receives a state 
update and executes its own algorithms every tick, i.e., 0.1 
seconds, which is, thus, the reaction time of an agent. The 
simulator uses the Unity Engine [7] for visualization and 

physics simulation. The simulated robots are mapped onto 
a common hardware model, which allows to add or remove 
hardware capabilities to provide insights into the benefit of 
integrating specialized hardware into the robots.

MAES features a map generator for dynamically 
generating cave type and building type maps Sect.  3.1 
given a random seed and some parameters. MAES allows 
for a standardized interface for the interaction between a 
controller and a robot Sect. 3.2, a realistic physical model for 
agents’ movement Sect. 3.2.1 , sensing and communication 
via either broadcast wireless communication or environment 
tagging Sect.  3.2.2, simulated SLAM Sect.  3.2.3, and 
advanced visualization features Sect. 3.3. MAES allows 
many of its features to be configured, and it takes parameters 
for agent constraints, for physics simulation, and for map 
generation. A list of all possible parameters for the simulator 
can be seen on the MAES public code repository.

3.1 � Environment maps

MAES provides automated map generation for building 
and cave-map types with configurable parameters, see 
Fig. 2. Moreover, MAES allows to specify a custom map 
by providing an image in the ’Portable Gray Map’ format 
(.pgm). PGM is also the format exported by the Nav2 Map 
Saver node, meaning that ROS generated SLAM maps can 
be imported into MAES. When provided with an image, the 
MAES map generator creates wall tiles for every completely 
black pixel and open tiles for every other pixel. Figure 3 
shows an example of an image that has been converted into 
a map.

3.2 � Agents

Within MAES, an agent’s capabilities can vary depending 
on the parameters that describe the simulation at hand, e.g., 
limited vision, broadcasting range, etc. Figure 4 shows the 
3D model of an agent, inspired by the MONA robots [22].

Fig. 2   Example of generated cave and building maps of 50x50 tiles. 
The red squares on the top left show the size of a tile
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MAES is intended to support the implementation of many 
different algorithms. For this reason we expose interfaces for 
the algorithms to control the agents and provide access to 
sensor information. In particular, we expose a native inter-
face to be used in UnityMode, and a ROS interface, further 
explained in Sect. 4, for the ROSMode.

3.2.1 � Movement

An agent is able to rotate in place and move straight ahead, 
and the agent is not able to rotate while moving forwards. 
Movement is simulated through the Unity 2D Physics 
Engine by applying force at the position of each wheel. 
This simulation accounts for inertia, drag, and collisions 
with obstacles and other agents. The agents of the MAES 
simulator can reach a top speed of 3 tiles/second (or 0.3 tiles/
tick). The tile size can vary depending on the scale of the 

map. Drag is a function of speed, which in combination with 
inertia results in non-constant acceleration, leads to an agent 
reaching half its top speed (1.5 tiles/second) after 4 ticks.

3.2.2 � Sensors and communication

Agents are able to sense other agents at a given distance, 
specified by a simulation parameter. To accommodate a 
variety of scenarios with differing hardware capabilities, 
the capability of sensing other agents can be configured to 
be blocked by walls, i.e., line of sight requirement. Agents 
detect collisions with walls and with other agents, and can 
detect a nearby wall and the angle to said wall. This could, 
for example, be achieved in the real world using a Light 
Detection and Ranging (LiDAR) scanner.

Agents can communicate through broadcasting, for 
example by means of the /maes_broadcast topic 
when in ROSMode, and both communication range and the 
capability to pass walls is defined via simulation parameters. 
Line of sight is determined using ray tracing, and user can 
either provide a maximum communication range or a custom 
function, which is used to calculate communication success. 
This latter capability is available at initialization time 
(execution of the SimulationScenario function), by 
passing it a custom calculateSignalTransmission 
function, which takes as arguments the total distance 
traveled for the signal, and the distance traveled through 
solid walls, and must return a Boolean value indicating 
whether the signal can be received. The advantage of this 
approach is that the user can control the model used for 
signal degradation. If a stochastic model is desired, the user 
can factor random number generation into the signal success 
function.

Finally, agents can drop tags on the ground to deposit 
information in the environment and communicate indirectly 
with other agents, for example by means of the /maes_
deposit_tag topic when in ROSMode, as required for 
example by the Local Voronoi Decomposition algorithm 
[23]. Tags can only be dropped at an agent’s current position, 
but data can be written to and read from at a configurable 
distance.

3.2.3 � Simulated SLAM

SLAM is simulated by performing a series of ray traces from 
the position of the agent, and measuring the distance that the 
rays traveled before a collision. This emulates the behavior 
of technologies such as LiDAR scanners.

The agent continuously constructs a “SLAM map” using 
the ray tracing information when it becomes available. If any 
object is detected within the region of a tile, then that entire 
tile is marked as solid. If a ray trace is sent in the direction 
of a tile, and no object is found, the tile is assumed to be 

Fig. 3   Example of a custom map. MAES converts the input image 
of 50x50 pixels (a) into a map of 50x50 tiles (b) with walls for each 
black pixels. The red squares on the top left show the size of a pixel/
tile

Fig. 4   The 3D model of the MONA-inspired agent used in MAES
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open, unless previous traces indicate that it is solid. The 
agent has access to an approximation of its location within 
the SLAM map. The simulation can be configured to auto-
matically synchronize SLAM maps of agents that are within 
communication range of each other.

3.3 � Visualization and debugging features

As MAES should function as a testbed for many diverse 
algorithms featuring a potentially large number of agents, 
such as most swarm algorithms, we include a wide variety 
of visualization and debugging tools.

The user interface of MAES (see Fig. 5, or the full sized 
image on the Github repository of MAES [24]) includes 
several panels for controlling the simulation. The user interface 
adapts to whether it is run in ROSMode or UnityMode. For 
example, the visualization of the ROS connection in the top 
left corner is not present when running in UnityMode. The 
fast forward buttons are hidden in ROSMode, due to timing 
issues in the nodes when fast forwarding with ROS—some 
Nav2 nodes have some assumptions about the robot speed, 
which can be violated if MAES is sped up.

A menu is included for controlling the camera view 
over the simulation, as well as changing the simulation 
speed. Additionally, agents can be individually selected, 
which makes the camera follow the agent as well as reveal 
debugging information in a side bar regarding the selected 
agent.

When a simulation is running, the surface of the map is 
highlighted in green if any agent at any point has explored 
it. If an agent is selected, the surface reveals in blue the 
tiles included in the SLAM map for said agent. The SLAM 
map can also include sections of the map revealed by other 
agents, if SLAM synchronization is enabled and the two 
agents have been within communication distance of each 
other. Environment tagging is visualized using colored boxes 
on the ground where an agent has tagged the environment. 

It is possible to hover or click on a tag to inspect the 
information contained in it.

To allow better analysis of algorithm behavior, MAES 
features two heatmap visualization modes (see Fig. 6), one 
for the exploration measure and one for coverage. This 
could, for example, be useful for testing patrolling algo-
rithms. The heatmaps display a color at each tile of the map, 
indicating how recently it has been explored/covered by an 
agent. Tiles that have been explored/covered recently have 
a red tint. A tile progressively changes to a blue tint as time 
passes without a robot exploring/covering the tile.

4 � Integration of ROS interface within MAES

This section describes how ROS is integrated into MAES. 
Section 4.1 discusses which version of ROS is used and why. 
Section 4.2, 4.3 and 4.4 describe in detail the architecture 
and communication of MAES with ROS. Finally, Sect. 4.5 
discusses how controllers must be implemented and provide 
an example.

4.1 � ROS1 or ROS2?

As of writing, ROS exists in two major versions, ROS1 and 
ROS2, where ROS2 is a complete remake created based on 
observations and lessons learned from ROS1. The latest 
release for ROS1 is ROS Noetic Ninjemys, which came out 
in May 2020 and has end-of-life in May 2025. No further 
releases for ROS1 are planned. The first version of ROS2 
was released as alpha1 in August 2015 and the first official 
release came out in 2017. The currently newest version 
of ROS2 is Galactic Geochelone, which came out in May 
2021 [25]. Galactic is, however, not a long-term support 
(LTS) version. The first LTS version of ROS2, Humble 
Hawksbill, came out on the 23rd of May 2022 and will have 

Fig. 5   A screenshot from MAES with an environment tag visualized 
with the hover menu containing sender and content of the tag

Fig. 6   a Shows the heatmap visualization for coverage and b shows 
the heatmap for exploration. Red areas have been explored/covered 
recently, blue areas earlier, beige areas have not yet been explored/
covered at all



762	 Artificial Life and Robotics (2023) 28:757–770

1 3

support until May 2027. As of the time of writing, Humble 
Hawksbill does not yet support some of the navigation 
functionalities, thus the descriptions in this document refer 
to the non-LTS ROS2 (Galactic Geochelone) release.

The downside of using ROS2 is that a large amount of 
existing libraries are written for ROS1 and many of them do 
not have a version compatible with ROS2. However, due to 
the end-of-life of ROS1 in 2025 and the continued support 
for ROS2, we chose to target ROS2 for the MAES simulator.

4.2 � Architecture

MAES is intended to be used as an importable library, and 
it exposes an interface that allows full configuration without 
needing to manipulate MAES code. This interface exposes 
methods for simulator instantiation, injection of algorithms 
and scenarios, and allows for extraction of performance 
metrics. MAES also contains a Unity Package definition, 
which allows it to be used in the official Unity Package 
Manager tool by pasting the Github repository URL into its 
user interface.

Code snippet 1 shows an example of how a simulation 
can be set up using the MAES framework. This code can 
be attached to an empty Unity GameObject (the base-
objects used in the Unity Editor) so that the simulator gets 
instantiated and run.

Listing 1: Example of MAES usage in a unity project

void Start(){

// Get/instantiate simulation

var simulator = Maes.Simulator.GetInstance();

// Configure the scenario

var caveConfig = new CaveMapConfig(123,

widthInTiles: 75, heightInTiles: 75);↪→

var scenario = new SimulationScenario(123,

mapSpawner: generator =>

generator.GenerateCaveMap(caveConfig));

↪→

↪→

simulator.EnqueueScenario(scenario);

simulator.StartSimulation();

}

One of the goals of MAES is to allow for easier 
development and less setup and configuration efforts 
compared to using ROS with other simulators. This is 
achieved partly by having a single configuration file 
maes_config.yaml, where all customization is done. 
As an alternative, it is possible to feed the configuration 
parameters programmatically to the configuration classes 
(i.e., SimulationScenario, CaveMapConfig,

RobotConstraints, and BuildingMapConfig). 
All the parameters are described in the documentation in the 
public repository. [24]

The size and complexity of the MAES architecture 
increase significantly when in ROSMode with respect to 
UnityMode, due to the large amount of ROS nodes running 
alongside MAES. When using MAES in ROSMode, the 
user must first launch the ROS components, and then 
subsequently launch MAES. All ROS nodes for all robots 
are launched from a single custom ROS Launch file called 
maes_ros2_multi_robot_launch.py. An abstract 
overview of the ROS nodes launched from this launch file 
can be seen in Fig. 7. The overview is abstract in the sense, 
that the internal sub nodes created by the Nav2 and Slam_
toolbox packages are excluded from the graph for the sake 
of readability. A full picture containing all nodes and topics 
can be seen on the public code repository. [24]

Unity, on which MAES is based, already supports both 
ROS 1 and ROS 2 communication through the ROS TCP 
Connector and ROS TCP Endpoint plugins. These 
plugins work in tandem to facilitate communication between 
Unity and an external ROS system. The TCP Endpoint 
is a ROS node that relays communication from Unity to 
the ROS system and vice versa. The TCP Connector 
is responsible for establishing a connection between Unity 
and the TCP Endpoint node. In our configuration, the 
maes_ros2_multi_robot_launch.py  script 
initially launches the default_server_endpoint 
node from the ROS TCP Endpoint script. This node 
is not namespaced,3, and a single default_server_
endpoint node is launched for all robots. After launching 
that node, maes_ros2_multi_robot_launch.py 
starts launching namespaced nodes.

To know how many robots, i.e., namespaces, to create, 
maes_ros2_multi_robot_launch.py reads from 
the same configuration file as MAES, which ensures that 
they are synchronized. In addition to the number of robots, 
maes_ros2_multi_robot_launch.py  reads 
parameters such as the raytrace range from the configuration 
file and injects it into the parameter file of each robot. This 
approach allows for a single parameter file to be modified 
and used for all robots, which enables easier development 
and debugging. A disadvantage of this approach is that all 
robots have the exact same configuration, which can reduce 
realism and flexibility.

After successfully reading and injecting the parameters, 
maes_ros2_multi_robot_launch.py launches for 
each robot a maes_robot_controller node, which 

3  Namepace refers to a prefix, e.g., /robot0/ which is prepended 
to all topic names used by the node, as well as the node name itself, 
to allow to distinguish between the robots.



763Artificial Life and Robotics (2023) 28:757–770	

1 3

is the node containing the robot logic. Additionally, a 
namespaced launch file called maes_bringup_launch 
is called for each robot, which further launches the nodes 
slam_toolbox and Nav2 inside the given namespace, used 
for navigation and mapping purposes respectively.

4.3 � Publishing robot state through ROS

Many nodes in the MAES ROS workspace depend on input 
from MAES to function. To supply the needed input MAES 
publishes data to the topics /tf, /scan and /maes_
state. The /tf topic is used for the transforms, i.e., the 
position and rotation of a given robot including the relative 
positions of sub-components of the robot. As of writing, 
the transforms published by MAES do not contain any 
inaccuracies, which reduces realism, as a position derived 
through odometry would likely be imprecise due to sensor 
inaccuracies. However, in the future this could be adapted to 
use the positional inaccuracy variable that already exists for 
SLAM when MAES is executed in UnityMode [6].

Once per tick (10 times each second), data for the /scan 
topic are created and sent by performing a series of ray 
casts from the current position of the robot. Every message 
consists of distance information for 180 ray casts performed 
at a 2-degree interval around the robot.

The /maes_state topic uses a custom ROS message 
called StateMsg that contains information regarding the 
current simulation tick, the current status of the given robot 
(e.g., rotating or moving), whether the robot is colliding with 
something, incoming broadcast messages, environment tags 

nearby as well as information about other nearby robots. The 
information received through this topic can then be used in 
the logic controller for the robot, in a manner similar to what 
is provided to the UnityMode algorithms.

As mentioned in Sect.  4.2, we use the ROS TCP 
Connector package from Unity in order to publish the 
messages to the ROS topics [26]. The ROS TCP Connector 
allows for generating serializable C# classes from message 
definitions found in a ROS workspace. The generated 
classes can then be instantiated as objects in the C# code, 
populated with values, serialized, and then published to the 
corresponding topic. The messages are sent through the ROS 
TCP Connector to the ROS TCP Endpoint, [27] which relays 
all messages as if they came from a regular ROS node. A 
representation of this approach can be seen in Fig. 8.

4.4 � Mapping Nav2 commands to MAES

Nav2 is the ROS package used for navigation [28]. Nav2 
contains several nodes that depend on the /tf topic for 
information regarding current position. Additionally, 
Nav2 constructs costmaps from the /scan topic used for 
navigation.

Moreover, Slam_toolbox [29] uses the /scan topic for 
creating the map, and the /tf topic for positioning the robot 
within the map. Slam_toolbox, however, differs from Nav2 
by having a higher resolution and the ability to export the 
map for later use.

For MAES, we initially wanted to be able to merge 
maps for both the slam_toolbox as well as the Nav2 cost-
map, to mirror the map merging feature that is available 

Fig. 7   Visualization of how nodes are launched from our ROS launch script
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to UnityMode algorithms and allow cooperative navigation 
in Nav2. This is, however, not possible using the official 
slam_toolbox and nav2 packages, since this capability has 
not yet been ported officially to ROS 2.

Whenever a robot is instructed to navigate to some 
point using Nav2, the Nav2 nodes publish movement 
instructions on the cmd_vel topic. These instructions 
consist of a desired force application for each wheel of the 
robot. The standard Nav2 configuration assumes that dif-
ferential steering is possible, i.e., that the robot can rotate 
while moving.

Fig. 8   A visualization of how MAES publishes to ROS nodes on 
ROS topics

4.5 � Controlling the robot in MAES

As discussed in Sect. 4.2, when executed in ROSMode, 
MAES launches a number of robot specific nodes, such as 
maes_robot_controller, which allows for control 
functionality. When the node is initialized, all of the sub-
scriptions and clients for the topics, services, and action 
servers are created in the given namespace, including call-
back functions. The services and action servers include func-
tionality for navigation, broadcasting messages, and depos-
iting environment tags. The user can use this information 
to implement the robots’ logic. The logic controlling the 
behavior of the robot is written in the python programming 
language in the main function of the maes_robot_con-
troller.py file, and can make use of the services, infor-
mation received on topics, and action servers.

In MAES UnityMode, the code must be developed 
using C#, and the robot controller must implement the 
IRobotAlgorithm interface. This interface contains 
an update function called every logic tick of the simulation 
as well as a start method for bootstrapping. The algorithms 
are then compiled alongside the simulator itself. To avoid 
the computational overhead introduced by the ROS TCP 
Endpoint and TCP Connector plugins, the global settings 
configuration contain a Boolean value that toggles these 
plugins, such that they no dot consume resources when 
they are actually not needed.

When developing the algorithms, it must be taken into 
account that unlike the C# algorithm implementations, 
the Ros2Algorithm is nondeterministic because it is 
dependent on the timing of network messages, while the 
simulator is deterministic when in UnityMode.

Code Snippet  2 shows a simple frontier algorithm, 
which exemplifies the usage of the interfaces for logging, 
getting the state of the robot, and using the costmap for 
navigation exposed by maes_robot_controller.

Additionally, maes_robot_controller exposes 
methods for using the asynchronous navigation server such 
as nav_to_pos. nav_to_pos makes the robot navigate 
to an (x,y) coordinate asynchronously. Since actions servers 
in ROS can be canceled, we allow for checking the status of 
the current goal with a goal_handle, and we also pro-
vide utility functions such as cancel_nav, which simply 
cancels the current goal using the navigation action client.
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5 � Performance and usability tests

As mentioned in Sect. 1, existing simulating tools have 
heavy requirements in terms of computing power, even 
when simulating just a single robot. As robots in real 
life are more and more likely to act as a part of a swarm 

Listing 2: Example of a Frontier Algorithm implemented in the maes robot controller in Python

def main(args=None):

rclpy.init(args=args)

robot = RobotController()

robot.wait_for_maes_to_start_simulation()

next_goal: Coord2D = None

next_goal_costmap_index: int = None

# Returns true if the tile is not itself unknown, but has 2 neighbors, that are unknown

def is_frontier(map_index: int, costmap: MaesCostmap):

# -1 = unknown, 0 = certain to be open, 100 = certain to be obstacle

# It is itself unknown

if costmap.costmap.data[map_index] == -1: return False

# It is itself a wall

if costmap.costmap.data[map_index] >= 65: return False

return costmap.has_at_least_n_unknown_neighbors(index=map_index, n=2)

while rclpy.ok():

rclpy.spin_once(robot) # Allow callback execution

# If no goal found or current nav complete

if next_goal is None or robot.is_nav_complete():

# Find index of first tile in costmap that is a frontier

goal_index = next((index for index, value in enumerate(robot.global_costmap.costmap.data) if

is_frontier(index, robot.global_costmap)), None)↪→

# No more frontiers found, just continue

if goal_index is None:

robot.logger.log_info("Robot {0} has no more

frontiers".format(robot._topic_namespace_prefix))↪→

continue

next_goal = robot.global_costmap.costmap_index_to_pos(goal_index)

next_goal_costmap_index = goal_index

# Deposit tag when a new target/goal is found

robot.deposit_tag("From tick {0}".format(robot.state.tick))

robot.nav_to_pos(next_goal.x, next_goal.y)

# If goal present but not yet reached

elif is_frontier(next_goal_costmap_index, robot.global_costmap):

# Logging feedback from action server

continue

# If goal is explored

else:

next_goal_costmap_index = None

next_goal = None

robot.cancel_nav()

rather than as a single isolated agent, the simulating tools 
must be able to simulate more than one robot in the same 
environment.

To investigate on the feasibility of using MAES for 
swarm algorithms, we orchestrated a performance test, 
see Sect. 5.1, which gives insights on the current state of 



766	 Artificial Life and Robotics (2023) 28:757–770

1 3

performance, and can act as a baseline for benchmarking 
future performance upgrades to MAES.

The ROS MAES integration was made in cooperation 
with the Robotics Lab at AAU, which provided us with 
continuous feedback during development. Regardless, we 
designed and performed usability tests (see Sect. 5.2) to 
confirm the usability of MAES in ROSMode for the target 
audience, i.e., robotics researchers and students.

5.1 � Performance test

The tests were conducted on a thin and light laptop with 
an AMD 4500U CPU (6 cores @2.3GHz) and 8 GB of 
DDR4 memory running Ubuntu 20.04 LTS as its operating 
system. A logging-script was constructed which enabled 
us to log the CPU and memory utilization, with data points 
being logged once per second. Each log entry would be 
labeled with a timestamp, making alignment of the data 
easier. While the logging-script was running, it was 
possible to type in events in the terminal, which would 
also be labeled with a timestamp, making it easier to 
determine which event triggered specific data point.

Tests were run in both ROSMode and UnityMode, with 
the goal of evaluating the performance of the simulator when 
supporting a given number of robots as well as different map 
sizes. The robots were running the simple frontier algorithm 
example found in the MAES ROS workspace.

During each test, a number of events were recorded. 
Each event is represented in the figures by a green verti-
cal line with a label. The list of events is as follows: “ROS 
start” and “ROS start with RViz” for ROSMode MAES 
only, to specify at which point in time the ROS subsystem 
was started; “MAES start” and “stop” to specify when 
MAES was actually started and when the simulation 
ended; “set to fastest speed” to indicate that UnityMode 
MAES was set to maximum speed.

5.1.1 � Map sizes

Both ROSMode and UnityMode were tested with map sizes 
30x30, 40x40, and 50x50. For UnityMode MAES, the map 
size did not notably impact the memory usage or CPU utili-
zation. On the other hand, ROSMode MAES appeared to be 
quite sensible with regards to the map size, especially when 
enabling the RViz plugin, as seen in Figs. 9b and 9d.

5.1.2 � Number of robots

For each map size considered in Sect. 5.1.1, both ROSMode 
and UnityMode were tested with one, three, and five robots. 

The different number of robots produced no significant 
performance impacts in UnityMode. In ROSMode, however, 
resource utilization suffered an increment.

Figure 9a–c shows a run on the same 50x50 cave-map, 
with their respective number of robots. The results show that 
the CPU power required by MAES in ROSMode grows with 
the number of simulated robots, and this is the only resource 
reaching its limit during the run with five robots on a 50x50 
size map with RViz enabled (i.e., the heaviest configuration 
identified with the tests for ROSMode MAES). If RViz is not 
enabled, the tests show that running with up to five robots 
is possible on the computer system used in the test. If RViz 
is needed, the test system was unable to run more than three 
robots without suffering from the CPU limitations.

These limits are, of course, highly dependent on the char-
acteristics of the computer running MAES in ROSMode, and 
we purposely chose not to run these tests on a high-perfor-
mance computer to cement the fact that MAES is a relatively 
lightweight simulator compared to other ROS compatible 
simulators. Figure 9e further backs up the claim of MAES 
being lightweight. Here, MAES is run in UnityMode with 
the same number of robots, with the same map size as the test 
in Fig. 9c. The resource demands were significantly lower, 
demonstrating the overhead of running the ROS interface.

As a final set of tests, we also tried pushing the limits of 
MAES in UnityMode with respect to the number of robots. 
Figure 9f shows that MAES is able to perform a real-time 
simulation of 120 robots in a cave-map of size 75x75. In the 
experiment, we noticed that the frame rate was reduced to 4–5 
frames per second when trying to simulate these many robots, 
but the underlying physics simulation was not affected. As 
Fig. 9f also shows, the computer still had a surplus of CPU 
resources, but the increased number of robots still had an 
impact on the computational resources. This result hints at 
MAES not being able to fully utilize multiple CPU cores, 
which is an optimization that is left as future work.

5.2 � Usability test

The goal of the usability test is to test whether or not the 
target audience can setup and use MAES in ROSMode 
only using the guides and documentation from the readme 
included in the GitHub repository. Since the primary func-
tion of MAES is to simulate multi-robot behavior, we 
determined the target audience to be robotics developers 
and researchers. Given their background, we made some 
assumptions about their domain knowledge. For example, 
we assumed that they have at least some knowledge of ROS.

5.2.1 � Setup of the usability test

The test consisted of a short interview, followed by three 
phases of tasks, and then finally a small closing interview 



767Artificial Life and Robotics (2023) 28:757–770	

1 3

with room for open discussions. We had an interviewer 
guidelines to ensure a similar experience for all subjects.

The initial interview, driven by a questionnaire, is 
meant to get an understanding of the subject’s current 
knowledge of ROS, MAES, Gazebo, and Python. This 
latter aspect was particularly important, since some of the 
tasks require some knowledge of Python.

The tasks are divided into the Setup Phase, the Configure 
Phase, and the Use Phase, and in particular there were 3 
tasks each for the first and second phases, and 4 tasks for 
the Use Phase. We considered that a subject could struggle 
with MAES setup and still have a good experience using it, 
once it is set up and configured. For this reason, we included 
a limit of 20 min for each phase, after which the interviewer 

helps the subject to finish the current task and moves on to 
the next phase.

The Setup Phase included tasks for setting up a Docker 
subsystem and running MAES in its default configuration. 
The Configuration Phase revolved around changing the sys-
tem parameters in MAES. The Use Phase included tasks that 
alter the maes_robot_controller python script to control the 
behavior of the robots, as well as tasks for using the ROS 
services exposed by MAES, such as depositing environment 
tags.

The closing interview is meant as an open discussion. 
Both the initial and the closing interviews were driven by 
questionnaires, more information can be seen in [30]

(a) Performance metrics of one robot in a 50x50 cave-type map
in ROSMode

(b) Performance metrics of three robots in a 50x50 cave-type
map in ROSMode

(c) Performance metrics of five robots in a 50x50 cave-type
map in ROSMode

(d) Performance metrics of three robots in a 30x30 cave-type
map in ROSMode

(e) Performance metrics of five robots in a 50x50 cave-type
map in UnityMode

(f) Performance metrics of 120 robots in a 75x75 cave-type
map in UnityMode

Fig. 9   Performance experimental results
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5.2.2 � Results of usability test

The usability test was completed by five subjects, which we 
will refer to as S1 through S5. The subjects are anonymized 
except for their title and experience using ROS, Python, and 
Gazebo.

The Setup Phase involved building and starting ROS 
with RViz running in a Docker container (Task 1), starting 
MAES from the precompiled MAES package (Task 2) and 
stopping ROS and closing MAES (Task 3). The Configure 
Phase included changing the number of robots to 1 using the 
MAES config file (Task 1), changing map type from building 
to cave using the MAES config file (Task 2), and launching 
first ROS and then MAES and confirm new number of robots 
and map type from the user interface (Task 3). Finally, 
the Use Phase comprised changing programmatically the 
behavior of a robot to make it move to coordinate (0, 0) 
(Task 1), make the robot cancel its movement (Task 2), make 
the robot deposit an environment tag (Task 3) and use the 
user interface to access the maes_state topic of the robot.

Figure 10 shows the time spent on each task for all sub-
jects. The subjects spent time in the range of 22–37 min 
completing all the tasks. Phase 1 Task 1 (P1T1) includes 
building the Docker image and the ROS workspace, and 
for this reason, a lot of the time spent was waiting for the 
computer to complete the build. This is probably also the 
reason why, the subjects were so close in terms of time spent 
completing P1T1. All tasks in Phase 1 were completed by 
all subjects. The target audience thus appears to be able to 
set up MAES in ROSMode.

In Phase 2, four out of five subjects finished all tasks. S3, 
however, accidentally changed the map type to custom map 
and not cave-map, and thus did not finish P2T2. Regarding 
P2T3, S1 tried to build the ROS workspace from the wrong 
directory once, but managed to build it correctly later. 
Configuration of MAES in ROSMode, i.e., Phase 2, appears 
to be possible for the target audience.

In Phase 3, i.e., the Use Phase, the subjects had some 
difficulties. P3T1 is to implement some very simple logic 
into the controller of the robot. S1 finished this task without 
difficulties. S2, S3 and S4 all tried to put it into the main 
function of the robot controller Python script. This made 
sense to the subjects, since many ROS nodes are controlled 
this way. For the version of MAES used for testing, however, 
the logic of the robot had to be written in the logic_loop_
callback function, which is continuously called whenever 
the controller receives a state update from MAES, which 
happens every 0.1  s with default settings. (Note: This 
has since been changed as a result of this usability test.) 
Subject S2, S3, S4 eventually did either read the readme 
describing this behavior or found the instructions, but it took 
significantly longer to complete P3T1 in this way.

P3T2 was finished by S1, S3, S4, and S5 without major 
issues. S2, however, did not complete P3T2. P3T3 and P3T4 
were finished without major issues by all subjects.

6 � Conclusion

The simulation tool MAES can be used for simulating, and 
developing, the logic behind swarm robots in a 2 dimen-
sional environment. MAES includes UnityMode for C# 
development as well as ROSMode, which allows for devel-
oping the logic of the robot directly as a ROSNode, and thus 
bridging the gap to real-world robot programming. Perfor-
mance tests showed that MAES can be run in real time on 
modest hardware with up to 5 robots in ROSMode, with up 
to 120 robots in UnityMode. A usability test was conducted, 
that shows that MAES can be setup, configured, and used 
by target audience of robotics researchers and developers 
within 60 min.

MAES is an ongoing open-source project, released under 
the GPL-3 license, with a small but growing community 
around its GitHub code repository. Planned future work 
include headless runs in ROSMode and position inaccuracies 
when running in ROSMode. Another interesting feature for 
the future is that of multiple robot types, since currently 
MAES only supports a single robot type in each simulation 
run. Another more complex extension of MAES would be 
allowing the robots to cover and explore 3D environments, 
such as underground caves and sewage systems.

MAES is aimed to terrain exploration and coverage. 
We plan to cover other use cases involving robot move-
ment, such as simulation of a smart factory floor. The main 
changes would involve the computation of how well an algo-
rithm is behaving, but most other MAES subsystem could 
be kept like they are.

Unity, which is used to construct MAES, has built-in 
systems to support safe, high performing multi-threaded 
code and very efficient memory management called 

Fig. 10   Comparison of time used for the 3 tasks of the Setup Phase 
and Configure Phase, and for the 4 tasks of the Use Phase, for all sub-
jects. X axis is phase and task and y axis is time spent in seconds
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Data-Oriented Technology Stack (DOTS) [31]. Upgrading 
MAES with Unity DOTS would likely increase MAES’ per-
formance greatly, but we predict it will be a significant feat 
to accomplish as it would require redesigning and rewrit-
ing a lot of MAES’ internal workings. However, this would 
likely only notably affect algorithms running  in UnityMode, 
as the ROS system appears to be the main bottleneck when 
in ROSMode.
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