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Abstract: Accurate state of charge (SOC) and closed-circuit voltage (CCV) prediction is essential for lithium-ion batteries and 

their model performance. In this study, a novel feedback correction-adaptive Kalman filtering (FC-AKF) method is proposed for 

the online battery state co-prediction, which is adaptive to the whole-life-cycle of the lithium-ion battery based on the improved 

second-order equivalent circuit model (SO-ECM). For the feedback correction strategy, the optimized iterative state initialization 

is conducted using the uncertainty covariance matrix of the prior three-time points with the convergence of the updating process. 

The experimental results show that the SOC prediction error of the proposed FC-AKF method is 0.0099% and 0.975% compared 

with the ampere-hour integral method under the dynamic stress test (DST) and the Beijing bus dynamic stress test (BBDST) 

working conditions, respectively. Also, the CCV traction by the SO-ECM is 0.80 V and has fast initial convergence and quick 

prediction error reduction characteristics. The constructed iterative calculation model promotes the accurate SOC and CCV co-

prediction effect, improving the safety and longevity of lithium-ion batteries with high precision and fast convergence advantages. 

Keywords: state of charge; closed-circuit voltage; second-order equivalent circuit model; feedback correction-adaptive Kalman 

filter; whole-life-cycle variation; fast initial convergence 
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Highlights 

 A novel feedback correction-adaptive Kalman filtering (FC-AKF) method is proposed for the online SOC and CCV co-

prediction, which is adaptive to the whole-life-cycle temperature and current rate variations of lithium-ion batteries.

 An improved second-order equivalent circuit model (SO-ECM) is constructed by introducing two resistor-capacitor circuits

to characterize the electrochemical and concentration polarization effects.

 A state initialization, iterative time update, and error covariance matrix correction are investigated using the uncertainty

matrix at a priori three-time point.
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 The constructed SO-ECM and FC-AKF model promote the accurate state co-prediction effect with a maximum error of 

0.0099% and 0.975% under the dynamic stress test (DST) and the Beijing bus dynamic stress test (BBDST) working 

conditions, respectively, improving the safety and longevity of lithium-ion batteries. 

1. Introduction 

Rapid industrial development has brought economic prosperity, along with environmental pollution and an energy crisis. 

Lithium-ion batteries have a high energy density, a long lifespan, and high terminal voltage advantages and have greatly supported 

the power storage and supply process. Consequently, lithium-ion batteries have become an indispensable energy storage system 

that applies to most of the technological fields. The state of charge (SOC) and closed-circuit voltage (CCV) prediction are critical 

thresholds for safe and high-efficiency charge-discharge maintenance [1], in which accurate state prediction helps to extend the 

service life of lithium-ion batteries. 

Equivalent circuit models (ECMs) play a significant role in the state prediction process of lithium-ion batteries. The Rint model 

only includes the ideal voltage source and internal resistance, but the polarization characteristics are not considered effectively [2]. 

For the cyclic charge-discharge process, the polarization effect is generated and increases with the current rate to influence the 

SOC prediction accuracy, which is affected by the variation of temperature, self-discharge, aging, and other factors in highly 

nonlinear conditions. The modeling mechanism and internal short circuit prevention are considered, including stress-driven 

quantifying and equivalent circuit model (ECM) [3, 4]. Direct and indirect anode ECMs are constructed through internal short-

circuiting and venting in the thermal runaway processes to directly predict the cathode potential based on cathode parameter 

identification and an indirect anode potential prediction under different working conditions [5]. Nonlinear characteristics are 

considered for the battery cells using the Hammerstein-Wiener model to accurately predict the behavior of these cells [6]. The 

supervised machine learning model is constructed based on the second-order ECM (SO-ECM) to achieve an accurate fault 

diagnosis for batteries of electric aircraft under different test conditions [7]. A confidence-interval-based prognostic model is 

proposed to quantify and assess the practical parameter identification ability of the SO-ECM using profile likelihood and ratio 

subset statistics [8]. A fractional-order ECM is established for multiple lithium-ion batteries under different states based on 

electrochemical impedance spectroscopy (EIS) analysis [9]. The reduced electrochemical model is introduced to realize the 

condition monitoring in the advanced battery management systems [10]. A novel mesoscale electrothermal is established to 

simulate the electrical characteristics of a whole battery by capturing the current and terminal voltage of each constituent cell 

sandwich [11]. The electro-thermal coupled model is established by considering the electric potential, heat generation, and 

distribution [12].  

Key parameters of the ECM are determined by experimental data from the hybrid pulse power characteristic (HPPC) tests to 
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obtain the ohmic resistance value with the instantaneous dynamic terminal voltage variations from the start to the end of the charge-

discharge process. The internal polarization resistance and capacitance are obtained through the slow terminal voltage variation 

analysis [13]. A thermoelectric coupling model is established for the SOC prediction based on the physical-based high-frequency 

modeling of the time-domain battery characteristics [14]. The challenges of the data-based degradation model are analyzed for the 

long-term aging characteristic description for lithium-ion batteries [15]. With the feedback structure of the Doyle-Fuller-Newman 

model, the analysis using the input-output systems theory was conducted [16]. An improved simulated annealing method to access 

the uncertain states and an adaptive switch mechanism to adjust the prediction of an adaptive extended Kalman filter (AEKF) 

algorithm for SOC prediction based on the SO-ECM with no correction factor [17]. A numerical mechanics model of lithium-ion 

batteries is established to imperatively study their mechanical integrity and internal short circuit by considering the SOC and 

dynamic behaviors under different loading conditions [18]. A lumped-parameter two-state electro-thermal model for lithium-ion 

batteries is established based on a temperature-dependent SO-ECM and a joint Kalman filter core temperature prediction [19]. An 

integrated electro-thermal model is proposed to predict the thermal characteristics of a battery cell-based only on its current and 

ambient conditions and validated through the tuning of experimental results [20]. The effect of measurement noise on model 

parameter identification and SOC prediction is investigated by a parameterization method combining instrumental variable 

prediction and the bilinear principle [20]. A singularly perturbed phase-field model is used to model lithium-ion batteries by 

considering factors such as chemical and elastic effects [21]. 

Commonly used prediction methods, such as the Ampere-hour (Ah) integral method, have a large error. The open-circuit voltage 

(OCV) method is mainly used for offline state prediction and is highly dependent on the initial SOC value. High-precision methods 

include data-driven methods such as feedforward neural network (NN), fuzzy logic, long short-term memory (LSTM), etc., and 

model-based methods, including Kalman filtering (KF) algorithms, etc., for SOC prediction. The KF as a model-based method is 

an optimum regression data processing method that realizes the optimal state variable prediction in real-time. The extended Kalman 

filtering (EKF) algorithm introduces a first-order Taylor series expansion of the nonlinear system to linearize it and improve the 

prediction accuracy by ignoring the high-order terms. Thus, the nonlinear system is linearized to adapt to the nonlinear battery 

system [22]. An improved log-linear method is constructed for extracting, modeling, and predicting the resistance of lithium-ion 

batteries from dynamic aging profiles based on the measured internal resistance and the SOC value [23]. A three-dimensional 

electrochemical-thermal coupling model of a lithium-ion battery is constructed to study the electrochemical distribution 

characteristics of the electrode and its evolution factors [24]. The SOC and the state of power (SOP) are jointly predicted under 

multiple constraints using the dual-polarization (DP) model with the EKF to improve the accuracy of the prediction [25]. A model-

based observer is used to analyze the possible error sources in the SOC prediction of lithium-ion batteries in real-time applications 

[26]. The ECM of a lithium-ion battery is established to analyze the EIS response to the SOC prediction based on the determining 
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factors of the ECM parameters [27]. Online parameter identification is constructed to analyze the different influences of voltage 

and current noise on the SOC prediction [28]. A multi-scale prediction method is established for the remaining useful life (RUL) 

and SOH by a combined wavelet neural network-unscented particle filter (WNN-UPF), on which the SOC of the lithium-ion 

battery is dependent [29]. A gated recurrent unit recurrent neural network with activation function layers (GRU-ATL) is established 

to predict the SOC using deep learning technology to establish the nonlinear relationship between the measured current, voltage, 

and temperature signals and the battery SOC [30]. 

In the battery management system (BMS), sampling signals are affected by the uncertainty noise reduction introduced by the 

variants of the KF for SOC prediction. The SO-ECM is proposed based on an improved EKF and an adaptive unscented Kalman 

filter (AUKF) to accurately predict the SOC with a maximum error of 2.30% and 3.30%, respectively, due to their noise reduction 

effect [31, 32]. The KF-based methods track the nonlinear SOC value precisely. By factoring in robustness, adaptability, and 

reduced noise by the error covariance matrix, low computational complexity is achieved with high accuracy in the SOC prediction. 

The unscented transform is introduced, in which a certain number of sampling data points are selected according to the statistical 

characteristics of state variables. Through the establishment of the ECM, the functional OCV-SOC relationship is obtained to 

construct the systematic mixed adaptive observer for the prediction model at varying conditions [33, 34]. Adaptive prediction is 

realized via simplified single-particle modeling [35] so that the initialization converges. Consequently, the prediction error 

decreases and is stable in the whole-life-cycle procedure. An enhanced battery model is constructed to predict the degraded capacity 

by the optimized EKF calculation [36]. Asymptotic reduction and homogenization are analyzed for the thermo-electrochemical 

[37] and pure electrochemical [38] models. 

For electric vehicle applications, the adaptive Lyapunov super twisting observer and adaptive extended Kalman filters (AEKFs) 

are established to ensure an accurate prediction of the SOC with an enhanced parameter identification method such as a dual 

forgetting factor [39-41]. The accurate SOC estimation is realized by using the fractional-order calculus strategy [42]. A strict 

Lyapunov super twisting observer is designed [43], and adaptive prediction methods are modeled by FBG-based strain sensing 

and machine learning [44] for robust SOC prediction. Also, a polynomial augmented-extended Kalman filter (PA-EKF) is 

conducted for [45], and an integral-type terminal sliding-mode observer [46] is constructed for the robust prediction. An improved 

least square-support vector regression (LS-SVR) [47] is established with an online sequential extreme machine learning [48] and 

anomaly detection, Levenberg-Marquardt, and multiphase exponential regression model [49]. The SOC prediction is realized with 

limited data [50], the GRU neural network [51], differential temperature conditions [52], the LSTM neural network [53], and the 

incremental capacity technique [54]. The sequential model is realized by active current injection [55]. A health-aware multi-

objective optimal charging model is established to simultaneously shorten the charging time and relieve the battery degradation 

based on a coupled electrochemical-thermal-aging battery model [56]. The prediction is realized by data fusion treatment and 
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multi-objective optimization of the data-driven model, which is modeled with short-term features. The battery life prediction is 

realized by hybrid modeling, and the prediction framework is constructed by combining PF with the sliding window gray model. 

Deep reinforcement learning-based energy storage [57] is also realized by accurate degradation modeling. A tailoring life cycle 

study of lithium-ion batteries is conducted under a passive cooling system [58]. Quantitative analysis of performance decreases 

and fast-charging limitations is realized for low-temperature conditions by electrochemical modeling [59]. Advanced modeling is 

realized for hybrid energy storage systems integrating lithium-ion batteries and supercapacitors [60]. Mathematical modeling is 

realized to obtain frequency-domain characteristics of periodic pulse-discharged battery systems [61]. Consequently, the external 

battery characteristics are described accurately by nonlinear models with online parameter identification. 

Due to the urgent application requirement, the improved SO-ECM combined with the feedback correction-adaptive Kalman 

filter (FC-AKF) is proposed for online co-prediction of SOC and CCV that is adaptive to the whole-life-cycle battery characteristic 

variation. A high-precision observer is established for the state prediction by the ECM and iterative correction of the FC-AKF. The 

proposed nonlinear SO-ECM describes the external battery characteristics accurately, in which two resistor-capacitor (RC) circuits 

are introduced to describe the electrochemical and concentration polarization effects. For the proposed FC-AKF method, state 

initialization, iterative time update, and covariance correction are investigated using the uncertainty matrix during the prior time 

update. The Kalman gain calculation and state observation are realized to correct the state prediction values at each time point so 

that the prediction accuracy is improved by recursively updating the measured and predicted variables, making the predicted value 

converge. 

2. Mathematical Analysis 

By considering the aging characteristics under wide temperature range conditions, the collaborative battery SOC and CCV 

prediction are realized by SO-ECM and iterative calculation of the FC-AKF for the whole-life-cycle of lithium-ion batteries with 

adaptive parameter correction.  

2.1. Second-order equivalent circuit modeling 

Compared with the partnership for new generation vehicles (PNGV), general nonlinear (GNL), and other battery models, the 

proposed SO-ECM has a simple structure and belongs to the nonlinear reduced-order types with few parameters and high accuracy 

that is adaptive to the dynamic characteristics of the lithium-ion batteries. The polarization influence on voltage is considered by 

introducing one more RC circuit so that the dynamic behavior is effectively characterized. Then, the nonlinear state-space equation 

is established to construct the whole structure of the SO-ECM to predict the battery state with high accuracy. The framework of 

the SO_ECM is constructed as shown in Figure 1. 
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Figure 1. The framework of the second-order equivalent circuit model 

In Figure 1, the 𝑈𝑂𝐶  source is the battery’s open-circuit voltage (OCV) characteristics, and 𝑈𝐿 is the battery terminal voltage. 𝑅0 

is the ohmic resistance. 𝑅𝑝1  and 𝑅𝑝2  are the battery’s electrochemical and concentration polarization resistance effects, 

respectively. 𝐶𝑝1 and 𝐶𝑝2 are the battery’s electrochemical and concentration polarization capacitance effects, respectively. 𝐼(𝑡) is 

the charge-discharge current. 

2.2. State-space equation of the improved SO-ECM 

By the improved SO-ECM, 𝑈𝐿  and 𝐼𝑡  are obtained the mathematical relationship of the electrical components according to 

Kirchoff’s circuit law, as shown in Equation (1). 

{
 
 

 
 𝑑𝑈𝑝1 𝑑𝑡⁄ = 𝐼𝑡 𝐶𝑝1⁄ − 𝑈𝑝1 𝑅𝑝1𝐶𝑝1⁄

𝑑𝑈𝑝2 𝑑𝑡⁄ = 𝐼𝑡 𝐶𝑝2⁄ − 𝑈𝑝2 𝑅𝑝2𝐶𝑝2⁄

𝑈𝐿 = 𝑈𝑂𝐶(𝑆𝑂𝐶𝑡) − 𝐼𝑡𝑅0 − 𝑈𝑝1 − 𝑈𝑝2
𝜏1 = 𝑅𝑝1𝐶𝑝1; 𝜏2 = 𝑅𝑝2𝐶𝑝2

 (1) 

In Equation (1), 𝑈𝑂𝐶  is theoretically equal to the OCV value, and its mathematical expression is 𝑈𝑂𝐶 = 𝑓(𝑆𝑂𝐶𝑡) for the SOC 

variation. The frequency-domain expression of the SO-ECM is obtained by the Laplace transform, as shown in Equation (2). 

𝐸(𝑠) = 𝑈𝑂𝐶(𝑠) − 𝑈𝐿(𝑠) = 𝐼(𝑠) [𝑅0 +
𝑅𝑝1

1 + 𝑅𝑝1𝐶𝑝1𝑠
+

𝑅𝑝2

1 + 𝑅𝑝2𝐶𝑝2𝑠
] (2) 

In Equation (2), 𝐸(𝑠) is the voltage variation between the OCV factor 𝑈𝑂𝐶(𝑠) and the CCV factor 𝑈𝐿(𝑠), which is mainly caused 

by three effects, including 𝑅0, 𝑅𝑝1𝐶𝑝1, and 𝑅𝑝2𝐶𝑝2. The discretization of the mathematical relationship for these parameters is 

conducted using the bilinear transformation, as shown in Equation (3). 

𝐸(𝑡) = 𝜃1𝐸(𝑡 − 1) + 𝜃2𝐸(𝑡 − 2) + 𝜃3𝐼(𝑡) + 𝜃4𝐼(𝑡 − 1) + 𝜃5𝐼(𝑡 − 2) (3) 

In Equation (3), the electro power of 𝐸(𝑡) is obtained using the parameters 𝐸(𝑡 − 1), 𝐸(𝑡 − 2), 𝐼(𝑡), 𝐼(𝑡 − 1), and 𝐼(𝑡 − 2) 
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with the coefficients varying from 𝜃1 to 𝜃5.  

Taking 𝑆𝑡 as the SOC value at the time point 𝑡, the SOC value is obtained by the Ah integral method in the prediction step, as 

shown in Equation (4). 

𝑆𝑡 = 𝑆𝑡0 −
1

𝑄0
∫ 𝜂𝐼𝑡𝑑𝑡
𝑡

𝑡0

 (4) 

In Equation (4), 𝑆𝑡0  is the initial SOC value at time point 𝑡0. By taking the SOC variation 
1

𝑄0
∫ 𝜂𝐼𝑡𝑑𝑡
𝑡

𝑡0
 into consideration, the 

SOC value for the time point 𝑡 is calculated. The state-space expression of the SO-ECM is established, as shown in Equation (5). 

[

𝑠𝑡+𝛥𝑡
𝑈𝑝2,𝑡+𝛥𝑡
𝑈𝑝2,𝑡+𝛥𝑡

] =

[
 
 
 
 
 
1 0 0

0 𝑒𝑥𝑝 (−
𝛥𝑡

𝑅𝑝1
) 0

0 0 𝑒𝑥𝑝 (−
𝛥𝑡

𝑅𝑝2
)
]
 
 
 
 
 

[

𝑠𝑡
𝑈𝑝1,𝑡
𝑈𝑝2,𝑡

] +

[
 
 
 
 
 
 −

𝜂𝛥𝑡

𝑄0

𝑅𝑝1 [1-𝑒𝑥𝑝 (−
𝛥𝑡

𝑅𝑝1𝐶𝑝1
)]

𝑅𝑝2 [1-𝑒𝑥𝑝 (−
𝛥𝑡

𝑅𝑝2𝐶𝑝2
)]
]
 
 
 
 
 
 

𝐼𝑡 + [

𝑤1,𝑡
𝑤2,𝑡
𝑤3,𝑡

] (5) 

In Equation (5), the state-space variable is described by the matrix 𝑋𝑡 = [𝑆𝑡 , 𝑈𝑝1, 𝑡, 𝑈𝑝2, 𝑡]
𝑇 and the control-input variable is 𝐼𝑡. 

The observation equation based on the SO-ECM is established, as shown in Equation (6). 

𝑈𝑡 = 𝑓(𝑆𝑡) − 𝐼𝑡𝑅0 − 𝑈𝑝1,𝑡 − 𝑈𝑝2,𝑡 + 𝑣𝑡 (6) 

In Equation (6), the observation equation is obtained by real-time prediction and correction updates. Taking the observation 

variable as 𝑦𝑡 = 𝑈𝑡 , the process noise 𝑤𝑡 = [𝑤1,𝑡 , 𝑤2,𝑡,𝑤3,𝑡]
𝑇  with a covariance matrix 𝑄 is obtained. The iterative calculation 

process is designed accordingly, as shown in Equation (7). 

{
 
 

 
 

[𝑈𝑝1(𝑡) − 𝑈𝑝1(𝑡 − 1)] 𝑇 = −𝑈𝑝1(𝑡) 𝑅𝑝1𝐶𝑝1⁄ + 𝐼 (𝑡) 𝐶𝑝1⁄⁄

[𝑈𝑝1(𝑡 − 1) − 𝑈𝑝1(𝑡 − 2)] 𝑇 = −𝑈𝑝1(𝑡 − 1) 𝑅𝑝1𝐶𝑝1⁄ + 𝐼 (𝑡 − 1) 𝐶𝑝1⁄⁄

[𝑈𝑝2(𝑡) − 𝑈𝑝2(𝑡 − 1)] 𝑇 = −𝑈𝑝2(𝑡) 𝑅𝑝2𝐶𝑝2⁄ + 𝐼 (𝑡) 𝐶𝑝2⁄⁄

[𝑈𝑝2(𝑡 − 1) − 𝑈𝑝2(𝑡 − 2)] 𝑇 = −𝑈𝑝2(𝑡 − 1) 𝑅𝑝2𝐶𝑝2⁄ + 𝐼 (𝑡 − 1) 𝐶𝑝2⁄⁄

 (7) 

In Equation (7), 𝑡 and 𝑡 − 1 are the dependent current and previous time points, respectively. Combining the parameters of CCV 

and current, the iterative calculation equation is obtained, as shown in Equation (8). 

𝑈𝐿(𝑡) = 𝑐0 + 𝑐1𝑈𝐿(𝑡 − 1) + 𝑐2𝑈𝐿(𝑡 − 2) + 𝑐3𝐼(𝑡) + 𝑐4𝐼(𝑡 − 1) + 𝑐5𝐼(𝑡 − 2) (8) 

In Equation (8), 𝑡, 𝑡 − 1, and 𝑡 − 2 are dependent time points. The parameters are calculated from the values of the two previous 

time points to reduce the computational cost of the iterations. The value of the parameter 𝑅0 is obtained, as shown in Equation (9). 

𝑅0 = 𝑐2 𝑐5⁄  (9) 

In Equation (9), the internal ohmic resistance is obtained by the mathematical calculation of the coefficients of 𝑐2 and 𝑐5. Then, 

the electrochemical polarization resistance is calculated, as shown in Equation (10). 
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𝑅𝑝1 =
[−𝜏𝑝1

𝑐3 + 𝑐4 + 𝑐5
1 − 𝑐1 − 𝑐2

+ 𝑅0
𝑐1 + 2𝑐2
1 − 𝑐1 − 𝑐2

𝑇 − 𝑅0𝜏𝑝1 −
𝑐4 + 2𝑐5
1 − 𝑐1 − 𝑐2

𝑇]

𝜏1 − 𝜏2
 

(10) 

In Equation (10), the 𝑅𝑝1 is calculated by the coefficients and the time components. Combining 𝑅0 and 𝑅𝑝1, the concentration 

polarization resistance 𝑅𝑝2 is obtained, as shown in Equation (11). 

𝑅𝑝2 = −𝜏1
𝑐3 + 𝑐4 + 𝑐5
1 − 𝑐1 − 𝑐2

− 𝑅0 − 𝑅𝑝1 (11) 

In Equation (11), according to the calculated value of 𝑅𝑝1 at each SOC level and the mathematical relationship between the two 

RC circuits, the expressions for the electrochemical and concentration polarization capacitance are obtained, as shown in Equation 

(12). 

{
𝐶𝑝1 = 𝜏1 𝑅𝑝1⁄

𝐶𝑝2 = 𝜏2 𝑅𝑝2⁄
 (12) 

In Equation (12), the electrochemical and concentration polarization capacitance 𝐶𝑝1 and 𝐶𝑝2 are adjusted by the time constants 

and resistance. Then, the functional relationship between OCV and SOC is obtained by the logarithmic calculation, as shown in 

Equation (13). 

𝑈𝑂𝐶(𝑡) = 𝐾0 + 𝑘1𝑙𝑛[𝑆(𝑡)] + 𝑘2𝑙𝑛[1 − 𝑆(𝑡)] (13) 

In Equation (13), the functional relationship between the modeling coefficients is obtained to calculate the parameters, as shown 

in Equation (14). 

{

𝐺(𝑡) = 𝑃(𝑡 − 1)𝝋(𝑡)[𝑰𝑛𝑝 +𝝋
𝑇(𝑛𝑝, 𝑡)𝑃(𝑡 − 1)𝝋(𝑛𝑝, 𝑡)]

−1

𝑃(𝑡) = 𝑃(𝑡 − 1) − 𝐺(𝑡)𝝋𝑇(𝑡)𝑃(𝑡 − 1)

𝜽̂(𝑡) = 𝜽̂(𝑡 − 1) + 𝐺(𝑡)[𝒀(𝑡) − 𝝋𝑇(𝑡)𝜽̂(𝑡 − 1)]

 (14) 

In Equation (14), the observation noise is initialized with the covariance matrix 𝑅 to obtain the coefficient matrices of the state-

space model, as shown in Equation (15). 

 

{
 
 
 
 

 
 
 
 
𝐴𝑡 = [

1 0 0
0 𝑒𝑥𝑝[−∆𝑡 (𝑅𝑝1𝐶𝑝1)⁄ ] 0

0 0 𝑒𝑥𝑝[−∆𝑡 (𝑅𝑝2𝐶𝑝2)⁄ ]

]

𝐵𝑡 = [

−𝜂∆𝑡 𝑄𝑛⁄

𝑅𝑝1(1 − 𝑒𝑥𝑝[−∆𝑡 (𝑅𝑝1𝐶𝑝1)⁄ ])

𝑅𝑝2(1 − 𝑒𝑥𝑝[−∆𝑡 (𝑅𝑝2𝐶𝑝2)⁄ ])

]

𝐶𝑡 = [𝜕𝐹(𝑠𝑡) 𝜕𝑆𝑡|𝑆𝑡=𝑆𝑡−,−1⁄ −1 −1]

 (15) 

In Equation (15), 𝐴𝑡 is the state transition matrix, 𝐵𝑡  is the control-input matrix, and 𝐶𝑡 is the measurement matrix of the system. 

𝜂 is the coulombic efficiency, which is defined as 1 in this study, and 𝑄𝑛is the nominal capacity of the lithium-ion battery. 

The internal electrochemical reaction does not stop immediately after the discharge, and the external performance is that the 

terminal voltage rises rapidly. Then, it gradually tends to a stable value, which is the rebound characteristic of lithium-ion batteries, 
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as shown in Figure 2. 
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Figure 2. Rebound characteristics of lithium-ion batteries 

In Figure 2, point 𝐴 indicates the time point when the discharge ends. The point 𝐵 indicates the next time after the battery 

discharge ends. The point 𝐶 indicates that the battery is stational. From the voltage variation, it can be observed that the rebound 

of lithium-ion batteries mainly includes the rapid rising stage from 𝐴 to 𝐵 and the slow rising stage from 𝐵 to 𝐶. The rapid rising 

in voltage from 𝐴 to 𝐵 is mainly due to the increase in the ohmic internal resistance, and the slow rising stage from 𝐵 to 𝐶 is due 

to the internal polarization characteristics. The working characteristics of the SO-ECM are consistent with the rebound 

characteristics of lithium-ion batteries, so the parameters are identified by the voltage and current data of the battery in the rebound 

stage. After the discharge, the SO-ECM has zero input response, and the voltage variation with time is obtained, as shown in 

Equation (16). 

𝑈(𝑡) = 𝑈(0)𝑒−
𝑡
𝑅𝐶; 𝑈𝑝1(0) = 𝐼(𝑡)𝑅𝑝1; 𝑈𝑝2(0) = 𝐼(𝑡)𝑅𝑝2 (16) 

In Equation (16), the mathematical relationship between the electrical parameters for the zero-state response is expressed. 

According to Kirchoff’s circuit law, the terminal voltage from 𝐵 to 𝐶 at any time point is obtained, as shown in Equation (17). 

𝑈𝐿(𝑡) = 𝑈𝑂𝐶 − 𝑈𝑝1(𝑡) − 𝑈𝑝2(𝑡) = 𝑈𝑂𝐶 − 𝑈𝑝1(0)𝑒
−

𝑡
𝑅𝑝1𝐶𝑝1 − 𝑈𝑝2(0)𝑒

−
𝑡

𝑅𝑝2𝐶𝑝2

= 𝑈𝑂𝐶 − 𝐼(𝑡)𝑅𝑝1𝑒
−
𝑡
𝜏1 − 𝐼(𝑡)𝑅𝑝2𝑒

−
𝑡
𝜏2  

(17) 

In Equation (17), 𝜏1 and 𝜏2 are the curve fitting coefficients, so that the calculation procedure and relationship are obtained, as 

shown in Equation (18). 

𝜏1 = 𝑅𝑝1𝐶𝑝1; 𝜏2 = 𝑅𝑝2𝐶𝑝2; 𝜏1 > 𝜏2 (18) 

In Equation (18), the calculation procedure is designed for the battery’s parameters based on the curve fitting coefficients. The 

observation equation towards time in the rebound stage is fitted, as shown in Equation (19). 

𝑦 = 𝑘0 − 𝑘1𝑒
−𝑏1𝑡 − 𝑘2𝑒

−𝑏2𝑡 (19) 

In Equation (19), the general expression of the observation equation is obtained. According to the experimental data, the values 
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of 𝑘0, 𝑘1, 𝑘2, 𝑏1, and 𝑏2 are obtained by the curve fitting method. Then, the model parameters are calculated accordingly, as shown 

in Equation (20). 

{
 

 𝑅0 =
∆𝑈𝐴𝐵
𝐼

; 𝑅𝑝1 =
𝑘1
𝐼
;  𝑅𝑝2 =

𝑘2
𝐼
;

𝐶𝑝1 =
𝑏1
𝑅𝑝1

; 𝐶𝑝2 =
𝑏2
𝑅𝑝2

 (20) 

In Equation (20), after obtaining the main coefficient parameters, the iterative calculation of the proposed FC-AKF algorithm is 

realized with effective prediction and correction updates. 

2.3. Feedback correction-adaptive Kalman filter 

In the prediction process, the improved FC-AKF method continuously corrects the SOC value through the error covariance 

correction and system noise update in real-time for accurate prediction. The main purpose is to determine the initial and updated 

state parameters for the next time point with an updated error covariance matrix. Then, the parameter value is calculated based on 

the weight update of the Kalman gain. For the next time point calculation, the state and error covariance prediction is realized 

through the iterative prediction and correction of the mean covariance error and covariance that are updated continuously, as shown 

in Figure 3. 

Initialization

Coefficient matrix and covariance matrix

Start

Input

Current terminal voltage and current monitor

Structure

 Multi-innovation matrix and data vector

Calculation

Kalman gain matrix

Update

Coefficient matrix and covariance matrix

Judgement

End

N

Y

Discretization

KCL and KVL

First-order backward difference

Merge and simplify

Separation parameters

SO-ECM

State-space equation

Correction factors

 

Figure 3. Flowchart of the feedback correction-adaptive Kalman filter 



 

11 

 

 

In Figure 3, judging whether the system dynamics are changed by filtering constantly, the model parameters are predicted and 

corrected by considering the statistical noise characteristics to reduce the prediction error. The predicted state value 𝑥̂𝑡, noise 

variance 𝑞̂𝑡+1, and 𝑢𝑡 are predicted in real-time with the measured data to realize the state prediction, as shown in Equation (21).  

𝑞̂𝑡+1 =
1

𝑡 + 1
𝐺∑(

𝑘

𝑡=0

𝑥̂𝑡+1 − 𝐴𝑥̂𝑡 − 𝐵𝑢𝑡) (21) 

The noises’ covariance matrices 𝑄𝑡 and 𝑅𝑡 are updated in real-time to improve the prediction accuracy and robustness, as shown 

in Equation (22). 

𝑄̂𝑡+1 =
1

t+1
𝐺∑(

𝑘

𝑡=0

𝐿𝑡+1𝑦̃𝑡+1𝑦𝑡+1
𝑇𝐿𝑡+1 + 𝑃̃𝑡+1 − 𝐴𝑃𝑡+1𝐴

𝑇)𝐺𝑇 (22) 

In Equation (22), the mean value of the process noise 𝑤𝑡  and the measurement noise 𝑣𝑡 is zero. The calculation of the correlation 

parameter designed for the system noise correction, as shown in Equation (23). 

𝑟̂𝑡+1 =
1

𝑡 + 1
∑(𝑦𝑡+1 − 𝐶𝑥̂𝑡+1|𝑡)

𝑘

𝑡=0

 (23) 

In Equation (23), the parameter identification and state prediction are combined organically. The noise statistical characteristic 

prediction is realized by the iterative calculation, as shown in Equation (24). 

𝑅̂𝑡+1 =
1

𝑡 + 1
∑(𝑦̄𝑡+1

𝑘

𝑡=0

𝑦̄𝑇
𝑡+1

− 𝐶𝑃𝑡+1|𝑡𝐶
𝑇) (24) 

In Equation (24), the statistical quantity is obtained towards the prediction factors. 𝑦𝑡+1 is the corresponding state observation 

signal. 𝑢𝑡 is the system input quantity. 𝐴𝑡 is the state transition matrix, 𝐵𝑡  is the control matrix. 𝐶𝑡 is the observation matrix. The 

coefficient 𝐺 is obtained by 𝐺 = (ГГ𝑇)Г𝑇 , in which Г is used as the driving matrix noise. These equations are arithmetic averages, 

and the weighting coefficients of each term are considered. In the time-varying battery systems, recent data has a great impact on 

the state prediction, so the exponential weighting treatment is adopted to improve the prediction effect. Consequently, each formula 

is multiplied by the exponential weighting coefficient β, as shown in Equation (25). 

𝛽𝑖 = 𝛽𝑖−1𝑏, (0 < 𝑏 < 1,∑𝛽𝑖

𝑘

𝑡=0

= 1)
 

(25)

 

In Equation (25), as for the iterative calculation of the exponential weighting coefficient β, the expression is further obtained by 

conducting the coefficient calculation, as shown in Equation (26). 

𝛽𝑖 = 𝑑𝑡𝑏
𝑖, (𝑑𝑘 =

1 − 𝑏

1 − 𝑏𝑡+1
, 𝑖 = 0,1,2,3… , 𝑘) (26) 

In Equation (26), 𝑏 is the forgetting factor. By substituting each item (𝑘 + 1)−1 with the original predicted coefficient 𝛽𝑡−1, the 
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noise prediction requirements of the improved time-varying system are obtained. The specific steps are designed as follows: 

(1) Initialization 

The initial value of the system state and error covariance matrix is designed, as shown in Equation (27). 

𝑥̂0 = 𝐸[𝑋0], 𝑃0 = 𝐸[(𝑋0 − 𝑥̂0(𝑋0 − 𝑥̂0)
𝑇]

 

(27)

 
(2) Error covariance correction 

The state and error covariance matrices at the time point 𝑘 + 1 are calculated, as shown in Equation (28). 

{
𝑋̂𝑡+1|𝑡 = 𝐴𝑋̂𝑡 + 𝐵𝑢𝑡 + 𝛤𝑞̂𝑡

𝑃𝑡+1|𝑡 = 𝐴𝑃𝑡𝐴
𝑇 + 𝛤𝑄̂𝑡𝛤

𝑇
 

(28)

 

(3) Kalman gain calculation 

According to the error covariance obtained in the previous step, the Kalman gain is calculated in real-time, as shown in Equation 

(29). 

𝐿𝑡 = 𝑃𝑡+1|𝑡𝐶
𝑇(𝐶𝑃𝑡+1|𝑡𝐶

𝑇 + 𝑅̂𝑡)
−1

 

(29)

 

(4) Error covariance update 

According to the observation value of 𝑦̄𝑡+1 in the battery system, the state prediction and error covariance matrix are updated 

for the time point 𝑡 + 1, as shown in Equation (30). 

{
𝑋̂𝑡+1 = 𝑋̂𝑡+1|𝑡 + 𝐿𝑡𝑦̄𝑡+1
𝑃𝑡+1|𝑡 = (𝐸 − 𝐿𝑡𝐶)𝑃𝑡+1|𝑡 

(30)

 

In Equation (30), 𝐸 is an identity matrix. Consequently, the core parameters are updated accordingly, including 𝑟̂𝑡, 𝑞̂𝑡, 𝑄̂𝑡, and 

𝑅̂𝑡 . Then, the procedure returns to step (1) and continues to carry out the iterative calculation. Subsequently, the unscented 

transformation is also conducted for the output voltage traction to realize the real-time state prediction with the update, as shown 

in Equation (31). 

{
 
 
 
 

 
 
 
 𝑥𝑡|𝑡−1

− = 𝑓(𝑥𝑡|𝑡−1
− ), 𝑥̄𝑡 =∑𝜔𝑖

𝑚

2𝐿

𝑡=0

𝑥𝑡|𝑡−1
𝑖

𝑝𝑡|𝑡−1 =∑𝜔𝑖
𝑐(𝑥𝑡|𝑡−1

𝑖 − 𝑥̄)

2𝐿

𝑡=0

(𝑥𝑡|𝑡−1
𝑖 − 𝑥̄)

𝑇
+ 𝑄𝑡

𝑦𝑡|𝑡−1
𝑖 = 𝑔(𝑥𝑡|𝑡−1

𝑖 ), 𝑦̄𝑡 =∑𝜔𝑖
𝑚[𝑔(𝑥𝑡|𝑡−1

𝑖 ) + 𝑣𝑡−1
𝑖 ]

2𝐿

𝑡=0

=∑𝜔𝑖
𝑚

2𝐿

𝑡=0

𝑦𝑡|𝑡−1
𝑖

 

(31)

 

In Equation (31), 𝑥𝑡|𝑡−1
𝑖

 is the predicted value obtained from the time point 𝑡 − 1. Subsequently, the accurate iterative calculation 

is also realized for real-time state monitoring, which has a significant influence on the battery’s safety. The operating characteristics 

are analyzed by integrating various calculation procedures to realize real-time state monitoring. Then, the measured and updated 

parameter value can be obtained, as shown in Equation (32). 
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{
 
 
 
 

 
 
 
 𝑝𝑡|𝑡−1 =∑𝜔𝑖

𝑐(𝑥𝑡|𝑡−1
𝑖 − 𝑥̄)

2𝐿

𝑡=0

(𝑥𝑡|𝑡−1
𝑖 − 𝑥̄)

𝑇
+ 𝑄𝑡

𝑝𝑥̄𝑦̄,𝑡 =∑𝜔𝑖
𝑐(𝑥𝑡|𝑡−1

𝑖 − 𝑥̄)

2𝐿

𝑡=0

(𝑦𝑡|𝑡−1
𝑖 − 𝑦̄)

𝑇

𝐾 = 𝑝𝑥̄𝑦̄,𝑡𝑝𝑦̄,𝑡
−1, 𝑥̄𝑡 = 𝑥̄𝑡−1 + 𝐾(𝑦𝑡 − 𝑦̄𝑡−1)

𝑝𝑡|𝑡 = 𝑝𝑡|𝑡−1 − 𝐾𝑝𝑥̄𝑦̄,𝑡−1𝐾
𝑇

 

(32)

 

By repeating these four calculation steps, the optimal state prediction is realized, in which the state parameter 𝑋𝑡 is obtained at 

the time point 𝑡 by the given initial state variables of 𝑋0 and 𝑃0. According to the state value at the time point 𝑡 − 1, the observed 

value is predicted by taking it as an input. The built-in model of the data performance is conducted and combined with the working 

condition influence, making the established prediction model realization effective. It has many advantages, including quick 

convergence speed and effective tracking performance. The prediction error is reduced effectively with high accuracy advantages 

in the iterative calculation process. According to mathematical modeling effect analysis, the calculation expression is obtained as 

shown in Equation (33). 

{

𝐸(𝑡) = 𝑈𝐿(𝑡) + 𝑈𝑝1(𝑡) + 𝑈𝑝2(𝑡) + 𝐼(𝑡)𝑅0

𝑈̇(𝑡) =
𝐼(𝑡)

𝐶𝑝1 + 𝐶𝑝2
−

𝑈𝑝1(𝑡)

(𝑅𝑝1𝐶𝑝1)
−

𝑈𝑝2(𝑡)

(𝑅𝑝2𝐶𝑝2) 
(33)

 

In Equation (33), 𝐸(𝑡) is the electromotive force of the power supply. The relationship between 𝐸(𝑡) and the state parameter 

𝑆(𝑡)is described by the nonlinear functional description. 𝑈𝐿(𝑡) is terminal voltage, 𝑈𝑝1(𝑡) and 𝑈𝑝2(𝑡) are the polarization voltage 

factors, and 𝑅0 is internal ohmic resistance.  

Then, 𝑆(𝑡) is obtained by combining the Ah integral method and other influencing factors. 𝑆(𝑡) is the state parameter and 𝑈𝐿(𝑡) 

is the observed quantity. As the prediction process is a discrete calculation process, the relationship between 𝑆(𝑡 + 1) and 𝑆(𝑡) is 

obtained after discretization, as shown in Equation (34). 

𝑆(𝑡) = 𝑆(𝑡0) − ∫
𝜂𝐼(𝑡)

𝑄

𝑡

0

𝑑𝑡 ⇒ 𝑆(𝑡 + 1) = 𝑆(𝑡) −
𝛥𝑇 × 𝐼(𝑡)

𝑄
+ 𝑣(𝑡)

 

(34)

 

In Equation (34), the point sets of mean and covariance are calculated after the transformation, and an asymmetric sampling 

strategy is introduced into the calculation process.  

The dimension of the state variable 𝑥 is 𝑛 to calculate the mean and covariance matrix with the observed variable. Finally, the 

sampling points are obtained with the nonlinear observing function. 𝑆(𝑡 + 1) and 𝑆(𝑡) represent state parameters at the time point 

𝑡 + 1 and 𝑡. 𝑄 is the quantity of electricity and 𝛥𝑇 is the unit parameter as the sampling period. Taking 𝑣(𝑡) as the observation 

noise, the observation equation is obtained, as shown in Equation (35). 

𝑈(𝑡) = 𝑓[𝑆(𝑡)] − 𝑅0𝐼(𝑡) − 𝑈𝑝(𝑡) + 𝑣(𝑡)
 

(35)

 

In Equation (35), the electromotive force of the power supply at the time point 𝑡 is characterized by 𝑈(𝑡). 𝑓[𝑆(𝑡)] represents 
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the non-linear relationship between OCV and SOC. 𝑅0 is the internal ohmic resistance. 𝐼(𝑡) represents the current measured at the 

time point 𝑡. 𝑈𝑝(𝑡) is the polarization voltage at the time point 𝑡 and 𝑣(𝑡) is the measurement noise.  

2.4. Iterative feedback correction strategies 

For the nonlinear battery’s state prediction, the proposed FC-AKF algorithm conducts the forced linearization. It carries out the 

probability density prediction of the state variables with an accurate feedback correction strategy to obtain the optimal solution. 

The transformation depends on the acquisition of sampling points, the determination of corresponding weights is initialed 

accordingly. The coefficient parameters are generally taken as 𝛽 ≥ 0 and 0.2 ≤ 𝛼 ≤ 1. A scaling factor, 𝜆, is used to generally 

satisfy the mathematical relationship functions. The sampling points are transferred nonlinearly with the functional relationship, 

as shown in Equation (36). 

{
𝜅 = 3 − 𝑛, 𝜆 = 𝛼2(𝑛 + 𝜅) − 𝑛

𝑦𝑖 = 𝑓(𝑥𝑖), 𝑖 = 0~2𝑛
 

(36)

 

In Equation (36), the unscented transformation is introduced to solve the nonlinear battery state prediction problem, which is an 

important part of the energy management strategy. It is realized according to the statistical parameter features, in which a certain 

sampling treatment is conducted for the corresponding finite number of sampling data points. The mean and covariance of these 

data points are the same as the original state, which is then introduced into the nonlinear transformation function, obtaining the 

corresponding data values. It uses the state and observation equations to realize the optimal state prediction of minimum variance 

by observing the input-output parameters. The mean and covariance are calculated after transformation, as shown in Equation (37). 

𝑦̂ = ∑𝜔𝑡𝑓(𝑥𝑡)

2𝑛

𝑡=0

⇒ 𝑃𝑦 =∑𝜔𝑡[𝑓(𝑥𝑡) − 𝑦̂]

2𝑛

𝑡=0

[𝑓(𝑥𝑡) − 𝑦̂]
𝑇

 

(37)

 

In Equation (37), the implementation process is divided into two stages, including prediction and update. According to the 

symmetric sampling strategy, sigma points are used as the sampling data, which needs to meet the same mean and covariance 

conditions. Considering the SO-ECM and the operating conditions, SOC is used as the state variable, and 𝑈0  is taken as the 

observation variable. The established state-space expression is obtained, as shown in Equation (38). 

{
𝑆𝑡+1 = 𝑆𝑡 − 𝐼𝑡

𝛥𝑡

𝑄𝑛 + 𝑤𝑡+1
𝑈0,𝑡+1 = 𝑓(𝑆𝑡+1) − 𝑈0 − 𝑈1 + 𝑣𝑡+1 

(38)

 

In Equation (38), the state value at the time point 𝑡 is used to predict the SOC value for the next time point 𝑡 + 1. 𝛥𝑡 is the 

sampling interval. 𝑄𝑛 is the rated capacity, which is calibrated. 𝐼𝑡 is the current at the time point 𝑡, assuming charging is positive 

and discharging is negative. 𝑈𝑂𝐶,𝑡+1 = 𝑓(𝑆𝑡+1) is the relationship function between the OCV and SOC. 𝑤𝑡+1 and 𝑣𝑡+1 are the 

process and measurement noises, respectively. Meanwhile, the real-time prediction error correction is conducted between the 

measured variable and prediction value. Finally, the optimal prediction of state variables is realized. The predicted value of the 
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state variable at the time point 𝑡 + 1 is obtained accordingly, as shown in Equation (39). 

𝑥𝑡+1|𝑡
𝑖 = 𝑓(𝑥𝑡

𝑖, 𝑢𝑡) ⇒ 𝑥̂𝑡+1|𝑡 =∑𝜔𝑚
𝑖

2𝐿

𝑡=0

𝑥𝑡+1|𝑡
𝑖

 

(39)

 

In Equation (39), the data sequence is described with the sampling points obtained by conducting the unscented transformation 

for the time point 𝑡 = 1, 2, 3, …, 2𝑛 + 1. Combined with the prediction equation, the sampling points are obtained by taking 𝑢𝑡 as 

the input factor. The weighted sum is used to obtain the mean value. Similarly, the error variance matrix at the time point 𝑡 + 1 is 

calculated, as shown in Equation (40). 

𝑃𝑥,𝑡+1|𝑡 =∑𝜔𝑐
𝑖 [𝑥𝑡+1|𝑡

𝑖 − 𝑥̂𝑡+1|𝑡]

2𝐿

𝑡=0

[𝑥𝑡+1|𝑡
𝑖 − 𝑥̂𝑡+1|𝑡]

𝑇
+ 𝑄𝑡+1

 

(40)

 

In Equation (40), the predicted state parameter, and the covariance are obtained by updating the sampling sigma data points. 

The predictive value for the time point 𝑡 + 1 is obtained to realize the update of the sampling points. The observation at each 

sampling time point is the expected value. The predicted weighted terminal voltage at the time point 𝑡 + 1 is calculated by 

considering the mean measured value, as shown in Equation (41). 

𝑦𝑡+1|𝑡
𝑖 = ℎ(𝑥𝑡+1|𝑡

𝑖 , 𝑢𝑡+1) ⇒ 𝑦̂𝑡+1|𝑡 =∑𝜔𝑚
𝑖

2𝑛

𝑡=0

𝑦𝑡+1|𝑡
𝑖

 

(41)

 

In Equation (41), the state variable 𝑆𝑡 at the time point 𝑡 is known in advance with the error covariance matrix 𝑃𝑥𝑦,𝑡+1, to realize 

the specific iterative calculation. At the prediction stage, the sigma points are transferred by the state equation. Then, the predicted 

data points are obtained, which are modified recursively by the real-time Kalman gain correction. The measured covariance matrix 

can be obtained for the calculated state quantity at the time point 𝑡 + 1 in the measurement-correction step, as shown in Equation 

(42). 

{
 
 

 
 𝑃𝑦𝑦,𝑡+1 =∑𝜔𝑐

𝑖 [𝑦𝑡+1|𝑡
𝑖 − 𝑦̂𝑡+1|𝑡]

2𝐿

𝑡=0

[𝑦𝑡+1|𝑡
𝑖 − 𝑦̂𝑡+1|𝑡]

𝑇
+ 𝑅𝑡+1

𝑃𝑥𝑦,𝑡+1 =∑𝜔𝑐
𝑖 [𝑥𝑡+1|𝑡

𝑖 − 𝑥̂𝑡+1|𝑡]

2𝐿

𝑡=0

[𝑦𝑡+1|𝑡
𝑖 − 𝑦̂𝑡+1|𝑡]

𝑇  

(42)

 

In Equation (42), the predicted mean value is updated in the state variable and error update module, which is conducted with the 

corresponding error covariance based on the real-time observed data. Then, the Kalman gain is obtained for the next iterative 

calculation step. The Kalman gain is used as the correction parameter to forecast the observation quantity. The updated state 

variable calculation is then realized with the update of the error variance matrix, as shown in Equation (43). 

{
𝑥̂𝑡+1|𝑡 = 𝑥̂𝑡+1|𝑡 + 𝐾𝑡+1(𝑦𝑡+1 − 𝑦̂𝑡+1|𝑡), 𝐾𝑡+1 =

𝑃𝑥𝑦,𝑡+1

𝑃𝑦𝑦,𝑡+1

𝑃𝑥,𝑡+1|𝑡+1 = 𝑃𝑥,𝑡+1|𝑡 − 𝐾𝑡+1𝑃𝑥𝑦,𝑡+1𝐾𝑡+1
𝑇  

(43)
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In Equation (43), the nonlinear transformation is investigated to calculate the real-time data points with the weighted summation 

with the average value of the state prediction. Then, the sigma points are updated by introducing the correction steps into the 

observing process with the forecast and unscented transformation. 

3. Experimental Analysis 

The whole-life-cycle experimental test is designed and conducted to verify the effect of the proposed SO-ECM and FC-AKF 

algorithm. The parameter identification is realized with the dataset from the HPPC test and dynamic working condition tests for 

the prediction effect verification. 

3.1. Varying current-temperature testing 

Various working condition tests are performed by the comprehensive testing system, in which the battery performance is 

obtained for the lithium-ion batteries. The detailed platform design, procedure, and experimental results are shown in 

https://www.researchgate.net/project/Battery-life-test. Consequently, the internal working state of lithium-ion batteries is analyzed, 

and the parameter value is obtained through calculation. Batteries are connected to the system channel, and the experimental step 

is designed according to the testing requirement. After the experimental equipment is set up, the real-time charge and discharge 

data for the lithium-ion battery are sampled by the data signal measurement. 

The intermittent discharge is conducted using a current rate of 1 C, according to the relationship between the discharge rate and 

the number of coordinates required set of each discharge loop time. The discharge period is 6 min every time, and the internal 

chemical state stability of the OCV discharge is shelved for 1 h to get the OCV-SOC relationship. The voltage variation with the 

charging and discharging conditions reflects the battery’s dynamic characteristics during operation. The key parameters of the SO-

ECM are determined by the HPPC test. The ohmic resistance value is measured by the instantaneous dynamic terminal voltage 

change from the beginning to the end of the charge and discharge processes. The internal polarization resistance and capacitance 

are detected and obtained through the slow change of the terminal voltage. The specific experimental steps for the HPPC 

experiment are designed as follows: 

First, the lithium-ion battery is charged with a constant current of 0.3 C till the cut-off voltage. When the terminal voltage is 

reached, the charging process is continued with this constant voltage. When the current rate decreases to 0.05 C, the battery is fully 

charged. The battery is shelved for 1 h, which is then discharged with a current rate of 1 C for 10 s with a shelved for 40 s to 

stabilize the battery. Then, the battery is charged at a current rate of 0.75 C for 10 s. In the cycling test, the battery pulse power at 

equally spaced SOC levels, which equally vary from 1.0 to 0.1. The voltage variation results of the whole-life-cycle test under the 

HPPC working condition are shown in Figure 4.  
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(a) OCV variation for 20 cycles at SOC = 1.0 under 25 ℃ (b) OCV variation for 20 cycles at SOC = 1.0 under 25 ℃ 

  

(c) OCV variation for 20 cycles at SOC = 0.90 under 25 ℃ (d) OCV variation for 20 cycles at SOC = 0.85 under 25 ℃ 

  

(e) OCV variation for 20 cycles at SOC = 0.80 under 25 ℃ (f) OCV variation for 20 cycles at SOC = 0.75 under 25 ℃ 

Figure 4. OCV variation of the whole-life-cycle test under the HPPC working condition 

In Figure 4, the SOC varies from 100% to 75%. The battery is shelved for one hour between each adjacent pulse test, restoring 

the battery to electrochemical and thermal equilibrium. The parameters are identified by the established nonlinear state-space 

equation by the SO-ECM for different SOC levels. The internal resistance, polarization capacitance, and polarization resistance 

are obtained corresponding to the SOC levels from 1.0 to 0.1, as shown in Table 1. 

Table 1. Values of the parameters for the SO-ECM  
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SOC (1) UOC (V) R0 (mΩ) Rp1 (mΩ) Rp2 (mΩ) Cp1 (F) Cp2 (F) 

1.0 4.1840 0.001092857 0.000444000 0.000043286 31846.8468 21709.2409 

0.9 4.0513 0.001107143 0.000496143 0.000049300 28761.8773 19083.1643 

0.8 3.9360 0.001102857 0.000628143 0.000053857 29260.8597 17136.0743 

0.7 3.8309 0.001111429 0.000554857 0.000041943 25682.2863 17964.9183 

0.6 3.7366 0.001124286 0.000507429 0.000040700 27767.4550 18088.4521 

0.5 3.6511 0.001132857 0.000452286 0.000035329 39289.3241 26366.7610 

0.4 3.6163 0.001147143 0.000381429 0.000028214 36127.3408 28988.8608 

0.3 3.5900 0.001151429 0.000365571 0.000027971 32797.9680 20327.8856 

0.2 3.5367 0.001151429 0.000415857 0.000032529 29264.8574 25485.2877 

 0.1 3.4545 0.001187143 0.000516000 0.000047757 22267.4419 11880.9453 

In Table 1, the battery voltage at the end of each discharge is used as the OCV value corresponding to the various SOC levels. 

These discrete points are extracted from the experimental data to obtain the OCV-SOC relationship curve. According to the 

experimental analysis of the HPPC test, the voltage and current variation curves for the dynamic response characteristics of SOC 

decreased from 1 to 0.1. The various internal parameters of the battery are obtained for different SOC levels during operation. 

These parameters are used to verify the accuracy and robustness of the proposed SO-ECM. 

3.2. Whole-life-cycle test under the BBDST working condition 

A lithium-ion battery (HTCNR18650-2200mAh-3.6V) is used for the experiment. The whole-life-cycle experimental procedure 

is designed, as shown in Figure 5. 

RPT (5   , 25  , 45  )

BBDST (25  )

250 full cycles

Capacity test (0.3 C, 1 C & 2 

C)

OCV test (5%ΔSOC)

HPPC test (5%ΔSOC)

SOH<80%?

Start

N

Y

End

7.5+2.5+1.5=11.5 h

90 h 

25 h500 h

C-rate

Total time：[(11.5+90+25)*3+500]*4=3518 h 

=146.5 day

 

Figure 5. Flowchart of the whole-life-cycle test under the BBDST working condition  

In Figure 5, the experimental test procedure for the various test is presented based on the current state of the lithium-ion battery 

for the capacity, OCV, and HPPC tests. The voltage variation results of the whole-life-cycle test under the BBDST working 

condition are shown in Figure 6. 
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(a) Voltage variation for 20 cycles at SOC < 0.1 (b) Voltage variation for 20 cycles at SOC = 0.1 

  

(c) Voltage variation for 20 cycles at SOC = 0.2 (d) Voltage variation for 20 cycles at SOC = 0.3 

  

(e) Voltage variation for 20 cycles at SOC = 0.4 (f) Voltage variation for 20 cycles at SOC = 0.5 

Figure 6. Voltage variation of the whole-life-cycle test under the BBDST working condition  

In Figure 6, based on experimental results, the mathematical model for the SO-ECM is established. Then, the iterative calculation 

is programmed in the S-function to realize the accurate prediction. Finally, the feasibility and accuracy of the proposed state 

prediction algorithm are verified through verification experiments under complex working conditions. 

3.3. Long-term SOC prediction under the BBDST working condition 

The SOC is predicted under the complex BBDST working to investigate the accuracy and robustness of the proposed FC-
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AKF algorithm over long-term battery life. The SOC prediction and error results are obtained, as shown in Figure 7. 

  

(a) SOC prediction result  (b) SOC prediction error  

Figure 7. State prediction and error results under the BBDST working condition 

In Figure 7(a), the SOC predicted is compared with the actual SOC of the battery system over long-term battery life. S0 is the 

actual SOC, and S1 is the predicted SOC by the proposed FC-AKF. Also, Figure 7(b) is the SOC prediction error. The results show 

that the maximum error is 6.284% when the prediction is carried out over the long-term life of the battery, which shows the 

robustness of the proposed FC-AKF algorithm. Comparative SOC prediction under the dynamic stress test working condition 

The accuracy of the proposed FC-AKF is verified under various experimental conditions to investigate the overall performance 

of the lithium-ion battery SOC prediction model. The constant current discharge experiment is performed on the prediction model. 

The constant current rate of 1 C is also used to verify the convergence effect of the proposed algorithm when the initial SOC value 

is not 1.0. The obtained voltage and current data are imported into the prediction model, which is used to predict the SOC under 

the dynamic stress test (DST) working condition. The battery parameters are obtained by the SO-ECM, including the capacity, 

current, and voltage during the charging and discharging processes. Also, the other parameters are internal parameters that have 

functional relationships as independent variables, changing with the SOC variation. After the experimental verification, the 

accuracy of the model is verified, and the parameters of the battery are introduced into the FC-AKF algorithm and compared the 

Ah integral method. The SOC prediction and error results are conducted under the DST working condition, as shown in Figure 8. 

  

(a) SOC prediction results (b) Prediction error 
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Figure 8. SOC prediction and error results 

In Figure 8, the SOC is predicted under the DST working condition for a short-term battery life with the prediction error. In 

Figure 8 (a), S1 is the prediction made by the Ah integral method, S2 is the prediction made by the proposed FC-AKF method, and 

S3 is the actual SOC of the battery system. Also, in Figure 8(b), Err1 is the prediction error of the Ah integral method, and Err2 is 

the prediction error of the proposed FC-AKF method. The results show that the Ah integral method predicts a maximum error of 

2.13%, while the FC-AKF predicts a maximum of 0.0099%. From the results, the Ah integration method cannot converge to track 

the actual SOC value, but the FC-AKF has a stable and robust prediction. As the prediction time increases, the larger the divergence 

of the prediction becomes, resulting in a large error, which is due to the accumulation of errors over time. Both the EKF and UKF 

algorithms track real SOC values and are stable at the end of the prediction.  

3.4. Packing CCV and SOC prediction 

For the complex current variation experimental test, seven serially connected battery cells with a capacity of 2.20 Ah are used 

to further analyze the packing state prediction effect. The experimental test of the input current is conducted under complex packing 

power supply conditions. In the prediction process, the predicted initial value is 0.95 and the measured value is 1.00. The working 

current is output to the workspace at time intervals during the factor measurement process. The CCV and SOC prediction results 

are extracted, as shown in Figure 9. 
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(a) Pulse-power current variation (b) Packing CCV tracking effect 
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(c) SOC prediction  (d) SOC prediction error 

Figure 9. Packing CCV traction and SOC prediction results 

In Figure 9(b), the predicted voltage of the SO-ECM tracks the CCV value under complex working conditions. The predicted 

voltage variation follows the measured voltage change accurately in each current mutation point of the overall model with the same 

changing trend. The relatively high-precision experimental verification is conducted to establish the SO-ECM with the maximum 

error of 0.08 V and an average error of 0.04 V. The experimental verification result shows that the SO-ECM works well even when 

the initial value is inaccurate. 

In Figure 9(c), S1 is the actual SOC of the battery system, and S2 is the prediction made by the proposed FC-AKF method. The 

SO-ECM tracks the CCV value, and the proposed FC-AKF algorithm predicts the SOC value accurately under the complex 

working condition, in which the maximum error is 0.975% for the short-term prediction. The proposed FC-AKF algorithm also 

has a strong self-correcting ability, and the predicted curve converges to the actual curve within a limited sampling period. It 

verifies that it has good self-adaptive adjustment ability for the initial state error correction without the prediction accuracy 

declining. The proposed method is more effective in predicting the SOC of lithium-ion batteries. It is more computationally 

efficient, accurate, and robust than the Ah integral method used to compare in this paper due to its recursive update of the error 

covariance matrix, which ensures the reduction of the effects of noise in the prediction process. 

4. Conclusion 

As core aspects of the battery's internal parameters, CCV and SOC prediction play an essential role in energy storage systems. 

After comparing with the traditional methods and combining existing conditions, the SO-ECM and FC-AKF methods are proposed 

and realized to achieve a high precision prediction. Taking the battery polarization into account, the two RC circuits of the 

established SO-ECM dynamically describe the dynamic characteristics of lithium-ion batteries. A transient charge-discharge 

process is used, which is a nonlinear low-order modeling method involving fewer parameters and higher precision effects. By 

comparing and analyzing the SOC values obtained by different prediction methods, it is observed that the error range of FC-AKF 

is smaller than that of the Ah integral method under the DST working conditions. The constructed SO-ECM tracks with a maximum 

error of 0.08 V and an average error of 0.04 V. Also, the proposed FC-AKF method promotes the accurate state co-prediction 

effect by 2.13% under the DST working condition and 0.975% under the BBDST working condition to improve the safety and 

longevity of lithium-ion batteries. Nowadays, the new energy application is more and more popular in the industry and our daily 

life, security management, and assurance are urgent for the lithium-ion battery system that is adaptive to various working 

conditions, so the proposed FC-AKF method will be embedded in the microprocessor to realize the realtime SOC prediction and 

the further health management based on the accurate and robust prediction results.  
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