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ABSTRACT

In this paper, we present a method for estimation of the fundamen-
tal frequencies, or pitches, of several periodic sources. This diffi-
cult estimation problem occurs, for example, in speech and audio
processing whenever multiple speakers or tones are present. The
presented method is an extension of a recently proposed method
for estimation of the fundamental frequency of a set of harmoni-
cally related sinusoids based on the MUSIC criterion. The estima-
tor takes into account that the number of harmonics and sources
may vary. The performance of the proposed method is evaluated
in Monte Carlo simulations using synthetic signals under various
conditions.

1. INTRODUCTION

The task of estimating the fundamental frequency of a set of har-
monically related sinusoids is a classical problem in speech and
audio processing. Most research in the literature on this topic is
devoted to the estimation of the parameters of a single set of har-
monics, e.g. [1, 2, 3]. Multiple sets of harmonics occur when
multiple speakers are speaking at the same time or when multi-
ple notes are played simultaneously in music. For most of these
methods, the extension to multiple sets of harmonics is not trivial.
It has recently been shown that high-resolution fundamental fre-
quency and order estimates can be obtained using subspace-based
methods [4, 5], and, in this paper, we extend the method proposed
in [4, 5], named harmonic MUSIC (HMUSIC), to multiple sets of
harmonics. For other examples of multi-pitch estimators see, for
example, [6, 7, 8]. Consider a signal consisting of several, say K,
sets of harmonics (hereafter referred to as sources) with the fun-
damental frequencies ωk, for k = 1, . . . , K, that is corrupted by
an additive white complex circularly symmetric Gaussian noise,
w(n), for n = 0, . . . , N − 1, i.e.,

x(n) =

KX
k=1

LkX
l=1

Ak,le
j(ωkln+φk,l) + w(n), (1)

where Ak,l > 0 and φk,l are the amplitude and the phase of the
l’th harmonic of the k’th source, respectively. The task at hand
is then to estimate the fundamental frequencies {ωk}, or, equiva-
lently, the pitches, from a set of N measured samples, x(n). As
a by-product of these estimates, also the set of orders, {Lk}, and
the number of sources, K, are also estimated. The importance of
estimating the order of the individual sources is twofold. Firstly, it
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is important since an incorrect order estimate may result in ambi-
guities in the cost function that may lead to gross errors in the fun-
damental frequency estimates. Secondly, its importance in find-
ing high-resolution estimates can be observed from the asymptotic
Cramér-Rao lower bound (CRLB) for the fundamental frequency,
which for a single source, say source k, and a high number of sam-
ples, i.e., N � 1, can be shown to be [5]

CRLBk =
6σ2

N3
PLk

l=1 A2
k,ll

2
. (2)

As can be seen, the squared amplitudes of the individual harmon-
ics are weighted by l2, meaning that higher harmonics are in fact
very important in obtaining an accurate fundamental frequency es-
timate. The expression in (2) is obtained under the assumption
that the sources are independent and have well-separated funda-
mental frequencies. For a low number of samples, however, the
exact CRLB for the fundamental frequencies will depend on the
parameters of the other sources as well and on the fundamental
frequency.

The paper is organized as follows. In Section 2, we present
the fundamentals of the covariance matrix of the considered data
model. Then, in Section 3, we present the proposed estimator and
outline its efficient implementation. In Section 4, we evaluate the
estimator and provide some illustrative examples of its properties.
Finally, Section 5 concludes on our work.

2. FUNDAMENTALS

The proposed method is based on the MUSIC orthogonality prin-
ciple [9, 10]. It is based on a partitioning of the eigenvalue de-
composition (EVD) of the covariance matrix into signal and noise
subspaces. We now briefly summarize the fundamentals of the
covariance matrix model and the MUSIC orthogonality principle.
We start out by defining x̃(n) as a signal vector containing M
samples of the observed signal, i.e.,

x̃(n) =
ˆ

x(n) x(n + 1) · · · x(n + M − 1)
˜T

, (3)

with (·)T denoting the transpose. Then, assuming that the phases
of the harmonics are independent and uniformly distributed on the
interval (−π, π], the covariance matrix R ∈ C

M×M of the signal
in (1) can be written as [11]

R = E
n
x̃(n)x̃H(n)

o

= ZPZH + σ2I, (4)



where E {·} and (·)H denote the statistical expectation and the
conjugate transpose, respectively. Furthermore, P is a diagonal
matrix containing the squared amplitudes, i.e.,

P = diag
`ˆ

p1 . . . pk

˜´
, (5)

with pk =
ˆ

A2
k,1 · · · A2

k,Lk

˜
. Defining the total number

of sinusoidal components as Q =
PK

k=1 Lk and assuming that
all the frequencies are distinct, the full rank Vandermonde matrix
Z ∈ C

M×Q is defined as

Z =
ˆ

A1 · · · AK

˜
, (6)

with
Ak =

ˆ
a(ωk) · · · a(ωkLk)

˜
, (7)

where a(ω) =
ˆ

1 ejω · · · ejω(M−1)
˜T

. Also, σ2 de-
notes the variance of the additive noise, w(n), and I is the M ×M
identity matrix. We note that ZPZH has rank Q. Let

R = UΛUH (8)

be the EVD of the M × M covariance matrix. Then, U contains
the M orthonormal eigenvectors of R, i.e., U = [ u1 · · · uM ]
and Λ is a diagonal matrix containing the corresponding eigenval-
ues, λk, with λ1 ≥ λ2 ≥ . . . ≥ λM . Let GQ be formed from the
eigenvectors corresponding to the M − Q least significant eigen-
values, i.e.,

GQ =
ˆ

uQ+1 · · · uM

˜
. (9)

The noise subspace GQ will then be orthogonal to Z, i.e.,

ZHGQ = 0. (10)

This is the orthogonality principle of MUSIC and it can be used
for finding model parameters and subspace ranks. In practice, this
orthogonality will hold only approximately and can be measured
using the Frobenius norm.

3. MULTI-PITCH HARMONIC MUSIC

Having introduced the covariance matrix model and the MUSIC
orthogonality principle, we now proceed to present the proposed
method. Estimates are obtained using MUSIC as the frequencies
minimizing the cost function

J =
‖ZHGQ‖2

F

MQ(M − Q)
, (11)

with ‖ · ‖F denoting the Frobenius norm and MQ(M − Q) being
an order-dependent scaling. If this scaling is omitted, the estimator
can easily be observed to be biased. For more on MUSIC and its
performance see, e.g., [12, 13]. The set of fundamental frequencies
can be found as (see [5])

{ω̂k}K
k=1 = arg min

{ωk}K
k=1

min
{Lk}K

k=1

‖ZHGQ‖2
F

MQ(M − Q)
(12)

= arg min
{ωk}K

k=1

min
{Lk}K

k=1

KX
k=1

‖AH
k GQ‖2

F

MQ(M − Q)
. (13)

Since the minimization is carried out over independent, non-negative
terms, the optimization problem can be rewritten as

{ω̂k}K
k=1 = arg min

{Lk}K
k=1

min
{ωk}K

k=1

KX
k=1

‖AH
k GQ‖2

F

MQ(M − Q)
(14)

= arg min
{Lk}K

k=1

KX
k=1

min
ωk

‖AH
k GQ‖2

F

MQ(M − Q)
, (15)

meaning that the fundamental frequencies can be found indepen-
dently. However, it is worth stressing that it is necessary to ensure
that ωk �= ωl, for k �= l. Also note that the set of possible fre-
quencies of ωk depends on the candidate order Lk. Independent
minimizations over the fundamental frequencies is a significant ad-
vantage since the set of possible fundamental frequencies is large,
while the set of harmonics is small in comparison. The above mini-
mizations can be solved efficiently by treating Q as an independent
variable and then calculating

S(ωk, Lk, Q) = ‖AH
k GQ‖2

F (16)

for various combinations of {ωk, Lk, Q} using the FFT-based im-
plementation described in [5]. Note that this optimization other-
wise involves a multi-dimensional evaluation of the cost function
over all combinations of {ωk}K

k=1 and {Lk}K
k=1. The number of

sources can also be determined using this method for more than
one source, i.e., K > 1, by allowing Lk = 0 for the other sources.
For more on order estimation using the MUSIC orthogonality prin-
ciple and its performance, we refer the interested reader to [5]. For
the special case where the number of harmonics Lk = L, ∀k, is
known and equal, i.e., Q = KL, the method reduces to the one-
dimensional minimization over ω, i.e.,

‖AH
k GQ‖2

F =
LX

l=1

aH(ωl)GQGH
Qa(ωl), (17)

where the fundamental frequencies can be identified as the K deep-
est valleys in the cost function. The complexity of the proposed
estimator can be reduced by first finding the appropriate ranks of
the signal and noise subspaces using unconstrained frequencies.
This can be done using a simple special case of the proposed es-
timator, where first it is assumed that Lk = 1, ∀k. Then, the
total number of sinusoids, and thereby the signal and noise sub-
space ranks, can be estimated as the number of sources K. The
harmonic MUSIC algorithm can then be applied given these sub-
space ranks, whereby the total number of different combinations
of orders {Lk} is greatly reduced.

For a given or estimated Lk, the gradient of the cost function
(11) can be shown to be (for simplicity we here drop the scaling)

∇J � ∂J

∂ω0
= 2 Re

„
Tr

j
AH

k GQGH
Q

∂Ak

∂ω0

ff«
, (18)

with Re(·) denoting the real value, 	 the Schur-Hadamard prod-
uct, and

∂Ak

∂ω0
= Yk 	 Ak (19)

with

Yk =

2
6664

0 · · · 0
j · · · jLk

...
...

...
j(M − 1) · · · j(M − 1)Lk

3
7775 . (20)



Similarly, the Hessian can be derived to be

∇2J � ∂2J

∂ω2
0

(21)

= 2 Re
`
Tr

˘
AH

k GQGH
Q

`
Yk 	 Yk 	 Ak

´
(22)

+
`
Yk 	 Ak

´H
GQGH

Q

`
Yk 	 Ak

´¯´
. (23)

The gradient and the Hessian can be used for finding refined esti-
mates using standard methods. Here, we iteratively find a refined
estimate of the fundamental frequency using Newton’s method,
i.e.,

ω̂
(i+1)
k = ω̂

(i)
k − δ

∇J

∇2J
, (24)

with i being the iteration index and δ a small, positive constant,
which is found using approximate line search. The method is ini-
tialized for i = 0 using the coarse fundamental frequency estimate
and order obtained from (15). As the order Lk and the signal sub-
space rank Q is kept fixed in the Newton method, only the poles
of the Vandermonde matrix Ak changes in each iteration.

4. NUMERICAL RESULTS

Initially, we illustrate the estimator’s ability to estimate multiple
fundamental frequencies. In Figure 1, two fundamental frequency
tracks are shown as a function of time, i.e., segments, with one be-
ing stationary while the other increases linearly, while still being
stationary within each segment. Both sets of harmonics consist
of 5 sinusoids having uniformly distributed phases that are ran-
domized in each segment and unit amplitudes such that the same
performance can be expected for the two sources. In the figure,
the fundamental frequencies estimated by the proposed method
are shown as circles while the true fundamental frequencies are
indicated by a solid line. The number of sinusoids is assumed un-
known in this experiment. The segment size used was 200 sam-
ples corresponding to 25 ms for a sampling frequency of 8000
Hz, a typical segment size for audio and speech applications. The
asymptotic CRLB given in (2) can be seen to be inversely propor-
tional to the noise variance, and generally depend on the pseudo
signal-to-noise ratio (PSNR), defined as

PSNRk = 10 log10

PLk
l=1 A2

k,ll
2

σ2
[dB], (25)

which depends on the number of harmonics Lk and the amplitudes
{Ak,l}. In this experiment, the PSNR was 40 dB. A covariance
matrix of size 100 was used. Note that as the two fundamental
frequencies intersect, only one fundamental frequency is found by
the estimator as the other is set to 0. We now proceed to evaluate
the proposed estimator using Monte Carlo simulations, with 200
realizations for each combination of PSNR and N , using synthetic
signals. The performance is measured as the root mean square
estimation error (RMSE) defined as

RMSE =

vuut 1

S

SX
s=1

“
ω̂

(s)
0 − ω0

”2

, (26)

with ω0 and ω̂
(s)
0 being the true fundamental frequency and the

estimate of the sth Monte Carlo trial. It is compared to the asymp-
totic CRLB in (2). In each Monte Carlo trial, a signal is generated
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Fig. 1. True (solid) and estimated (circles) fundamental frequen-
cies for two sources having unknown orders.
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Fig. 2. RMSE and CRLB as a function of PSNR for N = 400 and
two sources having known orders.

according to the signal model in (1) with phase and noise real-
izations being randomized for two sources having well-separated
fundamental frequencies of 0.1650 and 0.3937. A covariance ma-
trix of size M = 
N/2� was used throughout these experiments.
For the sake of simplicity, the orders, {Lk} are assumed known in
these experiment and is set to 3 for both sources. First, we observe
the RMSE as a function of the PSNR, with a fixed number of ob-
servations, namely N = 400. The results are shown in Figure 2.
Then, as depicted in Figure 3, the RMSE is investigated as a func-
tion of the number of observations, N , for a fixed PSNR of 40 dB.
As can be seen from both figures, the proposed estimator performs
well having a variance close to the CRLB. Also, an experiment
was conducted to investigate how the estimator performs as the
fundamental frequencies of two sources approach each other. Fig-
ure 4 shows the RMSE as a function of the difference between the
fundamental frequencies, i.e., Δ = |ω1 − ω2|, for a PSNR of 40
dB and N = 160.
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Fig. 3. RMSE and CRLB as a function of the number of obser-
vations, N , for PSNR = 40 dB and two sources having known
orders.
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Fig. 4. RMSE and CRLB as a function of the difference, Δ, be-
tween the fundamental frequencies of two sources having known
orders for N = 160 and PSNR = 40 dB.

5. CONCLUSION

A method for estimating the fundamental frequencies of multiple
sets of periodic waveforms in white Gaussian noise has been pro-
posed. The method, which is based on the MUSIC orthogonality
principle, also estimates the order, i.e., the number of harmonics
for each member of the set, and can also be used for finding the
number of sources. The performance of the estimator has been
evaluated using Monte Carlo simulations, and it has been found
that the proposed estimator has good statistical performance ap-
proaching the Cramér-Rao lower bound.
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