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Abstract—This paper introduces a fast learning mechanism
to address constrained input in the higher derivatives Newton-
based extremum seeking. The proposed algorithm has a two-
time-scale structure consisting of: a compensation mechanism
(i.e. an anti-windup compensator) with fast dynamics that
compensates for the effect of the constrained input, and a
slow subsystem to maximize the map’s higher derivatives by
regulating the output. The practical asymptotic stability of the
new ES algorithm is proved using a modified version of the
singular perturbation method. The effectiveness of the proposed
algorithm is demonstrated using simulations.

I. INTRODUCTION

Extremum Seeking (ES) is a real-time and model-free op-
timization tool that determines the extremum value of an
unknown map which is known to have an extremum. Leblanc
published the first known ES algorithm in [1] and the initial
ES approach is gradient-based which uses sinusoidal signals,
as perturbation signals, to estimate the gradient of the map.
The first stability analysis for an ES system was presented
by Wang and Krstic [2]. The stability analysis which was
based on classical singular perturbation and averaging meth-
ods sparked revived interest in the field. Since 2000 the
ES method has seen important theoretical progressions [3].
Some other worthy extensions of ES are fixed-time ES [4],
normalized ES [5] and stochastic ES [6].

Newton-based ES was extensively discussed in [7]. This
approach employs an estimate of the map Hessian inverse
and makes the algorithm user-assignable as the convergence
does not depend on the second derivative anymore. In [8],
a generalization of the Newton-based ES is presented to
maximize a higher derivative of the map. By appropriately
demodulating the map output, the ES algorithm maximizes
the nth derivative asymptotically only via map measurements.

Regarding the practical application of ES algorithm, [9]
describes a refrigeration system where the desired operating
point is located at the maximum slope. This work has been
the motivation of many researches including [8]. As the effect
of delay in practical systems is important, in [10] a Newton-
based ES extension scheme is designed for higher derivatives
of unknown dynamic maps under delays.

Another important phenomena which is the main focus of
current study and that can cause problems in ES algorithm
is windup. This phenomena is due to the saturation of
actuator which can occur in control applications. Handling
the constrained input in gradient-based ES algorithms is not
new as [11], [12] and [13] have studied, dead zone, saturation

and mixed-integer, respectively. However, to the best of our
knowledge, no paper has addressed the problem of higher
derivatives Newton-based ES in the presence of constraints.
In this paper the work of [8] on the Newton-based ES method
for maximizing higher derivative is extended to handle the
saturated input case. The saturated input is modeled by a
function as follows:

Dsat(u,us) =


umax u ≥ umax
u umin < u < umax

umin u ≤ umin
(1)

where us = [umin, umax] and is known.
In the proposed scheme, there are two main components.

The first one is a higher derivatives Newton-based ES that
can maximize the map’s higher derivatives by regulating the
output. The second component which is the contribution of
this paper is a fast learning mechanism in the form of an anti-
windup compensator that can compensate for the effect of
saturated input. Separating these two components can be done
using a temporal separation, where the ES and the learning
mechanism can be modeled as slow and fast subsystems,
respectively. The stability analysis of the proposed scheme
will be provided in details using the singular perturbation
techniques.

The paper is formed as follows: The problem formulation
and the proposed approach are given in Section II. The
stability properties are discussed in three steps in Section III.
Section IV demonstrates the effectiveness of the proposed
approach using a simulation example.

A. Notation and Definitions

Definition 1. [14], A continuous, bounded function g(t, x) :
[0,∞)×D → Rn is said to have a well-defined average gav
if the limit

gav(x) = lim
T→∞

1

T

∫ t+T

t

g(τ, x)dτ (2)

exists and ∀(t, x) ∈ [0,∞)×D0∥∥∥∥∥ 1

T

∫ t+T

t

g(τ, x)− gav(x)dτ

∥∥∥∥∥ ≤ kσ(T ), (3)

for every compact set D0 ⊂ D, where k is a positive constant
(possibly dependent on D0) and σ : [0,∞) → [0,∞)
is a strictly decreasing, continuous, bounded function such
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that σ(T ) → 0 as T → ∞. The function σ is called the
convergence function.

Definition 2. [15], The system ẋ = f(x, u), x ∈ Rn, u ∈
Rm, and the locally Lipschitz map f : Rn × Rm → Rn

is said to be input-to-state practically stable (ISPS) if there
exists a function l of class KL, a function p of class K and a
non-negative constant d such that, for each initial condition
x(0) and each measurable essentially bounded control u(.)
defined on [0,∞), the solution x(.) of the system (1) exists
on [0,∞) and satisfies:

|x(t)| ≤ l(x(0), t) + p(‖u‖) + d ∀t ≥ 0 (4)

II. PROBLEM FORMULATION

To show the main idea of this paper, we first consider the
following static single-input-single-output (SISO) plant with
input saturation:

y = h(Dsat(u,us)) (5)

To simplify, denote Dsat(u,us) as D(u). The two initial
assumptions on h(D(u)) : R→ R are listed below:

Assumption 1. Consider the smooth function h(u) : R→ R
and the set

u∗ = {u ∈ us|h(n+1)(u) = 0 h(n+2)(u) < 0} (6)

to be a collection of maximums where h(n)(.) is locally
concave.

Assumption 2. The system (5) is well-defined average,
according to the definition 1.

In essence, the goal is to maximize the nth derivative of
the system in the presence of a constrained input. On the
other hand:

max
u∈R

h(n)(D(u)) := max
u∈us

h(n)(u) (7)

where only the output signal y = h(D(u)) is measurable.
The existence of an integrator at the ES algorithm in

presence of the saturated actuator causes unfavorable behav-
ior, which is similar to the “wind up” phenomenon in the
classical control, i.e. the calculated control variable exceeds
the operational limits of the physical actuator. As a result,
the actual input differs from the presumed input. Due to
this mismatch, the integrator will keep accumulating the
error hence makes the recovering of input signal to be time
consuming.

As explained in [12], by using a penalty function method,
the constrained optimization ES problem can be tackled. In
general, a penalty function Qb(u,us) serves as a measure
of a violation of the constraints. The measure of violation is
nonzero when the constraints are violated and is zero when
otherwise. If Qb(u,us) is selected properly, ∂Qb∂u can be used
to guide the input signal out of the saturation zone. To do this,
any penalty function should satisfy the following equation:

∂Qb
∂u (u,us) < 0 u ≥ umax
∂Qb
∂u (u,us) = 0 umin < u < umax
∂Qb
∂u (u,us) > 0 u ≤ umin

(8)

h(D(u))

fAW (u,us)

kI
s

−ke
s

−1
s

+ ×

asin(ωt) kRγ(1 − γĥ(n+2)) ×

×

−γ
ĥ(n+2) =Ĥ

Υn+2

Υn+1

−β
u û

ĥ(n+1)

D(u) y

Fig. 1: Higher derivatives Newton-based ES saturated input.

Some of the functions that can be selected are listed below:
1) The logarithmic penalty function:

Qlogb (.) = −ln((u−D(u))
2

+ ε), ε > 0 (9)

2) The inverse penalty function:

Qinvb (.) =
1

(u−D(u))
2

+ ε
, ε > 0 (10)

3) The polynomial penalty function:

Qpb(.) = − (u−D(u))
m

m = 2n n = 1, 2, ..
(11)

For classical ES, [12] through simulations indicates that an
anti-windup compensator using a penalty function can ensure
that the input returns to and remains in the desired domain.
Inspired by this idea, the following anti-windup function is
defined:

fAW (u,us) =
∂Qb
∂u

(u,us) (12)

The proposed structure of the Newton-based anti-windup
ES for maximization of higher derivatives is illustrated in Fig
1. The governing closed-loop equations of Fig 1 are

β̇ = −kefAW (u,us) (13a)
˙̂u = −kIγΥn+1h(D(u)) (13b)
γ̇ = kRγ (1− γΥn+2h(D(u))) (13c)

where u = −β+ û+ a sin(ωt) and the demodulation signal
Υj and the normalizing gain Cj are given as follows:

Υj(t) = Cj sin
(
jωt+

π

4
(1 + (−1)j)

)
(14a)

Cj =
2jj!

aj
(−1)

(
j−| sin( jπ

2
)|

2

)
(14b)

The demodulated signals ĥ(j) = yΥj are meant to,
on average, estimate the gradient (h(j+1)) and the Hessian
(h(j+2)) of the jth derivative of the map [8]. As mentioned
in [16], there are two essential parts to Newton-based ES
algorithm: 1- Estimate of the Hessian of ĥ(n)(.), denoted as
Ĥ , using Υn+1(t).

2- Estimate the inverse of the generated Hessian(
γ ≈ Ĥ−1

)
using a differential Riccati equation given in

(13c).



To avoid exceeding input’s limitations and thereby remov-
ing the the anti-windup effect on the system’s steady-state,
following assumption is proposed:

Assumption 3. There exists α∗ > 0 such that for any α ∈
(0, α∗] the following inequality holds

min{inf{|umax − (u∗ + a sin(ωt))|},
inf{|umin − (u∗ + a sin(ωt))|} ≥ α (15)

III. STABILITY

The stability analysis utilizes a two time-scale decomposition
of the system’s dynamics (13). The system has three integra-
tors where one of them is going to have a faster convergence
than the other two. Considering a high integrator gain ke,
the anti-windup integrator would be the fast dynamics one.
Therefore, the other two integrator gains can be redefined as
follows:

kI = ωεk̂I = O(ωε) (16a)

kR = ωεk̂R = O(ωε) (16b)

where k̂I , k̂R > 0 and ε is a small positive constant. Now,
by defining a time-scale transformation as τ = ωt, we have:

ω
dβ

dτ
= −kefAW (u,us) (17a)

dû

dτ
= −εk̂IγΥ̂n+1h(D(u)) (17b)

dγ

dτ
= εk̂Rγ

(
1− γΥ̂n+2h(D(u))

)
(17c)

where Υ̂j = Cj sin
(
jτ + π

4 (1 + (−1)j)
)
.

The two-time scale structure of (17) is in a singular pertur-
bation model ([14]) with ε being the perturbation parameter.
In this equation the small value of ε shows the slower
dynamic of (17b) and (17c) compared to (17a). Hereafter we
call the fast dynamic of (17a) as the boundary layer model
and the slow dynamics of (17b) and (17c) as the reduced
system model (since the overall model reduces to the slow
dynamics after the fast part is converged).

To investigate the stability of the overall system, accord-
ing to [14] the stability of each subsystem can be studied
separately. Replacing β in (17a) with βbl, the boundary layer
subsystem is as follows:

ω
dβbl

dτ
= −kefAW (u,us) (18)

The following lemma can be used for the stability proof of
(18).

Lemma 1. Let the assumption 3 be satisfied then for t ∈
[t0, tl], the boundary layer subsystem is ISPS.

Proof. Following cases are considered:
Case 1: u(t0) ∈ us:

According to the property of the penalty function given in
(8), fAW (u,us) = 0, hence

dβbl

dτ
= 0 (19)

so βbl(t) = βbl(t0).
Case 2: u(t0) /∈ us:
Among the possible penalty functions, the proof of Case 2

is given for Qpb(.) = − (u−D(u))
m . It will be later shown

that the proof for other penalty functions can be resulted from
the given proof. Substituting (11) for m = 2 into (12) and
then into (18) we have:

dβbl

dτ
= keu(τ)− keD(u) = keu(τ)− keus (20)

where us ∈ {umin, umax}. Therefore from (??)

dβbl

dτ
= ke(û+ a sin(τ)− βbl(τ))− keus (21)

and by defining b̂ = û + a sin(τ), the dynamics of the
boundary layer subsystem is simplified as follows:

dβbl

dτ
= −keβbl(τ) + ke

(
b̂− us

)
(22)

To prove the ISPS stability of (22), as indicated in [7],
an ISPS Lyapunov function should be found. Choosing V =
1
2

(
βbl
)2

as a candidate Lyapunov function, its time derivative
would be as

V̇ = −ke
(
βbl(τ)

)2
+ keβ

bl(τ)
(
b̂− us

)
(23)

which yields the inequality,

V̇ ≤ −ke
(
βbl(τ)

)2
+ ke

∣∣βbl(τ)
∣∣ ∣∣∣b̂∣∣∣+ ke

∣∣βbl(τ)
∣∣ |us|

(24)

adding and subtracting kec
(
βbl(τ)

)2
where c ∈ (0, 1), and

then by collecting the common terms it can be written:

V̇ ≤ −2ke(1− c)V

− cke
∣∣βbl(τ)

∣∣ (∣∣βbl(τ)
∣∣− 1

c

∣∣∣b̂∣∣∣− 1

c
|us|
)
(25)

and finally

V̇ ≤ −2ke(1− c)V if
∣∣βbl(τ)

∣∣ > 1

c

∣∣∣b̂∣∣∣+
1

c
|us| (26)

or equivalently

V̇ ≤ −2ke(1− c)V if V > max


∣∣∣b̂∣∣∣2
c2

,
|us|2
c2


(27)

which proves that the selected Lyapunov function is ISPS.
In terms of trajectory, for βbl(0) > 0, there exists positive
constants l > 0 and d > 0 such that the following equation
holds [15]: ∥∥βbl(τ)

∥∥ ≤ l ∥∥βbl(0)
∥∥ e−keτ + d (28)

It should be noted that, d in (28) is proportional to the integral
of the second term in (28). In the average, when the input
gets close enough to the optimal input (u∗), if the assumption
3 does not hold it leads to u∗ + a sin(τ) crosses one of the
limits so the system frequently switches between cases 1 and
2, then the value of d keeps increasing. The assumption 3 is



needed to avoid these switching in the steady state case and
ensure that the system in steady state is working in case 1.

To prove the stability for other types of penalty function,
one can notice that the fAW in (20) is always having the
following form:

fAW = (u−D(u))E(u−D(u)) (29)

where E(u−D(u)) is a positive even function. Therefore

ω
dβbl

dτ
= −ke (u−D(u))E(u−D(u)) (30)

Furthermore, by assuming Vnew = V = 1
2

(
βbl
)2

we have:

V̇new =
∂Vnew
∂βbl

βbl

∂τ
= −ke

∂Vnew
∂βbl

E(u−D(u)) (u−D(u))

or equivalently

V̇new = V̇ E(u−D(u)) (31)

therefore, according to inequality (27), we have

V̇new ≤ −2ke(1− c)E(u−D(u))V (32)

which means that the new Lyapunov function candidate has
the necessary conditions for ISPS stability (as E(u−D(u))
does not change the sign of right side)

Remark 1. Using the above lemma, it can be concluded
that there exists an invariant set M = {βbl ∈ R : ‖βbl‖ <
r} such that for all β0 ∈ M , the trajectories of boundary
layer systems (18) are confined to set M at the transient
time tl. We define the steady-state constant βblss ∈ M such
that lim

t→tl
βbl(t) = βblss.

After the convergence of the boundary layer subsystem,
the slow manifold would be as

0 = fAW (u,us) (33)

According to the property of the penalty function, when u ∈
us, the equation (33) becomes zero, which yields the steady-
state βbl+D(u) = û+a sin(ωt). The equilibrium of interest
is û∗ = u∗ + βblss. Let ũ(t) = û(t) − û∗ and the error of
Hessian estimate be γ̃ = γ−H−1, where H is equivalent to
h(.)(n+2), the corresponding error dynamics associated with
the reduced system are given by:

dũr

dτ
= −εk̂I(γ̃r +H−1)Υn+1h(ũr + u∗ + a sin(τ))

(34a)
dγ̃r

dτ
= εk̂R(γ̃r +H−1)

(
1− (γ̃r +H−1)Υn+2

× h(ũr + u∗ + a sin(τ))

)
(34b)

The following lemma addresses the convergence properties
of the reduced system.

Lemma 2. Consider the reduced system (34) under the
Assumptions 1 and 2. There exists an a > 0 and for any
a ∈ (0, a) , there exists an ε > 0 such that for all ε ∈ (0, ε),
the solution of system (34) exponentially converges to the
neighborhood of the origin with an error of order O(ε+a3).

Proof. With ε assumed to be small enough, one can employ
to the standard averaging theory [14] on (34). In addition,
we utilize the Taylor series of h(ũr + u∗ + a sin(ωt)) of the
following form:

h∞(.) =

∞∑
i=0

ai

i!
h(i)(ũr + u∗) sini(ωt) (35)

As part of the averaging method, ũr and γ̃r are frozen and
replaced with autonomous values ũrav and γ̃rav . So using (35),
the average of the reduced-order system (34) is:

dũrav
dτ

= −εk̂I(γ̃rav +H−1)ηn+1(ũrav + u∗) (36a)

dγ̃rav
dτ

= εk̂R(γ̃rav +H−1)

(
1− (γ̃rav +H−1)ηn+2(ũrav + u∗)

)
(36b)

where

ηj(ũ
r
av + u∗) = AV E {Υjh(ũrav + u∗ + a sin(τ))}

= h(j)(ũrav + u∗) +
h(j+2)(ũrav + u∗)

4(j + 1)
a2 +O(a4) (37)

In which AV E is an averaging operator that fulfills the well-
defined average property given in Definition 3. This formula
is explained in detail in [8].

The right sides of (36) are set to zero to determine the
equilibrium conditions. When k̂R > 0, it is clear that the
differential Riccati equation has an unstable equilibrium at
origin. So if the initial condition, γ(0), is chosen such that
sign(γ(0)) = sign(h(n+2)(u∗)), it guarantees the inequality
(γ̃rav + H−1) 6= 0. Therefore the system of average errors
must meet the following conditions to reach the equilibrium.

ηn+1(ũrav + u∗) = 0 (38a)

(γ̃rav +H−1)ηn+2(ũrav + u∗) = 1 (38b)

The solutions of (38) were already stated in [8] as

ũavE = ũ∗ +O(a3) (39a)

γ̃avE = γ̃∗ +O(a3) (39b)

where

ũ∗ =
h(n+3)(0)

4(n+ 1)h(n+2)(0)
a2 (40a)

γ̃∗ =
(h(n+3)(0))2

4(n+ 1)(h(n+2)(0))3
a2 +

(h(n+4)(0))2

4(n+ 3)(h(n+2)(0))2
a2

(40b)

Alternatively, there is a quadratic function that approximates
all maps satisfying Assumption 1.

h(n)(D(u)) = h∗ +
H

2
(D(u)− u∗)2 (41)

Since h(n+3)(0) = h(n+4)(0) = 0 in phrase (40), the
equilibrium point (39) is (ũavE , γ̃avE) = (0, 0), and the
Jacobian of the system (36) evaluated at this equilibrium point
is

A =

[
−k̂I 0

0 −k̂R

]
(42)



Since A is Hurwitz the exponential stability of system (36)
is guaranteed and according to [14, Theorem 8.4], the the
reduced system (34) is exponentially stable.

To finalize the overall stability of the closed-loop system
containing the slow and fast subsystems, the closeness of so-
lution method, presented in [17], will be used. This method is
a modified version of classical singular perturbation method
in which unlike the classical method that needs the conver-
gence of slow subsystem to a point, only convergence to a
bounded set is needed.

A. Closeness of Solutions

Following the approach proposed in [17], let the time
horizon [0, T ], be separated in sub-intervals [tl, tl+1]. The
sub-intervals have the same length εSε, where Sε is a function
of time such that lim

ε→0
Sε = +∞.

We reformulate the system (13) in the following compact
form:

dz

dτ
= g(x, z, ε) (43)

dx

dτ
= εf(x, z, ε) (44)

where x = (û, γ) and z = β. xrav = (ũrav, γ̃
r
av) denotes to

the average of the reduced system.
Before presenting the main theory, the following notations,

assumptions, and definitions are introduced.
Denote the trajectories of the boundary layer system (18)

by φb(τ, x, β0), all starting at the forward invariant set β0 ∈
M , as mentioned in Remark 1.

Assumption 4. f(x, φb, ε) has a well-defined average fav(x)
with the convergence function σ(T ).

Definition 3. Denote the solution of system (13) for t ∈
[0, T ] by (x(t), z(t)) and x(0) ∈ BR(0). Define ξ(t) for t ∈
[tl, tl+1] as

ξ(t) = ξl +

∫ t

tl

f(ξl, y(s), 0)ds (45)

where ξ(tl) = ξl and ξ0 = x0, where y(t) is the unique
solution to

dς

dτ
= g(ξl, ς(t), 0), y(tl) = z(tl) (46)

Assumption 5. The initial set x(0) ∈ BR(0) is invariant
with respect to ξ(t).

Remark 2. Since f and g are sufficiently smooth functions,
they satisfy locally Lipschitz condition, with the Lipschitz
constant L > 0. Therefore there exists an upper limit P on
f and g, i.e.:

∃P, P > 0 : ‖f(x, z, ε)‖ ≤ P, ‖g(x, z, ε)‖ ≤ P (47)

We define

∆l(t) := max
tl≤s≤t

‖x(s)− ξ(s)‖ (48)

dl(t) := max
tl≤s≤t

‖x(s)− ξl‖ (49)

Dl(t) := max
tl≤s≤t

‖z(s)− ς(s)‖ (50)

Assumption 6. The reduced average system fav is globally
Lipschitz with Lipschitz constant Lav > 0.

Lemma 3. Consider the map ε→ Sε and suppose a compact
set BR(0)×M on which Assumption 4 holds. Then for any
finite T > 0 and for t ∈ [0, T ], the upper bound of ∆l(t)
and Dl(t) are given as

∆̄(ε) :=
(
2εSεP + TL(εSεP + ε)(1 + LSεe

LSε)
)

eTL(1+SεLe
LSε ) (51)

D̄(ε) := LSε(∆̄(ε) + εSεP + ε)eLSε (52)

Proof. The proof of this lemma follows the same path as
proof of [17, Lemma2].

Theorem 1. Suppose that there exist R > 0, ε1 and compact
set M such that Assumptions 1-5 hold on (x, z, ε) ∈ BR(0)×
M × (0, ε1]. Then for any finite time interval t ∈ [0, T ],
the trajectories of the perturbed slow dynamics x(t) and the
average of the reduced order of system xrav(t) satisfies

‖x(t)− xrav(t)‖ ≤ K(ε) (53)

where

K(ε) := ∆̄(ε) + Tσ(Sε) + εSεLav

(
εSεP + Tσ(Sε)

)
eεSεLav

Proof. The obtained results presented in lemma 1 and lemma
2 together with the assumptions 1-6 suffice to prove the
stability according to [17, Theorem 1].

Remark 3. By virtue of uniformly exponential equilibrium
point of system (36) in lemma 2, there exist positive constants
rx and Bx such that ‖xrav(t)‖ = rxe

−Bxt ‖x0‖.
Therefore the upper bound ‖x(t)‖ is given by

‖x(τ)‖ ≤ rxe−Bxt ‖x0‖+K(ε) (54)

IV. SIMULATION RESULTS

In order to evaluate the offered ES scheme for constrained
input, we consider the following static map

y = 2Dsat(u)− (Dsat(u)− 0.5)
3 (55)

where the lower and upper bounds of actuator are umin =
−1.4 and umax = 2, respectively. Simulation results for the
system without and with anti-windup (using two different
penalty functions) are shown in Fig. 2. The penalty functions
are

Qlogb (.) = −ln((u−D(u))
2

+ 0.01) (56)

Qpb(.) = − (u−D(u))
2 (57)

with the corresponding anti-windup function

fAW1 =
−2(u−D(u))

(u−D(u))
2

+ 0.01
(58)

fAW2 = −2 (u−D(u)) (59)

The parameters for simulation were chosen as: ω = 60, a =
0.3, ε = 1

3500 , k̂I = k̂R = 10 and ke = 5, and initial
conditions û = −3, γ(0) = −0.01 and β(0) = 0.
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Fig. 2: Minimization of first derivative of the map upon
saturated input. The output and input without anti-windup
are given in a couple of top plots and the results with anti-
windup are shown in the two couple of bottom plots.

0 1 2

times

-10

0

0 10 20 30 40

times

-0.16

0

Fig. 3: Evaluation of β̇ and γ for different types of fAW .

Fig.2 shows the output of the system in different situations.
As expected, without an anti-windup loop, the system’s
output gets stuck at an improper value. Moreover, it should
be noted that when y is constant, γ̇ is constant as well
which means that ‖γ‖ keeps increasing and makes the loop
unstable. In Fig.2, four bottom plot demonstrate that, despite
entering the saturation area, the system converges to the
desired steady-state when the anti-windup loop is activated.
The difference in the type of fAW only affects the transient
behavior.
The left plot of Fig.3 illustrates the function of the anti-
windup loop, while the right plot shows that the Riccati
equation has been able to estimate the inverse of Hessian
appropriately (H−1 = −1

6 ).

V. CONCLUSION

This paper proposes an anti-windup mechanism for higher
derivative Newton-based ES to address the scenarios where
the input range is constrained. To analyze the stability of
the proposed method a two-time-scaled decomposition of the
system dynamics is utilized. A fast dynamic is considered
for the anti-windup mechanism, while a slow dynamic is
considered for the rest. To assess the overall stability of the
closed-loop system, the closeness of the solution method was
used. Finally, we used a classical example, using a static
map, to illustrate the effectiveness of the proposed method
compared with the case where no anti-windup mechanism
was used.
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