

Aalborg Universitet

Discovery of Flow Splitting Ratios in ISP Networks with Measurement Noise

Schou, Morten Konggaard; Poese, Ingmar; Srba, Jiri

Published in:
Proceedings - 2023 IEEE 28th Pacific Rim International Symposium on Dependable Computing, PRDC 2023

DOI (link to publication from Publisher):
10.1109/PRDC59308.2023.00017

Publication date:
2023

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Schou, M. K., Poese, I., & Srba, J. (2023). Discovery of Flow Splitting Ratios in ISP Networks with Measurement
Noise. In Proceedings - 2023 IEEE 28th Pacific Rim International Symposium on Dependable Computing, PRDC
2023 (pp. 64-70). IEEE. https://doi.org/10.1109/PRDC59308.2023.00017

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: May 11, 2024

https://doi.org/10.1109/PRDC59308.2023.00017
https://vbn.aau.dk/en/publications/04d0f921-4977-47a5-b6ec-2d91340794dd
https://doi.org/10.1109/PRDC59308.2023.00017

Discovery of Flow Splitting Ratios in
ISP Networks with Measurement Noise

Morten Konggaard Schou
Aalborg University, Denmark

Ingmar Poese
BENOCS GmbH, Germany

Jiří Srba
Aalborg University, Denmark

Abstract—Network telemetry and analytics is essential for pro-
viding highly dependable services in modern computer networks.
In particular, network flow analytics for ISP networks allows
operators to inspect and reason about traffic patterns in their
networks in order to react to anomalies. High performance
network analytics systems are designed with scalability in mind,
and can consequently only observe partial information about the
network traffic. Still, they need to provide a holistic view of
the traffic, including the distribution of different traffic flows on
each link. It is impractical to monitor such fine-grained telemetry,
and in large, heterogeneous networks it is often too complex and
error-prone, if not impossible, to access and maintain all technical
specifications and router-specific configurations needed to deter-
mine e.g. the load balancing weights used when traffic is split onto
multiple paths. The ratios by which flows are split on the possible
paths must be derived indirectly from the measured flow demands
and link utilizations. Motivated by a case study provided by a
major European ISP, we suggest an efficient method to estimate
the flow splitting ratios. Our approach, based on quadratic linear
programming, is scalable and robust to the measurement noise
found in a typical network analytics deployment. Finally, we
implement an automated tool for estimating the flow splitting
ratios and document its applicability on real data from the ISP.

I. INTRODUCTION

Network flow analytics [1, 2] in internet service provider
(ISP) networks is often employed by network operators for
monitoring the traffic patterns [3]–[5]. This can help to op-
timize overall network performance and link utilizations. As
modern computer networks transfer huge quantities of data,
it is impossible to store and analyze every single packet
forwarded in the network. By packet sampling (using e.g.
NetFlow [6] or IPFIX [7]), a network operator is though
capable of estimating, with a relatively high precision, the
number of packets transferred by each flow in the network.
Similarly, packet counters for each interface can provide
reliable information on the current link utilizations. However,
answering questions like: "What traffic caused a spike on this
link yesterday?" requires the analytics to not only show the
total traffic dispatched on each link (identifying the spike), but
it also needs to break down this traffic into the different flows,
in order to determine where the anomaly originates from.

In this paper, we tackle the problem of correlating flows
with link traffic in a practical and scalable manner—a problem
arising from a case study with a major network analytics
company that monitors over 6000 routers across multiple ISPs.

Sampling packet headers on every link in the network
can answer such questions; however, it has severe scalability
issues. Instead, current high performing network analytics

systems sample packet headers at the ingress routers only
and combine this with the information from Border Gateway
Protocol (BGP) [8] and the interior gateway protocol (IGP)
(e.g. IS-IS [9, 10] or OSPF [11]) to determine the links
traversed by the packet.

A lookup of the packet’s destination in the ingress routing
table determines the BGP next-hop, which is the router where
the packet will egress the network. The possible paths that
the packet can use to go through the network from ingress
to egress are obtained from the IGP. All the packets that
travel from the same ingress to egress in the network are
aggregated into a flow that has a certain demand (size in bytes
per second) averaged over some time window. Figure 1a shows
an example network where links are annotated by the current
link utilizations and Figure 1b depicts two flows of demand
12 and 4, respectively. In order to better distribute traffic along
the links and thus reduce the maximum link utilization [12],
flows can be split along multiple paths as demonstrated in the
last column in Figure 1b. The splitting ratios can be uniform
among the available paths, or they can depend on the link
capacities [13] or custom link weights as shown in Figure 1c.

In practice the flow splitting ratios on the router depend
on many technical, vendor-specific implementation details and
configurations—some of which may not be accessible. Obtain-
ing and processing this fine-grained information across a large
heterogeneous network would require a very complex system.
Hence the network analytics company deem it impossible in
practice to obtain the flow splitting ratios directly from the
router. As it is, moreover, infeasible to sample and categorize
the packets traversing each link to the corresponding flows,
we need additional information in order to first infer the flow
splitting ratios and then estimate how much of each flow
contributes to the load on a concrete link in the network.

Fortunately, each router has a byte counter for each interface
that measures the total amount of traffic sent out on each
link. This information is regularly queried using SNMP [14,
15], and then the link utilization for a given time interval
is estimated by linear interpolation between SNMP measure-
ments. In our example from Figure 1a, each link is annotated
with the current link utilization. We now want to solve the
following Flow Splitting Ratios (FSR) problem: given flow
demands, their paths and aggregated link utilizations, find the
flow splitting ratios such that when we accordingly project
flow demands onto the links, the predicted traffic on each link
matches (as close as possible) the measured link utilizations.

As our main contribution, we provide a practical and
efficient solution to the FSR problem, employing quadratic
linear programming. As a concrete instance of the FSR prob-
lem, consider our running example from Figure 1: given the
flow demands, available paths and the link utilizations, our
approach automatically predicts the splitting ratios at each
node (depicted in the last column of Figure 1c) and hence
identifies how much every flow contributes to the total load
on each link. Moreover, we suggest a filtering method to
compute the splitting ratios even in case of large (but rela-
tively rare) measurement errors that are present in a practical
deployment of a real network. The suggested mechanism can
efficiently deal with such measurement noise and errors and
we demonstrate the robustness of our approach on a large
set of simulated networks from the Topology Zoo [16] as
well as on real traffic data from a major European ISP (in
collaboration with a network analytics company)

We observe that our approach achieves high precision in
determining the load balancing weights even in cases where
the measured data are imprecise and occasionally significantly
deviate from the actual ingress traffic. Based on an extensive
statistical evaluation on a benchmark of over 190 real-world
ISP topologies, we conclude that our filtering technique helps
to improve the precision by an order of magnitude in the best
cases and achieves about 66% improvement in the median
case. Our approach scales to even large ISP networks with
thousands of routers and millions of flows. This allows us to
analyze real traffic data from a major European ISP network
(which consists of over 3.000 routers and 14.000 links) in a
matter of minutes. We automatically identify the load balanc-
ing weights in this network (which in this concrete case closely
correlates with the capacity-based splitting ratios where the
balancing weights are proportional to the link capacities) and
put the more precise flow analysis into production (as a part
of a network analysis tool developed by the company).

Related Work: Linear programming has been used for
network traffic engineering to synthesize optimal splitting ra-
tios [17] even considering the traffic shifts caused by fail-
ure recovery [18]–[24]. We, on the other hand, use LP to
reverse engineer splitting ratios employed in a real network
with the purpose of providing more accurate traffic flow ana-
lytics. Contrary to other papers that use linear objective func-
tions, we employ quadratic optimization that is better suited
for this application domain. From the network monitoring re-
search, network traffic analysis and visualization tools like
NVisionIP [25], Flowyager [26] and VITALflow [27] have
been designed for the purpose of network security [25, 28, 29]
and management [26, 27]. To the best of our knowledge, none
of these tools can reliably project the flow traffic on each link,
unless making assumptions on the underlying router configu-
rations, which can be difficult to obtain for larger networks.

II. PROBLEM FORMALIZATION

In this section, we shall first define the notion of a network
and traffic flows and then formally rephrase the problem of
identifying the flow splitting ratios.

i
New York

f
Chicago

j
Washington DC

a Seattle

b
Sunnyvale

c Los Angeles

d
Denver

e
Kansas City

h
Houston

k
Atlanta

gIndianapolis

8
48

4

2 2

6
8

6

10

1

9

7

1

(a) Abilene network from the Internet Topology Zoo [16]

Flow Demand Paths

Sunnyvale → New York 12
b-d-e-g-f-i
b-c-h-k-j-i

Seattle → Atlanta 4
a-d-e-g-k
a-d-e-h-k
a-b-c-h-k

(b) Two flows in Abilene network and their paths

Flow Split Node Split Ratios

Sunnyvale → New York Sunnyvale Los Angeles: 1/3
Denver: 2/3

Seattle → Atlanta
Seattle Denver: 1/2

Sunnyvale: 1/2

Kansas City Indianapolis: 1/2
Houston: 1/2

(c) Splitting ratios for the two flows

Fig. 1: Example network topology with link utilizations

A. Network, Paths and Flows

We model a network as a directed simple graph N = (V,E)
where V is a finite set of nodes (routers) and E ⊆ V ×V is a
finite set of links. A (simple) path in the network is a sequence
of distinct nodes p = v1v2 . . . vn such that (vi, vi+1) ∈ E for
1 ≤ i < n. The total link utilization is a function U : E → N
that assigns to each link its current load.

A traffic flow inside the network is a pair f = (s, t) ∈ V ×V
of ingress and egress router, respectively. The traffic matrix of
the network is a function F : V × V → N such that F (f)
where f = (s, t) indicates the amount of traffic that ingress
the network at s and egress at t, averaged over some time
interval. The set of paths used by a flow (from ingress to
egress) is given by the set P (f) = {p1, . . . , pn} where each
path p ∈ P starts at the ingress node s and ends in the egress
node t.

From the set of paths P (f), we can construct a directed
subgraph G(f) ⊆ E of the network where there is an edge
(u, v) ∈ G(f) if and only if there is a path p ∈ P (f) which
contains uv as a subpath. When the network computes the set
of paths using equal-cost multi-path routing (ECMP) [30], the
subgraph for every flow f = (s, t) is acyclic and the set of

2

possible paths from s to t through G(f) is exactly P (f).
To avoid making assumptions on symmetries of the load

balancing weights, we model them independently for each flow
f , so that each node v in the flow graph G(f) has a splitting
ratio dfv : V → [0; 1] such that dfv (u) denotes for each next-
hop u the percentage of traffic of the flow f that splits at the
node v and follows the link (v, u). The flow splitting ratios
must satisfy

∑
u∈V dfv (u) = 1 and dfv (u) > 0 only if (v, u) ∈

G(f).
Now the fraction of traffic from a flow f on a link e can be

calculated using the paths and flow splitting ratios as follows:

xf
e ≜

∑
p∈P (f)


∏j

i=1 d
f
vi(vi+1)

if p = v1 . . . vn and
e = (vj , vj+1)

0 otherwise .

The value of xf
e is the sum the traffic for the flow f over

the paths that go through e and for each path we multiply
the splitting ratios up until reaching the link e. In the running
example in Figure 1, we have for example (ignoring the nodes
with no splitting): xa→k

hk = da→k
a (b) + da→k

a (d) · da→k
e (h) =

1/2 + 1/2 · 1/2 = 3/4. This means that 3/4 of the flow
size from Seattle to Atlanta passes through the link between
Houston and Atlanta.

B. Correlation of Traffic Flow and Link Utilization

By correlating the projection of flow traffic onto the links
with the actual link utilization U , we can evaluate various
hypotheses about the flow splitting ratios, and in that way
improve the accuracy of the forward projection of traffic flow.

In an ideal world, we wish to find flow splitting ratios such
that the projected traffic matches the actual link utilization:

∀e ∈ E. U(e) =
∑

f∈V×V

F (f) · xf
e (ideal)

However, due to the inaccuracies of data introduced by e.g.
sampling, timing and delay, misclassification or loss of mea-
surements, we cannot expect the projected flow traffic to
exactly match the link utilization. Instead, we define a cost
function of how badly the projected traffic on the links differs
from the actual link utilization.

cost ≜
∑
e∈E

penalty
(
U(e),

∑
f∈V×V

F (f) · xf
e

)
where the penalty function describes how undesirable an
estimation (est) is given the actual value (util), e.g. the
absolute error penaltyabs(util , est) ≜ |util − est |, or squared
relative error penaltyrel2 (util , est) ≜

(
util−est

util

)2
.

Remark 1: In practice, there is a large variety in the
size and utilization of links across a network, so penaltyabs

tends to overfit the large links. Using relative errors alleviates
this problem, and squaring the error, like penaltyrel2 does,
penalizes large errors more than several small errors, hence
preferring to spread out the inaccuracies over the network.

In the case study, we know that there is some missing
data for the traffic matrix F , making it unavoidable that some

Define non-negative variables:
xb→i
bc , xb→i

bd , xa→k
ab , xa→k

ad , xa→k
eg , xa→k

eh , xa→k
hk ,

errab , errad , errbc , errbd , errch , errde , erreg ,
erreh , errfi , errgf , errgk , errhk , err ji , errkj

Minimize:
(errab)

2 + (errad)
2 + (errbc)

2 + (errbd)
2 + (errch)

2+
(errde)

2 + (erreg)
2 + (erreh)

2 + (errfi)
2 + (errgf)

2+
(errgk)

2 + (errhk)
2 + (err ji)

2 + (errkj)
2

Subject to:
(for the flow Sunnyvale → New York (b → i))

(1) xb→i
bc + xb→i

bd = 1

(for the flow Seattle → Atlanta (a → k))
(2) xa→k

ab + xa→k
ad = 1

(3) xa→k
ad = xa→k

eg + xa→k
eh

(4) xa→k
ab + xa→k

eh = xa→k
hk

(relative link errors)
(5) errab · 2 ≥ 4 · xa→k

ab − 2− c
(6) errad · 2 ≥ 4 · xa→k

ad − 2− c
(7) errbc · 6 ≥ 12 · xb→i

bc + 4 · xa→k
ab − 6− c

(8) errbd · 8 ≥ 12 · xb→i
bd − 8− c

(9) errch · 6 ≥ 12 · xb→i
bc + 4 · xa→k

ab − 6− c
(10) errde · 10 ≥ 12 · xb→i

bd + 4 · xa→k
ad − 10− c

(11) erreg · 9 ≥ 12 · xb→i
bd + 4 · xa→k

eg − 9− c
(12) erreh · 1 ≥ 4 · xa→k

eh − 1− c
(13) errfi · 8 ≥ 12 · xb→i

bd − 8− c
(14) errgf · 8 ≥ 12 · xb→i

bd − 8− c
(15) errgk · 1 ≥ 4 · xa→k

eg − 1− c
(16) errhk · 7 ≥ 12 · xb→i

bc + 4 · xa→k
hk − 7− c

(17) err ji · 4 ≥ 12 · xb→i
bc − 4− c

(18) errkj · 4 ≥ 12 · xb→i
bc − 4− c

(19) c = 0

Fig. 2: Quadratic programming formulation of the example

estimates become too low, so we decide to only penalize over-
estimations. Further, in practice the small flows and links are
given less importance, so we want to avoid noise in the data
with low magnitude having too big an impact on the relative
errors. For this we introduce a constant c that is the acceptable
absolute error (e.g. c = 100Mbps), and arrive at the following
penalty function:

penalty(util , est)≜


(est − util − c

util

)2

if est − util > c

0 otherwise .
(1)

The flow splitting ratios (FSR) problem is now to find
the splitting ratios dfv that minimize the cost function from
Equation 1.

III. SOLUTION TO FLOW SPLITTING RATIO SYNTHESIS

To solve the FSR problem, we turn to mathematical opti-
mization. In particular, we first encode the FSR problem as
the problem of minimizing a linear or quadratic optimization
function (depending on the penalty function used) on contin-
uous variables subject to a set of linear constraints. We then
study the influence of measurement noise on the precision of
splitting ratio estimates.

A. Encoding of FSR to a Linear Program

Linear programming (LP) and quadratic programming
are well-studied problems with several industry-standard

3

t=1 t=2 t=3
flow size a → k 4.2 / 4.0 8.8 / 8.0 18.0 / 6.0
flow size b → i 11.4 / 12.0 22.8 / 24.0 17.1 / 18.0
ratio da→k

a (b) 51% / 50% 52% / 50% 66% / 50%
ratio da→k

a (d) 49% / 50% 48% / 50% 34% / 50%
ratio da→k

e (g) 50% / 50% 50% / 50% 50% / 50%
ratio da→k

e (h) 50% / 50% 50% / 50% 50% / 50%
ratio db→i

b (c) 32% / 33% 31% / 33% 6% / 33%
ratio db→i

b (d) 68% / 67% 69% / 67% 94% / 67%
mean error 0.83% 1.39% 14.36%
max error 1.30% 2.27% 26.99%

link util. ab 2.1 / 2.0 4.6 / 4.0 11.8 / 3.0
link util. ad 2.1 / 2.0 4.2 / 4.0 6.2 / 3.0
link util. bc 5.8 / 6.0 11.8 / 12.0 12.9 / 9.0
link util. bd 7.7 / 8.0 15.6 / 16.0 16.0 / 12.0
link util. ch 5.8 / 6.0 11.8 / 12.0 12.9 / 9.0
link util. de 9.8 / 10.0 19.8 / 20.0 22.2 / 15.0
link util. eg 8.8 / 9.0 17.7 / 18.0 19.1 / 13.5
link util. eh 1.0 / 1.0 2.1 / 2.0 3.1 / 1.5
link util. fi 7.7 / 8.0 15.6 / 16.0 16.0 / 12.0

link util. gf 7.7 / 8.0 15.6 / 16.0 16.0 / 12.0
link util. gk 1.0 / 1.0 2.1 / 2.0 3.1 / 1.5
link util. hk 6.8 / 7.0 13.9 / 14.0 16.0 / 10.5
link util. ji 3.7 / 4.0 7.2 / 8.0 1.1 / 6.0
link util. kj 3.7 / 4.0 7.2 / 8.0 1.1 / 6.0

penalty value 0.008 0.030 13.403

TABLE I: Result of quadratic program on three separate
simulations where cells show estimated vs. real values

solvers [31, 32]. A linear programming problem is to find
values for a vector of decision variables x that minimize a
given cost function cTx subject to linear constraints Ax ≥ b
and x ≥ 0 for some constant vectors b, c and an integer
matrix A. In quadratic programming, the cost function can
include products of pairs of decision variables, in general:
minimize cTx + 1/2 · xTQx for some symmetric matrix Q.
We refer to [33] for further introduction to linear and quadratic
programming.

In order to describe the encoding of the FSR problem
into LP, we need to introduce some notation. Let G(f)+v =
{(v, u) ∈ G(f)} be the outgoing edges from the node v in
G(f) and let G(f)−v = {(u, v) ∈ G(f)} be the incoming
edges to v in G(f). The variables of the optimization problem
are xf

e for every flow f and every link e. The value of the
variable xf

e , 0 ≤ xf
e ≤ 1, expresses the fraction of the traffic of

the flow f that is traversing the link e. From the xf
e variables,

we can derive the flow splitting ratios as follows

dfv (u) =
xf
(v,u)∑

e∈G(f)+v
xf
e

where dfv (u) expresses the flow splitting ratio at node v
for the next-hop u. The linearly constrained optimization
program is then:

minimize
∑

e∈E penalty
(
U(e),

∑
f∈V×V F (f) · xf

e

)
subject to ∀f ∈ V × V : (let f = (s, t))

(1) xf
e ≥ 0 ∀e ∈ E

(2)
∑

e∈G(f)+s
xf
e = 1

(3)
∑

e∈G(f)−v
xf
e =

∑
e∈G(f)+v

xf
e ∀v ∈ V \{s, t}

Here we minimize the cost function defined in Section II-B
and require that (1) the variables a non-negative, (2) the
source of the flow initiates all the traffic, and (3) each
intermediate router in the flow graph sends out as much
traffic as it receives. We do not need a constraint requiring
that the target node t receives all the traffic of the flow f ,
as it is the only sink node in the subgraph G(f), and the
constraints (2) and (3) imply that all traffic of f ends in t.

Remark 2: If for some flow f an edge e = (v, u) is the
only outgoing edge from v in the subgraph G(f), there is no
need to introduce the variable xf

e as it is redundant.
In order to express the penalty function from the case

study (Equation 1), we introduce variables erre for each link
e and rewrite the quadratic program as:

minimize
∑

e∈E(erre)
2

subject to (1) - (3) and ∀e ∈ E :

(4) erre · U(e) ≥
∑

f∈V×V F (f) · xf
e − U(e)− c

where the optimal value of the variable erre is the positive
relative error of the estimation after discounting the acceptable
absolute error c. Note that by using an inequality in the
constraint (4), we only penalize over-estimation.

Figure 2 shows the quadratic program for our running
example. Here, in case of no measurement noise, the optimal
zero-cost solution of the linear program gives us exactly the
correct splitting ratios from Figure 1c.

B. Measurement Noise

Next, returning to our running example from Figure 1,
we synthetically add measurement noise that can vary the
size of the measured flow demands. We do this in order to
simulate the noise seen in a real network analytics deployment.
There is always a small noise variation that reflects the timing
and sampling variance, while the large (but less frequent)
differences can be caused by late detection of changes in the
BGP tables leading to incorrect mapping of ingress-traffic to
the flows inside the network.

Table I shows the results of three experiments with increas-
ing levels of measurement noise on the first flow (+5%, +10%,
+200%), while the second flow has the same small noise (-5%)
for all three simulated time windows (t=1,2,3). The measured
value is the left number in the cell, and the actual value the
right number. Note that, like in real networks, the amount
of traffic changes between the time windows. We use the
quadratic programming solver CPLEX 22.1 [31] to solve the
programs, and report the computed vs. ideal (real) splitting
ratios, as well as the forward projected traffic derived from
the computed ratios vs. actual utilization on each link based
on the real ratios.

As we can see in Table I, the estimated flow splitting ratios
are quite accurate when there is only little noise; however, in
the last case (t=3) with a large measurement error for the flow
a → k, the estimated ratios are quite far off. This is even the
case for the splitting ratios of the other flow b → i.

4

combining time series filtering
t=1 t=2 t=3 t=1 t=2 t=3

flow size a → k (measured / real) 4.2 / 4.0 8.8 / 8.0 18.0 / 6.0 4.2 / 4.0 8.8 / 8.0 18.0 / 6.0
flow size b → i (measured / real) 11.4 / 12.0 22.8 / 24.0 17.1 / 18.0 11.4 / 12.0 22.8 / 24.0 17.1 / 18.0
ratio da→k

a (b) (estimated / real) 64% / 50% 53% / 50%
ratio da→k

a (d) (estimated / real) 36% / 50% 47% / 50%
ratio da→k

e (g) (estimated / real) 51% / 50% 49% / 50%
ratio da→k

e (h) (estimated / real) 49% / 50% 51% / 50%
ratio db→i

b (c) (estimated / real) 18% / 33% 33% / 33%
ratio db→i

b (d) (estimated / real) 82% / 67% 67% / 67%
mean error 10.01% 1.41%
max error 15.41% 3.16%

link util. ab (estimated / real) 2.7 / 2.0 5.6 / 4.0 11.5 / 3.0 2.2 / 2.0 4.7 / 4.0 9.6 / 3.0
link util. ad (estimated / real) 1.5 / 2.0 3.2 / 4.0 6.5 / 3.0 2.0 / 2.0 4.1 / 4.0 8.4 / 3.0
link util. bc (estimated / real) 4.7 / 6.0 9.7 / 12.0 14.6 / 9.0 6.0 / 6.0 12.3 / 12.0 15.3 / 9.0
link util. bd (estimated / real) 9.4 / 8.0 18.7 / 16.0 14.0 / 12.0 7.6 / 8.0 15.2 / 16.0 11.4 / 12.0
link util. ch (estimated / real) 4.7 / 6.0 9.7 / 12.0 14.6 / 9.0 6.0 / 6.0 12.3 / 12.0 15.3 / 9.0
link util. de (estimated / real) 10.9 / 10.0 21.9 / 20.0 20.5 / 15.0 9.6 / 10.0 19.3 / 20.0 19.8 / 15.0
link util. eg (estimated / real) 10.1 / 9.0 20.3 / 18.0 17.3 / 13.5 8.5 / 9.0 17.2 / 18.0 15.5 / 13.5
link util. eh (estimated / real) 0.7 / 1.0 1.6 / 2.0 3.2 / 1.5 1.0 / 1.0 2.1 / 2.0 4.3 / 1.5
link util. fi (estimated / real) 9.4 / 8.0 18.7 / 16.0 14.0 / 12.0 7.6 / 8.0 15.2 / 16.0 11.4 / 12.0

link util. gf (estimated / real) 9.4 / 8.0 18.7 / 16.0 14.0 / 12.0 7.6 / 8.0 15.2 / 16.0 11.4 / 12.0
link util. gk (estimated / real) 0.8 / 1.0 1.6 / 2.0 3.3 / 1.5 1.0 / 1.0 2.0 / 2.0 4.1 / 1.5
link util. hk (estimated / real) 5.5 / 7.0 11.3 / 14.0 17.8 / 10.5 7.1 / 7.0 14.4 / 14.0 19.6 / 10.5
link util. ji (estimated / real) 2.0 / 4.0 4.1 / 8.0 3.1 / 6.0 3.8 / 4.0 7.6 / 8.0 5.7 / 6.0
link util. kj (estimated / real) 2.0 / 4.0 4.1 / 8.0 3.1 / 6.0 3.8 / 4.0 7.6 / 8.0 5.7 / 6.0

penalty value 14.162 0.042

TABLE II: Results of combining the time windows of Table I and filtering out the 20% worst constraints (grey cells).

IV. DEALING WITH MEASUREMENT NOISE

To achieve stable and accurate estimations of the flow
splitting ratios despite the noise and occasional large errors
in the measurement of the size of the flows, we propose two
techniques.

First, by combining time series of measurements into a
single large quadratic program, we exploit that we have data
for multiple time intervals (e.g. 24 one-hour measurements
of a day) for which the flow splitting ratios are expected to
remain (mostly) unchanged.

Second, by filtering out the link error constraints with the
highest penalty in the optimization function, we can indirectly
filter out the flows with large (but rare) measurement errors.
The intuition is that when only a few flows have large
measurement errors, then only relatively few links will be
affected. By not considering the utilization of these links for
these specific time periods, we effectively filter out the large
flow measurement errors without knowing specifically which
flows were measured erroneously.

Table II shows the result of combining the three time
windows from Table I of the running example into a single
quadratic program. The left side of Table II shows the result
without filtering, while the right side shows the results of
filtering out the 20% link constraints (highlighted with grey
background) that contribute the most to the total penalty value
of the LP (in the optimal solution for the unfiltered problem).

We see that combining the three time windows reduces the
mean error in estimation of splitting ratios from 14.36% for the
worst case (t=3) to 10.01% in the combined problem without
filtering. After filtering, the mean error is only 1.41%. This
small example shows a strong benefit of combining time series
of measurements and filtering out some constraints with high

penalty; however, it contains only two flows and only one large
measurement error. In order to statistically validate the benefits
of our technique, we run an extensive simulation experiment
on a large set of network topologies.

A. Simulation Experiments with Synthetic Traffic
We simulate synthetic flow demands and splitting ratios on

real world topologies from the Topology Zoo benchmark [16].
We restrict topologies to their largest connected component
(disconnected components can be handled independently) and
we do not consider topologies with less than eight nodes or
where the synthetic traffic encounters no splitting at all. This
leaves us with 192 different topologies.

To generate synthetic traffic, we use the gravity model [34]
with random node masses and randomly select 25% of all
source-destination pairs to have traffic between them—this
corresponds to the numbers found in our industrial case study.
As an approximate simulation of the variation of traffic during
the day, we vary the total traffic in the network over time
using a sine wave together with added noise. We generate 24
traffic matrices, corresponding to one for each hour of the
day—a similar setup as the data source in the case study.
The splitting ratios are generated by assigning random load
balancing weights to the links of the graph and then computing
ratios based on these link weights. These demands over time
and the splitting ratios are the ’ground truth’ of the simulation
and are used to compute the true total utilization of each link.

To mimic the type of measurement noise found in a real
network analytics deployment, we introduce a small random
variation of ±1% to the measured traffic of all flows. We also
model rare but large measurement errors in flow traffic: with
a low probability of 0.5% we vary a flow size by a random
factor between 1/10 and 10. From the estimated splitting ratios,

5

returned by the quadratic programing solver, we compute the
error compared to the true splitting ratios, and average each of
these errors weighted by the total size of the flow. This avoids
small, and hence in practice less important, flows dominating
and skewing the results. This weighted average splitting ratio
error is then considered as the error of that solution.

For each topology, we create ten different random instances
of splitting ratios and traffic demands and average the errors.
We then report on the best filtering ratio and the error it
achieved, and we compare this to the maximum error of
a single time window, and to the error when combining
time series without filtering. Table III orders the topologies
by the improvement achieved by filtering compared to only
combining time series, and shows the results for the top,
middle and bottom seven topologies.

It is clear that combining measurements over multiple time
windows balances out the measurement noise and reduces the
estimation errors compared to the worst single time window.
We can further observe that filtering improves the error in
the estimation of the real splitting ratios by an order of
magnitude in the best cases and in the middle cases it achieves
a significant 66% improvement. In the worst seven topologies,
our improvement is smaller (but the filtering technique still
improves the precision in every single topology). We observe
that topologies with smallest improvement have either close
to no error in the first place or have a very large diameter of
more than 20, where it is likely to create flows that traverse a
large number of links in the network. In such cases, we need
to filter up to 50% of LP constraints, which is significantly
more than what is needed for the other topologies (where
5-10% filtering is sufficient). Hence if a large measurement
error is introduced to such a long elephant flow, then there is
simply not enough data on the remaining links in the network
to accurately approximate the actual splitting ratios.

V. SCALABILITY STUDY ON LARGE EUROPEAN ISP

We perform a case study on data from a large European ISP.
This network consists of over 3.000 routers and 14.000 links,
and the dataset contains hourly traffic matrices, flow paths,
and link utilizations for 24 hours of one day. The set of paths
used by a flow is in most cases stable in the dataset, but some
changes occur during the day. We handle this by assuming
that the set of splitting ratios are stable as long as the set of
paths is stable, but we introduce new variables for modelling
a new set of paths for the flow.

Over the course of one day, more than two and a half
million flows have traffic. The quadratic program that analyzes
all flows is solved in about seven minutes running on 4
CPU cores at 2.5GHz; however, most of these flows have
a very small volume, and in practice the largest flows are
the most important. As seen in Figure 3, analyzing the flows
that carry 99.9% of the total traffic volume per hour takes
only 87 seconds, and analyzing 99% of the traffic volume
takes 34 seconds. In conclusion, the method is highly scalable,
especially considering the typically uneven distribution of
traffic volume in ISP networks.

Topology D
ia

m
et

er

M
ax

er
ro

r
ov

er
al

l
tim

e
w

in
do

w
s

E
rr

or
af

te
r

co
m

bi
ni

ng
tim

e
se

ri
es

E
rr

or
af

te
r

fil
te

ri
ng

Fi
lte

ri
ng

pe
rc

en
ta

ge

Im
pr

ov
em

en
t

of
fil

te
ri

ng

Nextgen 11 40.32% 3.56% 0.20% 5% 94.5%
Bbnplanet 8 56.16% 5.74% 0.43% 5% 92.5%
Psinet 12 50.46% 7.66% 0.64% 5% 91.7%
Goodnet 5 16.36% 2.40% 0.23% 5% 90.5%
Abvt 8 29.62% 4.95% 0.49% 5% 90.1%
Janetlense 5 11.72% 1.69% 0.17% 5% 90.1%
Ibm 7 29.93% 5.46% 0.54% 5% 90.1%
Geant2009 8 22.78% 8.87% 2.87% 10% 67.6%
Geant2001 7 21.48% 10.08% 3.28% 10% 67.5%
Easynet 7 25.87% 4.66% 1.53% 10% 67.1%
Compuserve 5 26.05% 0.82% 0.28% 5% 66.1%
Dfn 7 30.08% 11.41% 3.92% 10% 65.6%
Cesnet201006 7 33.70% 10.65% 3.68% 10% 65.5%
DT 7 19.14% 7.78% 2.71% 10% 65.1%
Ion 26 34.83% 21.13% 15.70% 50% 25.7%
TataNld 29 23.12% 17.05% 13.06% 50% 23.4%
GtsCe 22 28.58% 18.96% 14.59% 50% 23.1%
UsCarrier 36 36.68% 17.00% 13.69% 50% 19.4%
DialtelecomCz 31 34.62% 18.61% 15.17% 45% 18.5%
Gridnet 3 6.16% 0.12% 0.10% 15% 15.7%
Claranet 5 30.28% 0.20% 0.18% 5% 10.4%

TABLE III: Experiments with synthetic traffic data

96% 97% 98% 99% 100%
Percentage of total traffic volume analyzed

0

100

200

300

400

(s) Solve time for quadratic program

Fig. 3: Scalability of solving FSR on a real, large ISP

The diameter of the topology in the case study is 10, so from
the experiments on synthetic traffic data presented in Table III
we conclude that a 5-10% filtering is expected to provide the
largest error reduction. We compute flow splitting ratios using
our approach, and observe that they closely match splitting
ratios based on link capacities—an insight that is now used in
the traffic analytics deployment.

VI. CONCLUSION

We suggested a method for synthesis of flow splitting ratios
from incomplete and noisy network traffic flow measurements.
Our methods is based on quadratic linear programming and we
documented the accuracy and robustness of our method on an
extensive synthetic benchmark. Our method is scalable even
to large ISP networks. Based on the analysis by our tool on a
case study in collaboration with a network analytics company,
flow splitting ratios based on link capacities are now used to
improve the accuracy of a real traffic analytics deployment.

Acknowledgement: We thank the anonymous reviewers
for their comments, and the DFF project QASNET for sup-
porting this research.

6

REFERENCES

[1] B. Li, J. Springer, G. Bebis, and M. Hadi Gunes, “A survey
of network flow applications,” Journal of Network and Computer
Applications, vol. 36, no. 2, pp. 567–581, 2013. [Online]. Available:
https://doi.org/10.1016/j.jnca.2012.12.020

[2] R. Hofstede, P. Čeleda, B. Trammell, I. Drago, R. Sadre, A. Sperotto,
and A. Pras, “Flow monitoring explained: From packet capture to data
analysis with NetFlow and IPFIX,” IEEE Communications Surveys &
Tutorials, vol. 16, no. 4, pp. 2037–2064, 2014. [Online]. Available:
https://doi.org/10.1109/COMST.2014.2321898

[3] J. L. Garcia-Dorado, A. Finamore, M. Mellia, M. Meo, and
M. Munafo, “Characterization of ISP traffic: Trends, user habits, and
access technology impact,” IEEE Transactions on Network and Service
Management, vol. 9, no. 2, pp. 142–155, 2012. [Online]. Available:
https://doi.org/10.1109/TNSM.2012.022412.110184

[4] M. Trevisan, D. Giordano, I. Drago, M. Mellia, and M. Munafo,
“Five years at the edge: Watching internet from the ISP network,”
in Proceedings of the 14th International Conference on Emerging
Networking EXperiments and Technologies, ser. CoNEXT ’18. New
York, NY, USA: Association for Computing Machinery, 2018, pp.
1–12. [Online]. Available: https://doi.org/10.1145/3281411.3281433

[5] A. Feldmann, O. Gasser, F. Lichtblau, E. Pujol, I. Poese, C. Dietzel,
D. Wagner, M. Wichtlhuber, J. Tapiador, N. Vallina-Rodriguez,
O. Hohlfeld, and G. Smaragdakis, “The lockdown effect: Implications
of the COVID-19 pandemic on internet traffic,” in Proceedings of the
ACM Internet Measurement Conference, ser. IMC ’20. New York, NY,
USA: Association for Computing Machinery, 2020, pp. 1–18. [Online].
Available: https://doi.org/10.1145/3419394.3423658

[6] B. Claise, “Cisco systems NetFlow services export version 9,” RFC
3954, Oct. 2004. [Online]. Available: https://doi.org/10.17487/RFC3954

[7] P. Aitken, B. Claise, and B. Trammell, “Specification of the
IP flow information export (IPFIX) protocol for the exchange
of flow information,” RFC 7011, Sep. 2013. [Online]. Available:
https://doi.org/10.17487/RFC7011

[8] Y. Rekhter, S. Hares, and T. Li, “A border gateway protocol
4 (BGP-4),” RFC 4271, Jan. 2006. [Online]. Available: https:
//doi.org/10.17487/RFC4271

[9] ISO, “Intermediate system to intermediate system intra-domain
routeing exchange protocol for use in conjunction with the protocol
for providing the connectionless-mode network service (ISO 8473),”
ISO/IEC 10589:2002, Nov. 2002. [Online]. Available: https://www.iso.
org/standard/30932.html

[10] R. Callon, “Use of OSI IS-IS for routing in TCP/IP and dual
environments,” RFC 1195, Dec. 1990. [Online]. Available: https:
//doi.org/10.17487/RFC1195

[11] J. Moy, “OSPF version 2,” RFC 2328, Apr. 1998. [Online]. Available:
https://doi.org/10.17487/RFC2328

[12] B. Fortz, J. Rexford, and M. Thorup, “Traffic engineering with
traditional IP routing protocols,” IEEE Communications Magazine,
vol. 40, no. 10, pp. 118–124, 2002. [Online]. Available: https:
//doi.org/10.1109/MCOM.2002.1039866

[13] J. Networks, “IS-IS user guide: Understanding weighted ECMP
traffic distribution on one-hop IS-IS neighbors,” jan 2021. [Online].
Available: https://www.juniper.net/documentation/us/en/software/junos/
is-is/topics/concept/wecmp-for-one-hop-isis-neighbors-overview.html

[14] J. Case, M. Fedor, M. Schoffstall, and J. Davin, “Simple network
management protocol (SNMP),” RFC 1157, May 1990. [Online].
Available: https://doi.org/10.17487/RFC1157

[15] D. Harrington, B. Wijnen, and R. Presuhn, “An architecture for
describing simple network management protocol (SNMP) management
frameworks,” RFC 3411, Dec. 2002. [Online]. Available: https:
//doi.org/10.17487/RFC3411

[16] S. Knight, H. Nguyen, N. Falkner, R. Bowden, and M. Roughan, “The
internet topology Zoo,” IEEE Journal on Selected Areas in Comm.,
vol. 29, no. 9, pp. 1765 –1775, 2011.

[17] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,
and R. Wattenhofer, “Achieving high utilization with software-driven

WAN,” in Proceedings of the ACM SIGCOMM 2013 Conference on
SIGCOMM, ser. SIGCOMM ’13. New York, NY, USA: Association
for Computing Machinery, 2013, pp. 15–26. [Online]. Available:
https://doi.org/10.1145/2486001.2486012

[18] Y. Wang, H. Wang, A. Mahimkar, R. Alimi, Y. Zhang, L. Qiu, and
Y. R. Yang, “R3: Resilient routing reconfiguration,” in Proceedings of
the ACM SIGCOMM 2010 Conference, ser. SIGCOMM ’10. New
York, NY, USA: Association for Computing Machinery, 2010, pp.
291–302. [Online]. Available: https://doi.org/10.1145/1851182.1851218

[19] M. Suchara, D. Xu, R. Doverspike, D. Johnson, and J. Rexford,
“Network architecture for joint failure recovery and traffic engineering,”
SIGMETRICS Perform. Eval. Rev., vol. 39, no. 1, pp. 97–108, jun
2011. [Online]. Available: https://doi.org/10.1145/2007116.2007128

[20] H. H. Liu, S. Kandula, R. Mahajan, M. Zhang, and D. Gelernter, “Traffic
engineering with forward fault correction,” in Proc. ACM SIGCOMM,
2014, pp. 527–538.

[21] C. Jiang, S. Rao, and M. Tawarmalani, “PCF: Provably resilient flexible
routing,” in Proc. ACM SIGCOMM, 2020, pp. 139–153.

[22] Y. Chang, C. Jiang, A. Chandra, S. Rao, and M. Tawarmalani, “Lancet:
Better network resilience by designing for pruned failure sets,” Proc.
ACM Meas. Anal. Comput. Syst., vol. 3, no. 3, dec 2019. [Online].
Available: https://doi.org/10.1145/3366697

[23] J. Bogle, N. Bhatia, M. Ghobadi, I. Menache, N. Bjørner, A. Valadarsky,
and M. Schapira, “TEAVAR: Striking the right utilization-availability
balance in wan traffic engineering,” in Proceedings of the ACM Special
Interest Group on Data Communication, ser. SIGCOMM ’19. New
York, NY, USA: Association for Computing Machinery, 2019, pp.
29–43. [Online]. Available: https://doi.org/10.1145/3341302.3342069

[24] C. Jiang, Z. Li, S. Rao, and M. Tawarmalani, “Flexile: Meeting band-
width objectives almost always,” in Proc. ACM CoNEXT, 2022, pp.
110–125.

[25] K. Lakkaraju, W. Yurcik, and A. J. Lee, “NVisionIP: Netflow
visualizations of system state for security situational awareness,” in
Proceedings of the 2004 ACM Workshop on Visualization and Data
Mining for Computer Security, ser. VizSEC/DMSEC ’04. New York,
NY, USA: Association for Computing Machinery, 2004, pp. 65–72.
[Online]. Available: https://doi.org/10.1145/1029208.1029219

[26] S. J. Saidi, A. Maghsoudlou, D. Foucard, G. Smaragdakis, I. Poese,
and A. Feldmann, “Exploring network-wide flow data with Flowyager,”
IEEE Transactions on Network and Service Management, vol. 17,
no. 4, pp. 1988–2006, 2020. [Online]. Available: https://doi.org/10.
1109/TNSM.2020.3034278

[27] T. Tremel, J. Kögel, F. Jauernig, S. Meier, D. Thom, F. Becker,
C. Müller, and S. Koch, “VITALflow: Visual interactive traffic analysis
with netflow,” in NOMS 2022-2022 IEEE/IFIP Network Operations
and Management Symposium, 2022, pp. 1–6. [Online]. Available:
https://doi.org/10.1109/NOMS54207.2022.9789776

[28] D. Phan, J. Gerth, M. Lee, A. Paepcke, and T. Winograd, Visual
Analysis of Network Flow Data with Timelines and Event Plots.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 85–99.
[Online]. Available: https://doi.org/10.1007/978-3-540-78243-8_6

[29] J. R. Goodall and D. R. Tesone, “Visual analytics for network
flow analysis,” in 2009 Cybersecurity Applications & Technology
Conference for Homeland Security, 2009, pp. 199–204. [Online].
Available: https://doi.org/10.1109/CATCH.2009.47

[30] C. Hopps, “Analysis of an equal-cost multi-path algorithm,” RFC 2992,
Nov. 2000. [Online]. Available: https://doi.org/10.17487/RFC2992

[31] IBM, “IBM ILOG CPLEX optimization studio 22.1.0.” [Online].
Available: https://www.ibm.com/docs/en/icos/22.1.0

[32] Gurobi Optimization, Gurobi optimizer reference manual - Version
10.0, 2023. [Online]. Available: https://www.gurobi.com/wp-content/
plugins/hd_documentations/documentation/10.0/refman.pdf

[33] R. J. Vanderbei, Linear programming: Foundations and Extensions,
5th ed. Springer, 2020. [Online]. Available: https://doi.org/10.1007/
978-3-030-39415-8

[34] M. Roughan, “Simplifying the synthesis of internet traffic matrices,”
SIGCOMM Comput. Commun. Rev., vol. 35, no. 5, pp. 93–96, oct
2005. [Online]. Available: https://doi.org/10.1145/1096536.1096551

7

https://doi.org/10.1016/j.jnca.2012.12.020
https://doi.org/10.1109/COMST.2014.2321898
https://doi.org/10.1109/TNSM.2012.022412.110184
https://doi.org/10.1145/3281411.3281433
https://doi.org/10.1145/3419394.3423658
https://doi.org/10.17487/RFC3954
https://doi.org/10.17487/RFC7011
https://doi.org/10.17487/RFC4271
https://doi.org/10.17487/RFC4271
https://www.iso.org/standard/30932.html
https://www.iso.org/standard/30932.html
https://doi.org/10.17487/RFC1195
https://doi.org/10.17487/RFC1195
https://doi.org/10.17487/RFC2328
https://doi.org/10.1109/MCOM.2002.1039866
https://doi.org/10.1109/MCOM.2002.1039866
https://www.juniper.net/documentation/us/en/software/junos/is-is/topics/concept/wecmp-for-one-hop-isis-neighbors-overview.html
https://www.juniper.net/documentation/us/en/software/junos/is-is/topics/concept/wecmp-for-one-hop-isis-neighbors-overview.html
https://doi.org/10.17487/RFC1157
https://doi.org/10.17487/RFC3411
https://doi.org/10.17487/RFC3411
https://doi.org/10.1145/2486001.2486012
https://doi.org/10.1145/1851182.1851218
https://doi.org/10.1145/2007116.2007128
https://doi.org/10.1145/3366697
https://doi.org/10.1145/3341302.3342069
https://doi.org/10.1145/1029208.1029219
https://doi.org/10.1109/TNSM.2020.3034278
https://doi.org/10.1109/TNSM.2020.3034278
https://doi.org/10.1109/NOMS54207.2022.9789776
https://doi.org/10.1007/978-3-540-78243-8_6
https://doi.org/10.1109/CATCH.2009.47
https://doi.org/10.17487/RFC2992
https://www.ibm.com/docs/en/icos/22.1.0
https://www.gurobi.com/wp-content/plugins/hd_documentations/documentation/10.0/refman.pdf
https://www.gurobi.com/wp-content/plugins/hd_documentations/documentation/10.0/refman.pdf
https://doi.org/10.1007/978-3-030-39415-8
https://doi.org/10.1007/978-3-030-39415-8
https://doi.org/10.1145/1096536.1096551

	Introduction
	Problem Formalization
	Network, Paths and Flows
	Correlation of Traffic Flow and Link Utilization

	Solution to Flow Splitting Ratio Synthesis
	Encoding of FSR to a Linear Program
	Measurement Noise

	Dealing with Measurement Noise
	Simulation Experiments with Synthetic Traffic

	Scalability Study on Large European ISP
	Conclusion
	References

