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Advanced Solid-State Lithium Battery and Its Safety
Zhaoyang ZHAO, Haitao HU, Zhengyou HE, Hongyi ZHU, Pooya DAVARI, and Frede BLAABJERG

Abstract—Solid-state lithium battery (SSLB) is considered as 
the most potential energy storage device in the next generation 
energy system due to its excellent safety performance. However, 
there are still intimidating safety issues for the SSLB, due to it be-
ing still in the development stage. This paper gives an overview of 
the safety of SSLBs. First, advanced solid-state battery techniques 
are introduced. Second, the safety issues of SSLBs are discussed. 
Then, the safety enhancement techniques are provided. Finally, 
future research opportunities are presented. This paper aims to 
provide a reference for researchers in the fields of electronic and 
electrical engineering who want to make some efforts in SSLB 
safety. 

Index Terms—Failure, safety enhancement techniques, safety is-
sues, solid-state lithium battery (SSLB).
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SSLB Solid-state lithium battery.
ANN Artificial neural network.
ARC Accelerating rate calorimeter.
ASD Adjustable speed drive.
ASSB All-solid-state battery.
BSEE Battery energy storage system.
CB Cell balancing.
CC-CV Constant current-constant voltage.
EIS Electrochemical impedance spectroscopy.
EKF Extended Kalman filtering.
EL Ensemble learning.
EVs Electric vehicles.
FFT Fast Fourier transform.
HEVs Hybrid EVs.
KF Kalman filtering.
K-NN K-nearest neighbor regression.
LE Liquid electrolyte.
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LEBs Liquid electrolyte batteries.
LIBs Lithium-ion batteries.
LLZO Lithium lanthanum zirconium niobium oxide.
LR Linear regression.
NDP Neutron depth profiling.
PC Pulse current.
PE Power electronic.
PI Proportional integral.
QSSB Quasi-solid-state battery.
RF Random forest.
RLS Recursive least square.
RMS Root mean square.
SEM Scanning electron microscopy.
SE Solid electrolyte.
SOE State of energy.
SOH State of health.
SOP State of power.
SOS State of safety.
SOT State of temperature.
SRC Sinusoidal ripple current.
SSB Solid-state battery.
SVM Support vector machine.
sXAS Soft X-ray absorption spectroscopy.
UKF Unscented KF.

I. IntroductIon

NOWDAYS, lithium-ion batteries (LIBs) have been widely 
used in grid energy storage, electric vehicles, portable 

devices, etc. [1], [2]. Fig. 1(a) and Fig. 1(b) show the typical 
applications of LIBs in power systems [3] and electric vehicles 
(EVs)/hybrid EVs (HEVs) [4]. However, conventional LIB is 
composed of flammable liquid electrolytes and carbon anodes, 
its energy density and safety are relatively low. Some safety 
accidents caused by fires and explosions of LIBs have been 
widely reported [5], [6]. Typical cases are shown in Fig. 1(c) 
[7], [8]. 

Recently, many efforts have been made to improve the safety 
of LIBs, from the designing phase to the application phase of 
batteries. Some state-of-the-art techniques are systematically 
summarized in [9]-[15]. From the perspective of the 
application phase, some state-of-the-art thermal management 
techniques [9], [10], state estimation techniques [11], fault 
diagnosis techniques [12], [13], etc., have been reviewed in 
[9]-[13]. From the perspective of the designing phase, the 
critical progress in materials design has been summarized in 
[14], [15]. 

Although the above-mentioned methods can improve the 
safety of LIBs, their intrinsic safety has not been addressed. 
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Nowadays, solid-state lithium batteries (SSLBs) have caused 
broad attention due to the potential of achieving higher safety 
compared with conventional LIBs [16], [17]. However, there 
are still intimidating safety issues for the SSLB, due to it being 
still in the development stage and the design and fabrication are 
not entirely satisfactory. In [18], [19], the failure mechanisms 
of SSLBs have been summarized. Furthermore, the stability 
issues and safety issues of SSLBs have been thoroughly 
reviewed in [20], [21]. Typical failure mechanisms and safety 
issues are summarized in Table I. 

These overviews provide summaries of SSLBs’ safety issues. 
However, they mainly focus on the fields of materials analysis 
and design. In order to provide a reference for researchers in 
the fields of electronic and electrical engineering, this paper 
review the state-of-the-art solid-state lithium battery and its 
safety. The main contributions are given in the following. 

1) Summarizes the state-of-the-art solid-state battery 
techniques and analyzes the safety of solid-state lithium 
batteries (SSLBs). 

2) Discusses the safety enhancement techniques of battery, 
which can be used for SSLBs.

The rest of this paper is organized as follows: Section II 
reviews the advanced solid-state battery techniques. The 
safety issues of SSLBs are discussed in Section III. Section 
IV is dedicated to safety enhancement techniques. Finally, the 
conclusion and outlook are put forward in Section V.

II. adVanced solId-state Battery technIques

In this section, the development of battery techniques is 
discussed. Then, the state-of-the-art solid-state battery (SSB) 
techniques are analyzed. 

A. Development of Battery Techniques

According to the amount of liquid in the assembled batteries, 
batteries can be divided into three categories, i.e., liquid 
electrolyte battery, all-solid-state battery, and quasi-solid-state 
battery, as shown in Fig. 2. 

Nowadays, the widely used LIBs are liquid electrolyte 
batteries (LEBs), which contain electrodes, separators, 
and liquid electrolytes, such as nonaqueous and aqueous 
electrolytes. Besides, gel electrolyte battery is also considered 
as liquid battery. Generally, LEBs have mature manufacturing 
techniques and have been widely used in various applications 
requiring energy storage. However, the safety issue of LEBs is 
considered as the main challenge. Fig. 2(a) shows the typical 
thermal runaway process of LEBs [22], [23]. 

As next-generation batteries, all-solid-state batteries 
(ASSBs) have been attracting wide attention. Generally, 
ASSBs include inorganic solid electrolyte batteries, polymer 
solid electrolyte batteries, composite polymer/ceramic solid 
electrolyte batteries, etc. However, there are still intimidating 
challenges in the designing and manufacturing of ASSBs. 
The maximum challenge of ASSBs is the interface issue, 
which results in the capacity, cycling, and rate performances 
of ASSBs being far below that of traditional LIBs. Generally, 
the interface issue is very complex, detail discussion can 
be found in [24]. Fig. 2(b) shows the typical interface issue 
of ASSBs [25]. Generally, the space charge layer and the 
interfacial layer will cause a large interfacial impedance, 
which reduces reaction kinetics and limits the performance of 
batteries. Moreover, the charging and discharging will further 
exacerbate the interface issue. Taking the interface between 

Fig. 1. Typical applications of LIBs and accidents caused by LIBs. (a) Battery 
energy storage system (BESS) applications in power systems [3]. (b) LIBs in 
electric vehicle (EV)/hybrid EV (HEV) applications [4]. (c) Typical accidents 
caused by LIBs [5]-[8]. 
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LiCoO2 cathode and β-Li3PS4 solid electrolyte (LCO/LPS) as 
an example, Fig. 2(c) shows the interface issue caused by space 
charge layer [26], [27]. Moreover, Fig. 2(d) shows the example 
of interfacial layer, where the electrodes are LiCoO2 and 
Li2S-P2S5 [28]. Furthermore, Fig. 2(e) shows the picture of 
SSB’s interfacial layer before and after charging/discharging 
[29]. It can be seen that there exist obvious gaps on the 
interface after charging/discharging, which results in the 
increasing of interfacial impedance. 

In order to overcome the limitations of conventional liquid 
electrolyte batteries and all-solid-state batteries, hybrid solid/
liquid batteries have been developed. They are also known 
as quasi-solid-state batteries (QSSBs). Usually, a little 
amount of liquid phase is added on the cathode side to obtain 
sufficient contact between cathode particles and the solid-state 
electrolyte, in order to balance the performance and safety. 
Nowadays, the commercial “solid-state battery” all belong to 
quasi-solid-state batteries. Fig. 2(f) shows the structure of a 
commercial quasi-solid-state battery, and some commercial 
products are shown in Fig. 2(g) and Fig. 2(h) [30], [31].

B. State-of-the-Art SSB Techniques

Recently, the majority of studies have focused on the 
material development of SSBs, including the cathode, anode, 

and solid electrolyte. 
Generally, the available anode materials include lithium 

metal electrodes, graphene electrodes, silicon-based electrodes, 
tin-based electrodes, and metallic oxide/nitride electrodes. The 
composite sulfur electrodes, metallic oxide electrodes, metal 
sulfide electrodes, and metal fluoride electrodes can be used 
for the cathode of SSBs. Furthermore, polymer electrolytes, 
inorganic electrolytes, and composite electrolytes are widely 
used for solid electrolytes. Fig. 3(a) shows the classification of 
SSB materials. Detailed discussions of the state-of-the-art SSB 
materials can be found in [32]-[38].

Fig. 3(b) shows the typical assembly technologies of SSBs 
[20], which include heat treatment technique, cold-press 
technique, film technique, and roll-to-roll stack techniques. 
Generally, the SSB assembled using heat treatment has 
relatively poor interfacial and mechanical properties, and it 
is difficult to manufacture batteries with large capacities. The 
cold-press technique requires additional mechanical devices to 
generate presses on SSB, which has a high cost. Similarly, the 
film technique and roll-to-roll stack technique are also limited 
by battery capacity. 

In summary, the materials and assembly technologies of 
SSBs are not mature at present. Quasi-solid batteries are 
feasible solutions in years to come. However, the safety of 
QSSBs should be considered due to the existence of liquid 

Fig. 2. Development of battery techniques [22]‒[31].
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electrolytes in batteries.

III. safety Issues of solId-state lIthIuM BatterIes

Similar to conventional LIBs, emerging solid-state lithium 
batteries (SSLBs) also exists some failure behaviors caused by 
electric, chemical, electrochemical, mechanical, and thermal effects. 
In this section, the typical safety issues of SSLBs are discussed. 

A. Failure Behaviors and Failure Mechanisms

Generally, it is considered that cracks caused by mechanical 
stresses (e.g., nail penetration and severe impact crushing) 
would result in short-circuiting and thermal runaway of 
SSLBs [21]. However, some experimental results from battery 
manufacturers illustrate that an SSLB can continue operating 
after nail penetration tests [39], [40]. At this stage, there is no 
clear failure analysis for SSLBs under external mechanical 
stresses, which is not considered in this paper. Typical failure 
behaviors of SSLBs include electrical parameters drift [41]-
[48], internal structure change [49]-[55], and thermal runaway 
[56]-[58] are discussed in this part. 

1) Electrical Parameters Drift 
Generally, the electrical parameters, such as capacity, and 

impedance, will drift with the degradation of SSLBs [41], [42]. 
Taking LCO/Li6PS5Cl/Li-In half cell as an example, Fig. 4(a) 
shows the relationship between capacity and cycle number. It 
can be seen that the capacity of SSLBs decreases with the cycle 
number increases [43]. Generally, the electrical parameters drift 
is caused by the interface reaction of batteries. Fig. 4(b) shows 
the X-ray photoelectron spectroscopy of the electrode surface 
before and after battery aging. It is found that the intensity 
of the S2p signal of Li2S decreases, whereas the intensity of 
the signal of sulfites increases [43], which demonstrates the 
interfacial reaction occurred. 

Taking LNMO/LGPS/ln-Li symmetric cells as an example, 
Fig. 4(c) shows the variation of electrochemical impedance 
spectroscopy (EIS) with the aged of SSLBs [47]. Generally, 
the impedance drift depends on the reaction on the solid 
electrolyte/electrode interface, such as space charge layer 
formation, element interdiffusion, and material/electrolyte 
interface reaction.

2) Internal Structure Change  
Although solid-state electrolyte is considered can reduce the 

penetration of Li dendrites across electrolytes, lithium dendrite 
in SSBs is still a potential safety issue [49]-[52]. Taking solid 

Fig. 3. State-of-the-art SSB techniques. (a) Advanced SSB materials [32]-[38]. (b) Typical assembly technologies of SSBs [20]. 
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polymer batteries as an example, Fig. 4(d) shows its scanning 
electron microscopy (SEM) image, which demonstrates the 
growth of lithium dendrite [49]. The continuous growth of 
lithium dendrite may result in the internal circuit of SSBs. 
Taking a lithium/polymer cell as an example, Fig. 4(e) shows 
the voltage profile before and after an internal short occurs. 
Furthermore, Fig. 4(f) shows SEM image of this cell, which 
demonstrates the presence of a dendrite that went through the 
polymer. 

Moreover, the volume of electrode materials will change 
after frequent charging and discharging. Repeated expansion 
and contraction will cause internal mechanically damage and 
contact problems, which results in the performance degradation 
of SSLBs [53]-[55].

3) Thermal Runaway 
Similar to conventional LIBs, there exists a thermal runaway 

of SSBs [56]-[58]. Taking oxide solid electrolytes (SEs) with 
Li metal as an example, Fig. 5 shows the typical thermal 
runaway procedure of SSBS [57]. It can be seen that there exist 
three steps of this type of SE. First, the interface has formed 
after the contact between SEs and metallic Li. With the increase 
of temperature, metallic Li starts melting, and the contact of 
SEs and metallic Li is closer. The speed of interface reaction is 
accelerated. The increase of temperature and heat generated by 
thermal reaction further promotes the thermal decomposition 
of SE, which results in oxygen generation. Furthermore, the 
thermal runaway occurs due to the further heat generation by 
Li-oxygen reactions. As a result, the reactions of Li and SEs 
are the origin of the thermal runaway of these types of SEs. 
This example demonstrates that SSBs are not absolutely safe 
when compared with conventional LIBs.

B. Safety Performance Benchmarking With Conventional LIBs

In order to conduct the safety performance benchmarking of 
SSBs with conventional liquid-electrolyte LIBs, Charbonnel et 
al. [59] evaluated the safety of SSLBs with lithium lanthanum 
zirconium niobium oxide (LLZO) electrolytes. Fig. 6(a) and 
Fig. 6(b) show the characteristic curves of liquid-electrolyte 
LIB and LLZO-electrolyte SSB, respectively. The temperature 

and pressure represent the surface temperature and gas pressure 
of battery cells during thermal runaway. There exist 3 stages 
in the safety test experiment. In the first stage, the batteries are 
heated and their temperature (T) increases. Here, the pressures 
have almost no change. In the second stage, a thermal runaway 
occurs. The temperature increases rapidly. A large amount 
of gas is released and the pressure increases remarkably. The 
upper-right portions of Fig. 6(a) and Fig. 6(b) show the X-ray 
images of cells, where tini indicates the initial instant of thermal 
runaway. It can be seen that the internal of cells have changed 
after the thermal runaway. In the third stage, the temperature 
and pressure start to decrease, which indicates the end of the 
thermal runaway procedure.

Based on the thermal runaway experiment, Table II 
summarizes the critical parameters of battery cells. Here, 
Tini, Tmax represent the initial temperature and maximum 
temperature during thermal runaway. Q, ngas, and tTR denote the 
heat release, gas quantity, and duration of thermal runaway. 
Referring to Fig. 6(a), Fig. 6(b) and Table II, it can be seen that 
Tini, Tmax, Q, ngas, and tTR of liquid-electrolyte LIB are slightly 
larger than that of SSLB. 

For different types of SSLB, similar conclusions can be 
found. In [60], the heat release of Li/LiFePO4 half-cell with 
solid polymer electrolyte and liquid electrolyte are analyzed. 
Fig. 6(c) and Fig. 6(d) show the experimental results of these 
two half cells using an accelerating rate calorimeter (ARC). It 

Fig. 5. Example of thermal runaway of SSLBs [57]. 
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is found that the time to reach the maximum temperature of the 
solid-electrolyte cell is longer than that for liquid-electrolyte 
cells. 

Notice that the thermal runaway results in Fig. 6(a)‒(d) are 
caused by an external heat source, short-circuit failure also 
needs to be considered. In [61], thermodynamic models of 
all-solid-state batteries (ASSBs), SSBs, and LIBs are built 
to analyze their safety performance. Here, SSB refers to 
batteries that use a solid electrolyte with some amount of liquid 
electrolyte (LE), while ASSB refers to cells with no liquid 
elec-trolyte, as shown in Fig. 6(e). Considering two typical 
failure conditions, Fig. 6(f) shows the calculation results of 
heat release, where the horizontal axis represents the volume 
fraction of LE in batteries. Case A and Case B represent 
the thermal runaway resulting from an external heat source 
and short-circuit failure due to dendrite penetration of the 
electrolyte, respectively. It can be seen that the heat release of 
LIBs is larger than that of SSBs for Case A, and there is no heat 
release of ASSBs. These theoretical results are consistent with 
the experimental results in Fig. 6(a)‒(d). For Case B, it is found 
that the results of these three types of cells are the same, which 
demonstrates the short circuit failures procedure the same heat 
release. 

These above-mentioned analyses demonstrate that the heat 
release of solid-electrolyte cells is slightly lower than that of 
liquid-electrolyte cells with an external heat source. However, 
it is not rigorous to draw a conclusion that solid-electrolyte 
batteries are safer than liquid-electrolyte batteries. Solid-
electrolyte batteries need to be further developed. 

IV. safety enhanceMent technIques for BatterIes

Nowadays, various safety enhancement techniques including 
materials modification, electrothermal management, etc., have 
been presented for conventional LIBs. Considering solid-state 
batteries are still in the development stage, the state-of-the-art 
safety enhancement techniques designed for LIBs are discussed 
in this section, in order to provide a reference for SSBs in the 
current stage. Notice that researchers in the fields of electronic 
and electrical engineering would pay more attention to 
electrical-related techniques including failure analysis, state 
estimation, cell balancing, etc., which are focused on in this 
section. Moreover, detailed discussions about protection, cell 
balancing, and lifetime improvement for LIBs are given in 
[62], we refer the reader to [62] for more detailed information. 

A. Test Methods for Safety Evaluation 

1) Safety Test Standards and Mission-Profile Based Methods
In order to evaluate the safety performance of batteries, 

some safety test standards have been established for com-
mercial batteries, such as GB 38301 [63], GB 40165 [64], 

TABLE III
exaMPle of safety test standard for BatterIes  [54]

taBle II
tyPIcal test data of ssB cells and lIB cells rePorted In [50]

Type Tini /°C  Tmax /°C  Q /kJ  ngas /mmol  tTR /ms  

LIB 159 821 78.5 262 329 
SSB 148 813 69.8 156 191 

Fig. 7. Example of safety test standards and mission-profile-based methods for 
batteries. (a) Temperature cycling curve for cells [63]. (b) Vibration test curve 
[63]. (c) Schematic diagram of tolerance range of simulated collision pulse [63]. 
(d) Humidity cycle curve [63]. (e) Temperature cycling curve for packs [63]. (f) 
Example of mission profile in EVs [4]. 
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IEC 62133 [65], and UL 1642 [66]. Although these standards 
are designed for conventional LIBs, they can provide a 
reference for assessing SSBs at the current stage. Taking GB 
38301 (standard for electric vehicles traction battery safety 
requirements) as an example, Table III shows the test subjects 
for battery cells and packs (or systems) [63], where the 
diagrams of temperature test, vibration test, etc., are given in 
Fig. 7(a)-(e). 

Although the safety performance of batteries can be obtained 
following the above-mentioned standards, the real operating 
conditions cannot be reflected. Nowadays, the state-of-the-
art mission-profile-based accelerated testing methods have 
been introduced for power electronic components and systems 
[67]-[69], which can be used for aging test of SSBs. A typical 
example of operation mission profile for EV systems is shown 
in Fig. 7(f) [4]. By designing a suitable power electronic 
circuit, the actual mission profile of SSBs can be simulated. 

2) Characterization Methods
As discussed in Part A of Section III, with the degradation of 

SSBs, some electrical parameters and non-electrical parameters 
are changed. Besides the capacity, impedance, internal struc-
ture, and temperature, other parameters also can be used to 
characterize the state of batteries, such as volume. Taking a 
pouch cell as an example, Fig. 8(a) shows the relationship 
between surface pressure and aging time [70]. Here, the 
pressure is measured using a pressure sensor, which can reflect 
the volume change of batteries, as shown in Fig. 8(b). The 
experimental results demonstrate that the volume is also an 
indicator of batteries. 

On the other hand, Fig. 4(d) and 4(f) show examples of 
scanning electron microscopy (SEM) images, which are widely 
used for the characterization of SSBs [71], [72]. Besides 
SEM, some in situ characterization methods are also can be 
used, such as X-ray photoelectron spectroscopy (XPS) [73], 
soft X-ray absorption spectroscopy (sXAS) [74], and neutron 
depth profiling (NDP) [75] measurement. Generally, the failure 
mechanism of SSBs can be investigated by using these state-
of-the-art characterization methods. 

B. Battery Protection and Cell Balancing 

1) Battery Protection 
Similar to LIB systems, there may exist faults in SSLB 

systems (e.g., overvoltage, undercharge, short circuits, 

overheating), which results in the demand for protection 
circuits. Fig. 9(a) shows a typical protection circuit for a 
battery system, which is also called disconnection protection 
[76]. Here, two MOSFETs are connected in series to form a 
bidirectional switch [77], and they are enabled to disconnect 
the circuit when a fault occurs. Generally, the charge MOSFET 
is used to control the flow of the charging current, and the 
discharge one controls the discharging current. Notice that the 
MOSFETs in Fig. 9(a) are placed on the high side (i.e., the 
positive terminal of batteries), they can also be placed on the 
low side (i.e., the negative terminal of batteries). Moreover, 
separate charge and discharge ports can also be designed for 
charge and discharge, respectively, which are detail discussed 
in [76].

Besides disconnection protection, a load inrush current 
protection circuit is required in a battery system, in order to 
limit the inrush current during the turn on phase. A typical 
protection circuit is shown in Fig. 9(b) [76]. 

2) Cell Balancing  
Usually, the terminal voltage of a single battery cell is 

relatively low, a large number of cells are usually connected 
in series to meet the higher voltage demand of practical 
applications, such as EVs and BSEEs. However, there exist 
differences in cells due to manufacturing inconsistencies, 
and the differences will increase with the use of the batteries, 
which may result in overcharge and over-discharge. Taking the 
series-connected cells in EVs as an example, Fig. 10 shows 
the state of charge (SOC) distribution of cells after discharging 
[78]. Here, the cells have been utilized for 3 years. It can be 
seen that some cells are over discharge. Generally, the over-
discharge and over charge caused by cell inconsistencies may 
result in premature degradation and safety issues of cells [79]. 

Fig. 8. Example of volume change of batteries [70]. (a) Surface pressure versus 
aging time for a pouch cell. (b) Experimental setup. 
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Therefore, it is essential to design a cell balancing (CB) circuit 
to reduce the difference between cells.

Fig. 11(a) shows a widely used CB circuit, i.e., dissipative 
CB scheme [80]. Although it has the advantage of low 
complexity, the extra energy on cells is consumed by 
resistance. The efficiency is relatively low, and it may cause 
heat problems for batteries. Considering this issue, various 
CB schemes including capacitor-based schemes [81], 
inductor-based schemes [82], transformer-based schemes 
[83], converter-based schemes [84], selection network-based 
schemes [85], and source/load-based schemes [86] have been 
presented. Typical examples are shown in Fig. 11. Notice that 
the examples in Fig. 11 are basic circuits, various improved 
schemes can be derived based on them. Detailed discussions 
can be found in [87], [88]. 

C. State Estimation

1) Typical State Estimation Methods
State estimation mainly refers to using voltage and current 

information of batteries or systems to estimate the key state of 
batteries, such as SOC, state of health (SOH), state of safety 
(SOS), state of power (SOP), state of energy (SOE), and state 
of temperature (SOT). Recently, various state estimation 
methods have been presented [89]-[92], which can be mainly 
divided into two categories, i.e., model-based methods and 
data-driven methods, as shown in Fig. 12.

Fig. 12(a) shows the typical procedure of model-based 
methods, which mainly includes two steps, i.e., battery 
modeling and parameter identifications [89], [90]. Firstly, a 
parameter model of batteries is built. Then, the parameters are 

estimated using parameters identification algorithms, such as 
recursive least square (RLS), Kalman filtering (KF), extended 
KF (EKF), unscented KF (UKF), proportional-integral (PI) 
observer, sliding mode observer, etc. [89], [90], [93]. Notice 
that the parameter model in Fig. 9(a) is the basic Thevenin 
model, which is an equivalent circuit model. Besides it, more 
complex second-order RC equivalent circuits, and fractional-
order equivalent circuit models are also widely used for LIBs 
[94]. Moreover, physics-based models can effectively simulate 
the internal electrochemical reactions of batteries, which are 
also widely used in state estimation [95]. For SSLBs, physics-
based models have been drawing great attention [96], [97]. Fig. 
13 shows an example of a physic model of Li metal SSB [97]. 
Based on the method shown in Fig. 12(a), the state parameters 
of SSBs can be estimated. 

Fig. 12(b) shows the typical procedure of data-driven 
methods, which mainly consist of two parts, i.e., the data 
training and parameters estimation. Firstly, raw data (e.g., 
voltage, current, temperature, etc.) and state information 
(e.g., SOC, SOH, aging data, etc.) of batteries are collected as 
training datasets [91], [92]. Then, some state-of-the-art artificial 
intelligence (AI) algorithms are used to obtain the target 
model, such as linear regression (LR), artificial neural network 
(ANN), k-nearest neighbor regression (k-NN), random forest 
(RF), ensemble learning (EL), support vector machine (SVM), 
etc. [91], [92]. According to the obtained estimation model, the 

Fig. 11. Typical examples of cell balancing (CB) schemes [62]. (a) Dissipative 
CB scheme [62], [80]. (b) Capacitor-based CB scheme [62], [81]. (c) Inductor-
based CB scheme [62], [82]. (d) Transformer-based CB scheme [62], [83]. (e) 
Converter-based CB scheme [62], [84]. (f) Selection network-based CB scheme 
[62], [85]. (g) Source/load-based CB scheme [62], [86]. 
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parameters of models can be updated by actual data. Then, the 
state parameters can be obtained based on the built model and 
sampling datasets. Notice that the data training is performed 
offline, and the state estimation can be realized either offline or 
online. 

2) Power Electronics-Based Online Monitoring  
Electrochemical impedance spectroscopy (EIS) is related to 

the internal physical and chemical processes of batteries, which 
can be used to analyze the state information of batteries, such 
as SOC, SOH, temperature, overcharge, etc. [98]-[101]. Taking 
SOC and SOH as examples, Fig. 14(a) shows the relationships 
between EIS and SOC/SOH [98], which demonstrates that the 
EIS can reflect the state information of batteries. 

Fig. 14(b) shows the typical test method of EIS. Usually, 
an excitation signal ib (or vb) is injected into a battery, and the 
corresponding response signal vb (or ib) is obtained. Then the 
impedance z( f ) at each frequency f is calculated using the 
excitation signal and response signal, i.e., 

z( f ) = vb( f )/ib( f )                              (1)

where, vb and ib represent the voltage and current of batteries. 
Based on (1), the EIS of a battery can be obtained. Although 
EIS can be measured using industrial instruments including 
electrochemical workstations, spectrum analyzers, impedance 
analyzers, etc., it cannot realize the real-time measurement 
during battery operation. 

It is well known that power electronic (PE) circuits are 
widely used in battery systems to realize the functions of 
energy interaction, cell balancing, and battery protection. PE-
based online monitoring refers to utilizing the electrical signals 
of PE circuits to realize online EIS measurement. Generally, the 
PE-based EIS monitoring can be derived into two categories, 
i.e., converter signal-based methods and perturbation injection-
based methods.

For converter signal-based methods, the EIS is measured 
using the existing multifrequency signal in converter systems, 
such as harmonic, ripple, etc. Taking a battery-feed electric-
vehicle drive system as an example, Fig. 14(c) shows the 

circuit topology and typical waveforms of battery voltage 
vb and battery current ib [102]. It can be seen that vb and ib 
frequently vary due to driver or controller response, which 
generates abundant multifrequency information on batteries. 
Then, the EIS can be obtained using (1) and signal processing 
algorithms, such as fast Fourier transform (FFT). 

For perturbation injection-based methods, perturbation signals 
are usually added to controllers or batteries, in order to generate 
multifrequency excitations. Fig. 14(d) shows an implementation 
example, where a buck-boost converter is used to realize the 
energy interaction between battery and load [103]. Here, a 
small perturbation signal is added to the steady-state duty cycle, 
which results in generating a perturbation superimposed over the 
battery voltage vb and battery current ib. Similarly, the broadband 
excitation signal batteries can be generated by adding a 
perturbation to the reference point of converters [104]. Moreover, 
the perturbation current can also directly add to batteries by 
specially designed converters [105], [106]. 

Besides the interface converters, cell balancing circuits 
also can be used for online EIS measurement [107]-[109]. 
Notice that converter signal-based methods are more suitable 
for battery-feed adjustable speed drive (ASD) systems, such 
as EVs, due to there exist abundant frequency information 
(including ripple, harmonic, and loading profile) in the system. 
For other applications without abundant frequency information 
(e.g., BESSs), perturbation injection-based methods are more 
suitable. 

Fig. 13. Example of a physics-based model of SSBs [96]. 
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D. Lifetime Improvement 

Generally, the lifetime of batteries is affected by electrical 
stress, such as ripples, harmonics, and charging/discharging 
strategies. Recent studies have demonstrated that high-
frequency (greater than 10 Hz) ripples and harmonics almost 
have no adverse influence on LIBs’ lifetime when the root 
mean square (RMS) values of ripples/harmonics are equal to 
a dc current [110], [111]. From the perspective of charging 
strategies, it is demonstrated that the lifetime of batteries is 
dependent on the RMS value of the charging current, which 
is not related to the charging profile [112], such as constant 
current-constant voltage (CC-CV) charging [113], pulse-
current (PC) charging [114], and sinusoidal ripple current 
(SRC) charging [115]. 

Although it is essential to reduce the RMS value of the 
charging current from the perspective of safety, it may 
reduce other performances of batteries (e.g., charging speed). 
Therefore, a tradeoff between safety, speed, etc., should be 
considered. In [116], an electrothermal-aging coupling model 
of a LIB is built, as shown in Fig. 15(a). Then the optimal 
charging parameters are obtained using a multi-objective 
biogeography-based optimization algorithm, which guarantees 
safety and charging speed at the same time. Similar charging 
optimization schemes can be found in [117]. 

From the perspective of operation, the lifetime of batteries 
can be improved by specially designed control strategies. 

Referring to the example shown in Fig. 15(b) [118], a fuzzy 
logic control algorithm is used to adjust the charging current 
and the PV is primarily employed, in order to reduce the stress 
of batteries and improve their lifetimes. 

V. conclusIon

This paper reviews the advanced solid battery and its safety. 
First, the development of battery techniques and state-of-the-
art solid-state batteries are discussed. Second, the main safety 
issues of solid-state lithium batteries (SSLBs) are summarized, 
including electrical parameters drift, internal structure change, 
and thermal runaway. Then, the safety performance of 
current-stage SSLBs is compared with conventional lithium-
ion batteries (LIBs). Third, the existing safety enhancement 
techniques including safety test methods, battery protection, 
cell balancing, state estimation, and lifetime improvement for 
batteries have been discussed, which can be used for SSLBs. 
From the authors’ point of view, future research challenges and 
research opportunities are summarized as follows. 

A. Challenges

For solid-state batteries, the maximum challenge is that 
it is still in the development stage and there exist safety 
issues for current-stage quasi-solid-state batteries. From the 
perspective of battery applications instead of material design, 
the challenges are given in the following:

1) The failure behaviors and failure mechanisms of SSLBs 
are not very clear. There is a lack of accurate electrical 
models, thermal models, electrothermal models, 
electrochemical models, and lifetime models for current-
stage SSLBs. 

2) There is a lack of safety test standards for SSLBs. 
3) The battery protection, cell balancing, state estimation, 

and lifetime improvement methods for SSLBs are 
referring to the existing methods for conventional LIBs. 
There is a lack of specially designed methods for SSLBs, 
which consider the characteristics of SSLBs.

B. Opportunities

The opportunities can be listed as follows:
1) Research safety/aging test methods and standards for 

SSLBs. The actual operating conditions of batteries 
should be considered, and mission-profile-based reliability 
test methods for power electronic reliability can be used 
as a reference [119]. 

2) Investigates electrical models, thermal models, 
electrothermal models, electrochemical models, lifetime 
models, etc., of SSLBs. Safety/realizability evaluation and 
improvement should be considered [119]. 

3) Designing of advanced state estimation and condition 
monitoring techniques for SSLBs. The state-of-the-art 
techniques for power electronic systems [120]-[123] and 
conventional LIB systems [124] can be used as references. 
Emerging artificial intelligence technology should be 

Fig. 15. Electrothermal-aging coupling model of a LIB and example of a 
lifetime improvement scheme. (a) Electrothermal-aging coupling model of a 
LIB [62], [117]. (b) Example of a lifetime improvement scheme [62], [118]. 
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temperature (T), battery temperature (Tb)

t OCV dOCVQ = I(V          ) + IT
dT

R 0 R 1

C1 Reversible heat
Irreversible heat
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considered [125]. 
4) Further research of protection and cell balancing circuits, 

on the basis of the schemes for conventional LIBs [62]. 
5) Designing of advanced charging and operating strategies 

on the basis of [117], [118], in order to improve the 
lifetimes of SSLBs. 
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