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The increasingly stringent dependability requirements on communication networks as 
well as the need to render these networks more adaptive to improve performance, 
demand for more automated approaches to operate networks. We present AllSynth, a 
symbolic synthesis tool for updating communication networks in a provably correct and 
efficient manner. AllSynth automatically synthesizes network update schedules which 
transiently ensure a wide range of policy properties expressed using linear temporal logic 
(LTL). In particular, in contrast to existing approaches, AllSynth symbolically computes 
and compactly represents all feasible and cost-optimal solutions. At its heart, AllSynth 
relies on a novel parameterized use of binary decision diagrams (BDDs) which greatly 
improves performance. Indeed, AllSynth not only provides formal correctness guarantees 
and outperforms existing state-of-the-art tools in terms of generality, but also in terms of 
runtime as documented by experiments on a benchmark of real-world network topologies.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

Improving the automated operation of communication networks is considered one of the most important research prob-
lems in networking today, for two main reasons. First, communication networks and their configurations are highly complex, 
forcing operators to become “masters of complexity” [25]; many major Internet outages over the past years were caused by 
human errors [5,13,16]. Today’s manual approach hence stands in stark contrast to the increasingly stringent dependability 
requirements on communication networks, which are a critical infrastructure of our digital society. Second, network traffic 
is not only constantly increasing but also features much more temporal and spatial structure [4,6,51]; this introduces a sig-
nificant potential to improve operational efficiency by rendering networks more adaptive towards the actual traffic patterns 
they serve.

Motivated by the prospect of an increased level of automation in networks [18], over the past years, great efforts were 
made in laying the foundations for automated network verification, and in designing synthesis tools [3,17,28,44,47]. Further-
more, motivated by the benefits of more adaptive network operations, e.g., to improve availability and performance [29], 
automated tools for consistently updating network configurations have been developed [12,24,40,45,48] which overcome the 
limitations of existing hand-crafted algorithms [1,36,39]. However, the computation of provably consistent network update 
schedules remains challenging, due to the performance and expressiveness demands. The performance requirements are 
multidimensional: network update schedules should not only be quickly computable but also account for operator pref-
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erences, like requiring that certain switches or routers are updated first. However, existing approaches only provide one 
update sequence that may not satisfy additional requirements imposed by the network operator.

Our contributions. We present an automated network update synthesis tool, AllSynth, that computes and represents in a 
compact BDD (binary decision diagram) form all correct update sequences that respect various logical properties express-
ible in linear temporal logic (LTL) [43] such as reachability, waypointing and service chaining. AllSynth comes with formal 
correctness guarantees and in case it provably establishes that there does not exist any simple update schedule (where 
each switch is updated at most once), it can make suggestions for alternative solutions employing general update schedules 
(where a switch can be updated multiple times).

Despite being more general, AllSynth significantly outperforms state-of-the-art tools with regard to execution time on 
all non-trivial real-world networks from the standard Topology Zoo benchmark [30]. The update synthesis problem solved 
by AllSynth is NP-hard, even when restricted to preserving the basic loop-freedom and waypointing properties [36]. To 
overcome the complexity of the problem, AllSynth exploits a novel use of binary decision diagrams (BDDs) [34] to compactly 
encode not only the network topology and policy invariant, but also the set of all correct update sequences.

The fact that AllSynth computes all feasible update sequences enables future use cases for the tool, such as finding an 
optimal schedule with regard to a particular cost specification, providing multiple alternative solutions and filtering based 
on operator requirements (e.g. some switches must be updated before the rest or in a certain order). The source code of 
AllSynth and all our experimental artefacts are available at [33].

Related work. Motivated by the benefits of adaptive and software-defined (i.e., programmable) communication net-
works [31], as well as the increasingly stringent dependability requirements, the question of how to correctly update 
network configurations has received much attention over the last years. A recent survey summarizes over one hundred 
approaches [20].

In their seminal work, Reitblatt et al. [45] showed that strong per-packet consistency can be achieved using packet 
versioning during reconfigurations. Their approach, which was subsequently studied intensively in the literature [9,11,21,26,
27,35,42], has the drawback that it requires packet header modifications and additional memory at the nodes: switches and 
routers need to store forwarding rules for each version.

A clever alternative approach, introduced by Mahajan and Wattenhofer [39], schedules batches of updates over time, 
where the set of updates within a batch can take effect in any order without harming consistency. This approach has also 
been explored extensively already [1,15,22,36–38,50], however, it can only be used to provide a subset of the consistency 
properties of [45]. This in turn motivated hybrid approaches such as FLIP [48]. Interestingly, similar to AllSynth, FLIP also 
supports alternative solutions in case a simple update cannot be found. However, in contrast to FLIP which relies on a 
heuristic algorithm, AllSynth only presents alternative solutions in case a simple solution provably does not exist. Further-
more, while FLIP resorts to a packet tagging alternative (which consumes header space and switch memory), AllSynth is a 
light-weight and fully symbolic approach aiming at updating nodes multiple times.

The need for supporting more general or even customizable consistency properties [52] as well as more automated 
synthesis approaches [19,24,41] has already received attention in the literature as well. However, our approach is the first 
one that uses the BDD-based technology for the synthesis and representation of all correct network updates. The competing 
tool NetSynth [40] for update synthesis is relying on an incremental enumeration of candidates of update sequences that 
are then verified by external model checkers, like NuSMV [14], and the tool terminates as soon as the first correct update 
sequence is found.

This article is an extended version (with full proofs, cost-optimal update synthesis and additional experiments) of TASE’22 
conference paper published in [32]. The paper is organized as follows: in Section 2 we formally define the update synthesis 
problem, including the simple and generalized variants of the problem; in Section 3.2 we introduce our BDD-based tool for 
solving the problem and we construct a BDD representation of all feasible solutions to the update synthesis problem; in 
Section 4 we extend the methodology with the construction of a BDD representing all cost-optimal solutions; in Section 5
we evaluate the performance of our implementation against state-of-the-art approaches; finally in Section 6 we provide a 
conclusion and further perspectives of our work. We also include a short appendix showing how to run AllSynth.

2. A model for update synthesis

Before we formally define our problem, we shall provide an intuitive motivation for the update synthesis problem. In 
Fig. 1 we see a simple network with four nodes (routers). Packets from the source node s are forwarded to the destination 
node d along the solid edges (links) that represent the initial routing configuration. The network operator aims to change 
this routing to an alternative one represented by the dashed edges. The task is to schedule the order of node updates 
(changing the forwarding function at the updated node from the solid edge to the dashed one) so that in every intermediate 
routing configuration we preserve the reachability between s and d and at the same time always visit the waypoint node 
v1 (representing for example a firewall).

If the node s is updated first, the new routing will follow the path s, v2, d which preserves the reachability property 
but not the waypointing. On the other hand, if we first update the node v2, we create an undesirable forwarding loop 
s, v2, v1, v2, v1, . . . which breaks the reachability property. Hence the only option is to update first the node v1, after which 
2
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Fig. 1. Update synthesis problem aiming to preserve reachability between s and d via the waypoint v1.

Table 1
Key notation of network model.

Notation Description

G = (V , E, src, tgt) Network topology with nodes V and edges E

src(e), tgt(e) Source and target node of an edge

v, vi Nodes

e, ei Edges

ρ Routing configuration

π A path (sequence of edges)

π Sequence of nodes traversed by path π

πρ(v) Path induced by ρ from node v

u An update

w An update sequence

ρw Routing after applying update sequence w

ρi , ρ f Initial and final routing configurations

ϕ Policy specified in LTL logic

P Update synthesis problem

Sol(P ) Set of solutions to problem P

we have a correct forwarding path s, v1, d satisfying both reachability and waypointing. After this we can update the node 
v2 because this update does not change the forwarding path and lastly, we update the node s that completes the update 
sequence from the initial to the final routing.

We are now ready to provide the formalization of the update synthesis problem. Table 1 contains a summary of the 
key notation. We model the network as a multigraph, allowing us to describe multiple connections between nodes (i.e., 
switches or routers, which are treated as synonyms in the following); these connections can have different quantitative 
attributes (e.g. latency). Henceforth, we adopt graph-theory terminology and refer to such connections or links as edges.

Definition 1 (Network topology). A network topology is a directed multigraph G = (V , E, src, tgt) where V is the set of nodes, 
E is the set of edges and src, tgt : E → V are respectively the source and target functions.

In order to route traffic from a node v0 to a node v ′ , each node v has a forwarding rule that specifies an appropriate 
outgoing edge e such that src(e) = v . This rule can be per-flow or apply to multiple flows; in the following, we do not 
explicitly distinguish between the two scenarios. Not all nodes need to have defined their forwarding edge (e.g. the target 
node v ′ or the nodes that are not involved in packet forwarding from v0 to v ′). We capture this formally by the notion of 
a routing configuration.

Definition 2 (Routing configuration). A routing configuration, or routing for short, in a network topology G = (V , E, src, tgt) is 
a partial function ρ : V ⇀ E such that src(ρ(v)) = v for all v ∈ V where ρ(v) is defined.

For a given network topology G = (V , E, src, tgt) with the source node v0 ∈ V , a routing configuration ρ defines a unique 
sequence of edges (a path) that is finite if the routing is loop free; otherwise it is infinite. In the finite case, the path is given 
by π = e0e1 · · · en such that ρ(tgt(ei−1)) = ei for all i, 1 ≤ i ≤ n, and src(e0) = v0, and where ρ(tgt(en)) is undefined. The 
corresponding sequence of traversed nodes is then π = src(e0)src(e1) · · · src(en)tgt(en). In the infinite case, the path is given 
by π = e0e1 · · · such that ρ(tgt(ei−1)) = ei for all i > 0, and src(e0) = v0. The sequence of traversed nodes is given by the 
infinite sequence π = src(e0)src(e1) · · · . If π = v0 v1 . . . is a (finite or infinite) sequence of nodes then we refer to its suffix 
vi vi+1 . . . by π i and to the initial node v0 by π [0]. For a node v0 ∈ V and routing ρ , we let πρ(v0) denote the unique 
(finite or infinite) path induced by ρ from the source node v0 and let πρ(v0) be the corresponding sequence of traversed 
nodes.
3
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Reach(d) ≡ true U d

Waypoint(v,d) ≡ ¬Reach(d) ∨ (¬d U v ∧ Reach(d))

MultiWaypoint(W ,d) ≡
∨

v∈W

Waypoint(v,d)

Service(v1 v2 · · · vn,d) ≡
{

¬Reach(d) ∨ (∧n
i=2 ¬vi ∧ ¬d

)
U (v1 ∧ Service(v2 · · · vn,d)) if n ≥ 1

true otherwise

Fig. 2. Encoding of standard policies where v,d ∈ V , ∅ �= W ⊆ V and v1 v2 · · · vn ∈ V ∗ .

2.1. Routing policies

We shall now define a variant of LTL [43] that allows us to describe specific policies that routings must enforce (both 
statically and transiently).

Definition 3 (Policy syntax). For a network topology G = (V , E, src, tgt), a policy ϕ is constructed according to the following 
LTL-based abstract syntax, where v ∈ V :

ϕ ::= true | v | ¬ϕ | ϕ ∧ ϕ | NoLoop | X ϕ | ϕ U ϕ .

In addition to the classical LTL operators, our logic includes a loop-freeness predicate. We now give the formal semantics 
of our logic, interpreted both on infinite and finite paths [23].

Definition 4 (Policy semantics). For a network topology G = (V , E, src, tgt), a policy ϕ is satisfied by a path π ∈ E∗ ∪ Eω , 
written π |= ϕ , iff the corresponding sequence of traversed nodes π satisfies π |= ϕ , defined inductively on the structure of 
ϕ as follows:

π |= true always

π |= v iff π [0] = v

π |= ¬ϕ iff π �|= ϕ

π |= ϕ1 ∧ ϕ2 iff π |= ϕ1 and π |= ϕ2

π |= NoLoop iff π is finite

π |= X ϕ iff π1 |= ϕ

π |= ϕ1 U ϕ2 iff ∃ j∀i < j.π j |= ϕ2 and π i |= ϕ1.

Examples of standard routing policies are given in Fig. 2. The simplest policy, Reach(d), specifies that the destination 
node d must eventually be reached while Waypoint(v, d) asks that any path reaching the destination d must necessarily 
pass through waypoint node v . For multiple alternative waypoints, MultiWaypoint(W , d) specifies that any path reaching 
destination d must necessarily pass through either of the waypoints in W . Finally, Service(v1 v2 · · · vn, d) ensures that the 
sequence of waypoints in v1 v2 · · · vn is visited in this fixed order.

2.2. Update synthesis

In the following we assume a fixed network topology G = (V , E, src, tgt). An update u ∈ E ∪ V on G under a current 
routing configuration ρ specifies that the source node of edge u (if u ∈ E) must now forward its traffic along u or that the 
routing for the node u (if u ∈ V ) is set to undefined. We write ρu for the new routing configuration, defined for any v ∈ V
as

ρu(v) =

⎧⎪⎨
⎪⎩

u if u ∈ E and v = src(u)

undefined if u = v

ρ(v) otherwise.

We inductively extend this notation to sequences of updates by letting ρε = ρ and ρwu = (ρw)u for any w ∈ (E ∪ V )∗
and u ∈ E ∪ V . An update sequence may in general contain an arbitrary number of updates that change multiple times the 
routing of the same node, however an important set of update sequences is the class of simple update sequences. A simple 
update sequence consists of only simple updates that change, for a given node v , the initial routing ρi(v) at v directly to its 
4
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Fig. 3. Update synthesis problem with only a general solution.

final routing ρ f (v). This implies that it does not make sense to update the node v (using simple updates) more than once; 
after the first simple update of v , no further simple updates of v change anything.

Definition 5 (Simple updates). Let ρ f be the final routing. An update u is simple if ρ f (src(u)) = u whenever u ∈ E and ρ f (u)

is undefined whenever u ∈ V . A simple update sequence is then a sequence of simple updates, where each update appears at 
most once.

A basic property of simple update sequences is that any reordering results in the same final routing configuration i.e., if 
w is a simple update sequence and w ′ is any permutation of w , then ρw = ρw ′

for any routing ρ .
Although any reordering of a simple update sequence yields the same final routing configuration, the intermediate rout-

ing configurations induced by each update may not uphold a given policy invariant. This is also the case for general update 
sequences. We therefore say that an update sequence is correct with respect to a policy ϕ and a node v , if the unique path 
from v induced by any intermediate routing configuration satisfies ϕ .

Definition 6 (Update correctness). An update sequence w ∈ (E ∪ V )∗ on network topology G with initial routing configuration 
ρ is correct with respect to source node v0 and a policy ϕ , if πρw′ (v0) |= ϕ for any prefix w ′ of w .

The network update synthesis problem is thus the problem of constructing a correct update sequence that updates an 
initial routing to a desired final routing.

Definition 7 ((Simple) update synthesis problem). Given a topology G , an initial routing configuration ρi , a final routing con-
figuration ρ f , source node v0 ∈ V and a policy ϕ , the simple update synthesis problem asks to construct a simple update 
sequence w that is correct with respect to v0 and ϕ such that ρw

i = ρ f . The update synthesis problem omits the requirement 
that the constructed update sequence is simple.

In the following, we let P = (G, ρi, ρ f , v0, ϕ) denote a (simple) update synthesis problem and say that a constructed 
update sequence w that satisfies the conditions above is a solution. For any simple update synthesis problem P , the set 
of its solutions, denoted by Sol(P ), is always finite. This is not the case for the general problem as there may be infinitely 
many (longer and longer) solutions.

While much prior work focused on simple update problems, there are examples which are only solvable with a general 
solution (as supported by our approach). Consider for example the network topology in Fig. 3a with initial and final routings 
visualised respectively as solid and dashed lines in Fig. 3b. We fix the source node s and the policy ϕ = Waypoint(v2, d) ∧
Reach(d) requiring that waypoint v2 must be visited before reaching d. An update of any node v from the initial to the 
final routing violates ϕ—either by introducing a loop or it bypasses the waypoint. Hence there is no correct simple update 
sequence. However, the update sequence that first updates s to route to v2, followed by the update of the nodes v1, v2 and 
v3 and finally updating s again to route to v3 is a correct update sequence.

2.3. Simple update sequence reordering

In case of simple update sequences, we shall now argue that for routing policies that (i) include the preservation of 
reachability between the source and a target, and (ii) for which it holds that once a packet is delivered, no further routing 
is defined from the target node, we can reorder certain updates in the sequence without invalidating the correctness of the 
sequence. More specifically, we shall show that if a node routing is to be changed from undefined to some concrete edge, 
we can safely schedule such updates (in any order) to the very beginning of the update sequence. Similarly, all nodes that 
change their current routing into undefined can be scheduled (again in arbitrary order) at the end of the update sequence.

Lemma 1. Let w be a solution to a simple update synthesis problem P = (G, ρi, ρ f , v0, ϕ) where ϕ = Reach(d) ∧ ϕ′ for any policy 
ϕ′ and where ρi(d) and ρ f (d) are undefined.

1. If w = w1uw2 where u ∈ E is an update s.t. ρi(src(u)) is undefined then uw1 w2 is a solution to P .
2. If w = w1uw2 where u ∈ V updates the routing in u to undefined then w1 w2u is a solution to P .
5
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Fig. 4. Counter example for Waypoint(v2,d); initial/final routing is in solid/dashed lines.

Fig. 5. AllSynth workflow.

Proof. As we assume that w is a correct update sequence from the initial node v0 for the policy ϕ that includes the 
formula Reach(d), we know that for every prefix w ′ of w the path π

ρw′
i

(v0) under the routing ρw ′
i necessarily ends in the 

node d. This implies that all nodes v on any such path (except for d) must have defined its routing function ρw ′
i (v).

Now consider case (1) where w = w1uw2 such that u ∈ E where ρi(src(u)) is undefined. As the update sequence w
is simple, there is only a single occurrence of the node src(u) in w . This implies that for any prefix w ′ of w1 the path 
π

ρw′
i

(v0) cannot contain the node src(u) as it will otherwise create a blackhole [39] (where a packet cannot be forwarded 
further) and invalidate the predicate Reach(d). Hence, moving the update u to the very beginning of the update sequence 
has no impact on the path from v0, meaning that it does not change the validity of the policy ϕ′ either.

For case (2) where w = w1uw2 such that u ∈ V , we notice that after executing the updates in w1 and u, the resulting 
routing does not define any forwarding for u, i.e. ρw1u

i (u) is undefined. As the update sequence w is simple, the routing of 
u remains undefined until the end of the update sequence w , while the property Reach(d) must still hold. This implies that 
after executing the update sequence w1 the path under any future routing (after executing the updates w1 w ′ where w ′ is 
a prefix of w2) does not include the node u. Hence we can safely move the update u at the end of the sequence as it does 
not influence the validity of the policy ϕ′ . �

Lemma 1 can be used to identify all nodes that have an undefined forwarding function in ρi and schedule them to the 
beginning of the update sequence. Symmetrically, all updates that change a node forwarding to an undefined value (in the 
routing ρ f ), can be placed at the end of the update sequence. This may simplify the synthesis of the update sequence by 
analysing only the nodes that have a defined forwarding function both in the initial and final routing.

The requirement in Lemma 1 that the policy must enforce at least the reachability of d is essential, as illustrated in Fig. 4
where e2e3e4 is a correct update sequence preserving Waypoint(v2, d). This is because until the last update, the destination 
d is not reachable and hence the waypointing policy trivially holds. However, even though the routing of v1 is undefined in 
the initial routing, moving the update e4 to the beginning of the update sequence creates a transient forwarding following 
the path e1e4 and violates Waypoint(v2, d).

3. BDD-based algorithm for update synthesis problem

We shall now present an overview of our tool AllSynth, including its inputs and outputs, followed by the theoretical 
foundations of the BDD-based synthesis algorithm implemented in the tool.

3.1. AllSynth tool workflow

The diagram in Fig. 5 illustrates the main components of AllSynth. The inputs to AllSynth are the network topology G , a 
policy of interest ϕ , as well as the initial routing ρi and final routing ρ f from the node v0.

From the input network topology G , a BDD representation of the edges in G is combined with the input policy ϕ and a 
source node v0 to produce a BDD representing all routing configurations ρ where the unique path πρ(v0) satisfies ϕ . This 
6
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Table 2
Key notation of BDD encoding.

Notation Description

x,y Variables encoding sets of nodes

z, zz Variables encoding routing configurations

T (x, z,y) Transition function

Bϕ(x, z) Satisfiability of policy ϕ

B∗
ϕ(z) Routing configurations satisfying ϕ for a fixed source node v0

Uϕ(z, zz) Possible updates preserving correctness with respect to ϕ

Rϕ(z, zz) Updates leading to final configuration with ϕ correctness preserved

Sϕ(z0, . . . , zN ) All solutions of length N , using N copies of z variables

U s
ϕ/Rs

ϕ/Ss Variants of Uϕ/Rϕ/Sϕ for simple updates

BDD is then in turn combined with the initial and final routing configurations ρi and ρ f , to construct a BDD representation 
of all correct update sequences.

3.2. The synthesis algorithm

We now describe our algorithmic solution to the update synthesis problem, based on a symbolic encoding of routing 
configurations using BDDs. This encoding allows for an efficient fixed-point computation of those routing configurations 
that satisfy a given routing policy, and subsequently to find a correct update sequence solving the synthesis problem.

Boolean decision diagrams [34] are data structures for the compact representation of a Boolean function. A BDD is a 
rooted directed acyclic graph (DAG), with nonleaf nodes labelled by Boolean variables, and leaf nodes labelled with 0 (false) 
or 1 (true). Each node that is labelled by a variable has two outgoing edges, a solid one representing the true assignment to 
the variable and a dotted one for the false assignment. By following the paths from the root to the leaf labelled with 1, we 
obtain all satisfying Boolean assignments. BDDs were introduced by Lee [34] and later Bryant [10] presented their reduced 
ordered version (ROBDD), where the ordering between the Boolean variables are fixed along each path from the root to a 
leaf, and isomorphic parts are combined. We show how to exploit ROBDDs for solving the update synthesis problem. We 
refer to Table 2 for a summary of key notation used in the encoding.

First, let us recall how to encode subsets of a finite set S using Boolean expressions—hence ROBDDs. The encoding is 
relative to a given enumeration s0, s1, s2, . . . s|S|−1 of S and it is based on n = �log(|S|)� Boolean variables x = x1, x2, . . . , xn . 
Now, any truth assignment μ to x may be seen as a binary encoding of a natural number n(μ) ∈ N and hence an encoding 
of the n(μ)’th element sn(μ) ∈ S . We shall use the short notation s(μ) for the element sn(μ) as well as the notation x(s) to 
denote a Boolean expression over x encoding the singleton-set {s}. Now any Boolean expression t(x) over x may be seen as 
encoding the subset �t(x)� = { s(μ) | μ satisfies t(x) } ⊆ S .

Example 1. Consider the network topology in Fig. 6a with the nodes V = {v0, v1, v2, v3} enumerated by the given indices. 
We encode any subset of V by a Boolean expression over two Boolean variables x1, x2—note that the encoding of e.g. 
{v1} is x(v1) = ¬x1 ∧ x2 as the binary encoding of v1 is 01. Conversely, the subset identified by the Boolean expression 
t ≡ ¬x1 ∨ ¬x2 is �t� = {v0, v1, v2} as the binary encoding of v0, v1, v2 are 00, 01, 10, respectively.

BDD encoding of routing configurations. Let G = (V , E, src, tgt) be a network topology and let v ∈ V . We denote by E v the set 
of edges having v as a source-node, i.e. E v = {e ∈ E | src(e) = v}. Now, a routing configuration ρ : V ⇀ E is isomorphic to 
indicating for each node v whether ρ(v) is defined and if so to identify an element from E v . For the Boolean encoding of 
(sets of) elements from E v we use, as described above, �log(|E v |)� Boolean variables zv . To indicate the definedness of ρ(v), 
we use an additional Boolean variable zd

v . To encode the possible transitions between nodes v and v ′ enabled by a given 
routing configuration ρ , we use Boolean variables x for encoding the source node v and equally many Boolean variables y
for encoding the target node v ′ . The following Boolean expression T encodes all possible transitions in a network:

T (x, zv0 , . . . , zvk , zd
v0

, . . . , zd
vk

,y) =
∨
v∈V

∨
e∈E v

(
x(v) ∧ zv(e) ∧ zd

v ∧ y(tgt(e))
)

where V = {v0, . . . , vk}.

Example 2. Considering again the network topology from Fig. 6a, we shall use three Boolean variables z0, z1, z2 for encoding 
routing configurations in terms of their choice of successor-node from v0, v1 and v2.1 Using the encoding of nodes from 

1 In this running example, we shall for simplicity assume that routing configurations are total functions, e.g. that the variables zd
v are true.
7
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Fig. 6. Running example and encoding of the transition function.

Example 1, the possible transitions between nodes are given by the Boolean expression T in Fig. 6b. The resulting unique 
ROBDD in Fig. 6c with only 11 non-leaf nodes illustrates the compactness of the ROBDD data structure (the missing edges 
lead to 0). The highlighted path encodes the transition (routing) from v0 to v1 under the initial routing. Here the chosen 
ordering of the Boolean variables is crucial. Alternative orderings, e.g. with the z variables being tested first respectively last 
results in ROBDDs with 25 respectively 17 non-leaf nodes.

BDD encoding of routing policies. Now let G = (V , E, src, tgt) be a network topology and let ϕ be a routing policy expressed 
in the LTL logic of Definition 3. Using Boolean variables x for encoding nodes and Boolean variables z for encoding routing 
configurations,2 we shall construct an ROBDD Bϕ(x, z) such that: (v, ρ) ∈ �Bϕ(x, z)� if and only if πρ(v) |= ϕ where πρ(v)

is the unique path starting in the node v following the routing configuration ρ .

Definition 8. Let G = (V , E, src, tgt) be a network topology and ϕ a routing policy. We define the ROBDD Bϕ(x, z) inductively 
on ϕ as follows:

B true(x, z) = 1

B v(x, z) = x(v)

B¬ϕ(x, z) = ¬Bϕ(x, z)

Bϕ1∧ϕ1(x, z) = Bϕ1(x, z) ∧ Bϕ2(x, z)

BNoLoop(x, z)
min= ∀y.(T (x, z,y) → BNoLoop(y, z))

B Xϕ(x, z) = ∃y.
(
T (x, z,y) ∧ Bϕ(y, z)

)
Bϕ1Uϕ2(x, z)

min= Bϕ2(x, z) ∨ (
Bϕ1(x, z) ∧ ∃y.

(
T (x, z,y) ∧ Bϕ1Uϕ2(y, z)

))
In Definition 8 we exploit the fact that ROBDDs are closed under Boolean operations as well as Boolean quantification. 

In the case of NoLoop and ϕ1 U ϕ2, the changes of Boolean variables used in the parameter lists in the right-hand sides are 
obtained by simple substitution of variables, an operation that may efficiently be performed on ROBDDs. Finally, note that 
the definitions of BNoLoop and Bϕ1 U ϕ2 are given as least fixed points. These fixed points, e.g. BNoLoop , are obtained after 
a finite number of applications of the corresponding right-hand sides on increasing approximations Bn

NoLoop , starting with 
B0

NoLoop = 0, where 0 stands for false, and terminating when Bn+1
NoLoop = Bn

NoLoop , and similarly for Bϕ1 U ϕ2 . Such an n must 

2 Recall that z consists of variables zv1 , . . . , zvk and zd
v , . . . , zd

v .

1 k

8
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necessarily exist because the applications of the right-hand sides can only monotonically increase the respective Boolean 
functions represented by the ROBDDs.

Lemma 2. We have (v, ρ) ∈ �Bϕ(x, z)� if and only if πρ(v) |= ϕ .

Proof. The proof proceeds by structural induction on the formula ϕ . The cases ϕ = true and ϕ = v are trivial, while the case 
ϕ = ϕ1 ∧ ϕ2 follows directly by application of the induction hypothesis for the two conjuncts. We consider the remaining 
cases in turn.

ϕ = NoLoop:
Recall that BNoLoop(x, z) is obtained as the limit of the finite sequence of approximations Bn

NoLoop(x, z) with 
B0

NoLoop(x, z) = 0 and otherwise Bn+1
NoLoop(x, z) = ∀y.(T (x, z, y) → Bn

NoLoop(y, z)) i.e. there exists a k for which 
Bk+1

NoLoop(x, z) = Bk
NoLoop(x, z).

For the left to right implication, assume (v, ρ) ∈ �BNoLoop(x, z�. The proof follows by induction on k. For the 
base case k = 1, it follows that T (x, z, y) is false for all y, implying that v does not have any outgoing transition 
under routing configuration ρ , hence, the path induced by ρ from v is loop-free. For the inductive step k > 1, 
we have Bk

NoLoop(x, z) = ∀y.(T (x, z, y) → Bk−1
NoLoop(y, z). As v has a unique successor under ρ , it must be the case 

that (v ′, ρ) ∈ �Bk−1
NoLoop(y, z)� for the unique successor v . Thus, we can apply the inductive hypothesis to conclude 

πρ(v ′) |= NoLoop, i.e. the path πρ(v ′) is finite, hence the path πρ(v) must necessarily be finite and we can 
conclude πρ(v) |= NoLoop following the LTL semantics.

For the right to left implication, assume πρ(v) |= NoLoop. Following the LTL semantics, this implies that πρ(v)

is finite. We proceed by induction on the length of πρ(v). For the base case |πρ(v)| = 1, v has no successor in the 
graph under ρ . Then trivially (v, ρ) ∈ �BNoLoop(x, z)� as T (x, z, y) is not satisfiable for any y. For the inductive step 
|πρ(v)| > 1, v has a unique successor v ′ under ρ . As πρ(v) may only be finite if πρ(v ′) is finite, we can apply 
the induction hypothesis to conclude that (v ′, ρ) ∈ �BNoLoop(x, z)�, hence (v, ρ) ∈ �BNoLoop(x, z)�.

ϕ = X ϕ′:
For the left to right implication, suppose (v, ρ) ∈ �B Xϕ′(x, z)�. This implies that there exists a (unique) successor 
v ′ of v under routing configuration ρ , encoded by the variables y, such that (v ′, ρ) ∈ �Bϕ′(y, z)�. By applying the 
inductive hypothesis we immediately have that πρ(v ′) |= ϕ′ , which following the LTL semantics yields πρ(v) |= ϕ .

For the right to left direction, suppose πρ(v) |= X ϕ′ . Following the LTL semantics, we then have that for the 
unique successor v ′ of v it holds that πρ(v ′) |= ϕ . By the inductive hypothesis we then have (v ′, ρ) ∈ �Bϕ′(x, x)�, 
hence (v, ρ) ∈ �B Xϕ′(x, z)�.

ϕ = ϕ1 U ϕ2:
Recall that Bϕ1Uϕ2 is obtained as the limit of the finite sequence of approximations Bn

ϕ1Uϕ2
(x, z) with 

B0
ϕ1Uϕ2

(x, z) = 0 and otherwise

Bn+1
ϕ1Uϕ2

(x, z) = Bϕ2(x, z) ∨ (
Bϕ1(x, z) ∧ ∃y.

(
T (x, z,y) ∧ Bn

ϕ1Uϕ2
(y, z)

))
i.e. there exists a k for which Bk+1

ϕ1Uϕ2
= Bk

ϕ1Uϕ2
.

For the left to right implication, assume (v, ρ) ∈ �Bϕ1Uϕ2 (x, z)�. We proceed by induction on k. For the base case 
k = 1, it follows that (v, ρ) ∈ �Bϕ2 (x, z)�, hence πρ(v) |= ϕ2 by the induction hypothesis for the outer structural 
induction and thus πρ(v) |= ϕ1 U ϕ2 following the LTL semantics. For the inductive step k > 1, we have

Bk
ϕ1Uϕ2

(x, z) = Bϕ2(x, z) ∨ (
Bϕ1(x, z) ∧ ∃y.

(
T (x, z,y) ∧ Bk−1

ϕ1Uϕ2
(y, z)

))
,

and directly that (v, ρ) ∈ �Bϕ(x, x)�, hence πρ(v) |= ϕ1 by the inductive hypothesis for the outer structural in-
duction. Furthermore, there exists a (unique) successor v ′ of v such that (v ′, ρ) ∈ �Bk−1

ϕ1Uϕ2
(y, z)�, which, by the 

induction hypothesis for the inner induction on k implies that πρ(v ′) |= ϕ1 U ϕ2, hence πρ(v) |= ϕ1 U ϕ2 following 
the LTL semantics.

For the right to left implication, assume πρ(v) |= ϕ1 U ϕ2. Suppose that πρ(v) |= ϕ2. Then, by the inductive 
hypothesis for the outer structural induction we then have (v, ρ) ∈ �Bϕ2 (x, z)�, hence (v, ρ) ∈ �Bϕ1Uϕ2 (x, z)�. Oth-
erwise, it must be the case that πρ(v) |= ϕ1, while for the unique successor of v , v ′ , we have πρ(v ′) |= ϕ1 U ϕ2 by 
LTL semantics. Hence, by applying the inductive hypothesis for the outer induction, we have (v, ρ) ∈ �Bϕ1 (x, z)�
and (v ′, ρ) ∈ �Bϕ1 U ϕ2 (x, z)�, implying that (v, ρ) ∈ �Bϕ1Uϕ2 (x, z)�. �

Example 3. Consider the network topology from Fig. 6a with the routing policy Reach(v3). Given the LTL-definition of 
Reach(v3), the ROBDD BReach(v3) is given by the limit of the following inductively defined sequence: Bn+1

Reach(v3)
(x, z) =

x(v3) ∨ ∃.y.
(
T (x, z, y) ∧ Bn

Reach(v3)(y, z)
)

with B0
Reach(v3) = 0. Fig. 7 provides some of the approximants with B4

Reach(v3) found 
to be the least fixed point.
9
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Fig. 7. Increasing approximants Bn
Reach(v3) .

Fig. 8. Encoding of different routing policies.

We shall denote by B∗
ϕ(z) the ROBDD ∃x.Bϕ(x, z) ∧ x(v0), where v0 ∈ V is the source node. Rather than using BDDs for 

model-checking that individual routing configurations satisfy a given policy ϕ one by one, B∗
ϕ(z) characterizes exactly in 

one single ROBDD the full set of routing configurations satisfying ϕ .

Example 4. Recall the network topology from Fig. 6a and the Boolean encoding of routing configurations and nodes from 
Example 2. Now consider the routing policies W = Waypoint(v2, v3) and R = Reach(v3). The resulting ROBDDs for B∗

R , B∗
W

and B∗
W ∧R are given in Fig. 8. It can be concluded that there are 6, 6 respectively 4 routing configurations satisfying the 

policies R , W respectively R ∧ W . Moreover, both ρi and ρ f satisfy all three policies.

BDD encoding of update sequences. Again let G = (V , E, src, tgt) be a network topology and let ϕ be a routing policy, with ρi

respectively ρ f being initial respectively final routing configuration. We shall show how to symbolically synthesize correct 
(simple) update sequences using BDD encodings. The basis of the synthesis is the ROBDD B∗

ϕ(z) encoding all routing config-

urations that are correct with respect to ϕ using Boolean variables z = zv0 . . . zvk , z
d
v0

, . . . , zd
vk

. For simple updates it suffices 
to use single Boolean variables zv j , with zv j encoding ρi(v j) and ¬zv j encoding ρ f (v j), i.e. in case ρ f (v j) �= ρi(v j). To 
encode a simple update between configurations ρ and ρ ′ we shall use Boolean variables z for encoding ρ and a corre-
sponding (distinct) sequence of Boolean variables zz for encoding ρ ′ . The following Boolean expression U s

ϕ encodes the set 
of possible simple updates that preserve correctness with respect to ϕ .

U s
ϕ(z, zz) = B∗

ϕ(z) ∧ B∗
ϕ(zz) ∧ ∃i.

[
zvi ∧ ¬zzvi ∧

∧
j �=i

zv j = zzv j

]
(1)

Note that in this simple update the routing configuration changes for exactly one node vi from the setting in the initial 
configuration ρi , encoded as zvi , to the setting in final configuration ρ f , encoded as ¬zzvi . In the general case, the update 
can change the setting of any node arbitrarily, as given by the following Boolean expression Uϕ .

Uϕ(z, zz) = B∗
ϕ(z) ∧ B∗

ϕ(zz) ∧ ∃i.
[
zvi �= zzvi ∧

∧
zv j = zzv j

]
(2)
j �=i

10
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Lemma 3. We have (ρ, ρ ′) ∈ �Uϕ(z, zz)� (resp. �U s
ϕ(z, zz)�) iff ρ �= ρ ′ and there exists an update (resp. simple update) u such that 

ρu = ρ ′ , πρ(v0) |= ϕ and πρ ′ (v0) |= ϕ , where v0 is the given source node.

Proof. We prove the case for general updates. The simple case follows the same reasoning. First recall Equation (2). For the 
left to right implication, assume (ρ, ρ ′) ∈ �Uϕ(z, zz)�. By Lemma 2, it follows from the first two conjuncts B∗

ϕ(z) and B∗
ϕ(zz)

that the routing configurations encoded by z and zz, namely ρ and ρ ′ have the property that the induced path (starting 
from v0) satisfies ϕ , thus πρ(v0) |= ϕ and πρ ′ (v0) |= ϕ . The last conjunct ensures that the two routing configurations ρ
and ρ ′ differ by exactly one update u, hence ρ ′ = ρu .

For the right to left implication, assume the existence of an update u such that ρu = ρ ′ , πρ(v0) |= ϕ and πρ ′ (v0) |= ϕ . By 
Lemma 2 we then have (v0, ρ) ∈ �Bϕ(x, z)� and (v0, ρ ′) ∈ �Bϕ(x, z)�, implying ρ ∈ �B∗

ϕ(z)� and ρ ′ ∈ �B∗
ϕ(zz)�. As ρu = ρ ′

and ρ �= ρ ′ , there exists exactly one node where the routing is changed by the update u, implying that the last conjunct is 
satisfied by ρ and ρ ′ , encoded by variables z and zz respectively. We can now conclude that (ρ, ρ ′) ∈ �Uϕ(z, zz)�. �

To enable synthesis of correct (simple) update sequences, the following recursively defined ROBDD is the key.

Rs
ϕ(z, zz)

min= z(ρ f ) ∨ ∃zzz.
(

U s
ϕ(z, zz) ∧ Rs

ϕ(zz, zzz)
)

(3)

The expression encodes the set of simple updates that preserve correctness with respect to ϕ while ensuring reachability 
of the final routing configuration.

Lemma 4. We have (ρ, ρ ′) ∈ �Rs
ϕ(z, zz)� iff there exists a correct simple update sequence w = u0u1 · · · uk with respect to ρ and ϕ

such that ρ ′ = ρu0 and ρw = ρ f .

Proof. We recall Equation (3) and that Rs
ϕ(z, zz) is obtained as the limit of the finite sequence of approximations Rn

ϕ(x, z)
with R0

ϕ(x, z) = 0 and otherwise

Rn+1
ϕ (z, zz) = z(ρ f ) ∨ ∃zzz.

(
U s

ϕ(z, zz) ∧Rn
ϕ(zz, zzz)

)
i.e. there exists a k for which Rk+1

ϕ (x, z) =Rk
ϕ(x, z).

For the left to right implication, we assume (ρ, ρ ′) ∈ �Rs
ϕ(z, zz)� and proceed by induction on k. For the base case k = 0, 

we immediately have that ρ = ρ f by the first conjunct and thus there exists a trivial empty update sequence with the 
desired properties. For the inductive step k > 0, we have

Rk+1
ϕ (z, zz) = z(ρ f ) ∨ ∃zzz.

(
U s

ϕ(z, zz) ∧Rk
ϕ(zz, zzz)

)
.

As (by assumption) (ρ, ρ ′) ∈ �Rs
ϕ(z, zz)� and therefore (ρ, ρ ′) ∈ �Rk+1ϕ(z, zz)�, there exists a configuration ρ ′′ such that 

(ρ ′, ρ ′′) ∈ �Rk
ϕ(zz, zzz)� while also (ρ, ρ ′) ∈ �U s

ϕ(z, zz)�. By application of Lemma 3, we immediately have that (ρ, ρ ′) ∈
�U s

ϕ(z, zz)� implies the existence of a ϕ-preserving update u from ρ to ρ ′ . Furthermore, (ρ ′, ρ ′′) ∈ �Rk
ϕ(zz, zzz)� implies, 

by application of the inductive hypothesis, that there exists a correct simple update sequence w = u0u1 · · · un with respect 
to ρ ′ and ϕ such that ρ ′′ = ρu0 and ρw = ρ f . In conclusion, there must necessarily exists an update sequence w∗ = uw
that is simple and correct with respect to ρ and ϕ such that ρ ′ = ρu and ρw∗ = ρ f .

For the right to left implication, we assume the existence of a correct simple update sequence w = u0u1 · · · un with 
respect to ρ and ϕ such that ρ ′ = ρu0 and ρw = ρ f . We proceed by induction on the length of w . For the base case |w| = 0, 
it is the case that ρ = ρ f and trivially (ρ, ρ ′) ∈ �Rs

ϕ(z, zz)� by the first conjunct. For the inductive step |w| > 0, notice first 
by Lemma 3 that (ρ, ρ ′) ∈ �U s

ϕ(z, zz)� by the property that w is correct with respect to ϕ . Now let w ′ = u1u2 · · · un be the 
suffix of w starting from u1. As w is a correct simple update sequence w.r.t. ρ and ϕ such that ρ ′ = ρu0 and ρw = ρ f , w ′

must be a correct simple update sequence with respect to ρu0 and ϕ such that ρu0u1 = ρu0
u1 and ρuw′

0 = ρ f . We can now 
apply the inductive hypothesis as |w ′| < |w| to conclude that (ρu0 , ρu0u1 ) ∈ �Rs

ϕ(zz, zzz)�, hence (ρ, ρ ′) ∈ �Rs
ϕ(z, zz)�. �

All correct, simple update sequences of length N may now be characterized by the following Boolean expression, where 
zi are (distinct) Boolean variables encoding the routing configuration after i updates:

Ss
ϕ(z0, . . . , zN ) = z0(ρi) ∧ zN(ρ f ) ∧

N−1∧
i=0

Rs
ϕ(zi, zi+1) . (4)

Theorem 1. We have (ρ0, ρ1, . . . , ρN) ∈ �Ss
ϕ(z0, . . . , zN )� iff there exists a simple correct update sequence w = u0u1 · · · uN−1 with 

respect to ϕ and ρ0 such that ρk+1 = ρ
uk for all k with 0 ≤ k < N, ρ0 = ρi and ρN = ρ f .
k

11
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Fig. 9. Encoding of all correct simple update-steps (a-c); unique update sequence (UUS) for W ∧ R (d).

Proof. We recall Equation (4). For the left to right direction, suppose (ρ0, ρ1, . . . , ρN ) ∈ �Ss
ϕ(z0, . . . , zN )�. The first two 

conjuncts directly ensure that ρ0 = ρi and ρn = ρ f . By repeated application of Lemma 4, the last conjunct ensures for all k
with 0 ≤ k < N the existence of a simple update uk such that ρk+1 = ρ

uk
k with ϕ preserved by both ρk+1 and ρk . Hence the 

update sequence w = u0u1 . . . uN−1 is a simple correct update sequence with respect to ϕ with the desired properties.
For the right to left direction, suppose there exists a simple correct update sequence w.r.t. ϕ and ρ0, given by w =

u0u1 · · · uN−1, such that ρk+1 = ρ
uk
k for all k with 0 ≤ k < N , ρ0 = ρi and ρN = ρ f . Now, any suffix w ′ = u j · · · uN−1 with 0 ≤

j ≤ (N −1) is a simple correct update sequence w.r.t. ρ
u0···u j−1
0 . Thus, we can repeatedly apply Lemma 4 for all such suffixes, 

to conclude that (ρu0···uk
0 , ρu0···ukuk+1

0 ) ∈ �Rs
ϕ(z, zz)� for all 0 ≤ k ≤ (N − 1). As ρk+1 = ρ

u0···uk
0 we then have (ρk, ρk+1) ∈

�Rs
ϕ(z, zz)� for all 0 ≤ k ≤ (N − 1). We can now conclude that (ρ0, ρ1, . . . , ρN ) ∈ �Ss

ϕ(z0, . . . , zN )� as required. �
For the synthesis in the general case, we simply replace U s

ϕ in (3) with Uϕ to get a ROBDD Rϕ characterizing (general) 
update sequences leading to ρ f . We can now replace Rs

ϕ with Rϕ in (4) to get a characterization of all correct (general) 
update sequences of length N .

Example 5. Consider again the network topology from Fig. 6a and the routing policies W = Waypoint(v2, v3) and R =
Reach(v3). The full sets of correct simple update-steps with respect to W , R and W ∧ R are given by the ROBDDs Rs

W , Rs
R

and Rs
W ∧R given in Fig. 9(a-c). Instantiating Equation (4) with these ROBDDs reveals that there are 3, 3 respectively 1 correct 

simple update sequences of length 3 with respect to the routing policies W , R respectively W ∧ R .
The unique simple update sequence for W ∧ R (ignoring the initial and final routing configurations) is given by the 

ROBDD in Fig. 9(d). Here the values suggested for the first three Boolean variables z1
0, z1

1, z
1
2 indicate that the routing config-

uration after the first update is given by the edges (v0, v2), (v1, v2), (v2, v3). Similarly, the values of the last three Boolean 
variables z2

0, z2
1, z

2
2 indicate the edges (v0, v2), (v1, v3), (v2, v3) as the configuration after the second update. Note, that in 

case there is no correct (simple) update sequence the resulting ROBDD becomes empty (just consisting of the node false).

4. Synthesis with additional optimization criteria

During update synthesis, we may be interested in accounting for performance aspects in the update synthesis, which 
is of practical importance but has not been studied yet in the literature. To this end, we extend our model to weighted 
topologies representing quantities such as latency and hop-count [7,20,49]. In the following, we ignore loops as they can be 
detected and do not need to be considered for optimization.

Definition 9 (Weighted topology and path weight). A weighted network topology is a tuple G = (V , E, src, tgt, η) where 
(V , E, src, tgt) is a network topology and η : E → N is the edge weight function. The weight extends in a natural way 
to paths, by η(e1e2 . . . en) = ∑n

i=1 η(ei) where e1e2 . . . en ∈ E∗ .

Definition 10 (Optimal update synthesis problem). For an update synthesis problem P = (G, ρi, ρ f , v0, ϕ) and path valuation 
function f over some edge weight function η, the optimal synthesis problem is to find a solution wopt ∈ Sol(P ) such that
12
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Fig. 10. Weighted topology with initial (solid) and final (dashed) routings.

wopt = argmin
w∈Sol(P )

max
w ′ prefix of w

η(π
ρw′

i
(v0)) .

Example 6. Consider a network update synthesis problem (G, ρi, ρ f , v0, Reach(v2)) where ρi (solid arrows) and ρ f (dashed 
arrows) are depicted in Fig. 10 and edges are annotated by weights. Any of the two possible simple update sequences is 
a solution. For the sequence that first updates v0 to use the expensive edge of weight 4 to v1, there is an intermediate 
configuration of weight 7. However, the optimal solution is the update sequence that first updates v1 followed by v0 and 
creates a transient configuration of weight only 2.

We shall now extend our symbolic encoding of routing configurations, policies and (simple) update sequences to the 
weighted setting. In particular, we shall show how our encoding allows us to synthesize weight-optimal simple update 
sequences. Let G = (V , E, src, tgt, η) be a weighted topology, and let C ∈ N be the maximum weight of any acyclic path 
in G . Using k = �log(C)� Boolean variables c = c0, . . . , ck−1 we may encode in binary any weight between 0 and C . As in 
before we shall encode routing configurations ρ by using Boolean variables zv for each node v to encode the edge ρ(v). 
For simplicity we shall assume that ρ(v) is defined for any node v in the remainder of this section. Using Boolean variables 
x and y to encode source and target nodes and Boolean variables c to encode the weight of edges, the following Boolean 
expression Tc encodes the possible weighted transitions:

Tc(x, zv0 , . . . , zvk ,y, c) =
∨
v∈V

∨
e∈E v

(
x(v) ∧ zv(e) ∧ y(tgt(e)) ∧ c(e)

)
.

As in Section 2.3, we shall assume that the routing policy ϕ considered enforces at least reachability, i.e. ϕ = ϕ′ ∧
Reach(d) for some node d. Now let Rd = Rd(x, z, c) be the minimal fixed point defined by

Rd(x, z, c)
min= x(d) ∨ ∃y, c′, c′′, c′′′.

[
Tc(x, z,y, c′) ∧ Rd(y, z, c′′) ∧ sum(c′, c′′, c′′′) ∧ leq(c′′′, c)

]
.

Here we use the existence of simple ROBDD sum and leq encoding addition and comparison (as ternary and binary predi-
cates) of natural numbers such that (n1, n2, n3) ∈ �sum� iff n1 +n2 = n3 and (n1, n2) ∈ �leq� iff n1 ≤ n2. Then (v, ρ, c) ∈ �Rd�
if πρ(v) ends in d with a total weight η(πρ(v)) not exceeding c.

The Boolean expression R∗
d(z, c) given by ∃x.x(v0) ∧ Rd(x, z, c) describes all pairs (ρ, c), where the weight of the path 

πρ(v0) does not exceed c. Now to ensure that the encoded routing configuration in addition satisfies the routing policy ϕ′ , 
we use the Boolean expression B∗,c

ϕ (z, c) = Bϕ′ (z) ∧ R∗
d(z, c). Now, the expression

U s,c
ϕ (z, zz, c) = B∗,c

ϕ (z, c) ∧ B∗,c
ϕ (zz, c) ∧ ∃i.

[
zvi ∧ ¬zzvi ∧

∧
j �=i

zv j = zzv j

]
encodes a single correctness preserving update between configurations whose accumulated weight is bounded by c.

Thus, all correct, weight-bounded simple update sequences of length N may be characterized by the following Boolean 
expression Sc

ϕ , where zi are (distinct) Boolean variables encoding the routing configuration after i updates:

Sc
ϕ(z0, . . . , zN , c) = z0(ρi) ∧ zN(ρ f ) ∧

N−1∧
i=0

U s,c
ϕ (zi, zi+1, c) .

Finally, the update sequences of length N solving the optimal synthesis problem are easily characterized by the following 
single expression O :

Oϕ(z0, . . . , zN ) = ∃c.
[

Sc
ϕ(z0, . . . , zN , c) ∧ ∀c′.

(
Sc
ϕ(z0, . . . , zN , c′) → leq(c, c′)

)]
.

Example 7. Recall the weighted topology from Fig. 6a. To encode the routing configurations, two Boolean variables z0 and 
z1 suffice (with the initial routing being encoded by z0 ∧ z1). Given that the maximum weight of a path is 7, three Boolean 
variables c0, c1, c2 suffice to encode weight of any acyclic path. In this example, we consider the property ϕ = Reach(v2). 
Now Fig. 11(a) is B∗,c

ϕ (z, c) encoding all pairs (ρ, c), where ρ is a correct routing wrt. ϕ with total reachability weight 
no more than c. The highlighted path is the encoding of the routing where the node v0 uses the expensive edge (weight 
4) to v1 and v1 is still using the initial routing. It can be seen that the total weight indicated by the path is 7. Now, 
Fig. 11(b) is U s,c

ϕ (z, zz, c), encoding all updates that are correct wrt. ϕ as well as their weight. Here the highlighted path 
13
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Fig. 11. ROBDDs for Cost-Optimal Update Synthesis.

indicates the update from the initial routing to the “expensive” routing, again with the path indicating the weight 7. Finally, 
Oϕ(z0, . . . , zN ) encodes the optimal (correct) update sequence, which first updates the routing for v1 and only then the 
routing for v0.

5. Implementation and evaluation

Our tool AllSynth for solving the update synthesis problem is implemented in Python and relies on a Cython wrapper [2]
of the CUDD [46] package for manipulation of ROBDD. The overall tool architecture is given in Fig. 5. From a given net-
work topology with the initial and final routing, the tool produces either a simple or general update sequence satisfying a 
given policy, as well as the information about the number of possible solutions. As all such correct solutions are symbol-
ically represented in a compact way as an ROBDD, it is possible to generate alternative solutions without any additional 
computational effort.

We evaluate AllSynth, both with and without cost-optimization, against two state-of-the-art update synthesis tools, Net-
Synth [40] and FLIP [48]. NetSynth can compute only a simple update sequence or inform the user that there is no solution; 
the synthesis of general update sequences is not supported. FLIP can synthesise sequences of steps (groups of switches or 
routers) in which order the network can be updated, however, if such a sequence does not exist, the tool may introduce 
additional forwarding rules and use tagging of packets. As NetSynth and FLIP do not support general update sequences, the 
running times are only compared for simple update sequences.

All experiments are executed on Ubuntu 14.04 cluster with 2.3 GHz AMD Opteron 6376 processors with 2 hour timeout 
and 14 GB memory limit. To ensure the correctness of our implementation, we checked that for all instances, we agree 
with both NetSynth and FLIP on the existence/nonexistence of simple update sequences and we verified that the update 
sequences returned by NetSynth and FLIP are included in the ROBDD computed by AllSynth. A reproducibility package with 
the Python implementation and all benchmarks with scripts allowing to rerun the experiments is available in [33].

We consider a scalable synthetic topology and the standard benchmark of 261 real-world network topologies from the 
Topology Zoo dataset [30]. The class of synthetic topologies, referred to as diamond topologies, are taken from the NetSynth 
evaluation benchmark [40] and are formed by disjoint initial and final routing paths that only share the initial and final 
node. The size of the problem is defined to be the sum of the lengths of the two paths—we include instances of sizes up 
to 2000. The Topology Zoo instances are five times sequentially concatenated in order to obtain larger topologies where the 
size of the update problems ranges from 20 to 679. We display the 50 most difficult instances of the problem.

We consider three classes of update policies: Reach(d), MultiWaypoint(W , d) and Service(ω, d). For MultiWaypoint(W , d), 
we let every 5th node on both the initial and final path be included in W . For Service(ω, d), the sequence ω is generated by 
including every 5th node that is traversed by both the initial and final path. Because the diamond update problem consists 
of two disjoint paths, the service chaining policy is not considered here. The policy language of NetSynth is identical to our 
LTL-based specifications and hence we are able to directly express all these properties in this language. On the other hand, 
the policy input to FLIP enumerates all admissible subpaths that are considered, in logical disjunction. The encoding of the 
14
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Fig. 12. Experimental Results.

service chaining policy then entails an exhaustive enumeration of all paths that satisfy the service chaining policy and we 
therefore do not include FLIP in our service chaining experiments.

Results. The experiments are summarized in a number of so-called cactus plots [8] in Fig. 12, where for each method all 
instances of the problem are independently sorted from the fastest to the slowest one and plotted on the x-axis, and the 
y-axis (note the logarithmic scale) shows the increasing running time. If some curve does not reach to the right end of 
the plot, this means that the corresponding tool is not able to solve the remaining instances within the given timeout 
and memory limit. While cactus plots do not provide instance-to-instance runtime comparison, they provide an overall 
performance evaluation of the different tools.

For the experiments on the collection of real networks from the Topology Zoo presented in Figs. 12a to 12c, we notice 
that none of the tools has difficulty solving the synthesis of the plain reachability policy and it takes less than 10 seconds 
for all instances—here our approach without the cost optimization (BDD) has a slight margin, whereas the cost optimal 
algorithm (BDD-opt) is the slowest one (though solving a more general problem than the other ones). For waypointing, 
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while FLIP is performing well on small instances, it shows a noticeable decrease in performance once it reaches the most 
difficult problems: its running time quickly deteriorates and it is as the only tool not able to solve some of the largest 
instances. We maintain about one order of magnitude advantage over NetSynth (NS), which is the case also for service 
chaining. The overhead for computing the cost optimal solutions is less significant for the more complex policies.

Results for diamond topologies are given in Figs. 12d and 12e. We observe that for reachability our computation of 
all solutions is about one order of magnitude faster than FLIP (and even the cost optimal algorithm is faster than FLIP) 
and several orders of magnitude faster than NetSynth (both tools terminate as soon as they find the first correct update 
sequence). For waypointing, we still significantly outperform NetSynth and both BDD and BDD-opt are almost comparable 
with FLIP which shows better performance at the largest instances.

In conclusion, our experiments demonstrate that AllSynth, based on the symbolic BDD technology, not only significantly 
outperforms state-of-the-art tools on all non-trivial real-world networks, but also provides higher generality. Indeed, AllSynth
computes all solutions, compared to only one solution returned by NetSynth or a more general sequence of update steps 
generated by FLIP. This aspect is important for the practical usage by network operators as it allows them to iteratively 
choose the most suitable update sequence. The additional optimization for computing cost optimal update sequences yields 
an acceptable overhead compared, especially for the more complex routing policies like waypointing and service chaining.

6. Conclusion

We presented an efficient approach for synthesizing correct update sequences for software-defined networks. In contrast 
to existing tools, our approach is fully symbolic and relies on BDD technology. As a result, we are able to represent all
solutions to the update synthesis problem in a succinct binary tree, preserving generic routing policies (e.g., service chaining) 
that can be described in LTL. Our prototype implementation of AllSynth outperforms the state-of-the-art tools NetSynth and 
FLIP in many scenarios (e.g., on the real-world Internet topologies), while at the same time extending the generality.

Our experiments focused on the generation of simple update sequences (at most one update per flow per switch), 
similar to the methodology used in NetSynth and FLIP. AllSynth however also supports a novel generalization where a 
switch can be updated several times. This is particularly useful for the instances of the update synthesis problem that do 
not have any simple solution. In this case, NetSynth does not provide any alternative (and in fact does not terminate even on 
relatively small negative instances); FLIP may degrade to a two-phase commit strategy that is less preferable as it requires 
the duplication of forwarding rules as well as additional packet header space. AllSynth instead tries to suggest a general 
update sequence that does not require packet tagging. Moreover, our tool allows us to further select cost-optimal solutions 
with respect to any given cost function, representing for example the worst-case latency in any transient configuration.
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Appendix A. Running the tool

We will in this example consider running AllSynth [33] for a small instance of the diamond class of models. Concretely, 
we consider a topology consisting only of two paths, where the nodes on the initial path are given by v0 v1 v2 v3 v4 and the 
nodes on the final path are v0 v6 v7 v8 v4. The policy of interest is Reach(v4).

By running AllSynth with the following command, all solutions are synthesizes as one ROBDD:

Input

python3 run.py -t BDD -e diamond --index 5 --e-prop Reach

As a part of the output, the tool reports the time it takes to synthesize the set of all correct update sequences, as well 
as an indication of whether this set is empty:
16
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Output

Policy: (Reach 4)
Initial path of nodes: [0, 1, 2, 3, 4]
Final path of nodes: [0, 6, 7, 8, 4]
Time: 0.006619453430175781
Solution: non-empty

To get a concrete update sequence, we add the --some argument:

Input

python3 run.py -t BDD -e diamond --index 5 --e-prop Reach
--some

The synthesized update sequence is then given as a triple:

Output

Solution: (set(), [8, 6, 7, 0], {1, 2, 3, 4}).

The empty set indicates that no nodes were updated before the actual synthesis procedure executed. The middle se-
quence encodes that nodes v8, v7 and v6 must be updated before v0 to maintain reachability of v4. The final set includes 
all trivial nodes that do not change routing or is only present on the initial path.

To fully use Lemma 1 reduction, we add the --reduce argument:

Input

python3 run.py -t BDD -e diamond --index 5 --e-prop Reach
--some --reduce

As the initial and final path are disjoint, the critical middle part of the synthesized solution is now a singleton:

Output

Solution: ({8, 6, 7}, [0], {1, 2, 3, 4}).

The first set includes all nodes that may be updated (in any order) before synthesizing a correct update sequence for the 
remaining nodes (now only node v0).

To count the number of solution, the --count argument can be provided instead of --some:

Input

python3 run.py -t BDD -e diamond --index 5 --e-prop Reach
--reduce --count

python3 run.py -t BDD -e diamond --index 5 --e-prop Reach
--count

If the reduction is used, the tool counts 1 solution and otherwise 6 as one may update v6, v7 and v8 in any order as 
long as v0 is updated at the end.
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[12] P. Černỳ, N. Foster, N. Jagnik, J. McClurg, Optimal consistent network updates in polynomial time, in: International Symposium on Distributed Comput-

ing, Springer, 2016, pp. 114–128.
[13] R. Chirgwin, Google routing blunder sent Japan’s Internet dark on Friday, https://www.theregister.co .uk /2017 /08 /27 /google _routing _blunder _sent _

japans _internet _dark/, 2017.
[14] A. Cimatti, E.M. Clarke, F. Giunchiglia, M. Roveri, NUSMV: a new symbolic model checker, Int. J. Softw. Tools Technol. Transf. 2 (2000) 410–425, https://

doi .org /10 .1007 /s100090050046.
[15] S. Dudycz, A. Ludwig, S. Schmid, Can’t touch this: consistent network updates for multiple policies, in: 2016 46th Annual IEEE/IFIP International 

Conference on Dependable Systems and Networks (DSN), IEEE, 2016, pp. 133–143.
[16] Duluth News Tribune, Human error to blame in Minnesota 911 outage, https://www.ems1.com /911 /articles /389343048 -Officials -Human -error-to -

blame -in -Minn -911 -outage/, 2018.
[17] A. El-Hassany, P. Tsankov, L. Vanbever, M. Vechev, Netcomplete: practical network-wide configuration synthesis with autocompletion, in: 15th USENIX 

Symposium on Networked Systems Design and Implementation (NSDI 18), 2018, pp. 579–594.
[18] N. Feamster, J. Rexford, Why (and How) Networks Should Run Themselves, arXiv report, 2017.
[19] B. Finkbeiner, M. Gieseking, J. Hecking-Harbusch, E.R. Olderog, Model checking data flows in concurrent network updates (full version), arXiv preprint 

arXiv:1907.11061, 2019.
[20] K. Foerster, S. Schmid, S. Vissicchio, Survey of consistent software-defined network updates, IEEE Commun. Surv. Tutor. 21 (2019) 1435–1461.
[21] K.T. Foerster, On the consistent migration of unsplittable flows: upper and lower complexity bounds, in: 2017 IEEE 16th International Symposium on 

Network Computing and Applications (NCA), IEEE, 2017, pp. 1–4.
[22] K.T. Foerster, T. Luedi, J. Seidel, R. Wattenhofer, Local checkability, no strings attached:(a) cyclicity, reachability, loop free updates in SDNs, Theor. 

Comput. Sci. 709 (2018) 48–63.
[23] G.D. Giacomo, M.Y. Vardi, Linear temporal logic and linear dynamic logic on finite traces, in: Proceedings of the 23rd International Joint Conference on 

Artificial Intelligence (IJCAI’13), AAAI Press, 2013, pp. 854–860.
[24] M. Glavind, N. Christensen, J. Srba, S. Schmid, Latte: improving the latency of transiently consistent network update schedules, in: Proc. 38th Interna-

tional Symposium on Computer Performance, Modeling, Measurements and Evaluation (PERFORMANCE), 2020.
[25] B. Heller, C. Scott, N. McKeown, S. Shenker, A. Wundsam, H. Zeng, S. Whitlock, V. Jeyakumar, N. Handigol, J. McCauley, et al., Leveraging sdn layering to 

systematically troubleshoot networks, in: Proceedings of the Second ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking, 2013, 
pp. 37–42.

[26] X. Jin, H.H. Liu, R. Gandhi, S. Kandula, R. Mahajan, M. Zhang, J. Rexford, R. Wattenhofer, Dynamic scheduling of network updates, in: ACM SIGCOMM 
Computer Communication Review, ACM, 2014, pp. 539–550.

[27] P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown, S. Whyte, Real time network policy checking using header space analysis, Presented as part 
of the 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI’13), 2013, pp. 99–111.

[28] P. Kazemian, G. Varghese, N. McKeown, Header space analysis: static checking for networks, Presented as part of the 9th USENIX Symposium on 
Networked Systems Design and Implementation (NSDI 12), 2012, pp. 113–126.

[29] W. Kellerer, P. Kalmbach, A. Blenk, A. Basta, M. Reisslein, S. Schmid, Adaptable and data-driven softwarized networks: review, opportunities, and 
challenges, in: Proceedings of the IEEE (PIEEE), 2019.

[30] S. Knight, H.X. Nguyen, N. Falkner, R.A. Bowden, M. Roughan, The Internet topology zoo, IEEE J. Sel. Areas Commun. 29 (2011) 1765–1775, https://
doi .org /10 .1109 /JSAC .2011.111002.

[31] D. Kreutz, F.M. Ramos, P.E. Verissimo, C.E. Rothenberg, S. Azodolmolky, S. Uhlig, Software-defined networking: a comprehensive survey, Proc. IEEE 103 
(2014) 14–76.

[32] K. Larsen, A. Mariegaard, S. Schmid, J. Srba, Allsynth: transiently correct network update synthesis accounting for operator preferences, in: Proceedings 
of the 16th International Symposium on Theoretical Aspects of Software Engineering (TASE’22), Springer, 2022, pp. 344–362.

[33] K. Larsen, A. Mariegaard, S. Schmid, J. Srba, Reproducibility package for: the hazard value: a quantitative network connectivity measure accounting for 
failures, https://doi .org /10 .5281 /zenodo .6534948, 2022.

[34] C.Y. Lee, Representation of switching circuits by binary-decision programs, Bell Syst. Tech. J. 38 (1959) 985–999, https://doi .org /10 .1002 /j .1538 -7305 .
1959 .tb01585 .x.

[35] H.H. Liu, X. Wu, M. Zhang, L. Yuan, R. Wattenhofer, D. Maltz, Zupdate: updating data center networks with zero loss, in: ACM SIGCOMM Computer 
Communication Review, ACM, 2013, pp. 411–422.

[36] A. Ludwig, S. Dudycz, M. Rost, S. Schmid, Transiently secure network updates, ACM SIGMETRICS Perform. Eval. Rev. 44 (2016) 273–284.
[37] A. Ludwig, J. Marcinkowski, S. Schmid, Scheduling loop-free network updates: it’s good to relax!, in: Proceedings of the 2015 ACM Symposium on 

Principles of Distributed Computing, ACM, 2015, pp. 13–22.
[38] A. Ludwig, M. Rost, D. Foucard, S. Schmid, Good network updates for bad packets: waypoint enforcement beyond destination-based routing policies, 

in: Proc. 13th ACM Workshop on Hot Topics in Networks (HotNets), ACM, 2014, p. 15.
[39] R. Mahajan, R. Wattenhofer, On consistent updates in software defined networks, in: Proc. 12th ACM Workshop on Hot Topics in Networks (HotNets), 

ACM, 2013, p. 20.
[40] J. McClurg, H. Hojjat, P. Cerný, N. Foster, Efficient synthesis of network updates, in: Proceedings of the 36th ACM SIGPLAN Conference on Programming 

Language Design and Implementation, Portland, OR, USA, June 15–17, 2015, 2015, pp. 196–207.
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