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Abstract— Capacity degradation of lithium-ion batteries 

influences their service abilities as energy storage systems. 

Lifetime prediction, historical degradation curve trajectory, and 

capacity estimation help prognose the long-term serviceability and 

timely health status of batteries, which guides early maintenance 

and intelligent management. This paper proposed a novel method 

to predict the lifetime, reconstruct the historical degradation 

curve and estimate the capacity via excavating the information 

hindered under partially charged capacity and temperature 

curves. Only partial raw data of temperature and charged 

capacity are needed for modeling without manual feature 

engineering. The convolutional neural network is used to build the 

lifetime prediction and capacity estimation models. In addition, 

the probabilistic regression is added to the establishment of the 

capacity estimation model, which could provide the probabilistic 

estimation results. Finally, transfer learning is adopted to update 

the model with a few available data of testing batteries. Results 

show that the predictions are accurate and reliable.  

Keywords— Battery lifetime prediction, degradation trajectory, 

capacity estimation, probabilistic prediction 

I. INTRODUCTION 

The electrification of the transportation sector is regarded as 
an industry trend, where batteries are used as the main energy 
storage source [1]. However, during long-term operation, the 
capacity of the battery will fade resulting in a limited lifetime. 
The aging and damage of lithium-ion batteries can lead to the 
failure and collapse of the entire system and even cause 
property damage and casualties [2]. Therefore, lifetime 
prediction and capacity estimation play a key role in the health 
management of batteries. Accurate and robust lifetime 
prediction and capacity estimation help design intelligent 
management strategies to optimize the battery operation and 
maximize the battery life [3,4].  

Methods for battery health prognostic can be divided into 
model-based, data-driven, and hybrid methods [5]. Model-
based methods mainly establish either empirical or physics-
based models to characterize the behavior of battery to estimate 
the state of health (SOH) or predict lifetime [6]. However, the 
complexity of modeling and poor generalization are the main 
drawbacks. Data-driven methods show better generalization 
higher flexibility and satisfactory accuracy and robustness, 
making them very appealing for battery SOH estimation and 
lifetime prediction. The hybrid methods fuse the model-based 
and data-driven or different data-driven methods to improve the 
accuracy and robustness, where the data-driven method is the 
key base.  

Data-driven methods for battery health prognostic include 
three steps, i.e., data preprocessing, model training, and 
predictive validation [7]. In data preprocessing, the raw data are 
collected and cleaned up to form the input and output of the 
machine learning model. Then, the data-driven model is trained 
using the processed data. Finally, the model is used for capacity 
estimation when new data are obtained. According to the 
available literature, three main methods can be used to form the 
input. The first method uses the capacity sequence for model 
building, which uses the capacities of a few former cycles as 
the input [8]. The second method directly uses the raw data of 
voltage, current, and temperature as the input, then uses deep 
learning methods such as convolutional neural network (CNN) 
and recurrent neural network to extract the intrinsic information 
automatically [9]. The advantage of this method is that only raw 
data are needed without feature engineering, while the 
challenge is the effective input parameter selection. In the third 
method, health indicators (HIs) are extracted from measured 
parameters to reflect the aging status of the battery and build 
the relationship between those HIs and capacity via machine 
learning [10,11]. Online extraction can be achieved while the 
generalization ability is poor. The second key task is 



parametrizing ML algorithms in data-driven battery health 
prognostic. Among various methods, the neural network is one 
main category to fit the regression model. However, most of 
them only provide a specific prediction but are not probabilistic. 
In addition, many data are required for the supervised model 
training, which is hard to obtain in real applications. Moreover, 
existing works mainly consider the aging information from 
charged capacity while ignoring the influence of resistance, 
which is reflected in the temperature variation during aging.  

Therefore, to overcome the problems mentioned above, this 
paper proposes a probabilistic convolutional neural network 
(PCNN)-based capacity estimation method, which is achieved 
through accurate battery lifetime prediction and capacity 
degradation curve reconstruction. Firstly, temperature and 
charged capacity data in the partial voltage range are used for 
data-driven modeling. Then, the lifetime prediction results guide 
the training of the capacity estimation model. Finally, the 
transfer learning strategy is adopted to retrain the capacity 
estimation model only using several checkpoints while 
satisfactory estimation results can be obtained. The remainder of 
this paper is organized as follows; the main methods are 
described in section 2. Then the results are provided and 
discussed in section 3. Finally, the main conclusion is 
summarized in section 4. 

II. METHOD 

A. Data description  

The data from [12,13] are collected to form the data set used 
in this paper, where 169 battery cells are collected. The cells 
with wrong temperature signals are removed, which may be 
caused by the errors of sensors. Therefore, 129 cells remain in 
total. These batteries are charged under fast charging with 
different combinations of current rates and discharged under a 
constant current of 4 C. They are all aged under 35 ℃. The 
capacity curves of the 129 batteries are shown in Fig. 1.  

 
Fig. 1 Capacity fade curves of the 129 battery cells 

B. Modeling 

It is known that the information hidden in the charged 
capacity (Q) – voltage (V) curve contains ample aging 
characteristics because the capacity attenuation will be directly 
reflected on the charged or discharged amounts [14]. Besides, 
the temperature is another valuable parameter to be considered 
when studying the health prognostics for batteries [15]. 
Because the internal electrochemical reactions of the battery are 
significantly affected by the temperatures, which directly 

influence the degradation process [16]. The variations of the Q-
V curve and ΔT-V curve of one battery during aging are shown 

in Fig. 2. The reason for using the ΔT curve instead of the 
original T curve is that the initial temperatures are different due 
to the experiment, while the temperature increments can 
directly reflect the internal electrochemical reaction in the 
battery during one aging cycle. The color varies from purple to 
red with the increase in running cycles. It can be seen that the 
Q-V curve and ΔT-V show regular variations during the aging 

process. The Q-V curve shows a decreasing trend while ΔT-V 

shows an increasing trend. Therefore, both Q and ΔT are 
important inflections of battery aging and need to be considered 
in the modeling.  

In this paper, the capacity and temperature curves 
measured/obtained during a partial constant current discharging 
interval (i.e., 2.85 – 3.25 V) are chosen as the inputs considering 
the requirement of real application. To form the inputs, the 
partial Q curve, differential Q curve compared to that of the 10th 
cycle (used in Ref. [12]), and the T increment (ΔT) curve are 
included. For battery capacity estimation, the capacity is 
selected as output to build the PCNN. For battery lifetime 
prediction, the partial curves of the 100th cycle are set as inputs, 
and the end of life (80% of SOH) is the output for the model.  

 
Fig. 2 Variation of Q-V curve (top) and ΔT-V (bottom) curve during the whole 

lifetime of a battery cell 

For automatic hidden feature extraction from the collected 
charged capacity and temperature curves. The 1D CNN is 
adopted to extract the hidden characteristic of the raw 
parameters. Then the fully connected layer is used to output the 
prediction. The proposed structure of the network is shown in 
Fig. 3. One-dimensional CNN (1D CNN) has been widely used 
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in battery health prognostic recently, and satisfactory 
predictions could be obtained [17]. The kernel is moved on the 
time scale to extract the features in 1D CNN. Then, the flatten 
layer transforms the hidden states, which could be further 
connected to fully connected layers. The primary function of a 
neuron in the dense layer is [18], 

_ ( * )
i i i

y activate fun w x b= +   (1) 

where x and y are input and output, respectively, 
activate_fun is the activation function, and w and b are the 
weight and bias, respectively. In this paper, the relu activation 
function is used.  

To provide probabilistic predictions, the probabilistic neural 
network sets the weight and bias as distributions. Consequently, 
the training process optimizes the distribution instead of one 
specific value. The loss function between the estimated value 
(p_y) and real value (y) in the training process is defined as 
follows,  

negative_loglikelihood( , _ ) .log_prob( )y  p y p_y y= − (2) 
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Fig. 3 The proposed NN flowchart 

C. Prediction framework 

The overall prediction process is shown in Fig. 4. 
Specifically, the measured data of V, Q, and T are gathered 
firstly during each aging cycle. Secondly, the data processing is 
implemented to prepare the inputs for the prediction model, 
where the interpolation method is used to ensure the same 
length of the inputs. Because of the same voltage range, the 
discharge time would decrease during aging. Then, the lifetime 
model is trained, and the lifetime of the testing battery is 
predicted. The data of two batteries with close lifetimes to the 
predicted lifetime are selected for the capacity model training. 
Next, transfer learning is adopted to continue the model 
updating process of the testing battery with a few checkpoints. 
Finally, the prediction of the historical degradation curve and 
the estimation in the following cycles are obtained by inputting 
the charged capacity and temperature curves. 
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Fig. 4. Flowchart of the proposed prediction method. 

III. RESULTS AND DISCUSSION 

This section presents and discusses the lifetime prediction, 
capacity degradation curve reconstruction, and capacity 
estimation results.. To demonstrate the performance of the 
proposed method, three batteries that have 1/4, 2/4, and 3/4 (cell 
35, cell 121, and cell 100, respectively) life ranges of the whole 
data set, are selected to be the testing batteries for 
demonstration. The mean absolute error (MAE) and root mean 
square error (RMSE) is used to evaluate the accuracy of the 
predicted results. All the results are obtained by Tensorflow and 
Keras version 2.7.0 and Tensorflow-probability version 0.15.0.  

The prediction results are shown in Fig. 5, where the results 
for the three batteries obtained by retraining the model with the 
known 10th cycle and 100th cycle are shown in Fig. 5(a), (c), 
and (e), respectively, and the results when two more 
checkpoints (50% and 90% SOH) are used for model training 
are shown in Fig. 5(b), (d) and (f) respectively. The numerical 
results of the lifetime and capacity predictions are listed in 
Table I, Table II, and Table III. 

Results show that the base model (trained by the source 
domain but no retrain process is conducted) succeeds in 
predicting the right trend, but the predictions still have obvious 
deviations from the real capacities. However, when the model 
is retrained by the early two checkpoints, the prediction 
converges more accurately to the real values. But it provides 
accurate and reliable results in the early stage while  a bit large 
errors in later stages due to  the lack of knowledge of testing 
batteries in these stages. However, when the model is retrained 
by the four checkpoints, the prediction converges more 
accurately to the real values, and the predictions nearly cover 
the real values. The predicted MAE and RMSE are less than 
2.1% and 2.9% when using two early checkpoints and reduced 
to less than 1% when two more checkpoints are used to update 
the model for the three testing batteries. But the base model has 



larger errors, which are larger than 5% and 5.4%. The 95% 
confidence interval is narrow, which means that the predictions 
are accurate and reliable.  

The prediction results for the lifetime indicate that the errors 
are less than 10%, which helps guide the early maintenance and 
select adequate data for model training. Moreover, the proposed 

lifetime prediction and capacity estimation method only needs 
raw data without feature engineering. The results indicate that 
the proposed method helps improve the accuracy of prediction 
significantly with only a few online checkpoints, which has 
great application properties since the real data rarely has fully 
charged and fully discharged data. 

(a) (b)

(c) (d)

(e) (f)

Real 

value

Predicted value of 

proposed method

Predicted value of 

base model

95% Confidence 

interval
 

Fig. 5 Capacity degradation recovering and estimation results for battery 35, 121, and 100 with two checkpoints (a), (c), and (e); with four checkpoints 

(b), (d), and (f).  



TABLE I.  LIFETIME PREDICTION RESULTS 

Value Cell 35 Cell 121 Cell 100 

Real lifetime (cycles) 579 1033 1636 

Predicted lifetime 
(cycles) 

531 932 1595 

Absolute error (cycles) -48 -101 -41 

Relative error (%) -8.29 -9.78 1.81 

 

TABLE II.  ESTIMATED ERRORS [%] WITH TWO CHECKPOINTS 

Method 
Cell 35 Cell 121 Cell 100 

MAE RMSE MAE RMSE MAE RMSE 

Proposed 

Method 

0.79 1.02 2.89 2.06 0.45 0.74 

Base 
model 

2.23 2.37 5.04 5.43 1.71 2.05 

 

TABLE III.  ESTIMATED ERRORS [%] WITH FOUR CHECKPOINTS 

Method 
Cell 35 Cell 121 Cell 100 

MAE RMSE MAE RMSE MAE RMSE 

Proposed 

Method 

0.55 0.84 0.63 0.82 0.29 0.42 

Base 

model 

2.23 2.37 5.04 5.43 1.71 2.05 

 

IV. CONCLUSION 

This paper proposes a novel method for battery lifetime 
prediction, capacity curve reconstruction, and estimation. The 
partial curves are used for formatting the inputs of the 1D CNN 
framework to learn the hidden features. The probabilistic 
regression is proposed for the capacity estimation model 
construction. Additionally, a transfer learning strategy is 
proposed for the model adaption among different batteries. The 
results show that lifetime predictions have less than 10% errors 
with raw data of only two early points. Furthermore, with only 
four checkpoints, the degradation curve could be accurately 
reconstructed, and the remaining capacity can be well estimated 
with errors less than 1%. Future work will focus on the lifetime 
prediction by the reconstructed capacity curves.  
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