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Abstract—In order to emulate the frequency support charac-
teristics of conventional synchronous generators (SGs), control
algorithms based on the virtual synchronous generator (VSG)
have been extensively applied to grid-tied converters. However,
in the case that a large inertia is used in VSGs, active power
oscillations can be introduced in the transients, due to the
lack of enough damping effects. To avoid this phenomena,
various solutions with additional damping terms have been
proposed. This paper analyzes and compares six relevant fixed-
parameter active-power-oscillation damping solutions in detail,
where responses under set point and phase angle changes, the
parameter sensitivity, and capabilities of limiting the rate of
change of frequency (RoCoF) and attenuating power ripples are
included. The results show the advantages and drawbacks of each
solution, leading to the conclusion that extra damping terms may
significantly degrade the inertial response of VSGs and have high
dependency on the parameter estimation accuracy.

Keywords—Grid-tied converters, virtual synchronous genera-
tor (VSG), power oscillation, damping effect.

I. INTRODUCTION

With the rapid development of distributed generation tech-
nologies, a large number of power electronic converters have
been installed in the grid. Unlike SGs, under transient events,
power converters cannot provide inherent inertial response to
limit the RoCoF [1], [2]. To solve this problem, the VSG
concept has been proposed to emulate the frequency-support
characteristics of SGs, where the swing equation is normally
used for the design of active power control loops (ACL) [3]–
[5]. However, the virtual inertia in VSGs may introduce active
power oscillations during transients, which degrades the power
quality and increases the risk of overcurrent [6]–[8].

Aiming at providing enough damping effects to attenuate
active power oscillations, various fixed-parameter damping
solutions have been proposed in the literature. For example,
the simplest approach is to increase the damping coefficient in
the swing equation, but the static droop characteristic will be
changed as well when this coefficient is modified for a better
damping performance [9]. Generally, it is not recommended,
since an accurate steady-state power sharing largely relies on
the droop control [10], [11]. In addition to this solution, extra
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damping effects can be also embedded by adding the frequency
slip that is estimated by the phase-locked loop (PLL) [12],
[13]. In this way, additional damping terms for better transients
can be realized without affecting the static droop because
the frequency slip estimated by the PLL is approximately
equal to zero in the steady state. Moreover, by implementing
damping correction control through filtering the measured
active power, low-frequency oscillations in conventional VSGs
can be well attenuated [14]. Although satisfactory damping
effects can be attained by applying this solution, degrees of
freedom are still not enough to realize any desired damping
level and power dynamics. In [15], extra damping terms have
been realized through the state-feedback control, where more
degrees of freedom are available for adjusting the damping
level and power dynamics. Furthermore, in [7], the damping
terms were developed based on the relationship between output
active power and angular acceleration. The major advantage
of using this solution is that degrees of freedom are enough to
tune the damping level and power dynamics according to any
specific requirement. Additionally, the solution proposed in [8]
provides another way to attenuate active power oscillations.
However, in this solution, the damping terms could be less
effective, since degrees of freedom are less and the tuning of
closed-loop poles may be restricted.

For a better understanding of the existing damping solutions,
corresponding small-signal models have been derived in sec-
tion II. The effectiveness of each solution has been analyzed
under both nominal and parameter mismatch conditions in
section III. Phase angle changes, capabilities in limiting the
RoCoF, and capabilities of attenuating power ripples have been
evaluated in section III. In section IV, conclusions are given.

II. MODELING OF THE VSG-CONTROLLED CONVERTER

A. Derivation of Power Equations

The main circuit and control scheme of the studied system
is shown in Fig. 1, where the voltage-source converter is
connected to the external grid through LC filters. In Fig. 1,
Rf and Lf denotes the converter-side resistor and inductor,
respectively, and Cf is the capacitor of LC filters. Zt and
Zg are transformer and grid impedance, respectively, and
ZL = Zt + Zg denotes total grid-side impedance.



Fig. 1. Simplified diagram of the VSG-controlled converter.

In most applications, both the inner voltage control loop
(VCL) and the inner current control loop (CCL) will be
applied and designed to ensure a proper regulation accuracy
and fast transient responses of converter currents and capacitor
voltages. With the bandwidth of VCL and CCL set to the
level which is much higher than power control loops, converter
currents and capacitor voltages are assumed to be the same as
corresponding instantaneous set points. Then, both VCL and
CCL can be omitted in the analysis of VSG’s dynamics. In
this manner, the phasor representation indicated in Fig. 2 can
be adopted for the analysis. The diagram in Fig. 2 is given in
the signal-phase form, where V̇t = Vt∠δ and V̇g = Vg∠0 are
used to represent the phasors of capacitor voltages and grid
voltages, respectively.

Fig. 2. Phasor representation of the VSG-controlled converter.

In the phasor representation, δ is the power angle which can
be written as

δ =

∫
(ωm − ωg) dt (1)

where ωm and ωg are angular frequencies of capacitor voltages
and grid voltages, respectively.

In this paper, the grid-side network is assumed to be mainly
inductive. In the case that the resistance cannot be ignored,
virtual impedance loops can be applied to make the equivalent
impedance mainly inductive. The total grid-side impedance ZL

can be replaced by the reactance XL, and the power transferred
by the VSG is written as

P+jQ = 3V̇t
¯̇It = 3

VTVg sin(δ)

XL
+j3

V 2
T −VTVgcos(δ)

XL
(2)

Considering a small disturbance near the equilibrium point,
linearize (1) and (2), small-signal models of the studied system

are derived as follows:

∆δ =
1

s
(∆ωm − ∆ωg) (3)

∆P =
∂P

∂δ
∆δ +

∂P

∂VT
∆VT +

∂P

∂Vg
∆Vg (4)

Usually, the variation of grid voltage Vg is assumed to be
negligible, and the nominal value of δ is small enough that
the coupling effect between active and reactive control loops
can be neglected. In this way, (4) is rewritten as

∆P =
∂P

∂δ
∆δ ≈ 3

V 2
n

XL
∆δ (5)

where Vn is the nominal phase voltage.

B. Small-Signal Model of the VSG - Case I
The swing equation used for the ACL of conventional VSGs

is normally expressed as follows [4]:

P ∗ − P = J
dωm

dt
+D (ωm − ω0) (6)

where P ∗ is the active power set point, P is the output active
power, and ω0 denotes the nominal angular frequency of the
grid. J is the moment of the inertia, and D represents the
dynamic damping coefficient.

From (3), (5), and (6), the small-signal model which in-
dicates the relationship among the small variations in active
power ∆P , the active power set point ∆P ∗ and the grid phase
angel ∆θg = ωg/s can be expressed as

∆P =
3V 2

n

JXLs2 +DXLs+ 3V 2
n

∆P ∗

−
3V 2

n

(
Js2 +Ds

)
JXLs2 +DXLs+ 3V 2

n

∆θg (7)

From (6), the small-signal model of angular frequency
change ∆ωm over the load variation ∆P is derived as

∆ωm = − 1

Js+D
∆P. (8)

C. Small-Signal Model of the VSG - Case II
One possibility of increasing the damping effect is to use

the addition frequency slip, where the corresponding ACL can
be written as follows [13]:

P ∗ − P = J
dωm

dt
+D (ωm − ω0) +Dpll (ωm − ω̂g) (9)

where Dpll is the extra damping coefficient corresponds to
the additional frequency slip, and ω̂g is the estimated angular
frequency obtained from the PLL. As it can be observed from
(9), the additional damping term is mainly effective during
transient processes, since ωm = ω̂g is approximately achieved
in the steady state.

From (3), (5), and (9), the small-signal model in Case II
can be derived as

∆P =
3V 2

n

JXLs2 + (D +Dpll)XLs+ 3V 2
n

∆P ∗

−
3V 2

n

[
Js2 + (D +Dpll) s

]
JXLs2 + (D +Dpll)XLs+ 3V 2

n

∆θg. (10)



For simplicity, impacts of voltage amplitude perturbations
on the estimated angular frequency ω̂g are neglected. Follow-
ing this manner, the change in ω̂g can be expressed as

∆ω̂g = Gpll(s)(∆θm − ∆θpll)Vn (11)

where ∆θm = ∆ωm/s, ∆θpll = ∆ω̂g/s, and Gpll(s) =
kp,pll + ki,pll/s. kp,pll and ki,pll are proportional and integral
coefficients of the PI regulator used in the PLL, respectively.

From (9) and (11), we have

∆ωm = − Gpll(s)Vn + s

(Js+D) [Gpll(s)Vn + s] +Dplls
∆P. (12)

D. Small-Signal Model of the VSG - Case III

Another possibility of implementing additional damping
terms is to modify the feedback active power in VSGs, where
the ACL can be expressed as follows [14]:

P ∗ − 1 +Dfs

1 + Tfs
P = J

dωm

dt
+D (ωm − ω0) (13)

where Tf is the low-pass-filter (LPF) coefficient, and Df is
the coefficient for adjusting the additional damping effect.

From (3), (5) and (13), the small-signal model is derived as

∆P =
3V 2

n (Tfs+ 1)

JXLTfs3 +Kp2s2 +Kp1s+ 3V 2
n

∆P ∗

−
3V 2

n

[
JTfs

3 + (J +DTf ) s2 +Ds
]

JXLTfs3 +Kp2s2 +Kp1s+ 3V 2
n

∆θg (14)

where

Kp2 = (J +DTf )XL, Kp1 = DXL + 3V 2
nDf . (15)

Moreover, from (13), we have

∆ωm = − 1

Js+D

1 +Dfs

1 + Tfs
∆P. (16)

E. Small-Signal Model of the VSG - Case IV

By utilizing the state-feedback control, more degrees of
freedom can be introduced to tune the power dynamics. The
corresponding ACL can be written as follows [15]:

ωm = ω0 +
1

Js

[
P ∗ + Pd −D (ωm − ω0) − 1

1 + Tfs
P

]
Pd = −kxω (ωm − ω0) − kxp

1 + Tfs
P − kxi

s
Pd (17)

where Pd denotes the virtual damping power, kxω , kxp, and
kxi are feedback and integral coefficients used to generate Pd,
and Tf is the LPF coefficient.

From (3), (5) and (17), the small-signal model is written as

∆P =
3V 2

n

[
Tfs

2 + (Tfkxi + 1) s+ kxi
]

JXLTfs4 + Lp3s3 + Lp2s2 + Lp1s+ 3V 2
n kxi

∆P ∗

−
3V 2

n

[
JTfs

4 + Lz3s
3 + Lz2s

2 +Dkxis
]

JXLTfs4 + Lp3s3 + Lp2s2 + Lp1s+ 3V 2
n kxi

∆θg (18)

where

Lz3 = (Jkxi + kxω +D)Tf + J,

Lz2 = Jkxi + kxω +D +DTfkxi,

Lp3 = Lz3XL, Lp2 = Lz2XL,

Lp1 = DXLkxi + 3V 2
n (kxp + 1) . (19)

From (17), we have

∆ωm = − (kxp + 1) s+ kxi
JTfs3 + Lz3s2 + Lz2s+Dkxi

∆P. (20)

F. Small-Signal Model of the VSG - Case V

In [7], it was found that active power oscillations can be
attenuated by the feedback of angular acceleration and high-
frequency components of the active power. The corresponding
ACL can be expressed as follows:

P ∗−
(

kp1s

s+ kp2
+1

)
P =

(
J+

kω1

s+ kω2

)
dωm

dt
+D (ωm−ω0)

(21)
where kp1 and kp2 are high-pass-filter (HPF) coefficients, and
kω1 and kω2 are LPF coefficients.

From (3), (5) and (21), the small-signal model is

∆P =
3V 2

n

[
s2 + (kp2 + kω2) s+ kp2kω2

]
JXLs4+Mp3s3+Mp2s2+Mp1s+3V 2

n kp2kω2
∆P ∗

−
3V 2

n

[
Js4 +Mz3s

3 +Mz2s
2 +Dkp2kω2s

]
JXLs4+Mp3s3+Mp2s2+Mp1s+3V 2

n kp2kω2
∆θg (22)

where

Mz3 = J (kp2 + kω2) + kω1 +D,

Mz2 = Jkp2kω2 + kp2kω1 +D (kp2 + kω2) ,

Mp3 = Mz3XL, Mp2 = Mz2XL + 3V 2
n (kp1 + 1) ,

Mp1 = DXLkp2kω2 + 3V 2
n (kp1kω2 + kp2 + kω2) . (23)

From (21), we have

∆ωm = − (kp1+1) s2+(kp1kω2+kω2+kp2) s+kp2kω2

Js3 +Mz3s2 +Mz2s+Dkp2kω2
∆P.

(24)

G. Small-Signal Model of the VSG - Case VI

In [8], the additional damping term was applied by using
HPFs together with VSGs’ angular frequency. The correspond-
ing ACL can be formulated as follows:

P ∗ −P = J
dωm

dt
+D (ωm − ω0) +Dv

(
Tωs

s+ Tω

)
ωm (25)

where Tω is the HPF coefficient.
From (3), (5) and (25), we have the small-signal model as

∆P =
3V 2

n (s+ Tω)

JXLs3 +Np2s2 +Np1s+ 3V 2
n Tω

∆P ∗

−
3V 2

n

[
Js3 +Nz2s

2 +DTωs
]

JXLs3 +Np2s2 +Np1s+ 3V 2
n Tω

∆θg (26)



where

Nz2 = JTω+D +DvTω, Np2 = Nz2XL,

Np1 = DXLTω + 3V 2
n . (27)

Similarly, from (25), we have

∆ωm = − s+ Tω
Js2 +Nz2s+DTω

∆P. (28)

III. ASSESSMENT OF DAMPING SOLUTIONS

In this section, small-signal models derived in Section II
have been used for the assessment of different solutions, and
all the parameters used in the assessment are given in Table I,
where the base value for XL is V 2

n /Sbase and the base value
for J , D, and Dpll is Sbase/ω0.

TABLE I
PARAMETERS USED IN THE SIMULATION ASSESSMENT

Parameters Values Parameters Values
Sbase 15 MVA J 12 pu
Vn 3.3/

√
3 kV D 20 pu

XL 4.33 pu ω0 314 rad/s
Dpll 33.33 pu kp,pll 15
ki,pll 2 Df 0.45914
Tf 0.06 kxω 3.25587× 106

kxp 5.67873 kxi 10.60307
kp1 13.41540 kp2 29.35938
kω1 9.06977× 105 kω2 18.50209
Dv 3.18310× 106 Tω 0.15

A. Responses to Set Point Changes

To evaluate dynamic responses of VSGs to set point varia-
tions, (7), (10), (14), (18), (22), and (26) are used to generate
pole-zero maps indicated in Fig. 3 and step responses shown
in Fig. 4. From Fig. 3, it can be observed that, without imple-
menting any additional damping terms, two complex poles of
the conventional VSG have a low damping ratio (ξ = 0.339).
Thus, obvious oscillations at the natural frequency ωn = 2.46
rad/s can be observed in Fig. 4. However, in the Case II,
two poorly-damped complex poles have been moved to well-
damped locations (ξ = 0.903), and the oscillations observed
in conventional VSGs are well attenuated, as shown in Fig.
4. In the Case III, the LPF introduces another close-loop
pole. By appropriately choosing the coefficient Df in the
Case III, two complex poles are set to be dominant, and the
corresponding damping factor ξ is around 0.9. From Fig. 4,
it can be also seen that the additional damping terms in Case
III works well to reduce oscillations. Moreover, in the Case
IV, the state feedback control introduces two more closed-
loop poles, which makes the number of poles increase to
four. Among all the four poles, one real pole (ωn = 7.95,
ξ = 1) is determined by the LPF coefficient Tf , and the rest
three can be independently adjusted. From Fig. 3, it can be
seen that another real pole (ωn = 22.2, ξ = 1) is placed far
away from two dominant and well-damped complex poles.
In the Case V, there are four independently adjustable close-
loop poles, and the pole placement is similar to that in Case
IV; however, two non-dominant real poles are set far away

Fig. 3. Poles and zeros of small-signal transfer functions ∆P/∆P ∗.

Fig. 4. Responses of VSGs to set point changes ∆P/∆P ∗.

from two dominant complex poles. In Fig. 4, well-damped
responses can be seen in both Case IV and V. Different from
aforementioned solutions, Case VI has less degrees of freedom
to adjust close-loop poles. Thus, the damping effect in Case
VI is weak, and the response in Fig. 4 has oscillations.

B. Parameter Sensitivity

In real applications, the estimation of grid-side reactance
XL is not always accurate. As a result, the effectiveness of
applied additional damping terms will be degraded. In order to
evaluate impacts of parameter mismatches, the estimated grid-
side reactance X̂L is set to 4.33 pu, while the real grid-side
reactance XL used in (7), (10), (14), (18), (22), and (26) varies
from 0.2X̂L to 1.4X̂L. As indicated in Fig. 5, in Case I, II and
VI, damping ratios of two dominant close-loop poles decrease
when the real reactance XL reduces. Correspondingly, power
oscillations start to appear in the transients, as shown in Fig.
6. In Case III, dynamics are dominated by two well-damped
complex poles first, and the dominant pole is transferred to one
real pole when XL reduces. Thus, well-damped responses can
be always guaranteed, as shown in Fig. 6. Similarly, in Case
IV, one real pole moves towards the imaginary axis when XL

reduces; however, two poorly-damped complex poles will get
closer to the imaginary axis as well. In general, the responses
are well-damped, but oscillations start to be observable in the
transients when XL reduces to 0.2X̂L. In Case V, no matter
how XL changes, the dynamics will be determined by two
well-damped complex poles, since the rest close-loop poles
are far away. In this manner, the damping terms in Case V are
always effective, as the results shown in Fig. 6.



Fig. 5. Poles and zeros of small-signal transfer functions ∆P/∆P ∗ under
grid-side reactance XL mismatches.

Fig. 6. Responses of VSGs to set point changes ∆P/∆P ∗ under grid-side
reactance XL mismatches.

C. Responses to Phase Angle Changes

In some cases, the sudden impedance variation inside the
grid may cause phase angle changes at terminals of grid-
tied converters, which may in turn leads to transients in the
power flows, since the power angle δ is inevitably affected.
To evaluate the impact of phase angle changes, (7), (10), (14),
(18), (22), and (26) are used in the assessment, where the phase
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Fig. 7. Responses of VSGs to grid phase angle changes ∆P/∆θg/Sbase.

angle change is set to 1/90 rad. As shown in Fig. 7, there are
still low-frequency power oscillations in Case I and VI. On
the other hand, in the rest solutions, dynamics with improved
damping performance can be attained, and Case II shows the
preferable response where the power perturbation reduces at
a slow rate without introducing any negative overshoot.

D. Responses to Load Changes

In order to evaluate that to which extent the virtual inertia
helps limit the RoCoF in different solutions, the small-signal
transfer function (8), (12), (16), (20), (24), and (28) are used.
The corresponding responses of ∆ωm under the unit load
change are presented in Fig. 8. The RoCoF in this paper is
approximately calculated as follows [9]:

RoCoF = ω0 ∆ωm,3T /3T (29)

where T is the fundamental period, and ∆ωm,3T denotes the
value of ∆ωm after three cycles.

Fig. 8. Responses of VSGs to load changes ∆ωm/∆P × Sbase/ω0.

As indicated in Fig. 8, compared with the conventional VSG
in Case I, the effect of virtual inertia on limiting the RoCoF is
significantly degraded by applying additional damping terms
in Case III, IV, and V. Moreover, it also worth noting that the
response in Case II is normally worse than the response in
real applications where the impact of the PLL can be truly
shown. Regarding the response in Case VI, the RoCoF is not
degraded; however, the transient process is significantly longer,
which extends the time of reaching the predefined steady-state
load sharing.

E. Ripple Attenuation Capability

In grid-tied applications, ripples at different frequencies may
appear in the measured active power P due to the unbalance
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and harmonics, which in turn has impacts on the control of
VSGs. From (8), (12), (16), (20), (24), and (28), the frequency
analysis of different solutions is shown in Fig. 9. It can
be seen that, when the frequency is above 2ω0, magnitude
reduces at the fastest rate in Case IV. Moreover, in Case I
and VI, the frequency responses are almost overlapped, and
the corresponding ripple attenuation capability is better than
that in Case III and V. Among all the solutions, the frequency
response in Case II is the worst, since magnitude response is
always higher than the rest and varies in a narrow range when
the frequency is above 2ω0.

TABLE II
SUMMARY OF THE ASSESSMENT

Case Power
oscillation

Parameter
sensitivity

Phase angle
response

Limit
RoCoF

Attenuate
ripples

I Yes Sensitive Inferior Effective Average
II No Sensitive Preferable Affect by PLL Inferior
III No Robust Average Degraded Average
IV No Robust Average Degraded Preferable
V No Robust Average Degraded Average
VI Yes Sensitive Inferior Effective Average

F. Summary of the Assessment

For the benefit of comparison, assessment results are sum-
marized in Table II. Regarding providing damping effects, less
effectiveness is shown in Case I and VI; however, in limiting
the RoCoF, the most effective results can be attained in Case I
and VI. Additionally, in Case III, IV, and V, damping of power
oscillations is less dependent on the parameter estimation
accuracy. In the case of phase angle changes, the response in
Case II is the preferable one among all the solutions. In terms
of the ripple attenuation, Case IV shows the best performance,
and the response in Case II is the worst.

IV. CONCLUSION

In this paper, comparative studies have been conducted
on fixed-parameter active-power-oscillation damping solutions
for the VSG, where response to set point and phase angle
changes, the parameter sensitivity, and capabilities of limiting
the RoCoF and attenuating power ripples have been included
in the comparison. Key findings are listed as follows:

• With more degrees of freedom introduced by the addi-
tional damping terms, most solutions can provide same-
level damping effects on active-power oscillations when
the control coefficients are appropriately tuned.

• In the case of parameter mismatches, the damping effects
of some solutions may be significantly degraded. Thus, to
propose new damping approaches, parameter sensitivity
is an important aspect which needs to be considered.

• In terms of limiting the RoCoF, most solutions evalu-
ated in this paper are not able to provide satisfactory
results, which indicates that the additional damping terms
have changed the original inertial response of VSGs.
Therefore, in order to develop more practical damping
strategies, the degradation of inertial responses is an
important issue needs to be considered.
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