Aalborg Universitet

Regioselective synthesis of sucrose laurate and investigation of antimicrobial properties: Method development for RP-HPLC analysis

Lie, Aleksander; Pedersen, Lars Haastrup

Publication date: 2012

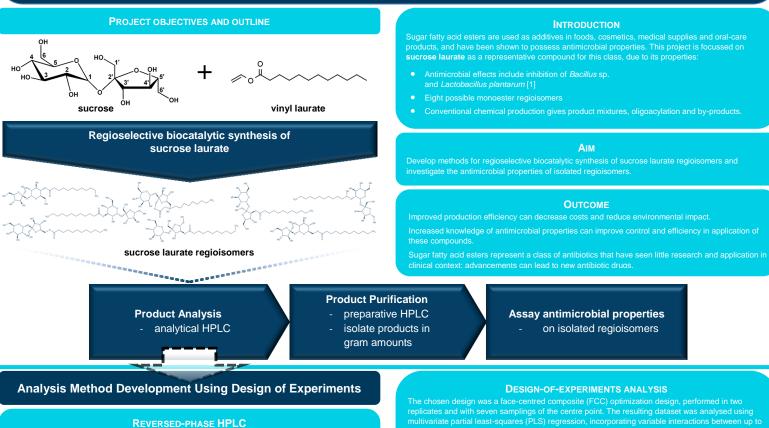
Document Version Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA): Lie, A., & Pedersen, L. H. (2012). Regioselective synthesis of sucrose laurate and investigation of antimicrobial properties: Method development for RP-HPLC analysis. Poster presented at 7th Danish Conference on Biotechonology and Molecular Biology, Vejle, Denmark.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

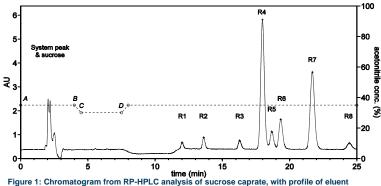

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal -

Take down policy If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Regioselective synthesis of sucrose laurate and investigation of antimicrobial properties: Method development for RP-HPLC analysis

Aleksander Lie, Lars H Pedersen

Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Denmark E-mail: alie@bio.aau.dk



Based on the improved regioisomer separation shown by Ritthitham *et al* [2], from a step down in acetonitrile concentration, below the initial concentration, the elution gradients of acetonitrile (CH_3CN)

Table 1: Experimental variables								
Variable	Description	Range						
A (%)	Initial acetonitrile concentration	30-40						
B (min)	Duration of initial concentration	2-6						
C (%)	Mid-section acetonitrile concentration	20-40						
D (min)	Duration of mid-section concentration	1-5						

SEPARATION OF SUCROSE CAPRATE REGIOISOMERS

with baseline separation achieved for six regioisomers (fig.1). R_s-values ranged from 1.31 to 6.82. In most practical applications R_s \geq 1.0 is considered the level of adequacy for analytical quantification,

acetonitrile concentration (dotted line). Elution variables A = 35 %, B = 4 min, C = 30 %, D = 3 min. Sucrose caprate regioisomer identification

and Rs-values: R1 3'-O-, N/A; R2 2-O-, 4.85; R3 4-O-, 6.82; R4 6-O-, 3.59; R5 1'-O-, 1.36; R6 3-O-, 1.31; R7 6'-O-, 4.11; R8 4'-O-, 4.30.

Table 2: Significant effects in PLS analysis of face-centred composite design, using crossvalidation uncertainty testing. Based on estimated p-values: +++ (p < 0.005), ++ (p < 0.01), + (p <= 0.05), 0 (p > 0.05). Effects not

included in the table were insignificant (p > 0.05). The significance levels for the exponential terms were equal for all exponents in the range $2 \le x \le 4$.

	Responses							
Effect	R1	R2	R3	R4	R5	R6	R7	R8
А	+++	+++	+++	+++	+++	+++	+++	+++
С	+++	+++	+++	+++	+++	+++	+++	+++
AC	+++	+++	+++	+++	+++	+++	+++	+++
BC	+	+	+	+	+	+	+	+
ABC	+++	+++	+++	+++	+++	+++	+++	+++
ACD	+	+	+	+	+	+	+	+
ABCD	+	+	+	+	+	+	0	0
A ^x	+++	+++	+++	+++	+++	+++	+++	+++
C ^x	+++	+++	+++	+++	+++	+++	+++	+++

CONCLUSION

A method for quantitative RP-HPLC analysis of regioisomers of sucrose caprate was developed. Resolutions above the level of adequacy for quantification, $R_s \ge 1.0$, were achieved for all regioisomers.

applicable and useful tools for method development in RP-HPLC analysis of sucrose fatty acid esters.

REFERENCES

- Ferrer M, Soliveri J, Plou FJ, Lopez-Cortes N, Reyes-Duarte D, Christensen M, Copa-Patino JL, Ballesteros A. (2005) Enzyme Microb. Technol. 36: 391 Ritthitham S, Wimmer R, Stensballe A, Pedersen LH. (2009) J. Molec. Catal. B 59: 266 Perez-Victoria I, Zafra A, Morales JC. (2007) Carbohydr. Res. 342: 236