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Abstract

This paper presents a stochastic framework for offering and bidding strate-
gies of a hybrid power generation system (HPGS) with a wind farm and two
types of energy storage facilities, i.e., compressed air energy storage (CAES)
and battery energy storage (BES) systems. The model considers the par-
ticipation of the HPGS in consecutive electricity markets, i.e., day-ahead
(DA) and intraday markets. To better address the proposed trading strategy
problem, the BES degradation cost is also incorporated into the model. Fur-
thermore, a mechanism based on energy procurement from demand response
resources (DRRs) in the intraday demand response exchange (IDREX) mar-
ket for the HPGS is also established to offset unexpected energy imbalances
effectively. The suggested offering and bidding strategy is formulated as a
three-stage stochastic programming problem incorporating a risk-alleviating
index, namely, the conditional value-at-risk (CVaR). Results from several
simulations indicate considerable profit gain and risk reduction achieved by
the suggested offering and bidding framework.

Keywords: Battery energy storage (BES), compressed air energy storage
(CAES), electricity market, offering and bidding strategies, wind farm



Nomenclature
Indices
θ Index of scenarios (1 to Nθ).
t Index of scheduling periods (1 to NT ).
d Index of DRRs (1 to ND).
f Index pertaining to segments of DRRs’ offer (1 to NF ).
b Index pertaining to blocks of the BES depth of discharge (1 to NB).
Parameters
πθ Probability of a scenario occurrence.
β (α) Parameters reflecting the risk-aversion (confidence) level.
ϕBd,t Price of the bilateral contract between DRRs and the HPGS, e/MWh.
ϕIXd,f,t Price pertaining to segments of the DRRs’ offer in the

IDREX market, e/MWh.
CapBS,dis(ch) Maximum discharging (charging) quantity of the BES, MW.
CapCA,c Maximum compression quantity of the CAES, MW.
CapCA,exp Maximum expansion quantity of the CAES, MW.
CapW Nominal capacity of the wind farm, MW.
ELBS(CA),Max Maximum permissible stored energy in the BES (CAES), MWh.
ELLBS,Max Maximum permissible stored energy in block b of the depth of BES

discharge of the system, MWh.
ΥBS,ch(dis) BES efficiency pertaining to charging (discharging) mode.
Htrdis(s) CAES heat rate in discharging (simple-cycle) mode, MBtu/MWh.
NPG Price of natural gas, e/MBtu.
OMExp(Com) Maintenance and operation costs of the CAES in expanding

(compressing) mode, e/MWh.
ER CAES energy ratio.
λ A coefficient for determining the contribution level in the intraday

market.
νMax
d,f,t Maximum purchased power in each segment of the DRR’s offering

curve, MW.
CapDRd Total offering quantity by each DRR, MW.
CapI,HPGS,sell Maximum allowable selling power by the HPGS system in the intraday

market, MW.
CapI,HPGS,buy Maximum allowable buying power by the HPGS system in the intraday

market, MW.
MCb Marginal cost of degradation in block b of the depth of discharge of the

BES system.
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Variables
γ Value-at-risk, e.

ϕ
D(I)
t,θ Price pertaining to the DA (intraday) market, e/MWh.

χ
D(I),W
t,θ Offering quantity from the wind farm in the DA (intraday) market, MW.

χ
D(I),BS
t,θ Offering quantity from the BES system in the DA (intraday) market, MW.

χ
D,CA,dis(s)
t,θ DA offering quantity from the CAES system in the discharging

(simple-cycle) mode, MW.

χ
I,CA,dis(s)
t,θ Intraday offering quantity from the CAES system in the discharging

(simple-cycle) mode, MW.

σ
D,BS(CA)
t,θ Bidding quantity from the BES (CAES) system in the DA market, MW.

σ
I,BS(CA)
t,θ Bidding quantity from the BES (CAES) system in the intraday market, MW.

σI,Wt,θ Buying quantity from the wind farm in the intraday market, MW.

χ
Sch,BS(CA),dis
t,θ Final scheduled power of the BES (CAES) system in the discharging

mode, MW.

χSch,CA,st,θ Final scheduled power of the CAES system in the simple-cycle mode, MW.

σ
Sch,BS(CA),ch
t,θ Final scheduled power of the BES (CAES) system in the charging mode, MW.

P Sch,HPGS
t,θ Final scheduled power of the HPGS, MW.

%
D(I),BS,dis
b,t,θ Offering quantity of the BES system from block b of the depth of discharge

in DA (intraday) market, MW.

%
D(I),BS,ch
b,t,θ Bidding quantity of the BES system from block b of the depth of discharge

in DA (intraday) market, MW.

%
Sch,BS,dis(ch)
b,t,θ Final scheduled power of the BES system from block b of the depth of discharge

in discharging (charging) mode, MW.
ELLBSb,t,θ Stored energy in block b of the depth of discharge of the BES system, MWh.

EL
BS(CA)
t,θ Stored energy in the BES (CAES) system, MWh.

RPW
t,θ Realized generation power of the wind farm, MW.

δ
−(+)
t,θ Downward (upward) imbalance, MWh.

δt,θ Final energy deviations of the HPGS, MWh.

ρ
−(+)
t,θ Price ratios pertaining to downward (upward) imbalances.

ηθ Subsidiary variable used for CVaR calculation.

v
ch(dis)
t Binary variable reflecting the charging (discharging) status of the BES.

u
ch/dis/s
t Binary variable reflecting the charging/discharging/simple-cycle status of the CAES.
CDRd,t,θ Cost pertaining to buying pool-based demand response (DR) from DRRs, e.

DRd,t,θ/χ
B,DR
d,t,θ Provided pool-based/bilateral-based DR from DRRs, MW.

CFCA
d,t,θ Cost pertaining to the CAES operation, e.
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1. Introduction

Lessening dependence on fossil fuels and taking maximum advantage of
renewable energy sources to reduce greenhouse gas emissions has become
one of the main goals of communities and governments around the world [1].
Moving toward a fully renewable energy power sector without appropriate
energy storage systems and flexible loads is unattainable [2]. The importance
of energy storage systems in reaching a fully renewable energy power sector
in the next 30 years for Europe has been investigated in [3]. The results of
[3] reveal that energy storage technologies are able to play a crucial part in
reducing the levelized cost of electricity.

With the enormous growth of renewable energy sources, such as wind
energy, in all power system sectors, designing appropriate offering strategies
for optimal participation in the electricity markets is identified as the most
prominent concern of their owners [4]. In particular, the intermittent nature
of prominent renewable energy resources such as wind turbines is the origin
of all these challenges and concerns. In [5], the authors have focused on the
operating framework of a wind power plant in the day-ahead (DA) energy
and reserve markets based on deep reinforcement learning. The application
of second-order stochastic dominance constraints as the risk handling method
for the optimal participation of a wind power plant has been proposed in [6].
The optimal participation model for paired wind power plants and demand
response providers has been presented in [7]. Similarly, optimal behavior
of a renewable-based power plant having a demand response provider was
studied in [8]. In [9], the authors have suggested an offering framework for
wind and thermal units participating in day-ahead, medium-term, and long-
term electricity markets.

Other electricity market players, such as microgrids and virtual power
plants, are also found in the bidding and offering strategy problems. Authors
in [10] have designed a two-stage bidding structure for a microgrid based
on the mean-variance model. Following this, a bidding strategy based on
information gap decision theory (IGDT) and stochastic programming for a
reconfigurable microgrid in the DA and real-time markets has been suggested
in [11]. Analogous to [11], in [12] and [13], the IGDT method was applied for
the self-schduling of a virtual power plant in joint DA and balancing markets,
respectively. In [13], the authors have presented a risk-based scheduling
model for a virtual power plant participating in day-ahead energy and reserve
markets. Authors in [14] have focused on the stochastic self-scheduling of a
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smart microgrid in the DA market.
Energy storage technologies are other inevitable facilities in all power sys-

tems that bring more flexibility and reduce overall costs. A comprehensive
stochastic-robust participation framework for a battery energy storage (BES)
system has been introduced in [15]. Furthermore, an offering model for joint
operation of the BES system and a solar plant employing adjustable robust
optimization technique has been analyzed in [16]. A further mechanism for
the trading strategy of a BES system along with thermal units and a wind
power station considering environmental issues has been provided in [17].
Ref. [18] has provided a linear deterministic look-ahead optimization model
for the optimal involvement of a compressed air energy storage (CAES) sys-
tem in multiple electricity markets. A coordinated operation mechanism
based on the adaptive robust technique for a wind-CAES system has been
developed in [19]. Moreover, a stochastic offering mechanism for a wind-
CAES plant has been presented in [20]. In [21], the authors have focused
on expanding a coordinated trading method for a wind power station and
electric vehicles in DA and intraday markets.

The risk-based behavior of thermal units using under the uncertainty of
high-impact low-probability events under a hybrid probabilistic-possibilistic
approach [22] has been presented in [23]. The impact of transmission outage
contingencies on the bidding strategy of thermal units has been assessed
in [24]. In [25], authors have provided an scheduling model for a hybrid
thermal-BES system while dealing with the existing uncertainty using robust
optimization. A stochastic bidding structure for a price-maker retailer in the
DA trading floor has been provided in [26]. Authors in [27] have developed a
bi-level self-scheduling paradigm for power-to-gas facilities in the DA market.
In [28] and [29], authors have assessed the demand response resources (DRRs)
bidding strategy from various perspectives. In [28], a robust framework has
been applied for the bidding strategy of industrial DRRs, whereas [29] has
concentrated on the trading approach of residential DRRs.

In this paper, a comprehensive offering and bidding model for a hybrid
power generation system (HPGS) composed of wind farms, CAES, and BES
system is presented. In addition to the benefits of coordination among offer-
ing and bidding of all resources, a mechanism based on the energy transaction
between the HPGS and DRRs is considered. The suggested model takes into
account the DA market, the intraday market, and the balancing market as
intended trading floors. In this regard, the proposed structure is not only ca-
pable of extracting selling offers (offering curves), but also provides the ability
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to derive the purchasing bids (bidding curves) in the DA market. The present
offering and bidding mechanism is developed as a three-stage stochastic pro-
gramming pattern while the uncertainties arising from the electricity prices
and wind generation are characterized through a scenario set. Lastly, to
further investigate the different offering and bidding schemes in the decision-
making process, an effective risk metric, i.e., conditional value-at-risk (CVaR)
is included in the framework.

The main innovative contributions of this work are as follows:

� Proposing a comprehensive model for the joint operation of a wind
farm, BES, and a CAES system in the form of an HPGS for participa-
tion in successive electricity markets. To the best of the authors’ knowl-
edge, there is no relevant publication that addresses the integrated op-
eration of wind, CAES, and BES system in electricity markets. It is
important to note that the wind-CAES offering model proposed in [20]
suffers from two weaknesses in its methodology: 1) the authors con-
sidered the charging power of the CAES in the scheduled power of the
integrated wind-CAES system, while it should not be regarded (in other
words, the charging energy is utilized for increasing the energy level of
the storage systems, and it must not be calculated in the scheduled
energy of the HPGS for coping with its balancing market deviations)
and 2) the operating modes of the CAES facility must be counted in
modeling the upper bound of the system’s downward imbalance, while
they have been neglected in [20].

� Presenting a novel three-stage stochastic trading model which is capa-
ble of deriving both offering (selling) and bidding (purchasing) curves
in the DA market. Other significant difference between this paper
and the methodology proposed in [20] is that the operating modes of
the CAES facility, i.e., charging, discharging, simple-cycle, have been
considered as a function of stochastic scenarios, while this assumption
cannot represent the real operation of a CAES unit.

� Providing energy transaction capability between the HPGS and DRRs
by means of the intraday demand response exchange (IDREX) market
and thoroughly examining this facility on the operation of all resources,
especially BES and CAES systems.

� Incorporating the BES degradation cost into the suggested offering and
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bidding architecture and analyzing its influence from the perspective
of coordinated and uncoordinated operations.

� Analyzing different aspects of the proposed risk-based offering and bid-
ding strategy with a detailed numerical result.

In the next section, materials and methods are discussed. Section 3
presents the simulation results and discussion, and the last section is dedi-
cated to the conclusion and future work.

2. Materials and Methods

2.1. Decision-making framework

As stated in the previous section, the HPGS aims for an optimal partici-
pation in the DA and intraday markets, as two consecutive trading floors. In
order to achieve optimal operation of the HPGS in all trading floors, system
uncertainties must be well addressed. Generally, the system uncertainties
concern the DA market, intraday market, and balancing market prices along
with wind power generation. Multi-stage stochastic programming is one of
the most prevailing methodologies for addressing uncertainties, and this has
been properly adapted to electricity market problems [30]. In this work, a
three-stage stochastic programming structure is employed whose correspond-
ing decision variables are categorized into three stages:

1. First stage: the first-stage decisions concern the operating status of
the BES and CAES systems, and optimal offering and bidding curves of
the HPGS in the DA market for the whole scheduling horizon. These
decisions are called here-and-now decisions that are made while all
uncertain parameters are unknown to the HPGS.

2. Second stage: these decisions deal with buying and selling energy in
the intraday market along with traded pool-based and bilateral-based
demand response (DR) between DRRs and the HPGS. These decisions
depend on the DA market scenarios while the intraday market prices,
balancing prices, and wind power production are still unknown at this
stage. The set of the second-stage decisions are called wait-and-see1.

3. Third stage: the last stage decisions are related to balancing market
deviations of the HPGS. These decisions are named wait-and-see2 and
are made after satisfying all uncertain variables.
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For the stochastic modeling of the uncertain sources, proper probabil-
ity distribution functions are chosen. Normal and Rayleigh probability dis-
tributions are picked to model market prices and wind speed, respectively.
Next, the roulette wheel technique is implemented for scenario generation
[31]. Since running multi-stage stochastic programming problems with a
large amount of scenarios results in a significant computational burden, a
scenario reduction technique, by means of Kantorovich distance, is utilized
[32].

In the next part, first, the mathematical formulation of the HPGS trading
behavior in DA and intraday trading floors is thoroughly given. Then, the
aforementioned formulation is updated considering the BES degradation cost.

2.2. Problem formulation in the absence of degradation cost

The aim of the offering and bidding mechanism for the HPGS is to max-
imize the expected profit throughout the scheduling horizon. This includes
a coordinated decision-making system for all available resources, i.e., wind
farm, BES, and CAES, that specifies the optimal participation of all units
in the DA and intraday trading floors. In order to handle the risk associated
with stochastic parameters, the CVaR metric is considered in the proposed
structure. A graphical overview of the developed methodology is shown in
Fig. 1. The objective function of the HPGS offering and bidding strategy
can be written as (1).

Max PF1 =

Nθ∑
Θ=1

NT∑
t=1

πθ ×

[
ϕDt,θχ

D,W
t,θ + ϕDt,θχ

D,BS
t,θ + ϕDt,θχ

D,CA,dis
t,θ + ϕDt,θχ

D,CA,s
t,θ

− ϕDt,θσ
D,BS
t,θ − ϕDt,θσ

D,CA
t,θ + ϕIt,θχ

I,W
t,θ + ϕIt,θχ

I,BS
t,θ + ϕIt,θχ

I,CA,dis
t,θ + ϕIt,θχ

I,CA,s
t,θ

− ϕIt,θσI,W − ϕIt,θσ
I,BS
t,θ − ϕIt,θσ

I,CA
t,θ −

(
ND∑
d=1

CDRd,t,θ + ϕBd,tχ
B,DR
d,t,θ

)

− CFCA
t,θ +

(
ϕDt,θρ

+
t,θδ

+
t,θ

)
−
(
ϕDt,θρ

−
t,θδ

−
t,θ

) ]
+ β

(
γ − 1

1− α

Nθ∑
Θ=1

πθηθ

)
(1)

where PF1 refers to the objective function of the HPGS without considering
the BES degradation cost. The objective function (1) is written in three
rows, and each row comprises various terms. The first row represents the
revenue of the HPGS due to the participation of wind, battery, and CAES
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CAES Unit Wind Farm

BES Unit

 Without Degradation Cost

 With Degradation Cost

HPGS Decision-Making 
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Parameters
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Operational 

constraints of all 

existing resources

2
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Offering and 

bidding curves 
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Intraday 

Market
DA Market

Wind

CAES

BES BES

CAES

Wind
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information of all 
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1

Maximizing profit

3

Minimizing risk

3

4 4

1 Inputs

2 Constraints

3 Objectives

4 Outputs

Figure 1: Graphical overview of the proposed architecture.

units in the DA market. The first two terms of the second row are related
to purchasing bids of BES and CAES systems from the DA market. The
next four terms in the same row correspond to the HPGS revenue from
the intraday market arising from selling energy. The third row refers to the
costs for acquiring energy from the intraday market and procurement of pool-
based and bilateral-based DR from the IDREX market. The first term in the
last row models the CAES operational costs, while the next two expressions
denote the income and costs related to balancing market deviations. Finally,
the last term of the fourth row represents the risk term in which higher values
of β reflect the increasing importance of the risk aversion. The constraints
of objective function (1) are described as follows:

2.2.1. CVaR constraints

Restrictions (2)-(4) are utilized to calculate the CVaR.
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PF1,θ =

NT∑
t=1

[
ϕDt,θχ

D,W
t,θ + ϕDt,θχ

D,BS
t,θ + ϕDt,θχ

D,CA,dis
t,θ

+ ϕDt,θχ
D,CA,s
t,θ − ϕDt,θσ

D,BS
t,θ − ϕDt,θσ

D,CA
t,θ + ϕIt,θχ

I,W
t,θ

+ ϕIt,θχ
I,BS
t,θ + ϕIt,θχ

I,CA,dis
t,θ + ϕIt,θχ

I,CA,s
t,θ − ϕIt,θσI,W

− ϕIt,θσ
I,BS
t,θ − ϕIt,θσ

I,CA
t,θ −

(
ND∑
d=1

CDRd,t,θ + ϕBd,tχ
B,DR
d,t,θ

)

− CFCA
t,θ +

(
ϕDt,θρ

+
t,θδ

+
t,θ

)
−
(
ϕDt,θρ

−
t,θδ

−
t,θ

) ]
(2)

− PF1,θ + γ − ηθ ≤ 0, ∀θ (3)

ηθ ≥ 0, ∀θ (4)

In (2), PF1,θ calculates the profit per scenario of the HPGS in each
scheduling period. Constraint (3) enforces that the difference between value-
at-risk (γ) and profit per scenario (PF1,θ) should be lower than a positive sub-
sidiary variable (ηθ). This positive subsidiary variable (ηθ) assists decision-
makers in calculating the CVaR under a predefined confidence level (α) [32]-
[33].

2.2.2. BES operating constraints

Constraints (5) and (6) calculate the whole scheduled discharging and
charging powers. Restrictions (7) and (8) enforce upper and lower limits
on the whole BES scheduled power in any of the running modes, whereas
constraint (9) ensures that the BES operates either in discharging or charging
situations in any particular time interval. The energy level of the BES at time
interval t is computed in (10), and subsequently, constraint (11) expresses
the stored energy limits of the BES [34].

χSch,BS,dist,θ = χD,BSt,θ + χI,BSt,θ , ∀t,∀θ (5)

σSch,BS,cht,θ = σD,BSt,θ + σI,BSt,θ , ∀t,∀θ (6)
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0 ≤ χSch,BS,dist,θ ≤ CapBS,disvdist , ∀t,∀θ (7)

0 ≤ σSch,BS,cht,θ ≤ CapBS,chvcht , ∀t, ∀θ (8)

vdist + vcht ≤ 1, ∀t (9)

ELBSt,θ =ELBSt−1,θ −
(

1

ΥBS,dis

)(
χSch,BS,dist,θ

)
+

ΥBS,ch
(
σSch,BS,cht,θ

)
, ∀t,∀θ (10)

0 ≤ ELBSt,θ ≤ ELBS,Max, ∀t,∀θ (11)

2.2.3. CAES operating constraints

One of the significant advantages of the CAES versus BES is the abil-
ity to generate energy in simple-cycle mode, similar to a gas turbine, which
increases its flexibility against price fluctuation. Equations (12)-(14) are
respectively concerned with the whole scheduled power of the CAES in dis-
charging, simple-cycle, and charging modes. CAES operating costs are mod-
eled using (15). Constraint (16) imposes that the CAES system should not
be simultaneously in charging, discharging, and simple-cycle modes at any
specific time interval. Restrictions pertaining to total scheduled power of the
CAES system are enforced through (17)-(19). Finally, equation (20) calcu-
lates the energy level of the CAES, while constraint (21) keeps the energy
level within the allowable range.

χSch,CA,dist,θ = χD,CA,dist,θ + χI,CA,dist,θ , ∀t, ∀θ (12)

χSch,CA,st,θ = χD,CA,st,θ + χI,CA,st,θ , ∀t,∀θ (13)

σSch,CA,cht,θ = σD,CAt,θ + σI,CAt,θ , ∀t,∀θ (14)
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CFCA
t,θ =χSch,CA,dist,θ

(
HtrdisNPG+OMExp

)
+ χSch,CA,st,θ

(
HtrsNPG+OMExp +OMCom

)
+ σSch,CA,cht,θ

(
OMCom

)
, ∀t, ∀θ (15)

udist + ust + ucht ≤ 1, ∀t (16)

0 ≤ χSch,CA,dist,θ ≤ CapCA,expudist , ∀t,∀θ (17)

0 ≤ χSch,CA,st,θ ≤ CapCA,expust , ∀t,∀θ (18)

0 ≤ σSch,CAt,θ ≤ CapCA,cucht , ∀t,∀θ (19)

ELCAt,θ = ELCAt−1,θ + ER
(
χSch,CA,dist,θ − σSch,CAt,θ

)
,∀t,∀θ (20)

0 ≤ ELCAt,θ ≤ ELCA,Max, ∀t,∀θ (21)

2.2.4. DR constraints

The proposed DR model includes energy procurement by the HPGS from
DRRs in the IDREX market. In this regard, the HPGS can procure the
intended energy either in the pool IDREX market or directly through bi-
lateral contracts with DRRs. DRRs submit their price-quantity offers (Fig.
2) in the IDREX market, which corresponds to load reduction at each level
(νd,f,t,θ) and the corresponding price (ϕIXd,f,t). Equations (22) and (23) calcu-
late the total procured energy from each DRR and its corresponding cost,
respectively. Constraint (24) restricts the procured pool-based DR within
its attainable capacity in every quantity segment. Ultimately, the total pro-
cured DR by the HPGS, i.e., the sum of pool-based and bilateral-based DR,
is limited by applying restriction (25).

DRd,t,θ =

NF∑
f=1

νd,f,t,θ, ∀d,∀t,∀θ (22)
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Figure 2: Price-quantity offer of a DRR in the IDREX market.

CDRd,t,θ =

NF∑
f=1

(ϕIXd,f,t)(νd,f,t,θ), ∀d,∀t,∀θ (23)

νd,f,t,θ ≤ νMax
d,f,t , ∀d,∀f, ∀t,∀θ (24)

DRd,t,θ + χB,DRd,t,θ ≤ CapDRd , ∀d,∀t,∀θ (25)

2.2.5. Imbalance constraints

Total balancing market deviations of the HPGS are calculated using equa-
tions (26) and (27). Positive and negative energy deviations of the HPGS
are limited via constraints (28) and (29), respectively. It is worth to note
that the operating modes of storage facilities must be counted in constraint
(29), as the maximum negative energy deviation of the HPGS is equivalent
to the maximum capacity of generating energy in each specific hour, while
this rule has been ignored in [20].

δt,θ = δ+
t,θ − δ

−
t,θ, ∀t, ∀θ (26)

δt,θ =RPW
t,θ + χSch,BS,dist,θ + χSch,CA,dist,θ + χSch,CA,st,θ

− P Sch,HPGS
t,θ , ∀t, ∀θ (27)
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δ+
t,θ ≤ RPW

t,θ + χSch,BS,dist,θ + χSch,CA,dist,θ + χSch,CA,st,θ ,

∀t,∀θ (28)

δ−t,θ ≤Cap
W +

(
CapBS,disvdist

)
+
(
CapCA,expudist

)
+ (CapCA,expust), ∀t, ∀θ (29)

2.2.6. Offering and bidding curve constraints

DA offering and bidding limitations are imposed through constraints (30)
and (31), respectively. Constraints (32) and (33) enforce the selling and buy-
ing quantities of the HPGS in the intraday market. It is important to bear
in mind that market players cannot sell/procure their full capacity in/from
the intraday market [32], and accordingly, these selling and buying restric-
tions are defined in equations (34) and (35). The scheduled power of the
HPGS in DA and intraday markets and its corresponding limits are specified
in constraints (36) and (37), respectively. Unlike [20], in equation (36), the
charging power of storage facilities should not be counted. In other words,
the charging energy is utilized for increasing the energy level of the storage
systems, and it must not be calculated in the scheduled energy of the HPGS
for coping with its balancing market deviations. Deriving optimal offering
and bidding curves in the DA market is the most substantial part of the
problem. To this end, the offering curves must be non-decreasing while the
bidding curves should be decreasing [8]. Constraints (38) and (39) ensure
that the offering and bidding curves in the DA follow this trend. Lastly, the
non-anticipativity condition of offering and bidding curves in the DA market,
as well as non-anticipativity restrictions of offering and bidding quantities in
the intraday trading floor, are enforced through constraints (40)-(43) [35].

0 ≤ χD,Γ1

t,θ ≤ CapΓ1 , ∀t,∀θ

& Γ1 =
[
W, (BS, dis), (CA, dis), (CA, s)

]
(30)

0 ≤ σD,Γ2

t,θ ≤ CapΓ2 , ∀t,∀θ & Γ2 =
[
(BS, ch), (CA, ch)

]
(31)

0 ≤ χI,Wt,θ + χI,BS,dist,θ + χI,CA,dist,θ + χI,CA,st,θ ≤ CapI,HPGS,sell,

∀t,∀θ (32)
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0 ≤ σI,Wt,θ + σI,BS,cht,θ + σI,CA,cht,θ ≤ CapI,HPGS,buy,

∀t, ∀θ (33)

CapI,HPGS,sell = λ
(
CapW + CapBS,dis + CapCA,exp

)
(34)

CapI,HPGS,buy = λ
(
CapW + CapBS,ch + CapCA,c

)
(35)

P Sch,HPGS
t,θ =χD,Wt,θ + χI,Wt,θ − σ

I,W
t,θ + χSch,BS,dist,θ

+ χSch,CA,dist,θ + χSch,CA,st,θ

−
ND∑
d=1

(
DRd,t,θ + χB,DRd,t,θ

)
, ∀t, ∀θ (36)

P Sch,HPGS
t,θ ≤CapW +

(
CapBS,disvdist

)
+
(
CapCA,expudist

)
+ (CapCA,expust), ∀t, ∀θ (37)

χD,Γ3

t,θ ≤ χD,Γ3

t,θ̃
, ∀θ, θ̃ : [ϕDt,θ ≤ ϕD

t,θ̃
], ∀t &

Γ3 =
[
W,BS, (CA, dis), (CA, s)

]
(38)

σD,Γ4

t,θ ≤ σD,Γ4

t,θ̃
, ∀θ, θ̃ : [ϕDt,θ ≥ ϕD

t,θ̃
], ∀t & Γ4 = [BS,CA] (39)

χD,Γ3

t,θ = χD,Γ3

t,θ̃
, ∀θ, θ̃ : [ϕDt,θ = ϕD

t,θ̃
], ∀t &

Γ3 =
[
W,BS, (CA, dis), (CA, s)

]
(40)

σD,Γ4

t,θ = σD,Γ4

t,θ̃
, ∀θ, θ̃ : [ϕDt,θ = ϕD

t,θ̃
], ∀t & Γ4 = [BS,CA] (41)

χI,Γ5

t,θ = χI,Γ5

t,θ̃
, ∀θ, θ̃ : [ϕDt,θ = ϕD

t,θ̃
], ∀t &

Γ5 =
[
W,BS, (CA, dis), (CA, s)

]
(42)

σI,Γ6

t,θ = σI,Γ6

t,θ̃
, ∀θ, θ̃ : [ϕDt,θ = ϕD

t,θ̃
], ∀t & Γ6 =

[
W,BS,CA

]
(43)
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2.3. Problem formulation in the presence of degradation cost

Multiple charging and discharging cycles of the BES system are deemed
as the most critical factors of reducing the BES lifespan, and as a result,
the BES replacement cost should be taken into account. This is done by
including the BES system degradation cost in its offering and bidding pat-
tern. BES degradation is contingent on a variety of factors, whereas the cycle
depth is identified as the most significant one [36]. In this paper, to incorpo-
rate the BES degradation cost into the preceding modeling, the model in [36]
has been adopted. Accordingly, the degradation cost is modeled as a nonlin-
ear function of the depth of discharge and a piecewise linearization method
is employed to overcome its nonlinearity. The latest depth of discharge at
each specific time can be tracked by devoting discharge and charge power
components along with energy level component to any particular depth of
discharge block concerning its present and former discharge and charge pow-
ers. Comprehensive details of this model with the benefits of its application
have been thoroughly discussed in [36]. Eventually, the objective function
(1) by considering the BES degradation cost is updated as:

Max PF2 = PF1−
Nθ∑

Θ=1

NB∑
b=1

NT∑
t=1

πθ ×

[
MCb × %Sch,BS,disb,t,θ

]
(44)

Subject to:

χD,BSt,θ =

NB∑
b=1

%D,BS,disb,t,θ (45)

σD,BSt,θ =

NB∑
b=1

%D,BS,chb,t,θ (46)

χI,BSt,θ =

NB∑
b=1

%I,BS,disb,t,θ (47)

σI,BSt,θ =

NB∑
b=1

%I,BS,chb,t,θ (48)
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%Sch,BS,disb,t,θ = %D,BS,disb,t,θ + %I,BS,disb,t,θ (49)

%Sch,BS,chb,t,θ = %D,BS,chb,t,θ + %I,BS,chb,t,θ (50)

χSch,BS,dist,θ =

NB∑
b=1

%Sch,BS,disb,t,θ (51)

σSch,BS,cht,θ =

NB∑
b=1

%Sch,BS,chb,t,θ (52)

%D,BS,disb,t,θ , %I,BS,disb,t,θ , %D,BS,chb,t,θ , %I,BS,chb,t,θ ≥ 0 (53)

ELLBSb,t,θ =ELLBSb,t−1,θ −
(

1

ΥBS,dis

)(
%Sch,BS,disb,t,θ

)
+

ΥBS,ch
(
%Sch,BS,chb,t,θ

)
, ∀t, ∀θ (54)

0 ≤ ELLBSb,t,θ ≤ ELLBS,Max
b (55)

ELBSt,θ =

NB∑
b=1

ELLBSb,t,θ (56)

− PF1,θ +

(
NB∑
b=1

NT∑
t=1

MCb × %Sch,BS,disb,t,θ

)
+ γ − ηθ ≤ 0, ∀θ (57)

Constraints (2), (4)− (9), (11)− (43) (58)

where PF2 is the objective function of the HPGS including the BES degrada-
tion cost. Equations (45) and (46) compute the selling (offering) and buying
(bidding) quantities of the BES system in the DA market according to their
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discharging and charging powers in each block of the depth of discharge.
Similar to (45) and (46), equations (47) and (48) are adopted for intraday
offering and bidding variables. The total offering and bidding values in each
block of the depth of discharge are calculated via (49) and (50), whereas the
total scheduled offering and bidding values of the BES system are computed
through (51) and (52). The BES energy level in each block is obtained by
(54), while constraint (55) restricts the lower and upper boundaries of this
variable. The final energy level of the BES system is stated in (56), and
restriction (57) is related to CVaR modeling. Some other constraints of the
proposed methodology are unchanged, as stated in (58).

3. Simulation Results

The performance of the suggested offering and bidding strategy is ana-
lyzed for an HPGS comprising a 50-MW wind farm, a BES facility of 50
MW (charging and discharging capacity), and a CAES unit of charging and
discharging capacities equal to 100 MW and 150 MW, respectively. The tech-
nical information on CAES and BES facilities are reported in Table 1. The
BES replacement cost is set to 300,000 e/MWh [36], while other relevant
data for modeling degradation cost of the BES system are adopted from [36].
Six months of historical data (January 1st, 2018 to June 30th, 2018) of the
electricity market in the Iberian Peninsula [37] and the wind speeds [38] for
the same period are used for scenario generation. Following the procedures
described in 2.1, 5,000 scenarios are generated for each uncertain parameter
and, using the scenario reduction technique, the number of scenarios for the
DA, intraday, balancing markets, and wind power are reduced to 10, 6, 6, and
10 representative scenarios, respectively. Accordingly, the overall number of
scenarios is 3600.

Three distinct DRRs have been considered for participation in the IDREX
market. The maximum participation level for each DRR is assumed to be 4
MW. The parameters appertaining to price-quantity offers of DRRs in the
IDREX market are based on three characteristic periods, namely, peak, off-
peak, and valley, as given in Table 2. Note that the uncertainty of IDREX
market prices is neglected (mean prices are considered here). Furthermore,
the HPGS is capable of procuring energy through bilateral contracts from
DRRs where ϕB1,t, ϕ

B
1,t, and ϕB3,t are equal to 45, 50, and 55 e/MWh. Finally,

other essential parameters in the proposed problem, such as α, λ, and NPG
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Table 1: Specification of CAES and BES facilities

Parameter Value Unit Parameter Value Unit

CapCA,exp 150 MW Htrs 10.83 MBtu/MWh

CapCA,c 100 MW ER 0.95 scalar

ELCA,Max 20 × 150 MWh OMExp 3 e/MWh

Htrdis 4.07 MBtu/MWh OMCom 3 e/MWh

ΥBS,ch 80 % CapBS,dis(ch) 50 MW

ΥBS,dis 95 % ELBS,Max 5×50 MWh

are respectively set to 0.95, 0.3, 4.6 e/MBtu. The derived problem is solved
by GAMS under CPLEX solver.

In this paper, three case studies corresponding to three different offering
and bidding schemes have been considered:

� Case 1: disjoint operation of all available energy resources.

� Case 2: coordinated operation of wind, BES and CAES facilities.

� Case 3: coordinated operation of wind, BES and CAES facilities in
the attendance of DRRs.

In order to thoroughly investigate different features of the suggested
methodology, the numerical results are presented in two parts. In the first
part, the profitability of the aforementioned offering and bidding schemes
and the HPGS behavior in electricity markets are fully examined. In the
second part, the impact of incorporating the BES degradation cost on the
BES decisions in DA and intraday markets, as well as economic losses, are
studied.

3.1. Results: Part I

In the following, the effects of different bidding schemes are examined. It
is necessary to remark that the BES degradation cost has been overlooked
in all results of the first part.
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Table 2: Characteristic of DRRs’ offer in the IDREX market

Period

f 1 2 3

νMax
d,f,t 0.25× CapDRd 0.75× CapDRd 1× CapDRd

Percentage of mean intraday market price

Valley (1-9 a.m.)

ϕIX1,f,t 45% 60% 75%

ϕIX2,f,t 50% 65% 80%

ϕIX3,f,t 55% 70% 85%

Off-peak

ϕIX1,f,t 55% 85% 115%

ϕIX2,f,t 65% 95% 125%

(10 a.m.-19 p.m.) ϕIX3,f,t 75% 105% 135%

Peak (20-24 p.m.)

ϕIX1,f,t 60% 90% 120%

ϕIX2,f,t 70% 100% 130%

ϕIX3,f,t 80% 110% 140%

3.1.1. Impact of various offering and bidding cases on the expected
profit and CVaR

Results of CVaR and expected profit for various values of β and different
offering and bidding schemes have been reported in Table 3 and Table 4. Ac-
cording to Table 3 and Table 4, the HPGS’s expected profit in the risk-neutral
analysis of disjoint operation is e33,381.966, while the coordinated offering
and bidding strategy in the second case leads to a 13.02% increase of expected
profit. In the same way, in the second scheme, the system experiences an
8.39% gain in the CVaR, which illustrates that the system’s risk is reduced
by the coordinated operation. Using DRRs to cope with intermittent wind
power generation via the IDREX market, improves both substantially, CVaR
and expected profit. In this regard, for β = 0, the coordinated scheduling
of existing units in the presence of the IDREX market results in a 22.11%
and a 23% increase in expected profit and CVaR, respectively. Adopting a
more conservative scheduling, i.e., increasing parameter β [39], reduces the
value of expected profit and increases the value of CVaR. Accordingly, in
the third operational case, by altering β = 0 to β = 1, this case produces
only a 0.28% reduction in system’s profit, while it increases the CVaR value
by 20.75%. This demonstrates the efficiency of the proposed offering and
bidding mechanism. In other words, a slight loss in the expected profit can
be used by the decision-maker to remarkably reduce the associated risk.
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Table 3: Expected profit and CVaR in different case studies

Case study
Expected profit (e) CVaR (e)

β=0 β=0.5 β=1 β=2 β=0 β=0.5 β=1 β=2

Case 1

Wind Farm 26,285.126 26,181.438 26,098.283 25,991.201 18,490.960 20,470.339 20,592.013 20,671.606

CAES 5,162.011 5,157.579 5,104.937 5,068.048 2,622.630 2,816.622 2,870.622 2,906.622

BES 1,934.829 1,928.811 1,927.122 1,926.981 424.952 745.640 748.352 748.476

Sum 33,381.966 33,267.828 33,130.342 32,986.23 21,538.542 24,032.601 24,210.987 24,326.704

Case 2 HPGS 37,728.841 37,621.710 37,551.382 37,394.281 23,347.454 29,022.289 29,121.190 29,173.620

Case 3 HPGS+DRRs 40,763.112 40,647.770 40,567.847 40,531.028 26,492.865 31,992.368 32,108.421 32,127.062

Table 4: Expected profit and CVaR gain in β = 0

Case studies
Gain (%)

Expected profit CVaR

Case 2 13.02 8.39

Case 3 22.11 23.00

To further analyze the benefits of the CAES on the operation of the HPGS
(Case 2), Table 5 reports the impact of integrating CAES on the expected
profit and CVaR of the HPGS. This analysis is performed for two different
values of β (β = 0 and β = 2). As can be seen, the CAES plays a significant
role in boosting the expected profit and CVaR of the HPGS, showing the
benefits of entering the CAES into the proposed HPGS. According to this
table, the presence of the CAES in the HPGS results in a 7.38% and a 2.38%
in expected profit and CVaR of the risk-neutral analysis (β = 0), respectively.
Similarly, these values for β = 2 are increased to 7.69% (expected profit)
and 10.24% (CVaR), implying the more substantial role of the CAES in
the conservative scheduling. Overall, the CAES increases profitability and
reduces the associated risk.

3.1.2. Impact of various offering and bidding cases on the DA
decisions

In order to illustrate how various decision-making schemes affect DA vari-
ables, the expected offering and bidding quantities in the DA market for the
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Table 5: Impact of coordinated and disjoint operation of the CAES on the expected profit
and CVaR of the HPGS

Case study
Expected profit (e) CVaR (e)

β=0 β=2 β=0 β=2

Coordinated [Wind-BES]
35,132.189 34,720.782 22,802.951 26,463.441

+ disjoint CAES

HPGS 37,728.841 37,394.281 23,347.454 29,173.620

wind farm, CAES, and BES facilities pertaining to risk-neutral analysis are
depicted in Fig. 3. Appling a coordinated operation of all resources (second
and third cases), shows that the DA decisions of the wind farm are mostly
altered. In this regard, the wind farm offers in the second and the third
cases during the whole scheduling horizon are the same, except for hours 5
and 21. This fact illustrates how considering DRRs in the IDREX market
can alter the system’s decisions in the DA market. Another important point
of attention is that the participation of two energy storage systems, i.e., BES
and CAES, in the DA market is quite different from each other. The BES
system relies on purchasing energy at hours with low energy prices and sell-
ing energy during high price hours, while the CAES facility mainly operates
in the simple-cycle mode since its charging power is extremely low during the
24-hour horizon. The highest charging and discharging powers of the BES
facility happens at hours 5 and 21 with the lowest and highest energy prices,
respectively.

The DA offering and bidding curves are the key outputs of the proposed
method. These curves for two specific hours and two different risk levels are
shown in Fig. 4. As can be seen, different scheduling cases and risk levels lead
to diverse offering and bidding curves. In the risk-neutral analysis (β = 0),
the bidding quantities of the second and the third scheduling cases are lower
than or equal the corresponding quantities in the first case, while the system’s
offering values in the second and the third cases for price realizations higher
than e57.2/MWh are higher than in case 1. Also in the risk-aversion case
(β = 2), the generation offers of the HPGS at hour 22 increase for two price
realizations, i.e., e54.88/MWh and e57.2/MWh, while its offering curve in
the first case does not change in comparison with the risk-neutral analysis.
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Figure 3: Expected offering and bidding quantities of the HPGS in the DA market.

3.1.3. Impact of various offering and bidding cases on the intra-
day decisions

The total traded energy in the intraday market for all scheduling cases
and various values of β are presented in Fig. 5. The total traded energy
in the first case has a positive value for all risk aversion levels, indicating
that the total amount of power sold is higher than the amount of power
purchased in this market. In the second case, the total amount of energy
sold in this market is decreased, and, subsequently, by increasing the value
of β, the system concentrates on purchasing electricity rather than selling it
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Figure 4: Offering and bidding curves of the HPGS in the DA market for hours 3 and 22.

in the intraday market. Finally, in the last case, the total traded energy for
both risk-neutral and risk aversion cases is negative due to the availability
of the IDREX market. Fig. 6 shows the optimal procured pool-based and
bilateral-based energy from DRRs in the third case. It can be seen that the
power provided during the valley period is at its highest limit due to the
low price offers of DRRs in this period. Despite changing parameter β, the
bilateral-based energy does not change, while the pool-based energy merely
experiences slight variations during off-peak and peak periods.

3.1.4. Impact of various offering and bidding cases on the imbal-
ances

The effects of the different scheduling cases and diverse risk-aversion lev-
els on the last-stage decisions of the developed offering and bidding structure,
namely, imbalance cost and total energy deviations are shown in Fig. 7. By
comparing the imbalance cost for different values of β, we can conclude that
the more conservative the policy is, the more eager the system becomes to re-
duce the imbalance cost, and, thus, increase its profitability in the balancing
market. From this figure, it is observed that the imbalance cost of the HPGS
in the second offering and bidding case increases in comparison with the
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Figure 5: Total traded energy in the intraday market for different values of β.
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Figure 6: Optimal traded energy between the HPGS and DRRs in the third case.

first one. This is due to the fact that the coordinated scheduling of existing
units lets the system take action more freely in the target markets which, ac-
cordingly, despite the rising imbalance cost, increases the system’s expected
profit. However, as can be seen from Fig. 7, the third operational case can
be used to considerably reduce the imbalance cost of the second case by pro-
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Figure 7: Expected imbalance cost and total energy deviations in the balancing market
for different values of β.

viding energy from DRRs in the IDREX market. It should be noted that the
results of total deviations in the balancing market are inversely related to the
imbalance cost in the aforementioned market. It is also worth mentioning
that positive values of energy deviations reflect the excess of generated energy
in the balancing market which should be sold in this market, while negative
values represent the shortage of delivered energy in the balancing market
with respect to the scheduled energy that needs to be purchased from this
market. For instance, as the total energy deviations increase (increasing β),
the imbalance cost reduces. Similarly, the highest negative energy deviation
concerns the second operational case with the highest imbalance cost.
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Table 6: Economic impacts of the BES degradation cost on two specific case studies

Case studies
Expected Expected CVaR

profit (e) degradation cost (e) (e)

Case 1: BES
1,934.829 0 424.952

without degradation cost

Case 1: BES
1,869.419 62.531 382.926

with degradation cost

Case 3
40,763.112 0 26,492.865

without degradation cost

Case 3
40,693.201 67.206 26,436.749

with degradation cost

3.2. Results: Part II

In this part, the influence of adding the BES degradation cost on the
proposed methodology is investigated. As previously stated in 2.3, to keep
the model linear, the degradation cost curve is linearized by means of 20
blocks. Table 6 reports the results of considering or ignoring the BES degra-
dation cost for two specific case studies, namely, uncoordinated (Case 1) and
coordinated (Case 3) operations. According to these results, considering the
BES degradation imposes economic losses of e62.531 and e67.206 on un-
coordinated and coordinated operations, respectively. Not surprisingly, the
CVaR also decreases by taking into account the BES degradation. Moreover,
the greater degradation cost of Case 3 reveals that this strategy has deeper
depth of discharges compared to Case 1. The expected profit values and
corresponding CVaR values for Case 3 with degradation cost under various
values of β are depicted in Fig. 8. As seen, by increasing the value of β,
CVaR values are increased, while expected profit values are decreased.

Fig. 9 and Fig. 10 illustrate the BES offering and bidding quantities
in DA and intraday markets, respectively. As reported by these figures, all
in all, Case 3 experiences greater depth of discharges in comparison with
Case 1. Furthermore, by comparing the offering and bidding quantities of
the BES system with and without degradation in Case 1, it is observed that
offering and bidding values in both DA and intraday markets decrease if
we take into account the degradation cost. Following this, smaller bidding
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Figure 9: Expected offering and bidding quantities of the BES in the DA market by
considering and ignoring the BES degradation.

quantities in both DA and intraday markets are noted when counting the
degradation cost in Case 3. Also, a comparison between the offering values
in the DA and intraday markets with and without taking into account BES
degradation lets us conclude that degradation considerations lead to higher
intraday and lower DA offering values. Lastly, the model statistics in Case
3 with degradation cost are given in Table 7. Note that all simulations have
been performed in an ASUS laptop with 8GB of RAM and a Core i5 CPU.
As seen, the computation time is acceptable, and the model has been scaled
well.
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Figure 10: Expected offering and bidding quantities of the BES in the intraday market by
considering and ignoring the BES degradation.

Table 7: Model statistics in Case 3 with degradation cost

Number of continuous variables 56,385

Number of binary variables 120

Number of equations variables 73,034

Computation time 5.9 Sec

4. Conclusions and Future Work

In this paper, a comprehensive joint offering and bidding mechanism was
presented for an HPGS comprising of BES and CAES facilities together with
wind units and energy transactions with DRRs. The proposed model was for-
mulated as a three-stage stochastic MILP problem and a practical risk man-
agement index, i.e., CVaR, was included in the suggested structure. Diverse
case studies based on various offering and bidding schemes were designed,
and different aspects of solutions were studied. The main observations are:

� The impact of coordinated operation of wind, BES and CAES resources
on profit gain is more significant than the CVaR gain, while using
energy transactions between the HPGS and DRRs in the proposed
scheduling framework leads to a similar increase of expected profit and
CVaR, i.e., 22.11% and 23%, respectively.

� The coordinated participation of all resources in the electricity mar-
kets has the most considerable influence on DA decisions of the wind
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farm. In this regard, various risk-aversion levels and different opera-
tional schemes give rise to variations in the offering and bidding curves.

� The share of intraday energy market sales in the disjoint strategy is
higher than in the coordinated one. Furthermore, adopting a more
conservative approach increases the system’s tendency to purchase en-
ergy from this market.

� The coordinated offering and bidding model allows a more flexible in-
volvement of the HPGS in the DA and intraday markets by increas-
ing downward imbalances in the balancing market aiming for a higher
profit. In this regard, the IDREX market proves to be a useful tool to
dramatically lower the imbalance cost imposed on the system.

� The BES system experiences a deeper depth of discharge in the coordi-
nated operation compared to the uncoordinated one, which results in
a greater degradation cost.

For future work, we plan to incorporate power-to-gas facilities into the pro-
posed HPGS and establish an appropriate offering and bidding mechanism
to enlarge the system’s flexibility and profitability. Further, providing bal-
ancing reserves in addition to balancing energy could be another perspective
for future research directions.

References

[1] Samal RK, Tripathy M. Cost savings and emission reduction capabil-
ity of wind-integrated power systems. Int J Electr Power Energy Syst
2019;104:549–61.

[2] Agrali C, Gultekin H, Tekin S, Oner N. Measuring the value of energy
storage systems in a power network. Int J Electr Power Energy Syst
2020;120:106022.

[3] Child M, Bogdanov D, Breyer C. The role of storage technologies for
the transition to a 100% renewable energy system in Europe. Energy
Procedia, 2018, p. 44–60. https://doi.org/10.1016/j.egypro.2018.11.067.
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[5] Cao D, Hu W, Xu X, Dragičević T, Huang Q, Liu Z, et al. Bid-
ding strategy for trading wind energy and purchasing reserve of wind
power producer–A DRL based approach. Int J Electr Power Energy Syst
2020;117:105648.

[6] AlAshery MK, Xiao D, Qiao W. Second-Order Stochastic Domi-
nance Constraints for Risk Management of a Wind Power Pro-
ducer’s Optimal Bidding Strategy. IEEE Trans Sustain Energy 2019.
https://doi.org/10.1109/tste.2019.2927119.

[7] Aghaei J, Barani M, Shafie-Khah M, Sanchez De La Nieta AA,
Catalao JPS. Risk-Constrained Offering Strategy for Aggregated
Hybrid Power Plant Including Wind Power Producer and De-
mand Response Provider. IEEE Trans Sustain Energy 2016;7:513–25.
https://doi.org/10.1109/TSTE.2015.2500539.

[8] Khaloie H, Mollahassani-pour M, Anvari-Moghaddam A. Optimal Behav-
ior of a Hybrid Power Producer in Day-Ahead and Intraday Markets: A
Bi-Objective CVaR-Based Approach. IEEE Trans Sustain Energy 2020:1.

[9] Fan W, Huang L, Cong B, Degejirifu, Tan Z, Xing T. Research on an
optimization model for wind power and thermal power participating in
two-level power market transactions. Int J Electr Power Energy Syst
2022;134:107423. https://doi.org/10.1016/J.IJEPES.2021.107423.

[10] Pei W, Du Y, Deng W, Sheng K, Xiao H, Qu H. Optimal Bidding
Strategy and Intramarket Mechanism of Microgrid Aggregator in Real-
Time Balancing Market. IEEE Trans Ind Informatics 2016;12:587–96.
https://doi.org/10.1109/TII.2016.2522641.

[11] Mirzaei MA, Hemmati M, Zare K, Abapour M, Mohammadi-Ivatloo
B, Marzband M, et al. A novel hybrid two-stage framework for flexible
bidding strategy of reconfigurable micro-grid in day-ahead and real-time
markets. Int J Electr Power Energy Syst 2020;123:106293.

[12] Samadi Gazijahani F, Salehi J. IGDT based Complementarity Ap-
proach for Dealing with Strategic Decision Making of Price Maker
VPP Considering Demand Flexibility. IEEE Trans Ind Informatics 2019.
https://doi.org/10.1109/tii.2019.2932107.

31



[13] Vahedipour-Dahraie M, Rashidizadeh-Kermani H, Anvari-Moghaddam
A, Siano P. Risk-averse probabilistic framework for scheduling of virtual
power plants considering demand response and uncertainties. Int J Electr
Power Energy Syst 2020;121:106126.

[14] Hasankhani A, Hakimi SM. Stochastic energy management of smart mi-
crogrid with intermittent renewable energy resources in electricity market.
Energy 2021;219:119668.

[15] Arteaga J, Zareipour H. A Price-maker/Price-taker model for the Op-
eration of Battery Storage Systems in Electricity Markets. IEEE Trans
Smart Grid 2019;10:6912–20.

[16] Attarha A, Amjady N, Dehghan S. Affinely adjustable robust bidding
strategy for a solar plant paired with a battery storage. IEEE Trans Smart
Grid 2019;10:2629–40. https://doi.org/10.1109/TSG.2018.2806403.

[17] Khaloie H, Abdollahi A, Shafie-khah M, Anvari-Moghaddam
A, Nojavan S, Siano P, et al. Coordinated wind-thermal-energy
storage offering strategy in energy and spinning reserve mar-
kets using a multi-stage model. Appl Energy 2019:114168.
https://doi.org/10.1016/J.APENERGY.2019.114168.

[18] Khatami R, Oikonomou K, Parvania M. Look-Ahead Optimal Partici-
pation of Compressed Air Energy Storage in Day-ahead and Real-time
Markets. IEEE Trans Sustain Energy 2019.

[19] Attarha A, Amjady N, Dehghan S, Vatani B. Adaptive Ro-
bust Self-scheduling for a Wind Producer with Compressed
Air Energy Storage. IEEE Trans Sustain Energy 2018;3029.
https://doi.org/10.1109/TSTE.2018.2806444.

[20] Jirsaraie SG, Ghadi MJ, Vahed AA, Aghaei J, Li L, Zhang J. Risk-
Constrained Bidding Strategy for a Joint Operation of Wind Power and
Compressed Air Energy Storage Aggregators. IEEE Trans Sustain Energy
2019.

[21] Abbasi MH, Taki M, Rajabi A, Li L, Zhang J. Coordinated opera-
tion of electric vehicle charging and wind power generation as a virtual
power plant: A multi-stage risk constrained approach. Appl Energy 2019.
https://doi.org/10.1016/j.apenergy.2019.01.238.

32



[22] Khaloie H, Abdollahi A, Rashidinejad M. Risk-Constrained Self-
Scheduling and Forward Contracting Under Probabilistic-Possibilistic
Uncertainties. Electr. Eng. (ICEE), Iran. Conf., IEEE; 2018, p. 1138–43.
https://doi.org/10.1109/ICEE.2018.8472668.

[23] Khaloie H, Abdollahi A, Rashidinejad M, Siano P. Risk-based
probabilistic-possibilistic self-scheduling considering high-impact low-
probability events uncertainty. Int J Electr Power Energy Syst
2019;110:598–612. https://doi.org/10.1016/j.ijepes.2019.03.021.

[24] MollahassaniPour M, Taheri I, Marzooni MH. Assessment of transmis-
sion outage Contingencies’ effects on bidding strategies of electricity sup-
pliers. Int J Electr Power Energy Syst 2020;120:106053.

[25] Khaloie H, Anvari-Moghaddam A. Robust Optimization Approach
for Generation Scheduling of a Hybrid Thermal-Energy Storage
System. 2020 IEEE 29th Int Symp Ind Electron 2020:971–6.
https://doi.org/10.1109/ISIE45063.2020.9152266.

[26] Sharifi R, Anvari-Moghaddam A, Fathi SH, Vahidinasab V. A bi-level
model for strategic bidding of a price-maker retailer with flexible de-
mands in day-ahead electricity market. Int J Electr Power Energy Syst
2020;121:106065.

[27] Zhang R, Jiang T, Li F, Li G, Chen H, Li X. Bi-level strategic bidding
model for P2G facilities considering a carbon emission trading scheme-
embedded LMP and wind power uncertainty. Int J Electr Power Energy
Syst 2021;128:106740.

[28] Golmohamadi H, Keypour R, Bak-Jensen B, Pillai JR, Khooban MH.
Robust Self-Scheduling of Operational Processes for Industrial Demand
Response Aggregators. IEEE Trans Ind Electron 2019;67:1387–95.

[29] Liu W, Wen F, Qi D. Intraday Residential Demand Response Scheme
Based on Peer-to-Peer Energy Trading. IEEE Trans Ind Informatics 2019.

[30] Khaloie H, Vallée F, Lai CS, Toubeau J-F, Hatziargyriou ND. Day-ahead
and Intraday Dispatch of an Integrated Biomass-Concentrated Solar Sys-
tem: A Multi-Objective Risk-Controlling Approach. IEEE Trans Power
Syst 2021.

33



[31] Khaloie H, Abdollahi A, Nojavan S, Shafie-Khah M, Anvari-Moghaddam
A, Siano P, et al. Offering Strategy of Thermal-Photovoltaic-Storage
Based Generation Company in Day-Ahead Market. Electr. Mark.,
Springer; 2020, p. 113–33.

[32] Conejo AJ, Carrión M, Morales JM. Decision Making Under Uncer-
tainty in Electricity Markets. vol. 1. Boston, MA: Springer US; 2010.
https://doi.org/10.1007/978-1-4419-7421-1.

[33] Khaloie H, Anvari-Moghaddam A, Contreras J, Siano P. Risk-
involved optimal operating strategy of a hybrid power generation
company: A mixed interval-CVaR model. Energy 2021;232:120975.
https://doi.org/10.1016/j.energy.2021.120975.

[34] Hakimi SM, Hasankhani A, Shafie-khah M, Catalão JPS. Stochastic
planning of a multi-microgrid considering integration of renewable energy
resources and real-time electricity market. Appl Energy 2021; (accepted).

[35] Khaloie H, Abdollahi A, Shafie-Khah M, Siano P, Nojavan S,
Anvari-Moghaddam A, et al. Co-optimized bidding strategy of an
integrated wind-thermal-photovoltaic system in deregulated electric-
ity market under uncertainties. J Clean Prod 2020;242:118434.
https://doi.org/10.1016/j.jclepro.2019.118434.

[36] Xu B, Zhao J, Zheng T, Litvinov E, Kirschen DS. Factor-
ing the Cycle Aging Cost of Batteries Participating in Elec-
tricity Markets. IEEE Trans Power Syst 2018;33:2248–59.
https://doi.org/10.1109/TPWRS.2017.2733339.

[37] Bienvenido — ESIOS electricidad · datos · transparencia n.d.
https://www.esios.ree.es/es (accessed March 14, 2019).

[38] Weather history+ - meteoblue n.d.
https://www.meteoblue.com/en/historyplus (accessed April 22, 2019).

[39] Khaloie H, Anvari-Moghaddam A, Hatziargyriou N, Con-
treras J. Risk-constrained self-scheduling of a hybrid power
plant considering interval-based intraday demand response
exchange market prices. J Clean Prod 2021;282:125344.
https://doi.org/https://doi.org/10.1016/j.jclepro.2020.125344.

34

View publication statsView publication stats

https://www.researchgate.net/publication/355023852

	Manuscript_Clean
	Introduction
	Materials and Methods
	Decision-making framework
	Problem formulation in the absence of degradation cost
	CVaR constraints
	BES operating constraints
	CAES operating constraints
	DR constraints
	Imbalance constraints
	Offering and bidding curve constraints

	Problem formulation in the presence of degradation cost

	Simulation Results
	Results: Part I
	Impact of various offering and bidding cases on the expected profit and CVaR
	Impact of various offering and bidding cases on the DA decisions
	Impact of various offering and bidding cases on the intraday decisions
	Impact of various offering and bidding cases on the imbalances

	Results: Part II

	Conclusions and Future Work


