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Application of Newton Identities in
Solving Selective Harmonic Elimination Problem

with Algebraic Algorithms
Chenxu Wang, Qi Zhang, Student Member, IEEE, Dunzhi Chen, Student Member, IEEE, Zhaoyuan Li, Wensheng

Yu, Kehu Yang, Member, IEEE

Abstract—Algebraic algorithms are powerful methods in solv-
ing the selective harmonic elimination (SHE) problem, which
can find all exact solutions without requirements on choosing
initial values. However, the huge computational burden and long
solving time limit the solving capability of algebraic algorithms.
This paper presents a novel Newton’s identifies-based method to
simplify the SHE equations including the order reduction and the
variable elimination, thereby reducing the computational burden
and the solving time of algebraic algorithms or in other words
improving the solving capability of the algebraic algorithms.
Compared with existing simplification methods, the proposed
method significantly improves the efficiency of solving SHE
equations. With the proposed method, the degree reduction is
no longer the bottleneck of solving the SHE equations by using
algebraic algorithms. By using the proposed method, the SHE
equations with 10 switching angles are completely solved with
the algebraic algorithm for the first time. The simulation and
experiment results indicate the proposed method is effective and
correct.

Index Terms—Selective harmonic elimination, Newton’s iden-
tities, power sums, elementary symmetric polynomials.

I. INTRODUCTION

The power electronic converters usually utilize very low

switching frequency in high-power applications because of

limitations of the switching losses and the electromagnetic

interface (EMI) issue [1]–[7]. With such low switching fre-

quency, the selective harmonic elimination (SHE) technology

has been the best modulation strategy due to its outstanding

output harmonic performance in the medium and high power

applications, such as motor drive, grid-connected converters,

active rectifiers [8]–[13]. The switching angles should be

obtained firstly by solving a group of strong nonlinear tran-

scendental equations namely the SHE equations in practical
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applications. However, how to solve the SHE equations is

quite a complicated problem because of the complexity and

the multisolution feature of the SHE equations.

There are three classes of methods to solve the SHE

equations: numerical algorithms [14], intelligent optimization

algorithms [15]–[23], and algebraic algorithms [24]–[35]. Nu-

merical algorithms are the most traditional methods to solve

the SHE equations. They can provide high accuracy results

with fast convergence. However, they strongly rely on the

guess of initial values which is quite an issue especially for

multilevel converters because there has no systematic method

to find feasible initial values. Moreover, Numerical algorithms

cannot handle the multisolution feature of the SHE equations,

and usually, they can provide only one solution or just a

part of the complete solutions. Even through a modified

numerical method [14] was proposed aiming to obtain the

complete solution of the SHE equations, the obtained results

cannot be mathematically proven to be complete solutions

of the SHE equations. Based on the numerical computation

technology, the development of intelligent optimization algo-

rithms provides new strategies to solve the SHE equations.

Intelligent optimization algorithms, to some extent, overcomes

the initial values issue, because the initial values of intelligent

optimization algorithms can be selected randomly. However,

intelligent optimization algorithms are lack of the support of

mathematical theory and sensitive to input parameters, so the

precision of solutions are difficult to be guaranteed. Therefore,

most intelligent optimization algorithms focus on the research

of convergence speed and fitness function value, and some

satisfactory results have been obtained [16], [22], [23]. Nev-

ertheless, they also cannot deal with the multisolution feature

of the SHE equations because of the local optimum problem.

In a summary, the numerical algorithms and the intelligent

optimization algorithms both cannot obtain complete solutions

of the SHE equations.

Algebraic algorithms are introduced to solve the SHE equa-

tions because of their outstanding characteristics [27]–[29].

They are implemented based on the algebraic theory, and all

computations inside are carried out with symbols, not specific

values, therefore, they do not need to be given any specific

initial values, and the complete solutions can be obtained by

only one solving procedure. Moreover, they can give a direct

and clear conclusion about the complete solutions of the SHE

equations, for example, whether the SHE equations have solu-

tions or not, and the conditions for the SHE equations to have
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solutions. So as to say, the algebraic algorithms seem to be the

most powerful tool to solve the SHE equations compared with

numerical and intelligent optimization algorithms. However,

the algebraic algorithms face a big problem to solve the SHE

equations. The algebraic methods require huge computation

sources, for instance, the huge computer burden and the large

random access memory (RAM) space. In addition, the time

for solving is usually very long to solve the SHE equations

with more switching angles. Thus, the solving capability of

the algebraic algorithms are limited.

To improve the solving capability of the algebraic algo-

rithms, our previous study [34] and other publications [31],

[32] found that the SHE equations can be transformed into

symmetric polynomial system, and it can be further simplified

into a lower-order and less-variables polynomial system. With

the simplification, the computation burden and the solving

time can be reduced, thus, the solving capability of algebraic

algorithms can be pushed to higher level.

Two attempts have gained success on simplification of the

SHE equations. The power sums based method was proposed

to simplify the SHE equations [30], in which the SHE equa-

tions are transformed into the form of power sums polynomi-

als, and then solved by the resultant elimination method. With

the power sum simplification method, the solving capability

of the resultant elimination method is improved from 3 to 5

switching angles. However, this simplification faces a problem

that the simplification is coupled with the solving procedure.

It introduces one extra polynomial system, which is to some

extent almost same complicated with the simplified SHE

equations, thus, the solving procedure have to be called twice

as a result the solving time becomes longer. Likewise, the

elementary symmetric polynomial (ESP) is also introduced to

simplify the SHE equations. The results published in [31],

[32], [34] show that the ESP simplification can significantly

improve the solving capability of the Groebner basis method

and the solving capability is pushed to 9 switching angles.

However, the efficient of this simplification method is not

so high enough to deal with the SHE equations with more

switching angles, for example, to simplify the SHE equations

with 8 switching angles, it needs more than 34 hours in a

common workstation to finish the simplification. Furthermore,

if the number of switching angles is larger than 9, it fails

to finish the computation. Consequently, even through these

two methods have been successfully used to simplify the SHE

equations, the simplification method is still a bottleneck of the

algebraic algorithms to solve the SHE equations.

To improve the performance of the algebraic algorithms

for solving the SHE equations, this paper presents a novel

simplification method based on Newton’s identities for the

SHE equations, including the degree reduction and variable

elimination. Compared with the existing two simplification

method, the proposed method is much simple and effective,

so it can dramatically improve the speed and the capability

of the simplification of the SHE equations. If only the sim-

plification procedure is considered, the proposed method can

deal with the SHE equations with more than 50 switching

angles, arguably, the bottleneck of the simplification of the

SHE equations can be eliminated with the proposed method.

Obviously, the solving capability of existing algebraic algo-

rithms can be further improved with the proposed method. For

example, with the proposed method, the solving capability of

the Groebner basis method can be improved to 10. To our

best knowledge, this is the first time to obtain the complete

solutions of the SHE equations with 10 switching angles,

whatever kind of solving method is used. Furthermore, the

proposed method also can be used for the numerical and the

intelligent optimization algorithms, if the SHE equations is

also needed to be simplified. Because this topic is out of the

focus of this paper, the details will not be discussed in this

article.

This paper is organized as follows. Section II describes

the unified mathematical model of the selective harmonic

elimination problem. Section III firstly provides basic concepts

and principle of Newton’s identities, and then presents the

proposed simplification algorithm. In section IV, some com-

putational results of 9 and 10 switching angles are analyzed

to identify the correctness of the proposed method. Besides,

the proposed method is compared and evaluated with existing

simplification method in section V. Furthermore, in section VI

the experiments of motor-drive applications and inverters are

carried out to verify the effectiveness and correctness of the

proposed method. Finally, this paper is concluded in section

VII.

II. MATHEMATICAL MODEL OF THE SHE PROBLEM

The selective harmonic elimination is based on the principle

of Fourier expansion. According to basic concepts of math-

ematic, any periodic signal can be expanded into a Fourier

series. The output PWM waveform of converters is commonly

periodic, obviously it can be expanded into the Fourier series,

in which the amplitude of fundamental and harmonic com-

ponent is represented with a sum of trigonometric functions

with the switching angles as variables. If a group of switching

angles, such that the fundamental component of the output

waveform equals to a desired value while the amplitudes of the

selected harmonics all equal to zero, can be obtained, and the

output voltage waveform of the converter can be constructed

with the obtained switching angles, the output of the converter

will not contain the selective harmonics. According to the

conclusion in [35], the switching angles can be obtained by

solving such a group of equations expressed as (1), namely

the SHE equations, in which m = πU/4Vdc is the modulation

index, n is the number of the switching angles and also

the number of the equations. U is the desired amplitude of

fundamental component, Vdc is the voltage of the DC source,

αi(i = 1, 2, .., n) are the switching angles in a quarter period,

k is the order of the eliminated harmonics.⎧⎪⎪⎨
⎪⎪⎩

n∑
i=1

cos(αi) = m

n∑
i=1

cos(kαi) = 0, k = 5, 7, 11 · · ·
(1)

It should be pointed out that the SHE equations expressed

in (1) is a unified model. Although it looks like the traditional

SHE model for the multilevel staircase waveform, they are

completely different in essence. The traditional model is
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limited by the switching pattern, i.e., the combination of

transition states on each switching angles, so there has an

inequality constraint of switching angles for the traditional

model. However, the unified model removes the inequality

constraint of switching angles and includes all possible switch-

ing patterns, which significantly increase the solution space.

Thus, this model can be used for converters with any topology,

e.g. two-level, three-level, or multilevel converters. For more

details, please reference the literature [35].

It can be seen that the SHE equations (1) contain only cosine

functions with switching angles αi as variables. In order to

apply the algebraic algorithms, the SHE equations should be

firstly transformed into an algebraic polynomial system, and

this procedure can be carried out with the application of the

first kind Chebyshev polynomial: Tk(cos(αi)) = cos(kαi),
where the Tk represents a polynomial expression. Furthermore,

if define xi = cos(αi), the Chebyshev polynomial can be

rewritten as Tk(xi) = cos(kαi). Based on the Chebyshev

polynomial, all cosine function terms in the SHE equations (1)

can be transformed into polynomial equations (3) by using the

recursions (2). Finally, the SHE equations (1) is transformed

into the polynomial system (3), based which the algebraic

algorithms can be applied to solve the system. As mentioned

in the introduction section, this system is quite complicated,

so it is very hard to solve the polynomial system directly. The

proposed simplification method is aims to reduce the order and

the amount of variables of the polynomial system to make it

being much easier to be solved.

⎧⎪⎪⎨
⎪⎪⎩

T1(x) = x, T2(x) = 2x2 − 1
...

Tk(x) = 2xTk−1(x)− Tk−2(x)

(2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(x) =

n∑
i=1

xi −m = 0

f5(x) =

n∑
i=1

(
5xi − 20x3

i + 16x5
i

)
= 0

f7(x) =

n∑
i=1

(−7xi + 56x3
i − 112x5

i + 64x7
i

)
= 0

...

(3)

III. SOLVING SHE PROBLEM WITH THE PROPOSED

ALGORITHM

This section proposes a novel simplification method, which

has a simple process and only involves multiplications and ad-

ditions. This simplification method can equivalently transform

(3) into a lower-order algebraic polynomial system, and no

solution is lost in this process. Combined with other algebraic

methods, the proposed method can solve the highest number of

switching angles so far. This section will give the principle of

the proposed method and the detailed steps of whole solving

process.

A. Newton’s identities

In the algebraic theory [36], Newton’s identifies gives the

relationship between the power sums polynomials and the

elementary symmetric polynomials. Let xi, 1 ≤ i ≤ n are

variables, the k-th power sums polynomials are defined as:

pk =

n∑
i=1

xk
i

And the elementary symmetric polynomial are defined as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e0 = 1

e1 = x1 + x2 + · · ·+ xn

e2 =
∑

1≤i<j≤n xixj

...

en = x1x2 · · ·xn

ek = 0, for k > n

(4)

Then, Newton’s identities can be stated as follows, and it is

valid for all n ≥ k ≥ 1.

kek =

k∑
i=1

(−1)i−1ek−ipi (5)

Also, when k > n ≥ 1, Newton’s identities should be stated

as

0 =
k∑

i=k−n

(−1)i−1ek−ipi (6)

Therefore, according to the definitions of Newton identities,

power sum polynomials can be recursively expressed in terms

of elementary symmetric polynomials, and pk can be con-

cretely rewritten as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p1 = e1

p2 = e1p1 − 2e2

p3 = e1p2 − e2p1 + 3e3
...

pn = e1pn−1 − e2pn−2 + · · ·+ (−1)n−1(n)en
...

pk = e1pk−1 + e2pk−2 + · · ·+ (−1)k−1enpk−n

(7)

B. Degree reduction with Newton’s identities

The algebraic polynomial system (3) can be simplified based

on the principle of Newton’s identities. As the subsequent

derivation is related to the number of switching angles, for

convenience, the case described following is with ten switch-

ing angles. Firstly, by substituting the power sum polynomials

to the SHE equations (3), the following equations (8) can be

obtained. It can be seen that (8) is undetermined since the

number of unknown variables is more than the number of

equations, so, it cannot be solved directly.
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

p1 −m = 0

5p1 − 20p3 + 16p5 = 0

−7p1 + 56p3 − 112p5 + 64p7 = 0
...

29p1 − 4060p3 + · · ·+ 268435356p29 = 0

(8)

Based on the principle of Newton identities, the number

of variables of (8) can be reduced to the same number as

equations. According to the Newton’s identities, all the power

sums whose degree higher than n can be rewritten in the low-

order power sums p1 ∼ pn, which could make the system

balanced. Therefore, the second step is to rewritten elementary

symmetric polynomials e1 ∼ e10 in terms of power sums

polynomials p1 ∼ p10 according to (5).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e1 = p1

e2 =
p2
1

2 − p2

2

e3 =
p3
1

6 − p1p2

2 + p3

3

e4 =
p4
1

24 − p2
1p2

4 +
p2
2

8 + p1p3

3 − p4

4
...

e10 =
p10
1

3628800 − p2p
8
1

80640 + · · ·+ p4p6

24 − p10

10

(9)

The third step is to transform p11 ∼ p29 into p1 ∼ p10
by taking the elementary symmetric polynomials (9) into the

Newton identities (7). The results are expressed as (10).
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

p11 =
−p11

1

3628800+
11p2p

9
1

725760−· · ·− 11p3p7

21 + 11p1p10

10

p12 =
−p2p

10
1

3628800+
p3p

9
1

362880+· · ·− p2p4p6

4 + 3p2p10

5

p13 =
−p3p

10
1

3628800+
p4p

9
1

362880+· · ·− 13p3p4p6

72 + 13p3p10

30
...

p29 =
−p10

1

3628800+
p8
1p2

80640+· · ·+ p1p3p6

18 − p1p3p7

21

(10)

Finally, by substituting the high-order power sums poly-

nomials in (8), i.e., the p11, p13, p17, p19, p23, p25, p29, with

their expression in (10), the polynomial system with degree

reduction are obtained as (11).⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p1 −m = 0

5p1 − 20p3 + 16p5 = 0

−7p1 + 56p3 − 112p5 + 64p7 = 0

−4p111 + 220p91p2 − · · · − 6160p2p9 = 0
...

20512p291 · · · − 69167561057280000000p32p
2
4p9 = 0

(11)

In (11), as the modulation index m will be preset and

p1 = m, the number of variables is decreased from 10 to 9

and their degree are greatly reduced. Table I gives the degree

comparison between the original algebraic SHE equations and

the degree-reduced SHE equations. At this point, the stage of

simplifying SHE equations has been completed. In the process

of simplification, every step is equivalent transformation. Thus,

although the degree of the polynomial system have been sig-

nificantly reduced, the solutions of the simplified polynomial

TABLE I
COMPARISON OF THE DEGREE OF f29(x) AND f29(p)

x1/p1 x2/p2 x3/p3 x4/p4 x5/p5

f29(x) 29 29 29 29 29

f29(p) 0 14 9 6 5

x6/p6 x7/p7 x8/p8 x9/p9 x10/p10

f29(x) 29 29 29 29 29

f29(p) 4 4 3 3 2

Algorithm 1 The proposed algorithm

1: Algebraic polynomial system f(x1, x2, · · · , xn)
2: Substitute x1, x2, · · · , xn with p1, p2, · · · , pn, · · · , pk,

f(x1, · · · , xn) is transformed into f(p1, · · · , pn, · · · , pk).
3: if The number of p larger than n then
4: Eliminate pn+1, · · · , pk according to (7).

5: end if
6: Eliminate all the elementary symmetric polynomials

e1, e2, · · · , en according to (7), get the final reduced

polynomial system f(p1, p2, · · · , pn).
7: Solve the Groebner basis of the reduced polynomial

system, get the results of p1, p2, · · · , pn.

8: Solve e1, e2, · · · , en from the results of p1, p2, · · · , pn
according to (7).

9: Using the coefficients e1, e2, · · · , en, construct

the univariate higher-order equation with variables

x1, x2, · · · , xn, according to (4).

10: Solve the univariate higher-order equation, and use the

inverse triangle transformation to get the final switching

angles.

system are exactly the same as the original polynomial system.

C. Solving final results by algebraic algorithm

The reduced polynomial system (11) can be solved by using

algebraic algorithms, such as the resultant elimination method,

the Wu’s method, and the Groebner basis method. According

to the published literatures [27], the Groebner basis method

has the best computation ability, so the Groebner basis method

is chosen here to solve (11). As the implementation of the

Groebner basis method is beyond the subject of this paper, the

detailed principle of this method is omitted here and it can be

found in [27]. In fact, some commercial symbolic computing

software, such as Maple and Mathematica, provide the com-

puting command of Groebner basis. Here, the command Basis
in Maple is used to compute Groebner basis of (11), and the

results are shown by (12).

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

a162p
162
2 + a161p

161
2 + · · ·+ a1p2 + a0 = 0

b1p3 + f1(p2) = 0

b2p4 + f2(p2) = 0
...

b8p10 + f8(p2) = 0

(12)

where a0, a1, · · · , a162 and b1, b2, · · · , b8 are all big integers,

and f1, f2, · · · , f8 are all univariate polynomials in p2, which
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are too large to be listed here. It can be seen from (12) that the

first equation is a univariate high-order polynomial equation

in p2. Although the degree of the first equation is very high,

how to solve a univariate higher order polynomial equation

is well studied in the algebraic field. Therefore, it is easy to

find all solutions of p2 in some mathematical software, such

as Maple, Mathematica, and Matlab. Here, we compute the

first equation in (12) by using the command fsolve in Maple.

Once the solutions of p2 are solved, the other eight equations

are converted to univariate linear equations, so all solutions of

p3, p4, · · · , p10 can be easily obtained.

After finding all solutions of p2, p3, · · · , p10, the last step is

to solve the results of x1, x2, · · · , x10. Actually, the results of

x can be solved from the univariate polynomial F (x) with the

elementary symmetric polynomials as coefficients. Suppose

F (x) as a univariate polynomial equation defined on the real

number field with roots x1, x2, · · · , x10, which can be written

as

F (x) = (x− x1)(x− x2) · · · (x− x10) (13)

If (13) is expanded, it can be seen that the coefficients of F (x)
have the same form of elementary symmetric polynomial (4).

Therefore, once the solutions of e1, e2, · · · , e10 are obtained,

the results of x1, x2, · · · , x10 can be solved from elementary

symmetric polynomials (4) by constructing the univariate

polynomial equation with coefficients e1, e2, · · · , e10 as (14).

f(x) = x10 − e1x
9 + e2x

8 − e3x
7 + · · · − e9x+ e10 (14)

The solutions of e2, e3, · · · , e10 can be easily solved by

using (9). Then, the final solutions for the algebraic form of

SHE equations (3) can be easily obtained by solving (14).

Finally, according to arccos(xi) = αi, switching angles

α1, α2, · · · , α10 can be obtained. In order to make the algo-

rithm easier to understand, the whole solving process has been

given in Algorithm 1.

IV. COMPUTATION RESULTS

Based on a workstation with XEON E3-1230 CPU and 16

GB RAM, and the symbolic computing software Maple21,

some results for the SHE equations with 9 and 10 switching

angles are obtained by combining the proposed method and

the Groebner basis method.

A. The SHE equations with ten switching angles

For the case of ten switching angles described in Section

III, when the modulation index m = 0.8, there are sixty-nine

groups of solutions in total, which are all listed in Table.

II. The arrows on the right sides of the angles indicate the

transition states of the PWM waveforms at each switching

angle. According to the levels of the generated waveforms,

the sixty-nine groups of solutions can be further classified to

three-level, five-level, seven-level and nine-level waveforms,

and each of them has three, fifty, fourteen and two groups

of solutions, respectively. This is the first time that all the

possible solutions for the SHE equations with ten switching

angles are given.
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Fig. 1. The solutions trajectories of three-level SHE problem. There is one
group of solution in (a) ∼ (g), and two groups of solutions in (h).
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B. The SHE equations with nine switching angles

Fig. 1 is the part of the solutions for three-level PWM

with nine switching angles. It can be seen that there have
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TABLE II
SIXTY-NINE GROUPS OF SWITCHING ANGLES FOR m = 4/5

α1 α2 α3 α4 α5 α6 α7 α8 α9 α10

1 12.89◦ ↓ 18.44◦ ↑ 21.47◦ ↓ 53.10◦ ↑ 55.77◦ ↓ 74.27◦ ↑ 76.68◦ ↓ 80.54 ◦ ↑ 82.70◦↓ 87.67◦↑
three-level 2 13.45◦ ↓ 15.78◦ ↑ 21.33◦ ↓ 42.06◦ ↑ 45.06◦ ↓ 52.92◦ ↑ 55.68◦ ↓ 82.64 ◦ ↑ 84.46◦↓ 88.00◦↑

3 12.55◦ ↓ 17.52◦ ↑ 23.28◦ ↓ 37.44◦ ↑ 39.91◦ ↓ 53.34◦ ↑ 55.91◦ ↓ 73.65 ◦ ↑ 75.87◦↓ 87.71◦↑
4 38.53◦ ↓ 41.54◦ ↑ 47.09◦ ↓ 53.07◦ ↑ 55.75◦ ↓ 73.41◦ ↓ 75.75◦ ↑ 82.09 ◦ ↓ 85.49◦↑ 88.56◦↓
5 21.47◦ ↓ 41.54◦ ↑ 47.10◦ ↓ 53.07◦ ↑ 55.75◦ ↓ 73.38◦ ↓ 75.68◦ ↑ 83.33 ◦ ↑ 85.20◦↓ 88.22◦↑
6 12.89◦ ↓ 38.53◦ ↓ 41.56◦ ↑ 53.09◦ ↑ 55.77◦ ↓ 73.14◦ ↑ 75.97◦ ↓ 77.42 ◦ ↑ 83.27◦↓ 87.74◦↑
7 18.46◦ ↑ 21.48◦ ↓ 47.09◦ ↓ 53.06◦ ↑ 55.74◦ ↓ 73.48◦ ↓ 76.02◦ ↑ 78.97 ◦ ↓ 84.96◦↑ 88.34◦↓
8 4.12◦ ↓ 38.56◦ ↓ 41.61◦ ↑ 47.17◦ ↓ 53.21◦ ↑ 64.18◦ ↑ 73.78◦ ↓ 76.32 ◦ ↑ 83.07◦↓ 87.67◦↑
9 12.93◦ ↓ 21.49◦ ↓ 41.52◦ ↑ 53.02◦ ↑ 55.72◦ ↓ 69.67◦ ↑ 69.79◦ ↓ 75.21 ◦ ↑ 84.70◦↑ 88.20◦↓

10 4.34◦ ↓ 21.50◦ ↓ 41.50◦ ↑ 47.04◦ ↓ 52.96◦ ↑ 64.30◦ ↑ 73.13◦ ↓ 75.34 ◦ ↑ 84.68◦↑ 88.19◦↓
11 13.22◦ ↓ 21.57◦ ↓ 41.35◦ ↑ 51.54◦ ↑ 52.37◦ ↓ 54.29◦ ↑ 56.16◦ ↓ 75.44 ◦ ↑ 84.76◦↑ 88.22◦↓
12 3.98◦ ↓ 18.33◦ ↑ 21.41◦ ↓ 47.24◦ ↓ 53.36◦ ↑ 64.10◦ ↑ 74.30◦ ↓ 78.37 ◦ ↑ 81.33◦↓ 87.45◦↑
13 7.39◦ ↓ 21.53◦ ↑ 36.58◦ ↓ 44.23◦ ↓ 48.96◦ ↑ 61.59◦ ↑ 63.00◦ ↓ 69.03 ◦ ↑ 77.94◦↓ 87.35◦↓
14 6.10◦ ↓ 9.22◦ ↑ 37.79◦ ↓ 40.25◦ ↑ 45.70◦ ↓ 63.98◦ ↑ 66.54◦ ↓ 78.04 ◦ ↓ 81.55◦↑ 87.28◦↓
15 15.56◦ ↑ 21.76◦ ↓ 40.75◦ ↑ 43.54◦ ↓ 47.60◦ ↓ 53.31◦ ↑ 55.87◦ ↓ 73.29 ◦ ↓ 85.03◦↑ 88.35◦↓
16 8.52◦ ↓ 28.11◦ ↓ 33.87◦ ↑ 42.48◦ ↓ 47.17◦ ↑ 59.62◦ ↑ 60.99◦ ↓ 69.92 ◦ ↑ 78.37◦↓ 82.18◦↑
17 4.27◦ ↓ 12.91◦ ↓ 18.47◦ ↑ 38.52◦ ↓ 53.04◦ ↑ 64.25◦ ↑ 74.56◦ ↑ 77.26 ◦ ↓ 83.46◦↓ 87.81◦↑
18 22.34◦ ↓ 25.79◦ ↑ 34.72◦ ↓ 40.91◦ ↑ 46.86◦ ↓ 52.90◦ ↑ 55.66◦ ↓ 73.52 ◦ ↓ 75.92◦↑ 88.63◦↓
19 13.49◦ ↓ 15.88◦ ↑ 38.68◦ ↓ 42.11◦ ↑ 45.04◦ ↓ 52.91◦ ↑ 55.67◦ ↓ 82.31 ◦ ↓ 85.85◦↑ 88.75◦↓
20 22.34◦ ↓ 28.07◦ ↓ 30.78◦ ↑ 40.79◦ ↑ 46.79◦ ↓ 52.84◦ ↑ 55.63◦ ↓ 73.54 ◦ ↓ 75.97◦↑ 85.58◦↑
21 7.02◦ ↑ 12.95◦ ↓ 18.50◦ ↑ 21.50◦ ↓ 55.68◦ ↓ 67.09◦ ↓ 75.09◦ ↑ 78.37 ◦ ↓ 84.62◦↑ 88.15◦↓
22 4.38◦ ↓ 12.98◦ ↓ 18.52◦ ↑ 21.51◦ ↓ 52.92◦ ↑ 64.31◦ ↑ 75.07◦ ↑ 78.34 ◦ ↓ 84.59◦↑ 88.14◦↓
23 20.14◦ ↑ 23.94◦ ↓ 28.72◦ ↑ 33.63◦ ↓ 46.49◦ ↓ 52.63◦ ↑ 55.51◦ ↓ 73.60 ◦ ↓ 75.92◦↑ 79.49◦↓
24 2.66◦ ↓ 5.53◦ ↑ 12.38 ◦ ↓ 38.74◦ ↓ 41.96◦ ↑ 64.42◦ ↑ 67.26◦ ↓ 75.22 ◦ ↑ 82.75◦↓ 87.55◦↑
25 8.85◦ ↓ 17.74◦ ↓ 26.80 ◦ ↑ 30.07◦ ↓ 46.82◦ ↑ 58.68◦ ↑ 60.05◦ ↓ 70.08 ◦ ↑ 80.73◦↑ 84.64◦↓

five-level 26 5.91◦ ↓ 8.94◦ ↑ 19.53 ◦ ↑ 22.08◦ ↓ 45.91◦ ↓ 63.99◦ ↑ 66.53◦ ↓ 77.15 ◦ ↓ 83.62◦↑ 87.58◦↓
27 13.47◦ ↓ 23.70◦ ↓ 28.56 ◦ ↑ 33.48◦ ↓ 39.98◦ ↑ 52.65◦ ↑ 55.53◦ ↓ 75.44 ◦ ↑ 77.43 ◦↓ 78.28◦↑
28 13.10◦ ↓ 16.45◦ ↓ 17.63 ◦ ↑ 38.65◦ ↓ 42.69◦ ↑ 53.00◦ ↑ 55.72◦ ↓ 74.63◦ ↑ 83.27◦↓ 87.75◦↑
29 4.19◦ ↓ 6.88◦ ↑ 12.89 ◦ ↓ 21.47◦ ↓ 41.55◦ ↑ 64.34◦ ↑ 67.12◦ ↓ 75.15◦ ↑ 84.69◦↑ 88.20◦↓
30 12.38◦ ↓ 17.41◦ ↑ 27.39 ◦ ↑ 31.88◦ ↓ 39.55◦ ↓ 53.50◦ ↑ 56.01◦ ↓ 73.42◦ ↑ 75.75◦↓ 83.10◦↓
31 6.82◦ ↓ 10.32◦ ↑ 15.23 ◦ ↓ 20.86◦ ↑ 37.05◦ ↓ 63.53◦ ↑ 65.82◦ ↓ 73.07◦ ↑ 76.07◦↓ 87.20◦↓
32 8.19◦ ↓ 12.51◦ ↑ 17.36 ◦ ↓ 27.95◦ ↓ 34.02◦ ↑ 61.06◦ ↑ 62.58◦ ↓ 70.66◦ ↑ 73.85◦↓ 81.60◦↑
33 3.66◦ ↓ 16.34◦ ↑ 23.03 ◦ ↓ 38.22◦ ↑ 41.25◦ ↓ 48.01◦ ↓ 53.91◦ ↑ 63.78◦ ↑ 73.82◦↓ 87.61◦↑
34 4.39◦ ↓ 23.43◦ ↓ 28.37 ◦ ↑ 33.38◦ ↓ 40.14◦ ↑ 46.60◦ ↓ 52.76◦ ↑ 64.43◦ ↑ 73.89◦↓ 76.53◦↑
35 10.18◦ ↑ 10.37◦ ↓ 12.80 ◦ ↓ 21.46◦ ↓ 41.57◦ ↑ 52.89◦ ↑ 55.67◦ ↓ 75.14◦ ↑ 84.68◦↑ 88.19◦↓
36 4.28◦ ↓ 13.76◦ ↓ 16.30 ◦ ↑ 38.77◦ ↓ 42.57◦ ↑ 45.25◦ ↓ 52.94◦ ↑ 64.31◦ ↑ 83.07◦↓ 87.68◦↑
37 3.19◦ ↓ 16.13◦ ↑ 27.01 ◦ ↑ 31.73◦ ↓ 40.53◦ ↓ 48.50◦ ↓ 54.55◦ ↑ 63.37◦ ↑ 73.71◦↓ 82.67◦↓
38 7.04◦ ↑ 13.05◦ ↓ 15.27 ◦ ↑ 21.46◦ ↓ 41.60◦ ↑ 44.88◦ ↓ 55.67◦ ↓ 67.10◦ ↓ 84.65◦↑ 88.18◦↓
39 4.37◦ ↓ 13.11◦ ↓ 15.31 ◦ ↑ 21.46◦ ↓ 41.61◦ ↑ 44.90◦ ↓ 52.91◦ ↑ 64.33◦ ↑ 84.64◦↑ 88.17◦↓
40 6.97◦ ↑ 12.86◦ ↓ 21.16 ◦ ↓ 24.32◦ ↑ 35.51◦ ↓ 41.75◦ ↑ 55.70◦ ↓ 67.05◦ ↓ 75.01◦↑ 88.07◦↓
41 6.90◦ ↑ 12.78◦ ↓ 21.07 ◦ ↓ 28.18◦ ↓ 32.17◦ ↑ 41.91◦ ↑ 55.74◦ ↓ 66.99◦ ↓ 74.89◦↑ 84.28◦↑
42 7.39◦ ↑ 13.52◦ ↓ 20.17 ◦ ↑ 24.02◦ ↓ 28.77◦ ↑ 33.67◦ ↓ 55.50◦ ↓ 67.40◦ ↓ 75.80◦↑ 79.43◦↓
43 6.11◦ ↓ 9.06◦ ↑ 18.03◦ ↓ 21.58◦ ↑ 36.79◦ ↓ 43.45◦ ↑ 46.45◦ ↓ 63.77◦ ↑ 66.19◦↓ 87.33◦↓
44 4.51◦ ↓ 13.53◦ ↓ 20.19◦ ↑ 24.04◦ ↓ 28.79◦ ↑ 33.67◦ ↓ 52.60◦ ↑ 64.50◦ ↑ 75.80◦↑ 79.42◦↓
45 8.88◦ ↓ 18.55◦ ↓ 22.41◦ ↑ 28.38◦ ↓ 34.42◦ ↑ 38.71◦ ↓ 46.52◦ ↑ 59.05◦ ↑ 60.45◦↑ 70.27◦↓
46 6.00◦ ↓ 9.18◦ ↑ 20.95◦ ↑ 26.56◦ ↓ 31.56◦ ↑ 35.75◦ ↓ 45.49◦ ↓ 64.11◦ ↑ 66.75◦↓ 77.69◦↓
47 13.61◦ ↓ 16.09◦ ↑ 22.63◦ ↓ 26.24◦ ↑ 34.55◦ ↓ 40.99◦ ↑ 44.46◦ ↓ 52.71◦ ↑ 55.56◦↓ 88.81◦↓
48 13.64◦ ↓ 16.12◦ ↑ 22.59◦ ↓ 27.83◦ ↑ 30.34◦ ↓ 40.83◦ ↑ 44.36◦ ↓ 52.67◦ ↑ 55.54 ◦↓ 85.79◦↓
49 3.91◦ ↓ 6.77◦ ↑ 13.18◦ ↓ 23.23◦ ↓ 28.25◦ ↑ 33.37◦ ↓ 40.36◦ ↑ 64.54◦ ↑ 67.47 ◦↓ 75.95◦↑
50 13.61◦ ↓ 15.96◦ ↑ 20.06◦ ↑ 23.91◦ ↓ 28.71◦ ↑ 33.63◦ ↓ 44.18◦ ↓ 52.59◦ ↑ 55.50◦↓ 79.45◦↓
51 13.59◦ ↓ 18.52◦ ↓ 19.15◦ ↑ 23.79◦ ↓ 28.65◦ ↑ 33.60◦ ↓ 40.53◦ ↑ 52.59◦ ↑ 55.49◦↓ 75.83◦↑
52 7.47◦ ↑ 13.92◦ ↓ 16.58◦ ↑ 23.49◦ ↓ 28.47◦ ↑ 33.51◦ ↓ 40.47◦ ↑ 44.12◦ ↓ 55.48◦↓ 67.44◦↓
53 4.50◦ ↓ 13.89◦ ↓ 16.55◦ ↑ 23.48◦ ↓ 28.46◦ ↑ 33.50◦ ↓ 40.46◦ ↑ 44.12◦ ↓ 52.56◦↑ 64.52◦↑
54 18.45◦ ↑ 38.53◦ ↓ 47.11◦ ↓ 53.08◦ ↑ 55.77◦ ↓ 73.16◦ ↓ 74.97◦ ↑ 77.47 ◦ ↑ 83.39◦↓ 87.78◦↑
55 6.84◦ ↑ 38.55◦ ↓ 41.59◦ ↑ 47.15◦ ↓ 55.83◦ ↓ 66.77◦ ↓ 73.84◦ ↓ 76.38 ◦ ↑ 83.09◦↓ 87.68◦↑
56 7.00◦ ↑ 21.49◦ ↓ 41.51◦ ↑ 47.06◦ ↓ 55.69◦ ↓ 67.05◦ ↓ 73.08◦ ↓ 75.30 ◦ ↑ 84.69◦↑ 88.19◦↓
57 7.02◦ ↑ 12.95◦ ↓ 38.50◦ ↓ 41.50◦ ↑ 55.68◦ ↓ 67.10◦ ↓ 75.14◦ ↑ 81.31 ◦ ↓ 84.46◦↑ 88.10◦↓
58 4.39◦ ↓ 12.98◦ ↓ 38.49◦ ↓ 41.47◦ ↑ 52.91◦ ↑ 64.32◦ ↑ 75.13◦ ↑ 81.23 ◦ ↓ 84.36◦↑ 88.06◦↓
59 6.75◦ ↑ 18.37◦ ↑ 21.43◦ ↓ 47.19◦ ↓ 55.91◦ ↓ 66.62◦ ↓ 74.40◦ ↓ 78.48 ◦ ↑ 81.41◦↓ 87.47◦↑

seven-level 60 6.94◦ ↑ 12.91◦ ↓ 18.46◦ ↑ 38.53◦ ↓ 55.74◦ ↓ 66.97◦ ↓ 74.56◦ ↑ 77.27 ◦ ↓ 83.45◦↓ 87.81◦↑
61 5.62◦ ↓ 8.53◦ ↑ 19.22◦ ↑ 38.10◦ ↓ 46.21◦ ↓ 63.98◦ ↑ 66.50◦ ↓ 76.54 ◦ ↓ 84.47◦↓ 88.26◦↑
62 8.58◦ ↓ 16.81◦ ↓ 24.51◦ ↓ 37.06◦ ↑ 47.54◦ ↑ 58.44◦ ↑ 59.76◦ ↓ 69.59 ◦ ↑ 79.54◦↑ 88.12◦↑
63 13.20◦ ↓ 15.02◦ ↑ 18.25◦ ↑ 38.59◦ ↓ 45.38◦ ↓ 53.00◦ ↑ 55.73◦ ↓ 77.32 ◦ ↓ 83.34◦↓ 87.77◦↑
64 6.22◦ ↑ 16.42◦ ↑ 23.06◦ ↓ 38.17◦ ↑ 41.18◦ ↓ 47.94◦ ↓ 56.21◦ ↓ 66.10 ◦ ↓ 73.91◦↓ 87.62◦↑
65 7.28◦ ↑ 23.45◦ ↓ 28.38◦ ↑ 33.38◦ ↓ 40.12◦ ↑ 46.59◦ ↓ 55.58◦ ↓ 67.23 ◦ ↓ 73.94◦↓ 76.58◦↑
66 7.10◦ ↑ 13.80◦ ↓ 16.34◦ ↑ 38.77◦ ↓ 42.58◦ ↑ 45.26◦ ↓ 55.69◦ ↓ 67.06 ◦ ↓ 83.08◦↓ 87.69◦↑
67 4.35◦ ↓ 12.86◦ ↓ 21.02◦ ↓ 24.15◦ ↑ 35.60◦ ↑ 41.84◦ ↓ 52.99◦ ↑ 64.27 ◦ ↑ 74.94◦↑ 88.01◦↓

nine-level 68 5.67◦ ↑ 16.23◦ ↑ 27.04◦ ↑ 31.72◦ ↓ 40.47◦ ↓ 48.40◦ ↓ 56.60◦ ↓ 65.51 ◦ ↓ 73.81◦↓ 82.71◦↓
69 4.31◦ ↓ 12.71◦ ↓ 20.86◦ ↓ 28.17◦ ↓ 32.35◦ ↑ 42.11◦ ↑ 53.08◦ ↑ 64.22 ◦ ↑ 74.74◦↑ 84.08◦↑
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TABLE III
THE COMPARISON OF THE EXECUTING TIME BETWEEN THE SYMMETRIC

POLYNOMIALS METHOD AND THE PROPOSED METHOD (UNIT:SECOND).

Switching points Symmetric polynomials Proposed method
N = 5 0.969 0.490
N = 6 60.782 0.689
N = 7 2062.385 2.624
N = 8 122503.216 3.559
N = 9 N/A 10.182
N = 10 N/A 50.434

four groups of solutions under most modulation indices, and

when m = 0.66, there are nine groups of solutions. The

results indicate that there are many groups of solutions under

most modulation indices, which can be used for the optimal

modulation of converters to improve the THD performance.

In order to show THD performance of different solutions, the

solutions for SHE equations with nine switching angles are

solved for m in [0, 6.7] with an increment step of Δm = 0.01.

Then, the THD performance of the obtained solutions are

shown in Fig. 2, in which the blue line represents maximum

THD value and the orange line indicates lowest THD value of

the obtained solutions. It can be seen that in the same mod-

ulation index, different solutions will lead to different THD

performance. Therefore, solving all the solutions can increase

the possibility to find valid solutions for specific modulation

indices. Furthermore, it can be seen that the continuity of

these solutions is difficult to determine. Thus, it is very hard

to solve the trajectories by some numerical methods [21],

[22] or fit them with simple piece wise linear functions for

multilevel converters. Therefore, these solutions trajectories

can not only prove the correctness and completeness of the

proposed method but also provide comprehensive solutions

for multilevel converters.

V. EVALUATION OF THE PROPOSED METHOD

As described in Section III, the procedure of solving SHE

equations with algebraic algorithms can be divided into two

steps, degree reduction with the simplification method, and

solving final results with the algebraic method. Therefore, the

performance of the proposed method is evaluated in terms of

two aspects, the improvement of the simplification effect and

the improvement of the whole solving procedure.

A. Evaluation of the proposed method in terms of the simpli-
fication process

To evaluate the simplification effect of the proposed method,

the simplification efficiency and ability are compared with

the commonly used elementary symmetric polynomials based

method. Table III shows the comparison of the executing time

for the proposed method and the commonly used method,

which are calculated on a desktop computer with XEON

E3-1230 CPU and 16 GB RAM. It can be seen that the

computation time consumed by the elementary symmetric

polynomial-based method increases dramatically when the

number of switching angles is more than six. When the

number of switching angles is eight, the proposed method

performs 40800 times faster than the elementary symmetric
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Fig. 3. The comparison of the computer memory between the symmetric
polynomials method and the proposed method. (a) Computer memory used
to solve eight switching angles with symmetric polynomial method, (b)
Computer memory used to solve eight switching angles with the proposed
method.
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Fig. 5. Degree comparison between x, e and p with seven switching angles

polynomial-based method. More importantly, the elementary

symmetric polynomial-based method totally fails to give the

final results due to the huge computing burden when the

number of switching angles exceeds eight. Besides, Fig. 3

indicates the computer memory occupied by running the two

simplification methods. Fig. 3 (a) only shows 5 hours process

of the elementary symmetric polynomial method, and actually,

it needs nearly 35 hours to complete the whole process. It can

be seen that the computer memory occupied by the elementary

symmetric polynomial-based method is almost three times as

large as the proposed method.

In addition to simplification efficiency, the simplification

ability of the proposed method has been improved. As shown

in Fig. 4 and Fig. 5, the degree comparisons for five and seven

switching angles are given, in which the blue, the orange and

the yellow represents the original degree of the SHE equations,

the reduced degree achieved by the elementary symmetric

polynomials based method and the proposed method, respec-

tively. It can be seen that the degree of the SHE equations

simplified by the proposed method are lower than that of

the elementary symmetric polynomials based method, which

can further reduce the computing burden of the subsequence

solving procedure. Therefore, the simplification ability of the

proposed method is better than the elementary symmetric

polynomials based method.
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B. Evaluation of the proposed method in terms of the whole
solving procedure

The proposed method can not only improve the effect and

efficiency of the simplification process, but also improve the

computation ability and efficiency of the whole solving proce-

dure. Table IV shows the executing time of the whole solving

procedure. It can be seen that without using any simplification

method, the Groebner basis method can only solve five switch-

ing angles [27]. With the elementary symmetric polynomial

simplification method, the Groebner basis can solve eight

switching angles in our computer, but the solving time is very

long. However, by using the proposed simplification method,

the executing time of the whole procedure is significantly

reduced, and the switching angles can be solved to ten.

More importantly, the proposed method breaks the up-

per limit of the solving ability of the previous algebraic

algorithms. Table V describes the development process of

algebraic algorithms since the resultant elimination method

was proposed in 2002. It can be seen that there are only three

switching angles that can be solved by algebraic algorithms

at the beginning. Over the past two decades, the solvable

number of switching angles has increased very slowly. This

is the first time that all solutions of the SHE equations with

nine switching angles within the full modulation index range

are given, and the number of solvable switching angles by

algebraic algorithms is increased to ten. It should be pointed

out that one solution of SHE equations with nine switching

angles was given in [34], but in the limited conditions of our

computer, only eight switching angles can be solved by the

elementary symmetric polynomial-based method. Therefore,

in Table III, the executing time of nine switching angles

represents not applicable.

C. Limitation of the proposed method

Since the principle of Newton’s identities is based on the

relation between power sum symmetric polynomials and ele-

mentary symmetric polynomials, the proposed method requires

the SHE equations should be symmetric. It means that the

output waveform of converters must be quarter-symmetric and

the amplitude of DC voltage should be equal, so that the SHE

equations can be transformed into a symmetric polynomial

system.

VI. EXPERIMENTAL VERIFICATION

Two experimental case studies are carried out to verify the

proposed method. The first experiment study is established

on a 7-level cascaded H-bridge (CHB) converter, in which

the IRFP250N MOSFETs are used as switching devices, the

ADum1400 is used as the isolator, and the STM32F407 are

used as the controller to generate the SHEPWM driven single.

The DC power supply of every H-bridge is set to 30V. The 1st,

4th, and 54th solutions shown in Table. II are implemented

in the microcontroller to verify the correctness of solutions

solved by the proposed method. Because this experimental

case aims to validate the correctness of solutions, an open-loop

experiment is carried out here. The output PWM waveform is

recorded, and the related FFT results are also given in Fig.

6. It can be seen that the aimed 5th, 7th, 11th, 13th, 17th,

19th, 23rd, 25th, and 29th harmonics are precisely eliminated,

which validates the correctness of the solved switching angles.

The second experiment case study aims to present the

performance of solutions solved by the proposed method in

motor-driven applications. This experiment is established on

an asynchronous motor experimental platform as shown in Fig.

8. The parameters of the experimental platform are shown in

Table VI. The schematic of the controller is given in Fig. 7.

Firstly, the reference frequency of asynchronous motor is given

to the V/f controller. To maintain the stability of torque and

magnetic flux of motor, the ratio of voltage and frequency is

always keeping to constant, based which the output voltage

can be solved. Then, according to the output voltage of

asynchronous motor, modulation index can be obtained, and

the switching angles can be chosen from look-up table. Based

on the switching angles α and the input phase angle θ,

the SHEPWM Block will output PWM signal to control the

three-phase inverter, and then drive the asynchronous motor.

Besides, the PMSG is used as a controllable load machine.

The reference value of output torque of the PMSG can be

given through the in-build control system implemented in the

dSPACE controller. Besides, the L-type filter is used to reduce

high frequency noise, because L-type filter does not eliminate

any order of harmonic, and it can keep the original effect of the

proposed method for eliminating harmonics. Two subcases are

carried out in this case to present the harmonic performance

of the solved switching angles and the dynamic performance

of the proposed scheme. The first subcase aims to show the

steady-state current performance of the solved angles, and the

results are shown in Fig. 9 - 11. The second subcase is used

to verify the dynamic performance of the solved switching

angles, and the experimental results are shown in Fig. 12.

The three-phase steady-state output currents, line to line

voltage and the corresponding FFT analysis based on the

solved switching angles are given with the 30Hz, 40Hz, and

50Hz fundamental frequency in Fig. 9 - 11. To compare the

harmonic performance between SHEPWM and SPWM, the

steady-state output currents, line to line voltage and FFT

analysis based on SPWM are also given. In Fig. 9 ∼ Fig.

11. It can be seen that, for SHEPWM, the first uneliminated

harmonic is the 29th, but for SPWM, the first uneliminated

harmonic is 16th. Moreover, at the bandwidth from 3-29th

harmonics, the SPWM has some other harmonics, but the

SHEPWM has almost no harmonics. This phenomenon shows

the SHEPWM has better performance in the low-switching

frequency applications.

The experimental results of the dynamic performance of

the proposed method are shown in Fig. 12. The load of AC

motor has a step change from 50% to 100% (14 Nm). The

time period of the dynamic process is marked in the figure.

Besides, to compare the performance between SHEPWM and

SPWM, the experiment results of SPWM with same switching

frequency are shown in Fig. 12. The experimental results

show that the solved switching angles almost has the same

performance with the SPWM with same switching frequency,

no matter at the 30 Hz fundamental frequency or the 50 Hz
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TABLE IV
COMPARISON OF COMPUTATIONAL ABILITY AND EFFICIENCY BETWEEN THE PROPOSED METHOD AND OTHER METHODS (UNIT:SECOND).

Algorithms Running Time Software
N = 5 N = 6 N = 7 N = 8 N = 9 N = 10

Groebner basis method 2.269 N/A N/A N/A N/A N/A Maple
Symmetric polynomials + Groebner basis 1.574 63.282 2079.264 122677.981 N/A N/A Maple

Proposed method + Groebner basis 0.935 3.391 6.251 46.399 365.249 8862.571 Maple

TABLE V
THE COMPARISON OF THE MAXIMUM SOLVABLE NUMBER OF THE PREVIOUS ALGEBRAIC METHODS AND THE PROPOSED METHOD.

Algorithms Literatures Proposed year Maximum solvable number
Symmetric polynomial method [36] 2005 9

Simplification Methods Proposed method \ \ >50
Resultant method [32] 2002 3

Wu’s method [33] 2005 4
Resultant+Symmetric polynomial method [36] 2005 5

Complete Algorithms Wu’s+Symmetric polynomial method [28] 2007 5
Groebner basis method [34] 2015 5

Groebner+Symmetric polynomial method [29] 2016 9
Groebner+Proposed method \ \ 10

(a) The three-level phase voltage of the CHB with
the 1st solution in Table. II

(b) The five-level phase voltage of the CHB with
the 4th solution in Table. II

(c) The seven-level phase voltage of the CHB
with the 54th solution in Table. II

(d) The FFT analysis result of the output voltage
with the 1st solution in Table. II

(e) The FFT analysis result of the output voltage
with the 4th solution in Table. II

(f) The FFT analysis result of the output voltage
with the 54th solution in Table. II

Fig. 6. The output voltage and the related FFT analysis of the experiment carried on the 7-level CHB converter.

TABLE VI
PARAMETERS OF THE MOTOR EXPERIMENTAL PLATFORM

Parameters Values

Type of the motor Y801-4

Power Filter Type-L 10kW/4.2mH

Inverter FC-051P15KT4

DC Power Supply 750V

Controller dSPACE DS1006

Switching frequency (for 50 Hz fundamental) 900 Hz

Switching frequency (for 40 Hz fundamental) 720 Hz

Switching frequency (for 30 Hz fundamental) 540 Hz

Load parameters 0 - 14 Nm

fundamental frequency. Based on the experimental results of

the two subcases, the correctness and effectiveness of the

proposed method can be well verified.

VII. CONCLUSION

This paper proposes a general degree reduction method to

simplify the SHE equations based on the Newton’s identities

and the power sums, which makes the degree reduction no

longer the bottleneck of solving the SHE equations with

algebraic algorithms. The major contributions of the proposed

method are summarized as:

1) By combining the proposed simplification method with

the Groebner basis method, the SHE equations with ten

switching angles can be solved by the algebraic algo-

rithm for the first time, which means that the harmonics

below 30th can be accurately eliminated.

2) Compared with the commonly used simplification

method, the simplification efficiency of the proposed
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PMSG

Angles Look-up Table

Solving SHE Equations

m f*

Obtain angles through 
the proposed algorithm

SHEPWM

IM

Accel.
Decel.

Us

V/f  controller

f4Vdc 

Vdc

Fig. 7. Schematic of SHEPWM based controller of experimental platform

Inverter dSPACE Motor Platform

PMSG (for load)
AC motor

Fig. 8. The photo of the asynchronous motor experimental platform.

method has been significantly improved. For example,

the proposed method performs almost 40800 times faster

when the number of switching angles is eight.

3) The reduced degree of the simplified SHE equations are

slightly lower than the elementary symmetric polyno-

mial method.

4) Experimental results verify that the switching angles

solved by this paper can obtain good harmonic perfor-

mance in low switching frequency.

This paper is aimed at the solving algorithm for SHE

equations, and take motor drive as an example to verify the

practicality of the proposed method. In the future work, more

applications will be explored to use this method, such as grid-

connected converters, active rectifiers, STATCOM systems and

so on.
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