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Initial Responses to False Positives in AI-Supported
Continuous Interactions: A Colonoscopy Case Study

NIELS VAN BERKEL, Aalborg University, Denmark and University College London, United Kingdom
JEREMY OPIE and OMER F. AHMAD, University College London, United Kingdom
LAURENCE LOVAT, University College London Hospitals, United Kingdom
DANAIL STOYANOV and ANN BLANDFORD, University College London, United Kingdom

The use of arti!cial intelligence (AI) in clinical support systems is increasing. In this article, we focus on AI
support for continuous interaction scenarios. A thorough understanding of end-user behaviour during these
continuous human-AI interactions, in which user input is sustained over time and during which AI sugges-
tions can appear at any time, is still missing. We present a controlled lab study involving 21 endoscopists and
an AI colonoscopy support system. Using a custom-developed application and an o"-the-shelf videogame
controller, we record participants’ navigation behaviour and clinical assessment across 14 endoscopic videos.
Each video is manually annotated to mimic an AI recommendation, being either true positive or false positive
in nature. We !nd that time between AI recommendation and clinical assessment is signi!cantly longer for
incorrect assessments. Further, the type of medical content displayed signi!cantly a"ects decision time. Fi-
nally, we discover that the participant’s clinical role plays a large part in the perception of clinical AI support
systems. Our study presents a realistic assessment of the e"ects of imperfect and continuous AI support in a
clinical scenario.

CCS Concepts: • Human-centered computing→ Human computer interaction (HCI); HCI design and
evaluation methods; Empirical studies in HCI ; • Applied computing→ Life and medical sciences;

Additional Key Words and Phrases: Human-AI interaction, arti!cial intelligence, colonoscopy, support system,
false positives, continuous interaction, clinical decision support
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1 INTRODUCTION
Arti!cial intelligence (AI)-based support systems are increasingly common across a variety of
industries, with the healthcare sector often identi!ed as one of the areas that can be positively
transformed by AI technology [9, 17]. Although the idea of AI support is not new (e.g., see the
December 1993 issue of Communications of the ACM [13]), only recently has the widespread and
real-world integration of AI in end-user facing software really commenced [9]. Within the medical
domain, AI has been identi!ed as a bene!cial technology for a wide range of application areas such
as image recognition to support diagnosis in radiology and pathology [19, 32], robot-supported
surgery [17], and home monitoring technology for fall detection [31].

Despite the far-reaching and bene!cial possibilities of AI support technology, recent work in
human-computer interaction (HCI) and beyond has raised growing concerns regarding numer-
ous downsides related to the use of AI [2]. This includes questions on how to deal with incorrect
classi!cations by AI systems [24], concerns regarding the fairness of AI systems [42, 49], and the
presentation of irrelevant information to the user [7]. In this article, we speci!cally focus on the
e"ect of imperfect AI support systems during continuous user interaction scenarios. The majority
of HCI literature on AI support has focused on intermittent scenarios [4, 7, 12], such as pathology
classi!cation on a stationary image, in which the interaction between user and AI can be de!ned
as a turn-taking process. Continuous interaction scenarios, in which user input is sustained over
a period of time and may receive AI input at any time, remain underexplored despite the unique
challenges faced in terms of user interaction [40]. Clinical decision support during colonoscopy,
the case presented in this article, is indicative of this di"erent type of human-AI interaction, as AI-
powered suggestions may repeatedly appear and disappear on a screen while a clinician navigates
through a patient’s colon.

In a setting of continuous AI support, AI recommendations (regardless of their correctness)
may overlap with the user’s visual interest area, may interrupt the user’s #ow, or even distract the
user from relevant information elsewhere on the display. Capturing the e"ect of AI classi!cations,
particularly true positives (a correct classi!cation of an entity, e.g., a polyp) and false positives
(incorrectly classifying an entity that should not be classi!ed), on user interaction and perceptions
towards AI support is critical to understand how AI support systems can be successfully integrated
in daily clinical practice. The e"ect of false positives in particular is a critical question for the
medical domain, where unnecessary interventions or interruptions in a procedure can result in
negative medical outcomes, distressing patient experiences, and increased !nancial costs [16, 22].
A recent research priority setting study for AI in colonoscopy furthermore highlighted the e"ect of
false positives as a key research concern [1]. Although the rates of false negatives (failing to classify
an element that should be classi!ed) and true negatives (correctly not classifying an element that
should not be classi!ed) are also critical to the e"ectiveness of AI support systems, this is outside
the scope of this work, which focuses on true and false positives during user interaction.

To systematically study the e"ect of (imperfect) AI support in a continuous support scenario, we
conducted a controlled lab-based experiment in which we studied the behaviour of endoscopists
(N = 21) when navigating through AI-overlaid patient footage. We annotated a total of 14 video
recordings of real-world endoscopic procedures across six distinct categories, each highlighting an
entity that can be seen during a colonoscopy (Figure 1). Using a videogame controller, participants
navigated through these videos and were presented with either a false-positive or true-positive AI
recommendation. Participants were asked to provide their clinical assessment of the highlighted
object (non-polyp or polyp) while navigating through the video. We continuously and unobtru-
sively captured the participants’ viewing behaviours and collected their perspectives on both the
perceived usefulness and hindrance of the AI for each video.
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Our results identify signi!cant di"erences in both the e"ect of AI and perceptions towards AI
support across both the di"erent professional roles included in our sample and their respective en-
doscopic experience, as quanti!ed through their number of completed colonoscopies. Furthermore,
we !nd substantial di"erences in both the participants’ decision time and navigation behaviour be-
tween the di"erent video categories. Interestingly, the impact of false positives and true positives
on participant browsing behaviour is highly similar. Our work contributes towards a better under-
standing of the impact of (in)correct AI support in continuous support scenarios. Furthermore, we
provide a methodological contribution to enhance the ecological validity of studying participants’
behaviour and perceptions towards AI in the context of medical studies.

2 RELATED WORK
Colonoscopies are performed primarily to detect pre-cancerous polyps. Adenomas are the most
common type of pre-cancerous polyp. For cancer surveillance, the adenoma detection rate
(ADR) is considered the optimal quality indicator for colonoscopy examinations [26]. It has been
highlighted that ADR is an independent predictor of the risk of interval cancer [20], and that ev-
ery 1% increase in ADR leads to a reduction in the risk of interval cancer by 3% [8]. However, Ahn
et al. [3] discovered that even with controlled bowel preparation, there is a 17% miss rate of adeno-
mas. Lee et al. [23] revealed that with the assistance of an experienced gastrointestinal endoscopy
nurse, the ADR can be improved. They also discovered that this was particularly bene!cial when
coupled with inexperienced endoscopists [23]. Buchner et al. [6] also found that having a second
pair of eyes assisting with inspection improved ADR, and they identi!ed that with assistance, there
was an 8% increase in the detection rate of small adenomas. It is important that adenomas are de-
tected during colonoscopies so that they can be removed, as unlike radiology procedures, there
is no opportunity to review and remove them afterwards [18]. As stated by Hassan et al. [18],
“Di"erently from radiology procedures, colonoscopy and endoscopy, in general, are real-time pro-
cedures requiring complex analysis of millions of frames without the opportunity to review them
afterwards.”

2.1 AI Support Systems in Colonoscopy
Computer-aided detection (CADe) systems have been developed in an attempt to improve ADR,
by highlighting polyps during the colonoscopy procedure that might otherwise be overlooked by
the human observer. Several pre-clinical studies have been published in the !eld of CADe for
colonoscopy, where algorithmic performance is often evaluated on a per-frame basis for video
colonoscopy data. For example, Misawa et al. [28] described a CADe system that was able to detect
94% of test polyps but with a false-positive detection rate of 60%.

More recently, prospective, randomised clinical trials (RCTs) of CADe software have been
published. Wang et al. [47] conducted a double-blind RCT involving 1,010 patients, where 508 were
randomised to CADe colonoscopy and 502 to colonoscopy with a sham CADe system (trained to
present alert boxes on polyp-like non-polyp structures, e.g., bubbles, wrinkled colon wall). There
was a statistically signi!cant increase in ADR for CADe colonoscopy compared to the sham system.
The authors reported 48 ‘consistent’ false-positive alarms by the CADe system. It is important to
note that the de!nition of false positives in the study was highly subjective since these were not
de!ned on a per video frame basis. False positives were de!ned as an area that was continuously
traced by the system but deemed by the endoscopist not to be a polyp. In practice, many false
positives appear brie#y, and therefore the actual false-positive rate is likely to be higher in real-
world clinical practice. Furthermore, evaluation of the CADe system was avoided in situations
where the colon was not fully in#ated, since the wrinkled appearance of the colonic wall can
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easily be incorrectly classi!ed as polyps. This trial highlights the di$culties faced in handling
false positives in clinical evaluations.

Another prospective RCT by Repici et al. [36] demonstrated a signi!cant increase in ADR with
CADe assistance. However, the study did not record the number of false positives and instead
reported the non-neoplastic resection rate (i.e., surgical removal of non-polyp tissue). There was
no statistically signi!cant di"erence in non-neoplastic resection rates between the CADe and con-
trol arm using standard colonoscopy. In addition, withdrawal time (the time taken to inspect the
colon while withdrawing the colonoscope following insertion) was also not signi!cantly di"erent.
However, the clinical trial only involved expert endoscopists, and therefore the user interaction
with false positives and associated clinical implications warrants further investigation using a
wider range of operators. In the current study, we recruited a wide range of expertise to assess
potential di"erences in perceptions towards AI systems.

2.2 Designing for Error in AI Support
Despite the extensive developments of their capabilities, AI applications produce—and will con-
tinue to produce—incorrect assessments of some situations. Even though the body of work on AI
applications has grown substantially, Dove et al. [10] highlight a lack of discussion and research
around the speci!c challenges of interacting with machine learning based systems, speci!cally
referring to the impact of false positives and false negatives on end users. Furthermore, Dove
et al. [10] state that the majority of work in this area has focused on intelligent agents that have a
physical presence or manifest themselves virtually (e.g., voice assistants, robots).

A number of HCI works explore the role of AI in the healthcare domain. In a 2019 CSCW work-
shop, Park et al. [33] stress that any understanding of the application of AI in healthcare needs
to “extend beyond its technical capabilities, to consider normative, regulatory, and ethical chal-
lenges.” Park et al. [33] state that the potential negative e"ects of AI on healthcare can have direct
negative consequences for both patients and sta", urging the time-sensitive need for the HCI com-
munity to investigate the human role in the integration of AI-based systems.

These concerns are re#ected in a number of studies, presenting insights into the ways healthcare
professionals integrate AI applications into their daily work. Molin et al. [29] are the !rst to system-
atically explore HCI considerations in the !eld of digital pathology. Through a thematic analysis of
clinicians’ communication and their tools, they propose four design considerations for digital im-
age analysis: veri!cation and correction, algorithmic transparency, veri!cation on di"erent levels
of detail, and communication with clinicians [29]. Also focusing on pathology, the inspirational
work of Cai et al. [7] explores how to support clinical decision making by designing interfaces
to overcome imperfect algorithmic suggestions. Following the identi!cation of pathologist needs,
the authors present an interactive ‘re!nement’ tool which allows users to identify similar images
based on a variety of parameters (e.g., by region, by concept) [7]. Wang et al. [45] explore the ten-
sions between an AI-based clinical decision support system and the rural clinical context. In both
studies [7, 48], interaction in the studied scenarios is intermittent rather than continuous, raising
di"erent interaction needs and di$culties to those studied in our article. More generally, Dudley
and Kristensson [12] have reviewed user interfaces for interactive machine learning applications,
highlighting the back-and-forth nature of user interaction with these systems. In contrast to these
works, all of which focus on intermittent interaction, our work aims to explore AI-user interac-
tion in a continuous scenario. The constraints of this setting, such as the direct control over a live
video feed, the need to keep focus on the endoscopic image at all times, and therefore the limited
amount of information that can be overlaid on the image, impose a di"erent way of working, for
example, on endoscopists [40]. Prior work on continuous interaction stresses that the HCI and
digital health community “need to ensure that guidelines on the design of AI systems accurately
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Fig. 1. Video categories from le! to right: Bubbles, diverticulum, mucus, wrinkled, obvious polyp, subtle
polyp.

re#ect user needs when the user is not necessarily the starting nor the end point of an interaction,
but instead operates along a continuum” [40].

In the medical domain, false positives can pose a range of negative consequences, including
extended procedure times, unnecessary and potentially harmful interventions, and increased med-
ical costs. We therefore set out to study the e"ect of false positives on doctors in a continuous
setting.

3 METHOD
To systematically study the e"ect of AI suggestions on medical practitioners, we conducted a
lab-study in which participants were presented with a total of 14 unique videos of real-world
colonoscopy footage. Through manual annotation of these videos, we mimicked an AI recommen-
dation system which consistently overlaid selected elements of the videos with an ‘AI recommen-
dation’. We asked participants to navigate through these videos as if they were inspecting a patient,
allowing our participants to navigate both forward and backward at their own chosen speed. Fur-
thermore, we instructed participants to assess and indicate whether the object highlighted in the
video is either a polyp or not a polyp. Subsequent to each interactive video, we asked participants
to re#ect on the role of the AI recommendation in the completed scenario. Following the comple-
tion of all scenarios, participants answered a number of open-text and multiple-choice questions
to collect insights on their perceptions towards the use of AI support systems in their clinical
practice.

3.1 Video Materials
All videos used in the study were obtained from real-life patient footage. The videos were manually
annotated for this study by a domain expert with extensive colonoscopy experience, with the
annotations subsequently assessed by a second independent endoscopist. In selecting example
videos and providing these annotations, our expert drew on his experience of errors encountered
during initial trials of an AI-support system. Through a bespoke Python script, we rendered the
AI support visuals ‘on top’ of the annotated areas. The design of the AI indicator (i.e., a circle
encompassing the annotated area, its size adjusting in alignment with the annotation) is based on
earlier recommendations on continuous AI support [40]. Out of the total of 14 videos, 6 videos
contain an actual polyp (i.e., true positives). Three of these videos contain an easy-to-spot polyp,
with the other 3 true positive videos containing a subtle polyp—making it more challenging to spot
the polyp. As the video materials were obtained from real patients, in all six cases the polyp was
removed and pathologically con!rmed in the lab. The remaining 8 videos contain false positives
across a range of categories previously identi!ed as being #agged by AI systems by our endoscopist
collaborators and prior work [46]. These categories are bubbles, diverticulum, mucus, and wrinkles.
We summarise and brie#y describe our selected videos in Table 1 and include an example frame
from each category in Figure 1.

The duration of the videos is standardised to 10 seconds, and they were presented to partici-
pants in randomised order. We obtained ethical approval for the use of these anonymous videos
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Table 1. Overview and Description of the 14 Di"erent Videos Used in Our Study

AI Overlay Video Category No. of Videos Description
False positive Bubbles 2 Cluster of transparent bubbles
False positive Diverticulum 2 Small sac of tissue pushing inward or

outward from the colon wall
False positive Mucus 2 Sticky and slimy substance that can be

found on the colon wall
False positive Wrinkled 2 Creased and/or folded colon wall
True positive Polyp - Obvious 3 Clearly visible protruding growth from

the polyp wall
True positive Polyp - Subtle 3 A #at growth from the polyp wall, di$-

cult to identify

for research purposes prior to colonoscopy. For this study, we did not consider the assessment
of false negatives (i.e., the AI system failing to highlight a polyp), as it is challenging to evaluate
whether or not a participant’s assessment is correct. Merely recording the frame where the partic-
ipant indicates to observe a polyp is insu$cient, as the participant can believe to spot the polyp
in a number of di"erent locations in the frame—requiring further manual and time-consuming
annotation by the participant. In addition, a participant indicating to have found a polyp in an
unexpected location cannot be categorically refuted without a pathological assessment of the an-
notated area. Finally, true negatives (i.e., the AI system correctly not highlighting a non-polyp)
were also considered as outside the scopy of this work.

3.2 Hardware and So!ware
Participants were given a videogame controller (Xbox One) to manipulate the video feed. Using
the controller’s joystick, participants could control the playback direction of the videos. By moving
the joystick to the right, the video plays forward, moving the joystick to the left plays the video
backwards, and returning the joystick to the neutral position pauses the video. Through the po-
sition of the joystick, participants could also control the playback speed of the video. Moving the
joystick all the way to the right plays the video at 150% of the original playback speed (and vice
versa when moving the joystick all the way to the left). Participants were asked to classify the
highlighted object in each video as either a polyp or non-polyp by respectively pressing the green
(A) button or the red (B) button as soon as they arrived at their decision.

The choice for a joystick was inspired by daily clinical colonoscopy practice. By enabling partici-
pants to control both the direction and speed of the video playback, as opposed to watching a video
linearly and without playback controls, we simulated the physical process of controlling the video
feed during the colonoscopy procedure through withdrawal and manipulation of the endoscope.
Although traditional input methods, such as keyboard or mouse, would allow us to manipulate
video direction (e.g., left and right arrow keys) or navigation speed (e.g., duration of mouse-press
on a forward button), we did not identify a traditional input method that would satisfy both these
requirements simultaneously.

The controller was connected via Bluetooth to a laptop, where a bespoke Node.js application
continuously read the current joystick and button input over a serial connection. The readings
were appended to a .CSV !le together with a timestamp, a randomly generated participant id,
and an identi!er of the current video. A web application ran locally on the computer and pre-
sented participants with the study content. Following a pilot study with two members of the target
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Fig. 2. Participant using a controller to navigate through patient footage.

population, we augmented the application with a progress bar, an indicator of the current joystick
direction, and a visual feedback mechanism which activates when a participant presses one of
the two aforementioned buttons. We used FFmpeg to export our AI-overlaid video !les to indi-
vidual frames saved as images. Based on the joystick’s current value, the application incremented
or decremented the image on display. We publicly release the source code of our application to
support future research in this domain.1

3.3 Recruitment and Procedure
We recruited a total of 21 participants over the course of 4 months using a combination of mailing
lists and snowball recruitment among endoscopists at our local hospital. The University College
London Hospital is a major academic hospital and has one of the largest endoscopy units in the
United Kingdom. We heavily relied on the connections of our endoscopist co-authors to engage
this di$cult to reach target group [44]. Our participant sample consisted of 7 gastroenterology
consultants, 11 specialist registrars, and 3 nurse endoscopists—we summarise the sample’s pro-
fessional roles and their number of completed colonoscopies in Table 2. Based on their number
of completed colonoscopies, we classify participants as either high experienced endoscopists or
less experienced endoscopists according to the widely used threshold of 500 completed colono-
scopies [35, 39]. All of our participants currently perform colonoscopies on a regular basis and
have an average age of 38.0 (SD = 7.61). Participants were not compensated for their participation
in this study.

We invited participants to a designated room for individual evaluation sessions. We explained
the research goal and obtained participants’ informed consent prior to data collection. Participants
were positioned in front of a laptop (13") with the controller placed in both hands, as is shown in
Figure 2. Participants !rst completed a demographic survey and answered a number of questions
with regards to their professional role and level of experience. Subsequently, participants were
presented with instructions on how to operate the controller for navigation and were given the

1Please see the supplemental materials.
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Table 2. Overview of Participant Roles and their Total Number of Performed Colonoscopies

Colonoscopies Gastroenterology Consultants Specialist Registrars Nurse Endoscopists
0–100 – 1 –
101–200 – 2 –
201–500 – 5 1
500–1,000 2 2 2
1,000–2,500 1 1 –
>2,500 4 – –
Dashed line separates experienced and less experienced endoscopists according to a threshold of 500
colonoscopies [35, 39].

Fig. 3. Participant’s polyp classifications across video categories.

opportunity to interact with a ‘tutorial’ video until they felt comfortable to proceed. Following
this, participants were presented with the aforementioned videos.

To ensure a fair and equal presentation of all video !les, our application only allowed partici-
pants to proceed when the last frame was on display. We did, however, not verify whether par-
ticipants pressed either the green or red green button before proceeding, as we did not want to
interfere in the participant’s browsing behaviour and reduce the ecological validity of the captured
navigation data.

4 RESULTS
We now present the results of our 21 participants. First, we analyse the correctness of the partic-
ipants’ classi!cations. For each video shown to a participant, we consider only the !nal classi!-
cation input (i.e., polyp: green (A) button; non-polyp: red (B) button) and dismiss any preceding
classi!cation input. Figure 3 shows the overall correctness of assessment for each video category
as described in Table 1. We note that for 10.5% of videos (i.e., 31 out of 294 total viewed videos), par-
ticipants failed to press either the green (A) or red (B) button. These missing data can be traced back
primarily to one participant with missing classi!cations for 12 out of 14 videos, with the remain-
ing missing data points more equally distributed between participants. For the majority of 79.8%
of the videos (210 videos), one button was pressed; in 16.3% of cases (43 videos), the participants
pressed the con!rmation buttons twice, and for the remaining 3.8% of cases (10 videos), partici-
pants pressed more than twice. Of the 53 videos in which multiple buttons were pressed, only six
videos contained a change in input (i.e., classi!cation from polyp to non-polyp or vice versa).

ACM Transactions on Interactive Intelligent Systems, Vol. 12, No. 1, Article 2. Publication date: February 2022.
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Fig. 4. Decision time for correct and incorrectly assessed videos, as split by the profession and video category.

To identify the e"ects of video category and participant profession on participants’ assessment
results, we constructed a binomial (correct or incorrect) generalised linear mixed model using par-
ticipant id as the random factor. The model is constructed using the glmer function in R package
‘lme4’ [5]. A likelihood ratio test as compared to the null model showed that our logistic regres-
sion model is not statistically signi!cant (χ 2(17) = 25.294, p = 0.09). We subsequently ran separate
models containing only the video category (χ 2(5) = 19.121, p < 0.01) and only the participant’s pro-
fession (χ 2(2) = 2.467, p = 0.291) as !xed e"ects. To ensure the validity of the models, we checked
for the existence of multicollinearity among the models’ parameters. We found that the variance
in#ation factor (VIF) was below the often-used threshold of 10 for all our parameters [15], indi-
cating the validity of the models. These results highlight a signi!cant association between video
category and the correct/incorrect classi!cation of participants’ assessments, but no association
between their professional role and their assessment result.

4.1 Viewing Behaviour
We calculate participants’ decision time for each video, de!ned as the time between the initial dis-
play of the AI recommendation and the time of the participants’ !rst decision. For correctly classi-
!ed videos, we !nd an average decision time of 19.4 seconds (SD = 17.4) and for incorrectly classi-
!ed videos an average decision time of 27.1 seconds (SD = 19.0). To account for the non-parametric
nature of the data, we conduct a Kruskal-Wallis test and identify a signi!cant association between
decision time and correctness of participants’ classi!cation, χ 2(1) = 9.956, p = 0.002). Subsequently,
we assess the di"erence in decision time between the three professions included in our sample.
Average decision time was respectively 20.1, 18.3, and 29.3 seconds for consultants, specialist reg-
istrars, and nurse endoscopists. A Kruskal-Wallis test con!rms a signi!cant association between
decision time and profession (χ 2(2) = 9.564, p = 0.008). We show the distribution of participant de-
cision time as the split between profession in Figure 4(A). An analysis of the di"erence in decision
time between less experienced (M = 20.4 seconds, SD = 17.4) and highly experienced (M = 19.9,
SD = 18.0) endoscopists reveals no signi!cant di"erence between these two groups (χ 2(1) = 0.810,
p = 0.368).

Finally, we assess the di"erence in decision time between video categories and !nd a signi!cant
relation between the decision time and video category (χ 2(5) = 24.713, p < 0.001). Participants’
average decision time was longest for the ‘mucus’ videos and shortest for the ‘diverticulum’ videos.
Figure 4(B) shows the distribution of participant decision time across video categories.

Next, we explore how participants navigated through the videos. Figure 5 shows the average
playback speed 2.5 seconds prior to and 5 seconds following the !rst frame containing an AI over-
lay as split by true-positive and false-positive videos. We used Pettitt’s test to inspect for a shift
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Fig. 5. Participant navigation speed and change in viewing pace before and a!er the first AI presentation.

Table 3. Frequency with Which Participants Indicated to Undertake Various Subsequent Actions in a
Real Colonoscopy, as Grouped by Video Category

Action Bubble Diver- Mucus Wrinkled Polyp- Polyp-
ticulum Obvious Subtle

Inspect the area more closely 73.8% 54.8% 83.3% 88.1% 76.2% 90.5%
Enhanced imaging 35.7% 35.7% 47.6% 50.0% 92.1% 85.7%
Dye-based chromoendoscopy 0.0% 0.0% 7.1% 0.0% 6.3% 4.8%
Washing 88.1% 31.0% 88.1% 54.8% 58.7% 76.2%
De#ating 9.5% 9.5% 7.1% 4.8% 9.5% 6.3%
In#ating 16.7% 28.6% 19.0% 59.5% 22.2% 41.3%

in the central tendency (i.e., change-point detection) of the respective time series [34]. For the
true-positive videos, we identi!ed a signi!cant shift in the central tendency at 0.5 seconds follow-
ing the onset of the AI recommendation (U ∗ = 1373, p < 0.001). For the false-positive videos, we
found a similar shift in the central tendency at 0.3 seconds following onset of the AI recommen-
dation (U ∗ = 1275, p < 0.001). These results highlight the near-simultaneous and abrupt change in
participant navigation behaviour as shown in Figure 5 across both true- and false-positive videos.
Playback speed remains lower for a longer period of time for the true-positive videos.

Following each video, participants were asked to select any subsequent actions they would have
taken in real life. Table 3 shows the options presented to participants and the frequency with which
they were selected. Participants could select anywhere from none to all (i.e., six) actions per video.
Closer inspection of the area and washing of the area are the most commonly selected actions,
whereas dye-based chromoendoscopy (colouring of the area of interest) and de#ating of the colon
are most rare.

4.2 Perceptions on AI Support
Following each video, participants were asked to assess whether the AI was bene!cial and whether
the AI presented a hindrance to their work#ow. Participants answered on a 7-point Likert scale.
As seen in Figure 6, participants !nd the AI support most bene!cial for the true-positive videos.
We use the non-parametric aligned ranks transformation ANOVA to analyse our Likert responses,
using the R-package ARTool [50]. We !nd a signi!cant di"erence between the perceived bene!t
of the AI support and the video category (F (5,288) = 16.764, p < 0.001). Pairwise post hoc compar-
ison (Tukey multiple comparisons of means) shows a signi!cant di"erence between both polyp
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Fig. 6. Participant perceptions of the benefit and hindrance of the AI support as split by video category.

categories (i.e., ‘Polyp - Obvious’ and ‘Polyp - Subtle’) and all false-positive video categories
(p < 0.001)—with the AI being perceived as signi!cantly more bene!cial in videos containing a
polyp.

We repeat this analysis of Likert responses for the participants’ perceived hindrance of the AI
system. Our results again indicate a signi!cant di"erence between self-reported hindrance of the
AI and the video category (F (5,288) = 3.605, p = 0.004). Subsequent pairwise post hoc comparison
shows a signi!cant di"erence between the ‘Polyp - Obvious’ and the ‘Wrinkled’ video categories
(p = 0.003) and the ‘Polyp - Obvious’ and the ‘Bubble’ video categories (p = 0.045), with the ‘Polyp
- Obvious’ category reporting signi!cantly lower hindrance levels.

Next, we analyse the participants’ perceptions on AI support as grouped by their profession and
their level of experience. Our sample consisted of eight gastroenterology consultants, 11 specialist
registrars, and three nurse endoscopists who all watched the same videos. We visualise the Likert
responses of these three participant groups in Figure 7(A). We !nd a signi!cant di"erence between
the perceived AI bene!t and the participant’s profession (F (2,291) = 24.948, p < 0.001). Pairwise
post hoc comparison (Tukey multiple comparison) reveals a signi!cant di"erence between the gas-
troenterology consultants and the specialist registrars (p < 0.001) as well as the gastroenterology
consultants and the nurse endoscopists (p < 0.001). In both cases, the gastroenterology consults
perceive the AI as less bene!cial than the other professions. The Likert responses of both highly ex-
perienced (N = 12) and less experienced (N = 9) endoscopists is visualised in Figure 7(B). We !nd a
signi!cant di"erence between the perceived AI bene!t and participant’s experience level (F (1,292)
= 40.589, p < 0.001), with participants with less experience valuing the AI as more bene!cial.

Repeating the analysis for the perceived hindrance of the AI, we !nd a signi!cant di"erence
between professions (F (2,291) = 5.180, p = 0.006). A pairwise post hoc comparison shows a sig-
ni!cant di"erence between gastroenterology consultants and specialist registrars (p = 0.005), with
the gastroenterology consultants reporting higher levels of perceived hindrance. Similarly, we !nd
that endoscopists with more experience !nd the AI to be more of a hindrance to their work#ow
as compared to endoscopists with less experience (F (2,292) = 5.689, p = 0.018).

In addition to reporting the perceived bene!t and hindrance of the AI, participants were also
asked to provide their clinical assessment of the object highlighted in the video on a 7-point Likert
scale (1 = De!nitely not a polyp, 7 = De!nitely a polyp). This allows us to assess the relationship
between participants’ clinical assessment and their perception of the AI. Given the ordinal nature
of the responses, we investigate this relationship using polychoric correlations, suitable for evalu-
ating the relationship between two Likert items [25]. Similar to Pearson correlations, a polychoric
correlation value ranges between –1 and 1, with the extreme values indicating a perfect linear
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Fig. 7. Perceived benefit and hindrance of the AI support as split by profession and experience.

relationship and 0 indicating no linear relationship between the two variables. We !nd a positive
correlation coe$cient of 0.52 for the relationship between the participants’ clinical assessment and
the perceived bene!t of the AI, indicating that the perceived bene!t of the AI increases, the more
certain participants are that a polyp is shown in the video. For the relationship between perceived
hindrance of the AI and the participants’ clinical assessment of the highlighted object, we !nd a
weak negative correlation of –0.20. This indicates that the perceived hindrance slightly decreases
in line with the assessment of participants that the object is a polyp.

4.2.1 Participant Responses. When asked to re#ect on the AI support in a completion survey,
participants highlighted both positive and negative aspects of this technology. From a positive
perspective, participants highlighted how AI support could ensure that operators take a second
look during colonoscopy at areas they might have otherwise skipped. “The AI makes me question
my initial diagnosis of an area, and this may be bene!cial. It de!nitely acts as a deterrent against
lazy endoscopy and makes you double check areas which might otherwise be wrongly considered
normal.” (P14, Nurse Endoscopist). In line with our results on perceived bene!t in Figure 7, partici-
pants noted that the support might be most bene!cial to those with limited experience: “De!nitely
would help novice user. Experts is more questionable.” (P04, Gastroenterology SpR).

Participants raised concerns around the number of false positives highlighted by an AI system,
which are perceived as annoying and interrupting, and could lead to users disabling AI support
altogether: “It is important not to have too many false positives otherwise the endoscopist will
stop using the system.” (P10, Gastroenterology Consultant). Similarly, participants note that a high
number of false positives would increase procedure time—although not all participants believe this
is necessarily a bad thing: “Areas falsely #agged as polyps are still areas for washing and closer
inspection which achieves objective of thorough endoscopy.” (P09, Gastroenterology SpR). High-
lighting the delicate balance between the positive e"ect AI may have in identifying more polyps
and the potential negative consequences on medical sta", one of the participants points to the
increased (mental) e"ort required by incorrect AI suggestions: “Knowing that optical diagnosis is
imperfect, I would worry when disregarding an area the AI has #agged as potentially abnormal in
case I am wrong. I am a naturally cautious practitioner and worry the extra inspection of poten-
tially normal areas would add a lot of time as I try to really satisfy myself it is the machine and
not myself making the incorrect call.” (P14, Nurse Endoscopist).
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Participants re#ected positively on the use of a gamepad controller, with 17 participants speci!-
cally commenting on the intuitiveness and ease of use of the controller without being speci!cally
asked to do so. Furthermore, two participants positively contrast the controller with the use of a
keyboard for colon video navigation, as used, for example, in training material; “Gamepad e"ective
as reduces the distraction of a keyboard in front of the screen.” (P09, Gastroenterology SpR).

5 DISCUSSION
Future deployments of AI technologies, including those used during clinical examinations and
surgeries, will inevitably present users with incorrect classi!cations and recommendations. This
raises questions regarding the end-user acceptance and trust towards these systems [21, 37], (legal)
accountability in case of errors [30, 38], and the impact of AI support systems on user interaction.
This work presents colonoscopy as a case study for understanding the e"ects of imperfect AI
support on end users during continuous interactions.

Our results re#ect that the identi!cation of adenomas—the primary goal of a colonoscopy—is
a challenging task, with participants incorrectly classifying videos containing a polyp in 14.1%
of cases (obvious and subtle videos combined). Recent meta-analyses on adenoma identi!cation
rates highlight substantial miss rates during patient inspection, with averages ranging between
22% and 27% [43, 52]. As our videos were only 10 seconds in length and clearly indicated the
object of interest, a lower error rate than observed in real patient examinations is expected. These
results highlight that even if a polyp is identi!ed by an AI support system, endoscopists may still
incorrectly classify the object as a non-polyp.

5.1 False Positives: Perceptions and Behaviour
Our results show that the participants’ perceived bene!t of AI signi!cantly increases substantially
for true-positive videos, whereas the increase in the perceived hindrance among false-positive
videos is much lower (Section 4.2). As seen in Figure 6, false positives are not necessarily perceived
as a bad thing. Participants noted that even if the AI points them in the direction of an object of
interest that turns out not to be a polyp, it would still be worth the extra inspection time. The
AI support is therefore not necessarily perceived as a system used solely for the identi!cation of
polyps but as a more generic system that can point out objects requiring further inspection—that
is, highlighting ‘red #ags’ during inspection. Our results align with earlier considerations on AI
support, with Zachariah et al. [51] stating, “We should embrace CADe [computer-aided detection]
systems only as a ‘second observer’, one that questions us: ‘what is this; is it important?”’ We
note that these perceptions may change were a system to be integrated over the long term in the
participants’ work#ow.

Although participants indicated that they do not perceive false positives as a major hindrance,
our results highlight that their presence may signi!cantly a"ect the viewing behaviour of
clinicians. As seen in Figure 5, participants’ navigation speed is signi!cantly reduced upon seeing
a false positive. This could lead to prolonged examination times and subsequently increase proce-
dure cost. Although this depends on the frequency with which false positives are presented, recent
work shows that current iterations of AI frequently #ag false positives [27]. Figure 4 indicates that
the required time for participants to dismiss a false positive can be well over a minute for some
participants, with signi!cant di"erences in decision time between video categories. Although
the colonoscopy literature has identi!ed ambitious and challenging goals for future AI systems
(e.g. “real time (<10 ms latency), easy to implement, reliable, provide near 100% sensitivity, and a
nondistracting low false positive rate” [51]), we argue that based on our results, metrics such as a
system’s overall false-positive rate may not be su$ciently informative to predict real-world world
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performance and interaction. Instead, developers of AI support systems should prioritise the
reduction of false positives in areas that are most responsible for error and delays during actual use.

5.2 Studying Continuous AI Support Applications in Healthcare
A critical concern during the design of our study was to uphold the study’s ecological validity
while ensuring a balanced and controlled evaluation protocol, avoiding patient harm, and ensur-
ing a su$cient sample size. Dove et al. [10] described the di$culties of working with machine
learning as a ‘design material’, citing the unpredictability of AI prototypes as a barrier to system-
atic evaluation. To overcome these challenges, we augmented real-world colonoscopy footage with
realistic AI support based on manual annotations. Furthermore, we considered it critical for the
ecological validity of our study that participants were able to control both the direction and speed
of the video playback—similar to the navigation of the endoscope during colonoscopy. As shown in
Figure 5, this allowed participants to navigate freely—similar to how an endoscopist would inspect
a colon in real life while being provided continuous AI support. By preparing our study material
in advance, we are able to overcome some of the challenges highlighted by Dove et al. [10] in
studying and designing for human-AI interaction.

Our approach stands in stark contrast with evaluations in which participants are shown a video
and asked to press a button when they believe a polyp appears in the video (e.g., see [18]), which
are unable to capture the users’ real-world navigation behaviour. At the same time, we highlight
that our approach only approximates reality, as participants do not have complete control over the
endoscope—being unable to in#ate the colon or wash away any debris. This aligns with a recent
call in the literature, which urges researchers to increase their studies’ ecological validity while
simultaneously acknowledging the necessary compromises and their e"ects on the presented re-
sults [41]. For this study, an evaluation with a live AI support system that runs during a routine
hospital operation would have provided the most valid observation data. However, such a study
would raise major ethical concerns with regards to patient safety (given the large number of false
positives and the unknown e"ects on medical outcomes), as well as removing our ability to sys-
tematically compare di"erent video categories and AI overlays (true positive, false positive). As
shown in Table 3, participants frequently indicated that they would have taken further actions to
inspect the area in more detail in a real-life scenario. Whether or not they would do so in clinical
practice, especially when confronted with a high false-positive rate, cannot be assessed through
the present study.

The recruitment of medical professionals as study participants is challenging, inter alia due to
their busy schedules [44]. This is especially true for non-survey research, as we had to ensure par-
ticipants’ continuous availability for upwards of 20 minutes. Based on our experiences, we identify
three aspects that were indispensable in the recruitment of participants. First, a close collabora-
tion with gastroenterologists enabled access to professional circles which would normally be out
of our reach. Second, the presence of a physical artefact (i.e., the game controller) sparked inter-
est among potential participants. Subsequent participant responses highlight that they considered
this as both a suitable and engaging instrument for data collection. Third, we repeatedly visited
the hospital and set up our study equipment to ensure that we could immediately commence data
collection whenever a participant became available. We were less successful in participant recruit-
ment at a national colonoscopy conference, in which attendees were more interested to utilise
breaks between presentations for networking and other activities.

5.3 Professional Role and AI Perception
The role of AI support systems for endoscopy is a topic of active discussion within the colonoscopy
literature [27, 30, 51]. Although the literature discusses important questions regarding the
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integration of AI systems [2], such as a potential decrease in polyp recognition skills [51] and
legal concerns when not following AI recommendations [30], the role of the human operator and
their interaction with the AI system remains both underdiscussed and underexplored. Our results
highlight that participants with less endoscopic experience generally perceived the AI as more
bene!cial (Figure 6). The sentiment that those with less experiences have the most to gain from
AI support is repeated both in participant responses and the wider literature [11, 14].

The analyses across di"erent professional roles highlight that no unanimous response to the
introduction of AI systems can be expected among end users, with di"erences emerging in both
the interactions (Figure 4) and perspectives (Figure 6) between di"erent endoscopic roles. As such,
we urge for AI support systems to be evaluated with a diverse range of participants prior to their
deployment.

5.4 Limitations and Future Work
We recognise and discuss a number of limitations to the presented work. First, we solely considered
false positives and true positives, whereas real-world deployments will inevitably demonstrate
other type of #aws, most critically failing to identify polyps (i.e., false negatives). The consequences
of this can be substantial if attention levels of endoscopists were to drop due to continuous AI sup-
port [51]. However, the e"ect of false negatives is outside the scope of our study’s focus on the
participants’ interaction with AI recommendations. Collecting participant input on false negatives
requires not only a binary ‘polyp/non-polyp’ decision but will also need subsequent manual anno-
tation to assess whether the participant has indeed correctly identi!ed a polyp (see Section 3.1).

The videos included in our experiment were manually annotated and are not the result of a ‘live’
AI system. This ensured consistency in the material presented to participants, thereby enabling us
to compare participant results. As our video material contained a wide range of both false positives
and true-positive annotations, participants’ perception of the AI system may have been a"ected
by the contrast between surprisingly poor and superior AI ‘detection’ performance. Although this
was in line with our study’s focus on initial responses to AI support, future work on long-term AI
perception must integrate actual AI systems.

We believe this to be a sensible consideration given previously raised concerns on maintaining
experimental control when working with AI technology [10]. Informed by prior work [46] and
through extensive collaboration with gastroenterologists, we were able to identify the most com-
monly occurring false positives in current AI systems (see Table 1). However, we stress that not
all possible types of false positives were included in our study (e.g., undigested debris).

Future work should aim to explore the (long-term) impact of embedding AI technology in clin-
ical practice—including the potential over-reliance on AI support and a decrease in user trust and
usage when faced with repeated false positives. We have made the source code of our applica-
tion publicly available to support future researchers in the systematic evaluation of continuous AI
support scenarios.

6 CONCLUSION
In this article, we report on a controlled study in which we investigated the behaviour and ex-
periences of endoscopists through a continuous support application. Through the use of expert
annotated colonoscopy videos and a videogame controller, we were able to capture the navigation
and decision behaviour of 21 expert end users. Our work highlights that AI recommendations sig-
ni!cantly slow down participant navigation, regardless of the content of the object highlighted.
Yet time for participants to make a decision on the nature of the highlighted object did di"er sig-
ni!cantly between video categories. We therefore argue that a single metric of AI performance is
insu$cient to assess real-world impact on user interaction, as the e"ect of false positives on end
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users di"ers between clinical content presented. Furthermore, our results highlight that the partic-
ipant’s professional role and experience signi!cantly a"ected viewing behaviour and perceptions
towards AI systems. Development and evaluation of AI applications should therefore carefully
consider the full breadth of end users who will interact with the technology. Finally, we highlight
and discuss the challenges faced by researchers aiming to study AI support in continuous sup-
port scenarios. Maintaining su$cient levels of ecological validity should be a key consideration in
human-AI interaction studies going forward.
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