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Abstract—Industry 4.0 requires wireless solutions to meet
the demanding reliability and latency requirements of cyber-
physical systems serving many industrial sensors and actuators.
The cell-free massive multiple input multiple output (MIMO)
paradigm, exploiting both massive MIMO gains and cell-free
properties, is expected to play a crucial role in addressing
Industry 4.0 communication requirements. However, finding an
optimal user association to satisfy the quality of service (QoS)
requirements is critical. In this article, we propose a novel cen-
tralized probabilistic user association algorithm to identify and
maximize the number of served users without relying on short-
term channel state information to satisfy the QoS requirements.
In larger factories, approximately 90% of the total users are
satisfied. However, as the system becomes interference-limited
and is expected to meet challenging requirements, the number
of served users decreases. Nevertheless, the proposed solution
exhibits adaptability in maximizing the number of satisfied users.
Simulation results further prove the effectiveness of the proposed
solution in terms of achievable spectral efficiency and maximizing
the number of satisfied users across varying requirements and
factory sizes.

Index Terms—User association, cell-free massive MIMO, In-
dustry 4.0

I. INTRODUCTION

The Industry 4.0 vision relies on the advancements in
fifth-generation (5G) and beyond 5G (B5G) or 6G technolo-
gies, eliminating the need for costly and high-maintenance
wired solutions vital for critical communication needs and
improving modularity and production management efficiency.
Massive multiple input multiple output (mMIMO) is a crucial
technology for 5G and beyond. It can serve multiple users
simultaneously using the same time and frequency resources
and can function as a co-located or distributed architecture.
In industrial environments, with harsh propagation conditions,
distributed mMIMO can offer better link stability, coverage,
and signal-to-noise ratio (SNR) gains. In [1], such gains
have been verified via measurement campaigns taken from
two factory setups using an automated guided vehicle. The
analysis in [2] shows that, in an indoor line-of-sight sce-
nario, distributed mMIMO requires a lower transmit power in
downlink than a co-located massive MIMO setup to provide
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high data rates. Building upon the benefits of distributed
mMIMO, cell-free massive MIMO (cf-mMIMO) proposes an
alternative architecture by removing the cell boundaries. In
this architecture, a large set of access points (APs) jointly
serve the users, making it a promising solution for networks
with diverse user requirements. Authors in [4] have shown
the superiority of cf-mMIMO with respect to other distributed
mMIMO transmission schemes in terms of achievable data
rates and computational complexity in industrial scenarios.
Initial work on cf-mMIMO assumed all APs to be connected
via fronthaul links to a central unit jointly serving all users,
known as a full-scale system. This configuration entails high
computational and fronthaul bandwidth requirements, resulting
in poor scalability [5]. Fig. 1 depicts the formation of serving
clusters (the set of APs assigned for a user) in an industrial
scenario.

Fig. 1: Serving clusters of cf-mMIMO in an industrial scenario

For a scalable cf-mMIMO system, an intelligent user associ-
ation strategy is needed. It reduces the number of serving APs
per user, enhancing scalability by decreasing joint processing
complexity. Choosing the right user association and forming
a serving cluster is crucial. Authors in [5] proposed a user-
centric dynamic cooperation clustering (DCC), a large-scale
fading (LSF) based algorithm. Each user chooses a master AP
with the most significant gain, which allocates a pilot sequence
and instructs neighboring APs to form a serving cluster.
Alternatively, in [6], the association problem is formulated as
a matching problem, and a Hungarian algorithm is proposed
to maximize the uplink (UL) sum rate. A sub-optimal joint
user clustering and access point selection scheme proposed in



[7] divides the users into multiple clusters based on similar
channel characteristics and performs the AP selection process
only once for each user cluster. To reduce the joint processing
complexity and signaling overhead, [8] formulated a bipartite
graph partitioning problem and proposed a rate-constrained
network decomposition algorithm that forms multiple weakly
interfered serving clusters. The authors evaluated this algo-
rithm at mmWave bands, assuming APs are equipped with
multiple antennas and a well-defined beam space. In [9], a
new performance indicator, user satisfaction rate (USR), is
introduced to measure the ratio of scheduled users satisfying
their performance requirements; a dynamic programming-
based user scheduling solution is proposed to maximize the
system throughput and USR. The authors considered a down-
link transmission where all the APs jointly serve all the users
and rely on full CSI availability.

Nonetheless, the presented state-of-the-art either disregards
guaranteeing user-specific QoS requirements, as often de-
manded by industrial applications for closed-loop control, or
relies on the assumption that instantaneous CSI from all users
is available at the central unit; this might be impractical to
obtain as small-scale fading may rapidly vary over time. The
main contributions of this paper are the following:

• We propose a QoS-aware user association algorithm,
which finds suitable user-AP associations to maximize
the number of satisfied users. This article focuses on
guaranteeing a requested spectral efficiency (SE) as the
key QoS indicator.

• The proposed algorithm uses a method to predict the
minimum number of APs needed to meet user require-
ments without relying on accurate instantaneous CSI.
This method adopts closed-form expressions based on
LSF coefficients to predict the achievable SE and a
probability distribution model to measure the reliability
of predictions.

The rest of the paper is organized as follows: Section II
outlines the system model, Section III introduces the closed-
form expressions for prediction based on LSF coefficients, and
devises a distribution model to capture the reliability of the
closed-form expressions. Section IV describes the proposed
algorithm, and Section V presents the simulation results.
Finally, Section VI provides the conclusion and outlines future
work.

Notation: Boldface lowercase x and uppercase X denote
column vectors and matrices respectively. NC represents the
complex Gaussian distribution and E {.} denotes expected
value. T, H, and † denote matrix operations transpose, her-
mitian, and pseudo-inverse, respectively. diag (.) transforms
square matrices into block-diagonal matrix. \,

⋃
, represent set

difference and union. Whereas ⊂, |X | denote subset relation
and cardinality of a set, respectively.

II. SYSTEM MODEL AND SPECTRAL EFFICIENCY

A. System Model
We consider a cf-mMIMO system, with a set L of dis-

tributed APs, with cardinality |L| = L. Each AP has N

antennas connected to a central unit, jointly serving a group K
of single-antenna users, where |K| = K, over the same radio
resources. The UL received signal at the l-th AP is

yul
l =

K∑
k=1

√
ηkhk,lsk + nl (1)

where the k-th user, with k = 1, · · · ,K, transmits complex
symbol sk with transmit power ηk on channel hk,l ∈ CN ,
where nl ∼ NC

(
0, σ2

ulIN
)

is thermal noise. The links hk,l are
mutually independent Rayleigh fading channels, with hkl ∼
NC (0,Rkl). The complex Gaussian distribution models small
scale fading where Rkl = βklIN is a spatial correlation matrix
formulated considering LSF values describing geometric path
loss and shadow fading. The collective channel of the k-th
user is denoted as hk =

[
hT
k1 .... hT

kL

]T ∈ CM , where
M = LN .

This paper focuses on the UL user association. The channel
is considered constant across a UL frame of length τf , divided
into UL pilot (τp) and UL data (τul) samples. We assume that
the CSI is acquired using UL pilot sequences of length τp and
the available number of orthogonal pilot sequences τp < K.
Given that Φtk ∈ Cτp is a pilot sequence assigned to user
k, Pk denote the set of users assigned with the same pilot
sequence, including the k-th user, i.e.

Φt
H
j Φtk =

{
0 j /∈ Pk

τp j ∈ Pk
(2)

The pilot assignment is a critical initial step to mitigate pilot
contamination. The pilot assignment strategy proposed in [3]
based on large-scale fading values is adopted in this article.

In user-centric cf-mMIMO, APs in the serving cluster par-
ticipate in the UL receive processing for each user. Therefore,
the channel estimates of the user are available only at those
APs. The MMSE channel estimator proposed in [3] is adopted
to obtain the channel estimate ĥk =

[
ĥT
k1 .... ĥT

kL

]T ∈
CM .

We consider a centralized architecture and define an as-
sociation matrix D ∈ {0, 1}LN×KN

= [D1 . . .DK ], where
Dk = [Dk1 . . .DkL]

T represent the association of the k-th
user. Dkl ∈ {0, 1}N×N is either IN or 0N , depending on
whether the l-th AP is in the k-th user’s serving cluster or not.
The central unit further estimates the received symbols using
combining vectors vk =

[
vT
k1 . . .v

T
kL

]T ∈ CM . Considering
Ok = diag (Dk) as a block diagonal matrix, combining
vectors are formulated according to the channel estimates of
the serving clusters. We adopted the partial-MMSE (PMMSE)
combiner (3) from [3], where the set of users Sk that are
partially or completely served by the serving cluster of the
k-th user are considered, i.e.

vk = ηk

(∑
i∈Sk

ηiOkĥiĥ
H
i Ok + Zk

)†

Okĥk,

Zk = Ok

(∑
i∈Sk

ηiCi + σ2
ulIM

)
Ok,

(3)



where Ci ∈ CLN×LN is the error correlation matrix of the
collective channel estimate of the i-th user [3]. The effective
signal-to-interference-and-noise ratio of k-th user SINRk using
P-MMSE can be represented as [10]

SINRk =
DSk

IUIk + nk
(4)

where DSk, IUIk, and nk denote desired signal, inter-user
interference, and noise, respectively (5), given by:

DSk = ηkE
∣∣{vH

kOkhk

}∣∣2 ,
IUIk =

K∑
i=1

ηiE
{∣∣vH

kOkhi

∣∣2}− ηkE
∣∣{vH

kOkhk

}∣∣2 ,
nk = σ2

ulE
{
||Okvk| |2

}
.

(5)

This results in an achievable SE for the k-th user as:

SEk =

(
1− τp

τf

)
log2 (1 + SINRk) . (6)

Fig. 2: Proposed user association algorithm

III. SPECTRAL EFFICIENCY PREDICTION

Selecting an appropriate serving cluster (association matrix)
is essential for developing an efficient cf-mMIMO system.
Determining the minimum number of APs required per user
is crucial to ensure fairness and equal opportunity for each
user to meet their respective requirements. However, ensuring
fairness might require accurate knowledge of the instantaneous
CSI for each user. This can be computationally complex and
incurs significant signaling overhead, making it infeasible.

On the other hand, LSF characteristics slowly vary, so it is
feasible for the network to estimate them accurately over time.
Closed-form expressions for the uplink SE have been derived
in [10], using LSF coefficients with different modes of Zero-
Forcing (ZF) combining schemes. Using such approximations
can provide insight into the impact of interference suppression
when interference cancellation combiners, such as P-MMSE
(3), are applied.

Channel estimate ĥkl and estimation error h̃kl = hkl − ĥkl

are independent Gaussian vectors with distributions [3]:

ĥkl ∼ NC (0, γklIN ) , (8)

h̃kl ∼ NC (0, (βkl − γkl) IN ) , (9)

γkl = E
{∣∣∣ĥkl

∣∣∣2} =
ηkτpβ

2
kl

τp
∑

t∈Pk
ηtβtl + σ2

ul

. (10)

When users k and t use the same pilot, channel estimates ĥkl

and ĥtl are linearly dependent [10], as follows:

ĥkl =

√
ηkβkl√
ηtβtl

ĥtl. (11)

The achievable SINRk can be calculated as in (7) at the top
of the next page, and using (6), we can obtain a prediction
of the achievable SE (SEpred). Evaluating the accuracy of
SEpred compared to actual SE (SEact) is crucial in finding the
best association matrix. A distribution model is formulated to
evaluate the deviation between SEpred and SEact.

A. Distribution Model

To model the deviation between predicted and actual SE
values, we fit a distribution that captures the statistics of
∆SE = SEpred − SEact, where SEpred is obtained using the
closed-form approximation (7) and SEact is obtained using
instantaneous CSI (4),(6). As an initial step, we collect SEpred
and SEact for a full-scale system and subsequently employ a
distribution model that approximates the ∆SE. In this paper,
we model ∆SE as a Gaussian distribution, i.e.

∆SE ∼ N (µ, σ) (12)

where the mean (µ) and standard deviation (σ) are empiri-
cally calculated from the data obtained via simulations on a
full-scale system. This can further guide the selection of a
favorable association that maximizes the expected number of
satisfied users (14) according to the guaranteed SE require-
ments (SEreq). Using the model (12), the probability of user
k satisfying its SE requirement, conditioned on its prediction,
can be calculated as

ζk = Pr (SEk ≥ SEreq|SEpred) . (13)

and, with it, the expected number of satisfied users in the
network becomes

E {Usat} =
|Uschd|∑
k=1

ζk (14)

where Uschd and Usat correspond to a set of scheduled users
and satisfied users, respectively. We can assess prediction
credibility by using the satisfaction rate defined as

ρs =
E {Usat}
|Uschd|

(15)

The central unit can leverage such a distribution model to find
optimal associations to maximize the E {Usat}.



SINRk =
ηk

∣∣∣∑L
l=1 γkl

∣∣∣2∑K
t=1 ηt

∑L
l=1 γkl (βtl − γtl) +

∑
t∈Pk\{k} ηt

(∑L
l=1 γtl

)2
+ σ2

ul

∑L
l=1 γkl

(7)

IV. QOS-AWARE USER ASSOCIATION

This section introduces a QoS-based user association algo-
rithm that uses the equations and distribution model from the
previous section. The equations provide two key details: the
expected number of satisfied users and the optimal association
for meeting SE requirements. Considering single antenna
(N = 1) per AP, we formulate our problem to maximize the
expected number of satisfied users transmitting with power ηul
and find an optimal association matrix D ∈ {0, 1}L×K , where
dlk = 1 if l-th AP is assigned to k-th user, otherwise 0, to
satisfy guaranteed SE requirements, i.e.

max
D

E {Usat}
s.t. dl,k ∈ {0, 1}

ηk = ηul,∀k ∈ Uschd

(16)

The proposed algorithm has three stages, shown in Fig. 2.
The first stage is the association phase (Alg. 1), aiming at
finding an initial association. The second stage is correction
phase (Alg. 2) to update the designated user set to improve
the satisfied users, and the third stage is improvement phase
(Alg. 3) to enhance the reliability of formed associations.

To initialize the algorithm, a random subset of users
(Uschd ⊂ K), where |Uschd| = K/2 is selected. To limit
the pilot contamination effect, we prevent two users sharing
the same pilot sequence from being served by the same AP.
To accomplish this, we divide the subset Uschd into groups
G =

{
G1, . . . ,Gτp

}
based on their assigned pilots, where

KG =
{
KG1 , . . . ,KGτp

}
represent set of selected users for

each group and Uschd =
⋃

i=1,...,τp
KGi

. Based on the same
criterion, we further divide the non-selected users (Unon-select =
K \ Uschd) into Gnon =

{
Gnon,1, . . . ,Gnon,τp

}
. This is to ensure

that users from the same group always choose different APs,
thus forming disjoint AP clusters in each group.

A. Association Phase

A sequential association approach is adopted to ensure the
same AP does not serve two users from the same group. For
each user APs are sorted according to strongest γkl values,
and one by one, each AP is added to Lselected ⊂ L until
SEpred ≥ SEreq. This ensures that the minimum number of APs
are assigned per user to give a fair chance to other users. The
same process is applied to all groups based on their respective
requirements. Alg. 1 outlines the association phase, where
Γ ∈ RK×L with each entry γkl calculated using (10), and the
SEreq of each user is given as input. Additionally, the available
APs for each group are initialized with LGi

= L.

Algorithm 1 Association Phase
Input:Γ, L, G, Gnon, KG , SEreq

1: Initialization : T ∈ 0L×K ← Intermediate Assn. matrix
2: LGi

← L : ∀Gi ∈ G
3: for Gi in

{
G1,G2, . . . ,Gτp

}
do

4: for k = 1, 2, . . . |KGi
| do

5: Sort APs in descending order based on γkl.
6: Lselected ← {}
7: for l = 1, 2, . . . , |LGi | do
8: Lselected ← Lselected ∪ {l}
9: Calculate SEpred for k-th user using (7) & (6)

10: if SEpred ≥ SEreq then
11: T[Lselected, k] = 1
12: LGi ← LGi\Lselected
13: break;
14: end if
15: end for
16: end for
17: end for
Output:T

B. Correction Phase

Once the association phase is finished, the distribution
model in the previous section calculates the E {Usat} (14) and
respective probabilities (13); if a user k is not assigned to
any APs, then the user is assigned with ζk = 0. Once the
association is performed and probabilities are obtained, we
move on to the correction phase with three steps for each
group: ADD, SWAP, and REMOVE.

• ADD: If every user in group Gi has achieved SEreq with
a probability higher than a threshold value ζth, then more
users can be added from the non-selected group (Gnon).

• SWAP: Users whose probability of achieving the SEreq
is lower than ζth can be swapped with users from the
non-selected group (Gnon).

• REMOVE: If a user repeatedly fails to find a suitable
association to meet the requirements, it is considered to
be in ‘worse state’ and can be removed from the user set
(i.e., turned off or not scheduled). This step is necessary
to prevent falling into the same loop repeatedly.

A detailed description of the correction phase is given in Alg.
2, which repeats for nItr iterations.

C. Improvement Phase

After the correction phase, we can identify the users most
likely to meet the requirements and maximize E {Usat}. We
can assign additional available APs based on their strongest
channel gains to improve the probability of the selected users



Algorithm 2 Correction Phase
Input:Γ, L, K, G, Gnon, SEreq, nItr

1: Initialization : D← 0L×K

2: for itr = 1, 2, . . . nItr do
3: Aitr ∈ {0, 1}L×K ← Intermediate Assn. matrix
4: Aitr ← Algorithm 1
5: Calculate E {Usat} using (14)
6: if

(
E {Usat} |Aitr

)
>
(
E {Usat} |Aitr−1

)
then

7: D← Aitr

8: end if
9: for Gi in

{
G1, 2, . . . ,Gτp

}
do

10: Calculate ζt, ∀t ∈ Gi using (12) & (13).
11: if ζt ≥ ζth : ∀t ∈ Gi then
12: ADD: Gi ∪ {q} where q ∈ Gnon,i
13: else if ζt < ζth : ∃t ∈ Gi then
14: SWAP: t ∈ Gi replaced with q ∈ Gnon,i.
15: else if ∃t ∈ Gi: worse state then
16: REMOVE: Remove t from process.
17: end if
18: end for
19: end for
Output:D

meeting the requirement and update D. This enhances the
initial association and improves SE as well as satisfaction rate.
Details are captured in Alg. 3.

Algorithm 3 Improvement Phase
Input:Γ, L, G, D

1: for l = 1, 2, . . . ,L do
2: for Gi in

{
G1,G2, . . . ,Gτp

}
do

3: if no user from Gi is scheduled on l then
4: Find the user k′ with the strongest γk′l value
5: D[l, k′] = 1
6: end if
7: end for
8: end for

Output:D

TABLE I: Simulation Parameters

Parameter Value
Bandwidth (BW) 20 MHz
fc 3.5 GHz
UL tx. power ηul 20 dBm
Noise Figure (nF) 7 dB
Noise Power -174 + 10 * log10(BW )[MHz] + nF
Factory size small = 50m× 50m

medium = 80m× 80m
large = 100m× 100m

InF-DH Clutter Prop. Density[%]=80, height & size[m]=6 & 2
Height of AP & User 10m & 1.5m
UL Frame Prop. τp = 5 & τf = 200
Combiner P-MMSE (3)

V. NUMERICAL RESULTS

In this section, we evaluate the performance of the pro-
posed algorithm under various factory sizes and different SE
requirements. We considered three factory setups with a square
geometry, small = 50m × 50m, medium = 80m × 80m
and large = 100m × 100m. L = 100 single antenna APs
and K = 40 single antenna users are deployed randomly and
uniformly placed in the chosen geometry. We further adopt
a dense clutter scenario with high AP (InF-DH) from the
3GPP Indoor Factory (InF) channel model [11] considering
an industrial environment, where radio propagation is affected
by the presence of a high clutter density. Table I captures the
main simulation parameters. We first collect the SEpred and
SEact values for a given geometry on a full-scale system and
model a normal distribution to capture the statistics of ∆SE.
The proposed algorithm leverages this distribution model to
find the optimal associations for maximizing E {Usat}.
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Fig. 3: Avg. per user SE analysis for all factory sizes SEreq =
0.50 bits/s/Hz

Results are generated using 4,000 random setups and eval-
uated the performance of the proposed algorithm by choosing
DCC [5] as a benchmark. The proposed algorithm runs for 50
iterations considering a threshold probability of ζth = 0.3.
If ζk = 0 over 10 times, that user is deemed to be in a
worse state. Fig. 3 shows the Cumulative Distribution Function
(CDF) of average SE per user. The proposed algorithm out-
performs DCC in all scenarios, especially in smaller geome-
tries where interference dominates. For instance, to guarantee
SEreq = 0.50 bits/s/Hz in a smaller factory setup, the proposed
algorithm shows a gain of 16-35% when compared to DCC
depending on the environment. Sequentially allocating APs
and finding a suitable schedulable user set improves resource
utilization in interference-dominated scenarios. Giving up on
a few highly interfering users can improve E {Usat}.

The proposed algorithm aims to schedule a desirable set
of users to maximize satisfaction rate; hence, it is crucial to
evaluate the percentage of non-scheduled users and satisfaction
rate to gauge decision credibility. Fig. 4 captures this, for
the chosen factory setup for a minimum requirement of
SEreq = 0.25, 0.50, and 0.75 bits/s/Hz. As expected, the



percentage of not scheduled users increases as SEreq increases.
To guarantee a satisfaction rate of 94%, approximately 9% of
total users are not scheduled for a smaller factory setup with
SEreq = 0.25. For a SEreq = 0.75 setup, this increases to
37% of not scheduled users and a satisfaction rate of 83%.
From observations, it is evident that the satisfaction rate of
scheduled users improves with an increase in the factory size.
Indicating LSF approximations can replace instantaneous CSI
in non-interference-limited scenarios and still make reliable
decisions in interference-dominated situations.
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Fig. 4: Percentage of turned-off users and satisfaction rate for
SEreq = 0.25, 0.50 and 0.75 bits/s/Hz

Fig. 5 provides insights into the 10%-tile of satisfied users
across various factory sizes and SEreq to evaluate challenging
satisfaction scenarios. With bigger factories, more users can be
satisfied, resulting in a higher number of satisfied users at any
given SEreq. To meet SEreq = 0.25, approximately 90% of total
users are satisfied for a large factory, and this reduces to 80%
for a smaller factory. However, as SEreq increases, fewer users
meet the requirements. For a smaller factory, as SEreq increases
from 0.25 to 0.75, the total number of satisfied users reduces
from 80% to 45%. The proposed algorithm has demonstrated
adaptability to different scenarios, resulting in significant gains
in terms of the average per-user SE, satisfaction rate, and total
number of satisfied users, particularly in interference-limited
or challenging requirements.

VI. CONCLUSION AND FUTURE WORK

We have proposed a user association algorithm for cell-
free mMIMO that aims to increase the number of satisfied
users according to their QoS requirements. The developed
method predicts the number of satisfied users based on large-
scale fading knowledge, thus removing the need to acquire
instantaneous channel knowledge of all users. The proposed
algorithm identifies the users who can meet the requirements
and find a suitable association to maximize the number of
satisfied users based on an estimated probability to meet their
QoS. Simulation results confirm the efficiency and adaptability
of the proposed solution in terms of average achievable SE per
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Fig. 5: 10 percentile of no.of satisfied users for varying SEreq
and geometries in percentage

user and number of satisfied users. Large factory deployments
consistently achieve higher satisfaction rates, approximately
95%, at lower SE requirements; satisfaction rates decline
to 83% in interference-limited scenarios or in the case of
higher SE requirements. Future work will further investigate
integrating the probabilistic model into various radio resource
allocation problems such as power control, dynamic channel
assignment, etc., considering heterogeneous requirements and
priorities according to realistic industrial scenarios.
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