

Aalborg Universitet

Pivot selection algorithms in metric spaces: a survey and experimental study

Zhu, Yifan; Chen, Lu; Gao, Yunjun; Jensen, Christian S.

Published in:
VLDB Journal

DOI (link to publication from Publisher):
10.1007/s00778-021-00691-4

Publication date:
2022

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Zhu, Y., Chen, L., Gao, Y., & Jensen, C. S. (2022). Pivot selection algorithms in metric spaces: a survey and
experimental study. VLDB Journal, 31(1), 23-47. https://doi.org/10.1007/s00778-021-00691-4

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 23, 2024

https://doi.org/10.1007/s00778-021-00691-4
https://vbn.aau.dk/en/publications/05c116e3-7b23-440f-a28a-9917e99c34fc
https://doi.org/10.1007/s00778-021-00691-4

The VLDB Journal manuscript No.
(will be inserted by the editor)

Pivot Selection Algorithms in Metric Spaces: A Survey
and Experimental Study

Yifan Zhu · Lu Chen · Yunjun Gao · Christian S. Jensen

Received: date / Accepted: date

Abstract Similarity search in metric spaces is used

widely in areas such as multimedia retrieval, data

mining, data integration, to name but a few.

To accelerate metric similarity search, pivot-based

indexing is often employed. Pivot-based indexing

first computes the distances between data objects

and pivots and then exploits filtering techniques

that use the triangle inequality on pre-computed

distances to prune search space during search. The

performance of pivot-based indexing depends on the

quality of the pivots used, and many algorithms

have been proposed for selecting high-quality pivots.

We present a comprehensive empirical study of pivot

selection algorithms. Specifically, we classify all existing

algorithms into three categories according to the types

of distances they use for selecting pivots. We also

propose a new pivot selection algorithm that exploits

the power law probabilistic distribution. Next, we

report on a comprehensive empirical study of the

search performance enabled by different pivot selection

approaches, using different datasets and indexes,

thus contributing new insight into the strengths and

weaknesses of existing selection techniques. Finally, we

offer advice on how to select appropriate pivot selection

algorithms for different settings.

Yifan Zhu · Lu Chen (Corresponding Author) · Yunjun Gao
College of Computer Science
Zhejiang University, Hangzhou, China
E-mail: {xtf z, luchen, gaoyj}@zju.edu.cn

Christian S. Jensen
Department of Computer Science
Aalborg University, Aalborg, Denmark
E-mail: csj@cs.aau.dk

Keywords Similarity Search, Metric Space, Metric

Index, Pivot

1 Introduction

Similarity search aims to find objects similar to a

query object under a given metric. When using different

metrics (such as Euclidean distance or edit distance),

similarity search is capable of accommodating a wide

variety of data types (e.g., locations, strings and

images), thus having applications in a wide range of

areas [12,13,23,31,32]. For instance, similarity search

can be employed to multimedia searching to find images

of similar shapes, colors, and layouts. As the notion of

metric space is general and can accommodate a wide

variety of data types and distance metrics, we focus on

solutions to similarity search in metric spaces that make

no limiting assumptions and thus are able to support a

wide range of applications.

In order to accelerate similarity search in metric

spaces, a number of indexing techniques have been

developed. Existing metric indexes can be classified into

two categories, i.e., compact partitioning techniques

and pivot-based techniques [8]. The former divide space

into compact regions, and enable pruning of such

regions during search. The latter represent objects

as vectors of distances to a set of pivots. These

distances can be employed to avoid unnecessary

distance computations by pivot filtering and validation.

Given a query q, a pivot p, and an object o, we have

|d(q, p)− d(p, o)| ≤ d(q, o) ≤ d(q, p) + d(p, o) according

to the triangle inequality. By storing the distances

d(p, o) from p to all data objects o, we can derive upper

and lower bounds on d(q, o) for pruning and validation.

Therefore, pivot-based techniques are able to reduce

2 Yifan Zhu et al.

the number of distance computations, and to improve

performance accordingly [21].

The performance of pivot-based methods depends

on the quality of the pivots used. Thus, many

proposals [1,4,5,9,16,17,20,22,24,27,29,34,36] exist

on how to design algorithms for selecting high-quality

pivots for use in metric indexes. Pivot-based indexing

has attracted recent attention [6,10,11,28,30,33], and

in two previous studies [10,11], we survey all metric

indexes, including pivot-based metric indexes. While

these studies focus on the indexing structures, little

attention has been given to pivot selection. In this

paper, we investigate methods for high-quality pivot

selection that can be used to improve the performance

of pivot-based indexing. To enhance the quality

of selected pivots, additional features, such as the

distribution of queries [21,34] and the similarity metrics

employed [2,14,18,19,35], can be utilized. For instance,

when Euclidean distance is used as the metric in

L-dimensional vector space, machine learning can

be exploited to improve the quality of the selected

pivots [19]. Nevertheless, such specific features are not

available in a general setting where the specifics of the

datasets and queries are not known in advance. We

consider general pivot selection algorithms that can find

a specified number of pivots without relying on any

specialized features of the data and setting.

Although some studies [1,7,15,25,33] compare a

few pivot selection techniques, no comprehensive

comparisons have been reported. In particular, the

HKvp index [33] and permutation-based indexes [1] are

used to compare different pivot selection algorithms,

as the latter indexes belong to the class of pivot-based

indexes that support approximate similarity search. In

contrast, we employ three typical pivot-based indexes

(e.g., LAESA [26] MVPT [3], and SPB-tree [9])

for comparisons. Another study compares four pivot

selection methods [7], and a study also has been

reported that proposes an incremental sampling

pivot selection framework to combine existing pivot

selection algorithms [25]. A further study [15] conducts

experiments in vector space and thus does not take

into account the variety of data types (e.g., strings)

in metric spaces. Motivated by this state of affairs,

we provide a comprehensive evaluation of all the pivot

selection algorithms in the same experimental settings

(i.e., the same numbers of pivots, the same size of

candidate pivots, and the same sample size w.r.t. the

dataset), considering three types of pivot-based indexes,

to enable balanced comparisons.

We survey all existing general pivot selection

algorithms known to us, and classify them into three

categories: (i) P-P distribution based algorithms [1,16,

17,27,29] that select pivots according to the distance

distribution among pivots; (ii) P-O distribution based

algorithms [22,24,34] that select pivots according to

the distance distribution between pivots and data

objects; and (iii) O-O distribution based algorithms [4,

5,9] that select pivots according to the distance

distribution between data objects, and aim to maximize

the similarity between original metric distances and

lower bound distances derived by using pivots. We

provide detailed descriptions of the algorithms, and

analyze their time complexities. To better illustrate

the variations among the algorithms, a case study is

included in the experiments.

To sum up, we make the following contributions.

– We present a compact survey of pivot selection

algorithms for metric indexing, classifying the

algorithms into three categories according to

the distance distributions (i.e., P-P, P-O, and

O-O distributions) they use. We also provide

corresponding time complexity analyses.

– We present a new pivot selection algorithm that

uses a power law probabilistic distribution to further

improve the quality of selected pivots.

– We report on a comprehensive experimental

comparison of all the pivot selection algorithms

while considering the effects of different kinds of

pivot-based metric index structures and considering

both real and synthetic datasets with different data

types and distance metrics.

– We conduct a case study to offer new insights

into the strengths and the weaknesses of

existing techniques, and we provide a combined

effectiveness-efficiency analysis to offer guidance

on how to choose an appropriate pivot selection

algorithm for a specific setting.

The rest of the paper is organized as follows.

Section 2 provides definitions and terminology related

to pivot selection. Sections 3, 4, and 5 cover the

three categories of pivot selection algorithms. Section 6

reports on the comprehensive experimental study.

Finally, Section 7 concludes the paper and offers

directions for future research.

2 Preliminaries

We first provide definitions of metric similarity

search. Then, we introduce the pivot filtering and

validation techniques used to accelerate similarity

search. Finally, we present an overview of all the pivot

selection algorithms. Table 1 summarizes frequently

used notations.

Pivot Selection Algorithms in Metric Spaces: A Survey and Experimental Study 3

Table 1 Frequently Used Notation

Symbol Description

O the object set

o, q an object or a query object

S the sample object set

A the set of object pairs

P the set of pivots

Pcand the set of candidate pivots
n the number of objects

n̂ the number of sample objects

m the number of pivots

m̂ the number of candidate pivots

dcmp the metric distance computation cost

compdists the number of distance computations

R the number of pivot replacements

α the distance threshold

sp(·) the spacing between objects

σ2
sp(·) the variance of spacing

sc(·, ·) the linear correlation coefficient

εsp the spacing variance threshold

εsc the linear correlation coefficient

threshold
d(·) the distance function

dP (·) the lower bound distance function

dis(o, P) the distance from o to a pivot set P

2.1 Metric similarity search

A metric space is a pair (M , d), in which M is an object

domain and d is a distance function for measuring the

“similarity” between objects in M . In particular, the

distance function d has four properties: (1) symmetry :

d(q, o) = d(o, q); (2) non-negativity : d(q, o) ≥ 0; (3)

identity : d(q, o) = 0 iff q = o; and (4) triangle inequality :

d(q, o) ≤ d(q, p) + d(p, o). Based on these properties,

we define metric similarity search, including the metric

range query and the metric k nearest neighbor query.

Definition 1 (Metric Range Query) Given an

object set O, a query object q, and a search radius r

in a metric space, a metric range query (MRQ) finds

the objects in O that are within distance r of q, i.e.,

MRQ(q, r) = {o| o ∈ O ∧ d(q, o) ≤ r}.

Definition 2 (Metric k Nearest Neighbor

Query) Given an object set O, a query object q, and

an integer k in a metric space, a metric k nearest

neighbor query (MkNNQ) finds k objects in O that

are most similar to q, i.e., MkNNQ(q, k) = {S| S ⊆
O∧ |S| = k∧∀s ∈ S (∀o ∈ (O − S)(d(q, s) ≤ d(q, o)))}.

Consider an English word set O = {“rank”,

“france”, “far”, “friend”, “brand”}, where edit distance

5
X

1

431 2

2

3

4

6

Y

q

filtering region

0
0

o7

o1

o4
o3

r=1

o6o5

o2

o9o8

(a) Pivot filtering

5
X

1

431 2

2

3

4

6

Y

q

validation region

0
0

r=1

o1

o4
o3 o6o5

o2

o9o8o7

(b) Pivot validation

Fig. 1 Pivot Filtering and Validation

is employed to measure similarity between the words.

Taking “frank” as a query word q, an example of metric

range query with search radius 2 finds the words that

can be edited to become the query word in 2 steps,

i.e., MRQ(“frank”, 2) = {“rank”, “france”, “brand”}.
An example of a metric k nearest neighbor query finds

(k =)1 word from O with the smallest edit distance

to the query word “frank”, i.e., MkNNQ(q, k)(“frank”,

1) = {“rank”}. If we know the distance from q to its

k-th nearest neighbour in advance, an MkNNQ can be

answered by means of an MRQ.

2.2 Pivot filtering and validation

When having to answer the above queries, a brute-force

solution is computing the distances from all the objects

to the query object and then determining the final

results according to the definitions. However, the

distance computations (e.g., edit distance) are usually

costly. To improve efficiency, we can use well-chosen

pivots and the triangle inequality to prune the search

space. Next, we introduce filtering and validation based

on pivots.

Lemma 1 (Pivot Filtering) Given a pivot set P ,

a query object q, and a search radius r in a metric

space, an object o can be pruned if ∃pi ∈ P (|d(o, pi)−
d(q, pi)| > r.

Proof Given any pivot pi in P , a query object q, and

an object o, we have |d(o, pi)−d(q, pi)| ≤ d(o, q) due to

the triangle inequality. If |d(o, pi) − d(q, pi)| > r, then

d(o, q) > r. Thus, o can be pruned safely.

Lemma 2 (Pivot Validation) Given a pivot set P ,

a query object q, and a search radius r in a metric

space, an object o is validated to be in the answer to

MRQ(q, r) if ∃pi ∈ P (d(o, pi) + d(q, pi) ≤ r).

Proof Given any pivot pi in P , a query object q, and an

object o, we have d(o, q) ≤ d(o, pi) + d(q, pi) due to the

triangle inequality. Hence, d(o, q) ≤ d(o, pi)+d(q, pi) ≤
r, meaning that o is contained in the result.

4 Yifan Zhu et al.

Table 2 Pivot Selection Algorithms

Category Method Para. Time Complexity

P-P
distribution

SSS [29] α O(nm · dcmp)
FFT [16] none O(nm2 · dcmp)
BPP [1] none O(n̂m̂2 + n̂m̂ · dcmp)
BPS [27] none O(nm2 · dcmp)
HF [17] none O(nm2 · dcmp)

P-O
distribution

MV [34] α O(n logn+nn̂ · dcmp)
SC [22] εsp, εsc O(nmR · dcmp)
PCA [24] none O(nm̂2 · dcmp)

O-O
distribution

IS [4] none O(mm̂|A| · dcmp)
DSSS [5] α O(nm̂+m|A|R · dcmp)
HFI [9] none O(mm̂|A|+ nm̂ · dcmp)
WRR λ O(|A|(mR+m̂ ·dcmp))

Filtering regions can be calculated according to

the condition in Lemma 1, while validation regions

can be computed using the condition in Lemma 2. As

mentioned in Section 2.1, a MkNNQ can be regarded

as an MRQ, where the radius equals the k-th nearest

neighbor distance. Thus, Lemmas 1 and 2 apply to both

MkNNQ and MRQ. Examples of the pivot filtering

and validation when answering MRQ(q, 1) are shown

in Figs. 1(a) and 1(b). Fig. 1(a) uses o3 as a pivot, and

the objects (i.e., o3, o6, and o9) that are located in the

filtering regions (shaded green) can be pruned according

to Lemma 1. The two separate regions that are shaded

green represent the cases d(o, o3) − d(q, o3) > r and

d(q, o3) − d(o, o3) > r. More specifically, o3 satisfies

d(q, o3) − d(o3, o3) > r while o6 satisfies d(o6, o3) −
d(q, o3) > r; thus, they can be discarded. Fig. 1(b)

utilizes o2 as a pivot, and the object o2 located in

the validation region (i.e., the region shaded green)

is validated to be in the result via Lemma 2 due to

d(o2, o2) + d(q, o2) ≤ r.

To enable pivot filtering and validation techniques,

many pivot-based metric indexes store pre-computed

distances d(o, pi) from every object o to each pivot

pi. These indexes use pre-computed distances to

derive the lower bound |d(o, pi) − d(q, pi)| and upper

bound d(o, pi) + d(q, pi) of the original distances

(stated in Lemmas 1 and 2) in order to prune

and validate objects during search. As summarized

elsewhere [11], pivot-based indexes can be classified into

three categories, namely pivot-based tables, pivot-based

trees, and pivot-based external indexes, according to

the structures they use for storing the pre-computed

distances. The performance of an index is dependent

on its pruning and validation ability. Therefore, how to

select high-quality pivots is important for pivot-based

metric indexes and many pivot selection algorithms

have been proposed in the literature.

2.3 Pivot selection

Table 2 summarizes all pivot selection algorithms.

We consider only pivot selection algorithms designed

for metric spaces, and that do not rely on specific

assumptions of the setting (query type, search radius,

etc.). These general pivot selection algorithms can be

classified into three categories, namely P-P distribution

based techniques, P-O distribution based techniques,

and O-O distribution based techniques, according to

the distance distributions they use.

The first category selects pivots by controlling

the distance distribution of pivots, i.e., pivots cannot

be too close to each other. Spatial Selection of

Sparse Pivots (SSS) [29] and Farthest First Traversal

(FFT) [16] use cluster-based functions to choose

well-distributed pivots. Balancing Pivot-Position

Occurrences (BPP) [1] tends to choose centers as

pivots. In contrast, algorithms such as Base-Prototypes

Selection (BPS) [27] and Hull of Foci (HF) [17] choose

outliers as pivots.

The second category selects pivots by utilizing

the distribution of distances between pivots and

objects. Maximum Variance (MV) [34] selects pivots

to maximize the distance variance between pivots

and objects, while Spacing-Correlation Based Selection

(SC) [22] considers the correlation of pivots and the

distance distribution between pivots and objects. PCA

for Pivot Selection (PCA) [24] selects pivots using

dimensionality reduction techniques.

Methods in the last category select pivots by

using the distribution of distances between objects,

i.e., aim at maximizing the similarity between the

original metric distances and the lower bound distances

derived in Lemma 1. Incremental Selection (IS) [4]

chooses pivots that maximize the lower bound distances

for sampled object pairs. Dynamic Pivot Selection

(DSSS) [5] is a dynamic version of SSS. Instead of

selecting pivots directly from the dataset, DSSS first

uses SSS to obtain candidates and then selects pivots

among the candidates using the same strategy as IS.

Similarly, HF-Based Incremental Selection (HFI) [9]

uses HF to obtain candidates, and then, it selects pivots

that can maximize the ratio of the lower bound distance

to the original distance. In addition, we propose a

new algorithm, Weighted Distribution Ratio Selection

(WDR), that selects pivots by using the power law

probabilistic distribution to control the contribution of

each object pair.

Pivot Selection Algorithms in Metric Spaces: A Survey and Experimental Study 5

5
X

1

431 2

2

3

4

6

Y

c1

o2

candidates

0
0

o3

c3

c2

o1

o4

o5

(a) Pivot candidates

o1

c1

σ

1 1.4 1 2.2 2.2 0.29

2.2 4 3 1 2.2 0.99

2.2 1.4 1 2.2 1 0.29

2

c3

c2

o2 o3 o4 o5

(b) Distance table

c1 1 1 1 2 2

2 3 3 1 2

2 1 1 2 1

4 1

2 3

removing c3

removing c2

o1

c2

c3

o2 o3 o4 o5 p1 = c1

p2 = c2

rank

4 1

4 1

p1 = c1

p2 = c3

rank 2

21

1

(c) Rank table and permutation

∆1

c1

σsp

0 0.4 0.8 0 0.33

1.2 0 0.8 1 0.46

0 0.8 0 0.33

∆2 ∆3 ∆4

0.4

2

c3

c2

(d) Difference distances

Fig. 2 Illustration of BPP, MV, and SC

Algorithm 1: SSS

Input: an object set O, a threshold α, and the

maximum distance MD

Output: a set of pivots P

1 P = {p}; //p is randomly selected

2 foreach o ∈ O do

3 if dis(o, P) ≥ α ·MD then
4 P = P ∪ {o};
5 end

6 end

7 return P

3 P-P distribution based methods

We introduce P-P distribution based pivot selection

methods with corresponding complexity analyses.

3.1 Spatial Selection of Sparse Pivots

Spatial Selection of Sparse Pivots (SSS) [29] selects

sparse objects as pivots. To control the distribution

of pivots, the distance between pivots should exceed

α · MD, where α is a threshold and MD denotes the

maximum distance between any pair of data objects in a

dataset. It can be computed easily based on the space

in which the data is located and the distance metric

used. For example, the string dataset uses edit distance

as the metric, making its MD equal to the length of the

longest string.

SSS defines the distance between an object o and

the pivot set P as follows.

dis(o, P) = min
p∈P

d(o, p) (1)

Stated briefly, a new pivot p selected by SSS should

satisfy dis(p, P) ≥ α ·MD.

Algorithm 1 depicts the pseudo-code of SSS. It

takes as input an object set O, a threshold α, and

the maximum distance MD. First, the pivot set P is

initialized using a randomly selected object (line 1).

Then, for each object o ∈ O satisfying dis(o, P) ≥
α · MD, o is chosen as the next pivot (lines 2–6).

Algorithm 2: FFT

Input: an object set O and the number m of

pivots

Output: a set of pivots

1 P = {p}; //p is randomly selected

2 while |P | < m do

3 p = arg maxo∈O dis(o, P);

4 P = P ∪ {p};
5 end

6 return P

Finally, SSS returns the selected pivot set P . Since

each object is checked by SSS only once, the result

is produced in O(nm · dcmp) time, where n is the

cardinality of the object set, m is the number of pivots,

and dcmp is the cost of computing the metric distance

between two objects. Although SSS is efficient (i.e., has

linear cost w.r.t. the object set cardinality), it cannot

flexibly choose a fixed number of pivots. The number

of selected pivots depends on threshold α, the data

distribution, the first randomly chosen pivot, and the

following chosen order of items in object set O. The

larger the α is, the fewer pivots are selected.

3.2 Farthest First Traversal

Like SSS, Farthest First Traversal (FFT) [16] controls

the distance distribution between pivots. However,

unlike SSS that cannot control the number of selected

pivots, FFT can find a fixed number of pivots.

Algorithm 2 depicts the pseudo-code of FFT, which

takes as input an object set O and the number m

of pivots. First, a pivot is selected at random. Then,

a while-loop finds the remaining pivots (lines 2–5).

In each iteration, FFT chooses the object o with the

maximal dis(o, P) value as a pivot.

FFT needs to find the farthest object w.r.t. the

previously selected pivots in each iteration; thus, the

time complexity of an iteration is O(nm · dcmp). As we

have m iterations, the complexity of FFT is O(nm2 ·
dcmp), which exceeds that of SSS. Since dis(o, P) (o ∈
O, o /∈ P) is no larger than the distance between the

6 Yifan Zhu et al.

Algorithm 3: BPP

Input: an object set O, the number m̂ of
candidate pivots, and the number m of
pivots

Output: a set of pivots
1 generate P of m̂ randomly selected objects;
2 while |P | > m do
3 p = arg minp∈P std(P − {p});
4 P = P − {p};
5 end
6 return P

previous two selected pivots in P (otherwise, this object

would have been chosen as a pivot), FFT is also widely

used to choose samples.

3.3 Balancing Pivot-Position Occurrences

Balancing Pivot-Position Occurrences (BPP) [1]

is a permutation-based pivot selection algorithm.

Specifically, in the permutation-based index, each

object has a permutation of pivots (ordered by the

distance between the pivot and the object), based on

which the similarity between objects is measured by the

difference between their permutations.

To better illustrate, an example is shown in Fig. 2,

where the object set is {o1, o2, o3, o4, o5} and the

candidate pivots are c1, c2, and c3. The distance table

depicted in Fig. 2(b) records the distances between

pivots and objects. Next, the rank table (the table to

the left in Fig. 2(c)) can be computed by using the rank

of each pivot pi w.r.t. an object o, as is defined below.

rank(pi, o) = 1 +
∑

pj∈P,d(pj ,o)<d(pi,o)

1 (2)

For instance, as d(c1, o2) = d(c3, o2) < d(c2, o2),

c2 ranks third among all candidate pivots w.r.t.

o2, meaning that rank(c2, o2) = 3. In addition, the

permutation of o1 w.r.t. the ranks of the pivots

is (1, 2, 2) (i.e., row 2 in the rank table), while

the permutation of o2 is (1, 3, 1). If pivots are

distributed unevenly (i.e., appear in the same position

in all the permutations w.r.t. objects in the dataset),

the similarity computation quality degrades. In the

example, pivots c1, c2, and c3 appear in the same

positions for objects o2 and o3, so the similarity between

o2 and o3 is 0 because their permutations are the

same (i.e., (1, 3, 1)), which is inaccurate. Hence, the

distribution of pivots, in different positions of the

permutations, should be made as uniform as possible.

We define the rank permutation of the pivot pi, which

utilizes rank values over all the objects, as follows:

pr(pi, k) =
∑

o∈O,rank(pi,o)=k

1 (3)

The two small tables to the right in Fig. 2(c) represent

the pr(pi, k) (pi ∈ P, 1 ≤ k ≤ |P |) values when

removing c2 or c3. More specifically, after removing c3,

we have pr(c1, 1) = 4 and pr(c1, 2) = 1 for candidate

pivot c1, and we have pr(c2, 1) = 2 and pr(c2, 2) = 3

for candidate pivot c2; and after removing c2, we have

pr(c1, 1) = 4 and pr(c1, 2) = 1 for candidate pivot

c1, and we have pr(c2, 1) = 4 and pr(c2, 2) = 1 for

candidate pivot c2. Based on the rank permutations,

the distribution of the pivot permutation positions can

be evaluated. Since the pivot rank permutations after

removing c3 are distributed more evenly, removing c3
is the better choice.

In order to measure the evenness of pivot rank

permutations w.r.t. the pivot set P , the standard

deviation is adopted.

std(P) =

√√√√ 1

|P |2
∑

pi∈P,1≤k≤|P |

(pr(pi, k)− µ)2, (4)

where µ denotes the mean for values of pr(pi, k), pi ∈ P ,

and 1 ≤ k ≤ |P |. The larger the std(P) is, the more

differently the rank positions permutate (i.e., the more

uniform the distribution of the pivot set P is).

Algorithm 3 presents the pseudo-code of BPP. It

takes as input an object set O, the number m̂ of

candidate pivots, and the number m of pivots. It first

randomly generates a candidate pivot set P from O

with cardinality m̂. Then, a while loop is performed to

reduce the set to m pivots (lines 2–5). In each iteration,

BPP removes a candidate from P that has the minimum

standard deviation for pr.

The cost of computing the distances between

candidate pivots and objects is O(nm̂ · dcmp) in order

to compute the rank defined in Equation 2. In each

iteration, the complexity of re-computing pr and std

are O(nm̂) and O(m̂2), respectively. Thus, the total

complexity of BPP is O(nm̂ · dcmp+ nm̂2). Due to the

high time complexity, a sample of O with cardinality n̂

is used in BPP. Hence, the time complexity is O(n̂m̂ ·
dcmp+ n̂m̂2).

3.4 Base-Prototypes Selection

Similar to FFT, Base-Prototypes Selection (BPS) [27]

selects pivots far from each other. However, instead of

using the maximum distance between the pivot and all

Pivot Selection Algorithms in Metric Spaces: A Survey and Experimental Study 7

Algorithm 4: HF

Input: an object set O and the number m of
pivots

Output: a set of pivots
1 ptmp = a randomly selected object from O;
2 p1 = arg maxo∈O diff dis(o, ptmp);
3 p2 = arg maxo∈O diff dis(o, p1);
4 P = {p1, p2};
5 while |P | < m do
6 p = arg mino∈O−P diff dis(o, P);
7 P = P ∪ {p};
8 end
9 return P

the previous pivots, BPS uses the accumulated distance

defined as follows.

accum dis(o, P) =
∑
p∈P

d(o, p) (5)

In each iteration, BPS selects an object with the

maximum accumulated distance to the previous pivots

as a new pivot. Since the pseudo-code of BPS is

very similar to that of FFT, it is omitted. The time

complexity of BPS is also the same as that of FFT, i.e.,

O(nm2 · dcmp).
There also exist other similar algorithms [7] that

choose a new pivot with the maximum (accumulated)

distance to the previous pivots. However, these

algorithms need prior knowledge (i.e., the search radius)

to obtain pivots, which renders them inapplicable for

use in a general setting with no specialized assumptions

and no prior knowledge.

3.5 Hull of Foci

Hull of Foci (HF) [17] aims to choose the objects that

are near the hull of the dataset. In order to choose a

new pivot, HF minimizes the following distance:

diff dis(o, P) =
∑
p∈P
|d(p1, p2)− d(o, p)|, (6)

where p1 and p2 are the two most distant objects in the

pivot set (i.e., the first two pivots).

Algorithm 4 depicts the pseudo-code of HF. It takes

as input an object set O and the number m of pivots.

First, HF randomly selects an object ptmp, and then, it

finds the farthest object p1 w.r.t. ptmp and the farthest

object p2 w.r.t. p1 (lines 1–3). These are the first two

pivots (line 4). Next, a while loop finds the remaining

pivots (lines 5–8). In each iteration, the object that has

the minimum diff dis(o, P) is chosen as the new pivot.

Algorithm 5: MV

Input: an object set O, the number m of pivots,
a threshold α, the maximum distance
MD

Output: a set of pivots
1 P = ∅, Cand = O;
2 Compute µo and σo for each o ∈ Cand;
3 sort Cand in descending order of σo;
4 ω = MD · α;
5 while |P | < m and |Cand| > 0 do
6 p = Cand1;
7 P = P ∪ {p};
8 foreach o ∈ Cand do
9 if |d(o, p)− µp| > ω then

10 Cand = Cand− {o};
11 end
12 end
13 end
14 return P

To better understand algorithm HF, if we use the

first two pivots of HF (i.e., the two most distant objects)

as two foci to draw an ellipse, the ellipse is like the

hull of the dataset. As HF selects objects that have

similar distances to the previously chosen pivots as

subsequent pivots (i.e., HF selects the objects close

to the ellipse as subsequent pivots), the newly chosen

pivots are also near the hull of the dataset. Hence, HF

has a strong capability of choosing outliers. The cost of

finding the first two pivots is O(n · dcmp) while finding

the remaining pivots costs O(nm2 · dcmp). Thus, the

time complexity of HF is O(nm2 · dcmp).

4 P-O distribution based methods

We proceed to cover the algorithms that consider the

distances between pivots and data objects.

4.1 Maximum Variance

Maximum Variance (MV) [34] aims to maximize the

variance of the distances between pivots and objects.

Inspired by two properties of the triangle inequality,

that (i) pivots close to the query objects can prune

far-away objects and validate nearby objects and (ii)

pivots far from query objects can prune objects near

the queries, MV finds that (i) pivots that are either

too close to, or too far from, each other have similar

pruning capabilities and (ii) pivots with high variance

offer better pruning capabilities. Based on these two

findings, MV uses a distance threshold α, the max

distance MD, and the mean of distances µ to discard the

8 Yifan Zhu et al.

candidates that are close to, or far away from, existing

pivots. Specifically, an object o satisfying d(o, p) <

µ− α ·MD is close to existing pivots while an object o

satisfying d(o, p) > µ+α ·MD is far away from existing

pivots (the two conditions can be simplified as |d(o, p)−
µ| > α · MD). Further, MV selects objects with high

variance (i.e., strong filtering capability) as new pivots.

In Fig. 2(b), the candidate c2 has the largest variance

compared with those of the other candidates, indicating

that the distances between c2 and data objects vary

substantially, enabling c2 to better distinguish objects.

Thus, MV selects c2 as the first pivot, and sets µ to

2.56, which is the average distance of the five objects

to c2. With α ·MD being 1.34, o2 (that is far away from

c2) and o4 (that is close to c2) are disregarded as pivot

candidates because d(o2, c2) = 4 > µ + α · MD and

d(o4, c2) = 1 < µ− α ·MD.

Algorithm 5 shows the pseudo-code of MV. It takes

as input the set O of objects, the maximum distance

MD, a threshold α, and the number m of pivots. First,

MV uses the entire dataset as a candidate pivot set. For

each candidate o, it obtains the distance distribution

between o and all other data objects, and computes the

corresponding µo and σo (line 2). Then, it sorts all the

candidates in descending order of σo and computes the

threshold ω (lines 3–4). Next, a while loop is performed

to select m pivots (lines 5–13). In each iteration, MV

uses the first candidate in Cand as a pivot (line 6–7)

and then filters the candidates that are too close or

too far from the newly chosen pivots using threshold ω

(lines 8–12).

To speed up the computation, a sample set instead

of the entire object set can be used to compute µ
and σ. Thus, the cost of computing each object’s

variance and sorting them is reduced to O(nn̂ · dcmp+

nlogn). Choosing each pivot and filtering unqualified

candidates have time complexityO(n·dcmp). Since n̂�
m, the time complexity of MV is O(nn̂ ·dcmp+n log n).

4.2 Spacing-Correlation based Selection

Spacing-Correlation based Selection (SC) [22] utilizes

the variance of spacing to evaluate the quality of a

single pivot, and uses a linear correlation coefficient

to measure the correlation between pivots. It first sort

objects in ascending order of their distances to the pivot

p and lets oi denote the object having the ith smallest

distance. Then, SC defines the ith spacing between

objects w.r.t. the pivot p as:

sp(p, i) = dis(oi+1, p)− dis(oi, p), (7)

Algorithm 6: SC

Input: an object set O, thresholds εsp and εsc,
and the number m of pivots

Output: a set of pivots
1 generate P of m randomly selected objects;
2 S = ∅;
3 foreach o ∈ O in a random order do
4 S = S ∪ {o};
5 foreach p ∈ P do
6 use o to update σ2

sp(p);

7 if σ2
sp(p) > εsp then

8 replace p with a random object
ptmp ∈ O;

9 end
10 end
11 foreach (p1, p2) ∈ P and sc(p1, p2) > εsc do
12 if σ2

sp(p1) > σ2
sp(p2) then

13 replace p1 with a random object
ptmp ∈ O;

14 end
15 else
16 replace p2 with a random object

ptmp ∈ O;
17 end
18 end
19 end
20 return P

Next, it defines the variance of spacing w.r.t. the pivot

p as:

σ2
sp(p) =

1

n− 1

n−1∑
i=1

(sp(p, i)− µ)2, (8)

where µ is the average value of spacing sp(p, i), 1 ≤ i <
n. Using d1i and d2i to denote d(p1, oi) and d(p2, oi)

respectively, the linear correlation coefficient between

p1 and p2 is defined as follows.

sc(p1, p2) =

n
n∑

i=1

d1id2i −
n∑

i=1

d1i
∑

i d2i√
n

n∑
i=1

d1i
2 − (

n∑
i=1

d1i)2

√
n

n∑
i=1

d2i
2 − (

n∑
i=1

d2i)2

(9)

Figs. 2(b) and 2(d) illustrate the linear correlation

coefficient and the variance of distance differences,

respectively. The former shows that pivots c1 and c3
are highly correlated since they have the same distances

to o2, o3, and o4, meaning that the effect of using

either of the two pivots to separate objects is the

same. The latter shows the distance differences (i.e.,

d(oj , ci) − d(oj−1, ci)) between the sorted objects and

Pivot Selection Algorithms in Metric Spaces: A Survey and Experimental Study 9

the corresponding σ2
sp of each candidate ci. Taking c1

as an example, the sorted distances between candidate

c1 and all objects are (1, 1, 1.4, 2.2, 2.2). Thus, the

differences between the sorted distances for c1 are (0,

0.4, 0.8, 0), and the corresponding σ2
sp is 0.29. However,

to reduce the computation cost of σ2
sp, a random order

can be used instead of sorting all the objects. Pivots

having smaller σ2
sp are better, as the distance difference

is distributed uniformly when σ2
sp is small [22]. In this

case, c1 and c3 have smaller σ2
sp, and hence they are

better than c2.

SC selects pivots having high quality and low

correlation with each other. Algorithm 6 depicts the

pseudo-code. It takes as input an object set O, two

thresholds εsp and εsc, and the number m of pivots.

SC first generates P using m random objects and then

initializes an empty set S (lines 1–2). Next, a while

loop is performed until O is empty. In each iteration,

the algorithm randomly picks an object o from O and

then updates S (lines 3–4). For each pivot p ∈ P , it

recomputes σ2
sp if S is updated, and it replaces p with

a random object if σ2
sp(p) ≥ εsp (lines 5–10). Finally,

for each pivot pair with sc no less than εsc, SC replaces

the pivot having larger σ2
sp with a new random object

(lines 11–18).

SC iteratively picks a random object from the object

set and performs two steps: (1) it updates the σ2
sp of

each pivot and replaces the pivots having large σ2
sp

with random objects; and (2) it finds pivot pairs that

have large coefficients and replaces one pivot (having

the larger σ2
sp) of each pair with a random object. Let

Rsp and Rsc denote the total replacements in step 1 and

step 2, respectively. Then, step 1 takes O(mnRsp·dcmp)
time, while step 2 takes O(nm2 +mnRsc · dcmp) time.

Let R be Rsc + Rsc, i.e., the number of replacements

caused by violations of the thresholds εsp and εsc (lines

7 and 11 in Algorithm 6). The time complexity of SC

is then O(nmR · dcmp). The slower the algorithm runs

(i.e., the stricter εsp and εsc are), the smaller spacing

variance and lower linear correlation coefficient the

chosen pivots will have. In the worst case, when εsp and

εsc are too strict, each object in the dataset will cause

the replacement of pivots; thus, the time complexity of

SC becomes O(n2m · dcmp).

4.3 PCA for Pivot Selection

PCA for Pivot Selection (PCA) [24] performs

dimensionality reduction to select high-quality pivots.

First, FFT is used to select m̂ high-quality candidate

pivots. Then, a matrix containing the distances between

candidate pivots and all objects is obtained. After that,

PCA performs dimension reduction (i.e., eigenvalue

Algorithm 7: PCA

Input: an object set O, a candidate size m̂, and
the number m of pivots

Output: a set of pivots
1 Pcand = {m̂ candidate pivots chosen by FFT};
2 P = ∅;
3 V = Pcand ×O; // compute the distance matrix
4 compute eigenvalues Evalue and eigenvectors
Evector of V using principal component analysis;

5 sort Evalue in descending order and Evector in
the same order as Evalue;

6 while |P | < m and |Evector| > 0 do
7 pop the top vector v from Evector;
8 p = arg maxp∈Pcand

projection(p, v);
9 P = P ∪ {p};

10 end
11 return P

decomposition on the corresponding covariance matrix)

on the matrix, and finds the top-m eigenvectors with

the highest eigenvalues, thus keeping the reduced

space most similar to the initial space. Finally, m

pivots among the candidates that have the maximum

projection values w.r.t. the top-m eigenvectors are

selected.

Algorithm 7 takes as input the set O of objects,

the number m̂ of candidate pivots, and the number m

of pivots. First, it generates Pcand using m̂ candidate

pivots chosen by FFT and initializes the pivot set P to

be empty. Then, it computes the distance matrix V of

distances between candidate pivots and objects. Next,

it reduces the dimensionality of V to get corresponding

eigenvalues Evalue and eigenvectors Evector and sorts

them in descending order (lines 4–5). Then, a while

loop is performed to select m pivots (lines 6–10). In

each iteration, the algorithm pops the top vector v from

Evector, finds the candidate pivot p ∈ Pcand that has the

maximum projection value w.r.t. v, and updates P to

be P ∪ {p}. Finally, the pivot set is returned.

The algorithm needs O(nm̂ ·dcmp) time to perform

FFT, and O(nm̂2 ·dcmp) to compute the corresponding

matrix. Since n� m̂, the cost of dimension reduction,

sorting on Evalue, and selecting pivots with maximum

projection can be disregarded. Consequently, the total

time complexity of PCA is O(nm̂2 · dcmp).

5 O-O distribution based methods

We proceed to describe pivot selection algorithms

that operate on the distribution of distances between

objects. As stated in Section 2.2, pivot filtering (i.e.,

Lemma 1) is employed to avoid unnecessary distance

computations during search. According to the lemma,

10 Yifan Zhu et al.

Algorithm 8: IS

Input: an object set O, a set A of object pairs,

and the number m of pivots

Output: a set of pivots

1 generate Pcand of m̂ randomly selected objects;

2 P = ∅;

3 while |P | < m do

4 p = arg max
p∈Pcand

∑
(oi,oj)∈A

dP∪{p}(oi, oj);

5 P = P ∪ {p};
6 end

7 return P

given a pivot p, |d(p, o)− d(p, q)| is the lower bound of

d(q, o). Given a pivot set P , the following equation also

defines the lower bound.

dP (o, q) = max
p∈P
|d(p, o)− d(p, q)| (10)

To achieve the best pruning, dP (q, o) should be as

close to d(q, o) as possible. In other words, dP (q, o)

should be as large as possible. Since the query objects

are not known in advance and the objects in the

datasets are assumed to have the same distribution of

query objects, we aim to maximize dP (oi, oj) (oi, oj ∈
O) instead of maximizing dP (q, o). However, the cost of

maximizing dP (oi, oj) is very high, especially for large

datasets. Thus, a sample set A of object pairs is used.

5.1 Incremental Selection

Incremental Selection (IS) [4] selects the pivots to

maximize the sum of the lower bound distances dP
of sampled object pairs defined in Equation 10. The

pseudo-code of IS is shown in Algorithm 8. It takes as

input an object set O, an object pair set A, and the

number m of pivots. First, the pivot set P is initialized

to be empty. Then, a while-loop is conducted to find

m pivots (lines 3–6). In each iteration, IS chooses the

object p ∈ Pcand having the maximum sum of dP∪{p}
among all the object pairs of A as a new pivot, and

updates the pivot set. Finally, the pivot set is returned

(line 7).

IS has the capability to select the pivots having

low correlation coefficient (i.e., no pivots share similar

filtering and validation capabilities) and high singular

performance (i.e., each pivot has strong capabilities

at filtering and validating objects). This is because

the objects that are highly correlated with previously

selected pivots are discarded because of making no

effort at maximizing the sum of dP∪{o} among object

pairs, while the objects with stronger filtering capability

Algorithm 9: DSSS

Input: an object set O, the maximum distance
MD, a threshold α, a set A of object
pairs, and the number m of pivots

Output: a set of pivots
1 P = ∅;
2 foreach o ∈ O, dis(o, P) ≥ α ·MD do
3 if |P | < m then
4 P = P ∪ {o};
5 end
6 else
7 p = arg minp∈P ctr(p, P,A);
8 if ctr(p, P,A) < ctr(o, P − {p} ∪ {o}, A)

then
9 P = P − {p} ∪ {o};

10 end
11 end
12 end
13 return P

have larger lower bound distances, and are chosen as

new pivots. The time complexity of IS is O(mm̂|A| ·
dcmp), as it needs to recompute dP∪{o} among all

object pairs in each iteration.

5.2 Dynamic Pivot Selection

Unlike IS that chooses pivots one by one, Dynamic

Pivot Selection (DSSS) [5] first selects m pivots using

SSS, and then repeatedly replaces the pivot that

contributes the least to the pivot set with a better one.

Given an object pair (oi, oj) and a set of pivots P , the

contribution of a pivot p ∈ P to the pivot set P w.r.t.

the object pair (oi, oj) is defined as follows.

ctr(p, P, (oi, oj)) = dP (oi, oj)− dP−{p}(oi, oj), (11)

where the last term dP−{p}(oi, oj) refers to the lower

bound distance of object pair (oi, oj) using the pivot

set P − {p} (i.e., the pivot set after removing p). The

total contribution of a pivot p w.r.t. a pivot set P is

the sum of its contributions for all pairs in the set A of

object pairs:

ctr(p, P,A) =
∑

(oi,oj)∈A

ctr(p, P, (oi, oj)) (12)

According to Equation 12, DSSS selects pivots

with high contributions in order to maximize dP (o, q).

Algorithm 9 depicts the pseudo-code. It takes as input

an object set O, the maximum distance MD, a threshold

α, and the number m of pivots. For each object o ∈ O
satisfying dis(o, P) ≥ α · MD, if too few pivots are

chosen, DSSS chooses o as the next pivot (lines 3–5).

Pivot Selection Algorithms in Metric Spaces: A Survey and Experimental Study 11

Algorithm 10: HFI

Input: an object set O, the number m̂ of
candidate pivots, a set A of object pairs,
and the number m of pivots

Output: a set of pivots
1 generate Pcand of m̂ objects selected by HF;
2 compute the distances between Pcand and A;
3 P = ∅;
4 while |P | < m do
5 p = arg maxo∈Pcand

prec(P ∪ {o});
6 Pcand = Pcand − {p};
7 P = P ∪ {p};
8 end
9 return P

Otherwise (i.e., |P | ≥ m), DSSS first removes the pivot

p ∈ P with the least contribution from the pivot set

(line 7). Next, it determines whether p or o is to be the

next pivot according to their contribution (lines 8–10).

Finally, the pivot set is returned.

DSSS includes two steps: (i) finding the objects

satisfying the condition dis(o, P) ≥ α ·MD as candidate

pivots, which has complexity O(nm̂ · dcmp); and (ii)

for each candidate pivot, deciding whether or not to

replace the pivot with the least contribution, which

has complexity O(m|A| · dcmp). In the second step,

the dominant cost is to compute the contribution of a

candidate pivot w.r.t. a pivot set, which takes O(m|A| ·
dcmp) time. The cost of replacements in if -conditions

(line 9 of Algorithm 9) needs only O(1) time and thus,

does not affect on the total time complexity. As n �
m|A|, the time complexity of DSSS is O(nm̂ · dcmp).
Note that since DSSS applies SSS to select candidate

pivots, the size of the set of candidate pivots is not

necessarily fixed at m̂.

5.3 HF-Based Incremental Selection

Unlike IS and DSSS that maximize the sum of lower

bound distances of object pairs, HF-Based Incremental

Selection (HFI) [9] operates on the deviation of the

lower bound distance from the original distance:

prec(p) =
1

|A|
·

∑
(oi,oj)∈A

dP (oi, oj)

d(oi, oj)
(13)

Algorithm 10 shows the pseudo-code of HFI. It takes

as input an object set O, the number m̂ of candidate

pivots, a set A of object pairs, and the number m of

pivots. First, it finds m̂ candidate pivots using HF and

computes the distances between candidate pivots and

objects in A, in order to reduce subsequent duplicate

distance computations. Then, a while loop is performed

Algorithm 11: WDR

Input: an object set O, a set A of object pairs, a
threshold λ, and the number m of pivots

Output: a set of pivots
1 generate Pcand of m̂ randomly selected objects;
2 compute the distances between Pcand and A;
3 P = ∅;
4 repeat
5 if |P | < m then
6 p = arg minp∈pcand

wr(P ∪ {p}, λ);
7 Pcand = Pcand − {p};
8 P = P ∪ {p};
9 end

10 temp = wr(P, λ);
11 foreach p1 ∈ P , p2 ∈ Pcand do
12 if temp > wr(P ∪ {p2} − {p1}, λ) then
13 Pcand = Pcand − {p1};
14 P = P ∪ {p2};
15 temp = wr(P, λ);
16 end
17 end
18 until no pivot is replaced
19 return P

to select m pivots (lines 4–8). In each iteration, HFI

chooses an object o from the pivot candidates that

maximizes prec(P ∪ {o}), and updates the pivot set

and the pivot candidate set. Finally, the pivot set is

returned (line 9).

The cost of choosing pivot candidates and

computing the distances is O(nm̂ ·dcmp+m̂|A| ·dcmp),
which can be simplified to O(nm̂·dcmp) due to |A| � n.

In addition, the cost of choosing each pivot is similar

to that of IS. Hence, the total time complexity of HFI

is O(mm̂|A|+ nm̂ · dcmp).

5.4 Weighted Distribution Ratio Selection

To further improve HFI, we develop a Weighted

Distribution Ratio Selection (WDR) algorithm to select

high quality pivots by utilizing the power law to control

the contribution of each object pair. According to HFI,

the higher the distance ratio
dP (oi,oj)
d(oi,oj)

is, the higher the

quality of the pivot set P is. Usually, the larger the

difference between the lower bound distance dP (oi, oj)

and the real distance d(oi, oj) (i.e., the lower bound

distance estimation is not accurate), the more difficult

it is to avoid the unnecessary d(oi, oj) computation via

pivot filtering and validation, which is consistent with

the power law, an unscientific rule of thumb, i.e., 80% of

the effect comes from 20% of the causes. Based on this,

we use the power law probabilistic distribution to model

12 Yifan Zhu et al.

the importance of distance ratios, as defined below.

f (x, λ) = (1− x)λ, λ ∈ R (14)

According to this definition, given a positive value of

λ, the larger x is, the smaller f(x, λ) is. If we take

the distance ratio
dP (oi,oj)
d(oi,oj)

∈ [0, 1] as x, f(x, λ) can

be used to measure the contribution of each object pair

(oi, oj). The larger the distance ratio is, the smaller

the f value is (i.e., the better the performance of P

when pruning (oi, oj)). Hence, we define the following

function based on the power law function f(x, λ) to

evaluate the quality of the pivot set P by estimating the

number of potential unnecessary distance computations

on sample object pair set A.

wr(P, λ) =
∑

(oi,oj)∈A

f (
dP (oi, oj)

d(oi, oj)
, λ) · d(oi, oj) (15)

WDR aims to minimize wr(P, λ), λ ≥ 0. Note that

function wr(P, λ) contains two factors: (i) the power

law impact f(·, ·) on the ratios between lower bound

distances and real distances and (ii) the weighted

contribution defined by the real distances d(oi, oj).

The distance weight is applied because for the same

ratio
dP (oi,oj)
d(oi,oj)

, the larger d(oi, oj) is, the larger the

difference dP (oi, oj)−d(oi, oj) is. Here, parameter λ can

be adjusted dynamically based on the data distribution

and the distance metric. λ is set to 2 in our experiments.

Algorithm 11 presents the pseudo-code of WDR. It

takes as input an object set O, a set A of object pairs, a

threshold λ, and the number m of pivots. First, WDR

generates a candidate pivot set Pcand using m randomly

selected objects, and then it computes the distances

between candidate pivots and objects belonging to |A|
(lines 1–2). In each iteration, WDR selects a new pivot

if too few pivots are selected (lines 5–9) and replaces an

old pivot with a better one to minimize wr(P, λ) (lines

10–17). WDR repeats until no more pivots are changed

(line 18). Finally, the pivot set P is returned (line 19).

Note that, by setting λ to 1, the function wr(P, λ)

can be computed as
∑

(oi,oj)∈A(d(oi, oj) − dP (oi, oj)).

As
∑

(oi,oj)∈A d(oi, oj) is a constant value, minimizing

wr(p, 1) is equivalent to maximizing Equation 10,

i.e., WDR degenerates to IS. The cost of selecting

candidates can be omitted, while that of pre-computing

distances is O(m̂|A| · dcmp). In each iteration of

selecting pivots, O(m|A|) time is needed for finding a

new pivot or replacing an old pivot with a better choice.

Thus, the time complexity is O(|A|(mR + m̂dcmp)),

where R is the number of pivot replacements.

Table 3 Statistics of the Datasets Used in Our Experiments

Dataset Card. Dim. Dis. Metric Max Dis.

LA 107,327 2 L2-norm 14,142
Words 611,756 1∼34 Edit Dis. 34
Color 1M 282 L1-norm 143,820
INT 10M 20 L∞-norm 10,000

Table 4 Query Parameters

Parameters Value Default

k 5, 10, 20, 50, 100 20
r 2%, 4%, 8%, 16%, 32% 8%
Cardinality 20%, 40%, 60%, 80%, 100% 100%

6 Experimental evaluation

We first present a case study, and then, we

experimentally evaluate the efficiency of the existing

pivot selection algorithms and the quality of the

selected pivots according to their similarity search

performance.

6.1 Experimental setup

All the pivot selection algorithms and associated

similarity search algorithms were implemented in C++.

The only exception is that the dimensionality reduction

in PCA, which accounts for only a small fraction of

PCA’s overall cost, is implemented in Python. All

experiments were conducted on an Intel Core i7-7700

3.6GHz PC with 32GB memory. All source code of the

implemented algorithms is publicy available1.

Datasets. We use three real-life datasets: (i) LA2

that contains geographical locations in Los Angeles,

where the L2-norm is used as the distance metric;

(ii) Words3 that consists of proper nouns, acronyms,

and compound words taken from the Moby project,

using edit distance as the metric; and (iii) Color4 that

contains standard MPEG-7 image features, extracted

from Frickr, using the L1-norm distance as the metric.

In addition, we create a synthetic dataset INT, where

the values of the first five dimensions are randomly

generated, while the values of the remaining dimensions

are linear combinations of the previous ones. We employ

the L∞-norm distance as the metric for INT. To control

the maximum distance of each dataset, each dimension

value in LA and Color is mapped to [-255, 255] while

values in INT are mapped to [0, 10,000]. Table 3 offers

summary statistics of the datasets, where cardinality,

dimensionality, and distance are abbreviated as Card.,

Dim., and Dis..

1 https://github.com/ZJU-DBL/PSAMS
2 http://www.dbs.informatik.uni-muenchen.de/∼seidl
3 http://icon.shef.ac.uk/Moby/
4 http://cophir.isti.cnr.it/

Pivot Selection Algorithms in Metric Spaces: A Survey and Experimental Study 13

P1

P4

P5

P2

P3

(a) SSS

P2

P1

P3

P4

P5

(b) FFT

P2

P4P3

P5

P1

(c) BPP

P2
P1

P3

P4

P5

(d) BPS

P2

P1, P3

P4

P5

(e) HF

P1,P2

P3,P4

P5

(f) MV

P2

P1
P3

P4

P5

(g) SC

P1

P4P5

P2

P3

(h) PCA

P2

P1P3

P4

P5

(i) IS

P2
P1

P3

P4
P5

(j) DSSS

P2

P1

P3

P4

P5

(k) HFI

P1

P3

P4

P5P2

(l) WDR

Fig. 3 Pivots Chosen by Different Algorithms on LA

Performance metrics. We quantify the quality of

pivots according to the performance of (i.e., how well

they support) metric similarity queries (including MRQ

and MkNNQ) using three typical pivot-based indexes

belonging to different categories [9]: the pivot-based

table LAESA [26], the pivot-based tree MVPT [3], and

the pivot-based external index SPB-tree [9]. Moreover,

LAESA and MVPT only use the pivot filtering for

similarity search, while the SPB-tree utilizes both

pivot filtering and validation. The query performance

is measured in terms of the number of distance

computations (compdists) and the CPU time. The

compdists, captures directly the performance of pivot

filtering and validation. The fewer compdists, the

stronger the filtering and validation ability of the

pivots.

Parameters. We conduct experiments to evaluate

metric similarity search when varying parameters k,

r, and the cardinality percentage w.r.t. the entire

dataset. Parameter k is used in the MkNNQ, and

parameter r is used in the MRQ. Detailed information

is presented in Table 4. Specifically, r denotes the

percentage of the search radius w.r.t. the maximum

distance. Each reported measurement is an average over

500 random queries. In the experiments, we explore the

performance of 11 existing pivot selection algorithms

and the proposed algorithm WDR, using a fixed

number of pivots. In order to identify an appropriate

pivot set cardinality, we also conduct experiments that

assess the effect of the number of pivots. No new

observations compared to a previous study [11] are

found, which suggests to use 5 pivots. Hence, we adjust

the parameters used in the different algorithms to

ensure that 5 pivots are chosen (i.e., adjusting α used

in SSS), that the candidate pivot set has cardinality

around 300 (i.e., adjusting α used in MV and DSSS,

and m̂), and that the sample size is around 1% the

dataset size (i.e., adjusting n̂ and |A|). In SC, we set

the strictest settings of εsp and εsc to make the pivots

unchanged w.r.t. 1% the entire dataset. In addition, we

set parameter λ to 2 for WDR based on a study on the

four datasets where we vary λ.

6.2 Case study

We present a case study on LA, which is a 2D dataset

that makes it easy to visualize the selected pivots.

This can help to understand the characteristics and

objective functions of the pivot selection methods.

However, additional findings can be obtained when

considering higher dimensions due to different data

distributions and features. Note that visualization for

different types of datasets is left as a promising future

research direction.

Fig. 3 shows the 5 pivots selected by the 12 pivot

selection methods. The figure displays the objects in the

datasets, and the red points are the pivots. The color

implies the data distribution, where the yellow part is

14 Yifan Zhu et al.

the most dense region in LA. In addition, an analysis

of the quality of the pivots is provided in Section 6.5.

The key findings are the following:

• SSS selects pivots that are uniformly distributed,

which includes a pivot located in the most dense region.

• The first pivot of FFT is randomly selected, and

thus is located in the densest region. Then, the farthest

object P2 w.r.t. the first pivot is chosen as a pivot. The

other pivots are selected similarly.

• The pivots selected by BPP surrounds the dense

region, and hence, they have low standard deviation of

the rank permutation.

• BPS is similar to FFT. Both select four distant

pivots w.r.t. the first randomly chosen pivot.

• Although the first and third pivots of HF are very

close, the others are outliers, indicating that HF is good

at finding outliers.

• Some of the pivots selected by MV are close to

each other. MV has the potential drawback of choosing

pivots near each other, which have similar variance.

• SC improve on MV by considering the correlation

coefficient of selected pivots; thus, no pivots are close

to each other.

• The pivots of PCA are obtained by dimensionality

reduction. The second and forth pivots are close to each

other, while the others distribute well.

• The pivots selected by IS, HFI, and WDR

have similar distributions. However, DSSS, where four

pivots surround the densest region, has a very different

distribution. This is because DSSS focuses on the

contribution of each pivot—it is easier for objects close

to the dense region to make a large contribution.

6.3 Efficiency of pivot selection algorithms

Fig. 4 reports the CPU time of all the pivot selection

algorithms on the four datasets when varying the

cardinality from 20% to 100%. The first observation

is that the run time of most pivot selection algorithms

increases as the cardinality of the dataset grows, which

is consistent with the complexity analyses summarized

in Table 2. However, there are two exceptions: (i)

The runtime of DSSS decreases on Color when the

cardinality increases from 40% to 60%. This is because

the time complexity of DSSS depends on the cardinality

of the dataset and the number of candidate pivots.

Although the cardinality of the dataset increases from

40% to 60%, the number of candidate pivots drops from

335 to 133, yielding a decreased runtime. (ii) WDR

fluctuates due to its local optimization strategy. We

also observed that SSS achieves the best performance

in terms of CPU time, while BPS, HF, and FFT are

also very efficient. Each of these three algorithms

needs to compute all the distances between the objects

and the pivots, meaning that they have the same time

complexity. In contrast, BPP, MV, and PCA have

the highest CPU cost. The reasons are that i) BPP

re-computes the permutation rank in each iteration;

and ii) MV and PCA have to compute all the distances

between candidate pivots and objects.

The P-P distribution based methods select pivots

by mainly considering the distances among pivots, the

O-O distribution based methods sample object pairs in

the dataset and select pivots based on the distances

of sampled object pairs, while the P-O distribution

based methods consider the distances between pivots

and all the objects in the dataset. In general, the

P-P distribution based methods are the most efficient,

followed by the O-O distribution based methods, while

the P-O distribution based methods have the highest

CPU cost. This is because (i) few pivots are needed

for the P-P distribution based methods, resulting

in few distance computations; and (ii) the sampling

technique used by the O-O distribution based methods

avoid distance computations across the entire dataset,

which significantly reduces the number of distance

computations compared with the P-O distribution

based methods. Although BPP is a P-P method,

it has the highest time cost. This is because P-P

methods focus mostly on the distances between pivots

to achieve high efficiency, while BPP also considers the

distribution between pivots w.r.t. all objects.

6.4 The quality of pivots

We compare the metric similarity search performance

enabled by different pivot selection methods using three

representative metric indexes: LAESA [26] (belonging

to the pivot-based table category, which utilizes a table

structure to store the pre-computed distances between

objects and pivots), MVPT [3] (belonging to the

pivot-based tree category, which uses a main-memory

tree structure to index the pre-computed distances),

and the SPB-tree [9] (belonging to the pivot-based

external index category, which employs an external

B+-tree to maintain the pre-computed distances) when

varying the search radius r for MRQ and k for MkNNQ.

6.4.1 Metric range query

We first compare the quality of pivots according

to MRQ performance. Fig. 5 depicts the MRQ

performance on LA and Words, while Fig. 6 presents

the MRQ performance on INT and Color. Because no

new findings are observed in the MRQ results on INT

Pivot Selection Algorithms in Metric Spaces: A Survey and Experimental Study 15

 20% 40% 60% 80% 100%

SSS FFT BPP BPS HF MV SC PCA IS DSSS HFI WDR
10-2

10-1

100

101

102

103

C
P

U
 t

im
e

(s
)

Algorithms

(a) LA

SSS FFT BPP BPS HF MV SC PCA IS DSSS HFI WDR
10-2

10-1

100

101

102

103

C
P

U
 t

im
e

(s
)

Algorithms

(b) Words

SSS FFT BPP BPS HF MV SC PCA IS DSSS HFI WDR
10-2

10-1

100

101

102

103

C
P

U
 t

im
e

(s
)

Algorithms

(c) Color

SSS FFT BPP BPS HF MV SC PCA IS DSSS HFI WDR
10-1

100

101

102

103

104

C
P

U
 t

im
e

(s
)

Algorithms

(d) INT

Fig. 4 CPU Time Performance of Pivot Selection Algorithms

and Color compared to those on LA and Word, we omit

a detailed analysis. As can be seen, the CPU time and

compdists increase with the growth of r in most cases.

However, due to the strong validation ability of the

SPB-tree, the costs of the SPB-tree on LA decreases

as r increases, especially for large search radii.

MRQ performance using LAESA. As can be

observed, the performance (i.e., compdists) achieved

when using the different pivot selection methods is very

similar to that on LA while it varies considerably on

Words. This is because the (intrinsic) dimensionality

of LA is very small, enabling the 5 pivots to offer

good performance. The second observation is that

FFT, BPS, HF, IS, and HFI have the lowest CPU

cost on LA, although all the algorithms share similar

compdists performance (see Figs. 5(a) and 5(d)). This is

because LAESA uses pivots one by one to filter objects,

indicating that the order of pivots is very important.

If the pruning ability of the first few pivots is high,

LAESA can achieve high efficiency, especially when the

distance metric is simple. However, HF, MV, IS, HFI,

and WDR have the best performance on Words (see

Figs. 5(g) and 5(j)). The reason is that, the distances

between objects in this dataset are very similar (i.e.,

discrete distances in the range of [0, 34]), making some

P-P methods (including FFT, SSS, BPP, and HF)

unable to find a small number of well-distributed pivots.

MRQ performance using MVPT. The

performance of MVPT is similar to that of LAESA.

The difference between the two is that LAESA uses

a table to store all the objects, while MVPT sorts all

the objects according to their distances w.r.t. pivots

and stores them in a balanced tree. When performing

MRQ, MVPT can prune all objects in a sub-tree

as a whole, while LAESA can only prune objects

one by one; thus, the pruning efficiency of MVPT is

16 Yifan Zhu et al.

 SSS FFT BPP BPS HF MV SC PCA IS DSSS HFI WDR

2% 4% 8% 16% 32%

1.0

2.5

4.0

5.5

7.0

co
m

p
d

is
ts

 (
x
1
0

5
)

r

(a) LAESA on LA

2% 4% 8% 16% 32%

1.0

2.0

3.0

4.0

5.0

6.0

co
m

p
d

is
ts

 (
x
1
0

5
)

r

(b) MVPT on LA

2% 4% 8% 16% 32%

0.0

1.2

2.4

3.6

4.8

co
m

p
d

is
ts

 (
x
1
0

5
)

r

(c) SPB-tree on LA

2% 4% 8% 16% 32%

25.0

35.0

45.0

55.0

65.0

C
P

U
 t

im
e
 (

m
s)

r

(d) LAESA on LA

2% 4% 8% 16% 32%

2.0

4.0

6.0

8.0

10.0
C

P
U

 t
im

e
 (

m
s)

r

(e) MVPT on LA

2% 4% 8% 16% 32%

0.05

0.10

0.15

0.20

0.25

C
P

U
 t

im
e
 (

s)

r

(f) SPB-tree on LA

2% 4% 8% 16% 32%

1.8

2.7

3.6

4.5

5.4

6.3

co
m

p
d

is
ts

 (
x
1
0

5
)

r

(g) LAESA on Words

2% 4% 8% 16% 32%

1.8

2.7

3.6

4.5

5.4

6.3

co
m

p
d

is
ts

 (
x
1
0

5
)

r

(h) MVPT on Words

2% 4% 8% 16% 32%

1.8

2.7

3.6

4.5

5.4

6.3

co
m

p
d

is
ts

 (
x
1
0

5
)

r

(i) SPB-tree on Words

2% 4% 8% 16% 32%

0.05

0.09

0.13

0.17

0.21

C
P

U
 t

im
e
 (

s)

r

(j) LAESA on Words

2% 4% 8% 16% 32%

0.04

0.07

0.09

0.11

0.14

C
P

U
 t

im
e
 (

s)

r

(k) MVPT on Words

2% 4% 8% 16% 32%

0.3

0.5

0.7

0.9

C
P

U
 t

im
e
 (

m
s)

r

(l) SPB-tree on Words

Fig. 5 MRQ Performance vs. Search Radius r on LA and Words

higher than that of LASEA. As can be observed (in

Figs. 5(d), 5(e), 5(j), and 5(k)), the CPU time when

using MVPT is much smaller than that achieved when

using LASEA.

MRQ performance using the SPB-tree. By

exploiting the pivot validation technique, SSS, FFT,

and DSSS achieve the best performance on LA (see

Figs. 5(c) and 5(f)), while HF, MV, IS, and WDR

perform the best on Words (see Figs. 5(i) and 5(l)).

Recalling the observations in Section 3, outliers have

better filtering capabilities while centers have stronger

validation abilities.

Based on the above observations, the O-O

distribution based algorithms have better MRQ

performance in most cases.

6.4.2 Metric k nearest neighbor query

Next, we evaluate the quality of pivots according to

MkNNQ performance. Fig. 7 depicts the results using

Color and INT.

MkNNQ performance using LAESA. We see

that IS, HFI, and WDR have the best performance

on both datasets (see Figs. 7(a), 7(d), 7(g), and 7(j)).

Pivot Selection Algorithms in Metric Spaces: A Survey and Experimental Study 17

 SSS FFT BPP BPS HF MV SC PCA IS DSSS HFI WDR

2% 4% 8% 16% 32%

0.0

3.0

6.0

9.0

12.0

co
m

p
d

is
ts

 (
x
1
0

6
)

r

(a) LAESA on INT

2% 4% 8% 16% 32%

1.8

3.6

5.4

7.2

9.0

10.8

co
m

p
d

is
ts

 (
x
1
0

6
)

r

(b) MVPT on INT

2% 4% 8% 16% 32%

0.0

2.0

4.0

6.0

8.0

10.0

co
m

p
d

is
ts

 (
x
1
0

6
)

r

(c) SPB-tree on INT

2% 4% 8% 16% 32%

0.40

0.80

1.20

1.60

2.00

C
P

U
 t

im
e
 (

s)

r

(d) LAESA on INT

2% 4% 8% 16% 32%

0.20

0.45

0.70

0.95

1.20
C

P
U

 t
im

e
 (

s)

r

(e) MVPT on INT

2% 4% 8% 16% 32%

1.0

2.0

3.0

4.0

5.0

6.0

C
P

U
 t

im
e
 (

s)

r

(f) SPB-tree on INT

2% 4% 8% 16% 32%

5.0

6.0

7.0

8.0

9.0

10.0

co
m

p
d

is
ts

 (
x
1
0

5
)

r

(g) LAESA on Color

2% 4% 8% 16% 32%

6.0

7.0

8.0

9.0

10.0

co
m

p
d

is
ts

 (
x
1
0

5
)

r

(h) MVPT on Color

2% 4% 8% 16% 32%

5.0

6.0

7.0

8.0

9.0

10.0

co
m

p
d

is
ts

 (
x
1
0

5
)

r

(i) SPB-tree on Color

2% 4% 8% 16% 32%

0.60

0.70

0.80

0.90

1.00

C
P

U
 t

im
e
 (

s)

r

(j) LAESA on Color

2% 4% 8% 16% 32%

0.56

0.63

0.70

0.77

0.84

C
P

U
 t

im
e
 (

s)

r

(k) MVPT on Color

2% 4% 8% 16% 32%

1.2

1.5

1.8

2.1

2.4

C
P

U
 t

im
e
 (

s)

r

(l) SPB-tree on Color

Fig. 6 MRQ Performance vs. Search Radius r on INT and Color

This is because the O-O distribution methods aim to

maximize the pruning ability of the selected pivots;

thus, they can achieve high performance. In addition,

among the P-P methods, FFT, HF, and BPS have

better performance than SSS and BPP on Color (see

Figs. 7(a) and 7(d)). However, BPP performs better

than FFT, HF, and BPS on INT (see Figs. 7(g)

and 7(j)). The reason is that INT is generated randomly

and has a relatively uniform distance distribution,

which enables BPP to find uniformly distributed pivots.

However, for skewed distributions, the outliers selected

by FFT, HF, and BPS are better.

MkNNQ performance using MVPT. The

observations for MVPT are similar to those for

LAESA. However, on INT, LAESA incurs much fewer

distance computations than does MVPT (see Figs. 7(g)

and 7(h)). This is because, for MkNNQ, LAESA

reduces the search space quickly and has fewer distance

computations. It does this by using the first few visited

objects to achieve better pruning. In contrast, MVPT

visits the tree in a top-down manner and can only

reduce the search space when it reaches the objects in

the leaf nodes.

18 Yifan Zhu et al.

 SSS FFT BPP BPS HF MV SC PCA IS DSSS HFI WDR

5 10 20 50 100

2.0

3.0

4.0

5.0

6.0

7.0

co
m

p
d

is
ts

 (
x
1
0

5
)

k

(a) LAESA on Color

5 10 20 50 100

3.0

4.0

5.0

6.0

7.0

co
m

p
d

is
ts

 (
x
1
0

5
)

k

(b) MVPT on Color

5 10 20 50 100

2.0

3.0

4.0

5.0

6.0

co
m

p
d

is
ts

 (
x
1
0

5
)

k

(c) SPB-tree on Color

5 10 20 50 100

0.3

0.4

0.5

0.6

0.7

C
P

U
 t

im
e
 (

s)

k

(d) LAESA on Color

5 10 20 50 100
0.3

0.4

0.5

0.6
C

P
U

 t
im

e
 (

s)

k

(e) MVPT on Color

5 10 20 50 100
1.4

2.0

2.6

3.2

3.8

C
P

U
 t

im
e
 (

s)

k

(f) SPB-tree on Color

5 10 20 50 100
0.0

3.0

6.0

9.0

12.0

15.0

co
m

p
d

is
ts

 (
x
1
0

4
)

k

(g) LAESA on INT

5 10 20 50 100
0.0

0.7

1.4

2.1

2.8

co
m

p
d

is
ts

 (
x
1
0

5
)

k

(h) MVPT on INT

5 10 20 50 100

0.0

2.0

4.0

6.0

8.0

co
m

p
d

is
ts

 (
x
1
0

4
)

k

(i) SPB-tree on INT

5 10 20 50 100
0.10

0.13

0.16

0.19

0.22

C
P

U
 t

im
e
 (

s)

k

(j) LAESA on INT

5 10 20 50 100
0.0

7.0

14.0

21.0

28.0

35.0

C
P

U
 t

im
e
 (

m
s)

k

(k) MVPT on INT

5 10 20 50 100

0

40

80

120

160

C
P

U
 t

im
e
 (

m
s)

k

(l) SPB-tree on INT

Fig. 7 MkNNQ Performance vs. k

MkNNQ performance using the SPB-tree.

Overall, the use of the SPB-tree leads to similar

observations as for LAESA on Color and INT. Note

that, the CPU time depends on two factors, i.e., the

pruning ability and the cost of pruning. Therefore,

although FFT, HF, SC, and DSSS have different

compdists (see Fig. 7(i)), their CPU times are similar

(see Fig. 7(l)).

6.4.3 Statistical significance test

As different algorithms share the same query

performance, we also conduct statistical significance

tests to determine whether statistically significant

differences exist among the pivot selection algorithms.

We report statistical significance tests for MkNNQ

and MRQ results on four datasets. As the distribution

of performance results w.r.t. different algorithms is

unknown, we apply the Friedman test to quantify

the statistical differences among all pivot selection

algorithms in terms of 60 metrics. These 60 metrics

are all the compdists and CPU time results when

performing MkNNQ and MRQ while varying k or r

and using the LAESA, MVPT, and the SPB-tree on

each dataset. The Friedman test is a non-parametric

test that quantifies the differences between groups

Pivot Selection Algorithms in Metric Spaces: A Survey and Experimental Study 19

Table 5 Significance Values among All Algorithms using Friedmans Test on LA

SSS FFT BPP BPS HF MV SC PCA IS DSSS HFI WDR

SSS − 0.003 0.909 0.859 0.899 0 0.016 0.83 0 0.586 0 0
FFT 0.003 − 0.002 0.002 0.004 0 0.569 0.006 0.1 0 0.403 0.519

BPP 0.909 0.002 − 0.95 0.81 0 0.011 0.742 0 0.667 0 0
BPS 0.859 0.002 0.95 − 0.761 0 0.009 0.695 0 0.714 0 0
HF 0.899 0.004 0.81 0.761 − 0 0.022 0.929 0 0.502 0 0
MV 0 0 0 0 0 − 0 0 0 0 0 0
SC 0.016 0.569 0.011 0.009 0.022 0 − 0.028 0.027 0.003 0.16 0.224

PCA 0.83 0.006 0.742 0.695 0.929 0 0.028 − 0 0.448 0 0
IS 0 0.1 0 0 0 0 0.027 0 − 0 0.418 0.317

DSSS 0.586 0 0.667 0.714 0.502 0 0.003 0.448 0 − 0 0
HFI 0 0.403 0 0 0 0 0.16 0 0.418 0 − 0.849

WDR 0 0.519 0 0 0 0 0.224 0 0.317 0 0.849 −

Table 6 Significance Values among All Algorithms using Friedmans Test on Words

SSS FFT BPP BPS HF MV SC PCA IS DSSS HFI WDR

SSS − 0 0.001 0.667 0 0 0.667 0 0 0.008 0 0
FFT 0 − 0.436 0 0 0 0 0.156 0 0 0 0
BPP 0.001 0.436 − 0.004 0 0 0 0 0 0 0 0
BPS 0.667 0 0.004 − 0 0 0.389 0 0 0.002 0 0
HF 0 0 0 0 − 0 0 0.005 0 0 0.839 0
MV 0 0 0 0 0 − 0 0 0.028 0 0.085 0.061

SC 0.667 0 0 0.389 0 0 − 0 0 0 0 0
PCA 0 0.156 0 0 0.005 0 0 − 0 0 0.002 0
IS 0 0 0 0 0 0.028 0 0 − 0 0 0.742

DSSS 0.008 0 0 0.002 0 0 0 0 0 − 0 0
HFI 0 0 0 0 0.839 0.085 0 0.002 0 0 − 0
WDR 0 0 0 0 0 0.061 0 0 0.742 0 0 −

Table 7 Significance Values among All Algorithms using Friedmans Test on Color

SSS FFT BPP BPS HF MV SC PCA IS DSSS HFI WDR

SSS − 0 0.001 0 0 0 0.038 0 0 0.18 0 0
FFT 0 − 0 0.016 0.323 0.156 0 0 0 0.007 0 0
BPP 0.001 0 − 0 0 0 0.215 0 0 0 0 0
BPS 0 0.016 0 − 0.156 0.323 0 0.111 0.004 0 0 0
HF 0 0.323 0 0.156 − 0.667 0 0.003 0 0 0 0
MV 0 0.156 0 0.323 0.667 − 0 0.01 0 0 0 0
SC 0.038 0 0.215 0 0 0 − 0 0 0.001 0 0
PCA 0 0 0 0.111 0.003 0.01 0 − 0.197 0 0 0.017

IS 0 0 0 0.004 0 0 0 0.197 − 0 0 0.276

DSSS 0.18 0.007 0 0 0 0 0.001 0 0 − 0 0
HFI 0 0 0 0 0 0 0 0 0 0 − 0.007

WDR 0 0 0 0 0 0 0 0.017 0.276 0 0.007 −

when the dependent variable being measured is ordinal.

For this test, we have two hypotheses: (i) the null

hypothesis that the metric similarity search results of

different algorithms share the same distribution and (ii)

the alternative hypothesis that their distributions are

different. Tables 5 through 8 provide the significance

values among all the pivot selection algorithms. The

values are reported as “0” when “0.000” is obtained

after rounding the values and using three significant

decimals. The tables support two conclusions. First,

the significances for the similarity search performance

of all pivot selection algorithms on different datasets

(i.e., 0.000) indicate significant differences between the

different algorithms, i.e., the null hypothesis does not

hold. This also shows that our analyses of all the pivot

selection algorithms are meaningful. Second, as a larger

significance value between two algorithms corresponds

to a higher probability that they share similar query

performance, Tables 5 to 8 demonstrate that the

algorithms with similar performance have limited

significance differences, meaning that the distributions

of the pivots chosen by those algorithms have common

characteristics. In particular, LA has the most non-zero

significances among the four datasets. This is because,

the number of pivots is fixed at 5 for each dataset in the

experiments. Due to the low (intrinsic) dimensionality

20 Yifan Zhu et al.

Table 8 Significance Values among All Algorithms using Friedmans Test on INT

SSS FFT BPP BPS HF MV SC PCA IS DSSS HFI WDR

SSS − 0 0 0.08 0 0 0.05 0 0 0 0 0
FFT 0 − 0 0.66 0.206 0 0.097 0 0 0.714 0 0
BPP 0 0 − 0 0.001 0 0 0 0 0 0 0
BPS 0.076 0.66 0 − 0.002 0 0.859 0 0 0.28 0 0
HF 0 0.206 0 0.002 − 0 0.003 0 0 0.369 0 0
MV 0 0 0 0 0 − 0 0.704 0.761 0 0.622 0.714

SC 0.051 0.97 0 0.859 0.003 0 − 0 0 0 0.43 0
PCA 0 0 0 0 0 0.704 0 − 0.939 0 0.909 0.99

IS 0 0 0 0 0 0.761 0 0.939 − 0 0.849 0.95

DSSS 0 0.714 0 0.28 0.369 0 0.043 0 0 − 0 0
HFI 0 0 0 0 0 0.622 0 0.909 0.849 0 − 0.899

WDR 0 0 0 0 0 0.714 0 0.99 0.95 0 0.899 −

FFT
BPP

BPS

HFSSS

HFI

IS

SC

MVWDR

DSSS PCA

(a) compdists using LAESA

FFT
BPP

BPS

HFSSS

HFI

IS

SC

MVWDR

DSSS PCA

(b) compdists using MVPT

FFT
BPP

BPS

HFSSS

HFI

IS

SC

MVWDR

DSSS PCA

(c) compdists using SPB-tree

FFT
BPP

BPS

HFSSS

HFI

IS

SC

MVWDR

DSSS PCA

(d) CPU time using LAESA

FFT
BPP

BPS

HFSSS

HFI

IS

SC

MVWDR

DSSS PCA

(e) CPU time using MVPT

FFT
BPP

BPS

HFSSS

HFI

IS

SC

MVWDR

DSSS PCA

(f) CPU time using SPB-tree

Fig. 8 Z -test on LA

of LA, 5 pivots are sufficient to achieve very good

performance, making that all the algorithms achieve

similar performance on LA.

Friedman test can detect the differences among

all the algorithms over multiple test attempts, i.e.,

by analyzing all the performance metrics (namely,

compdists and the CPU time) of MkNNQ and MRQ

using three typical indexes (viz., LAESA, MVPT, and

SPB-tree) under all the parameter settings. In contrast,

Z -test aims at a single attempt, which detects the

differences of all the algorithms by analyzing a single

performance metric when performing MRQ or MkNNQ

with a specific parameter setting using a specific index.

We present a Z -test to detect the differences among

all the algorithms on LA using MRQ. Note that,

only LA is used because the performance of all the

algorithms is similar on LA as shown in Figs. 5(a) to

5(f). More specifically, we run a Z -test with the p-value

of 0.05 to test whether the performance (including

compdists and the CPU time) of all the algorithms

when performing MRQ (with r = 8%) is actually

similar to each other. The Z -test results are depicted

in Fig. 8, where the algorithms belonging to different

categories are plotted as circles with different colors,

i.e., P-P algorithms are in blue, P-O algorithms are

in green, and O-O algorithms are in orange. Two

algorithms that have the same MRQ performance (i.e.,

the p-value smaller than 0.05) are connected with solid

lines if they belong to the same category, and are

connected with dotted lines if they belong to different

categories. As observed, the dense connections among

all the algorithms indicate their compdists and CPU

time share similar distributions. It is consistent with our

previous conclusion that the pivot selection algorithms

achieve similar performance on LA. However, since

the SPB-tree index employs both the pivot pruning

and pivot validation techniques, while LAESA and

MVPT only employ the pivot pruning techniques, the

Pivot Selection Algorithms in Metric Spaces: A Survey and Experimental Study 21

e
ff

ic
ie

n
cy

 r
a
n

k

13

4

1

7

10

13

4

1

7

10

1 1310741 131074

effectiveness rank

BPSBPS
HFHF

BPPBPP

MVMV
SCSC

PCAPCA

DSSSDSSS

SSSSSS

FFTFFT

WDRWDR

HFIHFI

ISIS

(a) MRQ on LA
e
ff

ic
ie

n
cy

 r
a
n

k

13

4

1

7

10

13

4

1

7

10

1 1310741 131074

effectiveness rank

HFHF

BPPBPP

MVMVSCSC

PCAPCA

DSSSDSSS

BPSBPS

WDRWDR

FFTFFT

HFIHFI

ISIS

SSSSSS

(b) MkNNQ on LA

BPSBPS

e
ff

ic
ie

n
cy

 r
a
n

k

13

4

1

7

10

13

4

1

7

10

1 1310741 131074

effectiveness rank

BPPBPP

MVMV
SCSC

HFIHFI

PCAPCA

DSSSDSSS

SSSSSS

HFHF

FFTFFT
WDRWDR

ISIS

(c) MRQ on Words

e
ff

ic
ie

n
cy

 r
a
n

k

13

4

1

7

10

13

4

1

7

10

1 1310741 131074

effectiveness rank

BPSBPS

BPPBPP

MVMV
SCSC

HFIHFI

PCAPCA

ISIS

DSSSDSSS

SSSSSS

HFHF

FFTFFT
WDRWDR

(d) MkNNQ on Words

BPSBPS

e
ff

ic
ie

n
cy

 r
a
n

k

13

4

1

7

10

13

4

1

7

10

1 1310741 131074

effectiveness rank

BPPBPP

SCSC
DSSSDSSS

SSSSSS

MVMV

HFIHFI

PCAPCA

HFHF

FFTFFT

WDRWDR
ISIS

(e) MRQ on INT

BPSBPS

e
ff

ic
ie

n
cy

 r
a
n

k

13

4

1

7

10

13

4

1

7

10

1 1310741 131074

effectiveness rank

BPPBPP

MVMV

SCSC

WDRWDR

HFIHFI
PCAPCA

DSSSDSSS

SSSSSS

HFHF
ISIS

FFTFFT

(f) MkNNQ on INT

e
ff

ic
ie

n
cy

 r
a
n

k

13

4

1

7

10

13

4

1

7

10

1 1310741 131074

effectiveness rank

HFHF

BPPBPP

MVMV
SCSC

FFTFFT

PCAPCA

ISIS

DSSSDSSS

SSSSSS
BPSBPS

WDRWDR

HFIHFI

(g) MRQ on Color

FFT

e
ff

ic
ie

n
cy

 r
a
n

k

13

4

1

7

10

13

4

1

7

10

1 1310741 131074

effectiveness rank

HF

BPP

MV
SC

PCA

IS

DSSSDSSS

SSS

WDR

HFI

BPS

(h) MkNNQ on Color

Fig. 9 Effectiveness Rank vs. Efficiency Rank

connections among all the algorithms using SPB-tree

index are sparse. It means that the performance of all

the algorithms is different using the SPB-tree on LA,

which is consistent with the MRQ experimental results

illustrated in Figs. 5(a) to 5(f).

6.5 Performance analysis

Considering that it is hard to find the top pivot

selection algorithm on all datasets in terms of

the different performance metrics, we aggregate

the effectiveness (in terms of the similarity search

performance when using the selected pivots) and the

efficiency (in terms of the runtime of pivot selection

methods) of all the algorithms to enable a fair

comparison. Inspired by the skyline concept, we plot

the effectiveness rank (i.e., the mean rank of the

distance computations and the CPU time when using

different indexes and when varying the parameter k

in MkNNQ or the radius in MRQ) and the efficiency

rank in Fig. 9. In the figure, the blue and red circles

indicate algorithms on the skyline, i.e., algorithms that

cannot be dominated by any other algorithms. An

algorithm is not dominated by another algorithm if

the other has lower effectiveness or efficiency rank.

The skyline algorithms thus constitute appropriate

pivot selection methods for a given setting. Further,

the algorithms represented by red circles are the best

choices (according to the sum of the effectiveness and

efficiency ranks) in the particular setting.

As can be observed, FFT, SSS, and IS are skyline

algorithms on the LA dataset (see Figs 9(a) and 9(b)),

among which FFT is the best choice as it has relatively

high effectiveness and low time cost. Next, SSS, FFT,

HF, IS, and WDR are skyline algorithms on the Words

dataset (see Figs 9(c) and 9(d)), among which WDR

is the best choice. In the case of the INT dataset,

there are many skyline algorithms, among which IS

is the best choice (see Figs 9(e) and 9(f)). This is

because INT is a synthetic dataset while the others are

real-life datasets. INT has two notable characteristics:

a random data distribution and linearly correlated

dimensions. Thus, P-O methods (MV and PCA)

are able to leverage statistical techniques (distance

variance and dimensionality reduction) to learn the

data distribution and select representative objects

as pivots, giving them the best MRQ performance.

However, in terms of MkNNQ results, the O-O methods

(such as IS, WDR, and HFI) are better. This is because

MRQ returns a large fraction of the dataset, while

MkNNQ only considers a small fraction of the data.

On theColor dataset, SSS, BPS, HFI, and WDR are

skyline algorithms (see Figs 9(g) and 9(h)), and WDR

is the best choice.

Based on the above observations, the P-P methods

FFT and SSS are always skyline algorithms because

of their efficiency, while the O-O methods IS and

WDR are skyline algorithms because they are able

to select high-quality pivots (i.e., the best MRQ

and MkNNQ performance). This indicates that pivot

selection algorithms with higher CPU cost do not

necessarily yield pivots of higher quality. As a summary,

we recommend the O-O distribution based algorithms

IS and WDR for most datasets if the pivot quality

is more important (e.g., for off-line analysis), and we

recommend the P-P distribution based methods FFT

and SSS if pivot selection efficiency is more important

22 Yifan Zhu et al.

slope=1.00 slope=0.70 slope=0.35
2.4

0.6

0.0

1.2

1.8

2.4

0.6

0.0

1.2

1.8

0 2.41.81.20.60 2.41.81.20.6

lo
w

er
 b

o
u

n
d

 d
is

ta
n

ce
 (

K
)

original metric distance (K)

lo
w

er
 b

o
u

n
d

 d
is

ta
n

ce
 (

K
)

original metric distance (K)

(a) SSS

2.4

0.6

0.0

1.2

1.8

2.4

0.6

0.0

1.2

1.8

0 2.41.81.20.60 2.41.81.20.6
lo

w
er

 b
o
u

n
d

 d
is

ta
n

ce
 (

K
)

original metric distance (K)
lo

w
er

 b
o
u

n
d

 d
is

ta
n

ce
 (

K
)

original metric distance (K)

(b) FFT

2.4

0.6

0.0

1.2

1.8

2.4

0.6

0.0

1.2

1.8

0 2.41.81.20.60 2.41.81.20.6

lo
w

er
 b

o
u

n
d

 d
is

ta
n

ce
 (

K
)

original metric distance (K)

lo
w

er
 b

o
u

n
d

 d
is

ta
n

ce
 (

K
)

original metric distance (K)

(c) BPP

2.4

0.6

0.0

1.2

1.8

2.4

0.6

0.0

1.2

1.8

0 2.41.81.20.60 2.41.81.20.6

lo
w

er
 b

o
u

n
d

 d
is

ta
n

ce
 (

K
)

original metric distance (K)

lo
w

er
 b

o
u

n
d

 d
is

ta
n

ce
 (

K
)

original metric distance (K)

(d) BPS
2.4

0.6

0.0

1.2

1.8

2.4

0.6

0.0

1.2

1.8

0 2.41.81.20.60 2.41.81.20.6

lo
w

er
 b

o
u

n
d

 d
is

ta
n

ce
 (

K
)

original metric distance (K)

lo
w

er
 b

o
u

n
d

 d
is

ta
n

ce
 (

K
)

original metric distance (K)

(e) HF

2.4

0.6

0.0

1.2

1.8

2.4

0.6

0.0

1.2

1.8

0 2.41.81.20.60 2.41.81.20.6

lo
w

er
 b

o
u

n
d

 d
is

ta
n

ce
 (

K
)

original metric distance (K)

lo
w

er
 b

o
u

n
d

 d
is

ta
n

ce
 (

K
)

original metric distance (K)

(f) MV

2.4

0.6

0.0

1.2

1.8

2.4

0.6

0.0

1.2

1.8

0 2.41.81.20.60 2.41.81.20.6

lo
w

er
 b

o
u

n
d

 d
is

ta
n

ce
 (

K
)

original metric distance (K)

lo
w

er
 b

o
u

n
d

 d
is

ta
n

ce
 (

K
)

original metric distance (K)

(g) SC

2.4

0.6

0.0

1.2

1.8

2.4

0.6

0.0

1.2

1.8

0 2.41.81.20.60 2.41.81.20.6

lo
w

er
 b

o
u

n
d

 d
is

ta
n

ce
 (

K
)

original metric distance (K)

lo
w

er
 b

o
u

n
d

 d
is

ta
n

ce
 (

K
)

original metric distance (K)

(h) PCA
2.4

0.6

0.0

1.2

1.8

2.4

0.6

0.0

1.2

1.8

0 2.41.81.20.60 2.41.81.20.6

lo
w

er
 b

o
u

n
d

 d
is

ta
n

ce
 (

K
)

original metric distance (K)

lo
w

er
 b

o
u

n
d

 d
is

ta
n

ce
 (

K
)

original metric distance (K)

(i) IS

2.4

0.6

0.0

1.2

1.8

2.4

0.6

0.0

1.2

1.8

0 2.41.81.20.60 2.41.81.20.6

lo
w

er
 b

o
u

n
d

 d
is

ta
n

ce
 (

K
)

original metric distance (K)

lo
w

er
 b

o
u

n
d

 d
is

ta
n

ce
 (

K
)

original metric distance (K)

(j) DSSS

2.4

0.6

0.0

1.2

1.8

2.4

0.6

0.0

1.2

1.8

0 2.41.81.20.60 2.41.81.20.6

lo
w

er
 b

o
u

n
d

 d
is

ta
n

ce
 (

K
)

original metric distance (K)

lo
w

er
 b

o
u

n
d

 d
is

ta
n

ce
 (

K
)

original metric distance (K)

(k) HFI

2.4

0.6

0.0

1.2

1.8

2.4

0.6

0.0

1.2

1.8

0 2.41.81.20.60 2.41.81.20.6

lo
w

er
 b

o
u

n
d

 d
is

ta
n

ce
 (

K
)

original metric distance (K)

lo
w

er
 b

o
u

n
d

 d
is

ta
n

ce
 (

K
)

original metric distance (K)

(l) WDR

Fig. 10 Lower Bound Distance vs. Original Metric Distance

(e.g., in online analysis in dynamic environments).

In addition, for high (intrinsic) dimensional datasets,

the O-O distribution based algorithms IS and WDR

are recommended; and for low (intrinsic) dimensional

real-life datasets, the P-P distribution based algorithm

FFT is recommended. The reason is that for low

(intrinsic) dimensional datasets, a few pivots are

sufficient to achieve high search performance; thus, the

P-P distribution based methods are recommended due

to their high efficiency and quality.

In order to study the quality of pivots, we use LA as

an representative example to compare the object pair

distances with corresponding lower bound distances,

as shown in Fig. 10, where the X-axis denotes the

original metric distance while the Y-axis represents the

lower bound distance. To better present the detailed

information, we only consider x values in the range [0,

2400], as 99.9% distances are located in this range. The

red dotted line, the blue dashed-and-dotted line, and

the green solid line have slopes of 0.35, 0.70, and 1,

respectively. The more points that are located close to

the green line, the better the pruning by the pivots

is; and the more points that are located close to the

red line, the worse the pruning by the pivots is. In

addition, we utilize different colors to denote different

distance distributions. The purple color indicates sparse

distributions, while the yellow color indicates dense

distributions.

As can be observed, FFT, BPS, HF, IS, HFI,

and WDR have nearly no points between the blue

dashed-and-dotted line and the red dotted line. These

algorithms perform the best, as seen in Fig 9. This

is because the pruning ability gets stronger when the

lower bound distance approaches the original metric

distance. In other words, the more points that are

near the solid green line (the slope equals 1), the

better the pivot selection algorithm is. Moreover, the

points of MV are denser around the green solid line

and farther from the red dotted line, compared with

PCA. This is consistent with the observation that MV

performs slightly better than PCA on LA, as shown in

Fig. 5. As a summary, good pivots have higher ratios

between the lower bound distance and the original

metric distance. This motivates WDR that uses a

power law probabilistic distribution to better control

the distribution of distance ratios.

6.6 Scalability analysis

The running time performance (i.e., efficiency) of all

pivot selection algorithms when varying the cardinality

of a dataset is studied in Section 6.3. Here, we further

Pivot Selection Algorithms in Metric Spaces: A Survey and Experimental Study 23

 SSS FFT BPP BPS HF MV SC PCA IS DSSS HFI WDR

20% 40% 60% 80% 100%

0.0

2.5

5.0

7.5

10.0

co
m

p
d

is
ts

 (
x
1
0

6
)

Cardinality

(a) LAESA on INT

20% 40% 60% 80% 100%

0.0

2.5

5.0

7.5

10.0

co
m

p
d

is
ts

 (
x
1
0

6
)

Cardinality

(b) MVPT on INT

20% 40% 60% 80% 100%

0.0

2.5

5.0

7.5

10.0

co
m

p
d

is
ts

 (
x
1
0

6
)

Cardinality

(c) SPB-tree on INT

20% 40% 60% 80% 100%

0.0

0.4

0.8

1.2

1.6

C
P

U
 t

im
e
 (

s)

Cardinality

(d) LAESA on INT

20% 40% 60% 80% 100%

0.0

0.3

0.6

0.9

1.2

C
P

U
 t

im
e
 (

s)

Cardinality

(e) MVPT on INT

20% 40% 60% 80% 100%

0.0

1.3

2.6

3.9

5.2

C
P

U
 t

im
e
 (

s)

Cardinality

(f) SPB-tree on INT

Fig. 11 MRQ Performance vs. Cardinality of Dataset

explore the quality of pivots for scalability analysis.

Here, we use the pivots selected in Section 6.3 and

perform MRQ and MkNNQ using indexes LAESA,

MVPT, and the SPB-Tree. For brevity, we only report

the MRQ and MkNNQ results on one dataset each.

Fig. 11 shows the MRQ performance results (i.e.,

the compdists and the CPU time) on INT when the

dataset size is varied from 1M to 10M. Fig. 12 reports

the MkNNQ performance results on Words when the

dataset size is varied from 122,351 to 611,756. It is

observed that, the number of distance computations

and the CPU time increase linearly as the size of

the dataset grows. The results imply that the pivots

selected by all algorithms offer good scalability.

7 Conclusions

We classify all existing pivot selection algorithms known

to us into three categories according to the different

distance distributions they exploit, i.e., P-P, P-O,

and O-O distribution based algorithms. Moreover, we

present a new O-O distribution based algorithm, and

we provide time complexity analyses of all the pivot

selection algorithms. We conduct an comprehensive

experimental evaluation of all the pivot selection

algorithms using four datasets and three different

pivot-based metric indexes. The findings and insights

are summarized as follows.

– In most cases, the O-O distribution based

algorithms yield the best search performance. This

conclusion also shows that a higher time cost of a

pivot selection algorithm may not necessarily yield

higher-quality pivots, as the P-O distribution based

algorithms are time consuming. Good pivot sets

have good distributions, and the pivots have low

correlations with each other. The P-P distribution

based algorithms consider the pivot distribution,

while the P-O distribution based algorithms mostly

focus on the correlations between pivots. The O-O

distribution based algorithms take both criteria into

account in a different way—they maximize the ratio

between lower bound distances and original metric

distances.

– The structure of a pivot-based index affects the

utility of the selected pivots. The order of pivots

is more important to pivot-based trees compared

with pivot-based tables and external indexes, as

pivot-based trees use only one pivot for pruning

at each tree level, while the others use the pivots

as a whole for pruning. We note that PCA, IS,

HFI, and WDR select pivots in the order of

their quality according to different criteria. In

addition, when we have many pivots (the number

of pivots exceeds the (intrinsic) dimensionality of

the dataset), algorithms SSS, FFT, and DSSS that

choose uniformly distributed pivots are better due

to their pivot validation. This holds especially true

for large search spaces.

24 Yifan Zhu et al.

 SSS FFT BPP BPS HF MV SC PCA IS DSSS HFI WDR

20% 40% 60% 80% 100%

0.0

1.5

3.0

4.5

6.0

co
m

p
d

is
ts

 (
x
1
0

5
)

Cardinality

(a) LAESA on Words

20% 40% 60% 80% 100%

0.0

1.5

3.0

4.5

6.0

co
m

p
d

is
ts

 (
x
1
0

5
)

Cardinality

(b) MVPT on Words

20% 40% 60% 80% 100%

0.0

1.5

3.0

4.5

6.0

co
m

p
d

is
ts

 (
x
1
0

6
)

Cardinality

(c) SPB-tree on Words

20% 40% 60% 80% 100%

0.00

0.05

0.10

0.15

0.20

C
P

U
 t

im
e
 (

s)

Cardinality

(d) LAESA on Words

20% 40% 60% 80% 100%

0.00

0.05

0.10

0.15

C
P

U
 t

im
e
 (

s)

Cardinality

(e) MVPT on Words

20% 40% 60% 80% 100%

0.0

0.3

0.5

0.8

1.0

C
P

U
 t

im
e
 (

s)

Cardinality

(f) SPB-tree on Words

Fig. 12 MkNNQ Performance vs. Cardinality of Dataset

– Based on the above findings, we recommend the

O-O distribution based algorithms IS and WDR for

most datasets if the pivot quality is more important

(e.g., for off-line analysis), and we recommend the

P-P distribution based methods FFT and SSS if

pivot selection efficiency is more important (e.g.,

for online analysis in dynamic environments). In

addition, for high (intrinsic) dimensional datasets,

the O-O distribution based algorithms IS and

WDR are recommended; and for low (intrinsic)

dimensional real-life datasets, the P-P distribution

based algorithm FFT is recommended. The reason

is that for low (intrinsic) dimensional datasets, a

few pivots are sufficient to achieve high search

performance; thus, the P-P distribution based

methods are recommended due to their high

efficiency and quality.

Although we conduct a comprehensive empirical

study of pivot selection algorithms, a number of open

issues remain that require further attention. Several

promising research directions for pivot selections in

metric spaces are summarized below:

– As stated in Section 1, specific contexts (e.g.,

data distribution, query types, similarity search

types) can be leveraged to further improve the

performance of pivot selection algorithms. For

example, we use the power law probabilistic

distribution in the proposed WDR algorithm to

improve the pruning and validation capabilities.
In addition, visualization of pivot distributions

is a promising direction of future work for

comprehending the features of specific metric

datasets, potentially offering deeper insights into

pivot selection algorithms.

– A recent study [6] utilizes machine learning to

embed the distances between pivots and objects

when selecting pivots. This approach is shown

to be efficient and applicable to generic metric

spaces. Inspired by this finding, it is of interest to

develop pivot selection algorithms based on different

machine learning techniques, in order to efficiently

select high-quality pivots.

– All existing studies of pivot selection algorithms,

including our experimental evaluation, are

conducted on a single machine. With the growing

volumes of data, it is highly relevant to study

distributed data processing. Consequently, the last,

but not the least important, direction is to develop

pivot selection algorithms for use in distributed

environments and on new hardware platforms.

Acknowledgments

This work was supported in part by the NSFC under

Grants No. 62025206 and 61972338. Yunjun Gao is the

corresponding author of the work.

Pivot Selection Algorithms in Metric Spaces: A Survey and Experimental Study 25

References

1. Amato, G., Esuli, A., Falchi, F.: A comparison of pivot
selection techniques for permutation-based indexing. Inf.
Syst. 52, 176–188 (2015)

2. Angiulli, F., Fassetti, F.: Principal directions-based pivot
placement. In: SISAP, pp. 85–90 (2013)

3. Bozkaya, T., Özsoyoglu, Z.M.: Distance-based indexing
for high-dimensional metric spaces. In: SIGMOD, pp.
357–368 (1997)

4. Bustos, B., Navarro, G., Chávez, E.: Pivot selection
techniques for proximity searching in metric spaces.
Pattern Recognit. Lett. 24(14), 2357–2366 (2003)

5. Bustos, B., Pedreira, O., Brisaboa, N.R.: A dynamic
pivot selection technique for similarity search. In: SISAP,
pp. 105–112 (2008)

6. Carrara, F., Gennaro, C., Falchi, F., Amato, G.: Learning
distance estimators from pivoted embeddings of metric
objects. In: SISAP, pp. 361–368 (2020)

7. Chávez, E., Navarro, G.: A compact space decomposition
for effective metric indexing. Pattern Recognit. Lett.
26(9), 1363–1376 (2005)

8. Chávez, E., Navarro, G., Baeza-Yates, R., Maproqúın,
J.L.: Proximity searching in metric spaces. ACM
Computing Surveys 33(3), 273–321 (2001)

9. Chen, L., Gao, Y., Li, X., Jensen, C.S., Chen, G.: Efficient
metric indexing for similarity search. In: ICDE, pp.
591–602 (2015)

10. Chen, L., Gao, Y., Song, X., Li, Z., Miao, X., Jensen,
C.S.: Indexing metric spaces for exact similarity search.
CoRR abs/2005.03468 (2020)

11. Chen, L., Gao, Y., Zheng, B., Jensen, C.S., Yang, H.,
Yang, K.: Pivot-based metric indexing. PVLDB 10(10),
1058–1069 (2017)

12. Dallachiesa, M., Palpanas, T., Ilyas, I.F.: Top-k nearest
neighbor search in uncertain data series. PVLDB 8(1),
13–24 (2014)

13. Echihabi, K., Zoumpatianos, K., Palpanas, T.,
Benbrahim, H.: Return of the lernaean hydra:
Experimental evaluation of data series approximate
similarity search. PVLDB 13(3), 403–420 (2019)

14. Figueroa, K., Paredes, R.: An effective permutant
selection heuristic for proximity searching in metric
spaces. In: MCPR, pp. 102–111 (2014)

15. Gómez-Tostón, C., Barrena, M., Cortés, Á.:
Characterizing the optimal pivots for efficient similarity
searches in vector space databases with minkowski
distances. Appl. Math. Comput. 328, 203–223 (2018)

16. Hochbaum, D.S., Shmoys, D.B.: A best possible heuristic
for the k-center problem. Math. Oper. Res. 10(2),
180–184 (1985)

17. Jr., C.T., Filho, R.F.S., Traina, A.J.M., Vieira, M.R.,
Faloutsos, C.: The omni-family of all-purpose access
methods: a simple and effective way to make similarity
search more efficient. VLDB J. 16(4), 483–505 (2007)

18. Kim, S., Lee, D., Cho, H.: An eigenvalue-based pivot
selection strategy for improving search efficiency in
metric spaces. In: BigComp, pp. 207–214 (2016)

19. Kimura, M., Saito, K., Ueda, N.: Pivot learning for
efficient similarity search. In: KES, pp. 227–234 (2007)

20. Kurasawa, H., Fukagawa, D., Takasu, A., Adachi,
J.: Margin-based pivot selection for similarity search
indexes. IEICE Transactions 93-D(6), 1422–1432 (2010)

21. Kurasawa, H., Fukagawa, D., Takasu, A., Adachi, J.:
Optimal pivot selection method based on the partition
and the pruning effect for metric space indexes. IEICE
Transactions 94-D(3), 504–514 (2011)

22. Leuken, R.H.V., Veltkamp, R.C., Typke, R.: Selecting
vantage objects for similarity indexing. In: ICPR, pp.
453–456 (2006)

23. Li, W., Zhang, Y., Sun, Y., Wang, W., Li, M., Zhang,
W., Lin, X.: Approximate nearest neighbor search
on high dimensional data-experiments, analyses, and
improvement. TKDE 32(8), 1475–1488 (2020)

24. Mao, R., Miranker, W.L., Miranker, D.P.: Pivot selection:
Dimension reduction for distance-based indexing. J.
Discrete Algorithms 13, 32–46 (2012)

25. Mao, R., Zhang, P., Li, X., Liu, X., Lu, M.: Pivot selection
for metric-space indexing. Int. J. Mach. Learn. Cybern.
7(2), 311–323 (2016)

26. Micó, L., Oncina, J., Carrasco, R.C.: A fast branch
& bound nearest neighbour classifier in metric spaces.
Pattern Recognit. Lett. 17(7), 731–739 (1996)

27. Micó, L., Oncina, J., Vidal, E.: A new version of the
nearest-neighbour approximating and eliminating search
algorithm (AESA) with linear preprocessing time and
memory requirements. Pattern Recognit. Lett. 15(1),
9–17 (1994)

28. Nathan, V., Ding, J., Alizadeh, M., Kraska, T.: Learning
multi-dimensional indexes. In: SIGMOD, pp. 985–1000
(2020)

29. Pedreira, O., Brisaboa, N.R.: Spatial selection of sparse
pivots for similarity search in metric spaces. In:
SOFSEM, pp. 434–445 (2007)

30. Sprenger, S., Schäfer, P., Leser, U.: Bb-tree: A
main-memory index structure for multidimensional range
queries. In: ICDE, pp. 1566–1569 (2019)

31. Sun, Y., Wang, W., Qin, J., Zhang, Y., Lin, X.: SRS:
solving c-approximate nearest neighbor queries in high
dimensional euclidean space with a tiny index. PVLDB
8(1), 1–12 (2014)

32. Sundaram, N., Turmukhametova, A., Satish, N., Mostak,
T., Indyk, P., Madden, S., Dubey, P.: Streaming
similarity search over one billion tweets using parallel
locality-sensitive hashing. PVLDB 6(14), 1930–1941
(2013)

33. Tosun, U.: A novel indexing scheme for similarity search
in metric spaces. Pattern Recognit. Lett. 54, 69–74
(2015)

34. Venkateswaran, J., Kahveci, T., Jermaine, C.M.,
Lachwani, D.: Reference-based indexing for metric spaces
with costly distance measures. VLDB J. 17(5),
1231–1251 (2008)

35. Watve, A., Pramanik, S., Jung, S., Lim, C.Y.:
Data-independent vantage point selection for range
queries. The Journal of Supercomputing 75(12),
7952–7978 (2019)

36. Yamagishi, Y., Aoyama, K., Saito, K., Ikeda, T.: Pivot
generation algorithm with a complete binary tree for
efficient exact similarity search. IEICE Transactions
101-D(1), 142–151 (2018)

