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Abstract: This paper attempts to elucidate the transformative integration of computational techniques
within power systems, underscoring their critical role in enhancing system modeling, control, and
the efficient integration of renewable energy. It breaks down the two-sided nature of technological
progress, highlighting both gains in operational efficiency and new challenges such as real-time
processing, data management, and cybersecurity. Through meticulous analysis of query-based
research patterns and mathematical frameworks, this study delves into the balancing act between
specificity and breadth in scholarly inquiries while evaluating the impact and evolution of research
trends through citation analysis. The convergence of interests and transient research trends is evident,
particularly in Artificial Intelligence and optimization. This comprehensive narrative anticipates
a sophisticated trajectory for power systems, advocating for continuous innovation and strategic
research to foster sustainable, resilient, and intelligent energy networks.

Keywords: powersystems stability; computational techniques; renewable energy integration; real-time
system control; data management; cybersecurity in power networks; machine learning applications;
control strategies; system modeling efficiency; optimization algorithms

1. Introduction

The advent of advanced computational methodologies has initiated a transformative
era in the domain of power system operations. At the forefront of this transformation
lies the seamless integration of state-of-the-art computational techniques, representing a
pivotal milestone in the evolution of power networks into autonomous, self-regulating
entities capable of optimization. In this context, Figure 1 provides a concise portrayal of a
microgrid system. On the left, simplified icons depict photovoltaic solar panels and wind
turbines. On the right, a basic icon represents a natural gas generation facility. At the
bottom, an icon signifies energy storage batteries. Structures and charging stations are
illustrated using basic geometric shapes, while a central icon symbolizes the core control
system. This minimalist diagram effectively communicates the integration of renewable
energy sources, backup natural gas generation, energy storage, and demand management
within the microgrid, all orchestrated by the central control system.

This paper explores the profound implications of such technologies, ranging from
machine learning algorithms to intricate control strategies. By meticulously analyzing the
intricacies of these methods, this paper demonstrates their indispensability in enhancing
accuracy, efficiency, and robustness in power system modeling and control [1].

Our methodological framework employs a comprehensive review of case studies and
scholarly articles to navigate the complexities and the dynamic nature of modern power
networks [2]. With an emphasis on the seamless incorporation of renewable energy sources,
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this paper sheds light on the essentiality of computational techniques in maintaining system
stability and optimizing performance [3].

Figure 1. Schematic research showing the SG components.

Furthermore, this paper delineates the multifaceted challenges accompanying these
computational advancements, such as real-time data processing demands, voluminous data
management, and cybersecurity [4]. Through a balanced inquiry into various queries, our
analysis adheres to a mathematical marking framework, critically assessing the relevance,
diversity, and citation impact of the research within this field [5].

In essence, a forward-looking perspective is presented and analyzed by empirical
evidence and quantitative analysis to forecast the trajectory of power systems [6]. It stands
on the precipice of a new era where power networks are more efficient, innovative, and
responsive to the ever-evolving energy landscape [7].

The document is organized as follows: Section 2 shows the state of the art, Section 3
shows the methodology applied to find the papers, and Section 4 shows the results and the
analysis. Finally, Section 5 presents the conclusions and future work.

2. The State of the Art
2.1. Historical Overview of Computational Techniques in Power Systems

The progression of computational methods has been pivotal to advancing power sys-
tems within electrical engineering, enhancing control and stability. Initially, linear control
strategies were instrumental, setting a foundation for later advancements [8]. However,
as power systems became more complex, the shortcomings of linear models led to the
development of more advanced algorithms. Machine learning and optimization algorithms
marked a significant shift, introducing dynamic responses to the nonlinear challenges in
contemporary power systems [9]. For example, neural networks and fuzzy logic have
notably improved the damping of oscillations, essential for system stability [10].

Later, heuristic approaches like Genetic Algorithms (GAs) and Particle Swarm Op-
timization (PSO) emerged, offering robust solutions to the multifaceted optimization
problems of power system control [11]. Research has shown GAs notably enhance stabilizer
tuning [12]. The incorporation of renewable energy necessitated computational methods
to manage new uncertainties. Techniques like Adaptive Neuro-Fuzzy Inference Systems
(ANFISs) and Support Vector Machines (SVMs) were vital, with ANFISs demonstrating
superior learning speed and adaptability [13]. Comparative studies underscored ANFISs’
advantages over SVMs in power system scenarios [14].

In real-time control and analysis, the advent of Real-Time Digital Simulators and
Hardware-In-the-Loop (HIL) simulations has been transformative, allowing for practical
validation of computational methods [15]. HIL simulations, in particular, provide a more
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interactive testing environment, essential for developing real-time strategies [16]. Entering
the 21st century, computational intelligence and AI have become central to power system
stability, with techniques like Deep Learning and Reinforcement Learning offering novel
capabilities in pattern recognition and decision making [17]. Deep Learning’s application
to power system stability indicates its revolutionary potential for predictive and adaptive
control [18].

In [19], the paper explores day-ahead and real-time cooperative energy management
challenges in multienergy systems comprising numerous energy entities. It introduces an
event-triggered distributed algorithm characterized by distributed execution, asynchronous
communication, and independent calculation to tackle these challenges.

2.2. Modern Computational Methods and Their Applications

The integration of contemporary computational approaches has markedly reshaped
stability and control within power systems. These approaches, grounded in advanced
analytics, are crucial for solving intricate optimization challenges in this domain. Notably,
Particle Swarm Optimization (PSO), the Kidney-Inspired Algorithm (KA), and Adaptive
Neuro-Fuzzy Inference Systems (ANFISs) stand out for their contributions to Power System
Stabilizer (PSS) enhancement and precise demand prediction.

PSO, drawing from avian social patterns, has shown effectiveness in PSS parameter
adjustment for complex multimachine systems. Verdejo et al. [20] confirmed PSO’s utility
in substantial systems via implementation in DigSilent PowerFactory, yielding enhanced
stability and adeptness at navigating the dynamics of extensive networks.

Conversely, the KA, taking cues from renal processes, has been harnessed for PSS opti-
mization to bolster the damping of electromechanical modes. Investigations by Ekinci et al. [21]
into a 16-machine, 68-bus system presented favorable outcomes over traditional approaches,
with the KA surpassing others in computation speed, convergence, and solution quality.

Moreover, AI-driven Maximum Power Point Tracking (MPPT) methods have catalyzed
a paradigm shift in solar energy, especially under varying shade conditions. Yap et al. [22]
examined six AI-based MPPT methods, noting their swift convergence and high efficiency.
A hybrid MPPT approach, merging traditional and AI methods, emerged as optimal for
balancing complexity with performance.

In the realm of demand forecasting, pivotal for power system management, AI method-
ologies have proven advantageous. A thorough evaluation by Ahmad et al. [23] of various
forecasting models, incorporating Machine Learning, Deep Learning, and AI, highlighted
the precision of hybrid models in minimizing errors, thus aiding sector decision-makers in
maintaining consistent power distribution.

These comparative assessments suggest a shift towards hybridized and specialized
computational methods. While PSO is favored for its robustness in large-scale settings, the
KA is recognized for its rapid convergence and efficiency. AI’s incorporation into MPPT
and forecasting enhances performance and bolsters system reliability.

In the paper in [24], a novel approach to enhance heating systems and raw material
preheating is proposed and validated by mathematical analysis and industrial experiments.
The paper in [25] also explores aluminum electrolysis, developing a mathematical model
for the Soderberg electrolyzer and analyzing primary aluminum production methods
while reviewing computational models for electrolyzers’ thermal and electromagnetic
fields. These studies highlight the complexities and innovative solutions in applying
computational techniques.

2.3. Challenges in Implementing Computational Techniques

The deployment of computational techniques in power system operations is a tes-
tament to the field’s evolution. However, the path to seamless integration is laden with
technical and infrastructural challenges. While enhancing real-time monitoring and control
capabilities, the burgeoning Internet of Things (IoT) technology introduces complexities in
managing the vast data streams and ensuring cybersecurity [26]. Bedi et al. [26] highlighted
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the transformative role of IoT in electric power and energy systems (EPESs), emphasiz-
ing the need for robust computational intelligence to manage the deluge of data and the
associated security concerns.

Model Predictive Control (MPC), a sophisticated control methodology, has been in-
creasingly applied in power electronics to improve performance and stability. Karamanakos
et al. [27] extensively reviewed MPC techniques, discussing the trade-offs between direct
and indirect MPC regarding design complexity and computational demands. The challenge
lies in the real-time implementation of these algorithms, which requires high computational
resources and advanced control platforms.

The innovative grid paradigm, focusing on optimization and simulation, presents
another layer of complexity. Soares et al. [28] conducted a comprehensive analysis of the
challenges in intelligent grid optimization, particularly in energy resource management.
Integrating distributed renewable generation, demand response, and electric vehicles
introduces uncertainty that traditional computational tools need help managing effectively.

Moreover, the real-time state estimation for Wide-Area Measurement Systems (WAMSs)
is critical for the reliability of power grids. Li et al. [29] proposed an Event-Trigger Hetero-
geneous Nonlinear Filter (ET-HNF) to address the computational burden of particle filters
and the data communication infrastructure challenges posed by Phasor Measurement Units
(PMUs). Their work underscores the necessity for innovative solutions that can efficiently
leverage computational power while maintaining high state estimation performance.

2.4. Case Studies Showcasing the Impact of Computational Methods on Power System Stability

The emergence of computational techniques has revolutionized power system stability
analysis, allowing for enhanced precision in models, improved predictive capabilities,
and superior control of intricate electrical grids. This segment offers a synopsis of case
studies that exemplify the profound influence of these methodologies on maintaining
power system equilibrium.

Wang et al. [30] addressed the complexities of simulating wind farms for stability
evaluations by introducing a refined aggregate modeling technique. The paper employs
a geometric template for turbine clustering and a multiobjective optimization algorithm;
their method exemplifies how computational strategies can refine the accuracy of extensive
power system analyses. In addressing load frequency control, Jin et al. [31] presented an
innovative reconstructed model for PID controllers within wind power networks, skillfully
harmonizing computational precision and efficiency—critical considerations given the
unpredictable nature of wind power and resultant system latencies. Devarapalli et al. [32]
delivered an exhaustive critique of computational techniques for power system stabiliz-
ers, accentuating their effectiveness in quelling power network fluctuations. This review
illuminates the vast array of computational tools for fortifying power system stability.
Lastly, He et al. [33] delved into the stability of DC distribution networks, suggesting a
bus node impedance criterion for small-signal stability assessment. Their findings not
only confront stability issues in distributed networks but also offer a relative assessment of
existing criteria, marking the progress and implementation of computational techniques in
contemporary power systems. These case studies collectively demonstrate the transforma-
tional role of computational methods in power system stability, showing that enhanced
model precision, computational efficiency, and robust control mechanisms are crucial in
managing the integration of renewables and system uncertainties. They further emphasize
the continuous quest for novel computational strategies to meet the dynamic and evolving
demands of power system stability.

The analysis of the methodologies employed in the selected papers, as summarized in
Table 1, reveals significant insights into the prevalent computational techniques in power
system stability and control. The PSS methodology appears to be the most frequently
employed (cited in eight papers), indicating its prominence and possible effectiveness in this
research area. Similarly, the term ‘power’ is referenced in six papers, suggesting its central
role in the studies. The use of ‘algorithm’ and ‘performance’ in five papers each ([34–38]
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for ‘algorithm’ and [35–37,39,40] for ‘performance’) highlights their importance in the
methodologies of power system analysis. ‘Simulations’ and ‘PSO’ are also notable, each
mentioned in four different papers ([38,41–43] for ‘simulations’ and [35,37,39,44] for ‘PSO’),
reflecting their utility in research methodologies. This distribution of methodologies across
papers underscores the diverse yet focused approaches in the field, with specific techniques
being more prevalent, possibly due to their proven effectiveness or suitability for specific
types of analysis in power system stability and control.

PSO has become an essential tool in power system optimization and has gained
significant prominence in state-of-the-art methodologies. Its ability to navigate complex,
multidimensional search spaces efficiently makes it efficient for power system applications,
including unit commitment, load forecasting, and renewable energy integration. PSO
stands out from other optimization techniques because of its adaptability and robustness
in handling nonlinear, dynamic power systems. Its versatility extends to solving intricate
problems in power system stability, grid optimization, and demand-side management.

Table 1. Overview of Computational Methodologies in Power System Stability and Control Research.

Methodology Frequency Papers Mentioning the Word

PSS 8 [40,44–50]
Power 6 [36,38,41,42,48,49]
Algorithm 5 [34–38]
Simulations 4 [38,41–43]
PSO 4 [35,37,39,44]
Performance 5 [35–37,39,40]

3. Methodology

The selection of search queries presented in Table 2 was meticulously crafted to encom-
pass a broad spectrum of computational techniques applied to power system stability and
control. The queries were designed to capture the intersection of advanced computational
methods and their application in the dynamic field of power system engineering. This
approach ensures a comprehensive retrieval of the literature that spans both theoretical
and practical aspects of the domain, providing a rich dataset for subsequent analysis.

Table 2. Search Queries for Computational Techniques in Power System Stability and Control.

Query Representation Query Search

Q1
(“Advanced Computational Techniques” OR “Computational Methods”
OR “Algorithmic Approaches”) AND (“Power System Stability” OR
“Power System Control”)

Q2
(“Computational Techniques” OR “Machine Learning” OR
“Optimization Algorithms”) AND (“Power System Stability” OR
“Power System Control”)

Q3 (“Advanced Computational” AND “Power System”) NOT
“Machine Learning”)

Q4 (“Computational Techniques” OR “Data-Driven Methods”) AND
(“Power System Oscillations” OR “Damping Oscillations”)

Q5 (“Algorithmic Approaches” OR “Heuristic Methods”) AND (“Grid
Stability” OR “Grid Control”)

Q6 (“Computational” AND “Renewable Integration”) AND
“Power System”)

Q7 (“Power System Stabilizers” OR “PSS”) AND (“Damping Oscillations”
OR “System Stability”)
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Boolean expressions were utilized to formulate the queries to refine the search re-
sults. ‘AND’ narrows the focus to documents containing all the specified terms, ensuring
relevance to the topic. Conversely, ‘OR’ broadens the search to include any listed terms,
capturing a more comprehensive range of methodologies and applications. The strategic
use of ‘NOT’ in certain queries excludes papers focusing on specific subtopics, such as
machine learning, to avoid overshadowing other computational techniques. This Boolean
logic is fundamental in database searching and is widely recognized for its effectiveness in
information retrieval [51].

A comparative analysis of the queries reveals varying degrees of specificity and
breadth. Queries such as Q1 and Q2 are broader and expected to yield more diverse papers.
At the same time, Q3 introduces exclusivity, potentially limiting the scope but increasing
the focus on non-machine-learning techniques. This nuanced approach allows for a lay-
ered understanding of the field, highlighting the multifaceted nature of computational
applications in power system stability and control. The methodology behind these queries
is supported by best practices in systematic literature reviews, ensuring a balanced and
thorough exploration of the available research [52].

As shown in Table 3, the search queries for computational techniques in power system
stability and control exhibit a range of advantages and disadvantages. Query Q1 offers
the broadest coverage, potentially capturing a wide array of computational techniques,
but it may also include less relevant papers due to its breadth [53]. Conversely, Q3 and
Q5 provide a more focused lens, specifically excluding machine learning and emphasizing
heuristic methods. This focus, while beneficial for specificity, may overlook significant
advancements in machine learning (Q3) or nonheuristic computational techniques (Q5),
representing a trade-off between breadth and specificity [54].

The scope of research for each query, as detailed in Table 3, also varies significantly.
Queries Q2 and Q6, which include machine learning, optimization algorithms, and re-
newable integration, are likely to yield results that span a broad spectrum of current and
emerging technologies in power system control. This broad scope can be advantageous for
a comprehensive review but may also result in a voluminous and diverse set of papers that
require extensive filtering [55]. In contrast, Q4 and Q7, focusing on damping oscillations
and power system stabilizers, respectively, offer a narrower scope that may facilitate a more
targeted analysis but at the risk of missing out on broader contextual information.

The potential trend–theme and identified gaps highlighted in Table 3 reflect the
evolving nature of the field. Queries such as Q1 and Q2 will likely capture papers on cutting-
edge machine learning applications, a significant trend in power system stability and
control. However, the possible identified gaps, such as the omission of newer computational
methods in Q1 or the potential for too broad a capture in Q2, suggest that no single
query is exhaustive. The careful construction of these queries aims to balance the capture
of emerging trends with identifying gaps in the literature, ensuring a comprehensive
understanding of the field’s trajectory.

The qualification score for a scientific query is encapsulated by Equation (1), which
provides a systematic approach to evaluating literature searches’ effectiveness. This score
is derived by averaging the weighted contributions of three critical factors: the relevance of
each paper to the query (Ri), the diversity of content across the papers (Di), and the citation
count as an indicator of impact (Ci). The weights w1, w2, and w3 reflect the significance
assigned to each of these factors, ensuring a balanced consideration of quality, breadth,
and influence.

In the second paragraph, the diversity factor ensures a broad representation of research
areas and methodologies, echoing the findings of Alimi and Ouahada [56], who highlight
the necessity of methodological variety in comprehensive literature reviews. Citation count
serves as a proxy for the scholarly recognition and influence of the work, with its inclusion in
the qualification score grounded in the established practices of academic impact assessment.
The normalization by the number of papers (N) allows for consistent comparison across
searches with varying results. The components and their respective weights are detailed in
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Table 4, which underpins the calculation of the qualification score. This methodological
framework ensures that the qualification score is a multifaceted reflection of the research’s
quantity, pertinence, and impact within the field.

Qualification (Q) =
1
N

N

∑
i=1

(w1 · Ri + w2 · Di + w3 · Ci) (1)

Table 3. Comparative Analysis of Query Specificity, including Advantages, Scope, Possible trend
and Gap.

Query ID Advantages Scope of Research Possible Trend–Theme Possible Identified Gaps

Q1
Broad coverage of
computational techniques
in power systems.

Advanced computational
methods in power
system stability/control.

Machine learning and
algorithmic approaches
in power systems.

Might miss newer,
less-established
computational methods.

Q2
Inclusion of machine
learning and optimization
broadens the scope.

Machine learning and
optimization in power
system stability/control.

Application of machine
learning and
optimization algorithms
in power systems.

Might be too broad,
capturing a wide array of
unrelated papers.

Q3 Specific focus by excluding
machine learning.

Advanced computational
techniques in power
system stability without
ML.

Non-ML computational
techniques in power
systems.

Exclusion of ML might
omit significant
advancements in the
field.

Q4
Focus on oscillations and
damping provides
specificity.

Computational
techniques in power
system
oscillations/damping.

Techniques for damping
oscillations in power
systems.

Might miss broader
computational
techniques in power
system stability.

Q5 Emphasis on algorithmic
and heuristic methods.

Algorithmic and
heuristic methods in grid
stability/control.

Heuristic methods in
grid control and stability.

Might not capture
nonheuristic
computational
techniques.

Q6
Focus on renewable
integration in power
system stability.

Computational
techniques in renewable
integration for power
system stability.

Renewable energy
integration and its
impact on grid stability.

Might miss broader
aspects of power system
stability.

Q7 Specific focus on power
system stabilizers.

Power system stabilizers
in damping oscillations
and system stability.

Role of power system
stabilizers in grid
stability.

Might omit broader
computational
techniques in system
stability.

Table 4. Parameters, Symbols and Description for Qualification Score Calculation.

Parameter Symbol Description

Total number of papers N The total number of papers retrieved by the query.

Relevance Ri
Relevance of the ith paper to the query, scaled
between 0 and 1.

Diversity Di
Diversity of the ith paper in terms of content and
contribution, scaled between 0 and 1.

Citation Count Ci Citation count of the ith paper, normalized.

Weights w1, w2, w3
Weights assigned to relevance, diversity, and citation
counts, respectively, where w1 + w2 + w3 = 1.

The Algorithm 1 orchestrates a systematic methodology for selecting the most effica-
cious query for retrieving research papers pertinent to specific scientific inquiries. Initially,
each proposed query undergoes a meticulous analysis to discern its intrinsic advantages,
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scope, prevailing trends, and identifiable gaps. After this analytical phase, the algorithm
begins a retrieval process, sourcing papers from a consortium of open-access libraries,
ensuring a comprehensive amalgamation of scholarly articles. Each retrieved paper is
then subjected to a quantitative evaluation, wherein pivotal metrics such as the number of
citations, diversity of content, and relevance to the initial query are assessed and quantified.
A mathematical formulation is employed to synthesize these metrics, yielding a compos-
ite qualification score that encapsulates the overall efficacy of each query. This score is
instrumental in facilitating an objective comparison of the queries, culminating in selecting
the query that exhibits the highest degree of alignment with the research objectives. The
algorithm’s design embodies a fusion of analytical rigor and computational proficiency,
enabling it to adeptly navigate the vast scholarly landscape and isolate the queries most
conducive to advancing scientific exploration.

Algorithm 1 Research Paper Query Selection Algorithm

1: Input: Queries Q
2: Output: Best Query Qbest
3: procedure QUERYSELECTION
4: for each q in Queries Q do
5: Analyze q to get Advantages A, Scope S, Trends T, Gaps G
6: Define Strength and Thematic Focus of q
7: for each q in Queries Q do
8: Retrieve Papers P from open-access libraries
9: Calculate Number of Papers N, Citations C, Diversity D, Relevance R

10: for each q in Queries Q do
11: Calculate Qualification Score Qscore using:
12: Qscore =

1
N ∑N

i=1(w1 · Ri + w2 · Di + w3 · Ci)
13: Where:
14: N = Total number of papers
15: Ri = Relevance of paper i
16: Di = Diversity of paper i
17: Ci = Citation count of paper i
18: Qbest = max(Qscore) ▷ Select query with highest score
19: return Qbest

4. Results and Discussion

As shown in Table 5, the strength of the queries varies significantly, reflecting the
diverse computational techniques applied to power system stability and control. Query
Q1 and Q2 demonstrate a broad scope, incorporating advanced computational techniques
and machine learning, pivotal in modern power systems analysis [57]. In contrast, Q3
deliberately excludes machine learning to focus on alternative computational methods,
which may limit its breadth but increase specificity [58]. The strength of a query is not
solely determined by its breadth but also by its ability to yield targeted results, as broader
queries may retrieve a high volume of less relevant papers.

The thematic focus of the queries, as detailed in Table 5, ranges from general power
system stability and control (Q1, Q2) to more specific aspects such as the exclusion of
machine learning (Q3) or the inclusion of renewable integration (Q6). The expected number
of papers for each query directly reflects the thematic scope, with broader themes like those
in Q1 and Q2 likely to yield a larger body of work compared with the more narrowly focused
Q3 [59]. This breadth versus specificity trade-off is a common challenge in designing search
queries for literature reviews, as a broader theme can sometimes dilute the concentration of
highly relevant papers.

The qualification of each query, as per the defined formula, considers the papers’
relevance, diversity, and citation impact. Queries Q1 and Q2, with a qualification score of
4, are considered highly effective due to their comprehensive nature and the significant
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citation counts of the retrieved papers, indicating their impact and importance in the
field [60]. On the other hand, Q3’s more focused approach yields a lower qualification
score of 2, suggesting a narrower but more in-depth exploration of the topic. This nuanced
evaluation underscores the importance of a balanced methodology in query formulation,
ensuring both breadth and depth are considered to achieve a comprehensive literature
review [61].

Table 5. Search Queries’ Strength, Thematic Relevance, Number of Papers in Scopus, and Corre-
sponding Qualification Scores.

Identification Strength Thematic Research (Number of Papers) Qualification (1–5)

Q1
Comprehensive query for
computational techniques
in power systems.

Advanced computational
techniques in power system
stability/control.

52 4

Q2
Focuses on machine
learning and optimization
in power systems.

Machine learning and
optimization in power
system stability/control.

1097 5

Q3
Excludes machine learning
in computational
techniques and stability.

Advanced computational
techniques in power system
stability without ML.

9 2

Q4
Focuses on computational
techniques for damping
oscillations.

Computational techniques in
power system
oscillations/damping.

16 2

Q5
Focuses on algorithmic and
heuristic methods in grid
stability/control.

Algorithmic approaches and
heuristic methods in grid
stability/control.

27 2

Q6
Focuses on renewable
integration and
computational techniques.

Computational techniques in
renewable integration for
power system stability.

10 2

Q7
Focuses on power system
stabilizers for damping
and stability.

Power system stabilizers in
damping oscillations and
system stability.

532 5

The bar chart depicted in Figure 2 showcases the most cited papers from the query
Q2, with the work of Fuller A. [62] achieving the highest citation count at 739. This
significant number of citations reflects the paper’s impact on the field, likely resonating
with contemporaneous and successive research inquiries. The accompanying table, labeled
Table 6, provides a detailed synopsis of the top ten papers, elucidating the first authors,
their citation, citation volume, and central keyword.

A discernible trend emerges from the analysis of these data: topics such as Deep
Learning, Artificial Intelligence (AI), and various optimization techniques dominate the list
of highly cited works. These subjects are pivotal in evolving computational methods ap-
plied to complex systems. The prominence of Artificial Intelligence, appearing in multiple
entries, underscores its burgeoning influence across multiple research fronts.

The citation amounts present a steep initial descent from the apex citation count,
suggesting a high variance in the recognition and influence of papers within the top
ten. Such a pattern underscores the highly competitive nature of prominent research
areas, where a few seminal works garner the bulk of citations. In contrast, others, despite
their value, receive comparatively fewer citations. This hierarchy of scholarly impact is
a testament to the dynamic nature of academic discourse within the domain defined by
query Q2.
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Figure 2. Number of citations per paper for Query 2.

Table 6. Most cited papers for query 2.

Paper Identifier First Author Citations Main Keyword

1 Fuller A. [62] 739 Deep Learning
2 Rasheed A. [63] 621 Artificial Intelligence
3 Al-Tashi Q. [64] 298 Classification
4 Yu J.J.Q. [65] 238 Long Short-Term Memory
5 Minerva R. [66] 236 Artificial Intelligence
6 Moayedi H. [67] 229 ANN
7 Shanmugam M. [68] 214 Antlion Optimizer
8 Duan J. [69] 211 Artificial Intelligence
9 Lui D. [70] 186 Action-Dependent Heuristic
10 Luo L. [71] 185 Battery Energy Storage System

Figure 3 delineates the citation dynamics for three distinct research queries within
power systems, as measured by normalized total citations. Query Q1, embracing advanced
computational techniques, initially leads to citation impact, highlighting the scholarly
emphasis on intricate methodologies for system stability and control. However, its influence
recedes over time, suggesting a possible saturation or shift in research focus.

In contrast, Query Q2, with its broader scope on computational techniques, including
machine learning, ascends to citation prominence in 2020, underscoring the escalating rele-
vance of data-centric algorithms in power systems research. This peak mirrors burgeoning
trends toward Artificial Intelligence and optimization within the sector.

Query Q7, tightly linked to power system stabilizers, maintains a consistent citation
presence, indicating sustained interest and ongoing discourse in optimizing system stability.
The congruence of citation trajectories in 2022 implies a harmonization of research interests,
reflecting a potential cross-pollination of ideas among the areas represented by the queries.

The bar graph in Figure 4 offers an insightful perspective on the normalized publica-
tion volume across three distinct queries within power system research. The visualization’s
texture-rich bars each represent a unique query.
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Figure 4. Normalized publication number by year for different queries.

In the initial year showcased, Q1 captures a leading position, which could reflect the
initial high interest or breakthroughs in advanced computational technologies applied to
power systems. Over the years, however, the publications linked to Q1 and Q2 display a
converging pattern, suggesting a possible cross-fertilization of ideas between computational
techniques and machine learning within power system applications.

The graph’s uniform endpoint in 2022, where all queries align in normalized publica-
tion numbers, is particularly noteworthy. This convergence may imply a stabilization in
research interest across the fields or a state of equilibrium achieved due to the saturation
of the topics. Alternatively, it could indicate a collective shift in research focus towards
emerging areas not captured by the existing queries.

Moreover, the steady performance of Q7 throughout the timeline signifies a consistent
academic output, indicative of ongoing incremental advancements or a continuous reliance
on established power system stabilizers and damping methods in the industry.

The scatter plot in Figure 5 eloquently illustrates the relationship between the year of
publication and the normalized citation count for two distinct research queries within the
power systems domain. An initial analysis reveals that publications from query Q7 garnered



Energies 2024, 17, 177 12 of 17

more citations in the earlier years, particularly in 2018 and 2019. This could indicate a
robust foundational interest or the culmination of impactful research that resonated with
contemporaneous academic efforts.
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Figure 5. Normalized number of citations by year of publication for queries Q2 and Q7.

In contrast, the upward citation trajectory for query Q2 beginning in 2020 suggests a
shift in academic focus or delayed recognition of the relevance of these publications. The
inflection point in 2020 may reflect emerging trends or technological advancements that
increased the applicability of research related to Q2. As the body of literature grew, the
intersection of computational techniques with power system stability and control began to
yield more citable results, hence the increased citations.

While the normalized citation numbers offer a lens to measure the impact and rele-
vance of research over time, they also hint at the evolving nature of scholarly priorities and
interests. Despite the fluctuations, the consistent presence of citations throughout the years
for both queries underscores the enduring significance of these topics in academic and
practical applications. The data suggest an ecosystem where past research foundations pave
the way for new explorations, with each query contributing to the progressive building of
knowledge in the field.

Analyzing digital methods in power system monitoring and support highlights the
field’s global research trends. This study’s geographical diversity, encompassing contri-
butions from regions including the Middle East, North America, Europe, and Asia, offers
a multifaceted view of technological advancements. This approach effectively addresses
potential regional biases by transcending mere publication counts to consider research
context and content. By integrating varied global perspectives and thematic analyses, this
study provides a nuanced understanding of the evolving trends in this domain, accurately
reflecting the current and future state of power system monitoring research.

5. Conclusions and Future Works

In conclusion, our analysis, underpinned by a meticulously structured methodology,
goes beyond the simple quantification of publication numbers in digital methods for power
system monitoring and support. Utilizing Boolean logic, our approach ensured a compre-
hensive and relevant collection of literature, capturing the intersection of critical areas in
computational techniques and power system stability. This systematic process was not
limited to counting publications but extended to a deeper evaluation of their relevance,
diversity, and citation impact. The mathematical marking framework employed in our
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study was instrumental in quantitatively assessing the articles, providing a robust foun-
dation for our analysis. This quantitative evaluation was complemented by a qualitative
assessment, examining the impact and contribution of the publications to the field. Such a
dual approach, blending quantitative retrieval with qualitative insights, forms the scientific
backbone of our research. It offers a nuanced understanding of the trends and shifts in
digital methods for power system monitoring and support, highlighting the popularity of
these methods and their evolving significance and application in the field. This compre-
hensive analysis underscores the dynamic nature of technological advancements and their
implications in power systems.

In power systems, integrating advanced computational techniques has marked a
significant evolution, offering enhanced accuracy, efficiency, and robustness in system
modeling and control. The exploration of various computational methods, from machine
learning algorithms to sophisticated control strategies, has demonstrated their pivotal
role in addressing the complexities of modern power networks. These methods have
proven particularly effective in managing renewable energy integration challenges, ensur-
ing system stability, and optimizing performance. The case studies reviewed underscore
the transformative impact of these computational approaches, showcasing their ability
to adapt to and efficiently manage the dynamic nature of power systems. This evolution
points towards a future where power systems are more stable and efficient, innovative, and
responsive to the changing energy landscape.

This comprehensive analysis of digital methods in power system monitoring and
support, drawing from a diverse array of high-quality, peer-reviewed journals indexed in
the SCOPUS database, significantly advances our understanding in this field. Prominent
publications from IEEE, Elsevier, MDPI, and Springer highlight the interdisciplinary nature
and evolving trends in power system stability and control. This research quantifies the
prevalence of various methodologies and assesses their impact, offering valuable insights
for future advancements in digital technologies for power systems.

The journey through the landscape of computational methods in power systems also
highlights the challenges accompanying these technological advancements. Issues such as
real-time processing, managing large volumes of data, and ensuring cybersecurity have
emerged as critical areas requiring further innovation and research. The case studies and
literature reviewed reveal that while computational methods have significantly advanced
power system operations, the path forward involves addressing these challenges to harness
their potential fully. The ongoing development of computational techniques, coupled with
a deeper understanding of their implications for system stability and control, is essential
for future power systems’ sustainable and efficient operation. This continuous evolution
underscores the importance of research and development in this field, paving the way for
more resilient and intelligent power networks.

The mathematical marking framework, applied to assess the effectiveness of each
query, underscores the critical role of relevance, diversity, and citation impact in scholarly
research. This quantitative approach reveals that while queries with a narrower focus, such
as Q3 and Q5, offer high specificity, they risk overlooking critical advancements in the field.
Conversely, broader queries, though capturing a wide range of studies, may dilute the
focus. This analysis emphasizes the need for a balanced query design, aligning research
scope with emerging trends and gaps in the field.

Analyzing citation trends and publication patterns within computational methods
in power systems, as visualized through various graphs, reveals insightful patterns. The
trend in normalized citations indicates a shifting academic focus, with particular research
queries gaining prominence over others in specific years. For instance, query Q7’s papers
were more cited in earlier years, while query Q2’s relevance surged later, highlighting
evolving research interests. Similarly, the scatter plot analysis underscores the correlation
between the year of publication and the number of citations, reflecting the dynamic nature
of research impact over time. The bar chart of the most cited papers further illuminates
the significant influence of specific topics, like Artificial Intelligence and Deep Learning,
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which dominate the top-cited research, indicating their pivotal role in shaping future
research directions.

The comprehensive examination of citation and publication trends in power systems
and computational methods offers an intriguing narrative of academic evolution. The
uniform citation distribution in 2022 across different queries, as shown in the bar graph,
suggests a convergence of research interest, possibly indicating a maturation of certain
research areas or the emergence of unifying themes. This aspect, coupled with the distinct
citation peaks for queries Q2 and Q7 in specific years, demonstrates the transient nature
of research trends. Additionally, the analysis of the highly cited papers emphasizes the
profound impact of innovative methodologies, particularly in Artificial Intelligence and
optimization techniques. These insights portray a diverse and dynamic field, with research
interests continually adapting to new challenges and technological advancements.

The analysis of queries for computational techniques in power system stability and
control shows that striking a balance between specificity and breadth is crucial. Query Q2,
which includes (‘Computational Techniques’ OR ‘Machine Learning’ OR ‘Optimization
Algorithms’) AND (‘Power System Stability’ OR ‘Power System Control’) is the most
effective methodology. It yielded 1097 papers and received the highest qualification score
of 5. This query is an excellent example of the importance of encompassing a wide range of
research areas while maintaining focus. It captures emerging trends in machine learning
and optimization algorithms, alongside traditional computational techniques, making it
an exemplary model for similar research endeavors. The success of Q2 in providing a
comprehensive yet focused collection of literature underscores its significant contribution
to the field. It positions it as a recommended approach for future studies seeking to explore
the intersection of advanced computational methods and power system control.
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