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Abstract: The aging trajectory prognosis is an effective tool to prolong the lifespan and lower the cost of proton exchange 

membrane fuel cell (PEMFC) systems. In this paper, Gaussian process regression modeling frameworks based on sparse 

pseudo-input Gaussian process (SPGP) and variational auto-encoded deep Gaussian process (VAE-DGP) are proposed to 

predict the degradation trend and cope with the model uncertainty for PEMFCs. The optimal hyper parameters and 

pseudo-input locations are obtained with conjugate gradient by maximizing the marginal likelihood. Besides, the variational 

parameters and closed-form variational lower bound are optimized through variable inference. Radial basis function (RBF) 

kernel is utilized to determine the priori distribution of Gaussian process. Then stack voltage and output power are extracted 

as health indicators (HIs). To fully demonstrate the prediction performance, long-term experimental validations with both 

static and dynamic aging testing profiles are performed, single-input and multi-input structures are respectively constructed 

in SPGP and VAE-DGP for comparison with existing models. The results show that the proposed methods outperform other 

data-driven methods, SPGP is more suitable for large data regime and VAE-DGP operates better with small data regime. 

Finally, the performance evolution is also presented with a 95% confidence interval to validate the mapping accuracy further. 

Keywords: Proton exchange membrane fuel cells (PEMFCs); Sparse pseudo-input Gaussian process (SPGP); Variational 

auto-encoded deep Gaussian process (VAE-DGP); Data-driven model; Degradation prognosis. 

1. Introduction 

Fuel cell technology has been considered as one of the most attractive power sources for chemical energy into electrical 

energy for the future, which is very environmentally friendly in power generation [1] [2]. Among all types of fuel cells, 

proton exchange membrane fuel cell (PEMFC), with the merits of high power density, rapid start up and low operating 

temperature, has great potential in portable devices, backup power and transportations [3]-[5] et al. However, the short 

lifespan and high cost of PEMFC are still critical barriers today for large scale application at a worldwide level [6]. In the 

practical engineering, the PEMFC is subjected to rough working conditions when it is integrated to the transportations, such 

as hybrid trams [5] and vehicles [7]. Its performance is strongly affected by the mechanical, thermal and electrochemical 
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degradations. The compression of gas diffusion layer (GDL), carbon corrosion, polymer membrane degradation due to 

drying, flooding and gas crossover, and platinum dissolution in catalyst layer are the major degradation factors, especially for 

the long-term operating mode and frequent load change [8]. Therefore, to prolong the limited lifetime of PEMFC and realize 

efficient control, future degradation behavior should be predicted with precisely forecasting methods [9] [10]. 

Recently, a growing number of methods on degradation prognosis have been developed, which can be generally divided 

into three categories: model-driven, data-driven and fusion approach [8]. The model-based methods predict the aging 

tendency by building a physical, empirical or semi-empirical degradation model from the physical or empirical point of view. 

In [1] [11] [12], extended Kalman filter (EKF) and unscented Kalman filter (UKF) were utilized to estimate the fuel cell state 

of health. A multi-physical degradation model with particle filter (PF) approach was presented in [10] to predict different 

degradation phenomena in the fuel cell. Ulteriorly, a global prediction framework composed of parameter extraction and 

joint PF structure was applied to achieve the power behavior forecasting, less data were used while good prognostics result 

was offered as well [13]. A reconstructed empirical fuel cell model based on the output voltage was proposed to observe the 

voltage degradation, the physical parameters corresponding to the voltage drop were estimated to represent the fade tendency 

during the aging process [14]. In addition, an improved prediction method based on the error correction gray model (GM) 

was introduced in [15], achieving at least 11.7% accuracy improvement against the traditional model. Although the 

model-based prediction approaches can get rid of large amount of experimental data, the fully understanding of the 

degradation mechanisms is impossible. Thus, it is difficult to establish a complete and accurate mathematical model in 

multi-time scale, multi-space scale and multiple physical domains. 

With the development of artificial intelligence (AI) technology, the data-based approaches gain popularity to implement 

the degradation prediction and RUL estimation for PEMFCs [16]-[28]. The advantages of simplicity and no need to 

thoroughly study the aging mechanisms help them to ignore the physical or empirical models, only the historical monitoring 

data is utilized to make prediction. According to [16], a self-adaptive relevance vector machine (RVM) method with a 

modified design matrix was developed to obtain an accurate prediction of the aging mechanisms for PEMFCs. Afterwards, 

the modified RVM in [17] was further used to enhance the accuracy and robustness of the presented model. The on-line 

model-free method based on the summation wavelet-extreme learning machine (SW-ELM) algorithm was developed in [18], 

ensemble and incremental learning were used in the aging model. Based on the deep learning, the deep belief network (DBN) 

and ELM were integrated to deal with the highly nonlinear statistical voltage data for PEMFC [19].  The adaptive 

neuro-fuzzy inference system with fuzzy-c-means (ANFIS-FCM) demonstrated in [7] showed satisfied short-term 

prognostics performance. In recent years, the long short-term memory (LSTM) recurrent neutral network (RNN) is often 
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applied in PEMFC aging prediction [20]-[23]. Thereinto, the improved grid LSTM architecture [21], stacked LSTM model 

[22], and bi-directional LSTM with attention mechanism (BILSTM-AT) structure [23] were suitable for the time series 

forecasting, which outperformed the traditional LSTM. As a new paradigm, the echo state network (ESN) was first 

implemented by Morando et.al in [24] to estimate the RUL of PEMFC. Later, the authors optimized the ESN structure with 

Hurst coefficient and wavelet filter in [25]. Furthermore, the multi-reservoir ESN (MR-ESN) [26], ensemble ESN [3], 

multiple inputs and multiple outputs ESN (MIMO-ESN) [27] were also implemented to enhance the prediction accuracy for 

PEMFC stack. Moreover, some other discrete wavelet transforms (DWTs) were utilized to deal with the nonstationary 

signals, and prognostics was made on a regression model [28]. However, most of the data-based methods cited above choose 

the stack voltage as the HI, in fact the power signal also includes the degradation process, and it is rarely considered in the 

literatures. Moreover, the recovery phenomena contained in the HIs exhibit high nonlinear and nonstationary characteristics, 

these features are difficult to be fully extracted. Furthermore, most of prognostic methods using different kinds of filters to 

pre-process the experimental data that contains fluctuation and noise, directly using the data including spikes is infrequent. 

Last but not least, deterministic estimations of stack voltage are achieved in those literatures, confidence level of the 

prediction of HIs is less considered as well. 

Regarding fusion approaches, a novel data fusion approach based on moving window technique was illustrated to capture 

the long-range fade trend and short-term nonlinear characteristics [29]. Later, a hybrid prediction approach based on 

empirical model and physical aging model (PAM) was further given in [30], and the time delay neural network (TDNN) was 

used to obtain the final prediction result. The evolutionary algorithm and ANFIS were combined in [31] and auto-regressive 

integrated moving average (ARIMA) was cooperated with LSTM architecture in [32], where both were used to achieve the 

same purpose. The fusion models still relay on the accurate practical models of PEMFC, and the complex structures of 

multiple models and training data lead to heavy computing burden. 

Considering the shortcomings above, this paper presents novel data-based methodologies for PEMFC prognostic. Due to 

the advantages of highly flexible to capture the features of the original data and intrinsical uncertainty prediction for HIs, the 

Gaussian process (GP) for regression provides strong nonlinear mapping ability in nonlinear time series prediction problem 

[33] [34]. In this paper, we propose VAE-DGP and SPGP modeling frameworks to handle the limitations. At present, the use 

of VAE-DGP and SPGP for PEMFC degradation trajectories prognosis is original explored in this study. The inherent 

property of providing quantified uncertainty makes them very suitable for using them in safety-critical health diagnostic. By 

means of a recognition model, the VAE-DGP can avoid the challenges of variational parameter initialization and simplify the 

inference. The optimal model hyper parameters and pseudo-input locations are obtained using conjugate gradient by 



 

maximizing the marginal likelihood, moreover, the variational parameters and closed-form variational lower bound of 

VAE-DGP are optimized by assuming a variational posterior distribution for latent variables. Due to inversion of a kernel 

function RBF, the training complexity of each layer in DGP leads to large computational scale of VAE-DGP. Hence, as a 

sparse regression method, SPGP with a particular parameterized nonstationary covariance function can reduce the training 

and prediction cost in each test case. In order to verify the effectiveness of the two methods, comparisons with the existing 

prognostics are performed by using the experimental data obtained from a 1kW PEMFC platform. And the novelty and 

contributions are shown as follows: 

(1) Different from many prognostic approaches, the proposed VAE-DGP and SPGP modeling frameworks deal with the 

experimental data without removing the spikes or fluctuations. Thus, the nonlinear and nonstationary features in the recovery 

phenomena of HIs are reserved. 

(2) The integrated HIs, including stack voltage and output power are defined as the indicators of PEMFC in this study. In 

addition, the future aging trend and the uncertainty of HIs can be simultaneously predicted and quantified based on the 

presented GP based models, the generalization performance and disturbance sensitivity are improved. 

(3) The SPGP shows superiority in large data regime, as for VAE-DGP only small quantity of data is sufficient for 

performing accurate prediction. Meanwhile, the confidence interval of stack voltage is narrower using VAE-DGP, in terms 

of the output power prognostic, the predicted confidence interval gotten from SPGP is much more reliable than that of 

VAE-DGP. 

The paper is arranged as follows: Section 2 introduces mathematical principles of standard GPR and the VAE-DGP and 

SPGP modeling frameworks for aging trend prediction. In Section 3, the experimental PEMFC stacks are illustrated and the 

implementations of VAE-DGP and SPGP are described. Comparative experimental results are given in Section 4. Finally, 

conclusions are made in Section 5. 

2. Gaussian process regression based modeling 

The GP is a new kind of machine learning on the basis of Bayesian theory and statistical learning theory. In this section, 

the necessary background on GP and GP-based modeling is illustrated. 

2.1. Standard GP modeling 

The standard GP is a non-parametric model for function estimation. In the probabilistic reasoning framework, a set of 

experimental training input-output pairs are obtained from particular PEMFCs and stored in N Q×∈ℜX and N D×∈ℜY

respectively. That means the N input vectors { } 1
= N

n n
x

=
X and output vectors { } 1

= N
n n

y
=

Y are of dimension Q and D . Then 



 

the unobserved latent function ( )f f= X responsible for generatingY when giving X . In this setting, we place a zero mean 

and a covariance (or kernel) function k Gaussian process nonparametric prior distribution ( ) ( , ( , ))f k0

'X X X on 

latent function f . More formally, each output ny is influenced by noise, then ny is produced by the corresponding ( )nf x

with independent Gaussian noise [35], i.e.: 

2( ) , (0, )n n n ny f x εε ε σ= +  I                                                          (1) 

where I is the n n× identify matrix. 

Denote the latent functions instantiations by { }N
n nfF = , which is normally distributed. Then the conditional distribution 

of training outputsY with respect to the training inputs X takes the form: 

2( | ) ( | ) ( | ) ( | , )NNp p p d εσ= = +∫ 0 KY X Y F F X F Y I                               (2) 

where ( | ) ( | )p p d∫ Y F F X F  can also be detailed with the form
1

( | ) ( | )
N

n n n n
n

p y f p f x d
=
∏∫ F , and NN =K ( , )k X X . 

Considering a set of newly acquired sample * M Q×∈ℜX and future data point * M D×∈ℜY , the relationship between the 

set of noiseless disturbance prediction output *( )f X and the corresponding input vectors can be shown by a testing set 

* * *( , ( ))f= X X , where *( )f X is unknown. The joint distribution of *( )f X andY can be written as: 

2 *

* * * *

( , ) ( , )
,

( ) ( , ) ( , )
k k

f k k
εσ    + 

     
      

0
0



Y X X I X X
X X X X X

                                         (3) 

then the conditional distribution of prediction output *Y given *X , X andY is obtained as Gaussian with the predictive 

mean and variance, which are shown as follows: 

* * * *( | , , ) ( , )Y Y X X  µ Σ                                                         (4) 

with 

* * 2 1( , )( ( , ) )k k εσ
−= +X X X X I Yµ                                                  (5) 

* * * * 2 1 * 2( , ) ( , )( ( , ) ) ( , )k k k kε εσ σ−= − + +X X X X X X I X X IΣ                             (6) 

where the hyper parameters in k and 2
εσ can be obtained by maximizing the log-likelihood function, moreover, the PEMFC 

aging can be predicted when the kernel function ( , )k 'X X , prediction input *X , training pairs X , Y and noise 



 

perturbation εσ are known. 

However, the assumption on joint normal distribution of the latent functions may limit the model applicability. To address 

the limitation, deep Gaussian process (DGP) employed process composition has come into being [36]. 

2.2. VAE-DGP mathematical implementation 

The DGP architecture consists of multiple layers and a recognition model, the mapping beween the consecutive layers is 

governed by Gaussian process. Observed outputs (Leaves) are the measured signals, which are placed in the bottom layer, 

and the observed inputs zN Q
H= ×∈ℜZ X are placed on the top level. Latent nodes lN Q

l
×∈ℜX , where 1, 2, , 1l H= − , 

H is the number of layers. Then the constructed DGP model is shown as: 

2
1 1 1 1( ) + ( , )= f ε ε σ0

YY X I                                                       (7) 

( )2

+1( ) + ( , )l l l l
l l l l l= f X ε ε σ0

X X X XX I                                                (8) 

where the functions f Y , lf X are obtained from the GP with kernal functions Yk , lk . The intermediate nodes invoving in two 

GPs searve as an input and output respectively, then node 1X  takes part in the GPs of input 1f 

X
1 1 1( , ( , ))k0 'X X and 

output ( , ( , ))Yf k0

Y 'X X . 

In the supervised learning scenario, the inputs of top layer Z can be observed with traing data X and testing data *X . The 

bottom layer Y outputs the training set Y  and prediction *Y . However, the latent variables lX  in DGP have to be 

integrated out to establish the Gaussian process. Therefore, the variational distributions 1( )q X , 2( )q X ,…, 1( )Hq −X are 

adopted to approximate fit posterior distributions 1( | )p X Y , 2 1( | )p X X ,…, 1 2( | )H Hp − −X X .The viariational inference 

can realize the integration of lX  by maximize the lower bound of variation. The marginal likelihood over the measurable 

data is given as: 

1 1 1
2

( ) ( ) ( | ) ( )
H

l l H H
l

p p p p d d−
=

= ∏∫ Y Y | X X X X X X .                                   (9) 

Define 1 2 1 1 2 1( ( ) ( ) ( ) ( | ) ( | )HKL q q q p p−  X X X X Y X X 1 2( | ))H Hp − −X X the Kullback-Leibler divergence. To 

reduce the differene between the distributions, target function
1

1
ˆ arg min ( ( )

H

l
lq

q = KL q
−

=
∏ X

1

1 1
1

( | ) ( | ))
H

l l
l

p p
−

−
=
∏X Y X X

should be obtained, futher ( ) ( )KL p⋅ = −Y  ,  is the lower bound of log marginal distribution, which is derived as: 



 

1 2

1 1
1 1

( ( )) ( ( ) ( ))
H H

l l H H
l l

H q KL q p
− −

− −
= =

= + −∑ ∑ X X X                                   (10) 

where 1 and l are free energy of indicicual layers with 2, , 1l H= − , ( ( ))lH q X is the entropy of ( )lq X . The 

expressions are shown as follows: 

1

1

1 1 ( )

1 ( ) ( )

log ( | )

log ( | )
l l

q

l l l q q

p

p
−

−

 =


=

X

X X

Y X

X X




                                                (11) 

1 1 1 1( ( )) ( ) log ( )l l l lH q q q d− − − −= −∫X X X X                                            (12) 

1
1 1 1 1

1

( )( ( ) ( )) ( ) log
( )

H
H H H H

H

qKL q p q d
p

−
− − − −

−

= ∫

XX X X X
X

                               (13) 

the traget function can be transformed as: 

ˆ arg min ( ) arg max
q q

q = KL ⋅ =  .                                                    (14) 

The lX can be parameterized by Gaussian distribution ( ) ( ) ( )
1

( ) ( | , )N n n n
l l l ln

q x
=

=∏X  µ Σ , 1, 2, , 1l H= − . The 

gradients of ( )lq X  are back-propagated through the model. Supposing the prior distribution as 1( ) ( , )Hp − = 0X I , 

then the Eq.(10) is analytic. The variational parameters are { } { }{ } 1
( ) ( )

1 1 1
,

HN Nn n
l ln n l

−

= = =
Σθ = µ , specifially, ( )

1 1( )n ng y=µ  and 

( )
1( ( ))n n

l lg g y= µ . The transformation functions 1g and lg are parameterized by multi-layer perceptrons (MLPs), and 

( )n
lΣ are supposed to be diagonal with the same datapoint. 

As for the vatiational lower bound in Eq.(10), the free energy terms are obtained by a variational approximation technique, 

denoting the noise-free observations of the observed layer as 1
N D×∈ℜF , inducing inputs as 1

M D×∈ℜU and 1
M D×∈ℜZ . 

The free energy of layer Y and hidden layers lX can be lower bounded sepearately by 1 ≥

1
1 1 1 ( )

log ( | ) ( ( ) ( ))
p

p KL q p
⋅

− Y F U U and l ≥ 1 1 ( )
log ( | ) ( ( | ) ( ))

l
l l l l l p

p KL q p− − ⋅
− X F U X U  with

1 1 1 1 1 1( ) ( | ) ( ) ( )p p , q q⋅ = F U X U X , ( ) ( | )l l l lp p ,⋅ = F U X -1 1( | ) ( ) ( )l l l lq q q−U X X X , 2, , 1l H= − . Combing with 

Eq.(10), a closed form variational lower bound can be obtained. The conjugate gradient based method is utilized to optimize 

the variational variables and model hyper parameters. However, due to the high traning complexity of VAE-DGP in each 

layer, the sparse Gaussian process using pseudo-inputs is introduced to reduce the computation complexity. 



 

2.3. SPGP modeling approach 

The sparse Gaussian process is regarded as a Bayesian regression model, the covariance function is parameterized by the 

locations of M  pseudo-inputs with M N . An active set found through a continuous optimization is not constrained in a 

subset of data, on the basis of the advantage, the precise locations of SPGP can be fine-tuned to improve the fit quality. It can 

be considered as the standard GP with a specific non-stationary covariance function parameterized by pseudo-input [37]. 

Denote the pseudo data set of size M , pseudo-inputs { } 1

M
m m=

X = x and pseudo targets { }
1

M

m m
f

=
f = . The pseudo 

targets f  are not real observations, different from the actual observed values that should be assumed noisy, it is trivial to 

include noise variances for the targets f . Therefore, the single data point likelihood takes the form: 

1 1 2( | , , ) ( | , )T T
M Mp y y K εσ
− −= − +x xx x xx X f k K f k K k                                  (15) 

where [ ] ' '( , )M mmm m
K=K x x , [ ] ( , )mm

K=xk x x  for m = 1, 2 , M  with new input data x . 

With parameterized mean function and input dependent noise model in Eq. (15), the data likelihood can be given as: 

1 2
1

( | , , ) ( | , , ) ( | , )N
n n NM Mn

p p y x εσ
−

=
= = +∏ K KY X X f X f Y f I Λ                  (16) 

where diag( )λΛ = , 1T
n nn n M nKλ −= − k K k , and [ ] ( , )NM n mnm

K=K x x . 

Learning in the model includes finding an appropriate set of pseudo data to well describe the real data. Rather than 

maximize the likelihood in Eq. (16), the pseudo targets f  can be integrated out with a Gaussian prior, which can be given as: 

( , ) ( | , )Mp = 0f X f K .                                                        (17) 

It is reasonable for the pseudo data to be distributed in the same way with the real data, but placing a prior on the 

pseudo-inputs X  is difficult. So maximum likelihood is applied to handle this. Based on Eq. (16) and (17), the posterior 

distribution over f  is described as follows: 

1 2 1( , ) ( | ( ) , )M M MN M M Mp εσ
− −= +f | X f K Q K I y K Q K  Λ                      (18) 

where 2 1( )M M MN NMεσ
−= + +Q K K I KΛ . Then with the new input *X  and combing the likelihood and posterior in Eq. 

(15) and (18), the predictive distribution is obtained by: 

* 2
* * * * * *( | , , ) ( | , , ) ( | , )= ( | , )p y d p y p y= ∫X X f x X f f X   µ σ            (19) 

with 



 

1 2
* * ( )T

M MN εσ
−= +k Q K I yµ Λ                                                     (20) 

2 1 1 2
* ** * *( )T

M MK εσ
− −= − − +K Qk kσ .                                              (21) 

The computational cost is determined by (MN +K Λ 2 ) NMεσ I K during the calculation of MQ , then the sparse regression 

method has = ( )M for the mean and 2= ( )M  for the variance during the prediction per test case. 

As for the pseudo-input locations X and hyper parametersΘ , they can be obtained with the marginal likelihood from Eq. 

(16) and (17), which is shown as follows: 

1 2( | , , ) ( | , , ) ( | ) ( | , )NM M MNp d p p εσ
−= = + +∫ 0 K K KY X X f Y X X f f X Y IΘ Λ .    (22) 

Then the marginal likelihood can be maximized in terms of all the parameters{ , }X Θ by gradient ascent. 

3. The long term prognostics for PEMFCs 

In this section, the experimental data and the proposed aging performance prediction methods are introduced. 

3.1. Experiment Settings 

The experiments for PEMFC considered in this paper is obtained from FCLAB Research Federation [38]. A 1kW PEMFC 

platform was built for the degradation experiments. The stack has 5 cells with active area of 100 cm2 in each cell. During the 

experiments, the operating temperature of the stack is controlled about 55℃, the gas pressure is around 1.3 bar, the relative 

humidity maintains at 52%, and the stoichiometry ratios at anode and cathode are within 1.5-2. Two tests are conducted to 

obtain the degradation data, the first test in the stationary regime is realized on FC1, the load current was set as 70 A, and the 

second test operated on FC2 is under dynamic condition with a high frequency triangular ripples in the constant current 

(70A), the ripples have 14A peak-to-peak value at the frequency of 5 kHz. And the accelerated aging test is used to emulate 

the effect of power converters on the output of stack, more experimental configuration can be found in [7] [19] [34]. 

Moreover, the stack voltage and output power are utilized for prognostics in this paper, where the stack voltage is an 

admitted HI for PEMFC in many studies [7] [21]-[23] [27], but the stack current always treated as the scheduling variable 

also contains degradation information, prediction of output power can ensure sufficient power supply anytime. Furthermore, 

the raw experimental data including 143862 data sets for FC1 and 127370 data sets for FC2 are obtained, before conducting 

the prediction tests with this data, the noise is removed, spikes and nonlinearity are reserved in HIs, in addition, the HIs are 

resampled every half an hour, which are shown in Fig. 1. 



 

 
(a)                                                                                                        (b) 

Fig. 1. Degradation trend of health indicators. (a) In stationary regime. (b) Under dynamic situation. 

As we can see, the aging trend of HIs under dynamic current (FC2) in Fig.1 (b) are much more serious than that of FC1 in 

Fig.1 (a). Moreover, the nonlinearity and periodicity are reserved due to the degradation recovery phenomenon in HIs to 

further demonstrate the effectiveness of presented methods. 

3.2. Prognostic Implementation 

Based on the PEMFC experimental test bench, the prediction data of HIs can be obtained by the proposed models 

shown in Fig. 2 (a). As we know, the deeper structures can improve the training accuracy to some extent. Unfortunately for 

the VAE-DGP when the hidden layers are greater than two, the accuracy improvement is not significant [39]. Meanwhile, the 

increase of number of hidden layers can increase the complexity of model parameters and the computational burden linearly. 

Therefore, in this paper a two-level structure with one hidden layer is adopted in VAE-DGP model. According to Section 2, 

although the prior of VAE-DGP cannot be simply interpreted as a GP, the input 1 2{ , , , }nx x x  and output pairs 

1 2{ , , , }ny y y  are mapped by the relationship between the layers, as the layers are connected by the GP models 1 ( )f ⋅X  

and ( )f ⋅Y , the 1 2
1 1 1{ , , }nX X X  is the output of the upper GP model (also the input of the next GP model), the variable 

parameter 1Z  and the inducing variable 1U  are treated as the inducing inputs in each layer to extend the probability space of 

each model. As for the SPGP model, a set of latent variables { }1 2, , , mx x x  is referred as the pseudo inputs to find the 

sparse approximation of original covariance matrix, the latent variables are obtained from the input locations, so

{ }1 2, , , mx x x  also follows the joint Gaussian distribution. By using Bayes rule, the posterior distribution over pseudo 

outputs { }1 2, , , mf f f  can be obtained, then the predictive distribution is obtained by integrating the posterior in Eq. (18) 

with the likelihood in Eq. (15). 
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Fig. 2. (a) Implementation architecture of DP-based methods. (b) Operating parameters for PEMFC prediction. (c) Prediction flow chart of 

PEMFC aging tendency based on VAE-DGP and SPGP. 

What is more important is that the kernel function design may affect the performance of the DP-based models. Denote the 

covariance function in the hidden layers of VAE-DGP and SPGP as RBF kernel, which can be described by: 

( ) ( )' 2 ' 1 '1( , ) exp
2

T

fk Mσ − = − − − 
 

x x x x x x                                         (23) 



 

where 2
fσ  is the signal variance, 2=diag( )fM l , fl is the scale of variance. The hyper parameter vectors 

{ }{ { } { }}1 1

1 1 1, , , , ,VAE DGP f f M Mσ σ σ σ−
X XY

X YΘ = and { }, ,SPGP f M εσ σΘ =  that can affect the ability of data 

expressing of kernel functions are optimized by the marginal likelihood method respectively. Based on conjugat egradient, 

taking partial derivation of the negative log likelihood functions with respect to VAE DGP−Θ  and SPGPΘ , the optimization of 

hyper parameters can be acquired by minimizing the partial derivatives. Meanwhile, the predicted mean value (point 

estimation) of HIs and covariance (measure of uncertainty) of the test dataset can be further obtained. 

Considering enormous raw data obtained from the monitoring system in this study, but not every operating parameter can 

affect the degradation performance of PEMFC [36]. Therefore, the forecasting of HIs using VAE-DGP and SPGP methods 

are conducted with single input and multiple inputs operating parameters. Naturally, the stack voltage is regarded as the 

single input variable both in FC1 and FC2. With regard to the selection of multiple input parameters, on the basis of the 

conclusions in [27], the single stack voltage outU , the stack current outI , the inlet temperature of water inwatT  and the outlet 

temperature of air outairT  shown in Fig. 2 (b) are included. 

Specifically, the flow chart for PEMFC aging tendency prediction based on the proposed VAE-DGP and SPGP is shown 

in Fig.2 (c), the entire calculation process of VAE-DGP is described as follows: 

Step I: Collect and normalize the training data { } 1

N
n n

u
=

, { }, 1

N
out n n

I
=

, { }, 1

N
inwat n n

T
=

and { }, 1

N
outair n n

T
=

 in terms of the 

sampling time { } 1

N
n n

t
=

. The training inputs are divided into three groups, namely the single outU ; the outU , inwatT  and 

outairT ; and the outU , outI , inwatT  and outairT . 

Step II: Set the kernel functions of VAE-DGP in Eq. (23), and initialize the hyper parameters and noise perturbation in

VAE DGP−Θ . Then define the marginal likelihood ( )p Y  in Eq. (9). 

Step III: Set the free energy for every individual layers in Eq. (11), the variational inference is used to obtain vatiational 

lower bound   in Eq.(10). 

Step IV: The conjugate gradient based method is utilized to optimize the variational variables and hyper parameters,i.e.

{ } { }{ }( ) ( )
1 1 11 1

, ,
N Nn n

n n= =
θ = µ Σ Z  and VAE DGP−Θ . 

Step V: Send the test data into the optimized VAE-DGP model, where the three groups of testing inputs are normalized. 

Step VI: With the input test dataset and operating parameters, the aging tendency of HIs in the form of mean and 
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covariance based on VAE-DGP model can be obtained by the iterative prediction structure. 

With respect to the SPGP model, the calculation process of Step I, Step V and Step VI are almost the same with 

VAE-DGP, therefore, the detailed description is omitted, and the rest of the steps for SPGP modeling and training are given 

as: 

Step II: Design the kernel function in Eq. (23) and initialize the hyper parameters SPGPΘ  of SPGP. Then select a set of 

pseudo data  to reduce the sample size of training sets. 

Step III: Define the complete data likelihood in Eq. (16) and posterior distribution over the pseudo targets f in Eq. (18). 

Step IV: Maximize the marginal likelihood in terms of parameters{ , }SPGPX Θ by gradient ascent. 

Moreover, in Fig. 2 (c) the iterative prediction is utilized, forcing the predicted value as the new input value. Taking the 

stack voltage for example, the sampling data 1, , Nu u  is trained to predict 1ˆNu + , then 2 1ˆ, , Nu u +  is used to obtain 2ˆNu + , 

after two time point values prediction, the input voltage values including the prediction values are replaced by the real values 

to predict 3ˆNu + ,and the sequence is the same for 4ˆNu + , 5ˆNu + …etc., this action is repeated for 1N̂P + , 2N̂P + , 3N̂P + … etc. in 

the case of single input until the prediction horizon is reached. As for multiple inputs, the operating parameters are also 

utilized to infer the future evolution of HIs. 

4. Experimental results 

The prognostic performance of the proposed models is conducted in this section, where the stack voltage and output power 

are considered as degradation indicator to reflect the aging status of PEMFC. Moreover, the degradation estimation of BPNN, 

LSTM, Stacked LSTM algorithms are also applied to verify the superiority of DP-based models. 

4.1. Parameter configuration and criteria definition 

In the experiments of FC1 and FC2, before the training process, the initial parameter configuration is firstly introduced. 

The inputs and outputs of the models are normalized within [0, 1]. For FC1, the number of hidden layer for VAE-DGP is 1, 

the number of latent dimension is 20, inducing point number is chosen as 30, the mean value of latent input is initialized 

randomly based on the standard nominal distribution, the deviation of latent function is set as 0.01, the inducing output is 

initialized randomly with a deviation of 0.01 according to the nominal distribution, and the maximum iterations are 800 and 

1500 for VAE-DGP. Besides, the inducing point number is chosen as 30 for SPGP, the maximum iteration are selected as 15 

and 5 in the model. For FC2, the latent dimension number for VAE-DGP is changed to 35, the inducing point number is 70. 

As for SPGP, inducing point number is 60, and maximum iteration are 150 and 50. Moreover, all the kernel variance and 



 

length scale are set as 2. Then the parameters are optimized during the training process. 

In the testing process, the commonly used evaluation criteria of forecasting accuracy, i.e. room mean square error (RMSE), 

mean absolute percentage error (MAPE) and mean absolute error (MAE), are adopted to study the prediction performance, 

the calculation formulas are shown as follows: 
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where M is the prediction horizon, ˆ ( )iy n  is the forecasted value and ( )iy n  is the original signal.  

In order to further demonstrate the effectiveness of the proposed models, three metrics of performance improvement ratio 

are described as follows: 

100other proposed
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−

= ×                                              (27) 
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other
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= × .                                               (29) 

The subscript “other” represent the index of compared models, while subscript “proposed” stands for the index of 

proposed models in this paper. In the quantitative metrics, RMSE can make more intuitive evaluation on the order of 

magnitude; MAPE considers the ratio between the predicted value error and the real data; MAE is able to well reflect the 

predicted value error in actual situation; PRMSE, PMAPE and PMAE are used to reflect the percentage improvement in the model 

accuracy between the proposed models and the other models.  

4.2. Prognostic under static operation mode 

In static current mode, the total operation time is 1050h, two cases are performed under the training phase (TP) of 400 

hours and 800 hours, Case 1 is the single input situation and Case 2 is the multiple-input situation. In the meanwhile, the 

degradation indexes are predicted separately. The aging prediction of stack voltage and output power for FC1 are presented 



 

in Fig. 3, and the accuracy of the model is compared in Table 1 and 2. As we can see from Fig. 3 (a) and (b), the first 400h 

among the 1150h data are applied to train the model, and the rest 750h are used for demonstrating the predictive performance, 

as for Fig. 3 (c) and (d), the testing duration is 350h. It is obvious that in Fig. 3 (a) and (c), the performance of VAE-DGP is 

better than Stacked LSTM, LSTM, SPGP and BPNN with single input. Under multiple-input situation, the Fig. 3 (b) shows 

that the VAE-DGP still performs the best in stack voltage degradation forecasting. However, when the training data 

(including the length of TP and the input parameter number) increases in Fig.3 (d), the SPGP outperforms the other four 

methods, the value of RMSE, MAPE and MAE are obtained as 0.30956, 0.00061 and 0.14026 accordingly, and the 

VAE-DGP results in poor performance, which is even worse than that of Stacked LSTM and LSTM. 
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      (f) 

Fig. 3. (a) Stack voltage degradation prediction of FC1 when TP=400h with single input. (b) Stack voltage degradation prediction of FC1 when 

TP=400h with multiple-input. (c) Output power degradation prediction of FC1 when TP= 800h with single input. (d) Output power degradation 

prediction of FC1 when TP= 800h with multiple-input. (e) Absolute error comparison of (a). (f) Absolute error comparison of (d). 

Moreover, Fig. 3 (e) and (f) depict the prediction absolute error curves based on the five methods in Fig.3 (a) and (d), it 

should be noted that the absolute error of stack voltage prediction with VAE-DGP is minimum in Fig.3 (e). However, in 

Fig.3 (f) the absolute errors of output power with Staked LSTM and SPGP are smaller, even though during 998h-1001h the 

absolute error of SPGP method is slightly higher than that of Staked LSTM method, it is still the smallest during the whole 

forecasting process. 

Table 1 The comparative prediction results of FC1 under two cases when HI is stack voltage. 

Methods 

Case 1: Single input Uout Case 2: Multiple inputs Uout, Tinwat, Toutair 

Training phase (400h) Training phase (800h) Training phase (400h) Training phase (800h) 

RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE 

BPNN 0.02334 0.00536 0.01731 0.00868 0.00205 0.00663 0.01349 0.00361 0.01173 0.00960 0.00235 0.00759 
LSTM 0.00683 0.00168 0.00543 0.00497 0.00078 0.00253 0.00696 0.00173 0.00561 0.00554 0.00081 0.00261 
Stacked LSTM 0.00574 0.00134 0.00436 0.00493 0.00073 0.00235 0.00598 0.00142 0.00460 0.00522 0.00072 0.00233 
SPGP 0.01007 0.00239 0.00774 0.00528 0.00093 0.00312 0.00753 0.00182 0.00591 0.00484 0.00070 0.00229 
VAE-DGP 0.00408 0.00072 0.00222 0.00469 0.00061 0.00198 0.00552 0.00105 0.00342 0.00587 0.00111 0.00358 

 

Table 2 The comparative prediction results of FC1 under two cases when HI is output power. 

Methods 

Case 1: Single input Uout Case 2: Multiple inputs Uout, Iout, Tinwat, Toutair 

Training phase (400h) Training phase (800h) Training phase (400h) Training phase (800h) 

RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE 

BPNN 1.41032 0.00440 0.99953 0.73471 0.00241 0.54669 0.91247 0.02964 0.67516 0.78968 0.00270 0.61324 
LSTM 0.47443 0.00162 0.36852 0.36666 0.00075 0.17032 0.52188 0.00152 0.34571 0.46067 0.00108 0.23986 
Stacked 
LSTM 0.44626 0.00149 0.33892 0.36611 0.00065 0.14779 0.49903 0.00144 0.32802 0.45116 0.00104 0.23577 

SPGP 0.63475 0.00192 0.43798 0.62080 0.00172 0.39038 0.39760 0.00118 0.26875 0.30956 0.00061 0.14026 
VAE-DGP 0.30084 0.00067 0.15248 0.35240 0.00063 0.14574 0.52877 0.00155 0.35342 0.53973 0.00160 0.36336 

According to Table 1 and 2, the VAE-DGP shows a good prediction accuracy in Case 1, the RMSE, MAPE and MAE are 

0.00408, 0.00072, 0.00222 for stack voltage prediction when TP is 400h, and 0.35240, 0.00063, 0.14574 for output power 

prediction when TP is 800h. In Case 2, the SPGP can realize the lowest value in terms of the criteria except when the training 



 

phase is 400h for stack voltage prediction. Under the static operation situation, the VAE-DGP shows superiority in stack 

voltage prediction, the estimation of output power gets worse when the training data increases. Moreover, in order to further 

investigate the performance of the DP-based models, the improved percentages of BPNN, Stacked LSTM, LSTM and 

VAE-DGP (or SPGP) compared with SPGP (or VAE-DGP) in FC1 are shown in Fig. 4, it is clear that the VAE-DGP obtains 

significantly higher accuracy than BPNN, Stacked LSTM, LSTM and SPGP in Case 1 when TP is 800h and 400h 

respectively. In Case 2, when the TP is changed to 800h for stack voltage forecasting and 400h for output power forecasting, 

the SPGP improves the PRMSE, PMAPE and PMAE compared to other models. 

                
    (a)                                                                                      (b) 

           
  (c)                                                                                    (d) 

Fig. 4. Accuracy improvement of DP-based models in FC1. (a) TP=800h in Case 1 for stack voltage prediction. (b) TP=800h in Case 2 for stack 

voltage prediction. (c) TP=400h in Case 1 for output power prediction. (d) TP=400h in Case 2 for output power prediction. 

Table 3 The improved percentage of FC1 under two cases when HI is stack voltage. 

Comparison models 

Case 1: Single input Uout Case 2: Multiple inputs Uout, Tinwat, Toutair 

Training phase (400h) Training phase (800h) Training phase (400h) Training phase (800h) 

PRMSE PMAPE PMAE PRMSE PMAPE PMAE PRMSE PMAPE PMAE PRMSE PMAPE PMAE 

BPNN→SPGP 56.85 55.41 55.28 39.17 54.63 52.94 44.18 49.58 49.61 49.58 70.21 69.82 
LSTM→SPGP -47.43 -42.26 -42.54 -6.23 -19.23 -23.32 -8.18 -5.20 -5.34 12.63 13.58 12.26 
Stacked LSTM 
→SPGP -75.43 -78.35 -77.52 -7.09 -27.39 -32.76 -25.91 -28.16 -28.47 7.27 2.78 1.72 

VAE-DGP→SPGP -146.81 -231.94 -248.64 -12.57 -52.45 -57.57 -36.41 -73.33 -72.80 17.54 36.93 36.03 
BPNN→VAE-DGP 82.51 86.56 87.17 45.96 70.24 70.13 59.08 70.91 70.84 38.85 52.76 52.83 
LSTM→VAE-DGP 40.26 57.14 59.11 5.63 21.79 21.73 20.68 39.30 39.03 -5.96 -37.04 -37.16 
Stacked LSTM 
→VAE-DGP 28.91 46.26 49.08 4.86 16.43 15.74 7.69 26.05 25.65 -12.45 -54.16 -53.64 

SPGP→VAE-DGP 59.48 69.87 71.31 11.17 34.40 36.53 26.69 42.30 42.13 -21.28 -58.57 -56.33 

 
 
 
 
 
 
 
 



 

Table 4 The improved percentage of FC1 under two cases when HI is output power. 

Comparison models 

Case 1: Single input Uout Case 2: Multiple inputs Uout, Iout, Tinwat, Toutair 

Training phase (400h) Training phase (800h) Training phase (400h) Training phase (800h) 

PRMSE PMAPE PMAE PRMSE PMAPE PMAE PRMSE PMAPE PMAE PRMSE PMAPE PMAE 

BPNN→SPGP 54.99 56.36 56.18 15.50 28.63 28.59 56.42 96.01 60.19 60.79 77.40 77.12 
LSTM→SPGP -33.79 -18.51 -18.84 -69.31 -129.33 -129.20 23.81 22.36 22.26 32.80 43.51 41.52 
Stacked LSTM 
→SPGP -42.23 -28.85 -29.22 -69.56 -164.61 -164.14 20.32 18.05 18.06 31.38 41.34 40.50 

VAE-DGP→SPGP -110.99 -186.56 -187.23 -76.16 -173.01 -167.86 24.80 23.87 23.95 42.64 61.87 61.39 
BPNN→VAE-DGP 78.66 84.77 84.74 52.03 73.85 73.34 42.05 94.77 47.65 31.65 40.74 40.74 
LSTM→VAE-DGP 36.58 58.64 58.62 3.89 15.99 14.43 -1.32 -1.97 -2.23 -17.16 -48.14 -51.48 
Stacked LSTM 
→VAE-DGP 32.58 55.03 55.01 3.74 3.07 1.39 -5.95 -7.63 -7.74 -19.63 -53.84 -54.11 

SPGP→VAE-DGP 52.60 65.10 65.18 43.23 63.37 62.66 -32.99 -31.35 -31.50 -74.35 -162.29 -159.06 

Moreover, the integrated comparison are described in Tables 3 and 4. In the tables, the symbol “→” means the comparison 

of two models, for example, “BPNN→SPGP” represents the improved percentage of SPGP with respect to BPNN, when the 

result is negative, the SPGP reduces the prediction accuracy, and in contrast the model performance is improved by SPGP. 

According to Table 3 and 4, the VAE-DGP maintains its superiority in Case 1, for instance, the VAE-DGP can reduce the 

RMSE, MAPE and MAE by 59.48%, 69.87% and 71.31% in terms of “SPGP→VAE-DGP” in Table 3 when TP=400h. 

However, as the input number of parameters increases, the SPGP can achieve better prediction. Considering “VAE-DGP→ 

SPGP” in Table 4, the improved percentages are obtained as 42.64%, 61.87% and 61.39% accordingly when TP=800h. 
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Fig. 5. (a) Stack voltage estimation of FC1 with 95% confidence interval in Case 1 when TP=400h. (b) Stack voltage estimation of FC1 with 95% 



 

confidence interval in Case 1 when TP=800h. (c) Output power estimation of FC1 with 95% confidence interval in Case 2 when TP=400h. (d) 

Output power estimation of FC1 with 95% confidence interval in Case 2 when TP=800h. 

Fig. 5 depicts some of the estimation of stack voltage and output power with 95% confidence interval for FC1 based on 

SPGP and VAE-DGP in Case1 and Case 2. It is obvious that the mean values of stack voltage in Fig. 5 (a) and (b) are within 

the estimated interval with the VAE-DGP model, the narrow interval width leads to reliable prognostics. However, even 

though the SPGP model can roughly describe the degradation trend of stack voltage, the prediction accuracy is rather poor. 

Therefore, a conclusion is drawn that the prediction of VAE-DGP has low uncertainty in the stack voltage prediction. As we 

can see from Fig. 5 (c) and (d), the estimated confidence intervals of output power almost include the actual voltage points 

for SPGP, in terms of the VAE-DGP, when the stack voltage curve drawn in black line changes rapidly, especially at the 

817h, 890h, 940h, 990h, etc., the estimated bounds cannot contain the actual voltage curve, so it may be difficult for 

VAE-DGP model to provide reliable confidence interval for output power estimation. 

4.3. Prognostic under dynamic operation mode 

The degradation of PEMFC under dynamic current load is more complex and rapid, the oscillations in HIs are more 

serious in the degradation curves because the stack current is no longer constant. In order to discuss the prediction accuracy 

and applicability of DP-based models further, in the dynamic operation task, the TPs are set as 450h and 600h during 1020h  
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Fig. 6. Degradation prediction of FC2. (a) Stack voltage prediction when TP=450h with single input. (b) Stack voltage prediction when TP=600h 

with multiple-input. (c) Output power prediction when TP=450h with multiple-input. (d) Output power prediction when TP=600h with single 

input. (e) Absolute error comparison of (a). (f) Absolute error comparison of (d). 

duration, respectively. Accordingly, the prediction phases are 570h and 420h. The prediction results for HIs under different 

TPs with single input and multiple inputs are demonstrated in Fig. 6. It’s clear that in Fig. 6 (a), the VAE-DGP can capture 

the spikes in the stack voltage degradation curve and well present the nonlinearity. However, there are estimated deviations 

in BPNN, Stacked LSTM and LSTM, and the performance curve based on SPGP is close to that of VAE-DGP. In Fig.6 (b) 

the SPGP shows its superiority in the case of more training data, which outperforms the other prediction models in terms of 

RMSE (0.02732), MAPE (0.00174) and MAE (0.00574) in our study. More obviously, when the HI is output power in Fig.6 

(c) and (d), the SPGP can effectively track the variations of output power drop trend and forecast the future aging trend. 

However, the VAE-DGP shows a relatively poor performance, the criteria of prediction accuracy are 0.52955, 0.00166, 

0.37290 and 0.96383, 0.00199, 0.44269, respectively, which are even worse than that of the Staked LSTM and LSTM. From 

the absolute error curves of the five methods in Fig.6 (e) and (f), we can see that under the dynamic load situation, the 

absolute error margins of VAE-DGP and SPGP are small in Fig.6 (e). In Fig.6 (f) before 800h, the predicted absolute error of 

output power for VAE-DGP is smaller than that of BPNN, LSTM and Stacked LSTM, after 800h the absolute error of 



 

VAE-DGP becomes larger, but in the whole prediction phase, the absolute error of SPGP method is minimum. 

Table 5 The comparative prediction results of FC2 under two cases when HI is stack voltage. 

Methods 

Case 1: Single input Uout Case 2: Multiple inputs Uout, Tinwat, Toutair 

Training phase (450h) Training phase (600h) Training phase (450h) Training phase (600h) 

RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE 

BPNN 0.02835 0.00369 0.01192 0.02820 0.00225 0.00737 0.02655 0.00245 0.00799 0.02925 0.00369 0.01191 
LSTM 0.02777 0.00310 0.01009 0.02824 0.00246 0.00763 0.02628 0.00170 0.00561 0.02839 0.00243 0.00831 
Stacked LSTM 0.02620 0.00171 0.00563 0.02807 0.00245 0.00765 0.02620 0.00163 0.00538 0.02826 0.00237 0.00775 
SPGP 0.02613 0.00169 0.00557 0.02750 0.00172 0.00568 0.02556 0.00147 0.00486 0.02732 0.00174 0.00574 
VAE-DGP 0.02549 0.00160 0.00526 0.02780 0.00186 0.00611 0.02567 0.00221 0.00730 0.02804 0.00197 0.00807 

 
Table 6 The comparative prediction results of FC2 under two cases when HI is output power. 

Methods 

Case 1: Single input Uout Case 2: Multiple inputs Uout, Iout, Tinwat, Toutair 

Training phase (450h) Training phase (600h) Training phase (450h) Training phase (600h) 

RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE 

BPNN 2.03854 0.00515 1.14107 1.51381 0.00421 0.93557 0.91454 0.00325 0.72525 0.87374 0.00261 0.58035 
LSTM 0.60025 0.00218 0.48778 0.43473 0.00168 0.37618 0.41727 0.00134 0.29969 0.38475 0.00091 0.20333 
Stacked LSTM 0.45763 0.00142 0.31838 0.36766 0.00127 0.28442 0.37264 0.00108 0.24259 0.37631 0.00089 0.20076 
SPGP 0.59340 0.00180 0.40193 0.24213 0.00063 0.14196 0.23626 0.00068 0.15271 0.21558 0.00065 0.15182 
VAE-DGP 0.33317 0.00080 0.18024 0.96383 0.00199 0.44269 0.52955 0.00166 0.37290 0.66119 0.00203 0.45300 

Moreover, comprehensive results are shown in Table 5 and 6, which include the results of other scenarios, for example, the 

TP is 450h with multiple inputs in Table 5. It is should be noted that under the dynamic operation situation, only in a small 

data regime in Case 1 with TP=450h, the VAE-DGP can outperform other methods in both tables, fortunately the SPGP can 

make up for the shortcoming when in large data regime. This finding suggests that different HIs and training phases should 

match different prediction models due to the difference in degradation characteristics. 
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Fig. 7. Accuracy improvement of DP-based models in FC2. (a) TP=450h in Case 2 for stack voltage prediction. (b) TP=600h in Case 1 for stack 

voltage prediction. (c) TP=450h in Case 1 for output power prediction. (d) TP=600h in Case 2 for output power prediction. 

The further study on the percentage improvement of proposed models are illustrated in Fig.7 with different scenarios from 



 

Fig. 6 (a)-(d) We can see that in Fig.7 (a), (b) and (d), the PRMSE, PMAPE and PMAE are positive, which means the SPGP can 

improve the model accuracy compared to BPNN, Stacked LSTM, LSTM and VAE-DGP. However, due to many spikes in 

the stack voltage, the increase of PRMSE is less than 5% in Fig. 7 (a) and (b), we conclude that the performance of output 

power prediction is much better than that of voltage aging forecasting in FC2. And in Fig. 7 (c), the VAE-DGP outperforms 

the other methods, the model accuracy is improved greatly. 

Table 7 The improved percentage of FC2 under two cases when HI is stack voltage. 

Comparison models 

Case 1: Single input Uout Case 2: Multiple inputs Uout, Tinwat, Toutair 

Training phase (450h) Training phase (600h) Training phase (450h) Training phase (600h) 

PRMSE PMAPE PMAE PRMSE PMAPE PMAE PRMSE PMAPE PMAE PRMSE PMAPE PMAE 

BPNN→SPGP 7.83 54.20 53.27 2.48 23.55 22.93 0.37 40.00 39.17 6.59 52.84 51.80 
LSTM→SPGP 5.91 45.48 44.79 2.62 30.08 25.55 2.73 13.52 13.36 3.77 28.39 30.92 
Stacked LSTM 
→SPGP 0.27 1.17 1.06 2.03 29.79 25.75 2.44 9.81 9.66 3.32 26.58 25.93 

VAE-DGP→SPGP -2.51 -5.62 -5.89 1.07 7.52 7.03 0.43 33.48 33.42 2.57 11.67 28.87 
BPNN→VAE-DGP 10.08 56.63 55.87 1.42 17.33 17.09 3.31 9.79 8.63 4.14 46.61 32.24 
LSTM→VAE-DGP 8.21 48.38 47.86 1.56 24.39 19.92 2.32 -30.00 -30.12 1.23 18.93 2.89 
Stacked LSTM 
→VAE-DGP 2.71 6.43 6.57 0.96 24.08 20.13 2.02 -35.58 -35.68 0.78 16.87 -4.12 

SPGP→VAE-DGP 2.45 5.33 5.56 -1.09 -8.13 -7.57 -0.43 -50.34 -50.20 -2.63 -13.21 -40.59 

 
Table 8 The improved percentage of FC2 under two cases when HI is output power. 

Comparison models 

Case 1: Single input Uout Case 2: Multiple inputs Uout, Iout, Tinwat, Toutair 

Training phase (450h) Training phase (600h) Training phase (450h) Training phase (600h) 

PRMSE PMAPE PMAE PRMSE PMAPE PMAE PRMSE PMAPE PMAE PRMSE PMAPE PMAE 

BPNN→SPGP 70.89 65.04 64.77 84.00 85.03 84.82 74.16 79.07 78.94 75.32 75.09 73.83 
LSTM→SPGP 1.14 17.43 17.60 44.30 62.50 62.26 43.37 49.25 49.04 43.96 28.57 25.33 
Stacked LSTM 
→SPGP -29.66 -26.76 -26.24 34.14 50.39 50.08 36.59 37.03 37.05 42.71 26.96 24.37 

VAE-DGP→SPGP -78.11 -125.00 -122.99 74.87 68.34 67.93 55.38 59.03 59.04 67.39 67.98 66.48 
BPNN→VAE-DGP 83.65 84.46 84.20 36.33 52.73 52.68 42.09 48.92 48.58 24.32 22.22 21.94 
LSTM→VAE-DGP 44.49 63.30 63.04 -121.70 -18.45 -17.68 -26.90 -23.88 -24.42 -71.84 -123.07 -122.79 
Stacked LSTM 
→VAE-DGP 27.19 43.66 43.38 -162.15 -56.69 -55.64 -42.10 -53.88 -53.71 -75.70 -128.08 -125.64 

SPGP→VAE-DGP 43.85 55.55 55.15 -298.06 -215.87 -211.84 -124.13 -144.11 -144.18 -206.70 -212.30 -198.37 

Specifically, the quantified performance improvement ratio with VAE-DGP and SPGP are presented in Table 7 and 8. In 

the eight tests, the SPGP obtains significantly higher prediction accuracy, except when the TP is 450h with single input in 

both tables. For example, in Table 7 when TP is 450h in Case 1, compared with Stacked LSTM, the VAE-DGP reduces the 

RMSE by 2.71%; reduces MAPE by 6.43%; and reduces MAE by 6.57%. Similarly, in Table 8 when TP is 600h in Case 2, 

compared with Stacked LSTM, the SPGP reduces the RMSE by 42.71%; reduces MAPE by 26.96%; and reduces MAE by 

24.37%. 



 

 
           (a)                                                                                                               (b) 

 
        (c)                                                                                                                 (d) 

Fig. 8. (a) Stack voltage estimation of FC2 with 95% confidence interval in Case 1 when TP=450h. (b) Stack voltage estimation of FC2 with 95% 

confidence interval in Case 1 when TP=600h. (c) Output power estimation of FC2 with 95% confidence interval in Case 2 when TP=450h. (b) 

Output power estimation of FC2 with 95% confidence interval in Case 2 when TP=600h. 

As shown in Fig. 8, the uncertainties of prognostic results of FC2 are described by the 95% confidence interval on the basis 

of VAE-DGP and SPGP in Case 1 and Case 2 using 450h and 600h learning phase, respectively. According to Fig.8 (a) and 

(b), the actual stack voltage points are scattered between the estimated upper and lower bounds of SPGP and VAE-DGP, 

however, the confidence interval of VAE-DGP is narrow, a narrower confidence interval may lead to more accurate and 

reliable prediction results. Besides, the SPGP model is modified to forecast the aging trend based on the historical data, due 

to the latent states updating, the irreversible phenomenon occurs at the 667h and 830h in Fig.8 (a) and (b), thus the 

uncertainties increase, the inferred bounds can still contain the actual voltage curve. As for the output power uncertainties 

estimation in Fig.8 (c) and (d), the actual power points are within the estimated bounds based on the SPGP. However, the 

bounds of VAE-DGP are much wider, there are still some actual power points during 965h-993h below the lower bound. 

Therefore, the SPGP is more suitable for the output power prognostic. 

5. Conclusion 

In this paper, data-driven methods based on VAE-DGP and SPGP are proposed to forecast the degradation trajectories of 



 

PEMFC. The stack voltage and output power are considered as the degradation indexes. Due to the probabilistic property, the 

DP-based models in our study can avoid overfitting and generalization capability is strong, moreover, through confidence 

interval, the prediction reliability is improved. On the basis of long-term fuel cell aging experimental data, the model 

prediction is validated under sixteen different test scenarios of FC1 and FC2. Meanwhile, different existing methods 

including BPNN, Stacked LSTM and LSTM are compared with the proposed models. The following conclusions are made: 

(1) When the HIs are in a small fluctuation range in the static operation task of FC1, the VAE-DGP can effectively achieve 

higher prediction accuracy in most scenarios. Regarding more complicated condition in FC2, the SPGP with moving pseudo 

inputs is flexible to model the non-stationary process in HIs. 

(2) The stack voltage aging trend prediction accuracy can be improved with VAE-DGP method, the confidence interval of 

stack voltage estimation is much narrower; the SPGP has advantage in output power prediction, the output power 

uncertainties estimation can contain almost all the actual power points compared to VAE-DGP, which can provide reliable 

predictions. 

(3) The accuracy comparison and absolute error analysis demonstrate the effectiveness of the proposed models, it is clear 

that a relatively large amount of training data should be learned by SPGP to achieve a better performance, on the contrary, the 

VAE-DGP is very suitable for the small sample prediction, which means when the measurement data for model training is 

less in some situations, the VAE-SGP can provide satisfied aging prediction results. 
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