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ENGLISH SUMMARY 

Chronic pain occurs in approximately 20% of the adult population worldwide 

having a direct impact on the physical, mental, and social well-being. Given 

that the evaluation and management of pain disorders is challenging when 

co-morbidities are at play, experimental models of prolonged pain are 

instrumental in studying the physiology of nociception and analgesia as well 

as understanding the time course and degree of sensitization during pain 

progression, exploring its potential link to pain-free states, and assessing the 

therapeutic value of novel interventions. 

One of the most frequently investigated noninvasive brain stimulation (NIBS) 

methods to modulate pain-induced plasticity is transcranial direct current 

stimulation (tDCS). Classical single site tDCS of the motor cortex (M1) 

shows, however, mild therapeutical effects on pain relief. Since brain regions 

do not operate isolated but interact with other regions through various 

excitatory and inhibitory projections, an arising research venue targets brain 

networks through multifocal tDCS. Multifocal tDCS stimulates multiple and 

distant areas over the scalp simultaneously to potentially promote 

advantageous plasticity for substantial recovery. Specifically, following 

multifocal tDCS of the motor network (network tDCS), a higher modulatory 

effect on corticomotor output has been reported in comparison to a classical 

single-site tDCS montage. The neurophysiological and psychophysical 

effects of this montage are, however, not fully studied. 

The primary objective of this PhD project is, therefore, to investigate and 

characterize the time course of neuroplastic changes through event-related 

evoked potentials and resting-state EEG of the human brain after multifocal 

tDCS of the motor network while experimental pain progresses over the 

course of 24 hours. 

To provoke prolonged pain, patches of topical capsaicin were applied on two 

consecutive days (studies I, II and III). To probe the temporal dynamics and 

nature of psychophysical and neurophysiological responses during pain, 

conditioned pain modulation (study I) and motor evoked potentials by single-

pulse transcranial magnetic stimulation (study I), cortical event-related 

evoked potentials (ERPs) to noxious stimulation (study II) and resting-state 

EEG activity (study III) were assessed before and during pain. To evaluate 

the modulatory effect of multifocal tDCS, two daily sessions of network tDCS 

were applied (study I, II and III). The motor network was selected as cortical 

target because it has been stated that the motor cortex has a role in the 

modulation of the descending inhibitory pathways. 
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The findings of the first study indicate that prolonged pain reduces 

conditioned pain modulation expression and corticomotor output while active 

network tDCS normalizes such responses, as compared to sham. The 

results of the second and third studies show that prolonged pain 

downregulates the amplitude of ERPs and the frequency of alpha 

oscillations, respectively, whereas active network tDCS increases such 

cortical reorganization, compared to sham stimulation.  

In conclusion, the results of this PhD work display that network tDCS can 

modulate the consequences of prolonged pain on neurophysiological 

outcomes and the descending pain inhibitory function otherwise reduced 

after 24-hour experimental pain. 
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DANSK RESUME 

Kroniske smerter forekommer hos cirka 20 % af den voksne befolkning på 

verdensplan, hvilket har en direkte indvirkning på deres fysiske, mentale og 

sociale velbefindende. Evalueringen og håndteringen af smerteforstyrrelser 

er udfordrende, især når komorbiditeter er involveret. Eksperimentelle 

modeller af langvarig smerte er afgørende for at studere fysiologien af 

nociception og analgesi samt for at forstå tidsforløbet og graden af 

sensibilisering under smerteprogression og dets sammenhæng med 

smertefri tilstande. 

En af de mest undersøgte metoder til ikke-invasiv hjernestimulering (NIBS), 

med henblik på at modulere smerteinduceret plasticitet, er transkraniel 

jævnstrømsstimulering (tDCS). Klassisk enkeltplacering af tDCS på den 

motoriske cortex (M1) viser dog kun milde terapeutiske effekter på 

smertelindring. Da hjerneregioner ikke fungerer isoleret, men interagerer 

med andre regioner gennem forskellige excitatoriske og hæmmende 

projektioner, fokuserer ny forskning på hjernenetværk gennem multifokal 

tDCS. Multifokal tDCS stimulerer flere og fjernere områder over 

hovedbunden samtidigt for potentielt at fremme fordelagtig plasticitet og 

væsentlig genopretning. Specifikt er der rapporteret højere modulatorisk 

effekt på kortikomotorisk output efter multifokal tDCS af motornetværket 

(netværk-tDCS) sammenlignet med klassiske tDCS-monteringer. Dog er de 

neurofysiologiske og psykofysiske virkninger af denne montering ikke fuldt 

ud undersøgt. 

Hovedformålet med dette PhD-projekt er derfor at studere og karakterisere 

tidsforløbet af kortikal reorganisering og psykofysiske responser efter 

multifokal tDCS af det motoriske netværk, mens eksperimentel smerte 

skrider frem i løbet af 24 timer. 

For at fremkalde langvarig smerte blev der påført capsaicin-plastre topisk 

over en periode på to dage (undersøgelse I, II og III). For at undersøge den 

tidsmæssige dynamik og karakteren af psykofysiske og neurofysiologiske 

reaktioner under smerte, blev tilstandssmertemodulation (studie I), motorisk 

fremkaldte potentialer ved transkraniel enkeltpulsstimulering (studie I), 

sensorisk fremkaldte potentialer ved skadelig stimulation (studie II) og alfa-

svingninger (undersøgelse III) vurderet før og under smerte. For at evaluere 

den modulerende effekt af multifokal tDCS blev der udført to daglige 

sessioner med netværk-tDCS (undersøgelse I, II og III). Det motoriske 

netværk blev valgt som kortikalt mål, fordi det er blevet påvist, at den 

motoriske cortex spiller en rolle i moduleringen af de nedadgående 

hæmmende veje. 
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Resultaterne fra den første undersøgelse indikerer, at langvarig smerte 

reducerer betinget smertemodulation og kortikomotorisk output, mens aktiv 

netværk-tDCS normaliserer sådanne reaktioner sammenlignet med sham-

behandling. Resultaterne fra den anden og tredje undersøgelse viser, at 

langvarig smerte hæmmer amplituden af sensorisk fremkaldte potentialer og 

frekvensen af alfa-oscillationer, mens aktiv netværk-tDCS øger en sådan 

kortikal reorganisering sammenlignet med sham-behandling. 

Konklusionen af dette PhD-projekt viser, at netværk-tDCS kan modulere 

konsekvenserne af langvarig smerte på neurofysiologiske udfald og den 

faldende smertehæmmende funktion, som ellers er reduceret efter 24 timers 

eksperimentel smerte. 
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PREFACE 

This PhD thesis summarizes my research work completed at the Center for 

Neuroplasticity and Pain (CNAP), Department of Health Science and 

Technology, Aalborg University, Denmark, in the period from April 2018 to 

March 2021. 

The aim of the thesis was to expand the understanding of the temporal 

dynamics of experimentally induced long-lasting pain through psychometric, 

psychophysical, and neurophysiological assessments and to characterize 

the influence of multifocal tDCS while such experimental pain developed 

over the course of 24 hours. The psychometric assessments evaluate pain 

affect, catastrophizing thinking and sleep quality, and the psychophysical 

assessments evaluate a paradigm of conditioned pain modulation. The 

neurophysiological assessments evaluate evoked responses through motor 

(MEPs) and cortical event-related (ERPs) evoked potentials as well as 

resting-state responses through electroencephalography (EEG).  
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Some concepts used throughout the dissertation: 

classical tDCS: conventional tDCS using two big-size electrodes: one 

electrode applied on the target cortical region and the second electrode 

usually placed on the orbitofrontal cortex. The area of each electrode is 

generally 25 or 35 cm2.  

multifocal tDCS: tDCS using multiple electrodes in widespread areas of the 

brain. The area of each electrode is approximately 3.14 cm2, but it is 

dependent of the brand of the tDCS equipment. 

focal tDCS (ring configuration): This tDCS paradigm uses 1 central 

anode/cathode and 4 surrounding return electrodes. This paradigm is also 

known as high definition tDCS (HD-tDCS). The area of each electrode is 

approximately 3.14 cm2, but it is dependent of the brand of the tDCS 

equipment. 
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CHAPTER 1.  INTRODUCTION  

1.1 STIMULATION OF THE MOTOR CORTEX 

Throughout history different forms of non-invasive brain stimulation (NIBS) 

have been studied in healthy and clinical populations. One of the most 

applied NIBS paradigms is transcranial direct current stimulation (tDCS), 

which has been progressively evaluated from simple forms of tDCS powered 

by rudimentary components to sophisticated and patient-friendly devices1 

using two big-sized electrodes. 

The primary motor cortex (M1) has garnered significant attention and 

research interest as a cortical target for pain modulation since the 1950s, 

when invasive stimulation of the motor cortex (MCS) was found to induce 

antinociception in animal models2. Later, based on that evidence, methods 

of invasive motor cortex stimulation in humans were developed, leading 

ulteriorly to motor cortex stimulation using epidural electrodes. Initial 

evidence showed epidural MCS has driven long-lasting pain relief in 

approximately 66% of neuropathic patients2. 

The early 1990s underscored the effectiveness and utility of repetitive 

transcranial magnetic stimulation (rTMS). Research showed that 

responsiveness to rTMS of the M1 is a fair predictor of epidural MCS-driven 

analgesia. At the end of 1990s, work using tDCS indicated analgesic results 

in clinical populations with a far less invasiveness and lesser discomfort. 

Over time, to reduce the poor spatial focality of the existing tDCS devices at 

the time, a multifocal paradigm of tDCS was designed to deliver direct 

currents in several brain areas with focused stimulation using small-sized 

electrodes and computer-assisted modelling combined with neuroimaging. 

The content of section 1.1.1 will summarize the state of the art of tDCS and 

will cover the main differences and similitudes of classical tDCS and 

multifocal tDCS with a focus on the M1. 

1.1.1. TRANSCRANIAL DIRECT CURRENT STIMULATION: FROM 
CLASSICAL TO MULTIFOCAL PARADIGMS 

Classical tDCS delivers a low constant current through relatively big 

electrodes (e.g. 35 cm2) placed over specific areas of the scalp. Classical 

tDCS applied over the M1 exerts changes in cortical and corticospinal 
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excitability, functional connectivity indexes3–5, metabolite levels, and at some 

extent, psychophysical responses6,7. 

tDCS has the qualities to be tolerable8–12, portable, and can be operated by 

the patient itself13,14. Passive sham protocols are considerably standardized 

consisting of ramping up and ramping down periods during the first 30 and 

the last 30 seconds of the stimulation period. The current intensity during the 

rest of the stimulation period (after the ramping up and before the ramping 

down period) is 0. It is also established that double-blinding and cross-over 

studies are feasible15–17. 

tDCS produces local effects in the brain regions directly under the 

stimulation electrodes18 and widespread effects in distant brain areas 

through functional connections19,20. The immediate effects21 of tDCS consist 

of shifting, through non synaptic mechanisms, the resting membrane 

potential of cortical neurons towards either depolarization or 

hyperpolarization. The after-effects occur beyond the duration of the tDCS 

session and relies partly on synaptic mechanisms. The synaptic 

mechanisms depend on pre-synaptic and post-synaptic activity, akin to long-

term potentiation and long-term depression-like plasticity. 

A plethora of studies evaluated the potential antinociceptive effects of M1 

tDCS in healthy pain-free populations. It is important to mention the mixed or 

inconsistent findings in the scientific literature. While some publications 

report an improvement of pain sensitivity measures such as pain 

thresholds22,23, motor execution24,25 and descending inhibitory function26,27, 

other work obtained inconclusive results23,28,29. For example, classical M1 

tDCS30 and focal M1 tDCS (ring configuration)16,31 did not modulate 

mechanical, pressure or thermal pain sensitivity in healthy individuals. 

Randomized clinical trials applying several M1 tDCS sessions in chronic 

pain populations show certain degrees of antinociception e.g. in 

fibromyalgia32–34 and neuropathic pain35 patients, improved conditioned pain 

modulation (CPM) in osteoarthritis and post-surgical pain36, as well as 

improved motor performance, reaction times and corticomotor output in 

Parkinson patients37. No clear differences though are observed in other 

multi-session trials from different research groups in neuropathic patients 

(with e.g. unilateral neuropathic pain and stable medication), as compared 

with the control stimulation (classical sham tDCS or focal sham tDCS)13,38–40.  

A reason behind conflicting findings in healthy23 and clinical13 cohorts may 

be due to underpowered studies i.e. small sample sizes. In healthy 
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individuals, evidence also suggests the absence of tDCS-driven modulation 

due to a lack of sensitized pathways16,41. In clinical cases, another reason 

behind conflicting findings is the heterogeneity in clinical profiles and 

comorbidities, challenging the interpretation of the outcomes.  

Recent tDCS paradigms named multifocal tDCS were designed using small-

sized electrodes displaying two main attributes: on one side, multifocal tDCS 

delivers focal stimulation by replacing big-sized 35 cm2 rectangular 

electrodes for 3.14 cm2 circular electrodes; on the other side, researchers 

may be able to enhance the modulatory capacity through the application of 

multifocal tDCS in functionally associated brain areas rather than targeting 

solely one single region. For instance, bilateral anodal stimulation of the left 

and right M1 has improved corticomotor excitability and motor performance 

while classical tDCS only modulated the former42. Also, stimulation of the left 

M1 and regions of its resting state motor network has increased corticomotor 

excitability beyond classical tDCS paradigms and has extended this 

facilitation for a longer period of time43. This research venue is clearly new 

though further attention and comprehensive studies are needed to 

understand what the exact effects are. 

1.2 EXPERIMENTAL MODELS OF PAIN 

Experimental models of pain have the capacity to model certain features of 

the pain experience to study its neural mechanisms44, psychophysical 

responses, and even the effectiveness of therapeutical interventions45–47. 

Short-lasting experimental pain lasts from seconds to tens of minutes and 

can be provoked, for instance, through hypertonic saline injections48–50, heat 

stimulation51, intradermal capsaicin52–56, and high frequency stimulation57,58, 

which primarily excite nociceptors and affect pain sensitivity e.g. primary and 

secondary allodynia and hyperalgesia, as well as trigger neurophysiological 

changes e.g. cortical and corticomotor excitability changes.  

Experimental and clinical observations emphasize the need for longer-

lasting pain models though to understand the influence of the variable time 

on the pain system. Long-lasting pain models generally last for hours or 

days and can be provoked through e.g. injections of nerve-growth factor 

(NGF), exercise-induced delayed onset muscle soreness (DOMS), and 

prolonged exposition to topical capsaicin, which may resemble the temporal 

profile of certain clinical conditions such as neuropathic disorders59.  
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It has been established that NGF injections and/or DOMS on a specific 

muscle elicit movement-evoked pain, deep-tissue pressure primary and 

widespread hyperalgesia60, reduced muscle strength and altered cortical and 

corticomotor output61–63.  

Administration of topical capsaicin displays ongoing pain and secondary 

hyperalgesia and allodynia6, attributes shared with neuropathic 

disorders45,46,64, altered descending inhibition as indexed through CPM65 and 

aberrant functional connectivity66,67. Relative to clinical settings, results of a 

meta-analysis of pharmacological efficacy in experimental pain models 

indicated that capsaicin may be a promising predictor to clinical analgesia59 

e.g. in neuropathic pain47. 

Taken altogether, the temporal factor of experimental pain may be 

determinant to study the physiology of nociception and analgesia in the 

transition from acute to prolonged pain. 

1.3 METHODS FOR PROBING PAIN NEUROPLASTICITY 

Pain is a multidimensional and complex experience affecting the sensory-

discriminatory, cognitive-attentional, and affective levels. It can be, therefore, 

evaluated in multiple edges. As a result of acute and chronic pain, a range of 

peripheral and central mechanisms are modulated inducing psychophysical, 

psychometric, and neural adaptive and maladaptive responses. 

Psychophysical responses can be studied for instance through batteries of 

quantitative sensory testing, temporal summation of pain (TSP) and CPM 

paradigms while psychometric responses can be measured using 

questionnaires exploring pain affect, catastrophizing thinking, anxiety and 

depression, general quality of life and sleep quality. Neurophysiological 

adaptations can be studied through changes in metabolite concentration 

(through e.g. magnetic resonance spectroscopy), cortical (e.g. 

electroencephalography - EEG) and subcortical activity and functional 

connectivity (e.g. functional magnetic resonance imaging - fMRI), 

transsynaptic corticomotor excitability (resting motor thresholds, I waves, 

intracortical inhibition – ICI, intracortical facilitation – ICF, amplitude of motor 

evoked potentials - MEPs), sensory and noxious reflexes (e.g. 

electromyography - EMG), to name a few. 

In line, and as mentioned in section 1.2, topical capsaicin produces on-going 

long-lasting pain66, mechanical secondary hyperalgesia68, reduced CPM65, 

altered intracortical inhibition69, reduced MEPs69, as well as reduced PAF70. 
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Recent work additionally investigates the combined analysis of MEPs and 

PAF71 as biomarkers of pain sensitivity in experimental prolonged and 

clinical cases. 

This type of altered responses are found in patients with chronic neuropathic 

profiles with e.g. impaired CPM72,73, abnormal glutamatergic levels in the 

anterior cingulate cortex (ACC)74,75, altered resting-state functional 

connectivity in the default-mode networks76, reduced peak alpha frequency 

(PAF)77 and, as compared with non-neuropathic patients and healthy 

controls, reduced ICI78 and MEPs73,79.  

1.4 AIMS OF THE PRESENT THESIS 

The four aims of this PhD project are enumerated as follows and are 
represented in Figure 1-1:  

A. To evaluate the sensory and affective responses during prolonged 
experimental pain  

B. To evaluate the direction and temporal dynamics of event-related 
responses during prolonged experimental pain  

C. To evaluate the direction and temporal dynamics of resting-state 
cortical responses  

D. To evaluate whether tDCS of the motor network can modulate the 
sensory, affective, and neurophysiological (event-related and 
resting-state cortical) alterations during prolonged experimental pain. 

The framework to achieve these aims were: 

1) Provoking pain-related neuroplasticity: Topical capsaicin was applied 
for 24 hours to provoke prolonged experimental pain (chapters 3, 4 and 
5). 

2) Probing pain-related neuroplasticity:  
Self-reported pain was evaluated through numerical pain scales, 
psychophysical assessments and psychometric questionnaires were 
administered to probe sensory and affective changes following prolonged 
pain (chapter 3).  
Motor-evoked potentials and cortical evoked potentials to noxious stimuli 
were performed to probe event-related changes following prolonged pain 
(chapter 4).   
Resting-state EEG activity (chapter 5) was analyzed using frequency 
analysis to probe resting-state cortical alterations. 

3) Modulating pain-related neuroplasticity: To evaluate the modulatory 
effects of tDCS, 2 daily sessions of tDCS of the motor network were 
applied and their effects assessed on sensory-affective (chapter 3), 
event-related (chapter 4), and resting cortical (chapter 5) components. 
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Throughout the thesis, the publications involved in the PhD work are referred 
to as: 

Study I: Gregoret L., Zamorano AM., Graven-Nielsen T.  (2021) Effects of 
multifocal transcranial direct current stimulation targeting the motor 
network during prolonged experimental pain. European Journal of Pain, 
25(6) 1241-1253. DOI: 10.1002/ejp.1743 

Study II: Gregoret L., Zamorano AM., Graven-Nielsen T (2023) Multifocal 
tDCS targeting the motor network modulates event-related cortical 
responses during prolonged pain. Journal of Pain, 24(2) 226-236. DOI: 
10.1016/j.jpain.2022.09.010 

Study III: Gregoret L., Zamorano AM., Graven-Nielsen T (submitted) 
Electroencephalographic peak alpha frequency is reduced during 24-
hour experimental pain and normalized after multifocal tDCS 

 

Figure 1-1: Schematic of the general content of the present thesis. 

Prolonged pain was elicited through the exposition to topical capsaicin for 24 

hours (Studies I, II and III). Multimodal assessment of prolonged 

experimental pain consisted of psychophysical measures (Study I, II and III), 

motor evoked potentials (MEPs) (Study I), cortical event-related evoked 

potentials (cortical ERPs) to noxious stimulation (study II) and resting-state 
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electroencephalography (EEG) (study III). The impact of 2 (two) daily 

sessions of transcranial direct current stimulation (tDCS) was evaluated at 

the end of Day 2 (Study I, II and III). 

Study I and Study II are based on one experiment with 38 healthy individuals 

and Study III is based on another experiment with 44 healthy individuals. 

Research questions  

A) Can topical capsaicin for 24 hours induce prolonged pain? (Chapter 

3) Study I and III 

B) Can topical capsaicin for 24 hours modify descending inhibitory 

function? (Chapter 3) Study I 

C) Can topical capsaicin for 24 hours modify neurophysiological 

responses? (Chapter 4 and 5) Study I, II and III 

D) Can network tDCS modulate pain perception during prolonged pain? 

(Chapter 3) Study I and III 

E) Can network tDCS modulate descending inhibitory function during 

prolonged pain? (Chapter 3) Study I 

F) Can network tDCS counteract pain-related neurophysiological 

responses (MEPs, N2P2 amplitudes, alpha oscillations)? (Chapter 4 

and 5) Study I, II and III 

G) Are there associations between pain-free PAF at baseline and pain 

intensity during prolonged experimental capsaicin pain? (Chapter 5) 

Study III  

The general hypothesis was that prolonged pain would alter mood, 

catastrophizing thinking, and sleep quality, increase pain sensitivity as well 

as would reduce corticomotor excitability and electroencephalographic alpha 

oscillations. Conversely, it was hypothesized that network tDCS would 

counteract corticomotor excitability and electroencephalographic alpha 

oscillations. 
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CHAPTER 2. TRANSCRANIAL DIRECT 

CURRENT STIMULATION OF THE 

MOTOR CORTEX 

2.1 THE ROLE OF THE MOTOR CORTEX IN tDCS-DRIVEN 

PAIN MODULATION: Possible mechanisms 

The M1 is a brain region that plays a central role in movement preparation 

and execution, motor imagery, and learning new motor skills. It is expanded 

in individuals with refined motor abilities80, and altered in those experiencing 

pain62,81,82. The M1 has anatomical or functional connections to bilateral 

primary sensory cortices (S1)83, to its contralateral M143,83, frontoparietal43,84 

and cingulate cortices85,86, thalamus86 and cerebellum83, among others. 

When it comes to motor cortex stimulation through tDCS, the mechanisms of 

tDCS-driven analgesia are unresolved. Some of the putative mechanisms 

are87,88 corticothalamic inhibition, indirect inhibition of primary sensory 

processing, endo-opioidergic changes, descending pain inhibition and 

placebo-like effects (Figure 2-1).  

Neuroimaging analyses in healthy individuals show that classical anodal M1 

tDCS activates the ipsilateral thalamus4,89,90, including the 

ventroposterolateral thalamic nucleus90, which receives input from the 

spinothalamic tract involved in the transmission of nociceptive inputs, along 

with thermal91, mechanical and proprioceptive inputs92 and projects to the 

S1. That evidence may support the notion of top-down modulation through 

corticothalamic inhibition of nociceptive afferent volleys by stimulation of the 

M1 through tDCS. Recent fMRI-based connectivity analysis indicated 

classical anodal M1 tDCS increased corticothalamic coupling, in contrast to 

both cathodal and sham M1 tDCS93.  

Another putative tDCS mechanism relies on corticocortical pathways 

between S1 and M194. Anatomical connections between the M1 and 

inhibitory neurons within the S1 were observed in rodents95. In that line, 

invasive stimulation of the M1 through MCS in animal models reduced 

sensory processing on the S1, as compared with stimulation of other cortical 

areas88,96. This clearly cannot be directly generalized to humans and to other 

stimulation paradigms such as tDCS and rTMS. In humans, this potential 

mechanism could be studied using cortical ERPs to innocuous stimulation or 

using other neuroimaging technologies through, for instance, source 

localization analysis. Tangentially associated to this putative mechanism, 



NEUROPLASTIC RESPONSES AFTER PROLONGED EXPERIMENTAL PAIN AND MULTIFOCAL TRANSCRANIAL 
DIRECT CURRENT STIMULATION 

28
 

active finger movements ipsilateral to noxious laser stimulation on the hand 

dorsum produced a reduction of activity on the contralateral S1 and 

secondary sensory (S2) cortices as well as a reduction of perceived pain, 

compared to the control condition97. These pieces of evidence may support 

the notion that modulation of M1 may contribute to pain reduction through 

inhibitory corticocortical projections to the S1, though clearly warrants further 

research. 

 

Figure 2-1: Putative mechanisms of M1 tDCS induced 
analgesia/antinociception. 

Endogenous opioids are neuromodulators that bind to opioid receptors and, 

as a result of modifying the properties of their neural targets, they affect the 

release of their neurotransmitters. Endogenous opioids have then the 

capacity to modulate pain if that effect happens in neural targets involved in 

pain processing. Although the M1 has a relatively scarce degree of 

endogenous opioids, evidence shows M1 tDCS activates remote brain areas 

rich in µ-opioids. Following anodal M1 tDCS, there was increased activity, for 

example, in putamen4,93 and cingulate cortex68.  As well, a clinical 

observation using µ-opioid receptor radiotracers in PET scans suggested 

that anodal M1 tDCS reduces the binding potential levels of opioid receptors 

in neural structures involved in pain processing e.g. posterior thalamic 

nuclei, nucleus accumbens, as well as insular and cingulate cortices98. That 

type of finding should be confirmed in a full-powered study and possibly also 

using opioid antagonists e.g. naloxone, to understand if the lower binding 
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potential levels are related to the release of endogenous opioids. Opioid-

driven analgesia is often reflected by reduced hyperalgesia and 

allodynia99,100. In line, some M1 tDCS studies have improved pain 

sensitivity87 as indexed through increased detection6 and pain thresholds. 

Although speculative, in rodents, administration of opioid antagonists 

lowered sensory processing on the S1 following invasive M1 stimulation96, 

hinting that an M1-driven antinociceptive effect is connected to the endo-

opioidergic system. 

Connected to the endogenous opioidergic system and to the descending 
pain modulatory network, fMRI-based analysis has shown that M1 tDCS 
modulates BOLD responses in cortical and brainstem regions involved in 
descending inhibitory pathways e.g. ACC, and PAG19, frequently affected in 
chronic pain patients. Improved CPM expression following M1 classical 
tDCS and focal M1 tDCS (ring configuration)27,36,101,102 has been reported in 
several publications over the years in healthy and clinical cohorts. Recent 
work reported improved CPM effect after focal M1 tDCS (ring configuration), 
as compared with sham tDCS, while focal DLPFC tDCS (ring configuration) 
did not significantly modulate this outcome103. Stimulation of the M1 through 
tDCS, in other words, may trigger a top-down activation of descending pain 
inhibition towards the spinal cord and modulation of transmission of painful 
inputs.  

Finally, a putative mechanism for tDCS analgesia is related to placebo-like 

or Hawthorne-like effects, wherein subjects or patients in the control tDCS 

intervention, often times, sham tDCS, experience analgesic effects. Sham 

tDCS aims to emulate the somatosensory sensations i.e., paresthesia 

induced by the electrical stimulation on the scalp without delivering 

significant electrical currents. To achieve that, passive sham tDCS protocols 

deliver electrical stimulation for a small-time window at the beginning (onset) 

and at the end (offset) of the stimulation period. This means that in these 

sham protocols, the intensity of the electrical current is null after the onset 

and before the offset. The placebo-like effect is multifactorial, including 

expectations104 and beliefs39. Research shows the influence of tDCS-related 

expectations leading to favorable outcomes after tDCS. Positive framing 

before tDCS interventions has led to higher cognitive performance as 

compared with a negative framing group, both receiving the same tDCS 

protocol104. Samartin-Veiga and colleagues recently observed that 15 

sessions of both sham and active tDCS improved clinical pain, fatigue, sleep 

quality and indexes of quality of life in fibromyalgia patients38,39. This 

placebo-like effect was observed after M1 tDCS but also after tDCS of other 

cortical targets such as the operculoinsular and prefrontal cortices38,39. 

Documenting subjects’ expectations and beliefs as well as the general 

information provided to subjects prior to NIBS treatment may contribute to 
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understand causal effects of stimulation and reduce inter-subject 

variability104. 

It also remains elusive if the above possible mechanisms are 

complementary rather than exclusive. Some of the challenges are due to 

confounding factors e.g., comorbidities, limitations of existing neuroimaging 

technologies (e.g. low granularity, low spatial or temporal resolution), and 

inter-subject and intra-subject variability. Unlike stimulation paradigms such 

as MCS and M1 rTMS, classical tDCS of the left primary motor cortex does 

not exhibit level A efficacy in pain modulation on clinical disorders when 

considering sham-controlled and double-blinded studies29,39. Further 

research is needed to understand the influence of stimulation parameters 

e.g. current intensity, stimulation duration, and the number of stimulated 

areas (bipolar, focal (ring configuration), multifocal94), to potentially induce 

antinociception in chronic and experimental pain. A summary of multifocal 

tDCS studies targeting the M1 is listed in Appendix A and multifocal tDCS 

studies targeting solely other cortical targets in Appendix B. 

2.2 CLASSICAL AND MULTIFOCAL tDCS  

The scientific literature describes several tDCS paradigms with different 

electrode montages. Figure 2-2 illustrates the electrode montage and 

induced normal electrical field of A) classical anodal M1 tDCS, B) focal M1 

tDCS (ring configuration) and C) multifocal tDCS of the resting-state motor 

network (network tDCS).  

As mentioned in section 1.1.1., classical or traditional tDCS uses a bipolar 

electrode configuration. Classical M1 tDCS applies the target electrode on 

the M1 (usually the C3 position) and the return electrode usually on the 

orbitofrontal cortex (e.g. Fp2 position). 

Focal M1 tDCS (ring configuration) also targets the M1 but in a different 

manner. It uses a target electrode in the C3 position and return electrodes in 

four surrounding positions. The inter-electrode distance varies across 

publications. 

Multifocal tDCS applies constant current stimulation in several focused areas 

of the scalp. Unlike classical tDCS with rectangular electrodes (i.e. 5 x 5 or 7 

x 5 cm2) that delivers non-focal stimulation as well as higher current 

densities at the electrodes’ edges12,105,106, multifocal tDCS with smaller 

circular electrodes (approx. 2 cm of diameter) minimizes those challenges 

and offers the possibility to apply tDCS at multiple cortical sites 

simultaneously. Focal and multifocal tDCS, according to previous evidence, 

amplify and prolong excitation or inhibition, beyond classical tDCS 

paradigms43,101,107–109. 
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 Specifically, the network-tDCS montage applies anodal currents on the left 

(C1, C3) and right (C2, C4 and T8) M1 and cathodal currents on the 

prefrontal (Fz) and parietal (P3 and P4) cortices.  

 

Figure 2-2: Schematic of three different tDCS protocols with their 

electrode montage and 3D brain plot of the normal component of the 

modelled electric fields (NIC2 software, Neuroelectrics, Spain). Anodal 

currents are shown in red and cathodal currents in blue. A) Classical anodal 

M1 tDCS B) focal M1 tDCS (ring configuration) C) tDCS of the resting-state 

motor network (network tDCS). 

The network-tDCS paradigm was selected and investigated in the present 

PhD work (Figure 2-2-C). 

2.2.1. MULTIFOCAL TDCS OF THE MOTOR NETWORK 

Following the notion that the different areas of the brain do not work isolated 

but rather operate through neuronal projections in various networks, the 

resting-state motor network paradigm (network tDCS) was developed 

(Figure 2-2C) through resting-state functional connectivity magnetic 

resonance imaging using a seed-based analysis with the left motor cortex as 
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the target area while subjects were at rest43 as first step. As a result of such 

analysis, relative to a region of interest on the left M1 cortical representation, 

the tDCS montage was designed assigning positive currents to the positively 

correlated brain areas and negative currents to the negatively correlated 

ones described elsewhere43. The current values of anodes are C1=872 µA, 

C3=1135 µA, C2=888 µA, C4=922 µA, T8=183 µA, and cathodes FZ=-1843 

µA, P3=-1121 µA and P4=-1036 µA43. 

The goodness of fit using the normal component of modelled electric fields 

of classical M1 tDCS, network tDCS and a control tDCS paradigm (called 

network-mismatched tDCS) indicated that the network tDCS paradigm had a 

higher match with the motor network as indexed through weighted cross 

correlations43. 

The administration of 10-min network tDCS elicited higher corticomotor 

output in healthy individuals, as compared with classical M1 tDCS and the 

control tDCS paradigm at different time points as well significantly prolonged 

this excitation 60 minutes after while the control stimulations returned to 

baseline values43. This happened even though the normal and total electric 

fields induced on the left M1 were lower using the active network tDCS 

approach than sham network tDCS and classical M1 tDCS. Plus, evidence 

shows that the sensitivity of neural networks to weak electric fields e.g. 

induced by low currents, is higher than that of single neural units110, 

suggesting that stimulation of functionally associated regions may drive 

higher modulation. It has been established that classical tDCS protocols 

stimulating the left motor cortex with higher total output currents do not 

produce significantly higher corticomotor output111. In other words, higher 

stimulation intensities do not seem to be a determining factor to higher 

modulation of corticomotor excitability. 
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CHAPTER 3. NETWORK tDCS 

EFFECTS ON PSYCHOPHYSICAL 

RESPONSES 

The assessment of psychophysical and psychometric responses in the 

present PhD work comprises subjective pain scores (Study I, II and III), 

conditioned pain modulation (Study I) as well as psychometric 

questionnaires (Study I and III) such as the Positive and Negative Schedule 

(PANAS) to assess pain affect, the Pain Catastrophizing Scale (PCS) to 

assess catastrophizing thinking, and the Pittsburgh Sleep Quality Index 

(PSQI) to assess sleep quality. 

 

Figure 3-1: Psychophysical and psychometric assessments in the 

present PhD work. A) User-independent cuff-pressure algometry was 

applied on the calves to evaluate a CPM task (image modified from Gregoret 

et al., 2020). B) The CPM paradigm consisted of the test stimulus applied on 

the right calf (blue ramp) and the conditioning stimulus (yellow rectangle) on 

the left calf. The conditioning stimulus was applied at a constant pressure 

equal to 70% of the pain tolerance threshold of the left leg (previously 

measured) while the test stimulus ramped up starting from 0 kPa until the 

respondent could not tolerate the pressure any longer, pressing a button to 
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stop the stimulation. C) Diagram of study I.  After familiarizing every 

respondent with the general workflow of the experiment procedure (Fam.), 

each respondent completed a CPM task and filled out the psychometric 

questionnaires (Day1-baseline). After the 1st capsaicin application, subjects 

completed again the CPM task (Day1-post-cap). To assess the effects of 2 

sessions of tDCS and a 2nd capsaicin application, subjects filled out the 

psychometric questionnaires and completed the CPM task again. Subjects 

reported pain scores on a regular basis during the two-day experiment 

(except sleeping hours).  

3.1 PAIN, CPM EXPRESSION AND PSYCHOMETRIC 

RESPONSES DURING PROLONGED PAIN 

3.1.1. SUBJECTIVE PAIN SCORES ARE EXACERBATED OVER TIME 

The pain model in the three PhD studies (Study I, II and III) consisted of 2 

daily applications of topical capsaicin patches (8%, 4 x 4 cm2) on two 

different skin areas of the dorsum of the right hand113,114. Fixed at 0 (no pain) 

and 10 (worst pain imaginable)115, the subjects reported subjective pain 

scores using a verbal numerical rating scale (NRS) during in-lab hours, and 

using the visual analogue scale (VAS) during off-lab hours via pain diaries. 

To evaluate the temporal profile of this pain model, pain was reported 

regularly during in-lab hours (every 20 minutes in study I and II, and every 

10 minutes in study III). As a result of prolonged exposition to topical 

capsaicin, current and averaged pain scores significantly increased over 

time (Figure 3-2), as compared with the pain onset stage (Day2 vs Day1-

post-cap1). 

Pain scores in Study I, II and III were comparable to 1-hour65,66 and 24-hour 

topical capsaicin66 studies. The increased capsaicin pain observed in the 

present PhD work relies on increased peripheral nociceptive input, via the 

transient receptor potential vanilloid 1 (TRPV1) channels59 in polymodal 

small-diameter unmyelinated C and to, a lesser extent, myelinated Aδ 

fibers116. Such activation triggers a cascade of reactions117 and the onset of 

centrally induced pain mechanisms e.g. secondary allodynia6,59 and 

secondary hyperalgesia66,67 and decreased functional connectivity on hubs 

of the default-mode network66,67. Prolonged capsaicin pain also disrupts 

homeostatic plasticity as indexed through MEPs changes118. This 

homeostatic effect also happens in experimental muscle pain119 and in 

chronic low back pain patients120, as compared with healthy pain-free 

individuals. 
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Unlike previous research65,66, which applied one single capsaicin patch for 

24 hours, the present PhD work applied in total 2 capsaicin patches (on two 

different skin areas of the hand dorsum) per respondent in the same amount 

of time: the first patch on Day1 and the second patch on Day2 to ensure 

prolonged capsaicin pain given that Bement and colleagues reported 

reduced current pain scores after 24 hours using a 4 x 4 cm2 patch. 

 

Figure 3-2: A) Current and B) averaged pain scores combining all PhD 

studies. at Day1-post-cap and Day2. Current and averaged pain increased 

at Day2, compared with the initial pain stage (Day1-post-cap) in both active 

and sham groups. Significantly higher than Day1-post-cap (*, p<0.001). 
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3.1.2. CPM AND PSYCHOMETRIC RESPONSES ARE 
AFFECTED DURING PROLONGED PAIN 

The diffuse noxious inhibitory control (DNIC) system is a regulatory 

mechanism that inhibits nociceptive signals from the brainstem to the dorsal 

horn of the spinal cord in response to the activation of nociceptive 

pathways121,122. Descending pain inhibition can be assessed through CPM 

paradigms under the concept of “pain-inhibits-pain” often seen in healthy 

populations. Efficient CPM exerts a top-down pain reduction of a painful 

afferent input as a consequence of simultaneously or sequentially 

administering another painful afferent input heterotopically.  

The CPM paradigm in study I consisted of cuff-pressure algometry (Figure 3-

1A), applied on the right and left calves to deliver the test and conditioning 

stimulus, respectively. The conditioning stimulus was applied at 70% of the 

pain tolerance threshold (PTT) on the left leg (previously measured) while 

the test stimulus ramped up (Figure 3-1B) starting from 0 kPa until the 

respondent could not tolerate the pressure any longer, point at which they 

were asked to press a button to stop the stimulation. During that CPM task, 

subjects rated their perceived pain on the right calf using a digital VAS (0 no 

pain, 10 worst pain imaginable). The CPM-effect was finally calculated as 

the subtraction of the conditioned and unconditioned values at pressure pain 

detection thresholds (PDT) and PTT. 

The analysis revealed that CPM-effect significantly reduced during the initial 

stage of pain at PDT (Figure 3-3A), in line with previous work65. CPM-effect 

at PTT only became significant after the 24-hour period (Figure 3-3B) though 

a tendency for reduced CPM happened at the initial stage of pain, as 

compared to baseline CPM levels. These results are supported by the 

exacerbated catastrophizing and sleep quality levels after 24-hour pain in 

study I and also in prior work, wherein CPM expression is reduced by sleep 

deprivation123,124 and negatively correlated to pain catastrophizing levels125–

127 and pain duration72,128. 

Deficient descending pain modulation quantified by CPM tasks has been 

extensively described in chronic pain conditions73,129–132 and correlated with 

disrupted periaqueductal gray (PAG)-to-dorsal pons connectivity when 

compared with pain-free subjects129. At a cortical level, reduced CPM 

efficacy is also linked to an engagement of cingulate and prefrontal 

cortices133, which could be a reason behind inhibited CPM expression134.  
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Figure 3-3: CPM findings at A) pressure pain detection (PDT), and B) at 

pressure pain tolerance (PTT) thresholds in the active (black) and sham 

(gray) groups. Significantly lower in the sham group compared to Day1-

baseline (*, p<0.05). Significantly lower compared to the active group (#, 

p<0.05). 

Specifically, during capsaicin-heat pain, connectivity reduced in hubs of the 

default-mode network as well as the descending pain modulatory system68. 

Given that higher CPM effect was linked to higher functional connectivity 

between the M1 and the PAG135, modulation of such cortical activity may 

therefore represent an strategy for reverting pain neuroplasticity and 

potentially shape the descending pain modulatory system136,137.  
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3.2 PAIN, CPM, AND PSYCHOMETRIC RESPONSES AFTER 

tDCS 

3.2.1. SUBJECTIVE PAIN SCORES ARE NOT SIGNIFICANTLY 
MODULATED BY TDCS 

The subjective current and averaged pain scores (Study I and III) increased 

over time when considering the pain onset stage (Day1-post-cap in Study I 

and Day1-post-cap1 in Study III) and Day2), indicating a consistent painful 

response after both active and sham network tDCS (Figure 3-2) and no 

apparent influence of active network tDCS on pain modulation during 

prolonged pain. When combining subjects from all PhD studies, there is not 

a statistically significant analgesic effect of network tDCS either (see 

appendix C section i), defying the benefit of network tDCS as a method for 

analgesia. 

In line, prior work shows that a single session of classical M1 tDCS does not 

induce analgesic effects in heat pain30 and capsaicin-heat pain19 either. 

Further evidence shows that a small number of sessions (nr of sessions≤3) 

does not attenuate pain scores neither in chronic pain29,40 after classical M1 

tDCS, nor in experimental muscle soreness after multifocal M1-DLPFC 

tDCS7. It could be argued that a small number of tDCS sessions does not 

impact the pain system at the perception level even in sensitized individuals 

with long-lasting experimental and clinical pain. Challenging that hypothesis 

though, studies delivering multiple sessions of classical and multifocal tDCS 

of either M1 tDCS13, DLPFC tDCS138 and tDCS of the operculoinsular 

cortex138 did not induce pain relief as compared to sham stimulation. 

Attributed to placebo effects138, the sham stimulation also induced pain 

relief13,138 and improved quality of life38.  

Interestingly, in that same study, the 15 sessions of either active tDCS of the 

M1, the DLPFC and the operculoinsular cortex enhanced mood at a larger 

extent than sham138. In Study I, two sessions of active network tDCS kept 

pain catastrophising thinking comparable to baseline pain-free levels but not 

mood. On the same outcomes, the results of Study III showed non-

significant effects underlining the inter-subject variability of the pain model 

and of network tDCS. 
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3.2.2 CPM AND PSYCHOMETRIC RESPONSES ARE MODULATED BY 
TDCS 

The results of enhanced CPM following a facilitatory tDCS protocol27,36,101,103 

have been confirmed and expanded in Study I, where CPM at PTT was 

improved following active network tDCS, as compared to sham. A neural 

basis behind these results may be linked to M1 excitability changes ulteriorly 

affecting supraspinal pathways involved in CPM such as the periaqueductal 

grey matter (PAG)129 and rostral ventral medulla27,68, driving descending 

inhibitory volleys through the spinal cord. The analysis of Study I revealed 

that positive and negative affect remained significantly affected by capsaicin 

pain in both active and sham groups, while catastrophism and sleep quality 

significantly changed only in the sham group, as compared to baseline 

levels. The analysis of study III revealed positive affect exacerbated in both 

active and sham groups, but the remaining psychometric measures 

remained below statistical significance even though the sample size in both 

studies was comparable. Those results possibly display that network tDCS 

contributes to relieve certain aspects of the pain experience such as 

catastrophizing thinking and sleep quality but not reliably or at least it is 

dependent of a subject’s individual responsiveness to tDCS, to CPM27, 

and/or the pain model. 

In humans, Reidler and colleagues showed the first evidence of improved 

descending inhibition as measured with a CPM task following classical M1 

tDCS27. The facilitated CPM expression was later replicated by two research 

groups following focal M1 tDCS (ring configuration) in healthy pain-free 

individuals using a similar CPM paradigm26,103. Challenging these results 

though, focal M1 tDCS (ring configuration), DLPFC tDCS (ring configuration) 

and M1-DLPFC tDCS (ring configuration) did not significantly affect CPM in 

a healthy pain-free population7 and under experimentally induced muscle 

soreness7. Specifically during capsaicin pain, anodal M1 tDCS increases 

functional connectivity between the M1 and the PAG19, compared to 

cathodal tDCS and shows only a tendency compared with sham. Taken 

altogether, these pieces of evidence warrant further investigation of inter-

subject variability in the response to tDCS in different experimental pain 

models. 

In clinical cohorts, M1 tDCS improved CPM27,36,101,139 in osteoarthritis102, and 

post-surgical pain36, reducing in the latter cohort analgesics consumption 

after surgery compared with sham. Active M1 tDCS facilitated CPM effect 

compared with sham tDCS139,140, while hyperalgesia was induced through 
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the administration of a µ-opioid receptor agonist, suggesting that patients 

who develop opioid-related hyperalgesia may be a relevant target population 

for further tDCS studies and potentially benefit from M1 tDCS.  

It is important to note that active network tDCS did not significantly modulate 

CPM at PDT at Day2 (Figure 3-2A). A reason for such results may be related 

at least partly to placebo effects since tDCS blinding analysis shows a low 

guessing rate of the stimulation type (active, sham). Plus, the increased pain 

scores at Day2 may discard the possibility of increased CPM due to lower 

pain sensitivity or habituation to capsaicin effect. 

3.3 MAIN FINDINGS OF THE CHAPTER  

The main findings adding to the current knowledge are: 

1. Current and averaged pain increased over time when considering 

the pain onset stage (Day1-post-cap in study I and Day1-post-cap1 

in study III) and the 24-hour stage (Day2). 

2. CPM-effect was reduced at PDT at Day1-post-cap, as compared 

with Day1-baseline. CPM-effect was reduced at PTT at Day2 in the 

sham group, as compared with Day1-baseline. 

3. Affect was modulated but not consistently across Study I and III. 

Positive affect quantified by the PANAS questionnaire is the only 

one that was consistently modulated (and reduced) after 24-hours of 

pain in Study I and III. 

4. Active network tDCS modulated CPM-effect at PTT but not at PDT. 

5. Both active and sham network tDCS showed a tendency to 

increased CPM at pain detection levels on day 2. 
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CHAPTER 4. NETWORK tDCS 

EFFECTS ON EVENT RELATED 

POTENTIALS 

Event-related potentials are generally elicited through the repeated delivery 

of electrical, contact-heat, magnetic, auditory, or laser pulses, among other 

modalities. As a result of such stimulation, the nervous system integrates 

responses of varying amplitudes and latencies141–145. In the present work, 

event-related responses were studied based on motor-evoked potentials 

(MEPs – Study I) using single-pulse transcranial magnetic stimulation and 

electromyography (EMG – Figure 4-1A) and based on cortical event-related 

potentials (ERPs – Study II) to noxious electrical stimulation (Figure 4-1B) 

using electroencephalography (EEG). 

 

Figure 4-1: Electrode placement for A) MEPs (study I) on the dorsal part 

were collected placing bipolar electrodes on the belly of the first dorsal 

interosseus (FDI) muscle and a reference electrode on the ipsilateral ulnar 

styloid process, and B) cortical ERPs (Study II) on the distal volar side of the 

right arm (modified from Gregoret et al., 2021). C) Experimental diagram of 
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study I and II. After familiarization with the lab procedures (Fam.), MEPs and 

cortical ERPs responses were collected at baseline (Day1-baseline), after 25 

minutes of capsaicin application on Day 1 (Day1-post-cap), and after 

receiving a second capsaicin patch as well as two daily sessions of either 

active or sham network tDCS (Day2). 

4.1 MOTOR EVOKED POTENTIALS 

The interplay between pain and corticomotor responses can be studied non-

invasively using for instance single and double-pulse TMS. To infer 

corticomotor excitability indexed by the amplitude of MEPs, TMS is generally 

applied on the cortical representation of the primary motor cortex of a target 

muscle. Single-pulse TMS delivers monophasic pulses that, when above 

resting thresholds, elicit action potentials across corticospinal output 

projections145, which are evaluated through EMG placing i.e. bipolar 

electrodes on the belly of the target muscle and a reference electrode 

typically on a relevant non-muscular point. Given that TMS-induced MEPs 

over the first dorsal interosseus (FDI) muscle have acceptable intra-subject 

reliability in pain-free147 and painful states148, study I investigated 

corticomotor excitability selecting that hand muscle as target (Figure 4-1A).  

4.1.1. MODULATION OF MEPS AFTER PROLONGED EXPERIMENTAL 
PAIN 

In study I, the amplitude of MEPs did not significantly change 25 minutes 

after a first application of capsaicin, compared with pain-free baseline 

values. Martel and colleagues also found no significant changes in the TMS 

input-output recruitment curve 40 minutes after the application of low 

concentration topical capsaicin on the forearm149. Previous research 

described though reduced MEPs after 25 minutes of low concentration 

topical capsaicin application69,150 in a similar sample size. Pain intensity does 

not seem to justify the conflicting MEPs findings since pain scores were 

comparable in the publications that found and the publications that did not 

find significant MEP reduction. Three possible explanations for these results 

are linked to capsaicin concentration values (8% in study I and 1-3% in 

previous studies), to different targeted muscles (hand vs forearm muscles) 

and to the experiment design. Concerning the latter, a facilitatory impact on 

MEPs amplitude151 was observed when electrical phasic peripheral 

stimulation is delivered prior to (but not after) the administration of single-

pulse TMS, suggesting that experiments should be prudently designed to 
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prevent carry-over effects from stimulation of those modalities. Even though 

MEPs were collected systematically at the beginning of each assessment in 

Study I i.e., before recording cortical ERPs, two full assessments were done 

in the same day and approximately 60 minutes apart from each other. 

Consequently, that could explain the lack of MEPs changes during the initial 

stage of pain. 

After 24 hours with topical capsaicin, MEPs significantly decreased in the 

sham network tDCS group compared with pain-free baseline values and 

compared with Day2 values in the active network tDCS group (Figure 4-2). 

Although the underlying explanation of corticospinal inhibition during pain is 

still under debate, it has been suggested to be a transitory adaptive 

response to protect the body part under pain from further harm152–154 and to 

promote tissue recovery. Greater MEPs reduction has been connected to 

lower levels of kinesiophobia155 and lower pain severity during short-lasting 

pain156. In line, during short-lasting capsaicin pain, lower kinesiophobia 

scores were linked to greater reduction in the slopes of TMS-related 

recruitment curves157. Opposed to short-lasting pain, corticomotor inhibition 

is connected to higher pain severity during long-lasting experimental 

pain156,158. Based on those pieces of evidence, the time course of MEPs 

changes may indicate adaptive (short term – to promote recovery) and 

maladaptive (long term - maladaptive motor strategies, kinesiophobia, higher 

pain) responses. It is important to note there were no significant associations 

between MEPs depression and pain scores in Study I and other studies159. 

Thus, the degree of such associations is unclear, warranting further 

evaluation. 

On another note, pain-related corticomotor consequences may also be limb-

specific or muscle-specific. Hypertonic saline injected to the m. FDI 

decreased MEPs while identical doses injected to the extensor carpi radialis 

brevis muscle (using the same cortical hotspot) led to no significant 

excitability changes in the same cohort48. Hypertonic saline doses also 

elicited opposing MEPs responses between the upper and lower limbs154 in 

an otherwise healthy population. These pieces of evidence suggest that 

different muscles in the upper and lower limbs hold different motor strategies 

possibly related to survival or self-preservation behavior. Certainly further 

research is needed to evaluate whether and in, which degree self-

preservation strategies (i.e. kinesiophobia) are involved in the development 

of chronic pain157 or if they serve other purposes. 
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Combining the results of MEPs in study II and CPM in study I, no significant 

associations were observed between CPM effect and MEPs changes neither 

during prolonged pain nor after active tDCS (see Appendix C section ii). 

These results challenge the notion that higher corticomotor excitability is 

associated to higher hypoalgesia. Opposed to that, prior research has 

reported elevated MEPs along with greater CPM efficiency (negative values) 

in a healthy pain-free population160. The amplitude and duration of MEPs 

significantly correlated with CPM efficiency when CPM was administered 

using the cold pressor test and heat pain as conditioning and testing stimuli, 

respectively. The main differences with this PhD work are the presence of 

ongoing pain (capsaicin tonic pain vs pain-free individuals) and the CPM 

paradigm (cuff pressure algometry vs cold pressor test and heat pain). 

4.1.2. FACILITATION OF MEPS AFTER NETWORK TDCS 

While capsaicin pain progressed over 24 hours, study I indicates that active 

network tDCS facilitates corticomotor excitability compared to pain-free 

baseline values and to the sham group as well (Figure 4-2). In accordance 

with the present results, healthy pain-free individuals have exhibited 

facilitated MEPs after network tDCS43. These MEPs findings are in 

accordance with previous M1 tDCS work showing MEPs facilitation after 30 

min, 60 min, and in some cases, 120 min161 after the session is over, 

depending on the stimulation parameters (intensity, duration) and electrode 

montage162. 

Anodal M1 tDCS163–169 and multifocal tDCS paradigms targeting the M1 

bilaterally (anodal currents on both left and right M1)42,165 have also 

facilitated MEPs responses in pain-free states. It has been established that 

the aftereffects of classical anodal M1 tDCS include elevated MEPs along 

with elevated slopes of TMS I-O recruitment curves and I-waves, which are 

dependent, at least partly, on receptor efficacy and synaptic (possibly also 

non-synaptic) plasticity164. Generally, the synaptic mechanisms depend on 

pre-synaptic and post-synaptic activity. In the primary motor cortex (M1), 

these after-effects involve gamma aminobutyric (GABA) and glutamatergic 

calcium-dependent neurotransmitters through N-methyl-D-aspartate (NMDA) 

receptors108,161,163,164,170–173. 

Other studies though show statistically insignificant MEPs changes174 after 

active tDCS paradigms. Such opposing outcomes potentially underline intra-

subject and inter-subject variability to the response of both, single-pulse 

TMS and tDCS175,176 and differences in stimulation parameters, e.g. 



CHAPTER 4. NETWORK TDCS EFFECTS ON EVENT RELATED POTENTIALS 

45 
 

stimulation duration, intensity, and sham paradigms across studies. Whether 

these mechanisms are different when using network tDCS approaches, it 

remains unknown and exceeds the scope of this PhD work. 

Relative to cathodal and sham tDCS, anodal M1 tDCS lowered BOLD 

responses of the S1, otherwise elevated by capsaicin-heat pain. Anodal M1 

tDCS has additionally facilitated functional connectivity between the M1 and 

PAG177, as compared with cathodal M1 tDCS. When anodal M1 tDCS was 

applied in clinical cohorts, MEPs were facilitated in neuropathic29,178 and 

migraine patients 109. Under topical capsaicin pain, stimulation of the M1 

using (inhibitory) low frequency rTMS has resulted in elevated pain scores85, 

denoting possibly the pain modulatory capacity and state-dependency of the 

M1. Later work using the same pain model and (facilitatory) high frequency 

DLPFC rTMS has resulted in reduced pain scores69,179 along with increased 

MEPs and reduced ICI values. Combining these results, it appears to be that 

excitation of the M1 is to some extent linked to pain reduction while inhibition 

contributes to exacerbation of pain and lower connectivity between the M1 

and regions of the descending pain modulatory network. 

Anodal-left and cathodal-right M1 tDCS (a type of bilateral tDCS paradigm) 

did not significantly modulate corticomotor output neither in healthy 

individuals nor in stroke patients180. A later study using a similar bilateral 

tDCS paradigm also obtained no significant MEPs changes using single-

pulse TMS and no GABA and glutamate changes as measured with 

magnetic resonance spectroscopy181. Plus, tDCS studies applying higher 

currents on the M1 do not enhance MEPs more significantly either111. These 

pieces of evidence may support the notion that anodal currents over both the 

left and right M1 contribute to significantly higher MEPs than other 

paradigms (bilateral anodal(left) and cathodal(right) M1 tDCS, classical 

single-site M1 tDCS). 

On the whole, although repeated movements do restore corticomotor output 

in pain-free states (initially reduced by inhibitory cathodal M1 tDCS), this 

effect does not seem to occur when in pain182, possibly due to a lack of 

resolution of pain-related neurobiological mechanisms e.g. altered 

homeostatic plasticity and functional connectivity. Such MEPs results 

underline the role of tDCS in the counteraction of pain-related changes. 
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Figure 4-2: MEPs findings. A) Temporal profile and morphology of the 

averaged MEPs response of a representative subject at Day1-baseline, 

Day1-post-cap and Day2 (modified from Gregoret et al., 2019)). B) 

Corticomotor excitability at baseline before pain induction (Day1-baseline), 

after 25 minutes of capsaicin application on Day 1 (Day1-post-cap) and after 

the second capsaicin application as well as the two daily tDCS sessions on 

Day2 (Day2). Significantly reduced in the sham group compared with Day1-

baseline (*, p<0.05). Significantly reduced compared with the active group 

(#, p<0.05). (modified from Gregoret et al., 2021)). 
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4.2 CORTICAL EVENT-RELATED POTENTIALS TO 

NOXIOUS STIMULATION 

The aim of Study II was to understand how the central nervous system 

processes and integrates repeated noxious stimuli on an already sensitized 

system due to 24-hour experimentally induced prolonged pain and following 

network tDCS. 

 

The main outcome was the amplitude of N2P2 components of cortical ERPs 

at the CZ position recorded using a 32-channel EEG system following the 10-

10 international EEG configuration. To investigate the direction and 

magnitude of change of these cortical evoked responses, electrical pulses 

were delivered on the distal volar forearm (Figure 4-1B) by an electrical 

stimulator at two times the baseline electrical pain thresholds (EPTs) at 

varying interstimulus intervals fluctuating randomly from 8 to 12 seconds, 

while experimental pain developed on the hand dorsum. The explanation for 

such electrode placement (distal volar forearm) is to evaluate facilitated 

central mechanisms due to capsaicin exposure rather than solely peripheral 

mechanisms, and at the same time apply it on a skin area suitable for pin 

electrode placement. 

 

4.2.1. REDUCTION OF CORTICAL ERPS DURING PROLONGED PAIN 

N2-P2 components of cortical ERPs are biphasic deflections, which arise as 

a result of, among others, salient afferent stimulation and are mainly 

detected in the cingulate and the operculoinsular cortices91,113,184. The 2 

groups of subjects in Study II reduced N2P2 amplitudes 50 minutes following 

the first capsaicin application (Figure 4-3), supporting previous results of 

N2P2 depression after topical capsaicin administration144. Following the 

course of 24 hours, N2P2 responses remained reduced in the sham group, 

denoting the sustained suppression of these cortical responses under 

prolonged exposition to capsaicin. The N2P2 reduction could be due the 

contribution of spinothalamic tract  (STT) inhibition185, to a CPM-like effect, to 

habituation or to salience or attentional shifts from the electrical pulses 

towards topical capsaicin pain. Reduced N2-P2 amplitudes were observed 

when delivering laser pulses in the area of capsaicin-induced secondary 

hyperalgesia185,186. Such effect were attributed to STT inhibition185 in view 

that laser-related pain scores were not altered in the presence of facilitated 

central mechanisms. Study II applied instead electrical pulses on a 

widespread hyperalgesic area, underlying also facilitated central 
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mechanisms. Given that pain scores due to electrical pulses did not differ 

before and after capsaicin pain, STT inhibition may also be accountable for 

this depression.  

 

A CPM-like effect, on the other hand, is unlikely. Even though the application 

of a CPM paradigm with noxious withdrawal reflex as conditioning stimulus 

and auditory evoked potentials187 as test stimulus did result in reduced N2P2 

auditory responses, it is important to note that a significant effect of 

descending pain inhibitory volleys in Study II is dubious because electrical 

pain thresholds and pain scores due to the electrical pulses remain 

remained statistically not different and those stimulations were homotopically 

applied. Additionally, a lack of CPM-like effects have been previously 

reported when delivering a battery of QST under prolonged capsaicin pain65.  

 

Habituation to electrical stimulation has also been connected to reduced 

cortical responses when the stimulation frequency of the stimulation pulses 

was constant109,188,189. As previously mentioned though, the applied 

stimulation frequency in Study II fluctuated randomly between a range of 

0.08 Hz to 0.125 Hz (8 to 12 seconds of interstimulus interval) minimizing a 

habituation effect. 

 

N2-P2 ERPs are also subject to modulation by attentional shifts187,190–192 and 

may therefore be a salience proxy of a given afferent input189,193 rather than 

solely nociceptive input. The administration of nociceptive laser and non-

nociceptive electrical stimulation on the right hand dorsum as well as the 

delivery of auditory and visual stimuli elicits N2-P2 responses113,194, 

indicating that N2-P2 cortical ERPs are non-specific to pain but strongly 

linked to the salience appraisal across all modalities193. To support this, an 

exploratory analysis of Study II shows that N2 amplitudes (and not P2 

amplitudes) significantly reduced at 50 minutes after capsaicin application 

(see Appendix C section iii) in both active and sham groups. Future studies 

are warranted to explore attentional reorientation187, salience, and 

unpleasantness in both early stages (Day1-post-cap in Figure 4-1) and in 

prolonged stages (Day2 in Figure 4-1) of pain through e.g. attentional 

scales. Simultaneous sensory and painful stimulation, in fact, "compete for 

representation” within the upper nervous system113,191,192,195,196. 

 

Finally, the direction of change of cortical ERPs responses seems to be 

dependent of the type of pain model (deep, intradermal, or superficial) and 

distinct levels of pain severity and pain duration. While topical capsaicin 
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reduces N2P2 amplitudes144, intradermal capsaicin, by contrast, increases 

N2-P2 amplitudes when the stimulation pulses are applied on the area of 

secondary hyperalgesia56. Opposing directions of change are also observed 

in other cases e.g.  suppressed S1 processing (early ERPs) in other models 

like hypertonic saline solution151,197 and elevated S1 activity under 

experimental muscle62 and clinical pain141. 

 

 

Figure 4-3: Cortical ERPs findings. Scalp topographies at Day1-baseline, 

Day1-post-cap, and Day 2 in the active and sham groups of A-B) N2, and C-

D) P2 responses. Grand average (above) of the N2P2 component of ERPs 

to noxious stimulation after E) active and F) sham network tDCS (modified 

from Gregoret et al., 2023). Mean (±SD) of N2P2 peak-to-peak amplitudes in 
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the G) active and H) sham groups. Significantly reduced compared with 

Day1-baseline levels (*, p<0.05). Significantly increased compared with 

Day1-post-cap (#, p<0.05). Significantly increased compared with the sham 

group (¤, p<0.05). Reprinted from Journal of Pain®. Gregoret, L; Zamorano, 

A; Graven-Nielsen, T. “Multifocal tDCS targeting the motor network 

modulates event-related cortical responses during prolonged pain” Vol 24, 2, 

p. 226-236. Copyright 2023 with permission from Elsevier. 

4.2.2. CORTICAL ERPS ARE FACILITATED AFTER NETWORK TDCS 

Unlike corticomotor output, the impact of tDCS on cortical ERPs remains 

less explored. This means there is a scarce number of scientific publications 

evaluating the influence of tDCS on these cortical outcomes. The findings of 

Study II reveal that network tDCS antagonizes N2-P2 inhibition during 

prolonged pain, as compared with sham levels and with values before 

receiving tDCS (Figure 4-3). Csifcsak and colleagues obtained reduced 

N2P2 responses after cathodal M1 tDCS but no changes after anodal M1 

tDCS in healthy pain-free individuals198, whereas in a different study also in 

healthy pain-free individuals, N2-P2 amplitudes elevated after anodal M1 

tDCS199. It is important to observe the significant rise in that study occurred 

as compared with baseline (rather than when compared with sham)199. In 

view of that evidence in pain-free individuals, the results of this PhD work 

may be related at least partly to the input specificity of LTP-like changes 

after anodal direct current stimulation observed in invitro studies200. This 

implies that pathways with facilitated ongoing activity (at context-related 

synapses) will undergo further modulation200 as opposed to pathways with 

low ongoing activity. Direct current stimulation may promote, in other words, 

synaptic plasticity in neural pathways already experiencing certain degree of 

neural plasticity. To support that, tDCS109 and rTMS201 of the M1 modulated 

N2P2 responses in chronic patients while N2P2 results in healthy pain-free 

individuals are less conclusive in both rTMS202 and tDCS174,198.  

 

Interestingly, under capsaicin pain, inhibitory low frequency rTMS reduced 

N2P2 amplitudes compared with sham rTMS85, showing an opposite 

direction of change as compared with facilitatory NIBS paradigms, including 

network tDCS. Other network-based tDCS paradigms targeting 

simultaneously the premotor area, supplementary motor area, and the M1 

enhanced modulation of electrophysiological responses when compared 

with focal tDCS (ring configuration) targeting solely the M1203. 
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As discussed in chapter 3, network tDCS did not modulate pain at the 

perception level since pain scores due to electrical pulses remained 

comparable in both active and sham groups. Opposed to that, under 

capsaicin pain, low frequency rTMS led to N2P2 reduction accompanied by 

higher pain scores85. Those results possibly hint different modulatory 

capacities of these 2 NIBS (tDCS vs rTMS). 

During thermal pain stimulation, anodal M1 tDCS has reduced regional 

cerebral blood flow (rCBF) in the anterior insula30, a region associated with 

salience detection113 and considered, alongside the dorsal ACC, one of the 

primary nodes of the salience network204. Decision-making related to 

salience is also associated to this subregion (anterior insula) though. An 

exploratory analysis of Study II indicates that tDCS significantly modulated 

the P2 but not the N2 amplitudes (see Appendix C section iii) during 

prolonged capsaicin pain. Whereas the N2 components of evoked potentials 

is commonly associated to salience detection, the P2 components are 

attributed to perceptual processing but both influenced by attention191.  

4.3 MAIN FINDINGS OF THE CHAPTER 

The main findings adding to the current knowledge are: 

1. Reduced N2-P2 and N2 amplitudes after 50 minutes of capsaicin 

pain. 

2. Reduced N2-P2, N2 and MEPs responses after ~24-hour pain in the 

sham group only. 

3. Capsaicin pain produces a reduction of cortical (N2P2) and 

corticospinal (MEPs) responses, but it seems they occur at different 

times. 

4. Active network tDCS facilitates cortical and corticospinal responses, 

compared with sham stimulation. 

5. Specifically, active network tDCS significantly facilitates N2-P2 and 

P2 amplitudes, as well as MEPs. 
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CHAPTER 5. NETWORK tDCS 

EFFECTS ON RESTING-STATE EEG 

This chapter shows the findings of the frequency analysis of resting-state 

EEG activity after active and sham network tDCS. The main EEG outcomes 

were the peak alpha frequency (PAF) and alpha power in the 8-12 Hz range. 

PAF was estimated using the center of gravity205–207 (CoG) formula and 

alpha power was quantified with fieldtrip routines208. The experiment design 

of Study III is illustrated in Figure 5-1 representing the EEG assessments 

before pain induction (Day1-baseline), 25 minutes and ~90 minutes after the 

first capsaicin application (Day1-cap1 and Day1-cap2, respectively) and on 

Day 2 after receiving the second tDCS session. In every assessment, 

resting-state EEG was collected for 4 minutes with eyes closed while 

subjects sat comfortably on a chair. 

 

Figure 5-1: Experimental design of Study III. EEG activity was recorded at 

the beginning of Day1 (Day1-baseline), 25 minutes (Day1-post-cap1) and 

~90 minutes (Day1-post-cap2) after the first capsaicin patch application, and 

25 minutes after the second capsaicin patch application on Day 2 (Day2). 

Each topical capsaicin patch was applied at the end of Day1-baseline 

assessments and 5 minutes before the end of 2nd tDCS session at Day2. A 

session of network tDCS (active, sham) took place at the end of Day1 and at 

the beginning of Day2. 

5.1 NINETY-MINUTE AND 24-HOUR EXPERIMENTAL PAIN 

MODULATES THE FREQUENCY OF ALPHA OSCILLATIONS 

Study III adds to the evidence of decreased PAF, in this case, after 90 

minutes (Figure 5-2 – in both active and sham groups) and after 24-hour 

pain (sham group only). Past research has reported decreased PAF during 

short-lasting heat pain for approximately 5 minutes209 and capsaicin-heat 

pain after approximately 20 minutes of incubation210,211. Longer-lasting pain 

models through NGF injections and exercise-induced DOMS reduced PAF 
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(centroparietal and parietooccipital) after 6 days of pain induction while 

performing eccentric muscle contractions of the wrist, underlining to an 

extent the role of ongoing pain on PAF modulation. Importantly, when 

subjects were at rest, there were not significant PAF changes, which could 

be credited to the absence of ongoing pain in that pain model. 

Reduced PAF also arose during both sensory (warm) and aversive 

(auditory) stimulation209. Such results suggest that PAF is modulated 

at sensory, attentional, and affective (unpleasantness) levels. Capsaicin-

heat pain has reliably reduced PAF (after approximately 20 minutes of 

incubation), linking it to reduced alpha power in the 10-12 Hz range206. The 

sensitivity to and the presence of pain were attributed in that study to such 

PAF and alpha power reduction, respectively. It is important to note that 

alpha power reduced on the ipsilateral side to pain stimulation and 

contralateral side to the hand that rated pain perception, which pose 

methodological differences with Study III (pain was rated in a verbal NRS 

after EEG recordings, alpha power was assessed in central electrodes i.e., 

CZ, C3 and C4). PAF reductions have also been observed in other 

manipulations i.e., PAF is not exclusively modulated under a painful 

experience. PAF has decreased during cognitive tasks in both healthy pain-

free individuals212  and traumatic brain injury patients213. 

 

Figure 5-2: PAF findings during pain. Mean PAF (±SD) during pain 

development at Day1-baseline, Day1-post-cap1, and Day1-post-cap2 in the 

active and sham network tDCS groups. Significantly reduced compared with 

Day1-baseline (*, p<0.05). 
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PAF modulation is therefore context-dependent and also possibly dependent 

of both, the presence of ongoing pain and the duration of pain214. In line, 

PAF in study III decreased after 90 minutes but not after 25 minutes of 

capsaicin application under this sample size. Previous research indicates 

that PAF is not reduced in healthy individuals following circa 20 minutes of 

capsaicin-heat pain205 as well as following 4 days of muscle soreness215 

(whereas 6 days do reduce PAF). Given that the signal processing method 

and sample sizes of the current PhD study are comparable to them, it could 

be presumed these differences rely in part on the temporal dimension of 

pain. PAF of a clinical population has indeed correlated to each 

patient's pain duration214. Despite the fact that the mechanisms driving PAF 

reduction during experimental pain is under debate, PAF studies in 

neuropathic cohorts regard PAF slowing (as opposed to healthy controls) to 

corticothalamic dysrhythmia77. While alpha power modulation appears to be 

paradoxical in clinical and experimental pain (alpha power is bolstered in 

clinical pain and lessened in experimentally induced pain), PAF appears to 

be consistently reduced in both experimental and clinical tests. Although 

based on conjecture, prior77,209 and current evidence suggest that PAF 

reduction is related to sensory input209 and pain presence instead of to 

maladaptive/adaptive neuroplasticity. 

5.1.1. SLOWER PAF DURING PAN-FREE STATES IS LINKED TO 
HIGHER PAIN SCORES DURING CAPSAICIN PAIN 

The present work expands the role of baseline PAF during pain-free states 

to higher future pain severity. Study III showed a negative correlation 

between PAF at Day1-baseline and averaged pain in off-lab hours. In line, 

individuals with slower PAF have been connected to higher self-reported 

pain as measured through VAS scales during experimentally induced 

capsaicin-heat pain70,205 and muscle soreness at rest71,210,211. This same 

response pattern has been shown in neuropathic patients77. Even though the 

EEG analysis in the present work focused in the central area (C3, CZ, C4), 

evidence shows this effect occurs in multiple regions77 or in the whole 

scalp216. 

5.1.2. TWENTY-FOUR HOUR PAIN DID NOT SIGNIFICANTLY 
MODULATE ALPHA POWER 

The lack of significant alpha power modulation in Study III supports 
prior research under phasic heat pain, tonic capsaicin-heat pain and NGF-
induced muscle pain at rest70,205,207,211. Clinical research also shows no 
significant alpha power differences between patient populations and healthy 
pain-free controls, despite the fact that PAF is lower in the former group 
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(patients)214. This is supported by studies from other research groups, 
wherein no significant alpha modulation of neither local nor global metrics 
occurred under chronic low back pain, compared with healthy controls217. 
Conversely,  tonic heat pain did reduce alpha power while administered for 
approximately 5 minutes209. The primary distinctions between that recent 
study and this PhD study are the nature of experimental tonic pain (heat pain 
vs capsaicin pain), intensity, duration, and CoG extraction method (multiple 
ICs vs one single IC). Source-localized analysis as well as local and 
connectivity metrics indicate reduced alpha oscillations on the contralateral 
sensorimotor cortex under also tonic heat pain on the left and right 
hands51,218. Alpha power reduction was also reported during the cold pressor 
test for approximately 1.5 minutes219 using a different extraction method 
(unrelated to components of ICA). These pieces of evidence emphasize that 
alpha modulation may be dependent to the type of pain (short-lasting and 
long-lasting experimental pain and clinical pain) and/or the extraction 
method. 
 
Connecting the work of the previous and this thesis chapter, past research 

has linked EEG alpha activity and MEPs amplitudes. In short, it was 

established that the higher the alpha power, the lower the MEPs amplitudes 

in pain-free healthy individuals. The opposite also applies i.e. the lower the 

alpha power, the higher the MEPs amplitude. For example, power spectral 

density analysis using a low-density EEG system and MEPs induced by 

single-pulse TMS at the cortical motor representation of the abductor pollicis 

brevis muscle of the right hand negatively correlated alpha power before 

TMS pulses to the amplitudes of subsequent MEPs220. Later, a different 

research group, using source localization algorithms aimed to characterize if 

this MEPs-alpha power association was confined to a specific cortical region 

(local oscillations) or a widespread brain response in the alpha range (global 

oscillations). The link between alpha power before TMS and MEPs 

amplitude was significant only when evaluating alpha power on the 

sensorimotor cortex221, hinting a local effect. This is also supported by EEG 

studies investigating the impact of motor tasks on alpha oscillations. For 

instance, local alpha activity at central electrodes is modulated when 

performing finger motor tasks 222–225. 

More recent research using EEG-based source localization analysis through 

low resolution brain electromagnetic tomography (LORETA) algorithms and 

TMS reveal that alpha activity increased over the left DLPFC after 

approximately 40 minutes of 1% capsaicin application149, as compared with 

pain-free states. As compared to the remaining subjects, M1 activity 

increased in the beta range as well as M1-precuneus connectivity but only 

amongst subjects with decreased recruitment curve slopes. The 
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differential responses observed in that study signal that pain influences the 

motor system, but that effect varies on an individual basis. 

 

5.2 NETWORK tDCS FACILITATES PAF DURING 

PROLONGED EXPERIMENTAL PAIN 

After two sessions, active network tDCS improved central PAF values when 

compared with sham network tDCS and pre-tDCS levels (Figure 5-3), but 

alpha power was not significantly affected. It has long been assumed that 

alpha activity directs sensory processing in a rhythmic manner, with states of 

alpha oscillation desynchronization associated with higher neural processing 

and synchronization with its downregulation224,226. PAF enhancement in the 

central region (C3, Cz, C4) may thus be linked to reduced sensory 

processing227 and increased idling228,229. One session of classical M1 tDCS 

increased PAF in healthy individuals, which could be attributed to 

endogenous opioid release because of elevated pressure pain thresholds 

(PPTs) and lowered negative affect230. PAF is also increased following 

intense but not low intensity physical activity, which could rely partly on 

exercise-induced opioid discharge231,232. PAF was found to be higher after 

classical DLPFC tDCS in patients with neurodevelopmental disorders233, 

possibly due to increased alpha coherence between the temporal and 

prefrontal regions. Given the lack of significant pain modulation by active 

network tDCS in the current study, the rise in central PAF could be attributed 

to a direct increase in cortical excitability through non-synaptic mechanisms 

following active tDCS. This relies on the fact that the network tDCS montage 

delivers anodal currents over the central electrodes (C1, C3, C2, C4, and 

T8), changing the resting membrane potential of the nerve cells (dendrites 

and axons) under the stimulation electrodes towards depolarization (inward 

flow). Generally, the change of resting membrane potential depends on the 

intensity and polarity of the electrical current (inward or outward 

flow)29,170,234,235, on the specific cortical target (somatodendritic 

compartments, interneurons and axon endings), the spatial orientation of 

those targets relative to the induced electric field, and possibly also, to 

disease-related neuroplasticity94.  

As opposed to the mentioned studies, it was reported that M1 tDCS 

influences and elevates PAF on distant regions of interest, such as the 

occipital cortex230. That presumption may be, thus, debatable. According to 

3D computational modelling and functional connectivity analysis using 

magnetic resonance imaging, network tDCS creates a lower electric field 

and current density on the M1 than other montages such as classical M1 

tDCS and network-mismatch tDCS43. Finally, when assessed using single-

pulse TMS, network tDCS elevated corticomotor output outperforming the 
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mentioned paradigms, signaling that tDCS effects are at least partly 

mediated by cortical and spinal excitability changes. 

Classical M1 tDCS causes referred excitability changes on hubs of the 

salience and descending pain modulatory networks, which are involved in 

pain integration and regulation4,19,167,234,236 but does not seem to affect self-

reported pain perception30. The current PAF results were significant when 

subjects with an average pain of at least 2 on a 0-10 NRS scale were 

considered205, highlighting the importance of models that evoke moderate 

prolonged pain. In line with that, as already mentioned in a previous chapter, 

M1 tDCS attenuated the integration of pain during a TSP paradigm when 

administering pulses at suprathreshold but not at threshold painful levels41. 

Likewise, tDCS over the M1 and DLPFC has reduced the perceived pain 

during a TSP paradigm with cuff-pressure algometry7 when experiencing 

muscle soreness but not in a pain-free population, signaling that tDCS may 

act upon affected nociceptive systems with facilitated central mechanisms 
19,177. 

 

Figure 5-3: Peak alpha frequency (PAF) findings after tDCS. PAF 

increased at Day2 in the active network tDCS group, compared with Day1-

post-cap2 and with sham. Significantly increased compared with Day1-post-

cap block 2 (*, p<0.008). Significantly higher compared with sham network 

tDCS group (#, p<0.02). 

The absence of significant alpha power changes after network tDCS adds to 

the existing literature. In healthy individuals, tDCS transmitted over the M1 

influenced alpha power as compared with cathodal tDCS but not compared 
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with sham237, whereas tDCS applied over the DLPFC elevated delta and 

theta power but not alpha power229. When compared with sham stimulation, 

five daily sessions of classical anodal M1 tDCS lowered both alpha power in 

the frontoparietal cortex and pain perception in fibromyalgia patients238. In 

healthy individuals, alpha power changed following one session of anodal 

tDCS applied over the DLPFC239, the posterior parietal and the occipital 

cortices237,240. A posterior study detected reduced global alpha power, 

compared with sham, immediately after both anodal and cathodal M1 tDCS, 

indicating that tDCS effects on alpha power may be independent of the 

stimulation polarity241. 

5.3 MAIN FINDINGS OF THE CHAPTER 

The main findings adding to the current knowledge are: 

1. After 90 minutes of capsaicin application (called Day1-post-cap2 in 

Figure 5-1), both groups (active and sham) reduced PAF, compared 

with baseline levels. 

2. Two sessions of active network tDCS significantly increased PAF, as 

compared with PAF values after 90-minutes of capsaicin pain on 

Day1 and as compared with the sham group on Day2. 

3. Alpha power showed no significant main effects nor interactions 

across the 2-day experiment. 
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CHAPTER 6. CONCLUSION & 

LIMITATIONS 

The main goals of this PhD thesis were to evaluate the time course of 

subjective pain and a set of psychophysical as well as psychometric 

responses (study I, II and III), event-related potentials (study I and II) and 

resting-state EEG activity (study III) after undergoing network tDCS during 

24-hour experimental pain (Figure 6-1). 

 

Figure 6-1: Schematic with main findings of Studies I, II and III. 

6.1 CONCLUSION 

The results of this PhD project provide insights and expand the 

understanding of the time course and direction of change during prolonged 

pain states and after a facilitatory tDCS protocol using neurophysiological, 

psychophysical, and psychometric measures. 
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The proposed capsaicin pain model induced prolonged pain for 

approximately 24 hours. Positive affect was exacerbated consistently 

(studies I and III), whereas negative affect, pain catastrophizing and sleep 

quality were influenced but inconsistent (Study I vs Study III). CPM effect 

was significantly reduced at PDT after approximately 60 minutes of first 

patch application in both groups (active and sham), compared with baseline. 

CPM effect at PTT was inhibited only after 24-hour pain in the sham group 

while the active tDCS group of subjects showed facilitated CPM expression. 

N2P2 amplitudes of ERPs showed inhibited responses after approximately 

50 minutes of first patch application (Study II). PAF were significantly 

reduced after 90 minutes in both active and sham groups (Study III).  

After 24-hour pain, active network tDCS induced long-lasting 

neurophysiological changes i.e. facilitated corticomotor excitability, 

amplitude of N2P2 components of ERPs as well as PAF, while inhibition of 

those parameters occurred during the same window of time after sham 

network tDCS. Adding to previous research, this tDCS paradigm did not 

modulate pain perception in Study I, II and III, emphasizing the limitations it 

poses for analgesic applications. 

The work shown in this PhD thesis explored the feasibility of applying a 

comprehensive set of neurophysiological, psychophysical, and psychometric 

measures aimed at characterizing prolonged pain states from different 

edges and angles. This type of studies can contribute to minimize the impact 

of confounding factors and the many variables involved in pain studies, and 

can open the door to multimodal triangulation of results e.g. how resting 

motor thresholds are connected to tDCS-driven modulation of sensory 

evoked potentials or how CPM baseline levels are connected to tDCS-driven 

modulation of affect, to name a few. 

6.2 LIMITATIONS 

Even though, the reliability of the 24-hour capsaicin pain model is warranted, 

it has been established that corticomotor excitability is stable in half-an-hour 

periods242 and shows acceptable reliability during short-lasting and long-

lasting periods 242–245. Pain scores246, CPM247, N2P2 cortical ERPs248 and 

EEG frequency249 metrics also showed acceptable reliability. Taken 

together, these findings indicate that the electrophysiological and 

psychophysical measures used in this study are not sensitive to time effects. 
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This PhD work lacked a control group of healthy pain-free individuals to 

understand if the neurophysiological and psychophysical changes are due to 

a time effect. Since classical M1 tDCS was not included either, the 

conduction of experiments including a group receiving classical M1 tDCS 

would help to understand if the observed effects are linked to the motor 

network rather than the simulation of the left motor cortex. 

The conclusions of this PhD work show that tDCS can modulate 

neurophysiological responses (studies I, II and III) and based on study I, 

psychophysical responses during pain. It cannot be ruled out though that this 

modulation may not be directly associated to pain intensity albeit to shifts of 

salience or unpleasantness. Future work should consider then a thorough 

experiment design, wherein salience as well as unpleasantness are 

investigated for 24 hours and after tDCS sessions. 

6.2. IMPLICATIONS 

The implications for future studies in this field are: 

Evaluate neurophysiological (MEPs, cortical ERPs, PAF and alpha power) 

and psychophysical (sensory and pain thresholds, CPM, TSP) responses 

once experimental capsaicin pain subsides or when suppressing capsaicin 

pain by cooling down the capsaicin patch area. 

Chronic pain and prolonged experimental pain involve maladaptive and 

adaptive neuroplaticity, respectively. Network tDCS studies in clinical 

populations may throw light into the time-course as well as the direction and 

magnitude of changes in those systems.  

These evaluations should be tested with the so-called “active” sham or 

network-mismatched tDCS, where 4mA of total output current are delivered 

throughout the 20-min sham stimulation. 

Electrode placement for the network tDCS paradigm is based on 

neuroimaging scans of a small number of subjects (reported by Fischer et al 

2017) and adapted using the international 10-10 EEG system. Anatomical 

differences should be accounted for in the future to achieve optimal 

electrode positions for every respondent. 
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Appendix A. Overview of studies 
investigating the effects of tDCS with 
M1 montages on electrophysiological 
and psychophysical outcomes 

A summary of studies targeting the M1 though multifocal tDCS, focal tDCS, 

and (from 2015 and onwards) classical tDCS are listed in this appendix with 

the following highlights: the specific tDCS montage (target area), the number 

of tDCS sessions, the total delivered current, the duration of each session 

and the type of sham protocol (“active” sham, passive sham).  

Authors Year 
tDCS 

Montage 
Protocol Main findings 

Zaki 

Hanna et 

al (Bulletin 

Neuro) 

2023 

Sequential 

bilateral M1 

tDCS 

5 

sessions. 

2 mA. 40 

min. 

Passive 

sham 

↓ pain scores and ↓ range of 

movement after active tDCS in 

post-surgical neuropathic 

patients, as compared with 

baseline. 

Andre-

Obadia et 

al 

(Neurother

apeutics) 

2023 

Classical 

anodal M1 

tDCS, hf M1 

rTMS 

5 

sessions. 

2 mA. 20 

min. 

Passive 

sham. 

Similar % of responders in both 

rTMS and tDCS. ↓ pain scores  

(29% reduction) in responders to 

anodal M1 tDCS in drug resistant 

neuropathic pain. 

Baik et al 

(Life) 
2023 

Classical 

anodal right 

M1 tDCS 

10 

sessions. 

2 mA. 20 

min. 

Passive 

sham. 

No significant improvement in 

pain, depression, and quality of 

life in patients with central post-

stroke pain, compared to sham. 

Compared to baseline, the active 

tDCS group improved depression 

and quality of life. tDCS effects 

depend on the lesion location. 

Kold et al 

(Eur 

JPain) 

2023 
M1-DLPFC 

tDCS 

3 

sessions. 

4 mA. 20 

min. 

↓ Temporal summation of pain in 

the active tDCS group in 

individuals sensitized with 

experimentally induced muscle 
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Passive 

sham. 

soreness. 

Gregoret 

et al 

(JPain) 

2023 

Multifocal 

tDCS of the 

motor network 

2 

sessions. 

20 min. 

Passive 

sham 

↑ N2P2 amplitudes compared with 

sham during pain. Pain sensitivity 

was not significantly changed 

compared with sham. 

Jiang et 

al 

(Neuroscie

nce 

letters) 

2022 

Focal M1 

tDCS (ring 

configuration), 

focal DLPFC 

tDCS (ring 

configuration), 

sham tDCS 

1 session. 

2 mA. 20 

min. 

Passive 

sham 

↑CPM after M1 tDCS. No 

significant CPM changes after 

DLPFC tDCS and no significant 

changes in pain sensitivity after 

M1 and DLPFC tDCS tDCS. 

Ianonne 

et al 

(Neuroscie

nce 

research) 

2022 

Focal Right 

M1 tDCS (ring 

config), 

classical M1 

tDCS, sham 

1 session. 

2 mA. 25 

min. 

Passive 

sham 

↑motor learning after M1 tDCS, 

compared with sham. 

Calzolari 

et al 

(BioRXiv) 

2022 

M1 classical 

tDCS, 

cerebellum 

classical 

tDCS, sham 

1 session. 

2 mA. 20 

min. 

Passive 

sham. 

M1 tDCS induces distant changes 

on the cortex, thalamus, and 

cerebellum. 

Beumer 

et al  

(Brain 

Science) 

2022 
classical and 

focal M1 tDCS 
- 

Data driven workflow using 

neuroimaging (MRI and EEG) and 

tDCS (customized tDCS 

protocols) to identify 3 steps: 

tissue segmentation, source 

localization and stimulation 

optimization. 

Samartin-

Veiga et 

al 

(Pain) 

2022 

left M1 tDCS, 

Left operculo-

insular tDCS, 

left DLPFC 

tDCS 

15 

sessions. 

2 mA. 20 

min. 

passive 

sham. 

↓ anxiety and ↓ depression after 

M1, operculo-insular, and DLPFC 

tDCS, compared with sham. 

https://www.sciencedirect.com/science/article/pii/S0168010222000062
https://www.sciencedirect.com/science/article/pii/S0168010222000062
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Samartin-

Veiga et 

al 

(Qual. Life 

Res.) 

2022 

left M1 tDCS, 

Operculo-

insular tDCS, 

DLPFC tDCS, 

passive sham 

15 

sessions. 

20 min. 

Quality of Life (QOL) was not 

significantly different compared 

with sham. 

Swissa et 

al 

(Scientific 

reports) 

2022 

S1 multifocal 

tDCS, M1 

multifocal 

tDCS, sham 

tDCS 

1 mA. 15 

min. 

Passive 

sham 

↓ Reaction time and endpoint 

error in men. ↓ Reaching 

movement time in women 

Van der 

Cruijsen 

et al 

(Frontiers 

Human 

Neuro) 

2022 

Multifocal 

tDCS, classic 

M1 tDCS, 

sham tDCS 

1 session. 

4 mA. 12 

min. 

Passive 

sham. 

Neither classic M1 tDCS nor 

multifocal tDCS increased MEPs 

(baseline normalized) in healthy 

pain free individuals compared 

with baseline or sham at any time 

point. 

Kold et al 

(JPain) 
2022 

Focal M1-

DLPFC tDCS 

(ring 

configuration), 

sham tDCS 

3 

sessions. 

4 mA. 20 

min. 

Passive 

sham. 

↑ pressure pain thresholds in both 

active and sham, compared with 

baseline levels 

DaSilva 

et al (Front 

Pain Res) 

2022 
Bilateral M1 

tDCS 
2 mA.- 

Comparison of lab-based and 

home-based montages for 

bilateral M1 tDCS. 

Machado 

et al250 

(Scientific 

reports) 

2021 

Focal M1 

tDCS (ring 

configuration), 

M1 classical 

tDCS 

1 session. 

2.4 mA. 

20 min. 

Active 

sham 

Endurance athletes did not have 

significant changes in exercise 

performance and 

psychophysiological responses 

neither after classical tDCS nor 

focal tDCS, compared with active 

sham. 

Gregoret 

et al 

(EurJpain) 

2021 
tDCS of the 

motor network 

2 

sessions. 

4 mA. 20 

min. 

Passive 

↑ MEPs (log transformed) and 

CPM (PPT) compared with sham 

during pain while pain sensitivity 

was not significantly changed. 
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sham 

Masina et 

al 

(Scientific 

reports) 

2021 

Focal Right 

M1 tDCS 

(Ring config.), 

classical right 

M1 tDCS. 

1 session 

each. 2 

mA. 20 

min. 

Passive 

sham. 

↓ alpha power after right M1 tDCS 

with lower alpha power at 

baseline. 

Kold et al 

(Pain) 

2021 

Focal M1 

tDCS, DLPFC 

tDCS, M1-

DLPFC tDCS 

(ring config.). 

3 

sessions 

each. 20 

min. 

Passive 

sham 

No significant changes in pain 

sensitivity in any active tDCS 

paradigm, compared with sham in 

healthy pain-free individuals. 

Handiru 

et al  

(IEEE EMBC) 

2021 

Focal M1 

tDCS (ring 

configuration) 

1 session. 

2mA. 20 

min. 

Focal M1 tDCS was applied in 

chronic stroke patients. Stroke-

related lesions were included 

automatically into the model. 

Maezawa 

et al (Brain 

stimulation) 

2020 

Multifocal 

bilateral 

anodal M1 

tDCS (4 mA), 

classical M1 

tDCS (2 mA) 

 

1 session. 

20 min. 

Passive 

sham 

↑ MEPs after classic M1 tDCS 

and bilateral anodal M1 tDCS, 

compared with sham. ↑ muscle 

force after bilateral anodal M1 

tDCS compared with sham. 

They propose that current density 

(mA/cm2) is key in increasing 

MEPs and psychophysical 

responses. 

Meeker 

et al (Front 

Human 

Neur) 

2019 

Anodal and 

cathodal M1 

classical tDCS 

1 session. 

1 mA 20 

min. 

Passive 

sham. 

Under capsaicin-heat pain, anodal 

M1 tDCS normalized 

neurophysiological responses on 

the descending pain modulatory 

network. 

Chen et 

al 

(IEEE EMBS) 

2019 

tDCS of M1 

and premotor 

cortex, 

supplementary 

motor area 

(SMA), focal 

1 session. 

2 mA. 10 

min. 

↑ corticomuscular coherence after 

tDCS of M1-premotor-SMA, as 

compared with focal M1 tDCS 

(ring configuration) 

https://pubmed.ncbi.nlm.nih.gov/33828202/
https://pubmed.ncbi.nlm.nih.gov/33828202/
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M1 tDCS (ring 

configuration) 

Naegel et 

al86 

(Journal of 

Headache 

and Pain) 

2018 

Classical 

anodal, 

cathodal, and 

sham M1 

tDCS 

1 session. 

20 min. 

1.5 mA. 

Passive 

sham 

↑ activation of multiple brain areas 

in the anodal M1 tDCS, compared 

to cathodal tDCS, not compared 

to sham. No significant pain 

sensitivity changes. 

Fischer et 

al 

(Neuroimage) 

2017 

tDCS of the 

motor network 

(4 mA), classic 

M1 tDCS (2 

mA), active 

sham network-

mismatch 

tDCS (4 mA) 

1 session 

each, 12 

min. 

“active” 

sham. 

↑ MEPs (baseline normalized) 

compared with classic M1 tDCS 

and network-mismatch tDCS in 

healthy individuals 

Thibaut 

et al 

(Neuroscienc

e letters) 

2017 

Classical 

anodal M1 

tDCS, tPCS  

1 session. 

2 mA. 20 

min. 

Passive 

sham. 

↑ high beta power over the 

temporal and parietal regions 

after M1 tDCS, as compared with 

sham. No significant effect on 

pain sensitivity. 

Attal et al 

(Pain) 
2016 

M1 classical 

tDCS. M1 

rTMS. 

3 

sessions. 

2 mA. 30 

min. 

Passive 

sham 

No significant pain reduction in 

the active tDCS group, as 

compared with sham. ↓ pain after 

3 sessions of M1 rTMS sessions 

in neuropathic patients. 

Flood et 

al 

(JPain) 

2016 

Focal M1 

tDCS (ring 

configuration) 

1 session. 

2 mA.  10 

min. 

passive 

sham. 

↑ CPM in healthy pain-free men 

after active focal M1 tDCS. 

Donnel et 

al (Brain 

stim) 

2015 
multifocal M1 

tDCS 2x2 

5 

sessions. 

2 mA. 20 

min. 

Passive 

sham. 

↓ pain and improved motor 

evaluation after active multifocal 

M1 tDCS (2x2), as compared with 

sham. Positive affect reduced in 

both active and sham groups. 

https://doi.org/10.1016/j.neulet.2016.10.026
https://doi.org/10.1016/j.neulet.2016.10.026
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Regina et 

al (Frontiers 

in 

Behavioural 

Neurosc) 

2015 

Classical M1 

tDCS with 

melatonine 

1 session. 

2 mA. 20 

min. 

passive 

sham. 

Significant MEP changes in  the 

melatonine+anodal tDCS, as 

compared with melatonine-sham 

tDCS and placebo-sham tDCS. 

No significant changes in serum 

BDNF levels in any condition. 

DaSilva 

et al 

(Frontiers 

Behaav. 

Neuros) 

2015 

Focal (2x2 and 

ring config.) 

M1 tDCS and 

M1 classical 

tDCS, bilateral 

DLPFC tDCS, 

occipital cortex 

tDCS 

1 session. 

1-2 mA. 

Compared to focal M1 tDCS (ring 

config), focal 2x2 M1 tCDS 

produced more focused cortical 

effects. Negligible subcortical 

effects in both focal tDCS 

paradigms. 

Roy et al 2014 

Focal M1 

tDCS (ring 

config.) 

1 session. 

20 min. 

Passive 

sham. 

↑ ERD during motor imagery 

during and after active tDCS 

session 

Kuo et al 

(Brain 

stimulation) 

2013 

Focal anodal 

and cathodal 

M1 tDCS (ring 

config.) and 

classical M1 

tDCS 

1 session 

2 mA. 10 

min. 

Passive 

sham. 

↑ MEPs after both focal M1 tDCS 

and classical M1 tDCS. MEPs 

facilitation lasted for 2 h after focal 

anodal M1 tDCS.  

Villamar 

et al (JPain) 
2013 

Focal M1 

tDCS (ring 

configuration), 

sham tDCS 

1 session. 

2 mA. 20 

min. 

Passive 

sham. 

↓ pain after anodal and cathodal 

focal M1 tDCS, compared to 

sham. ↑ mechanical detection 

thresholds after anodal tDCS, 

compared to sham. 

Borckardt 

et al (JPain) 
2012 

Focal M1 

tDCS (ring 

configuration) 

1 session. 

2 mA. 20 

min. 

Passive 

sham 

No significant changes in HPT 

and MPT after active M1 tDCS. 

↓ thermal wind-up pain, WDT, 

cold sensory thresholds in the 

active group, as compared with 

sham. 
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Appendix B. Overview of studies 
investigating the effects of multifocal 
tDCS with cortical targets other than 
the M1. 

Xiong et al 

(Pain 

medicine) 

2023 

Focal anodal 

and cathodal 

ACC tDCS  

Passive 

sham. 

Focal cathodal ACC tDCS 

↑ heat and pressure pain 

thresholds, compared to 

sham. 

Steyaert et al 

(PLOS ONE) 

2022 

Left DLPFC 

tDCS 

(multichannel 

tDCS), 

passive sham 

2-3 mA, 

20 min. 

Passive 

sham 

↓ reduced secondary 

hyperalgesia area (induced 

by high frequency 

stimulation) after anodal 

DLPFC tDCS, compared 

with sham 

Zhou et al 

(Front. Hum. 

Neurosci) 

2022 

Network-

based tDCS 

(dorsal 

attention and 

default mode 

networks) 

Passive 

sham. 

↓ gait variability. No 

significant changes in gait 

speed or other average 

gait metrics. 

Ziegler et al 

(Progress in 

Brain R.) 

2021 

tDCS of the 

inferior frontal 

gyrus (IFG) 

5 

sessions. 

0.25-0.5 

mA. 

Passive 

sham 

0.5 mA IFG tDCS reduced 

omission errors and 

produced a lower P3 

reduction, as compared to 

0.25 IFG tDCS. 

Abellaneda-

Perez et al 

(Front Aging 

Neuros) 

2021 

Multifocal 

frontoparietal 

tDCS, and 

another 

montage 

fronto-

posteromedial 

tDCS, sham 

tDCS 

1 session. 

4 mA. 

Passive 

sham. 

Multifocal tDCS targeting 

the frontoparietal regions 

modulated functional 

coupling, compared to 

sham. 

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0270047
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9220095/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8662695/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8662695/
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Lema et al 

(Scientific reports) 
2021 

Classical 

DLPFC tDCS, 

DLPFC tRNS, 

sham 

Passive 

sham. 

No statistical changes after 

anodal tDCS. tRNS 

significantly increased 

attention and performance 

during the Attention 

Network test (ANT)  

Sehatpour et 

al (Brain 

stimulation) 

2021 

Classical and 

focal tDCS of 

visual cortex. 

1 session. 

2 mA. 

(duration 

not 

indicated). 

Passive 

sham. 

↑ reaction times after focal 

tDCS, compared to sham. 

Compared to classical 

tDCS, ↑ coherence 

between motor and SMA 

nodes after focal tDCS. 

Wang et al  

(IEEE EMBC) 

2019 

Focal DLPFC 

tDCS (ring 

config.) 

1 session. 

2 mA. 30 

min. 

Passive 

sham. 

Focal DLPFC tDCS 

reduced alpha and beta 

power, as compared with 

sham. Working memory 

improved when combining 

training and focal tDCS. 

Donaldson et 

al (J 

Neurophysiology) 

2019 

rTPJ tDCS 

(ring config.), 

sham 

1 session. 

2 mA. 20 

min.  

anodal rTPJ tDCS 

modulates task 

performance, compared to 

sham. Cathodal rTPJ tDCS 

showed a tendency to 

reduced P300 ERPs. 

To et 

al251(Scientific 

reports) 

2018 

dACC tDCS 

(ring 

configuration 

on Fz and 

Fp1, Fp2, F7 

and F8) 

1 session. 

1 mA. 20 

min. 

Passive 

sham. 

↑ Beta power in the dACC 

after anodal dACC tDCS 

and ↑ theta power in the 

dACC and rACC after 

cathodal dACC tDCS. 

Hill et al 

(Brain stimulation) 

2018 

Focal DLPFC 

tDCS (ring 

configuration), 

DLPFC+PC 

tDCS, sham 

tDCS 

1 session. 

1.5 mA. 

15 min. 

Passive 

sham. 

↑P60 TMS-evoked 

responses after both 

DLPFC and focal 

DLPFC+PC tDCS. Also 

relative to baseline, focal 

DLPFC+PC tDCS ↓N100 

responses and ↑theta and 

gamma power. Working 

https://www.nature.com/articles/s41598-021-85749-7


NEUROPLASTIC RESPONSES AFTER PROLONGED EXPERIMENTAL PAIN AND MULTIFOCAL TRANSCRANIAL 
DIRECT CURRENT STIMULATION 

104
 

memory was not 

modulated. 

Hill et al 

(Neuroimage) 
2017 

tDCS and 

classical 

tDCS of the 

DLPFC, sham 

1 session. 

1 mA. 20 

min. 

Passive 

sham. 

P60 TMS-evoked 

responses after both focal 

tDCS and classical DLPFC 

tDCS. Widespread 

changes after focal DLPFC 

tDCS. 

Hogeveen et 

al (Brain 

stimulation) 

2016 

Focal tDCS 

(ring config.) 

of the inferior 

frontal cortex 

(IFC), classic 

tDCS of IFC 

1 session. 

1 mA. 20 

min. 

active 

sham 

(active 

occipital 

tDCS). 

↑ performance after a stop-

signal task in both focal 

tDCS and classical tDCS 

of the IFC, as compared to 

active sham (active 

occipital tDCS). 
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Appendix C. Statistical analyses 

Section i) Statistical analysis on current pain, and averaged pain as well as 

psychometric questionnaires combining participants of all the present PhD 

studies. 

 F value 
P value 

(unadjusted) 
np

2 Interpretation 

Two-way ANOVA of current pain (at Day1-post-cap1 and Day2) 

Main effect of 

TIME 
30.879 0.00 0.309 

Compared with Day1-

post-cap, current 

capsaicin pain ↑ at Day2 

in both active and sham 

groups 

Main effect of 

GROUP 
1.630 0.206 0.023 - 

TIMExGROUP 

interaction 
0.315 0.576 0.005 - 

Two-way ANOVA of averaged pain (at Day1-post-cap1 and Day2) 

Main effect of 

TIME 
71.078 0.00 0.507 

Compared with Day1-

post-cap, averaged 

capsaicin pain ↑ at Day2 

in both active and sham 

groups 

Main effect of 

GROUP 
2.746 0.102 0.038 - 

TIMExGROUP 

interaction 
1,343 0.251 0.019 - 
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Section ii) Pearson correlations of pooled data using CPM and MEPs in 

Study I before receiving tDCS 

 R 
P value 

(unadjusted) 
Interpretation 

CPM-PDT and MEPs at Day1-

baseline 
-0.52 0.378 

No significant 

association 

CPM-PTT and MEPs at Day1-

baseline 
-0.120 0.237 

No significant 

association 

CPM-PDT at Day1-baseline 

and ΔMEPs at Day1-baseline 

and Day1-post-cap 

0.020 0.453 
No significant 

association 

CPM-PTT at Day1-baseline and 

ΔMEPs (Day1-post-cap – Day1-

baseline) 

0.010 0.476 
No significant 

association 

 

 

Section iii) Analysis of N2 and P2 amplitudes of cortical ERPs of study II 

 
F 

value 

P value 

(unadjusted) 
np

2 Interpretation 

Two-way ANOVA of normalized N2 amplitudes (at Day1-baseline and 

Day1-post-cap) during pain 

Main effect of 

TIME 
6.67 0.014 0.164 

Significant reduction of 

N2 amplitudes at 

Day1-post-cap 

Main effect of 

GROUP 
0.56 0.460 0.016 - 

TIMExGROUP 

interaction 
0.00 0.988 0.000 - 

Two-way ANOVA of normalized N2 amplitudes (at Day1-post-cap and at 
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Day2) after tDCS 

Main effect of 

TIME 
0.44 0.509 0.013 - 

Main effect of 

GROUP 
0.22 0.640 0.007 - 

TIMExGROUP 

interaction 
1.18 0.285 0.034 - 

Two-way ANOVA of normalized P2 amplitudes (at Day1-baseline and 

Day1-post-cap) during pain 

Main effect of 

TIME 
3.52 0.069 0.94 - 

Main effect of 

GROUP 
0.33 0.069 0.094 - 

TIMExGROUP 

interaction 
3.52 0.069 0.094 - 

Two-way ANOVA of normalized P2 amplitudes (at Day1-post-cap and at 

Day2) after tDCS 

Main effect of 

TIME 
0.08 0.776 0.002 - 

Main effect of 

GROUP 
1.93 0.173 0.054 - 

TIMExGROUP 

interaction 
7.74 0.009 0.185 

Post hoc analysis 

shows the active 

group increased P2 

amplitudes at Day2, 

compared to the sham 

group (p<0.05) and to 

Day1-post-cap 

(p<0.05) 

 



LU
ISIN

A G
R

EG
O

R
ET

N
EU

R
O

PLA
STIC

 R
ESPO

N
SES A

FTER
 PR

O
LO

N
G

ED
 EXPER

IM
EN

TA
L PA

IN
 

A
N

D
 M

U
LTIFO

C
A

L TR
A

N
SC

R
A

N
IA

L D
IR

EC
T C

U
R

R
EN

T STIM
U

LATIO
N

ISSN (online): 2246-1302
ISBN (online): 978-87-7573-612-6


	Omslag_LG.pdf
	PHD_SHORT_LG_TRYK.pdf
	Kolofon_LG.pdf
	LuisinaGregoret_PhD_Thesis_FOR_PUBLICATION.pdf
	Blank Page

	Omslag_LG
	Blank Page
	Blank Page



