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Abstract 

Temperature plays a significant role in the 

safety, performance, and lifetime of lithium-ion 

batteries (LIBs). Therefore, monitoring battery 

temperature becomes one of the fundamental 

tasks for the safe and efficient operation of LIBs. 

Given the limited onboard temperature sensors, 

this paper proposes a sensorless temperature 

estimation method suitable for the smart battery 

system by obtaining the electrochemical 

impedance of batteries online via bypass actions. 

A suitable frequency is selected from the battery 

electrochemical impedance spectroscopy (EIS) to 

achieve an accurate and robust estimation of the 

battery temperature through online impedance 

measurement. Using the battery impedance with 

this selected frequency, the battery temperature 

can be estimated under different scenarios, with 

RMSE less than 1.5 ℃. 

Introduction 

Owing to the superiority in energy and power 

density, charge and discharge efficiency, as well 

as cycle life, LIBs are being widely applied in 

many energy storage systems. The large-scale 

applications of LIBs in electric mobilities such as 

electric vehicles (EVs), electric aircraft, and 

stationary battery energy storage systems of smart 

grids, have received increasing attention over the 

years. For instance, the global EV sales for 2022 

exceeded 10.5 million, with a significant increase 

of 55% compared to that in 2021 [1]. With the 

wide adoption of LIBs in renewable energy 

storage systems, the safety, performance, and 

durability of the battery system become the main 

concern. The battery management system (BMS) 

plays an essential role in the battery system by 

monitoring the key states of LIBs, such as the 

state of charge (SOC) and state of temperature 

(SOT), and balancing cells in order to guarantee 

safe and efficient operations of the battery system 

[2]. 

The temperature has a great impact on the 

safety, performance, and degradation of LIBs [3]. 

Specifically, extremely high temperatures 

increase the risk of thermal runaway, which might 

cause catastrophic consequences [4]. Extreme 

low temperatures, on the other hand, undermine 

the energy and power capability of LIBs by 

causing sluggish electrochemistry inside the cell 

[4]. Furthermore, both high and low temperatures 

can cause accelerated battery aging, which greatly 

reduces the lifetime of batteries [5]. Therefore, 

the temperature of each battery cell inside the 

pack needs to be properly monitored and 

regulated in order to ensure the safety and high 

performance of the battery system. Nevertheless, 

in real-world applications, the number of 

temperature sensors in a battery pack is very 

limited due to cost constraints. According to ref. 

[6], the average sensor-to-cell ratio in a battery 

pack of EVs is close to 1/10. In this regard, there 

is an urgent need to develop sensorless 

temperature estimation methods by taking 

advantage of other measured signals such as 

current and voltage. 

There are several ways to achieve sensorless 

temperature estimation. Among them, 

electrochemical impedance-based estimation 

exhibit advantages in simplicity and easy 

implementation thanks to the development of 

online electrochemical impedance measurement 

[7]. Since electrochemical impedance is an 

indicator of the cell’s internal electrochemistry, 

the change in the internal reactions caused by 

battery temperature change can also be reflected 

by the electrochemical impedance [8]. In this way, 

by measuring the impedance periodically, the 

battery temperature can be inferred. With the 

smart battery (SB) architecture [9], as shown in 



Fig. 1, the online measurement of the impedance 

can be easily achieved. Such an architecture is 

comprised of a half-bridge circuit with MOSFETs 

connected to each cell. A slave CPU is used to 

control the switches in order to decide whether to 

bypass the cell or not [9]. With controlled bypass 

actions, pseudo-random sequences with different 

frequency ranges can be generated to obtain 

battery impedance online. Afterward, battery 

temperature can be estimated based on such 

online impedance measurements. 

 
Fig. 1: The architecture of the smart battery 

management system [9]. 

Nevertheless, measuring the battery 

electrochemical impedance in a wide frequency 

range (e.g., from 0.01Hz - 10kHz) is time-

consuming, making it impossible for the BMS to 

monitor battery SOT timely. Hence, the 

electrochemical impedance of LIBs can only be 

measured at certain frequencies to meet the 

demand of real-time estimation. To date, there is 

still no quantitative analysis in the literature 

regarding the selection of the excitation 

frequencies for SOT estimation. Toward this end, 

this paper proposes a methodology for sensorless 

SOT estimation by selecting a suitable frequency 

for electrochemical impedance measurement. 

Particularly, the EIS of LIBs is measured under 

different SOCs and temperatures. The change in 

the battery impedance with SOCs and 

temperatures is analyzed. Then the frequency 

under which impedance parameters are sensitive 

to temperature change is selected based on the 

EIS analysis. Finally, the estimation performance 

using the impedance parameter at this frequency 

is verified under different temperatures. 

In the following, the online impedance 

measurement in smart batteries will be introduced 

first. Then the impedance measurement in smart 

batteries and the proposed methodology for 

online temperature estimation are presented, 

followed by the experiments for EIS 

measurement and results of estimation. 

Impedance measurement in smart 

batteries 

The SB architecture shown in Fig. 1 consists of 

a half-bridge topology integrated into each cell. 

The switching of the half-bridge is driven by the 

slave CPU. Consider the case when the cells in an 

SB pack are under constant current (CC) charging. 

By pulsating the half-bridge switches, the current 

into any cell can be adjusted to any desired 

frequency. Thus, the SB architecture enables the 

online measurement of battery impedance at any 

desired frequency, as shown in Fig. 2. 

 
Fig. 2: Online impedance measurement in the 

slave processor of an SB cell [10]. 

As can be seen from Fig. 2, the half-bridge 

switches are controlled to produce a square wave 

current into the cell. This is because when the top 

device 𝑆1  is ON, the cell takes the charging 

current while the current through the cell is zero 

when 𝑆1
′  is ON. The cell current and voltages can 

be measured online by SB as highlighted in Fig. 

1. These sensed voltages and currents are 

processed with a narrow bandpass filter to extract 

the desired frequency components. The 

impedance can be expressed by the transfer 

function as, 

𝑍(𝑗𝜔) =
𝑉(𝑗𝜔)

𝐼(𝑗𝜔)
= |𝑍|∠𝜙 (1) 

where |𝑍|  is the magnitude of the transfer 

function and 𝜙 is the phase. 

The impedance thus computed is connected 

with the sensorless temperature estimation 

methodology described next.  

Methodology 

The key idea of sensorless SOT estimation is to 

take advantage of the temperature dependency of 

battery impedance to estimate battery temperature 

according to the online impedance measurements. 

Typically, the EIS of the battery is measured by 

sweeping the frequency of the excitation current 

over a wide range from 0.01 Hz to 10 kHz and 

calculating the corresponding impedance, which 

usually takes at least half an hour. In real 

applications, however, it is impractical to 

              

 

 

      
   

   

       

        
       

      

      

 

 

      

      

      

      

         

             

                   
       

          

      
           

       

   



measure the battery EIS over such a wide 

frequency range. Otherwise, the battery SOT 

cannot be obtained timely. Therefore, only the 

impedance at some specific frequencies can be 

measured online for SOT estimation. 

In this paper, we propose an online SOT 

estimation method by selecting an appropriate 

excitation frequency. Under this frequency, the 

battery impedance must be sensitive to the 

temperature change. By measuring the battery 

impedance at this frequency in real-time, the SOT 

can be also estimated timely based on the 

measurement. However, the battery impedance Z 

is not only dependent on the excitation frequency 

f and temperature T, but also on the SOC, which 

can be expressed as, 

𝑍 = 𝑔(𝑓, 𝑇, 𝑆𝑂𝐶) (2) 
The dependency of the impedance on multiple 

factors makes it difficult to estimate SOT 

accurately since other factors might interfere with 

the estimation process. To eliminate the influence 

of other factors such as SOC on estimation, a 

suitable frequency 𝑓∗ can be found under which 

the impedance of the battery changes notably with 

the battery temperature but remains constant at 

different SOC. In order to obtain the sensitivity of 

the impedance to different factors, the 

impedance-temperature relationship can be 

approximated by fixing the frequency and SOC 

and performing the linear regression, 

𝑍 = 𝛼1𝑇 + 𝛽1 (3) 
The impedance sensitivity to temperature is 

then estimated by 𝛼1 = d𝑍/d𝑇 . Similarly, the 

impedance-SOC relationship can be 

approximated as, 

𝑍 = 𝛼2𝑆𝑂𝐶 + 𝛽2 (4) 
and the impedance sensitivity to SOC can be 

estimated as 𝛼2 = d𝑍/d𝑇. 

The frequency 𝑓∗ is then the frequency where 

|d𝑍/d𝑇|  is large and |d𝑍/d𝑆𝑂𝐶|  is negligible, 

making the impedance sensitive to temperature 

change and independent of SOC and thus leading 

to a better condition for temperature estimation.  

In this way, the battery impedance under 𝑓∗ 
can be expressed as, 

𝑍∗ = 𝑔(𝑇)|𝑓=𝑓∗ (5) 
And battery temperature can be estimated by 

performing the inverse function of (5) as, 

�̂� = 𝑔−1(𝑍∗) (6) 

Experimental setup 

In this paper, a 3.7V/50Ah NMC LIB from 

CALB is used to conduct the EIS tests. 

The experimental setup used in this study is 

illustrated in Fig. 3. In this setup, a Digatron 

battery tester, a thermal chamber, an 

electrochemical workstation, a temperature 

acquisition module, and a host computer are 

involved. The tested battery cell is placed in the 

thermal chamber where the ambient temperature 

can be adjusted and maintained around the test 

temperature. The test cell is also electrically 

connected to both the battery tester and 

electrochemical workstation. A K-type 

thermocouple is placed at the center of the battery 

cell to monitor the cell temperature during tests. 

The host computer, with the programmed test 

procedure, can control the battery tester and the 

electrochemical workstation during the test. The 

measured current, voltage, temperature, and 

battery EIS are stored in the host computer. 

 
Fig. 3: Experimental setup for battery EIS tests. 

The EIS of the battery cell is measured at 

different temperatures and SOCs, as summarized 

in Table I. At each tested temperature, the battery 

is fully charged at first using 1C constant current-

constant voltage (CC-CV) protocol and then 

rested for 1 h. Afterward, the SOC is adjusted to 

the test SOCs using 50-A discharge current. The 

battery will rest for 1h after each SOC adjustment 

to reach the equilibrium state, followed by the EIS 

test. The frequency in the EIS test ranges from 

0.01 Hz to 6400 Hz. 

Table I: Summary of the EIS tests 

Test temperatures Test SOCs 

15 ℃, 20 ℃, 25 ℃, 30 ℃, 

35 ℃, 40 ℃, 45 ℃ 

90%, 70%, 

50%, 30%, 

10% 

Results and discussion 

In this section, the EIS test results will be 

presented and analyzed first. In this regard, 

according to the SB designed in Section II, the 

voltage and current in the SB are sensed when a 

narrowband filter extracts the desired frequency 



component. Afterward, the SOT estimation will 

be conducted under two operating scenarios. In 

the first scenario, the battery SOC is kept at 50%, 

which is close to the operation of HEV where the 

battery pack is only used as an energy buffer and 

will not undergo significant SOC variation. In the 

second scenario, the battery SOT is estimated by 

considering different SOCs, since in battery 

electric vehicles (BEVs) and plug-in hybrid 

electric vehicles (PHEVs) the battery pack serves 

as the primary energy source so that the SOC will 

vary notably during charge and discharge cycles. 

Experimental results 

The impedance magnitude obtained from the 

filter's output in SB is compared with EIS test 

results. Fig. 4 compares the magnitudes of the 

impedances estimated by SB with those obtained 

from the EIS test results at different frequencies 

at 25 ℃ when the SOC is 50%. SB's average and 

maximum errors compared to the EIS test are 2.3% 

and 5.8%, respectively. A 2RC model obtains 

these values, and the error will be reduced by 

applying it to a real battery. The details of this 

model can be referred to [10]. 

 
Fig. 4: Comparison between SB and EIS test. 

Since the battery EIS varies with the 

temperature and SOC, the experimental results 

will be presented to illustrate how temperature 

and SOC influence battery EIS. First, to examine 

the effect of temperature on EIS, the battery SOC 

is kept at 50% and the result is illustrated in Fig. 

5(a). At the high-frequency region, the imaginary 

part of the EIS becomes dominant with the 

increase of excitation frequency, and such 

inductance is affected by the wiring patterns 

rather than the property of the battery. Therefore, 

in this paper, the battery EIS under the frequency 

from 0.01 Hz to 1156 Hz is selected for 

illustration and further analysis. Furthermore, in 

Fig. 5(a), the EIS of the battery in the Nyquist plot 

shrinks towards the left side with the temperature 

increase, indicating a decrease in battery 

impedance. The change in battery EIS is more 

significant in the lower temperature range (i.e., 

15-30 ℃) than that in the higher temperature 

range (i.e., 30-45 ℃). 

To illustrate the change in battery EIS with 

SOC, the EIS at 25 ℃ under different SOCs is 

shown in Fig. 5(b). When SOC is higher than 30%, 

the battery EIS changes very slightly with SOC. 

In particular, the impedance at higher frequencies 

is virtually the same at different SOCs. At the 

low-frequency range, the EIS gradually diverges 

a little bit. Nevertheless, when SOC is lower than 

30%, the EIS at the low-frequency region shifts 

remarkably towards the right side of the Nyquist 

plot, indicating significantly increased impedance. 

 
(a) 

 
(b) 

Fig. 5: Results of EIS tests at different 

temperatures and SOCs. (a) The EIS results at 

different temperatures when battery SOC is 50%, 

(b) The EIS results at different SOCs with battery 

temperature at 25 ℃. 

It can be concluded from Fig. 5 that in a wide 

SOC region (i.e., 30% - 90%), the temperature 

has a more significant impact on the EIS than 

SOC does. 

SOT estimation at 50% SOC 

In the first scenario, the battery SOT will be 

estimated when the SOC is kept at 50%. To 

investigate how temperature changes the 

impedance parameters such as the real part, 

imaginary part, magnitude, and phase, the value 

of these parameters is extracted from the EIS and 

presented in the Bode plot in Fig. 6. The battery 

impedance can be expressed as follows, 
𝑍 = 𝑍𝑟𝑒𝑎𝑙 + 𝑗𝑍𝑖𝑚𝑔 (9) 

where 𝑍𝑟𝑒𝑎𝑙  and 𝑍𝑖𝑚𝑔 represent the real and the 

imaginary parts of the impedance. Based on the 



expression of the impedance, the magnitude and 

phase of the impedance can also be calculated as, 

|𝑍| = √𝑍𝑟𝑒𝑎𝑙
2 + 𝑍𝑖𝑚𝑔

2 (10) 

𝜙 = 𝑡𝑎𝑛−1 (
𝑍𝑖𝑚𝑔

𝑍𝑟𝑒𝑎𝑙
) (11) 

It can be shown in Fig. 6 that both the real part 

and the magnitude of the impedance vary 

obviously and monotonically with temperatures 

in the whole frequency range. As for the 

imaginary part and the phase, their variations with 

temperature can only be significant under the 

frequency range between 4 Hz and 365 Hz. 

 

 

 

 
Fig. 6. Impedance parameters at different 

temperatures when battery SOC is 50%. 

Since the variation of the imaginary part and 

the phase of battery impedance with temperature 

is not monotonic at a wide frequency, they will 

not be analyzed in the later part of this paper. As 

for the real part and the magnitude of the 

impedance, they are quite close to each other. 

Owing to the fact that the magnitude of the 

impedance can be calculated directly from 

voltage and current measurement, the magnitude 

of impedance will be used to estimate battery 

SOT in this paper. 

Since the magnitude of battery impedance has 

a monotonic change with temperature in a wide 

frequency range, as shown in Fig. 6, any 

frequency which is suitable for battery operation 

can be applied. Here, the magnitude of the 

impedance at 11.5 Hz can be selected for 

estimation as an example. A 2nd order polynomial 

is used to model the measured magnitude of 

impedance and the estimated temperatures, and 

the results can be shown in Fig. 7. The modeled 

temperature estimation equation is, 

�̂� = 55.82|𝑍|2 − 178.41|𝑍| + 156.39 (9) 

 
Fig. 7. Temperature estimation results based on 

2nd order polynomial. 

Table II: Estimation Errors 

𝑇𝑟𝑒𝑎𝑙 / ℃ �̂� / ℃ Estimation Error / ℃ 

15 15.3 0.3 

20 19.5 −0.5 

25 24.9 −0.1 

30 29.7 −0.3 

35 35.9 0.9 

40 40.4 0.4 

45 44.2 −0.8 

The estimation results and errors can be 

summarized in Table II. The R-square of the 

modeling results is 0.9972 and the root mean 

square error (RMSE) is 0.7 ℃, indicating a good 

interpretation of the impedance-temperature 

relationship. In real applications, by measuring 

the real part of impedance at 11.5 Hz online, the 

battery temperature can be estimated timely. 

SOT estimation at varying SOCs 

To investigate the effect of SOCs on 

impedance, the impedance parameters are 

extracted from battery EIS at different SOCs. Fig. 

8 illustrates the Bode plots of the battery EIS at 

different SOCs at 25 ℃. As shown in Fig. 8, the 

impedance parameters show insignificant 

changes to SOCs when battery SOC is higher than 

30%. The variation of impedance parameters at 

the frequency region lower than 10 Hz is more 

notable than that in the higher frequency region. 

When battery SOC is below 30%, both the real 

part and the magnitude of the impedance deviate 

remarkably from the impedance above 30% SOC, 

particularly at the frequency region between 0.01 

Hz and 10 Hz. It should be noted that when the 

frequency is higher than 10 Hz, the impedance 

parameters at different SOCs begin to converge 



so that in this region the effect of SOC on 

impedance parameters becomes smaller. 

 

 

Fig. 8. Impedance parameters at different SOCs 

when the battery temperature is at 25 ℃. 

It can be concluded from Fig. 8 that in some 

frequency ranges the effect of SOC on impedance 

parameters cannot be ignored. As a result, the 

uncertainties of SOC will interfere with the SOT 

estimation. Therefore, in the SOT estimation loop, 

the effect of SOC should be eliminated. To this 

end, an appropriate frequency must be found, 

under which the impedance parameters are 

sensitive to temperature change but insensitive to 

SOC change. 

To find the suitable excitation frequency for 

SOT estimation, the dependency of impedance 

parameters on battery temperature and SOC at 

different frequencies should be calculated in 

advance. Since it is unlikely for the battery to 

operate in an extremely low SOC range, the 

electrochemical impedance at 10% is not 

included in the SOT estimation. The sensitivity of 

impedance parameters with temperatures and 

SOCs, as defined in Eq. (3) and Eq. (4), are shown 

in Fig. 9 and  

 
Fig. 9: Absolute sensitivity of impedance 

parameters to battery temperature at different 

SOC levels. 

 
Fig. 10: Absolute sensitivity of impedance 

parameters to battery SOC at different 

temperatures. 

As can be seen from Fig. 10, the impedance 

parameters of the battery become less sensitive to 

SOC when the frequency is from 0.04 Hz to 1 Hz. 

Under this frequency range, all the impedance 

parameters still remain high sensitivity to 

temperature change, as shown in Fig. 9. Therefore, 

we can choose an excitation frequency from 0.04 

Hz to 1 Hz region so that the effect of SOC 

uncertainties on SOT estimation can be ignored 

while the impedance parameters remain high 

sensitivity to temperature change. In our case, we 

select 0.15 Hz as the excitation frequency and use 

the magnitude of impedance at 50% SOC to 

parameterize the impedance-temperature 

relationship. Likewise, a 2nd order polynomial is 

used to model this relationship. The fitting results 

of the impedance-parameter relationship can be 

shown in Fig. 11(a). The R-square and the RMSE 

of the model fitting are 0.9934 and 1.1 ℃, 

respectively, indicating good model 

parameterization. To further examine the model 

performance on SOT estimation under different 

SOCs, the impedance data at 90%, 70%, and 30% 

SOCs are used for validation. The estimation 

results are shown in Fig. 11(b), where the 

estimation error can be summarized in Table III. 

It can be indicated from Fig. 11(b) and Table 

III that the SOT estimation under different SOCs 

is accurate. The RMSEs at 90%, 70%, and 50% 

SOCs are 1.4 ℃, 1.3 ℃, and 1.3 ℃, respectively. 

In addition, it can be concluded from Table III 

that the estimation has higher errors in the high-

temperature region, particularly when the 

temperature is above 40 ℃. This is due to the 

reason that the change of impedance in the high-

temperature region is small so that a small 

deviation in the impedance input can cause 

significant estimation error. 



 
(a) 

 
(b) 

Fig. 11. Impedance-temperature modeling and the 

estimation results based on 2nd order polynomial 

by considering the variation of battery SOC. (a) 

Modeling results, (b) Estimation using impedance 

measurement at different SOCs. 

Table III: Estimation error under varying 

SOC. 

𝑇𝑟𝑒𝑎𝑙 
/ ℃ 

Error at 

90% 

SOC/ ℃ 

Error at 

50% SOC 

/ ℃ 

Error at 

30% SOC 

/ ℃ 

15 0.1 0.2 0.2 

20 −1.8 −1.5 −2.2 

25 −1.0 −0.8 −1.5 

30 −0.6 −0.3 −0.5 

35 −0.2 −0.3 0.1 

40 −1.1 −1.0 −0.7 

45 −2.7 −2.9 −2.2 

Conclusion 

In this paper, we are proposing a novel method 

for sensorless estimating the battery volume 

temperature based on electrochemical impedance 

measurement. Conventionally impedance 

measurement is only available using EIS 

technique and expensive measuring instruments 

which are not practical for online- measurements 

in an EV. Assuming the battery pack build with 

Smart Battery technology including the 

availability of cell-level bypass, the measurement 

of impedance in ac becomes possible by 

switching the bypass with a certain frequency and 

using the data measuring and computation 

capability available at the cell level. The first 

challenge addressed is to find the most suitable 

frequency for impedance measurement and this 

was found by trying to maximize the sensitivity 

of impedance to temperature and minimizing the 

sensitivity to SOC. This resulted in a very low 

excitation frequency of 0.15 Hz for a realistic 

prismatic cell of 50 Ah which also reduces the 

switching losses associated with the measurement. 

The temperature estimation was verified against 

laboratory EIS measurement and the RMSE was 

0.7 Celsius for the SOC stable case, well inside 

the normal temperature measurement tolerance 

by industrial BMS of 1%. This could have a 

positive impact on the cost of future Smart 

Battery systems and future work envisages 

implementation and validation of the real 

prototype. 
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